INVESTIGATION OF THE ACCURACY OF KRAYENHOFF'S TRIANGULATION (1802-1811) IN BELGIUM, THE NETHERLANDS AND A PART OF NORTH WESTERN GERMANY

PUBLICATION OF THE NETHERLANDS GEODETIC COMMISSION

INVESTIGATION OF THE ACCURACY OF KRAYENHOFF'S TRIANGULATION (1802-1811) IN BELGIUM, THE NETHERLANDS AND A PART OF NORTH WESTERN GERMANY

by N. D. HAASBROEK
Former lecturer at the Delft University of Technology

CONTENTS

1. Introduction
I. GEODETIC PART OF THE TRIANGULATION9
2. Krayenhoff's biography
3. Krayenhoff's biography 12
4. The motive for the triangulation
5. The motive for the triangulation 14
6. General survey of the triangulation 16
7. Description of the instruments used 20
8. Execution of the angular measurements 24
9. Chronological order in which the stations were visited and survey of the number of angles and series measured there 31
10. Accuracy of the angular measurement 37
11. Influence of the eccentricity of the lower telescope on the result of the angular measurements 40
12. Reduction of the measured space angles to the horizon 42
13. Reduction of the measured angles to centre 43
14. Reduction of the spherical angles, reduced to horizon and centre, to angles between the chords on the sphere 51
15. Conditions the angles of the triangulation network have to comply with 56
16. Analysis of the closing errors in the angles around the central points 84
17. Analysis of the closing errors in the triangles 87
18. Analysis of the closing errors in the side equations 110
19. Consideration on the rejection of series measured in the triangulation 112
20. Krayenhoff's computation of his triangulation network and his efforts to make it a closing mathematical figure 118
21. Adjustment of the spherical angles of the triangulation network according to the method of the least squares 129
22. Provisional adaptation of the adjusted network to the points Rhenen and Gorinchem of the R. D. -triangulation 131
23. Final adaptation of Krayenhoff's adjusted triangulation to 65 identical points of the R. D. -network 135
24. Comparison between the side lengths in tableau III of the Precis Historique and those found from the adjustment according to the method of the least squares 140
25. Comparison of the angles and sides (chords) of the adjusted network with the results of the R. D. 143
26. Final consideration on the geodetic part of the triangulation 154
\S II. ASTRONOMICAL PART OF THE TRIANGULATION Page
27. Introduction 156
28. Determination of the latitude in Amsterdam (station No. 40) 157
29. Determination of the latitude at Jever (station No. 102) 163
30. Determination of astronomical azimuths. General considerations and results of the measurement of the azimuth Amsterdam-Utrecht 167
31. Measurement and computation of the azimuth Jever-Varel 178
32. Instrumental errors, affecting the accuracy of the determination of azimuths 186
33. Determination of standard deviations in azimuths 188
34. Survey of the geographical coordinates φ and λ of all the points of the triangulation network and the azimuths of all the sides and, for the common points and sides, a comparison with the R.D.-results 192
35. Conclusions 214
References 219

Fig. 1
Cornelis Rudolphus Theodorus Krayenhoff
(1758-1840)

INVESTIGATION OF THE ACCURACY OF KRAYENHOFF'S TRIANGULATION (1802-1811) IN BELGIUM, THE NETHERLANDS AND A PART OF NORTH WESTERN GERMANY

1. Introduction

Krayenhoff's triangulation in a part of Belgium, The Netherlands (with the exception of the province of Limburg), and a part of northwestern Germany, carried out between 1802 and 1811 and published in his Précis Historique [1] was praised to the skies shortly after its completion also because of the appreciative but rash judgments of Delambre [2] and Van Swinden [3] .

The first who, in 1824-1825, in his letters to Schumacher [4] , Bessel [5] , and Olbers [6] criticized Krayenhoff's work was the great German mathematician C. F. Gauss [7] . To Bessel e.g. he writes: 'Krayenhoff hat aus vielen Winkelreihen immer nur diejenigen beibehalten die am besten zu passen schienen, ohne anzugeben wieviel die anderen abweichen" [8] , [9]. In the same strain he writes to his pupil and friend Schumacher: "Entweder muss also Herr Krayenhoff seine Ausgleichungen nicht gehörig gemacht haben oder seine Winkelmessungen involvieren versteckter Weise viel grössere Fehler als man nach der Prufung durch die Dreiecke und die Gyruswinkel erwarten sollte und im letzten Fall ist man berechtigt zu glauben dass die angegebenen Beobachtungswinkel wenigstens parteiisch gewählt sind um diese Schliessung der einzelnen Dreiecke und Tours d'horizon zu erzwingen" [10] , [9] .

In The Netherlands, Gauss' adverse criticism was borrowed by Verdam; on the pages 206-214 of his "Methode der kleinste quadraten" (Method of the least squares, Groningen, 1850) he reproduces in detail what Gauss had said on the accuracy of the northeastern part of the triangulation network (the surroundings of Drachten, Leeuwarden, and Dokkum). In Jordan's "Handbuch der Vermessungskunde" this same part of the network is discussed [11].

In 1864 appears, also in The Netherlands, the criticism of Kaiser [12] and Cohen Stuart [13] : "De eischen der medewerking aan de ontworpen graadmeting in Midden Europa voor het Koningrijk der Nederlanden" [14] . As the title: 'Requirements for the cooperation of the Kingdom of The Netherlands in the designed Middle European Triangulation" already suggests, the motive for this criticism was a request of the Prussian general Baeyer whether Krayenhoff's observations could be used for such a triangulation.

Baeyer claimed [15] that, if so, the measurements should be recomputed and suggested that, like in other countries, some army officers should be charged with this work under the supervision of Kaiser. The measurements should be completed with new astronomical measurements. The inaccuracy in length between two far distant points in the adjusted network should not exceed the factor 1 to $20,000[16]$. For, such was the reasoning in those days, if the inaccuracy of latitude determination is estimated at about $1 / 3^{\prime \prime}$ (about 10 metres), and the distance between two astronomical stations at about 200 km , then the error in length on account of the astronomical determination is about 1 to 20,000 .

Apart from his introduction on the pages 4-16 of the booklet, Kaiser has not collaborated with the investigation laid down in the latter part. As the wellknown and elder astronomer he only gave his name to the contents. All the work - and it was a thorough investigation indeed - was done by Cohen Stuart. He concludes that Krayenhoff's measurements should be rejected. His judgment agrees with Gauss' opinion: the far too small closing errors (standard deviation m_{1}) in the angles around a central point, the also very small closing errors in the sum of the angles of the triangles (standard deviation m_{2}) and the often considerable closing errors (standard deviation m_{3}) in the sine equations demonstrate that Krayenhoff made his observations look better than they really are. In reality, according to Cohen Stuart, the standard deviations m_{1}, m_{2}, and m_{3} should be alike when the observations are independent of each other [17] . By this judgment the sentence on Krayenhoff's triangulation was passed.

After a new but unsuccessful attempt for a triangulation by Stamkart [18] in the years 1865-1881 it has been replaced in The Netherlands by the network of the Rijksdriehoeksmeting. The first order measurements for the network were carried out between 1885 and 1905 by the Rijkscommissie voor Graadmeting en Waterpassing (government commission for Triangulation and Levelling). They have a high accuracy as may be found in the publication of the first order triangulation in "Triangulation des Pays Bas". Thanks to the precautions during the measurements and the system of measuring the angles on a station in all combinations, $\mathrm{m}_{1}, \mathrm{~m}_{2}$, and m_{3} are about alike as Cohen Stuart made it already his ideal. These results could be attained by much self-control which made the art of measuring a waiting for the most favourable circumstances. At Finsterwolde, e.g., one of the first order points, the two engineers charged with the measurements, remained for six weeks with the result that not even one angle could be
measured [19] . In 1888 at only three stations the measurements could be finished.

Cohen Stuart should have known, however, that even in his time not one triangulation satisfied these conditions and that also his demands do not hold for the very large English triangulation described in "Account of the Principal Triangulation of the Ordnance Survey of Great Brittain and Ireland (London 1858)" .

Twenty five years later - in 1889 - Van der Plaats returned to the subject of Krayenhoff's triangulation in an excellent paper in the Dutch professional journal "Tijdschrift voor Kadaster en Landmeetkunde" [20] . Not, as Gauss and Cohen Stuart did, to condemn the triangulation but to take it under protection because the judgment of its opponents "is partial and based upon wrong principles of justice and wrong considerations" [21]. In an often emotional manner and certainly not free from a theatrical effect he reacts on Cohen Stuart's judgment 'that the measurements are far too inaccurate to be used for the new Middle European Triangulation. It is even not possible, neither to judge Krayenhoff's measurements, nor to recompute them as even his registers are not the unchanged results of mutual independent observations" with the words:
"Let us suppose that (what would not have been impossible) this judgment would have been given in 1818 . With fervent indignation the then sixty years old general would have answered to the waylayer of his honour: Judge, yes condemn my geodetic work; an honest judgment is welcome to me and I will answer, give information, and correct my work as much as I can. But don't attack my personality. Are you a stranger in the national history of the past twenty years that you think me capable of such a thing. I have concealed nothing in my documents, nothing added to or withheld from the results of the observations. Go and investigate the publications of others; test my work by theirs" [22] . I shall have the opportunity to quote Van der Plaats' work several times. Here follows already such a quotation in which he remarks that "the only effectual means to judge a triangulation is to compare it with a later one with an uncontested higher accuracy" [23] .

Up till now this was never done. This study will be an attempt. It can give an answer to the question whether, according to the requirements of 1864 , (a relative length error of 1 to 20,000 between two far distant points in the recomputed network) Krayenhoff's measurements could be used or had to be rejected. Van der Plaats was convinced that they could be used [24] ,
notwithstanding the imperfection of the triangulation which he admits. For Krayenhoff's rehabilitation as geodesist according to Van der Plaats the following lines of poetry might then be used as an introduction to an eventual new (third) edition of his Précis Historique. They are borrowed from Racine's tragedy Brittannicus (second act, third scene) and they run:
" J 'ose dire pourtant que je n'ai mérité
Ni cet excès d'honneur, ni cette indignité". [25].

2. Krayenhoff's biography

Cornelis Rudolphus Theodorus Krayenhoff was born at Nijmegen on June 2nd, 1758, from the marriage of Cornelis Johannes Krayenhoff (1722-1782) and Clara Jacoba de Man [26, 27, 28]. His father was a military engineer officer who destined his son for a juridical career. Though the young Krayenhoff cared more for his father's profession he submitted to his father's wishes and visited the Latin school in Nijmegen from 1770 till 1776. In 1777, he was matriculated as a student of law in the then university of Harderwijk. He cared, however, more for the study of philosophy and medicine and, with his father's permission, he was matriculated as a philosophical candidate on June 26th, 1779, and as a medical candidate on December 8th, 1783. In 1780 he obtained the degree of doctor of philosophy and in 1784 that of doctor of medicine. He settled as a physician in Amsterdam, where, after some years, he had a flourishing practice. From his marriage to Johanna Geertruida van der Plaat two sons were born, Cornelis Johannes (1788-1865) and Johan (1790-1867).

With his independent character, his vivid mind and his relieved judgment he ranged himself on the side of the Patriots who hated the coarse abuses in the out-of-date Republic. In 1787 he could, just in time, withdraw himself from the defence of Amsterdam against the Prussians. When, however, after its victory, the Orange party appeared to have learned nothing, the Patriots knew that Krayenhoff should not stay behind when the moment would come that the reform-minded people could interfere. That moment came in 1794. After the battle of Fleurus (northeast of Charleroi, Belgium) on June 26th, 1794, when the French armies marched upon the borders of the Republic, the proclamation of the revolution seemed opportune. But the plans trickled out and Krayenhoff and some of his friends had to leave Amsterdam in order to prevent capture. Rut with the French armies and over the frozen rivers he came back. On January 18th, 1795, he was at the headquarters of his friend Daendels, now general in the French armies at Maarssen, a village between Utrecht and Amsterdam.

Already on the morning of the same day he left for Amsterdam with letters for the military governor and the burgomaster in order to effect that the town would be surrender ed without bloodshed. On the same evening he was military commander of Amsterdam and the following morning the civil governing body passed into other hands. At the age of 36 his medical career had come to a sudden stop and a military one began as he had longed for in his youth. It was to last till 1826. The most important commissions to be carried out in those years, besides the triangulation analysed in this paper, were the construction of fortifications and inundations, the levelling along the large rivers and the making of a new map of The Netherlands.

Fig. 1 is one of Krayenhoff's portraits. It was painted by Adriaan de Lelie and it represents the general in civil dress. Next to him is one of his geodetic instruments. The painting is in possession of Mr. Chr. Matthes at Bussum. He was so kind as to make the reproduction for me. He is a great-grandson of Krayenhoff's granddaughter Cornelia Johanna Rudolphina Geertruida Theodora Krayenhoff (daughter of Johan), born May 21st, 1819, at Nijmegen, and died September 8th, 1881, at Baarn. On September 14th, 1843, she married Wouter Karel Willem Matthes, born on March 14th, 1815, in Amsterdam and died June 10th, 1876, in Amsterdam. From this marriage the grandfather of the present Mr. Chr. Matthes, Johan Amile Matthes was born on August 17th, 1846. I owe these details to Mr . Chr. Matthes to whom I am very grateful for his information and for his kind permission to reproduce the portrait.

In 1806 Krayenhoff was aide de camp of king Louis Napoléon who appointed him minister of war in 1809. In 1810, after the incorporation of the kingdom Holland in the French Empire, he asked to be dismissed from his military functions but this was refused three times. The emperor Napoleon appointed him even brigade general of the French Erigineers. On November 19th, 1813, two days after The Hague had declared in favour of the return of Orange, he sent in his resignation from all his civil and military functions and on November 24th, at the request of the Commissary-general of the governing body at The Hague, he charged himself with the defence of Amsterdam. King Willem I overloaded him with honour, appointed him lieutenant-general, inspector general of the fortifications in 1814 , and raised him to the peerage with the title of baron in 1815.

In 1824 malversations committed by engineer officers under his command came to light. Krayenhoff was held responsible for these malversations and
summoned for the high military court of justice on May 10th, 1826. Some months later he was suspended from his functions. The juridical investigation ended April 28th, 1830, with acquittal.

Krayenhoff died, 82 years old, in his native town Nijmegen, on November 24th, 1840. He was buried there in the fort that is named after him. In the year after his death king Willem I did erect a simple monument on the grave. On the gravestone are the words:
"Een man van standvastigheid, beleid en heldenmoed, van ware Bataafsche trouw, mannelijke ervarenheid en eindeloozen arbeid; die door eigene verdiensten tot de hoogste militaire en staatswaardigheden opgeklommen, zich eenen roemrijken naam heeft verworven, boven alle wangunst verheven".

The English translation of the Dutch text runs as follows:
"A man of steadfastness, prudence and heroism, of true Batavian loyalty, manly experience and endless labour, who by own merits risen to the highest military and civil positions, obtained an illustrious name, raised above all jealousy".

3. The motive for the triangulation

On the motive for the triangulation Krayenhoff informs us in detail on the pages 1-7 of his Précis Historique. In 1798, the National Convention solemny declared "that the Batavian Republic should be one and indivisible". Thereafter the first Chamber of the Legislative Assembly appointed a commission charged with the task to divide the territory of the Republic into departments, arrondissements and municipalities. There were, however, no maps available on a convenient scale on which the projected borders could be marked. On October 10th of the same year, Krayenhoff was charged with the making of this map.

His first efforts failed when he tried to join existing maps on different scales to one map on the scale 1 to 115,200 (one Rhineland inch to 800 Rhineland roods $=$ 1 to $800 \times 12 \times 12$). He was rightly convinced that the rather serious errors in the mutual distances on such a map could only be rectified if a trigonometric network would cover the territory. In February, 1800, a beginning was made with the measurement of this network. The part of the Zuiderzee (zee=sea) between Volendam and the isle of Marken, about 20 km northeast of Amsterdam, was then frozen over. Krayenhoff made use of these circumstances by measuring a base line over the ice with a length of 1500 Rijnlandse roeden (Rhineland roods) $\simeq 5650$ metres [29] *. The measurement was done with a surveyor's chain in two opposite directions. After that he measured with a sextant in each of the two terminals of the base line the angles between the other base line point and the towers which could be seen from there. From these observations he computed

[^0]the length of the side Amsterdam (Western tower) - Haarlem (St. Bavo church). The result was 4457.9 roods, about $16,788.5$ metres, a very good result indeed, if the primitive sextant measurements from which it was computed are taken into consideration. The exact distance is $16,790.4$ metres.

From the length of this new base line Amsterdam-Haarlem and the angles measured with the sextant in other points of his planned trigonometric network other distances could be computed. In this manner the triangulation proceeded and the construction of the map kept step with the progress of the measurements and the computation of the network.

In November, 1800 , he showed his results to professor Van Swinden, who regretted that Krayenhoff had not availed himself of the opportunity "of measuring a triangulation network as perfect as performed lately in France for the determination of a part of the arc of the meridian" [30]. As he had computed it, Van Swinden knew all about this triangulation. Krayenhoff saw the importance of Van Swinden's remarks. "They did me see with a certain aversion the imperfections in my previous work and I wished to begin anew. I saw with regret that such an imperfect execution would give an unfavourable impression of the state of science in Holland and would compromise the fame of our nation in the domain of mathematics, astronomy, and geography" [30] .

Though it was difficult to convince the commission, Krayenhoff at last got permission to execute the triangulation as he had proposed. The measurements would be carried out with a large repetition circle (cercle répétiteur) made by Lenoir in Paris at the expenses of the government. He began his observations in the autumn of 1801, at Zierikzee, Bergen op Zoom, Antwerpen (Antwerp), and Hoogstraten (see Fig. 2 in section 4), the most northern stations of an already existing triangulation network between Duinkerken (Dunkirk) and Zierikzee. It had been measured in 1795, by order of the French government by the French astronomer J. Perny de Villeneuve. Krayenhoff hoped that he could build on this triangulation. But provisional computations during the winter of 1801-1802 gave such great differences that Perny's measurements had to be rejected [31] . And so Krayenhoff had to start again, now for the third and last time.

I. GEODETIC PART OF THE TRIANGULATION

4. General survey of the triangulation

The triangulation network is represented in Fig. 2. It extends from the side Duinkerken (Dunkirk) - Mont Cassel in the southwest to the side Jever-Varel in the northeast. It connects the French triangulation between Duinkerken and Barcelona of Méchain and Delambre with the triangulation in the northwestern part of the present Western Germany, executed during the French occupation in the Napoleonic era by the French lieutenant-colonel Epailly. A map of the area of about 1800 serves as underground. For the determination of the form of the network, 505 angles have been measured. With their numbers they are marked on the map with arcs and, in some cases, with double arcs. The network consists of 161 numbered triangles. No. 1 was already measured by Delambre. In general their shape is very good and the sides are neither too long nor too short. The shortest side is Nijmegen-Biesselt (9.6 km) in triangle 53 and the longest is Gent-Antwerpen (50.7 km) in triangle 15. The sides Hulst-Zierikzee (42.2 km , triangles 16 and 17), Hoogstraten-Lommel (43.1 km, triangles 21 and 27), Gorinchem-Rhenen (43.1 km , triangles 49 and 50) and Lemelerberg-Beilen (43.5 km , triangles 103 and 104) are also longer than 40 km . The southern part of the network (triangles 2-10) is a chain. From the side Aardenburg-Gent in triangle 10 it passes into a triangulation network. The former Zuiderzee (zee=sea) within the so called Zuiderzee pentagon Urk-Harderwijk-Naarden-Edam-Enkhuizen made the construction of triangles there impossible (Harderwijk-Enkhuizen $\simeq 45.2 \mathrm{~km}$, Harderwijk-Edam $\simeq 42.8 \mathrm{~km}$, Naarden-Enkhuizen $\simeq 46.3 \mathrm{~km}$ and Naarden-Urk $\simeq 50.2 \mathrm{~km}$).-

If we leave the triangles $79,129,156,162$, and 163 with apexes Petten, Schiermonnikoog, Aschendorf, Stolham, and Wangeroge, respectively, out of consideration, then the network consists of 106 angular points. In three of them, as can be seen in Fig. 2, no measurements took place (Herentals No. 104, Biesselt No. 105, and Borkum No. 106). The others are indicated by the same sequence number as they have in tableau I of the Précis Historique. The Western tower in Amsterdam, e.g., is station No. 40, the Weighhouse steeple at Alkmaar is station No. 52 , etc. Nearly all the stations were church towers. In some cases, however, Krayenhoff was obliged to build his observation towers with a signal serving as a sighting point. It were the stations Kijkduin (No. 65), Imbosch (No.43), Hettenheuvel (No. 44), Harikerberg (No. 50), Lemelerberg (No. 60), and Uelsen (No. 63). They were of a simple construction. After the measurements the place of the signal was marked by a long pole driven deep into the
ground (Kijkduin) or by a large stone of about $7.5 \times 1 \times 1$ (Paris) feet (2.5x0. 3 x $0.3 \mathrm{~m})$. They were placed in such a way that they stuck about one foot out above the ground. On the upper side of the stone the number of the station was carved and the date (Imbosch, Hettenheuvel, Harikerberg, Lemelerberg, and Uelsen). Already during Krayenhoff's life the pole in Kijkduin and the stone in Imbosch were lost.

On the church towers at Harderwijk (No. 46), Rotterdam (No. 28), and Strakholt (No. 99) and on the tower of the castle at Bentheim ('the tower formerly used as powder magazine") (No. 62) he used signals consisting of rather long fir trees with in the top a horizontal cross with great baskets in order to make them better visible.

On the Veluwe, in Krayenhoff's time still an uncultivated area with high trees behind which the few church towers very often disappeared, a high observation tower was necessary (75 feet $\simeq 24 \mathrm{~m}$). Notwithstanding the measures taken even the tower shook by a light wind. Measurements could therefore only be done in calm weather. The centre of this observation station - Krayenhoff called it Observatoire (No. 47) - was also marked by a stone of about $2.5 \times 0.3 \times 0.3 \mathrm{~m}$ with the inscription "Observatoire 1805 ". The station was situated in the neighbourhood of the present palace "Het Loo". In 1875 the stone was also used as a triangulation point for Stamkart's unsuccessful triangulation. According to his diary volume II - the diary is in the archives of the Netherlands Geodetic Commission at Delft - the stone was dug up on June 8th, 1875. It had an inclined position and it was heavily damaged. Stamkart placed it anew in a vertical position and surrounded it with some brickwork. During the reconnaissance of the first order triangulation of the R (ijks) D (riehoeksmeting) in 1889 the stone was still present in this position and, as the point "Veluwe", used as a first order triangulation point. Notwithstanding the manipulations with the stone in 1875 I assumed in section 21 the R.D. point to be identical with Krayenhoff's Observatoire.

A very special observation point was Robbezand (No. 72) on the sand bank of the same name in the Waddenzee (Dutch shallows) at a distance of about 18.6 km from Oosterend (No. 71) in the isle of Texel, 17.3 km from Oosterland (No. 66) in the then isle of Wieringen, 24.6 km from Staveren (No. 67), 26.9 km from the lighthouse in the isle of Vlieland (No. 73), and 21.6 km from Harlingen (No. 74). Here too the sighting point was a fir tree with a horinzontal cross with baskets. Moreover the fir tree was surrounded by straw packs in the shape of a pyramid because of the long distances over
which had to be pointed. It was also marked with a block of stone of about 1. $9 \times 1.3 \times 0.3 \mathrm{~m}$ on the sand bank. Next to the sighting point an observation platform was built. The depth of the water on the spot ranged from about 8 feet $(2.5 \mathrm{~m})$ at low tide to 12 feet (4 m) at high tide. For the observations here too had to be waited for quiet weather as the beating of the waves seriously influenced the accuracy of the observations.

Krayenhoff seems to have spent little time on the reconnaissance of his network and he did not change almost anything in the original plan of his measurements. His great knowledge of the terrain obtained during the measurements for the planned map 1 to 115,200 (see section 3) testifies this. Only by way of exception he visited observation stations which afterwards appeared to be unfit for the purpose. The original station Westerland in Wieringen e.g. was replaced by Oosterland (No. 66) and Neuenhaus by Uelsen (No. 63). Sometimes, e.g. at Leeuwarden (No. 79) and Dokkum (No. 80), some angles measured appeared to be superfluous later on. In general, however, the reconnaissance succeeded very well and the shape of the network is good. Only once - at Haarlem during the measurement of the angle 183 between Alkmaar and Amsterdam he made a mistake by pointing at the spire of the Laurens church at Alkmaar instead of at the Weighhouse steeple. Later on he corrected this mistake [32] .

The weakest part of the network is the chain of triangles in the present Belgium and by this chain the length of the side Duinkerken-Mont Cassel of Delambre's triangulation had to be transmitted to the northern Netherlands. Especially the shape of the triangles $3,4,5$, and 8 is unfavourable. Some improvement and a welcome check might have been obtained if Krayenhoff had measured some diagonal directions, e.g. the side Duinkerken-Diksmuide in the quadrilateral Duin-kerken-Nieuwpoort-Diksmuide-Hondschoote. It might have been better if he had extended his network in Belgium by some triangles south of the chain. I marked them in dotted lines on the sketch in Fig. 2. Van der Plaats already made the same remark [33] .

In excuse of his omission, however, can be said that in 1803 Krayenhoff had still the intention to measure a base line of 500 toises (10 km) in the neighbourhood of the villages St. Jacobi Parochie and Vrouwenparochie, situated in triangle 121. Such a base line would have met partly the objections to the chain. In a letter to Freiherr von Zach dated November 30th, 1803, he writes about this intention [34]. At the time, however, that the measurement of the base line had to be done Krayenhoff, according to Van der Plaats [35] , was on too bad terms with the French Government to ask with some chance of success for
borrowing the base line measurement apparatus. Later on he judged the measurement of the base line no longer necessary as he says in [36]: "This distance (the side Duinkerken-Mont Cassel) has been determined with so much care and accuracy from more than one base line, that we judged it unnecessary to design a special base line for the Dutch triangulation network'.

Determinations of latitudes in Amsterdam (No. 40) and at Jever (No. 102) (Duinkerken-Amsterdam $\simeq 229 \mathrm{~km}$, Amsterdam-Jever $\simeq 243 \mathrm{~km}$) and the measurements of the astronomical azimuths Amsterdam-Utrecht and Jever-Varel form the astronomical part of the triangulation. Some unsuccessful attempts in 1801-1803 were left out of consideration.

It was in 1839 an excellent idea of the then 81 years old general to present to Leiden university the original observations and computations of the several parts of the triangulation. They are kept there as No. 241 in the rubric Binnenlandse Handschriften (Interior Manuscripts). Thanks to the kind collaboration of the Leiden librarian I was able to study them amply in the library of the Delft University of Technology.

If one excludes two volumes with secondary observations the collection consists of:
a. 9 volumes octavo, numbered I up to and including IX. They contain the observations of the angles of the triangulation network,
b. 2 volumes octavo, numbered X and XI with astronomical observations (determinations of latitudes and azimuths),
c. 2 volumes folio with the reduction of the measured angles to centre, horizon, and chords,
d. 1 volume folio with the computation of the provisional and the final lengths of the sides of the network,
e. 1 volume folio with the computations of the latitudes and azimuths,
f. 1 volume folio with the computation of the geographical coordinates of all the points of the triangulation network and the azimuths of all the sides.

All of them are in the French language. Copies, also in French, are at the Dépot de la Guerre de France in Paris and at the Koninklijke Akademie van Wetenschappen (Royal Academy of Sciences) in Amsterdam. A copy in the Dutch language is at the Topografische Dienst (Topographic Institute) at Delft [37] .

Description of the instruments used
In his Précis Historique Krayenhoff informs us in detail on the instruments used for the measurement of the angles of his triangulation network. The instrument used in the years $1802,1803,1805$, and 1807 was a repetition circle (cercle répétiteur), designed by Borda, and, by order of Van Swinden, made by Lenoir in Paris at the expense of the government. It had a circle with a diameter of 16 inches (about 43 cm), two telescopes, four verniers, two by two perpendicular to each other, and two levels. As the name already says one measured the multiple of an angle with it. It seems that still in 1970 it was unknown whether it was lost or preserved. Van der Plaats "does not know where it is and whether it still exists" [38]. In his thesis Triangulaties in Nederland na 1800 (Triangulations in The Netherlands after 1800) [39] Moor can't tell anything more about the instrument than Van der Plaats already did and Van der Schraaf's historical publication [28] only says that Krayenhoff used a repetition circle for his measurements. In the collection of old geodetic instruments of the Sub-Department of Geodesy of the Delft University of Technology, however, is a repetition circle which exactly satisfies the description which Krayenhoff gives of the instrument. It has a circle with a diameter of 433 mm , two telescopes, two levels, four verniers, and the name Lenoir is engraved on it. Because of constructive reasons and just as for Delambre's instruments the lower telescope is eccentric of the centre of rotation of the upper telescope and the centre of the circle. The eccentricity is 40 mm . Though I could not trace the origin of the instrument I suppose that it is Krayenhoff's. The limb is calibrated to the right (clockwise) and not to the left as Moor thinks [40] . Each part of the limb represents $10^{\prime}=600^{\prime \prime}$. 29 parts coincide with 30 parts of the verniers. The unit. of the verniers is therefore $600^{\prime \prime}: 30=20^{\prime \prime}$, an amount already estimated by Van der Plaats and Moor.

The instrument is represented in the Figures 3 and 4. A drawing and a description of an analogous instrument made in 1787 and with a limb (diameter 0.33 m) calibrated to the left, can be found in Berthaut: La Carte de France 1750-1798 [41] .

U in Figs. 3 and 4 is the upper telescope, L the lower one. O is the object glass, E the compound eyepiece. The cross wires are placed in the focus of the object glass so that, without parallax, only can be pointed at points in the infinite or, in practice, at points far away. In order to obtain this parallax-free image the object glass can be shoven over a small distance (some mm) along the optical axis with the little screw s. The focus length of the object glasses is 610 mm , that of the compound eye pieces 25.4 mm . The magnification is therefore $610: 25.4 \simeq 24$. The total length of a telescope is about 640 mm .

Fig. 3

Fig. 4

A is a level mounted on the lower telescope.With the level B the axis V of the instrument can be placed vertically. None of both the levels has a graduation. Two lines on each of them mark very approximately the ends of the bubble when it is centred. In order to trace the sensitivity of the bubbles I stuck a transparent film strip with a graduation of 2 mm on one half of thetube. By this the ends of the bubbles remained clearly visible. After that the sensitivity of the levels was measured with the level trier of the Sub-Department of Geodesy of the Delft University of Technology. That of A appeared to be about $25^{\prime \prime}$ per 2 mm and that of B about $20^{\prime \prime}$ per 2 mm .

As the two telescopes can only be moved parallel to the plane of the circle, this circle must be adjustable. It can turn around the horizontal axis HH with the screw P. HH, connected with the vertical axis V, can be placed in an arbitrary position with the screw Q. The telescopes U and L can be clamped on any arbitrary place to the circle with the clamping and slow motion screws u and 1. The repetition screw r enables the user of the instrument to turn the circle with its telescopes over any arbitrary angle in its own plane. The four verniers with which the limb can be read are in v.

Fig. 3 represents the instrument when it is used for the measurement of about horizontal angles. Fig. 4 is the setting up for the measurement of vertical angles. In order to give the reader 'an idea of the size of the instrument I can mention that the three footscrews F are in the form of an equilateral triangle with sides of 375 mm . When the limb is horizontal its height above the middle of the screw thread of the footscrews is about 700 mm . The weight of the instrument is about 26.7 kg .

In the northeastern part of the triangulation network, measured in the years 1810 and 1811 , the towers were in general much smaller and lower. In order to be able to point still at far distant points the observations had to be done high in the towers on spots which were not easily attainable with the large and heavy instrument. In those years therefore a smaller repetition circle was used. It had a circle with a diameter of 10 inches (about 27 cm) and it was made by Bellet in Paris. It had also smaller telescopes than the bigger one. They had, according to Krayenhoff "an inconvenient parallax which could never fully be removed. By this I lost much time and was obliged to measure every angle in a great number of series. Very often these series gave very different results as can be seen from the observations in 1810 and 1811 and rarely was I satisfied when they agreed, especially when I compared them with those of the large instrument" [42] . From these statements it is clear that the "small"
instrument (I don't know where it is and whether it still exists) was much more inaccurate than the other one. There is some doubt whether the observations in 1810 at the stations Leiden (No. 30), Gouda (No. 31), Dordrecht (No. 29), and Den Haag (The Hague) (No. 27) in the western part of the centre of the triangulation network were made with the big instrument or with the smaller one.

Finally a third repetition circle was used for the determination of latitudes at Amsterdam and Jever. It had a circle with a diameter of 14 inches (about 38 cm) [42] and it was made at Krayenhoff's expense by Lenoir. I think that it is the same instrument as pictured in Fig. 1. Krayenhoff praised it very much. Especially he was satisfied with the accuracy of the two levels. As I don't know whether it still exists I can neither confirm this satisfaction nor deny. In any case the accuracy of the level A (Figs. 3 and 4) which determined the accuracy of the measurement of vertical angles should have been much better than the amount of $25^{\prime \prime}$ per 2 mm found for the level in Figs. 3 and 4.

6. Execution of the angular measurements

For the measurements of the "horizontal" angles in the mostly eccentric station points one set about as described in Berthaut [41] , page 103.

The instrument was set up in such a way that the line HH (Figs. 3 and 4) was pointed between the left and the right object. "This position is the most favourable to bring the plane of the circle into the plane of the two objects". "This was done by a trial and error method" (the French text says: par tatonnement). A mathematical solution of this practical problem will be made clear with the aid of Fig. 5.

Let O be the point where the space angle between the left and the right sighting point must be measured. It is supposed to be the centre of a sphere. The rays from O to the two sighting points intersect the sphere in L (eft) and R (ight) respectively. OL'M'R'S is a horizontal plane and Z the zenith point. The inclinations of L and R (the arcs $L^{\prime} L$ and $R^{\prime} R$) are h_{1} and h_{2} respectively. The projection of the space angle OLR is OL'R' $=\alpha$. If the inclination of M (the $\left.\operatorname{arc} M^{\prime} M\right)$ is $\frac{1}{2}\left(\alpha_{1}+\alpha_{2}\right)$, the angle $L^{\prime} O^{\prime} M^{\prime}=\operatorname{arc} L^{\prime} M^{\prime}=x$ can be computed.

In the right angled spherical triangle $L^{\prime} L S$ one has, if arc $L^{\prime} S=$ angle $L^{\prime} O S=y$: $\cot S \tan h_{1}=\sin y$,

Fig. 5
and in the right angled triangle $\mathrm{R}^{\prime} \mathrm{RS}$:

$$
\cot S \tan h_{2}=\sin (y-\alpha)
$$

whence:

$$
\tan \mathrm{h}_{2}: \tan \mathrm{h}_{1}=\sin (\mathrm{y}-\alpha): \sin \mathrm{y}=\cos \alpha-\sin \alpha \cot \mathrm{y}
$$

so that:

In an analogous way:

$$
\begin{aligned}
& \cot S \tan h_{1}=\sin y \quad \text { and } \\
& \cot S \tan \frac{1}{2}\left(h_{1}+h_{2}\right)=\sin (y-x)
\end{aligned}
$$

whence:

$$
\frac{\tan \frac{1}{2}\left(\mathrm{~h}_{1}+\mathrm{h}_{2}\right)}{\tan \mathrm{h}_{1}}=\frac{\sin (\mathrm{y}-\mathrm{x})}{\sin \mathrm{y}}=\cos \mathrm{x}-\sin \mathrm{x} \cot \mathrm{y}
$$

Or, in connection with (1):

$$
\frac{\tan \frac{1}{2}\left(\mathrm{~h}_{1}+\mathrm{h}_{2}\right)}{\tan \mathrm{h}_{1}}=\cos \mathrm{x}-\frac{\tan \mathrm{h}_{1} \cos \alpha-\tan \mathrm{h}_{2}}{\tan \mathrm{~h}_{1} \sin \alpha} \sin \mathrm{x}
$$

Or, for small values of h_{1} and h_{2} :

$$
\frac{\mathrm{h}_{1}+\mathrm{h}_{2}}{2 \mathrm{~h}_{1}}=\frac{\mathrm{h}_{2}-\mathrm{h}_{1} \cos \alpha}{\mathrm{~h}_{1} \sin \alpha} \sin \mathrm{x}+\cos \mathrm{x}
$$

whence:

$$
\begin{equation*}
\sin x+\frac{h_{1} \sin \alpha}{h_{2}-h_{1} \cos \alpha} \cos x-\frac{\left(h_{1}+h_{2}\right) \sin \alpha}{2\left(h_{2}-h_{1} \cos \alpha\right)}=0 \ldots . . \tag{2}
\end{equation*}
$$

From this goniometric equation x can be resolved. x is dependent on α and the ratio $h_{1}: h_{2}$.
For $h_{1}: h_{2}=R(2)$ changes into:

$$
\begin{equation*}
\sin x+\frac{R \sin \alpha}{1-R \cos \alpha} \cos x-\frac{(R+1) \sin \alpha}{2(1-R \cos \alpha)}=0 \ldots \ldots . \tag{3}
\end{equation*}
$$

x determines the position of the axis $H H$ with respect to the left and right sighting point. It is obvious that for $h_{1}=h_{2}=0$ in (2), x is indefinite: every arbitrary position of HH in the horizontal plane gives the possibility of bringing the plane of the circle through the sighting points.

For $h_{1}=-h_{2}(R=-1)$ one finds from (3):

$$
\begin{aligned}
& \sin \mathrm{x}-\frac{\sin \alpha}{1+\cos \alpha} \cos \mathrm{x}=0 \text { or } \\
& \tan \mathrm{x}=\frac{\sin \alpha}{1+\cos x}=\tan \frac{1}{2} \alpha, \text { whence } \mathrm{x}=\frac{1}{2} \alpha
\end{aligned}
$$

HH must ther efore coincide with the bisector of α. Its inclination ($h_{1}+h_{2}$):2 of course must be zero. The plane of the circle should now only be turned around HH till it goes through the left (right) sighting point. It goes then also through the right (left point).

For $h_{1}=+20^{\prime}$ and $h_{2}=+4^{\prime}$ (or $h_{1}=-10^{\prime}$ and $h_{2}=-2^{\prime}$, etc.), x can be computed from (3). As $R=+5$ one finds:

$$
\sin x+\frac{5 \sin \alpha}{1-5 \cos \alpha} \cos x-\frac{6 \sin a}{2(1-5 \cos \alpha)}=0
$$

whence, for $\alpha=60^{\circ}, \mathrm{x} \simeq 36^{\circ} 23^{\prime}$.
HH can be brought in this position with the aid of the calibration on the circle near the footscrews. If this is done in such a way that the vertical plane through HH coincides with the vertical plane through V and one of the footscrews then the desired result can be obtained by turning the circle around HH and by using only one footscrew. V, however, is then no longer vertical.

In order to give the reader an impression of the values x for various amounts R and for $\alpha=60^{\circ}$, I made table 1. As one sees it is rather difficult to obtain a good result with a trial and error method when R is positive. Between $R=+1$ and $R=+10 \mathrm{e} . \mathrm{g}$. the position of HH alters almost 25°. If this position was wrongly chosen it was impossible to realise the desired result and the manipulation with the screws P and Q and a (the) footscrew(s) had to begin anew. The
then geodesists, however, apparently had a great skill to solve this practical problem. It seems that Krayenhoff had never any difficulty with it.

Table 1

R	$\mathrm{x} \simeq$	$\mathrm{y} \simeq$	R	$\mathrm{x} \simeq$	$\mathrm{y} \simeq$
0	$25^{\circ} 40^{\prime}$	$180^{\circ} 0{ }^{\prime}$	0	$25^{\circ} 40^{\prime}$	$0^{\circ} 0{ }^{\prime}$
+0.1	$24^{\circ} 44^{\prime}$	$174{ }^{\circ} 47^{\prime}$	-0.5	$28^{\circ} 30^{\prime}$	$19^{\circ} 07$
+0.2	$23^{\circ} 37^{\prime}$	$169{ }^{\circ} 0{ }^{\prime}$	-1.0	$30^{\circ} 00^{\prime}$	$30^{\circ} 00^{\prime}$
+0.3	$22^{\circ} 15^{\prime}$	$163^{\circ} 0{ }^{\prime}$	-2.0	$31^{\circ} 30^{\prime}$	$40^{\circ} 54^{\prime}$
+0.4	$20^{\circ} 41^{\prime}$	$156{ }^{\circ}{ }^{\text {a }}{ }^{\prime}$	-3.0	$32^{\circ} 13^{\prime}$	$46^{\circ} 06^{\prime}$
+0. 5	$18^{\circ} 35^{\prime}$	$150^{\circ} 0{ }^{\prime}$	-5.0	$32^{\circ} 56$	$51^{\circ} 03^{\prime}$
+0.6	$16^{\circ} 04{ }^{\prime}$	$143{ }^{\circ}{ }_{25}{ }^{\prime}$	-10.0	$33^{\circ} 34^{\prime}$	$55^{\circ} 17^{\prime}$
+0.7	$12^{\circ} 47^{\prime}$	$137^{\circ} 0{ }^{\prime}$			
+0.8	$9^{\circ} 07^{\prime}$	$130^{\circ}{ }^{\circ}{ }^{\prime}$			
+0.9	$4^{\circ} 48^{\prime}$	$125{ }^{\circ}{ }^{\circ}{ }^{\prime}$			
+1.0	$0^{\circ} 0{ }^{\prime}$	$120^{\circ} 0{ }^{\prime}$			
+1.0	$60^{\circ} 00^{\prime}$	$120^{\circ} 0{ }^{\prime}$			
$+2.0$	$41^{\circ} 25^{\prime}$	$90^{\circ} 0{ }^{\prime}$			
+3.0	$38^{\circ} 11^{\prime}$	$79^{\circ} 06{ }^{\prime}$			
+ 5.0	$36^{\circ}{ }_{23}{ }^{\prime}$	$70^{\circ}{ }^{\circ}{ }^{\prime}$			
+10.0	$35^{\circ} 16^{\prime}$	$65^{\circ} 13$,			

For negative $R^{\prime} s$ the problem is much easier. Between $R=-1$ and $R=-10$, x (the position of HH) alters but $3 \frac{1}{2}^{\circ}$. If HH is chosen along the bisector of α a rather good result can be obtained.

It will be clear that the method described and apparently used in those days has the drawback that the line HH of the instrument has the inclination $\left(\alpha_{1}+\alpha_{2}\right): 2$ and that therefore the vertical axis V will never be vertical. Strictly speaking this inconvenience causes errors in the distance of the eccentric point to the centre. For the setting up on "the" eccentric point is not always the same as it is dependent on the inclination of the angles measured there. In a flat country like Holland, however, these errors are negligible. In order to elude the inconvenience of a non-perpendicular vertical axis V, Mr. Pouls of the Sub-Department of Geodesy at Delft suggested the computation of y from formula (1). As (see Fig. 5) $S=S^{\prime}$ is the intersection point of the great circle LR with the horizontal plane, the inclination of S is zero, HH horizontal, and the axis V vertical.

For small values of h_{1} and h_{2} and for $h_{1}: h_{2}=R$ one has:

$$
\tan y=\mathrm{R} \sin \alpha:(\mathrm{R} \cos \alpha-1)
$$

Of course here, too, y is indefinite for $\mathrm{h}_{1}=\mathrm{h}_{2}=0$ and $\mathrm{y}=\frac{1}{2} \alpha$ for $\mathrm{R}=-1$. In order to have a comparison with the amounts x, I computed in table 1 the $y^{\prime} s$ for the same values R and for the same $\alpha=60^{\circ}$. As one sees the amounts y range much more than the $x^{\prime} s$. Notwithstanding the attractiveness of this method - for the axis V was vertical - it could not be used and it was not used in practice by trial and error. For every measurement of an angle asked a computation of y from a provisional α and the amounts h_{1} and h_{2} which had to be measured in advance.

In order to bring the plane of the circle through the station and the two sighting points one could also act as described in J. F. Salneuve: Cours de Topographie et de Géodésıe (seconde édition, Paris 1850, page 362). The instrument was set up in such a way that the axis V was vertical and the connecting line of two of the footscrews was pointed at (or was perpendicular to the direction to) the sighting point with the smallest inclination. The upper telescope U was brought parallel to the axis HH and, with the screw Q turned around V till it was also pointed at the said sighting point. The inclination of HH , necessary for this manipulation, could be realised with the two footscrews or - in the case the connecting line of these screws was perpendicular to the direction to the sighting point - with the third footscrew. In this position U remains pointed at the sighting point if the limb was turned around HH with the screw P. The desired position of the limb could therefore be realised by pointing with the lower telescope L and a loosened P at the second sighting point. After fastening P the instrument was ready for the measurement. The method described has the drawback that for $h_{1}: h_{2}=-1$ the vertical axis has the inclination $90^{\circ}-h_{1}$ ($90^{\circ}-h_{2}$) instead of 90° as found in the method described before. I can't tell but I doubt whether Krayenhoff used it for his measurements.

The measurement of the angles was done by two observers. One of them used the upper telescope U, the other the lower one L. In contradistinction to Delambre Krayenhoff never tried to eliminate errors in the graduation of the limb by measuring on different parts of it. He always began his measurements with a reading zero when U was pointed at the left object. This facilitated of course his computations and it gave an easy survey of the regular progress of the measurement. U was therefore brought on the reading zero and clamped to the limb with u. With the repetition screw r and its slow motion screw - for the reading should not change - limb and telescope were now turned in such a
way in the plane of the circle that L was pointed at the left object. Thereafter the limb was fastened. With the lower telescope L the second observer pointed then at the right object. After clamping the telescope to the limb with 1 he loosened the repetition screw and turned the circle with the two telescopes clamped to it to the left till L was pointed at the left object. In this position the limb was fastened with r. Then the first observer turned his telescope U over the standing circle, pointed at the right object and clamped his telescope to the limb. Now the four verniers were read and the mean of the readings noted down. It is obvious that, apart from the influence of the eccentricity of L, the angle read will be the double of the angle between left and right object.

In this manner one can proceed and determine the 4-, 6-, 8-,2nmultiple of the angle (n usually $9,10,11$ or 12). For each of the multiples Krayenhoff computed the single angle in his observation registers. They gave him a check on the regular course of the repetition. An example of such a repetition is given in table 2. It relates to the determination of angle 157, measured in an eccentric point of the station No. 40 (Amsterdam on June 29th, 1803 at 17.45 hours (series 19) [43] .

Table 2

number of rep.	readings	single angle
2	$153^{\circ} 23^{\prime} 05^{\prime \prime}$	$76^{\circ} 41^{\prime} 32^{\prime \prime} .50$
4	$306^{\circ} 45^{\prime} 45^{\prime \prime}$	$26^{\prime \prime} .25$
6	$460^{\circ} 08^{\prime} 45^{\prime \prime}$	$27^{\prime \prime} .50$
8	$613^{\circ} 31^{\prime} 15^{\prime \prime}$	$24^{\prime \prime} .37$
10	$766^{\circ} 54^{\prime} 10^{\prime \prime}$	$25^{\prime \prime} .00$
12	$920^{\circ} 17^{\prime} 00^{\prime \prime}$	$25^{\prime \prime} .00$
14	$1073^{\circ} 39^{\prime} 45^{\prime \prime}$	$24^{\prime \prime} .64$
16	$1227^{\circ} 02^{\prime} 45^{\prime \prime}$	$25^{\prime \prime} .31$
18	$1380^{\circ} 25^{\prime} 00^{\prime \prime}$	$23^{\prime \prime} .33$
20	$1533^{\circ} 48^{\prime} 00^{\prime \prime}$	$24^{\prime \prime} .00$
22	$1687^{\circ} 10^{\prime} 30 \prime \prime$	$23^{\prime \prime} .18$
24	$1840^{\circ} 33^{\prime} 30^{\prime \prime}$	$76^{\circ} 41^{\prime} 23^{\prime \prime} .750$

Nieuwkoop (No. 35) is the left object, Haarlem (No. 39) the right one. On the circumstances during the measurement Krayenhoff remarks: "Objets très
visibles; très bonne observation" (objects very well visible; very good observation).

Measurement of the same angle had already taken place on June 14th (series 6), and June 28th (series 16 and 18). The results were $76^{\circ} 41^{\prime} 25^{\prime \prime} .000,76^{\circ} 41^{\prime} 21^{\prime \prime} .250$, and $76^{\circ} 41^{\prime} 23^{\prime \prime} .571$, respectively. For the mean from the four series one finds for the eccentric angle, measured in its own plane $76^{\circ} 41^{\prime} 23^{\prime \prime} .393$.

For the determination of vertical angles zenith distances z were measured. The instrument was set up as indicated in Fig. 4 with the axis V in a vertical position. This could be done with the footscrews and the level B.

Fig. 6a

Fig. 6b

The upper telescope U with a reading zero on the circle and the circle to the right of the telescope was now pointed at the object O, the zenith distance of which had to be measured (Fig. 6a). In order that the reading should not alter, this was done with the repetition screw and its slow motion screw. The lower telescope L was set in a horizontal position. For this sort of measurement it served not as a sighting telescope but only as a support of the level A. If its bubble was well centered it remained centered when the instrument was turned 180° around the vertical axis V with the aid of screw Q . U is then in a symmetrical position with respect to the zenith (Fig. 6b). The zero point of the circle is in 0 .

With a fastened circle the upper telescope was now pointed again at the object O. Its position was then U^{\prime}. The circle is then to the left of the telescope. It will be clear that the reading on the circle will be 2 z .

The manupilation described could be repeated as much as necessary. The start for the next repetition was circle to the right and a reading 2 z . In an analogous way one finds at the end of this repetition (circle to the left of U) a reading $4 z$, and, proceeding in the same way, $6 \mathrm{z}, 8 \mathrm{z}, \ldots \ldots 2 \mathrm{nz}$. For the measurement of the distances z of the sighting points in the triangulation network - in flat Holland they are all about $90^{\circ}-\mathrm{n}$ was usually 1 or 2 . For the determination of latitudes, however, n was taken about 20 . It will be clear that for these latter measurements with pointings at moving stars a good cooperation between the two observers was necessary. For a small alteration with the slow motion repetition screw during the pointing at the star by the first observer implicated a small alteration in the centering of the level by the second.
7. Chronological order in which the stations were visited and survey of the number of angles and series measured there

The nine volumes octavo I-IX, mentioned in section 4 under a give an excellent survey of the sequence of the stations which were visited, the number of angles and series measured there, the data for the reduction to centre and the weather conditions during the measurements. Table No. 3 was composed from these volumes. It is arranged in order of the years in which the measurements took place. Columns 1 and 2 give the number and the name of the station, column 3 the number of angles measured there and columns 4,5 , and 6 the total number of series measured rejected and retained. The vertical angular measurements, necessary for the reduction of the space angles to the horizon are not included in these numbers.

The first observation dates from Friday, June 11 th, 1802 at four o'clock in the morning. At this early hour in an eccentric point of the station Nieuwkoop (No. 35) the angle between Gouda and Utrecht was measured. Already the same day the observations at Nieuwkoop could be finished. Each of the five angles was measured in only one series. This, however, was a great exception. In his "Instructie voor de geographische ingenieurs" [44] Krayenhoff informs us how the measurements with a repetition circle should be executed. Article 4 of his instruction says that the measurement of a double angle should be repeated at least 10 times. The same measurement had to be repeated in several series, dependent on the circumstances. "It will never be allowed to suffice with only one series unless more series are absolutely impossible". As one sees Krayenhoff apparently kept himself not quite to his own instructions. It must be said, however, that in general the number of series was two or three.

Table 3

Stations		$\begin{aligned} & \text { an- } \\ & \text { gles } \end{aligned}$	Series			Stations		angles	Series		
No.	Name		measured	rejected	retained	No.	Name		measured	rejected	re- tained
1	2	3	4	5	6	1	2	3	4	5	6

1802 Volume I											
35	Nieuwkoop	5	5	0	5	2	Mont Cassel	1	4	2	2
32	Gorinchem	6	11	1	10	3	Hondschoote	3	9	3	6
21	Brielle	3	5	2	3	4	Nieuwpoort	3	11	3	8
16	Zierikzee	4	18	6	12	5	Diksmuide	4	10	2	8
13	Middelburg	3	9	3	6	8	Hooglede	2	6	1	5
23	Breda	7	24	6	18	9	Tielt	2	5	1	4
24	Hilvarenbeek	5	19	1	18	7	Brugge	5	13	0	13
19	Lommel	3	10	3	7	11	Aardenburg	3	6	0	6
18	Hoogstraten	6	19	3	16	10	Gent	5	11	0	11
14	Hulst	6	15	3	12	15	Antwerpen	4	8	0	8
12	Assenede	4	10	1	9	17	Bergen op Zoom	6	12	0	12
6	Oostende	2	5	0	5	22	Willemstad	6	13	3	10
1	Duinkerken	2	6	0	6	28	Rotterdam	6	6	0	6
						26		66	270	44	226

1803 Volume II											
39	Haarlem	5	10	0	10	56	Medemblik	3	7	0	7
40	Amsterdam	6	19	5	14	57	Enkhuizen	5	13	2	11
41	Naarden	5	15	1	14	54	Hoorn	5	13	1	12
52	Alkmaar	6	16	1	15	58	Urk	4	9	0	9
53	Edam	5	8	0	8	46	Harderwijk	5	12	0	12
55	Schagen	4	14	4	10	11	* See also 1807	53	136	14	122
1805 Volume III											
42	Amersfoort	5	24	6	18	33	's-Hertogenbosch'	6	15	1	14
47	Veluwe	7	29	9	20	20	Nederweert	2	6	1	5
59	Kampen	4	10	0	10	25	Helmond	6	15	1	14
48	Zutphen	6	15	0	15	34	Grave	6	18	2	16
43	Imbosch	5	12	0	12	26	Vierlingsbeek	3	8	0	8
37	Rhenen	8	20	3	17	38	Nijmegen	5	11	2	10.
	* See also 180					12		63	183	24	159

Table 3 (continued)

Stations		$\begin{aligned} & \text { an- } \\ & \text { gles } \end{aligned}$	Series			Stations		an- gles	Series		
No.	Name		measured	rejected	retained	No.	Name		meas- ured	rejected	re- tained
1	2	3	4	5	6	1	2	3	4	5	6

1807 Volumes IV and V

44	Hettenheuvel	6	25	1	24	56	Medemblik ${ }^{*}$	2	5	0	5
50	Harikerberg	5	19	4	15	55	Schagen ${ }^{*}$	2	4	0	4
49	Groenlo	5	15	0	15	66	Oosterland	6	13	0	13
45	Bocholt	2	7	2	5	65	Kijkduin	2	3	0	3
51	Ahaus	4	10	2	8	71	Oosterend	3	7	2	5
61	Oldenzaal	5	12	1	11	73	Vlieland	3	7	1	6
62	Bentheim	3	10	0	10	77	Midsland	2	4	0	4
64	Kirch Hesepe	2	7	0	7	79	Leeuwarden ${ }^{*}$	3	6	0	6
63	Uelsen	5	11	0	11	74	Harlingen	7	12	2	10
84	Coevorden ${ }^{*}$	3	11	3	8	67	Staveren	8	11	1	10
60	Lemelerberg	9	16	0	16	75	Sneek	6	15	2	13
70	Meppel	5	14	3	11	59	Kampen ${ }^{* *}$	2	5	1	4
69	Blokzijl	5	12	2	10	36	Utrecht	7	23	1	22
68	Lemmer	5	10	0	10	28		122	304	28	276
72	Robbezand *See also 1810	5	10	0	10		See also 1803 See also 1810 See also 1805				

Table 3 (continued)

Stations		an- gles	Series			Stations		angles	Series		
No.	Name		measured	rejected	re- tained	No.	Name		measured	rejected	retained
1	2	3	4	5	6	1	2	3	4	5	6
1811 Volumes VIII and IX											
95	Leer	8	36	20	16	97	Hage	3	12	7	5
96	Barssel	4	10	3	7	102	Jever	7	36	20	16
94	Emden	6	23	11	12	103	Varel	5	18	6	12
93	Pilsum	4	17	8	9	100	Westerstede	7	22	11	11
98	Aurich	6	32	19	13	91	Midwolda	2	9	5	4
99	Strakholt	4	20	13	7	89	Uithuizermeden ${ }^{*}$	2	7	3	4
101	Esens	5	21	7	14	13	* See also 1810	63	263	133	130

Table 4

Year	stations visited	angles measured	measured	rejected	retained	retained (in percents)
			4	5	6	7
1	2	106	270	44	226	84
1802	26	53	136	14	122	90
1805	11	12	63	183	24	159
1807	28	122	304	28	276	87
1810	20	98	358	146	212	91
1811	13	63	263	133	130	59
	110	505	1514	389	1125	49
					77	

The second station visited was Gorinchem (No. 32). Six angles were measured there in 11 series. On of these series had to be rejected, etc. The observations in the campaign 1802 ended in Rotterdam. During this working season Krayenhoff and his assistent Jacob de Gelder [45] measured (see tables 3 and 4) 106 angles at 26 stations. The number of series was 270 . Fourty four of these series were rejected (not used for the computation of the network). The percentage of series retained was 84 .

As one sees from the observations in 1803 the stations Schagen and Medemblik were also visited in 1807. The reason that in both of these stations two angles had to be measured anew was caused by the fact that the original station Westerland in the isle of Wieringen was replaced by Oosterland (No. 66). Two angles measured in 1803 at Kijkduin (No. 65) could not be used because of the substitution of Westerland by Oosterland and the substitution of Oude Schild in the isle of Texel by Oosterend (No. 71). The new measurements at Kijkduin were also done in 1807.

As one sees no measurements took place in 1804, 1806, 1808, and 1809 on account of military and civil duties (minister of war) which had to be fulfilled. Krayenhoff says on this subject "En 1804, mon service ordinaire qu'il ne m'était pas permis de négliger me força à une interruption complete et ce ne fut qu'en 1805 que je pus y employer une partie de mon temps; mais bientôt la guerre allumée en Allemagne vint m'en distraire et me livra à des occupations plus pressantes. Il me fallut faire tous les préparatifs nécessaires à la défence d'Amsterdam et exercer les fonctions de Commissaire-Général du Gouvernement Batave au quartier-général du Prince Français Louis, commandant en chef de l'armée du Nord. Dans l'année suivante, époque de l'avénement de ce Prince au trône de Hollande, S. M. me nomma son aide de camp et me confia des traveaux importants et engrand nombre. Je ne pus donc encore m'occuper de la triangulation. En 1807, il me fut permis d'y travailler pendant cinq mois et j'opérai avec d'autant plus d'ardeur que j'avais été obligé de discontinuer ce travail à différentes fois. Cependant il me fut impossible de le terminer de suite parce qu'ayant requ le titre d'inspecteur -général de fortifications et de président du commité central je me livrai entièrement à ces nouveaux emplois durant l'année 1808.

En 1809, ayant été nommé ministre de la guerre, toute autre espèce d'occupations me fut interdite par les travaux importants que réclamait ce poste honorable. Je commençai à désespérer de voir se terminer mon travail géodésique malgré le désir que j'avais de le conduire à sa fin. Mais au printemps de l'année 1810 je me vis heureusement rendu à moi-même et dégagé du fardeau de ces fonctions éminentes, plus flatteuses à la vérité que convenables à mes goats pour des occupations plus simples et pour la culture des sciences" [46].

I gave this rather ample quotation because, in my opinion, it illustrates in such an excellent manner the enormous energy of the then about 50 years old general and his sincere desire to finish the great work which he had undertaken. An energy and a devotion which also can be seen from his habit to be busy working
on his triangulation when he had to wait in the room of the aides de camp till the king could receive him.

It matched with his character that Krayenhoff used to measure on any arbitrary moment that seemed favourable and on any arbitrary day of the week. Any is used here in the most literal signification of the word. Not only do we see him working during the whole Saturday - a very unusual occupation nowadays - but also the Sunday was often considered a normal working day.

Table 5

Date 1803	Hour	Angle	number		Weather conditions
			series	rep.	
1	2	3	4	5	6
Aug. 6 (Saturday)	$\begin{aligned} & 15.30 \\ & 16.15 \\ & 16.45 \\ & 17.30 \end{aligned}$	274 277 274 277	$\begin{gathered} 1^{*} \\ 2^{*} \\ 3^{*} \\ 4^{*} \end{gathered}$	24 14 24 14	The air full of vapour; the objects, however, clearly visible Clearly visible objects, good observation Very good objects; excellent observation Very good objects, excellent observation
Aug. 7 (Sunday)	7.30	238	5 *	20	Clearly visible objects; in the middle of the series the rain interrupted the observations for some minutes
	9.15	238	6	20	Hoorn clearly visible; Edam very faint; doubtful observation.
	9.45	238	7	20	Inconvenient heat shimmer; objects rather visible; doubtful observation
	10.15	238	$8{ }^{*}$	20	Clearly visible objects; good observation
	10.45	484	$9 *$	24	As the previous series
	11.30	484	10^{*}	24	Clearly visible objects; very good observation
	12.15	235	$11 *$	24	As the previous series
	13.00	235	$12 *$	24	Very strong wind; objects rather visible; doubtful observation
	13.30	235	$13 *$	24	Clearly visible objects; the wind less strong, good observation

Table 5 is an arbitrary example for this impulse for action. It concerns 13 series of repetitions of 5 angles, measured on Saturday, August 6th, and Sunday, August 7th, 1803, in eccentric points of his station Enkhuizen (No. 57). The number of the angle is mentioned in column 3, the number of the series in column 4. I followed here Krayenhoff's custom to indicate the number of the
series retained with an asterisk. Column 5 gives the number of repetitions and column 6 the weather conditions during the measurement. With these measurements the operations at Enkhuizen were finished apart of course from the measurement of the vertical angles, necessary for the reduction of the angles to the horizon and those for the reduction to centre. As one sees the number of repetitions ranges between 14 and 24 . I don't know why this number for angle 277 is but 14 . In general it is considerably higher, in my opinion about 20 .

The series for the angles 238,484 , and 235 were measured immediately after each other and those for the angles 274 and 277 almost immediately after each other. This is of course a serious objection: the constant influences of one-sided illumination of the objects on which was pointed and the lateral refraction (the rays to Staveren, Urk, and Edam pass the sea over their full length) are not rendered harmless in a satisfactory way by these measurements.

Column 4 shows that the series 6 and 7 are not used for the computation of the network. According to column 6 the observations in these series are doubtful. Therefore it seems to be justified that they were rejected. Series 12 , however, is also doubtful; nevertheless it was retained. Arbitrariness demonstrates here its influence, arbitrariness against which Cohen Stuart objected rightly. Later on (in section 17) I shall have the opportunity of returning to this subject.

As can be seen in column 7 of table 4 the percentage of series retained in the campaigns 1802-1807 is about 88. In the campaigns 1810 and 1811 it falls to 59 and 49 , respectively. According to Krayenhoff this low percentage is not only due to the smaller instrument used during these campaigns but also to the lateral refraction and to the smoke of heath fire and peat-moor fire in the northeastern part of the triangulation network. Gauss too complains of the inconvenience of heath and moor fires in the adjoining areas during his measurements in 1825.
8. Accuracy of the angular measurement

In order to get an impression of the internal accuracy of the angular measurement I give in table 6 a survey of the amounts [vv] in a number of angles measured in eccentric points of the stations mentioned in column 2.

In order to make them not too unreliable I computed them for those angles of which the number of "series retained" (column 4) was at least 3. They are arranged in sequence of the numbers of the stations and the years 1802-1807 (first part of the table) and 1810-1811 (second part) in which they were measured

Table 6

Stations		angles	$\begin{aligned} & \text { series } \\ & \text { retained } \end{aligned}$	[vv]	Stations		angles	series retained	[vv]
No.	Name				No.	Name			
1	2	3	4	5	1	2	3	4	5
1	Duinkerken	4	3	0.67	41	Naarden	163	3	0.17
1	"	1	3	1.16	41	"	475	3	0.35
4	Nieuwpoort	10	3	0.29	41	"	192	4	30.17
4	"	8	3	0.29	42	Amersfoort	169	7	66.44
6	Oostende	12	3	0.39	42	"	166	4	20.52
7	Brugge	25	3	2.54	43	Imbosch	175	3	5. 22
7	"	22	3	3.89	43	"	180	3	2.47
10	Gent	28	3	0.82	44	Hettenheuvel	181	5	5.63
12	Assenede	36	4	21.05	44	"	200	4	3.51
16	Zierikzee	59	4	55.58	44	"	203	5	27.92
16	"	63	4	131.37	44	"	476	4	0.75
18	Hoogstraten	56	4	9.14	46	Harderwijk	195	4	3. 89
24	Hilvarenbeek	75	4	21.80	47	Veluwe	247	3	8.15
24	"	73	4	15.17	47	"	243	5	46.50
24	"	104	4	8.06	49	Groenlo	210	5	16.28
34	Grave	147	4	13.92	52	Alkmaar	225	4	12.60
34	"	113	3	3.62	58	Urk	283	3	15.50
36	Utrecht	164	4	18.57	59	Kampen	242	3	1.29
36	"	168	4	17.31	59	"	288	3	2.79
37	Rhenen	177	3	1.58	62	Bentheim	262	4	6.03
37	"	148	3	49.22	63	Uelsen	303	3	0.50
37	"	145	3	56.51	63	"	304	3	0.67
40	Amsterdam	157	4	7.33	64	Kirch Hesepe	264	4	9.78
40	"	182	3	6.12			47	172	733.53

(continued on page 39)

Table 6 (continued)

with the big and the smaller instrument respectively. As it is not known with certainty whether the angles at the stations Den Haag, Leiden, Gouda, and Dordrecht were measured with the former instrument or with the latter, I mentioned them in a separate (third) part of the table. Dordrecht fails in this part: the angles were measured there in no more than 2 series.

In Amsterdam (station No. 40) e.g. the eccentric angle 157 was measured in 4 (retained) series. The results (see also section 6 page 30 were $76^{\circ} 41^{\prime} 25^{\prime \prime} .000$, $76^{\circ} 41^{\prime} 21^{\prime \prime} .250,76^{\circ} 41^{\prime} 23^{\prime \prime} .571$, and $76^{\circ} 41^{\prime} 23^{\prime \prime} .750$ with a mean $76^{\circ} 41^{\prime} 23^{\prime \prime} .393$ and with deviations v from this mean of $-1{ }^{\prime \prime} .607,+2^{\prime \prime} .143,-0^{\prime \prime} .178$ and -0 " 357. The amount [vv] = 7.33 and the number of series is a measure for the accuracy of the angle concerned. It is mentioned in column 5 of the first part of table 6.

The 47 angles of this part, measured in 172 series give [vv] $=733.53$ from which a standard deviation $\mathrm{m}= \pm 2^{\prime \prime} .4$ can be computed. It contrasts very badly with the strongly exaggerated registration of the observations in thousandths of a second of arc. In an analogous way one finds for the measurements in the years 1810 and 1811 (second part) $\mathrm{m}= \pm 4^{\prime \prime} .9$. The results in both groups demonstrate the great difference in accuracy of the measurements in the two periods. The amount $m= \pm 2^{\prime \prime} .6$ for the third group is not convincing. One might conclude that on the stations mentioned there the big instrument was used but the number of observations is too small for such a conclusion.

As in the years 1802-1807 the mean of the series retained is about 2.28 (see table 4) and that in the years 1810-1811 about 2.12, the standard deviation in the mean of 2.28 series measured with the big instrumen is about $\mathrm{M}=2^{\prime \prime} .4$: $\checkmark 2.28= \pm 1^{\prime \prime} .6$ and that in the mean of 2.12 series with the smaller one about $\mathrm{M}=4.9: \downarrow 2.12=+3.4$. The accuracy of the vertical angular measurements will be discussed in detail in the astronomical part of the triangulation.
9. Influence of the eccentricity of the lower telescope on the results of the angular measurements

As already remarked in section 5 (page 20) the lower telescope of Krayenhoff's repetition circles was eccentric with respect to the centre of the graduated circle. The eccentricity for the big instrument in Figs. 3 and 4 is 40 mm .

Fig. 7a

Fig. 7b

When (see Fig. 7a) the upper telescope U was pointed at the left object and the lower telescope L at the right, one measured the angle α_{1} instead of $\alpha_{1}+\delta_{r}$ When U was pointed at the right object and L at the left (Fig. 7b) one measured
α_{2} instead of $\alpha_{2}-\delta_{1}$. In these values

$$
\delta_{1}=\frac{40 \mathrm{~mm}}{\left(10^{6} \mathrm{r}_{\mathrm{km}}\right) \mathrm{mm}} 206265^{\prime \prime}=\frac{8^{\prime \prime} .25}{\mathrm{r}_{\mathrm{km}}} \text { and } \delta_{\mathrm{r}}=\frac{8^{\prime \prime} .25}{\mathrm{l}_{\mathrm{km}}}
$$

1 and r are the distances in km to the left and right sighting point. The mean of the double of the measured angle is $\left(\alpha_{1}+\alpha_{2}\right): 2$. It should be $\left(\alpha_{1}+\delta_{r}+\alpha_{2}-\delta_{1}\right): 2=$

$$
\left(\alpha_{1}+\alpha_{2}\right): 2+4^{\prime \prime} \cdot 13 \quad\left(\frac{1}{\mathrm{r}_{\mathrm{km}}}-\frac{1}{\mathrm{l}_{\mathrm{km}}}\right)
$$

The measured mean and also the angle computed from the $4-, 6-, \ldots, 2 n$ multiple of the angle must therefore have a correction:

$$
\mathrm{c}=4^{\prime \prime} .13\left(\frac{1}{\mathrm{r}_{\mathrm{km}}}-\frac{1}{\mathrm{l}_{\mathrm{km}}}\right)
$$

For $r=1$ this correction is zero. For $r=16.79 \mathrm{~km}$ (Amsterdam-Haarlem) and $1=25.92 \mathrm{~km}$ (Amsterdam-Nieuwkoop) (approximate values of r and l will do) the correction to angle 157 is $\mathrm{c}=+0^{\prime \prime} .087$.

A "large" c can be expected when one of the distances r or 1 is small and 1 or r large. The left leg of angle $116 \mathrm{e} . \mathrm{g}$. (Grave-Biesselt) is $1=11.22 \mathrm{~km}$ and the right leg (Grave-Vierlingsbeek) $\mathrm{r}=26.12 \mathrm{~km}$. c is then $+0^{\prime \prime} .210$. It is in my opinion about the largest c in the whole triangulation network. Neither at Grave nor at any other station of his network, however, Krayenhoff computed the corrections. He does not even mention them.

The errors made are small and of no importance in connection with the standard deviation in the observations (see section 8). If, however, Krayenhoff wished to attach value to his observations in thousandths of a second - and apparently he did so - he was not allowed to neglect the corrections.

As in a central point the sighting points are alternately right and left object, the corrections are of no influence on the closing error around this central point. For the same reason they have no influence on the closing error in the sum of the angles of a triangle. They find expression, however, in the side (sine) equations of a triangulation network.
10. Reduction of the measured space angles to the horizon

As all angles were measured in the plane through the observation station and the two sighting points, these angles had to be reduced to the horizon. Nowhere in his Précis Historique Krayenhoff gives a consideration on the computation of such a reduction. Only in a detailed example relating to the station Amsterdam on the pages 27-29 he informs us amply how the corrections to the space angles must be computed in order to find the horizontal angles.

For the mathematical background one must consult Delambre's work "Méthodes analytiques pour la détermination d'un arc de méridien" (Paris, an VII). In this book Delambre gives the derivation of a great number of formulae used by him for the computation of his triangulation. The formula relating to the reduction of the angles to the horizon can be found on the pages 11 and 12. The derivation can run as follows:

In Fig. 5 (see section 6) the space angle between the left and the right sighting point is the angle LOR. It is the arc $L R=\varphi$ of the spherical triangle ZLR. In this triangle holds:

$$
\cos \varphi=\cos \left(90-h_{1}\right) \cos \left(90-h_{2}\right)+\sin \left(90-h_{1}\right) \sin \left(90-h_{2}\right) \cos \alpha
$$

whence:

$$
\begin{equation*}
\cos \alpha=\frac{\cos \varphi-\sin \mathrm{h}_{1} \sin \mathrm{~h}_{2}}{\cos \mathrm{~h}_{1} \cos \mathrm{~h}_{2}} \tag{4}
\end{equation*}
$$

from which a can be computed. An exact computation however, takes up much time. It is therefore easier to compute the difference $\alpha-\varphi=\mathrm{x}$ which is very small if h_{1} and h_{2} are small.

For these small values h_{1} and h_{2} :

$$
\sin h_{1} \simeq h_{1}, \sin h_{2} \simeq h_{2}
$$

$$
\cos h_{1} \simeq\left(1-h_{1}^{2}\right)^{\frac{1}{2}} \simeq 1-\frac{1}{2} h_{1}^{2}
$$

$$
\cos h_{2} \simeq\left(1-h_{2}^{2}\right)^{\frac{1}{2}} \simeq 1-\frac{1}{2} h_{2}^{2}, \text { and therefore, according to }(4):
$$

$$
\cos (\varphi+\mathrm{x}) \approx \frac{\cos \varphi-\mathrm{h}_{1} \mathrm{~h}_{2}}{1-\frac{1}{2}\left(\mathrm{~h}_{1}^{2}+\mathrm{h}_{2}^{2}\right)}, \text { or: }
$$

whence:

$$
\cos \varphi-\mathrm{x} \sin \varphi \simeq\left(\cos \varphi-\mathrm{h}_{1} \mathrm{~h}_{2}\right)\left\{1+\frac{1}{2}\left(\mathrm{~h}_{1}^{2}+\mathrm{h}_{2}^{2}\right)\right\}
$$

$$
x \simeq \frac{h_{1} h_{2}-\frac{1}{2}\left(h_{1}^{2}+h_{2}^{2}\right) \cos \varphi}{\sin \varphi}
$$

By application of a trick one can write it as follows:

$$
x \simeq\left(-\frac{h_{1}+h_{2}}{2}\right)^{2} \frac{1-\cos \varphi}{\sin \varphi}-\left(\frac{h_{1}-h_{2}}{2}\right)^{2} \frac{1+\cos \varphi}{\sin \varphi}
$$

Or, as $\frac{1-\cos \varphi}{\sin \varphi}=\tan \frac{1}{2} \varphi$ and $\frac{1+\cos \varphi}{\sin \varphi}=\cot \frac{1}{2} \varphi$,

$$
x \simeq\left(\frac{h_{1}+h_{2}}{2}\right)^{2} \tan \frac{1}{2} \varphi-\left(\frac{h_{1}-h_{2}}{2}\right)^{2} \cot \frac{1}{2} \varphi
$$

In this formula x, h_{1}, and h_{2} are expressed in radians. If they are in seconds of arc it runs:

$$
\begin{equation*}
\mathrm{x}^{\prime \prime} \simeq \rho^{\prime \prime} \text { runs: }\left\{\left(\frac{\mathrm{h}_{1}+\mathrm{h}_{2}}{2 \rho}\right)^{2} \tan \frac{1}{2} \varphi-\left(\frac{\mathrm{h}_{1}-\mathrm{h}_{2}}{2 \rho}\right)^{2} \cot \frac{1}{2} \varphi\right\} \tag{5}
\end{equation*}
$$

with $\rho=206264.81$.
It is this formula that Delambre and therefore Krayenhoff used for the reduction of the angle's φ to the horizon ($\alpha=\varphi+\mathrm{x}$). As an example I give underneath the results of the computation of $\alpha-\varphi=\mathrm{x}$ for the angle between Nieuwkoop (left object) and Haarlem (right object) measured in an eccentric point of the station Amsterdam. As (see table 2 in section 6$) \varphi \simeq 76^{\circ} 41^{\prime} 24^{\prime \prime} \quad\left(\frac{1}{2} \varphi \simeq 38^{\circ} 20^{\prime} 42^{\prime \prime}\right)$, $h_{1}=-455^{\prime \prime} .0$, and $h_{2}=+172^{\prime \prime} .5, h_{1}+h_{2}=-282^{\prime \prime} .5$ and $h_{1}-h_{2}=-627^{\prime \prime} .5$, one finds $x=-0.527$. Krayenhoff finds $-0!534$ in the same example on page 27 of his Précis Historique. The amount was copied from the first two volumes folio mentioned in section 4 under c. The reductions of all 505 angles of the triangulation network are computed there in sequence of the number of the stations where they were measured. A small error in the small amounts h_{1} and h_{2} is of little influence on the computation of x from (5). That is why the h's were generally measured in one series with one or two repetitions.
11. Reduction of the measured angles to centre

In the volumes octavo I-IX kept in the library of the Leiden University Krayenhoff does not only give the observations of the angles of the network but also all the measures and. angles necessary for the reduction of the measured angles to centre.

In Fig. 8, I give a reproduction of the first gallery of the Western Tower in Amsterdam (station No. 40) where six angles of the network were measured in the four eccentric points D, G, I, and A. It has been borrowed from Instructie voor de geographische ingenieurs [44]. The sketch can also be found on page 17 of Krayenhoff's Précis Historique. The drawing in the concerning octavo volume was not suitable for reproduction.

The position of D, G, I, and A in the square FBHA with sides 26.623 Paris' feet (8.648 m) (1 foot $=\frac{1}{6}$ toise $=\frac{1}{6} \times 1.94904 \mathrm{~m}=0.32484 \mathrm{~m}$) is determined by the lengths $\mathrm{bG}=\mathrm{bA}=6.936$ feet $(\mathrm{HG}=\mathrm{BA}=6.375$ feet $=2.071 \mathrm{~m})$, $E D=5.541$ feet $(1.800 \mathrm{~m})$ and $\mathrm{HI}=6.100$ feet (1.982 m). Applying Pythagoras'

Fig. 8
theorem one can compute from these measures the distances DC, GC, IC, and AC to the centre C of the square . IC e.g. is 15.139 feet $=4.918 \mathrm{~m}$. The angles between the sides of the square and the sides DC, GC, IC, and AC just mentioned can also be computed. Angle CIH e.g. is $90^{\circ}+\operatorname{arc} \tan \frac{7.211}{13.311} \simeq$ $118^{\circ} 26^{\prime} 45^{\prime \prime}$. If one finally measures in each of the four eccentric stations the angle that one of the sides of the square makes with one of the rays to the sighting points (e.g. in I the angle between H and Utrecht $=59^{\circ} 16^{\prime} 45^{\prime \prime}$), then one has all data necessary for the reduction of the eccentric angles to centre if at least provisional distances to the surrounding sighting points are known and the assumed centre of the station coincides with the projection of the spire on the horizontal plane through the first gallery.

It should be said that by this method of centring, assuming as centre the middle of the frame of the tower at the height where the measurements were done, a deviation between this centre and the projection of the spire can never be found as the spire was not used in the measurement.

On each station of his network, however, Krayenhoff used this method. He will have seen the objections against it but he could hardly act otherwise. The repetition circle was not suitable for a centring as we do this in our days with a theodolite.

Krayenhoff computed his corrections for reduction to centre in the same way as we do this nowadays. If e is the distance from the eccentric point to "centre", φ_{r} and φ_{1} the angles between the right (left) sighting point and the centre and 1_{r} and l_{1} the distances from the station to the right and left sighting point, then the correction to the measured angle is:

$$
\begin{equation*}
\delta_{\mathbf{r}}-\delta_{1}=\rho \frac{\mathrm{e} \sin \varphi_{\mathbf{r}}}{1_{\mathbf{r}}}-\rho \frac{\mathrm{e} \sin \varphi}{\mathrm{l}_{1}} \tag{6}
\end{equation*}
$$

For $\rho=206264.81, \delta_{\mathrm{r}}-\delta_{1}$ is expressed in seconds of arc; e and 1 are expressed in the same unit of length. Krayenhoff used the Paris' foot for this unit. For the computation of $\delta_{r}-\delta_{1}$ for the angle between Utrecht (left) and Nieuwkoop (right), measured in I, one finds:

$$
\delta_{1}=\rho \frac{15.139 \sin 177^{\circ} 43^{\prime} 30^{\prime \prime}}{109344}=+1^{\prime \prime} .134
$$

and, in the same way:

$$
\begin{aligned}
& \delta_{\mathbf{r}}=-25^{\prime \prime} .649, \text { whence: } \\
& \delta_{\mathbf{r}}-\delta_{1}=-26.783 .
\end{aligned}
$$

The computation can be found as an example on page 23 of the Précis Historique. It was of course borrowed from the computation in the first of the two volumes
folio at Leiden, already mentioned before.
It is unknown how Krayenhoff got acquainted with the distances 1_{r} and 1_{1}, necessary for the computation of the δ 's. He calls them "distances droites" and "distances gauches" or abbreviates them as D and G (Précis Historique, page 21). Without any comment he mentions them in toises in his computation registers. In his circumstantial paper [20] Van der Plaats does not say a word about this question. Moor supposes [47] that they were "borrowed from former data, e.g. maps", but this cannot be so. I took the trouble to compare the provisional l's between a great number of stations with the distances computed between identical stations in the R. D. -triangulation network. A small arbitrary excerpt is given in table 7.

Table 7

From to	Provisional distances 1 (toises)	Distances R.D. (toises)	Differences$3-2$	
			toises	metres
1	2	3	4	5
Amsterdam				
Alkmaar	15380	15381.42	+1.42	+2.7
Edam	9715	9716.62 *	+1. 62	+3.2
Naarden	10736	10736.45	+0.45	+0.9
Utrecht	18224	18224.75	+0.75	+1. 5
Nieuwkoop	13297	13298.70*	+1.70	+3. 3
Haarlem	8614	8614.69	+0.69	+1.3
Rhenen				
Nijmegen	12228	12228.76	+0.76	+1. 5
's-Hertogenbosch	17831	17831.84	+0.84	+1. 6
Gorinchem	22123	22123.12	+0.12	+0. 2
Utrecht	17363	17363.99	+0.99	+1. 9
Amersfoort	12916	12916.66	+0.66	+1.3
Veluwe	18921	18921.38	+0.38	+0. 7

The two distances marked with an asterisk are not quite reliable because the spires of Edam and Nieuwkoop are not quite the same as those in Krayenhoff's time. The towers, however, remained unchanged.

As one sees the differences in columns 4 and 5 are so small that the distances in column 2 must have been borrowed from a computation, I suppose from
a provisional computation of the network in which Krayenhoff did not take into account - and of course could not take into account - the eccentricity of the points where the angles were measured. In my opinion he started for this computation from the length of Delambre's side Duinkerken-Mont Cassel which was also known in toises. If so the table shows for the distance Amsterdam-Haarlem an excellent agreement with the value 4457.9 roods $\simeq 16788.5$ metres $\simeq 8613.7$ toises, derived from Krayenhoff's base measurement in 1800 (see section 3). I made attempts to trace the provisional computation of the network but I failed. It is neither in the archives of Topografische Dienst at Delft nor in those of the present family Krayenhoff at Amersfoort.

It will be clear that an error $\Delta 1_{r}$ and $\Delta 1_{1}$ in the distances 1_{r} and 1_{1} in (6) will influence the amount $\delta_{r}-\delta_{1}$. As:

$$
\begin{aligned}
& \sin \delta=\frac{\mathrm{e} \sin \varphi}{1}, \text { one has: } \\
& \cos \delta \Delta \delta=-\frac{\mathrm{e} \sin \varphi}{1^{2}} \Delta 1=-\frac{\sin \delta}{1} \Delta 1
\end{aligned}
$$

whence:

$$
\Delta \delta=-\frac{\Delta 1}{1} \tan \delta, \text { or, as } \delta \text { is small, } \Delta \delta^{\prime \prime}=-\frac{\Delta 1}{1} \delta^{\prime \prime}
$$

For $\Delta 1_{1}=+0.8$ toise, $1_{1}=18224$ toises and $\delta_{1}^{\prime \prime}=1!134, \Delta 1_{1}=0$ and for $\Delta 1_{r}=+1.7$ toise, $1_{r}=13297$ toises, and $\delta_{r}^{\prime \prime}=-25 ' .649, \Delta 1_{r}=+0!\prime 003$.

The error in the angle between Utrecht and Nieuwkoop as a result of the errors +0.8 toises and +1.7 toises in the distances Amsterdam-Utrecht and AmsterdamNieuwkoop is therefore +0.003 , an amount which can be neglected.

It will be clear that an error in e in consequence of the non-coincidence of the middle C of the frame of the tower and the projection S of the spire is of much more importance.

The error will be greater the more the place where the measurements were carried out is situated beneath the spire of not quite a vertical tower. It appears from the vertical measurements in Fig. 8 that for the station Amsterdam this distance $\mathrm{dc}=131.734$ Paris feet $\simeq 42.8 \mathrm{~m}$. The height of the tower is 264.074 feet $\simeq 85.8 \mathrm{~m}$.

At my request the Municipal Landsurveying Department in Amsterdam was so kind as to give me a sketch of the first gallery of the tower with its balustrade and to determine the vertical projection of the spire with respect to the square FBHA. This was done by computing the angular points in the coordinate system of the R.D. from the coordinates of four R.D. -marks in the balustrade of the

Fig. 9
gallery. The results of this computation are mentioned in the table shown in Fig. 9. In the figure one also sees the measures (in metres) of the quadrilateral which is apparently not quite a square. The points D, G, I, and A, interpolated between the angular points of the sides on which they lie, were also computed in the coordinate system. C, Krayenhoff's "centre", was computed twice. Once as
the intersection point of the diagonals, once as that of the middles of the junction lines of the opposite sides. The mean of these computations is mentioned in the table. The coordinates of S are those of the spire, determined in 1898. If one assumes that it has not changed since 1803 - there is no alternative - then the distance SC is almost 0.63 m and the eccentricity $\mathrm{IS}=5.049 \mathrm{~m}=15.543$ feet instead of the value 15.139 feet mentioned by Krayenhoff. The angle SIC which determines φ in (6) is about $7^{\circ} 04^{\prime}$. In consequence of these alterations the reduction to centre for the angle between Utrecht and Nieuwkoop is - $29.867+$ $2.451=-27.416$ instead of the amount $\delta_{r}-\delta_{1}=-26$ " $^{\prime \prime} 783$ found by Krayenhoff and mentioned before in this section. The difference 0.633 demonstrates again the disharmony between the accuracy of the measurement and the use of thousandths of a second in the computation.

As the circle through Utrecht, Nieuwkoop and C passes about through S the difference found there is still rather small. The large error in the eccentricity will find better expression in the reduction to centre of the angle measured in A between Haarlem (left) and Alkmaar (right). Krayenhoff finds for this reduction $-33.310+27.166=-6.144$. It should be $-29.093+24.729=-4.364$, a difference of 1 " 780 .

From the observations follows that the sum of the three angles H-I-Utrecht. Utrecht-I-Nieuwkoop and Nieuwkoop-I-Haarlem is about $179^{\circ} 11^{\prime} 23^{\prime \prime}$, about $48^{\prime} 37^{\prime \prime}$ less than 180°. One computes from it that the ray I-Haarlem is about 0.09 m free from the angular point B of the tower. From the difference of the gridbearings I-B and I-Haarlem (Haarlem is an identical point, determined by the R.D. in 1898) I found 0.04 m . The two amounts with a mean of about 0.06 m show that the accuracy of the angle between Nieuwkoop and Haarlem will have been influenced in a serious manner by lateral refraction because during the measurement of the series in the afternoon (June 14th, 18.15 hours, June 28 th, 19. 00 hours, and June 29th, 17.45 hours) the southern wall of the tower will have radiated the heat of the sun.

Figure 10 is another example of reduction to centre applied by Krayenhoff. It concerns his measurements on the third gallery of the Cunera tower at Rhenen (station No. 37), 49.08 feet (about 15.9 metres) beneath the spire. In the eccentric stations A, B, and D the angles indicated with arcs were measured there on August 4 th, 5 th, and 6th, 1805. In order to reduce them to centre Krayenhoff measured in B also the angle α between the "centre" C and 's-Hertogenbosch, in A the angle β between C and Utrecht and in D the angle γ between C and Imbosch. The amounts for these angles and the distances

Fig. 10.
$C A=C B=C D$ can of course be found in the volumes octavo (volume III) mentioned in section 4 under a (see table 3) and in the first volume folio (page 319) mentioned under c. I have copied them in Fig. 10. Krayenhoff's sketch in the two volumes is very plain, even without measures where the points A, B, and D lie with respect to the sides of the regular octagon of the frame of the tower. From this sketch it appears that the centre of the octagon is supposed to coincide with the projection of the spire. The lines CA, $C B$, and $C D$ on the sketch are drawn perpendicular to the relating sides of
the octagon. Though the tower was partially destroyed in the world war $1940-$ 1945, I could reconstruct the situation of the points C, A, B, and D on a map at the scale 1 to 50 and compute these points in the R. D.-coordinate system with an error estimated at maximum 2 cm . The data available for this reconstruction were a map 1 to 100 of the R.D., dated 1898, with measures and coordinates of some marks (copper bolts) in the balustrade of the third gallery and a very detailed map 1 to 20 of "Monumentenzorg" (Netherlands State Service for the preservation of historical monuments). The coordinates of the bolts II, IV, and V and those of the spire in 1895 are mentioned in the left part of the table in Fig. 10, those of C, A, B, and D borrowed from my reconstruction on the scale 1 to 50 in the right part.

As can be seen, the difference between Krayenhoff's assumed centre C and the projection of the spire is about 24 cm , much less than the corresponding difference in Amsterdam. If we assume that the spire of 1895 was also Krayenhoff's sighting point - and here too is no alternative - then the error in the reduction to centre in consequence of a wrong ϵ will be of the most importance for the two angles measured in B. For the angle between Utrecht and Gorinchem the error is about 1 ". 0 , for that between Gorinchem and 's-Hertogenbosch about 0.9 . A more accurate computation is senseless because of the small uncertainty of the reconstruction of the points C and B . As already remarked in connection with table 7 the influence on the reduction because of an error in the distances to the several sighting points is of little importance.

As in D the rays to Imbosch and ' s -Hertogenbosch and in B that to Utrecht pass close along the pinnacles on the corners of the balustrade, influence of lateral refraction on the results of the angular measurement might be possible. As in A the ray to Utrecht passes along the northern side of such a pinnacle lateral refraction seems less probable though the angle between Utrecht and Amersfoort (167 eccentric) is very bad indeed (two series measured but only one retained). The differences in the measurements of the series of the angle in D between Imbosch and Nijmegen (177 eccentric), however, are small (see the small amount [$\mathrm{vv} \mid$ in table 6 of section 8). Those in D between Grave and 's-Hertogenbosch (145 eccentric) and in B between Gorinchem and Utrecht (140 eccentric; 2 series retained and 1 rejected), on the contrary, are large.
12. Reduction of the spherical angles, reduced to horizon and centre, to angles between the chords on the sphere

As all the angles measured in the several eccentric stations are angles on the
curved earth, the angles reduced to horizon and centre are also angles on the geoid or, approximately, angles on the ellipsoid which, in its turn, can be replaced by a sphere that, in the area where the triangulation is situated, touches the ellipsoid as well as possible. In my further computations I therefore assumed that the network lies on the osculating sphere at Amersfoort to Bessel's ellipsoid, the ellipsoid on which the R.D.-triangulation network was computed. This sphere has a radius of 6382646 m . In this admissible assumption angles between the geodesics on the ellipsoid are replaced by angles between great circles on the sphere.

For the computation of the lengths of the sides of Krayenhoff's network one can set about as follows:
a One computes the sides with spherical trigonometry. The objection to this working method is that one finds their lengths in arc measure which must be converted into metres,
\underline{b} One computes according to Legendre's method [48], that is to say, one diminishes each of the angles of a spherical triangle with one third of its spherical excess and computes with plane trigonometry from the length of a spherical side the lengths of the other spherical sides,
c One reduces the spherical angles to angles of plane triangles, the sides of which are the chords on the sphere. From the length of one chord all the chords can be computed with plane trigonometry.

For the computation of Delambre's triangulation all three methods were used, especially that mentioned under \underline{a}. For present computations that under \underline{b} is mostly used. That under $\underline{\underline{c}}$ is no more used nowadays but Krayenhoff applied it for the computation of his triangulation.

The theoretical background of the reduction of spherical angles to plane angles between the chords can be found on page 40 of Delambre's "Méthodes analytiques", already mentioned before. Another derivation is the the following:

Fig. 11a

Fig. 11b

In Fig. 11a M is the centre of the circumscribed circle of triangle ABC . A, B, and C are the angles of the plane triangle; the sides are chords. In Fig. 11b P is the pole of M, the point where the line in M perpendicular to ABC in Fig. 11a intersects the sphere. PD^{\prime} and $P E^{\prime}$ are parts of great circles perpendicular to the spherical sides AB and AC . MD and ME in Fig. 11a are perpendicular to $A B$ and $A C$ respectively.

As the tangents in P to the sides PD^{\prime} and PE^{\prime} of the spherical quadrilateral $P D^{\prime} A E^{\prime}$ are parallel to $M D$ and $M E$ respectively, angle $D^{\prime} P E^{\prime}=$ angle $D M E$. As also $\mathrm{D}^{\prime}=\mathrm{D}=90^{\circ}$ and $\mathrm{E}^{\prime}=\mathrm{E}=90^{\circ}$ the difference between the angle A on the sphere and the angle A of the plane triangle is equal to the spherical excess E of the quadrilateral $P D^{\prime} A E^{\prime}$. This spherical excess can be expressed by the formula $\mathrm{E}_{\mathrm{rad}}=\mathrm{O}: \mathrm{R}^{2}$ or $\mathrm{E}^{\prime \prime}=\rho \mathrm{O}: \mathrm{R}^{2}$ with $\rho=206264.81$ in which O is the area of PD'AE' and R the radius of the sphere.
O is approximately equal to that of the plane quadrilateral MDAE. The area last mentioned can be easily computed. For:

$$
2 \mathrm{O}_{\mathrm{MDAE}}=\mathrm{O}_{\mathrm{ABC}}-\mathrm{O}_{\mathrm{BMC}}=\frac{1}{2} \mathrm{bc} \sin \mathrm{~A}-\frac{1}{4} \mathrm{a}^{2} \cot \mathrm{~A}
$$

In this formula a can be expressed with the cosine rule in b, c, and A :

$$
\begin{aligned}
2 \mathrm{O}_{\mathrm{MDAE}} & =\frac{1}{2} \mathrm{bc} \sin \mathrm{~A}-\frac{1}{4} \cot \mathrm{~A}\left(\mathrm{~b}^{2}+\mathrm{c}^{2}-2 \mathrm{bc} \cos \mathrm{~A}\right), \text { or: } \\
16 \mathrm{O}_{\mathrm{MDAE}} & =\frac{4 \mathrm{bc} \sin ^{2} \mathrm{~A}-2 \cos \mathrm{~A}\left(\mathrm{~b}^{2}+\mathrm{c}^{2}\right)+4 \mathrm{bc} \cos ^{2} \mathrm{~A}}{\sin \mathrm{~A}} \\
& =\frac{4 \mathrm{bc}-2\left(\mathrm{~b}^{2}+\mathrm{c}^{2}\right) \cos \mathrm{A}}{\sin \mathrm{~A}} \\
& =\frac{4 \mathrm{bc}-4 \mathrm{bc} \cos \mathrm{~A}-2\left(\mathrm{~b}^{2}+\mathrm{c}^{2}-2 \mathrm{bc}\right) \cos \mathrm{A}}{2 \sin \frac{1}{2} \mathrm{~A} \cos \frac{1}{2} \mathrm{~A}} \\
& =\frac{2 \mathrm{bc}(1-\cos \mathrm{A})-(\mathrm{b}-\mathrm{c})^{2} \cos \mathrm{~A}}{\sin \frac{1}{2} \mathrm{~A} \cos \frac{1}{2} \mathrm{~A}} \\
& =\frac{4 \mathrm{bc} \sin ^{2} \frac{1}{2} \mathrm{~A}-(\mathrm{b}-\mathrm{c})^{2}\left(\cos ^{2} \frac{1}{2} \mathrm{~A}-\sin ^{2} \frac{1}{2} \mathrm{~A}\right)}{\sin \frac{1}{2} \mathrm{~A} \cos \frac{1}{2} \mathrm{~A}} \\
& =\frac{\left\{4 \mathrm{bc} \sin ^{2} \frac{1}{2} \mathrm{~A}+(\mathrm{b}-\mathrm{c})^{2} \sin ^{2} \frac{1}{2} \mathrm{~A}\right\}-(\mathrm{b}-\mathrm{c})^{2} \cos ^{2} \frac{1}{2} \mathrm{~A}}{\sin ^{\frac{1}{2} \mathrm{~A} \cos \frac{1}{2} \mathrm{~A}}} \\
& =\frac{(\mathrm{b}+\mathrm{c})^{2} \sin ^{2} \frac{1}{2} \mathrm{~A}-(\mathrm{b}-\mathrm{c})^{2} \cos ^{2} \frac{1}{2} \mathrm{~A}}{\sin ^{\frac{1}{2} \mathrm{~A} \cos \frac{1}{2} \mathrm{~A}}} \\
& =(\mathrm{b}+\mathrm{c})^{2} \tan ^{\frac{1}{2} \mathrm{~A}-(b-c)^{2} \cot ^{2} \mathrm{~A}},
\end{aligned}
$$

so that:

$$
E^{\prime \prime} \text { MDAE }=-\frac{\rho^{\prime \prime}}{16 R^{2}}\left\{(b+c)^{2} \tan \frac{1}{2} A-(b-c)^{2} \cot \frac{1}{2} A\right\}
$$

or:

$$
\begin{equation*}
\mathrm{y}^{\prime \prime}=-\mathrm{E}_{\mathrm{MDAE}}^{\prime \prime}=-\rho^{\prime \prime}\left\{\left(\frac{\mathrm{b}+\mathrm{c})}{4 \mathrm{R}}\right)^{2} \tan \frac{1}{2} \mathrm{~A}-\left(\frac{\mathrm{b}-\mathrm{c}}{4 \mathrm{R}}\right)^{2} \cot \frac{1}{2} \mathrm{~A}\right\} \cdots \cdot \tag{7}
\end{equation*}
$$

y in this formula is the correction to the spherical angle A in order to find the angle A between the chords. It resembles very much formula (5), found in section 10 for the computation of the reduction x of a space angle to the horizon:

$$
\mathbf{x}^{\prime \prime}=\rho^{\prime \prime}\left\{\left(\frac{\mathrm{h}_{1}^{\prime \prime}+\mathrm{h}_{2}^{\prime \prime}}{2 \rho^{\prime \prime}}\right)^{2} \tan \frac{1}{2} \varphi-\left(\frac{\mathrm{h}_{1}^{\prime \prime}-\mathrm{h}_{2}^{\prime \prime}}{2 \rho^{\prime \prime}}\right)^{2} \cot \frac{1}{2} \varphi\right\}
$$

Krayenhoff computed therefore both amounts x and y immediately after each other. For this computation he used three tables, already designed by Delambre for his own triangulation:
a a table for $\left(\frac{b \pm c}{4 R}\right)^{2}$ (Krayenhoff calls b and c, P and Q respectively),
\underline{b} a table for $\left(\frac{h_{1}^{\prime \prime} \pm h_{2}^{\prime \prime}}{2 \rho^{\prime \prime}}\right)^{2}$
c a table for $\rho \tan \frac{1}{2} \varphi(\mathrm{~A})$ and $\rho \cot \frac{1}{2} \varphi(\mathrm{~A})$
As one sees the table under \underline{c} serves the computation of x as well as that of y. Using these tables the computation of the two corrections was reduced to two multiplications and two subtractions.

In table a the amounts $\mathrm{b} \pm \mathrm{c}$ and R were expressed in toises. As according to Delambre's triangulation one degree of the meridian was about 57020 toises, R for the French triangulation was about 3267000 toises (6367500 m). Krayenhoff used the same value though he should have known that, as a result of the flattening of the earth, it had to be taken larger. For the osculating sphere at Amersfoort to Bessel's ellipsoid it is, as already remarked, 6382646 m . Because of this error Krayenhoff's amounts y, mentioned in tableau I of his Précis Historique, will have the tendency to be too large.

The number of decimals in Delambre's tables was insufficient for the correct computation of the hundredths of a second. Delambre knew this. It seems, however, that Krayenhoff has not realised it in his computation in thousandths of a second. Moreover he made in his computations a great number of small errors which he could have found if he had compared the sum of the $y^{\prime} s$ in a triangle with the amount $-\mathrm{E}_{\mathrm{ABC}}^{\prime \prime}=-\frac{1}{2} \rho$ ' bc $\sin \mathrm{A}: \mathrm{R}^{2}$, the opposite of the spherical excess of triangle ABC in Fig. 11. For all his triangles these spherical excesses are mentioned in tableau III of the Précis Historique.

Table 8

Station		Angle		Précis Historique		correct amounts y
No.	Name	No.	between	page	amount y	
1	2	3	4	5	6	7
$\begin{aligned} & 23 \\ & 24 \\ & 33 \end{aligned}$	Breda Hilvarenbeek 's-Hertogenbosch	$\begin{aligned} & 103 \\ & 104 \\ & 105 \end{aligned}$	Hilvarenbeek-'s-Hertogenbosch 's-Hertogenbosch-Breda Breda-Hilvarenbeek Triangle 37	$\begin{aligned} & 53 \\ & 53 \\ & 56 \end{aligned}$	-0.'443	-0!'424
					-0'! 953	-0.'937
					-0.'416	-0!'420
					-1:'812	-1.1781
$\begin{aligned} & 32 \\ & 36 \\ & 37 \end{aligned}$	Gorinchem Utrecht Rhenen	$\begin{aligned} & 138 \\ & 139 \\ & 140 \end{aligned}$	Rhenen-Utrecht Gorinchem-Rhenen Utrecht-Gorinchem Triangle 49	$\begin{aligned} & 56 \\ & 57 \\ & 57 \end{aligned}$	-0.'745	-0.'729
					-1''190	-1.'178
					-0.'731	-0!'715
					-2:'666	-2.'622
$\begin{aligned} & 91 \\ & 94 \\ & 95 \end{aligned}$	Midwolda Emden Leer	$\begin{aligned} & 424 \\ & 425 \\ & 426 \end{aligned}$	Leer- Emden Midwolda-Leer Emden-Midwolda Triangle 148	757677	-0!'310	-0!'367
					-0.'566	-0.'562
					-0.'319	-0! ${ }^{\text {a }} 371$
					$-1 . ' 195$	-1.3300

Some arbitrary examples may make this clear (see table 8). They relate to the triangles 37,49 , and 148. Columns 1 and 2 give the number and the name of the station, columns 3 and 4 the angles with their numbers and column 5 the reference to the Précis Historique where the amounts y in column 6 can be found. Column 7 finally gives the correct amounts y. Their sum in every triangle agrees with the opposite of the spherical excess. In column 6, however, this is not the case. For triangle 37 ($\mid \mathrm{y} \mathrm{J}=-1!$! 812). Krayenhoff finds on page 122: $-\mathrm{E}=-1 \mathrm{I}^{\prime \prime} 778$. For triangle $49[\mathrm{y}]=-2{ }^{\prime} \cdot 666$ and (on page 125): $-\mathrm{E}=-2{ }^{\prime} \cdot 618$. For triangle 148 Krayenhoff's amount [y]=-1!'195 agrees with -E on page 145 but this must be chance; the real E of the triangle is $1!300$.

As one sees the correct $y^{\prime} s$ in column 7 differ in some cases considerably from those in column 6, considerably if one sees them - it must be said again - in the light of a computation in thousandths of a second. It will be clear that for sharp-angled triangles y is always negative. If, however, in Fig. 11a M lies outside the triangle - it is then obtuse-angled - then the correction y to a spherical angle can be positive. In triangle $155 \mathrm{e} . \mathrm{g}$. (angle $447 \simeq 122^{\circ} 42^{\text {' }}$) the correction to angle 446 in Westerstede is $+0!071$. Krayenhoff finds on page 78: $+0!074$.

The simultaneous computation of the corrections x and y involves that - in contradistinction to the logical sequence in the sections 10 and 11 - Krayenhoff computed first the reduction to centre and thereafter the reduction x to the horizon. The objection to this working method is more of a theoretical than of a practical character: because of the small amounts x in (5) (h_{1} and h_{2} are small) the influence of the errors in φ_{r} and φ_{1} on the computation of $\delta_{r}-\delta_{1}$ in (6) is of hardly any importance.
13. Conditions the angles of the triangulation network have to comply with

In section 4 (see Fig. 2) I already said that in the first order triangulation network 505 angles were measured. If the points Petten, Schiermonnikoog, Aschendorf, Stolham, and Wangeroge are left out of consideration (there is no check on these points), then the network consists of 106 angular points, inclusive of the stations Duinkerken and Mont Cassel from which Krayenhoff started his computation. In three of them - Herentals, Biesselt, and Borkum - no measurement took place. Inclusive of the "base line" Duinkerken-Mont Cassel the network has 251 sides ($1=251$) which border polygons, all the angles of which were measured. The angular points of these polygons are the $106-3=103$ stations just mentioned $(\mathrm{p}=103)$. For that reason the number of polygon conditions is $1-\mathrm{p}+1=251-103+1=149$.

The number of station equations is 73. For in each of the stations $12,14,17,18$, $22-25,28-44,46-50,52-57,59-61,63,66-70,72,74-76,79-96$, and $98-103$ the sum of the spherical angles, reduced to horizon and centre must be 360°.

As the network has 263 sides ($\mathrm{L}=263$) and 106 angular points ($\mathrm{P}=106$) the number of side equations is $\mathrm{L}-2 \mathrm{P}+3=263-212+3=54$. That's why there are $149+73+54=276$ conditions the angles have to comply with.

This number can be checked as follows:
A number of the 505 angles of the network was only measured in order to form a "tour d'horizon" in a station. All these stations lie along the borders of the network. At Varel e.g. (station No. 103) not only was the angle 462 of triangle 161 measured but also the angles 463 up to and including 466. As Stolham, Zandstedt, and Neuenburg, however, are no points of the network, the results of the computation would have been the same if angle 466 would have been replaced by an angle alike to the sum of the angles 463-466. For the determination of the number of redundant angles in the network the number of 505 should therefore, as far as Varel is concerned, be diminished with 3 (the angles 463,464 , and 465). In Fig. 2 they are marked with a double instead of a single arc. In the same way the number of angles with a double arc at Westerstede (No. 100), Barssel (No. 96),
and Leer (No. 95) is 2, 2 and 1 respectively, etc. Their total number is 21. As the number of stations that must be determined is 106-2=104 and every new station is determined by two angles the number of redundant angles is $505-21-208=276$, of course the same as the number of conditions just found.

148 out of 149 polygon conditions are triangle conditions: in each of the spherical triangles $2-19,22-28,30-40,42-52,54-78,80-83,85-128,130-136,138-143$, 146-155, and 157-161 the sum of the spherical angles reduced to horizon and centre must be 180° plus the spherical excess of the triangle. In Krayenhoff's system of conditions one finds that in every triangle the sum of the angles reduced to horizon, centre, and chords is 180°.

If $p_{i}(i=1,2, \ldots \ldots, 505)$ are the corrections to the spherical angles one finds e. g. for triangle 49:
$\left(51^{\circ} 15^{\prime} 01^{\prime \prime} .187+p_{138}\right)+\left(83^{\circ} 32^{\prime} 16^{\prime \prime} .923+p_{139}\right)+\left(45^{\circ} 12^{\prime} 444^{\prime \prime} .843+p_{140}\right)=180^{\circ} 00^{\prime} 02^{\prime \prime} .622$ or:

$$
\mathrm{p}_{138}+\mathrm{p}_{139}+\mathrm{p}_{140}+0^{\prime \prime} 331=0
$$

for the spherical excess of the triangle is 2.622 (see table 8).
The 149th polygon condition can be found from the spherical polygon Naarden-Edam-Enkhuizen-Urk-Kampen-Harderwijk around the former Zuiderzee (see Fig. 2). The sum of its angles must be 720° plus its spherical excess E. As the spherical excess of the triangles Naarden-Edam-Enkhuizen, Naarden-EnkhuizenUrk, Naarden-Urk-Harderwijk, and Harderwijk-Urk-Kampen is 1.438, 2. 441 , 2".758, and 1"887, respectively, $\mathrm{E}=8$ 8. 524 . From Krayenhoff's observations in tableau I of his Précis Historique, arranged in table 9 (column 8) one finds then:

$$
\begin{array}{r}
\mathrm{p}_{240}+\mathrm{p}_{239}+\mathrm{p}_{478}+\mathrm{p}_{475}+\mathrm{p}_{481}+\mathrm{p}_{484}-\mathrm{p}_{279}-\mathrm{p}_{280}-\mathrm{p}_{283}-\mathrm{p}_{286}- \\
-7.706=0
\end{array}
$$

In the columns 5-7 of table 9, I give for every angle also a survey of the series measured, rejected and retained. The totals of these series were already mentioned in table 3.

The spherical angles in columns 11 and 12 are borrowed from Krayenhoff's Tableau définitif des triangles in part III (pages 115-148) of his book. They are the results of an "adjustment" of the angles in column 8. The amounts p ' in column 9 (in seconds of arc) are the corrections to the observations in order to find the "adjusted" angles. Krayenhoff does not mention them in his book. They give, however, an excellent survey of the size of the corrections. Sometimes the amount of an adjusted angle does not occur in tableau III of the Precis Historique.

Table 9

Stations		$\begin{aligned} & \dot{80} \\ & \text { 鄀 } \\ & \dot{\circ} \\ & \dot{z} \end{aligned}$		Series			Observed sph. angles reduced to horizon and centre	Corrections (sec. of arc)		adj. spherical angles		
					$\begin{aligned} & \text { O} \\ & \text { UU } \\ & \mathbb{D} \\ & \mathbb{N} \end{aligned}$					Précis Historique		least squares "
$\dot{8}$								p'	p	○'	"	
1	2	3	4	5	6	7	8	9	10	$8+9=11$	$8+9=12$	$8+10=1 \overline{3}$
1	Duinkerken (main tower)	$\begin{aligned} & 4 \\ & 1 \\ & \hline 2 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & \hline 6 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & \hline 6 \end{aligned}$	$\begin{array}{lll} 43 & 51 & 34.238 \\ 51 & 07 & 03.361 \end{array}$		$+\begin{aligned} & +0.657 \\ & -0.464 \end{aligned}$	$\begin{aligned} & 4351 \\ & 5107 \end{aligned}$	$\begin{aligned} & 34.238 \\ & 03.361 \end{aligned}$	$\begin{aligned} & 34.895 \\ & 02.897 \end{aligned}$
2	Mont Cassel (tower Notre Dame)	2	2	4	2	2	352123.420	-0.697	-0.464	3521	22.723	22.956
3	Hondschoote (tower)	$\begin{aligned} & 7 \\ & 5 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{array}{r} 381204.083 \\ 1024810.174 \\ 933135.472 \end{array}$	$\left\lvert\, \begin{aligned} & +0.203 \\ & +0.985 \\ & -0.696 \end{aligned} .\right.$	$\begin{aligned} & +0.203 \\ & +0.657 \\ & -0.464 \end{aligned}$	$\begin{array}{r} 3812 \\ 10248 \\ 9331 \end{array}$	$\begin{aligned} & 04.286 \\ & 11.159 \\ & 34.776 \end{aligned}$	04.286 10.831 35. 008
		3		9	3	6						
4	Nieuwpoort (tower)	$\begin{array}{r} 10 \\ 8 \\ 6 \\ \hline 3 \end{array}$	$\begin{aligned} & 5 \\ & 4 \\ & 3 \end{aligned}$	$\begin{array}{\|r} 4 \\ 3 \\ 4 \\ \hline 11 \\ \hline 1 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 2 \\ & \hline 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 2 \\ & \hline 8 \end{aligned}$	$\begin{array}{lll} 96 & 31 & 19.610 \\ 72 & 06 & 23.004 \\ 33 & 20 & 14.407 \end{array}$	$\begin{aligned} & +0.384 \\ & +0.202 \\ & +0.984 \end{aligned} .$	$\begin{aligned} & +0.385 \\ & +0.203 \\ & +0.656 \end{aligned}$	$\begin{aligned} & 3631 \\ & 7206 \\ & 3320 \end{aligned}$	$\begin{aligned} & 19.994 \\ & 23.206 \\ & 15.391 \end{aligned}$	$\begin{aligned} & 19.995 \\ & 23.207 \\ & 15.063 \end{aligned}$
5	Diksmuide (tower)	$\begin{array}{r} 9 \\ 11 \\ 13 \\ 16 \\ \hline 4 \end{array}$	$\begin{aligned} & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	$\begin{array}{\|c} 2 \\ 2 \\ 3 \\ 3 \\ \hline 10 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & \hline 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & \hline 8 \end{aligned}$	$\begin{array}{r} 694132.944 \\ 47 \\ 47 \\ 49 \\ 42 \end{array} 075.849 .732$	$\left\|\begin{array}{l} +0.203 \\ +0.384 \\ +0.010 \\ -0.248 \end{array}\right\| .$	$\begin{aligned} & +0.203 \\ & +0.384 \\ & +0.011 \\ & -0.247 \end{aligned}$	$\begin{aligned} & 6941 \\ & 4700 \\ & 4207 \\ & 5938 \end{aligned}$	33.147 50.233 50.742 07.087	33.147 50.233 50.743 07. 088
6	Oostende (tower)	$\begin{array}{r} 14 \\ 12 \\ \hline 2 \end{array}$	$\begin{aligned} & 6 \\ & 5 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & \hline 5 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & \hline 5 \end{aligned}$	$\begin{array}{lll} 93 & 57 & 52.236 \\ 36 & 27 & 49.930 \end{array}$	$\left\|\begin{array}{l} +0.011 \\ +0.384 \end{array}\right\|$	$+\begin{aligned} & +0.011 \\ & +0.384 \end{aligned}$	$\begin{aligned} & 9357 \\ & 3627 \end{aligned}$	$\begin{aligned} & 52.247 \\ & 50.314 \end{aligned}$	52.247 50.314
7	Brugge (main tower)	$\begin{array}{r} 25 \\ 22 \\ 19 \\ 17 \\ 15 \\ \hline 5 \end{array}$	$\begin{array}{r} 10 \\ 9 \\ 8 \\ 7 \\ 6 \end{array}$	$\begin{array}{\|r} 3 \\ 3 \\ 2 \\ 2 \\ 3 \\ 3 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{array}{\|r} 3 \\ 3 \\ 2 \\ 2 \\ 2 \\ 3 \\ \hline 13 \end{array}$	$\begin{aligned} & 5054 \quad 24.760 \\ & 464643.116 \\ & 38 \quad 38 \\ & 36.617 \\ & 31 \\ & 12 \\ & 43 \end{aligned} 5418.031$	$\left\lvert\, \begin{aligned} & +0.684 \\ & -0.462 \\ & +0.056 \\ & -0.248 \\ & +0.010 \end{aligned} .\right.$	$\begin{aligned} & +0.229 \\ & -0.308 \\ & +0.056 \\ & -0.247 \\ & +0.011 \end{aligned}$	$\begin{aligned} & 5054 \\ & 4646 \\ & 3838 \\ & 3112 \\ & 4354 \end{aligned}$	25.444 42.654 56.673 29. 783 18.205	24.989 42.808 56.673 29.784 18.206
8	Hooglede (tower)	$\begin{array}{\|r} 18 \\ 20 \\ \hline 2 \end{array}$	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & \hline 6 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & \hline 5 \end{aligned}$	$\begin{aligned} & 890924.522 \\ & 602854.848 \end{aligned}$	$\left\lvert\, \begin{aligned} & -0.247 \\ & +0.056 \end{aligned}\right.$	$\begin{aligned} & -0.247 \\ & +0.056 \end{aligned}$	$\begin{aligned} & 8909 \\ & 6028 \end{aligned}$	24.275 54.904	24.275 54.904

Table 9 (continued)

1	2	3	4	5	6	7	8	9	10	$8+9=11$	$8+9=12$	$8+10=13$
9	Tielt (tower)	$\begin{aligned} & 21 \\ & 23 \end{aligned}$	$\begin{aligned} & 8 \\ & 9 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & \hline 5 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & \hline 4 \end{aligned}$	$\begin{array}{lll} 80 & 52 & 09.417 \\ 95 & 11 & 15.090 \end{array}$	$\begin{aligned} & +0.056 \\ & -0.463 \end{aligned}$	$\begin{array}{\|l} +0.057 \\ -0.308 \end{array}$	$\begin{aligned} & 8052 \\ & 9511 \end{aligned}$	$\begin{aligned} & 09.473 \\ & 14.627 \end{aligned}$	$\begin{aligned} & 09.474 \\ & 14.782 \end{aligned}$
10	Gent (main tower)	$\begin{array}{r} 24 \\ 26 \\ 28 \\ 38 \\ 42 \\ \hline 5 \end{array}$	$\begin{array}{r} 9 \\ 10 \\ 11 \\ 14 \\ 15 \end{array}$	$\begin{array}{r} 2 \\ 2 \\ 3 \\ 2 \\ 2 \\ \hline 11 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{array}{\|r} 2 \\ 2 \\ 3 \\ 2 \\ 2 \\ \hline 11 \end{array}$	38 02 04.464 25 13 03.257 43 56 12. 36 30 14.930 26 10 39.576	$-$	$\begin{aligned} & -0.307 \\ & +0.228 \\ & -0.060 \\ & +0.578 \\ & -0.122 \end{aligned}$	$\begin{aligned} & 3802 \\ & 2513 \\ & 4356 \\ & 3630 \\ & 2610 \end{aligned}$	04.464 03.257 12. 180 14.930 39.576	04.157 03.485 12.120 15. 508 39.454
11	Aardenburg (reformed church)	$\begin{array}{r} 31 \\ 29 \\ 27 \\ \hline 3 \end{array}$	$\begin{aligned} & 12 \\ & 11 \\ & 10 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & \hline 6 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & \hline 6 \end{aligned}$	$\begin{array}{rrrr} 78 & 29 & 46.076 \\ 38 & 11 & 30.503 \\ 103 & 52 & 32.617 \end{array}$	$\overline{+1.192}$	$\begin{aligned} & -0.282 \\ & +1.030 \\ & +0.229 \end{aligned}$	$\begin{array}{r} 7829 \\ 3811 \\ 10352 \end{array}$	$\begin{aligned} & 46.076 \\ & 31.695 \\ & 32.617 \end{aligned}$	$\begin{aligned} & 45.794 \\ & 31.533 \\ & 32.846 \end{aligned}$
12	Assenede (catholic church)	$\begin{array}{r} 36 \\ 39 \\ 30 \\ 33 \\ \hline 4 \end{array}$	$\begin{aligned} & 13 \\ & 14 \\ & 11 \\ & 12 \end{aligned}$	$\begin{gathered} 4 \\ 3 \\ 2 \\ 1 \\ \hline 10 \end{gathered}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & 4 \\ & 2 \\ & 2 \\ & 1 \\ & \hline 9 \end{aligned}$		$\begin{aligned} & -0.345 \\ & -0.355 \\ & -0.703 \\ & \hline-1.403 . \end{aligned}$	-0.049 -0.476 -0.131 -0.747 -1.403	$\begin{array}{r} 9153 \\ 11117 \\ 9752 \\ 5856 \\ \hline 36000 \end{array}$	$\begin{aligned} & 45.873 \\ & 53.274 \\ & 17.196 \\ & 03.657 \\ & \hline 00.000 \end{aligned}$	$\begin{aligned} & 46.169 \\ & 52.798 \\ & 17.420 \\ & 03.613 \\ & \hline 00.000 \end{aligned}$
13	Middelburg (abbey-tower)	$\begin{array}{r} 44 \\ 34 \\ 32 \\ \hline 3 \end{array}$	$\begin{aligned} & 16 \\ & 13 \\ & 12 \end{aligned}$	$\begin{aligned} & 4 \\ & 2 \\ & 3 \\ & \hline 9 \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 1 \\ & \hline 3 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & \hline 6 \end{aligned}$	$\begin{aligned} & 772150.324 \\ & 3352 \quad 06.765 \\ & 423411.773 \end{aligned}$	-0.344	$\begin{aligned} & +0.286 \\ & +0.028 \\ & +0.328 \end{aligned}$	$\begin{aligned} & 7721 \\ & 3352 \\ & 4234 \end{aligned}$	$\begin{aligned} & 50.324 \\ & 06.421 \\ & 11.773 \end{aligned}$	$\begin{aligned} & 50.610 \\ & 06.793 \\ & 12.101 \end{aligned}$
14	Hulst (Willebrordus church)	$\begin{aligned} & 43 \\ & 46 \\ & 49 \\ & 40 \\ & 37 \\ & 35 \end{aligned}$	16 17 18 15 14 13	$\begin{array}{\|r} 4 \\ 2 \\ 3 \\ 2 \\ 2 \\ 2 \\ \hline 15 \end{array}$	$\begin{aligned} & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 3 \end{aligned}$	$\begin{array}{\|r} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ \hline 12 \end{array}$	38 05 46.579 47 29 05.400 71 01 48.216 116 57 17.281 32 11 52.788 54 14 07.427 359 59 57.691	$+0.272$ \qquad \qquad $+0.010$ $+2.027$	+0.835 +0.502 -0.387 +0.086 -0.090 +1.363 +309	$\begin{array}{r} 3805 \\ 4729 \\ 7101 \\ 11657 \\ 3211 \\ 5414 \\ \hline 36000 \end{array}$	$\begin{aligned} & 46.851 \\ & 05.400 \\ & 48.216 \\ & 17.281 \\ & 52.798 \\ & 09.454 \\ & \hline 00.000 \end{aligned}$	47.414 05.902 47.829 17.367 52.698 08.790 00.000
15	Antwerpen (main tower)	$\begin{array}{r} 51 \\ 53 \\ 41 \\ 55 \\ \hline 4 \end{array}$	$\begin{aligned} & 18 \\ & 19 \\ & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & \hline 8 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & \hline 8 \end{aligned}$	60 00 37.149 65 40 32.739 36 52 05.744 48 05 13.808	$\begin{aligned} & -0.896 \\ & +0.821 \\ & -0.670 \\ & +1.000 \end{aligned} \text {. }$	$\left\lvert\, \begin{aligned} & -0.139 \\ & -0.072 \\ & -0.631 \\ & +0.582 \end{aligned}\right.$	$\begin{aligned} & 6000 \\ & 6540 \\ & 3652 \\ & 4805 \end{aligned}$	$\begin{aligned} & 36.253 \\ & 33.560 \\ & 05.074 \\ & 14.808 \end{aligned}$	$\begin{aligned} & 37.010 \\ & 32.667 \\ & 05.113 \\ & 14.390 \end{aligned}$

Table 9 (continued)

1	2	3	4	5	6	7	8	9	10	$8+9=11$	$8+9=12$	$8+10=13$
16	Zierikzee (new church)	59	$\begin{aligned} & 22 \\ & 23 \\ & 17 \\ & 16 \end{aligned}$	5	1	4	51 16 31.236 41 11 24.955 43 01 13.763 64 32 24.164	$\begin{aligned} & +0.750 \\ & +1.542 \\ & -1.409 \\ & +1.237 \end{aligned}$	$\left\lvert\, \begin{aligned} & -0.138 \\ & +0.637 \\ & -1.635 \\ & +0.392 \end{aligned}\right.$	$\begin{aligned} & 5116 \\ & 4111 \\ & 4301 \\ & 6432 \end{aligned}$	$\begin{aligned} & 31.986 \\ & 26.497 \\ & 12.354 \\ & 25.401 \end{aligned}$	$\begin{aligned} & 31.098 \\ & 25.592 \\ & 12.128 \\ & 24.556 \end{aligned}$
		63		5	1	4						
		47		3	1	2						
		45		5	3	2						
		4		18	6	12						
17	Bergen op Zoom (reformed church)	50	$\begin{aligned} & 18 \\ & 15 \\ & 25 \\ & 24 \\ & 25 \\ & 15 \end{aligned}$	2 2 2 2 2 12	00000	2 2 2 2 2 2 12	48 57 37.261 89 29 44.515 81 16 25.064 47 15 25.087 34 51 50.312 58 08 57.352	$\begin{aligned} & \square \\ & -0.151 \\ & + \\ & +0.560 \\ & +0.409 \end{aligned}$	$\begin{aligned} & -0.368 \\ & -0.272 \\ & +0.728 \\ & -0.418 \\ & -0.420 \\ & +1.159 \\ & \hline+0.409 \end{aligned}$	$\begin{aligned} & 4857 \\ & 8929 \\ & 8116 \\ & 4715 \\ & 3451 \\ & 5808 \\ & \hline \end{aligned}$	37.261 44.515 24.913 25. 087 50.312 57.912	$\begin{aligned} & 36.893 \\ & 44.243 \\ & 25.792 \\ & 24.669 \\ & 49.892 \\ & 58.511 \\ & \hline 00.000 \end{aligned}$
		48										
		64										
		66										
		68										
		52										
		6					3595959.591			36000	00.000	
18	Hoogstraten (catholic church)	56	201925262721	5 4 3 3 2 2 19	1200003	4 2 3 3 2 2 16	63 13 31.656 56 10 30.861 74 47 34.387 67 31 20.833 46 10 29.207 52 06 35.704	$\begin{aligned} & - \\ & -1.750 \\ & -0.898 \\ & \hline-2.648 \end{aligned}$	$\begin{aligned} & -0.483 \\ & +0.298 \\ & -1.267 \\ & +0.077 \\ & -0.624 \\ & -0.649 \\ & \hline-2.648 \end{aligned}$	$\begin{array}{r} 6313 \\ 5610 \\ 7447 \\ 6731 \\ 4610 \\ 5206 \\ \hline \end{array}$	$\begin{aligned} & 31.656 \\ & 30.861 \\ & 32.637 \\ & 20.833 \\ & 28.309 \\ & 35.704 \\ & \hline \end{aligned}$	$\begin{aligned} & 31.173 \\ & 31.159 \\ & 33.120 \\ & 20.910 \\ & 28.583 \\ & 35.055 \\ & \hline 00.000 \end{aligned}$
		54										
		70										
		72										
		74										
		57										
		6					3600002.648			36000	00.000	
19	Lommel (catholic church)	58	$\begin{aligned} & 21 \\ & 27 \\ & 28 \end{aligned}$	3	1	2	$\begin{array}{lll} 36 & 38 & 22.186 \\ 39 & 54 & 38.875 \\ 63 & 50 & 11.437 \end{array}$	$\frac{-1.623}{-0.600}$	$\left\lvert\, \begin{aligned} & -0.598 \\ & -0.095 \\ & +0.068 \end{aligned}\right.$	$\begin{aligned} & 3638 \\ & 3954 \\ & 6350 \end{aligned}$	$\begin{aligned} & 20.563 \\ & 38.875 \\ & 10.837 \end{aligned}$	$\begin{aligned} & 21.588 \\ & 38.780 \\ & 11.505 \end{aligned}$
		76		3	1	2						
		78		4	1	3						
		3		10	3	7						
20	Nederweert (catholic church)	81	$\begin{aligned} & 29 \\ & 30 \end{aligned}$	3	1	2	$\begin{aligned} & 851007.255 \\ & 44 \quad 23 \quad 21.748 \end{aligned}$	$\begin{aligned} & -1.500 \\ & +1.315 \end{aligned}$	$\begin{aligned} & -0.512 \\ & +0.546 \end{aligned}$	$\begin{aligned} & 8510 \\ & 4423 \end{aligned}$	$\begin{aligned} & 05.755 \\ & 23.063 \end{aligned}$	$\begin{aligned} & 06.743 \\ & 22.294 \end{aligned}$
		83		3	0	3						
		2		6	1	5						
21	Brielle (Catherina church)	85	$\begin{aligned} & 31 \\ & 32 \\ & 22 \end{aligned}$	2	1	1	$\begin{array}{lll} 57 & 30 & 31.318 \\ 56 & 21 & 12.969 \\ 70 & 34 & 24.678 \end{array}$	$\frac{+5.242}{-1.707}$	$\begin{aligned} & +2.630 \\ & -0.728 \\ & -0.598 \end{aligned}$	$\begin{aligned} & 5730 \\ & 5621 \\ & 7034 \end{aligned}$	$\begin{aligned} & 36.560 \\ & 12.969 \\ & 22.971 \end{aligned}$	$\begin{aligned} & 33.948 \\ & 12.241 \\ & 24.080 \end{aligned}$
		88		2	1	1						
		61		1	0	1						
		3		5	2	3						
22	Willemstad (reformed church)	65	24 23 22 32 33 34	3	1	2	892033.430	$\square$$\square$+0.017+0.017	$\begin{aligned} & -0.090 \\ & +0.028 \\ & -0.216 \\ & +0.991 \\ & -1.054 \\ & +0.358 \\ & \hline \end{aligned}$	8920 5732 5809 4610 4106 6740	$\begin{array}{\|l} 33.430 \\ 10.481 \\ 07.407 \\ 29.862 \\ 44.288 \\ 54.532 \\ \hline \end{array}$	$\begin{aligned} & 33.340 \\ & 10.509 \\ & 07.191 \\ & 30.853 \\ & 43.217 \\ & 54.890 \\ & \hline \end{aligned}$
		62		3	1	2	573210.481					
		60		1	0	1	580907.407					
		90		2	0	2	461029.862					
		93		2	0	2	410644.271					
		94		2	1	1	674054.532					
		6		13	3	10	3595959.983			36000	00.000	

Table 9 (continued)

1	2	3	4	5	6	7	8	9	10	$8+9=11$	$8+9=12$	$8+10=13$
23	Breda (great church)	71	26	3	0	3	675648.937	+1.378	+0.642	6756	50.315	49.579
		69	25	3	1	2	702038.816		-0.061	7020	38.816	38.755
		67	24	3	0	3	432404.399	-1.319	-0.809	4324	03.080	03.590
		96	34	4	1	3	461010.812	-1.723	-1. 084	4610	09. 089	09.728
		98	35	3	0	3	443214.595	+0.389	+0.326	4432	14.984	14.921
		100	36	4	2	2	461045.883	+1.906	+1. 530	4610	47. 789	47.413
		103	37	4	2	2	412515.627	$+0.300$	+0.386	4125	15.927	16.013
		7		24	6	18	3595959.069	+0.931	+0.931	36000	00.000	00.000
24	Hilvarenbeek (catholic church)	106	$\begin{aligned} & 38 \\ & 28 \\ & 27 \\ & 26 \\ & 37 \end{aligned}$	3	0	3	631604.874	$+1.630$	$+0.400$	6316	06.504	05.274
		77		3	0	3	652716.041	-	-0.211	6527	16. 041	15.830
		75		5	1	4	935455.522	-0.531	-0.708	9354	54.991	54.814
		73		4	0	4	443150.208		+0.661	4431	50.208	50.869
		104		4	0	4	924953.184	-0.928	+0.029	9249	52.256	53.213
		5		19	1	18	3595959.829	+0.171	+0.171	36000	00.000	00.000
25	Helmond (St. Lambertus church)	108	$\begin{aligned} & 38 \\ & 39 \\ & 40 \\ & 30 \\ & 29 \\ & 28 \end{aligned}$	2	0	2	424445.790		$+0.537$	4244	45.790	46.327
		110		3	0	3	562103.842	+1.285	+1.118	5621	05.127	04.960
		112		3	0	3	512022.098		-0.217	5120	22.098	21.881
		82		2	0	2	1012946.907	-1.344	-0.196	10129	45.563	46.711
		80		2	0	2	572125.713		-0.846	5721	25.713	24.867
		79		3	1	2	504235.777	-0.068	-0.523	5042	35.709	35.254
		6		15	1	14	3600000.127	-0.127	-0.127	36000	00.000	00.000
26	Vierlingsbeek (catholic church)	84	$\begin{aligned} & 30 \\ & 40 \\ & 41 \end{aligned}$	2	0	2	340652.917		-0.376	3406	52.917	52.541
		114		3	0	3	721343.931	+0.826	+0.939	7213	44.757	44.870
		115		3	0	3	235711.703	-0.880	-1.145	2357	10.823	10.558
		3		8	0	8						
27	Den Haag (St. Jacobs tower)	118	$\begin{aligned} & 42 \\ & 31 \end{aligned}$	3	0	3	892420.957	$+2.143$	+1.066	8924	23.100	22.023
		87		6	2	4	622314.662		+1.387	6223	14.662	16. 049
		2		9	2	7						
28	Rotterdam (St. Laurens church)	89	32	1	0	1	772819.415	-0.829	-1.090	7728	18.586	18.325
		86	31	1	0	1	600609.816		+1.226	6006	09.816	11. 042
		117	42	1	0	1	360943.225	+0.306	+0.334	3609	43.531	43.559
		120	43	1	0	1	561644.929		-1.920	5616	44.929	43.009
		124	44	1	0	1	772221.592	$+0.611$	+0.935	7722	22.203	22.527
		91	33	1	0	1	523640.963	-0.028	+0.575	5236	40.935	41.538
		6		6	0	6	3595959.940	+0.060	+0.060	36000	00.000	00.000

Table 9 (continued)

1	2	3	4	5	6	7	8	9	10	$8+9=11$	$8+9=12$	$8+10=13$
29	Dordrecht (great church; centre)	92	$\begin{aligned} & 33 \\ & 44 \\ & 45 \\ & 35 \\ & 34 \end{aligned}$	2	0	2	861635.683	-0.029	+0.440	8616	35.654	36. 123
		125		2	1	1	541522.676	-1.700	-1.328	5415	20.976	21.348
		126		2	0	2	761837.923	+1.416	+1.259	7618	39.339	39.182
		97		4	2	2	770026.407	-	+0.312	7700	26.407	26. 719
		95		2	0	2	660856.624	+1.000	+0.005	6608	57.624	56.629
		5		12	3	9	3595959.313	+0.687	+0.688	36000	00.000	00.001
30	Leiden (tower of the former "Saaihal")	470	$\begin{aligned} & - \\ & 54 \\ & 46 \\ & 43 \\ & 42 \\ & \hline \end{aligned}$	3	1	2	631446.155	-•••	-0.938	6314	- . .	45.217
		153		3	1	2	700548.204		+0.920	7005	48.204	49.124
		130		3	2	1	452105.907	-2.580	-0.828	4521	03.327	05. 079
		121		5	4	1	435805.908	+1.600	+2.884	4358	07. 508	08.792
		119		5	1	4	542555.896	-1.700	-0.650	5425	54.196	55.246
		471		3	0	3	825417.480		-0.938	8254		16.542
		6		22	9	13	3595959.550	$+0.450$	+0.450	36000	00.000	00.000
31	Gouda (St. John church)	129	$\begin{aligned} & 46 \\ & 47 \\ & 48 \\ & 45 \\ & 44 \\ & 43 \end{aligned}$	3	1	2	594308.897	$+0.650$	+1.471	5943	09.547	10.368
		132		3	1	2	5523 26. 199	+0.649	+0.299	5523	26.848	26.498
		135		3	1	2	654631.432		-0.821	6546	31.432	30.611
		127		3	0	3	505927.052	-1.044	-0.636	5059	26.008	26.416
		123		3	1	2	482215.785	+1.806	+1.112	4822	17.591	16.897
		122		3	2	1	794510.672	-2.098	-1.462	7945	08.574	09.210
		6		18	6	12	3600000.037	-0.037	-0.037	36000	00.000	00.000
32	Gorinchem (reformed church)	138	49	1	0	1	511501.187	-1.369	-0.353	5114	59.818	60.834
		142	50	2	0	2	533147.872		-0.508	5331	47.872	47.364
		101	36	2	0	2	830243.733	+0.800	+1.252	8302	44.533	43.985
		99	35	2	1	1	582720.846	-0.837	-1. 084	5827	20.009	19. 762
		128	45	2	0	2	524157.129	-1.300	-1.548	5241	55.829	55.581
		136	48	2	0	2	610109.789	+2.150	+2.685	6101	11.939	12.474
		6		11	1	10	3600000.556	-0.556	-0.556	36000	00.000	00.000
33	's-Hertogenbosch (St. John church)	105	37	2	0	2	454452.895	$+0.700$	-0.340	4544	53.595	52.555
		102	36	3	0	3	504630.588	-0.800	+0.128	5046	29.788	30.716
		141	50	3	0	3	860643.267	+1.336	+1.123	8606	44.603	44.390
		144	51	2	0	2	441953.092	-0.221	-0.538	4419	52.871	52.554
		109	39	3	1	2	590250.019	-0.662	-0.717	5902	49.357	49.302
		107	38	2	0	2	735910.573	-0.787	-0.090	7359	09.786	10. 483
		6		15	1	14	3600000.434	-0.434	-0.434	36000	00.000	00.000

Table 9 (continued)

1	2	3	4	5	6	7	8	9	10	$8+9=11$	$8+9=12$	$8+10=13$
34	Grave (tower)	147	52	4	0	4	693606.705	-0.330	-0.738	6936	06.375	05.967
		150	53	3	0	3	462050.424	-0.564	-0.528	4620	49.860	49.896
		116	41	2	0	2	470219.299	-0.745	-0.469	4702	18.554	18.830
		113	40	3	0	3	562555.298	-0.400	-0.293	5625	54.898	55.005
		111	39	3	1	2	6436 07. 766		+0.225	6436	07.766	07.991
		146	51	3	1	2	755841.229	+1.318	+1.082	7558	42.547	42.311
		6		18	2	16	3600000.721	-0.721	-0.721	36000	00.000	00.000
35	Nieuwkoop (tower of the former abbey)	131	46 54 55 56 47	1	0	1	745545.056	+2.853	$+0.280$	7455	47.909	45.336
		152		1	0	1	672213.986	-1.000	-1.452	6722	12.986	12.534
		155		1	0	1	363208.209	+0.716	+2. 599	3632	08.925	10. 808
		159		1	0	1	895542.181	-2.430	-1.806	8955	39.751	40.375
		133		1	0	1	911412.929	-2.500	-1.982	9114	10.429	10.947
		5		5	0	5	3600002.361	-2.361	-2.361	36000	00.000	00.000
36	Utrecht (tower of the cathedral)	158		3	1	2	465134.789	$+1.380$	+0.954	4651	36.169	35.743
		161		3	0	3	340609.301	-1.211	-0.048	3406	08.090	09.253
		164		4	0	4	612356.660	-	+0.731	6123	56.660	57.391
		168		4	0	4	473122.466	-2. 501	-2.380	4731	19.965	20. 086
		139		3	0	3	833216.923		-1.712	8332	16.923	15. 211
		137		3	0	3	531220.865	-2. 394	-2.105	5312	18.471	18.760
		134		3	0	3	332220.827	+2.895	+2.729	3322	23.722	23.556
		7		23	1	22	3600001.831	-1.831	-1.831	36000	00.000	00.000
37	Rhenen (Cunera tower)	167	$\begin{aligned} & 59 \\ & 60 \\ & 61 \\ & 62 \\ & 52 \\ & 51 \\ & 50 \\ & 49 \end{aligned}$	2	1	1	345933.730	+1.838	+2. 244	3459	35.568	35.974
		170		2	0	2	614257.299	-0.296	-2.210	6142	57.003	55.089
		173		2	1	1	400615.236		+1.841	4006	15.236	17. 077
		177		3	0	3	472402.641		-2.401	4724	02. 641	00.240
		148		3	0	3	303127.217		+0.087	3031	27.217	27.304
		145		3	0	3	594127.650	-1. 170	-0.614	5941	26.480	27.036
		143		2	0	2	402130.338	-0.360	+0.365	4021	29.978	30. 703
		140		3	1	2	451244.843	+1.034	+1.734	4512	45.877	46.577
		8		20	3	17	3595958.954	+1.046	+1.046	36000	00.000	00.000
38	Nijmegen (St. Stevens tower)	176	$\begin{aligned} & 62 \\ & 63 \\ & - \\ & 53 \\ & 52 \end{aligned}$	3	1	2	823423.739	+0.324	+1. 196	8234	24.063	24.935
		179		2	0	2	485805.286	-2. 300	-1.166	4858	02.986	04.120
		472		2	0	2	910521.210	+1.704	-0.296	9105	22.914	20.914
		151		2	0	2	572942.299	+0. 564	+0.235	5729	42.863	42.534
		149		2	0	2	795227.174		+0.322	7952	27.174	27.496
		5		11	1	10	3595959.708	+0.292	+0.291	35959	60.000	59.999

Table 9 (continued)

1	2	3	4	5	6	7	8	9	10	$8+9=11$	$8+9=12$	$8+10=13$
39	Haarlem (St. Bavo church)	473	$\begin{gathered} - \\ 64 \\ 55 \\ 54 \\ - \end{gathered}$	2	0	2	1132343.095	-•••	-0.989	11323	- . . .	42.106
3		183		2	0	2	770228.593	+3.558	+2. 160	7702	32.151	30.753
		156		2	0	2	664654.724	+0. 500	+0. 146	6646	55.224	54.870
		154		2	0	2	423159.378	+0.696	+0.229	4232	00.074	59.607
		474		2	0	2	601453.652		-0.988	6014		52.664
		5		10	0	10	3595959.442	+0. 558	+0.558	36000	00.000	00.000
40	Amsterdam (Westerntower)	185	$\begin{aligned} & 65 \\ & 66 \\ & 57 \\ & 56 \\ & 55 \\ & 64 \end{aligned}$	3	1	2	532403.079		$+0.056$	5324	03.079	03.135
		189		3	2	1	784823.130	+0.374	-0.230	7848	23.504	22.900
		162		3	1	2	380109.588	+0. 342	+0.172	3801	09.930	09.760
		160		3	1	2	431246.973	-1.300	-1.495	4312	45.673	45.478
		157		4	0	4	764054.984	+1.938	+0.410	7640	56.922	55. 394
		182		3	0	3	695242.395	-1.503	+0.938	6952	40.892	43.333
		6		19	5	14	3600000.149	-0.149	-0.149	36000	00.000	00.000
41	Naarden (reformed church)	163	57 66 - 67 58	3	0	3	1075242.537	+0.600	-0.391	10752	43.137	42.146
		188		2	0	2	470713.651	-2.482	-1.970	4707	11.169	11.681
		475		3	0	3	965758.153	-4.211	-1.698	9657	53.942	56.455
		192		5	1	4	562538.079	+3. 892	+1. 640	5625	41.971	39. 719
		165		2	0	2	513631.081	-1.300	-1.082	5136	29.781	29.999
		5		15	1	14	3600003.501	-3.501	-3.501	36000	00.000	00.000
42	Amersfoort (Our Lady tower)	191	67 68 60 59 58	5	2	3	801759.800		+0.668	8017	59.800	60.468
		194		2	0	2	383341.746	-1.441	-0.122	3833	40.305	41.624
		171		2	0	2	763940.413	-0.778	-1.291	7639	39.635	39. 122
		169		8	1	7	972906.032	-0.330	-0.855	9729	05.702	05. 177
		166		7	3	4	665932.774	+1.784	+0.835	6659	34.558	33.609
		5		24	6	18	3600000.765	-0.765	-0.765	36000	00.000	00. 000
43	Imbosch (signal)	178	$\begin{aligned} & 62 \\ & 61 \\ & 69 \\ & 70 \\ & 63 \end{aligned}$	2	0	2	500134.664		+1. 531	5001	34.664	36.195
		175		3	0	3	834028.485	+0.450	-0.926	8340	28.935	27.559
		197		2	0	2	731053.214	-0.257	-1.434	7310	52.957	51.780
		201		2	0	2	773632.560		$+0.688$	7736	32.560	33.248
		180		3	0	3	753030.884		+0.3̇3	7530	30.884	31.219
		5		12	0	12	3595959.807	+0.193	+0.194	36000	00.000	00.000
44	Hettenheuvel (signal)	181	$\begin{aligned} & 63 \\ & 70 \\ & 71 \\ & 72 \\ & - \\ & \hline \end{aligned}$	6	1	5	553123.184	+4. 120	+2. 652	5531	27. 304	25.836
		200		4	0	4	453833.689	-2.460	-1. 807	4538	31.229	31.882
		203		5	0	5	690123.529	+1.700	+0.048	6901	25.229	23.577
		207		3	0	3	463539.391		-0.260	4635	39.391	39. 131
		476		4	0	4	943154.166		-0.450	9431		53.716
		477		3	0	3	484106.308		-0.450	4841		05.858
		6		25	1	24	3600000.267	-0.267	-0.267	36000	00.000	00.000

Table 9 (continued)

1	2	3	4	5	6	7		8	9	10	$8+9=11$	$8+9=12$	$8+10=13$
45	Bocholt (tower)	206	72	4	2	2	71	06	29.541	+2.081	+1.410	7106	31.622

Table 9 (continued)

1	2	3	4	5	6	7	8	9	10	$8+9=11$	$8+9=12$	$8+10=13$
51	Ahaus (tower)	211	$\begin{array}{\|l} 73 \\ 75 \\ 76 \\ 77 \end{array}$	3	1	2	$\begin{array}{lll} 36 & 26 & 18.268 \\ 37 & 06 & 46.771 \\ 49 & 16 & 03.562 \\ 33 & 34 & 42.066 \end{array}$	$\begin{aligned} & +0.222 \\ & -1.433 \\ & -1.295 \\ & +1.320 \end{aligned}$	$\begin{aligned} & +1.186 \\ & -0.459 \\ & -1.081 \\ & +0.482 \end{aligned}$	$\begin{aligned} & 3626 \\ & 3706 \\ & 4916 \\ & 3334 \end{aligned}$	$\begin{aligned} & 18.490 \\ & 45.338 \\ & 02.267 \\ & 43.386 \end{aligned}$	$\begin{aligned} & 19.454 \\ & 46.312 \\ & 02.481 \\ & 42.548 \end{aligned}$
		217		2	0	2						
		218		2	0	2						
		221		3	1	2						
		4		10	2	8						
52	Alkmaar (Weighhouse tower)	228	$\begin{array}{\|l} \hline 80 \\ 78 \\ 65 \\ 64 \\ - \\ 79 \end{array}$	16	0 1 0 0 0 1	3 4 2 2 2 2 15	$\begin{array}{rrr} 76 & 56 & 19.088 \\ 36 & 06 & 37.800 \\ 39 & 07 & 37.587 \\ 33 & 04 & 48.800 \\ 141 & 59 & 14.134 \\ 32 & 45 & 24.013 \\ \hline \end{array}$	$\begin{array}{\|} +2.734 \\ +2.719 \\ +1.753 \\ -0.648 \\ -9.014 \\ +1.034 \\ \hline \end{array}$	$\begin{aligned} & -0.887 \\ & +0.837 \\ & +0.457 \\ & -1.689 \\ & -0.070 \\ & -0.070 \\ & \hline-1.422 \end{aligned}$	$\begin{array}{r} 7656 \\ 3606 \\ 3907 \\ 3304 \\ 14159 \\ 3245 \\ \hline \end{array}$	$\begin{array}{r} 21.822 \\ 40.519 \\ 39.340 \\ 48.152 \\ 05.120 \\ 25.047 \\ \hline \end{array}$	18. 201 38.637 38. 044 47. 111 14.064 23. 943
		225										
		186										
		184										
		480										
		479										
		6					3600001.422	-1.422		36000	00.000	00.000
53	Edam (Chimes tower)	481	$\begin{aligned} & - \\ & 66 \\ & 65 \\ & 78 \\ & 83 \end{aligned}$	2 2 2 1 1 1 8	000000	2 2 2 1 1 1 8	$\begin{array}{rrl} 124 & 01 & 02.685 \\ 54 & 04 & 25.662 \\ 87 & 28 & 20.879 \\ 60 & 01 & 39.912 \\ 34 & 24 & 30.351 \\ \hline \end{array}$	$\begin{gathered} +5.965 \\ +0.648 \\ -2.146 \\ -2.553 \\ -1.403 \\ \hline+0.511 \end{gathered}$	$\begin{aligned} & +1.422 \\ & +0.741 \\ & -0.904 \\ & -0.502 \\ & -0.246 \\ & \hline+0.511 \end{aligned}$	$\begin{array}{r} 12401 \\ 5404 \\ 8728 \\ 6001 \\ 3424 \\ \hline 36000 \end{array}$	$\begin{aligned} & 08.650 \\ & 26.310 \\ & 18.733 \\ & 37.359 \\ & 28.948 \\ & \hline 00.000 \end{aligned}$	$\begin{aligned} & 04.107 \\ & 26.403 \\ & 19.975 \\ & 39.410 \\ & 30.105 \\ & \hline 00.000 \end{aligned}$
		190										
		187										
		224										
		236										
		5					3595959.489					
54	Hoorn (tower)	227	$\begin{aligned} & 80 \\ & 81 \\ & 82 \\ & 83 \\ & 78 \end{aligned}$	$\begin{array}{r} 3 \\ 3 \\ 2 \\ 2 \\ 3 \\ \hline 13 \end{array}$	0 0 0 0 1	$\begin{aligned} & 2 \\ & 3 \\ & 2 \\ & 2 \\ & 3 \\ & \hline 12 \end{aligned}$	$\begin{array}{r} 450818.486 \\ 5845 \\ 5432 \\ 54.585 \\ 11742 \\ 17.155 \\ 83 \\ 81 \end{array}$	-2.793	$\begin{aligned} & -0.569 \\ & +1.230 \\ & -1.355 \\ & +0.536 \\ & -0.168 \\ & \hline-0.326 \end{aligned}$	$\begin{array}{r} 4508 \\ 5845 \\ 5432 \\ 11742 \\ 8351 \\ \hline 36000 \end{array}$	$\begin{aligned} & 15.693 \\ & 27.585 \\ & 15.118 \\ & 18.729 \\ & 42.875 \\ & \hline 00.000 \end{aligned}$	$\begin{aligned} & 17.917 \\ & 28.815 \\ & 12.800 \\ & 17.762 \\ & 42.707 \\ & \hline 00.001 \end{aligned}$
		230										
		233						+0.963				
		237						+1. 503				
		226										
		5					3600000.327	-0.327				
55	Schagen (tower)	265	$\begin{aligned} & 93 \\ & 94 \\ & 81 \\ & 80 \\ & 79 \\ & \ldots \end{aligned}$	2 2 4 4 4 2 2 18	4	$\begin{aligned} & 2 \\ & 2 \\ & 3 \\ & 3 \\ & 3 \\ & 1 \\ & \hline 14 \end{aligned}$	57 06 16.779 52 13 23.621 38 16 46.153 57 55 25.418 66 25 55.084 88 02 11.090	$\begin{aligned} & +3.076 \\ & +4.263 \\ & -0.060 \\ & -2.025 \\ & -2.067 \\ & -1.332 \\ & \hline+1.855 \end{aligned}$	+1.333+0.589-1.972-0.626+1.266+1.265+1.855	$\begin{array}{\|r} 5706 \\ 5213 \\ 3816 \\ 5755 \\ 6625 \\ 8802 \\ \hline 36000 \end{array}$	$\begin{aligned} & 19.855 \\ & 27.884 \\ & 46.093 \\ & 23.393 \\ & 53.017 \\ & 09.758 \\ & \hline 00.000 \end{aligned}$	$\begin{aligned} & 18.112 \\ & 24.210 \\ & 44.181 \\ & 24.792 \\ & 56.350 \\ & 12.355 \\ & \hline 00.000 \end{aligned}$
		268										
		231										
		229										
		483										
		482										
		6					3595958.145					
56	Medem- blik (reformed church)	275	96 95 94 81 82	2	0	2	660738.243	+1. 503	$\begin{aligned} & -0.517 \\ & +0.183 \\ & +0.289 \\ & -0.400 \\ & +0.172 \\ & \hline \end{aligned}$	$\begin{aligned} & 6607 \\ & 7428 \\ & 6613 \\ & 8257 \\ & 7013 \\ & \hline \end{aligned}$	39.746 04.814 03.990 47. 108 24.342	$\begin{aligned} & 37.726 \\ & 04.997 \\ & 04.975 \\ & 47.791 \\ & 24.511 \\ & \hline 00.000 \end{aligned}$
		271		3	0	3	742804.814					
		270		2	0	2	661304.686	-0.696				
		232		2	0	2	825748.191	-1. 083				
		234		3	0	3	701324.339	$+0.003$				
		5		12	0	2	3600000.273	-0.273	-0.273	36000	00.000	

Table 9 (continued)

1	2	3	4	5	6	7	8	9	10	$8+9=11$	$8+9=12$	$8+10=13$	
5	Enkhuizen (Southern church)	274	9697-8382	2	0	2	714332.073	-2.093	-1.721	7143	29.980	30.352	
		277		2	0	2	894224.939	+0.128	+0.894	8942	25.067	25.833	
		484			0	2	1152625.149	+5.855	+2.756	11526	31.004	27.905	
		238			2	2	275313.893	-1. 019	-1.208	2753	12.874	12.685	
		235		3	0	3	551422.578	-1.503	+0.647	5514	21. 075	23.225	
		5		13	2	11	3595958.632	+1.368	+1.368	36000	00.000	00.000	
58	Urk (reformed church)	279	$\begin{gathered} 97 \\ 98 \\ 99 \\ 100 \end{gathered}$	2	0	2	$\begin{array}{llll} 44 & 26 & 31.201 \\ 53 & 59 & 14.365 \\ 52 & 21 & 02.584 \\ 43 & 54 & 46.072 \end{array}$	$\begin{aligned} & \overline{-1.255} \\ & +0.800 \end{aligned}$	$\begin{aligned} & -1.222 \\ & -0.213 \\ & -0.414 \\ & +0.129 \end{aligned}$	$\begin{aligned} & 4426 \\ & 5359 \\ & 5221 \\ & 4354 \end{aligned}$	$\begin{aligned} & 31.201 \\ & 13.110 \\ & 02.584 \\ & 46.872 \end{aligned}$	$\begin{aligned} & 29.979 \\ & 14.152 \\ & 02.170 \\ & 46.201 \end{aligned}$	
		280		2	0	2							
		283		3	0	3							
		286		2	0	2							
		4		9	0	9							
59	Kampen (New tower)	245	$\begin{array}{\|c} 86 \\ 85 \\ 84 \\ 100 \\ 101 \\ 102 \end{array}$	2 3 2 3 2 3 15	0	2	802756.965	$\overline{+0.290}$	-0.579	8027	56.965	56.386	
		242			0	3	345352.053		+0.432+1.900	3453	52.343	52.485	
		240			0	2	763847.519			7638	47.519	49.419	
		288			0	3	711942.104	+1.979	+0. 585	7119	44.083	42.689	
		289			0	2	410058.629	-1.000	-1.049	4100	57.629	57.580	
		292			1	2	553840.461	$+1.000$	+0.980	5538	41.461	41.441	
		6		15	1	14	3595957.731	+2.269	+2. 269	36000	00.000	00.000	
60	Lemelerberg (signal)	246	$\begin{array}{\|r} 86 \\ 87 \\ 88 \\ 89 \\ 90 \\ 105 \\ 104 \\ 103 \\ 102 \end{array}$	$\begin{array}{r} 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ \hline 16 \end{array}$	000000000	16	511809.445	$\begin{aligned} & -0.371 \\ & -1.598 \\ & -2.069 \end{aligned}$	+2. 379	5118	09.074	11.824	
		248					333052.529		+0.354	3330	50.931	52.883	
		251					401937.920		-2. 215	4019	35.851	35.705	
		254					443221.135		+0.178	4432	21.135	21. 313	
		257					344302.479		-0.588	3443	02.479	01. 891	
		301					344626.178	+2.885	+0.347	3446	29.063	26.525	
		298					372155.759	+2.885	$+0.811$	3721	58.644	56.570	
		295					401024.576	+0.621	-0.207	4010	25.197	24.369	
		294					431710.477	-2.851	-1.556	4317	07.626	08.921	
		9					3600000.498	-0.498	-0.497	36000	00.000	00.001	
61	Oldenzaal (catholic church)	255	89 90 91 77 76		1 2 0 2 0 2 0 2 0 3 1 11		$\begin{array}{r} 4438 \\ 52 \\ 56 \\ \hline \end{array} 4.83 .399$	$\begin{aligned} & -0.922 \\ & -0.545 \\ & +0.698 \end{aligned}$	$\begin{aligned} & +0.170 \\ & -0.446 \\ & +0.045 \\ & -0.425 \\ & -0.113 \\ & \hline-0.769 \end{aligned}$	$\begin{array}{r} 4438 \\ 5256 \\ 10406 \\ 7430 \\ 8348 \\ \hline \end{array}$		$\begin{aligned} & 15.008 \\ & 08.953 \\ & 20.716 \\ & 58.409 \\ & 16.914 \\ & \hline 00.000 \end{aligned}$	
		256											
		259											
		222											
		220											
		5					3600000.769	-0.769		36000	00, 000		
62	Bentheim (Gunpowder tower of the castle)	223	$\begin{aligned} & 77 \\ & 91 \\ & 92 \end{aligned}$	$\begin{array}{\|r} 3 \\ 3 \\ 4 \\ \hline 10 \end{array}$	0	3	$\begin{array}{lll} 71 & 54 & 20.278 \\ 46 & 04 & 42.605 \\ 48 & 15 & 55.697 \end{array}$	$\frac{-1.476}{+0.630}$	$\begin{aligned} & -0.211 \\ & +0.773 \\ & +0.200 \end{aligned}$	$\begin{aligned} & 7154 \\ & 4604 \\ & 4815 \end{aligned}$	$\begin{aligned} & 18.802 \\ & 42.605 \\ & 56.327 \end{aligned}$	$\begin{aligned} & 20.067 \\ & 43.378 \\ & 55.897 \end{aligned}$	
		261			0	3							
		262			0	4							
		3			0	10							

Table 9 (continued)

1	2	3	4	5	6	7	8	9	10	$8+9=11$	$8+9=12$	$8+10=13$
63	Uelsen (signal)	260	$\begin{array}{r} 91 \\ 90 \\ 105 \\ 106 \\ 92 \end{array}$	1	0	1	294857.592	-0.699	-0.818	2948	56.893	56.774
		$\begin{array}{\|c} 258 \\ 303 \end{array}$		2	0	2	922050.480		+0.492	9220	50.480	50.972
				3	0	3	694026.484	-2.337	+0.247	6940	24.147	26.731
		$\begin{array}{\|l\|} 304 \\ 263 \end{array}$		3	0	3	911624.539	+2. 570	$+0.239$	9116	27.109	24.778
				2	0	2	765321.043	+0.328	-0.298	7653	21.371	20.745
		5		11	0	11	3600000.138	-0.138	-0.138	36000	00.000	00.000
64	Kirch Hesepe (tower)	264	$\begin{array}{r} 92 \\ 106 \end{array}$	4	0	4	$\begin{aligned} & 545045.189 \\ & 33 \quad 2855.993 \end{aligned}$	$\begin{aligned} & -0.800 \\ & +0.400 \end{aligned}$	$\begin{aligned} & +0.259 \\ & +0.714 \end{aligned}$	$\begin{aligned} & 5450 \\ & 3328 \end{aligned}$	$\begin{aligned} & 44.389 \\ & 56.393 \end{aligned}$	$\begin{aligned} & 45.448 \\ & 56.707 \end{aligned}$
		306		3	0	3						
		2		7	0	7						
65	Kijkduin (signal)	308	$\begin{array}{r} 107 \\ 93 \end{array}$	2	0	2	$\begin{array}{lll} 61 & 54 & 32.966 \\ 68 & 19 & 09.784 \end{array}$	$\begin{aligned} & +3.830 \\ & -4.001 \end{aligned}$	$\begin{aligned} & -1.778 \\ & -1.993 \end{aligned}$	$\begin{aligned} & 6154 \\ & 6819 \end{aligned}$	$\begin{aligned} & 36.796 \\ & 05.783 \end{aligned}$	$\begin{aligned} & 31.188 \\ & 07.791 \end{aligned}$
		266		1	0	1						
		2		3	0	3						
6	Oosterland (reformed church)	314	$\begin{array}{r} 109 \\ 95 \\ 94 \\ 93 \\ 107 \\ 108 \end{array}$	2	000000	2 3 2 2 2 2 13	703725.140	+1. 127	+2.081	7037	26.267	27.221
		272		3			572302.881	+3.740	+1.349	5723	06.621	04.230
		269		2			613333.953	-4.928	-2.237	6133	29.025	31.716
		267		2			543435.391	-0.158	-0.423	5434	35.233	34.968
		307		2			550117.974	-1.127	-2.045	5501	16.847	15.929
		310		2			605006,007		-0.071	6050	06.007	05.936
		6		13			3600001.346	-1.346	-1.346	36000	00.000	00.000
6	Staveren (church)	278	97969510911211311498	1	0 0 0 1 0 0 0 0 1	$\begin{array}{\|c} 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ \hline 10 \end{array}$	45 51 04. 052 42 08 52. 250 48 08 53. 230 41 27 21.104 41 18 52.561 44 02 15.596 49 40 05.416 47 22 35.387	$\begin{aligned} & +0.753 \\ & -1.247 \\ & -3.703 \\ & +0.783 \end{aligned}$	+1.211	4551	04.805	05.263
		276		1					+0.402	4208	51.003	52.652
		273		2					-1.495	4808	49.527	51. 735
		313		2					-3.041	4127	21.887	18. 063
		322		2					+3.810	4118	52.561	56.371
		325		1				+1. 127	-0.941	4402	16.723	14.655
		32		1				+2.691	+0.873	4940	08.107	06.289
		281		1					-0.416	4722	35.387	34.971
		8		11			3595959.596	+0.404	+0.403	35959	60.000	59.999
68	Lemmer (reformed church)	331	$\begin{array}{r} 115 \\ 116 \\ 99 \\ 98 \\ 114 \end{array}$	2	0	2 2 2 2 2	854622.735 513502.411 733920.182 783812.843 702103.360	$\begin{aligned} & +0.166 \\ & +2.200 \\ & -1.200 \\ & -0.044 \\ & -2.653 \\ & \hline \end{aligned}$	$\begin{aligned} & -1.648 \\ & +1.915 \\ & -0.947 \\ & -0.668 \\ & -0.183 \end{aligned}$	8546 5135 7339 7838 7021	22.901 04.611 18.982 12. 799 00.707	$\begin{aligned} & 21.117 \\ & 04.326 \\ & 19.205 \\ & 12.175 \\ & 03.177 \\ & \hline \end{aligned}$
		335		2	0							
		284		2	0							
		282		2	0							
		330		2	0							
		5		10	0	10	3600001.531	-1.531	-1.531	36000	00.000	00.000

Table 9 (continued)

1	2	3	4	5	6	7	8	9	10	$8+9=11$	$8+9=12$	$8+10=13$
69	Blokzijl (reformed church)	287	$\left\lvert\, \begin{array}{r} 100 \\ 99 \\ 116 \\ 117 \\ 10 \end{array}\right.$	3	1	2	644533.701	-3.535	-1.469	6445	30.166	32.232
		285		2	0	2	535938.475	+1.089	+1.281	5359	39.564	39. 756
		334		3	1	2	700838.814	-1.200	-2.611	7008	37.614	36.203
		338		2	0	2	835305.181	+2.078	+2.026	8353	07.259	07.207
		290		2	0	2	871304.397	$+1.000$	+0.205	8713	05.397	04.602
		5		12	2	10	3600000.568	-0.568	-0.568	36000	00.000	00.000
70	Meppel (reformed church)	296	$\left\lvert\, \begin{aligned} & 103 \\ & 102 \\ & 101 \\ & 117 \\ & 118 \end{aligned}\right.$	2	0	2	983256.919	-1.624	+0.585	9832	55.295	57.504
		293		2	0	2	810411.463	+1.195	-0.078	8104	12.658	11.385
		291		2	0	2	514559.978	-2. 247	-1.403	5145	57.731	58.575
		337		2	0	2	545527.470	-1.863	-2. 233	5455	25.607	25.237
		340		6	3	3	734125.825	+2.884	+1.474	7341	28.709	27.299
		5		14	3	11	3600001.655	-1.655	-1.655	36000	00.000	00.000
71	Oosterend (reformed church)	317	$1 \begin{aligned} & 110 \\ & 108 \\ & 107 \end{aligned}$	2	0	2	694439.186	-7.375	-1.352	6444	31.811	37.834
		311		3	2	1	540406.022	+4.007	+1.868	5404	10.029	07.890
		309		2	0	2	630417.501	-10.361	-3.834	6304	07.140	13.667
		3		7	2	5						
72	Robbezand (signal)	312	108 110 111 112 109	2	0	2	650548.001	-3.300	-1.089	6505	44.701	46.912
		316		2	0	2	692131.142	+1. 057	-0.859	6921	32.199	30.283
		319		2	0	2	674435.384	+3.200	+2.135	6744	38.584	37.519
		323		2	0	2	895250.922	-0.248	-1.348	8952	50.674	49.574
		315		2	0	2	675514.843	-2.001	+0.869	6755	12.842	15. 712
		5		10	0	10	3600000.292	-0.292	-0.292	36000	00.000	00.000
73	Vlieland (beacon light)	344	$\begin{aligned} & 119 \\ & 111 \\ & 110 \end{aligned}$	2	0	2	622959.600	+2.733	+1.362	6230	02.333	00.962
		320		2	0	2	471138.271	-6.329	-3.933	4711	31.942	34.338
		318		3	1	2	405352.873	+4.292	+0.187	4053	57. 165	53.060
		3		7	1	6						
74	Harlingen (Western church)	346	120	1	0	1	513734.677	-1.307	+0.706	5137	33.370	35.383
		349	121	2	0	2	505815.238	+2.090	+3.346	5058	17.328	18.584
		353	122	4	2	2	510539.717	-1. 722	-1. 055	5105	37.995	38.662
		326	113	2	0	2	522509.023	-0.075	-0. 552	5225	08.948	08.471
		324	112	1	0	1	484818.870	-0.762	-3.470	4848	18.108	15.400
		321	111	1	0	1	650348.522	+2.300	+0.971	6503	50.822	49.493
		343	119	1	0	1	400114.574	-1.145	-0.568	4001	13.429	14.006
		7		12	2	10	3595960.621	-0.621	-0.622	35959	60.000	59.999

Table 9 (continued)

1	2	3	4	5	6	7	8	9	10	$8+9=11$	$8+9=12$	$8+10=13$
75	Sneek (St. Martini church)	352	122	3	1	2	704833.445	-2.848	-0.576	7048	30.597	32.869
		355	123	3	0	3	493040.051	+0.137	-3.662	4930	40.188	36.389
		358	124	2	0	2	453607.492		-0.280	4536	07.492	07.212
		332	115	3	1	2	503309.473	+4. 035	+3.941	5033	13.508	13.414
		329	114	2	0	2	595851.264	+1.127	+0.477	5958	52.391	51.741
		327	113	2	0	2	833238.058	-2. 234	+0.317	8332	35.824	38.375
		6		15	2	13	3595959.783	+0.217	+0.217	36000	00.000	00.000
76	Oldeholtpa (reformed church)	361	125	5	4	1	474852.580	+6. 014	+2.409	4748	58.594	54.989
		364	126	6	1	5	413114.143	+0.699	-2.507	4131	14.842	11.636
		341	118	5	0	5	593939.048	+1.860	+2.388	5939	40.908	41.436
		339	117	5	3	2	411125.812	+2. 104	+2.527	4111	27.916	28, 339
		336	116	6	2	4	581622.097	-3.324	-1.626	5816	18. 773	20.471
		333	115	6	2	4	434027.477	-2.630	-0.749	4340	24.847	26.728
		360	124	$\begin{array}{r} 3 \\ \hline 36 \end{array}$	- 12	$\begin{array}{r} 3 \\ \hline 24 \end{array}$	$\begin{array}{r} 675200.048 \\ \hline 3600001.205 \end{array}$	$\begin{array}{\|c\|} \hline-5.928 \\ \hline-1.205 \\ \hline \end{array}$	-3.647	6751	54.120	$\frac{56.401}{00.000}$
		7							-1.205	36000	00.000	
77	Midsland (church tower)	347	120	2	0	2	$\begin{aligned} & 833931.917 \\ & 772847.554 \end{aligned}$	$\begin{array}{\|} +2.200 \\ -2.220 \end{array}$	$\begin{aligned} & +1.099 \\ & -1.426 \end{aligned}$	$\begin{aligned} & 8339 \\ & 7728 \end{aligned}$	$\begin{aligned} & 34.117 \\ & 45.334 \end{aligned}$	$\begin{aligned} & 33.016 \\ & 46.128 \end{aligned}$
		345	119	2	0	2						
		2		4	0	4						
78	Ballum (castle)	368	$\left(\begin{array}{l} 127 \\ 121 \\ 120 \end{array}\right.$	3	2	1	$\begin{array}{lll} 44 & 01 & 51.040 \\ 46 & 14 & 27.202 \\ 44 & 42 & 56.427 \end{array}$	$\begin{aligned} & +7.674 \\ & +1.982 \\ & -2.200 \end{aligned}$	$\begin{aligned} & +2.970 \\ & +0.386 \\ & -3.109 \end{aligned}$	$\begin{aligned} & 4401 \\ & 4614 \\ & 4442 \end{aligned}$	$\begin{aligned} & 58.714 \\ & 29.184 \\ & 54.227 \end{aligned}$	$\begin{aligned} & 54.010 \\ & 27.588 \\ & 53.318 \end{aligned}$
		350		7	4	3						
		348		5	1	4						
		3		15	7	8						
79	Leeuwarden (Oldehove)	356	$\begin{aligned} & 123 \\ & 122 \\ & 121 \\ & 127 \\ & 128 \end{aligned}$	2 2 2 5 3 14	000200	$\begin{array}{r} 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ \hline 12 \end{array}$	873621.057 580548.707 824715.351 592400.645 720632.043	$\begin{array}{\|c\|} \hline+1.614 \\ +3.848 \\ -0.116 \\ -1.273 \\ -1.876 \\ \hline+2.197 \end{array}$	$\begin{aligned} & +2.216 \\ & +0.908 \\ & +0.225 \\ & -0.478 \\ & -0.674 \\ & \hline+2.197 \end{aligned}$	$\begin{aligned} & 8736 \\ & 5805 \\ & 8247 \\ & 5923 \\ & 7206 \\ & \hline \end{aligned}$	22.671 52.555 15.235 59.372	$\begin{aligned} & 23.273 \\ & 49.615 \\ & 15.576 \\ & 60.167 \\ & 31.369 \\ & \hline 00.000 \end{aligned}$
		354										
		351										
		367										
		371										
		5					3595957.803			36000	00.000	
80	Dokkum (tower)	369	12	4	0	4	763409.021	$\begin{aligned} & -5.942 \\ & -2.147 \end{aligned}$	-2.031	7634	03. 079	06.990
		485		3	2	1	904207.124		-0.299	9042	04.977	06.825
		486	129	2	0	2	413539.856		-0.299	4135	39.856	39.557
		373	130	6	3	3	330604.258	+6. 000	+3.258	3306	10.258	07.516
		377	131	3	1	2	570155.292	-3.486	-3.215	5701	51.806	52.077
		372	128	3	1	2	610004.494	+5.530	+2.541	6100	10.024	07. 035
		6		21	7	14	3600000.045	-0.045	-0.045	36000	00.000	00.000

Table 9 (continued)

1	2	3	4	5	6	7	8	9	10	$8+9=11$	$8+9=12$	$8+10=13$
8	Drachten (reformed church)	362	$\begin{aligned} & 125 \\ & 124 \\ & 123 \\ & 128 \\ & 131 \\ & 132 \end{aligned}$	4	1	3	535524.745	-2.414	-0.954	5355	22.331	23.791
		359		4	1	3	663156.513	+3. 570	+1. 572	6631	60.083	58. 085
		357		4	3	1	425259.382	-1.000	+2.199	4252	58.382	61.581
		370		6	4	2	465327.163	-6. 251	-4.463	4653	20.912	22.700
		376		4	2	2	833314.515	+3.454	+0.945	8333	17. 969	15.460
		380		4	3	1	661257.246	+3.077	+1.137	6612	60.323	58.383
		6		26	14	12	3595959.564	$+0.436$	+0.436	36000	00.000	00.000
82	Oosterwolde (reformed church)	365	$\begin{aligned} & 126 \\ & 125 \\ & 132 \\ & 133 \\ & 134 \end{aligned}$	2	0	2	1005125.802	-2.945	-0.781	10051	22.857	25. 021
		363		3	1	2	781542.347	-2.400	-0.254	7815	39.947	42.093
		379		3	1	2	815417.447	-0.400	+2.132	8154	17. 047	19.579
		382		2	0	2	550103.414	+5.296	-0.836	5501	08.710	02.578
		385		4	3	1	435730.487	+0.952	+0.242	4357	31.439	30.729
		5		14	5	9	3595959.497	+0. 503	+0.503	36000	00.000	00.000
83	Beilen (reformed church)	366	$\begin{aligned} & 126 \\ & 134 \\ & 135 \\ & 136 \\ & 104 \\ & 103 \\ & 118 \end{aligned}$	4	3	1	373722.662	+0.674	+1.718	3737	23.336	24.380
		387		4	2	2	753135.708	+1.973	+1.087	7531	37.681	36.795
		388		5	3	2	842001.699	-1.598	-0.154	8420	00.101	01.545
		392		3	2	1	301427.108		-0.799	3014	27.108	26.309
		299		2	1	1	442058.182		-0.309	4420	58.182	57.873
		297		2	1	1	411640.644	+0.920	-0.458	4116	41.564	40.186
		342		3	1	2	463855.800	-3.772	-2.889	4638	52.028	52.911
		7		23	13	10	3595961.803	-1.803	-1.804	35959	60.000	59.999
84	Coevorden (reformed church)	302	$\begin{aligned} & 105 \\ & 104 \\ & 136 \\ & -106 \end{aligned}$	3	0	3	753307.694	+0. 500	+0.455	7533	08.194	08. 149
		300		5	2	3	981707.638	-2.416	-0. 030	9817	05.222	07.608
		391		3	1	2	524048.579	+0.710	+1.363	5240	49.289	49.942
		487		6	3	3	781415.819	+3.665	-1.347	7814	19.484	14.472
		305		3	1	2	551440.380	-2.569	-0.551	5514	37.811	39.829
		5		20	7	13	3600000.110	-0.110	-0.110	36000	00.000	00.000
85	Hornhuizen (reformed church)	397	$\begin{aligned} & 138 \\ & 130 \\ & 129 \\ & 137 \end{aligned}$	5	3	2	590204.459	+4.000	+2.143	5902	08.459	06.602
		374		4	3	1	1110501.186	-6.432	-1.659	11104	54.754	59.527
		489		3	2	1	531107.362		-0.484	5311	07.362	06.878
		488		2	0	2	950907.743	+1.477	-0.484	9509	09.220	07.259
		394		3	1	2	413240.205		-0.471	4132	40.205	39.734
		5		17	9	8	3600000.955	-0.955	-0.955	36000	00.000	00.000

Table 9 (continued)

1	2	3	4	5	6	7	8	9	10	$8+9=11$	$8+9=12$	$8+10=13$
86	Groningen (Martini tower)	383	133	3	2	21	475024.148	$+2.250$	+1.762	4750	26.398	25.910
		381	132	6	3	$3{ }^{3}$	315246.094	-2.054	-2.652	3152	44.040	43.442
		378	131	6	6	5 1	392452.397	-	+2. 226	3924	52.397	54.623
		375	130	4	0	4	354858.544	-2.168	-4.206	3548	56.376	54.338
		396	138	2	$1{ }^{1}$		603632.862	-0.001	-1.280	6036	32.861	31.582
		399	139	2	0		282959.056	$+0.001$	+2.437	2829	59.057	61,493
		402	140	3	12		423857.916	$+3.357$	+0.347	4238	61.273	58. 263
		405	$\begin{aligned} & 141 \\ & 142 \end{aligned}$	6	$4 \quad 2$		275725.487	+2.866	+2.150	2757	28.353	27.637
		409		3	$1 \quad 2$		451962.056	-2.811	+0.656	4519	59.245	62.712
		9		35	17	18	3595958.560	+1.440	+1.440	36000	00.000	00.000
8	Rolde (reformed church)	386	$\begin{aligned} & 134 \\ & 133 \\ & 142 \\ & 143 \\ & 135 \end{aligned}$	3	2	1	603051.769	+0.001	+1. 593	6030	51.770	53.362
		384		4	1	3	770832.031	-5.602	+1.010	7708	26.429	33.041
		408		2	0	2	912412.370	+3.780	-1.925	9124	16.150	10.445
		412		2	$0 \quad 2$		755351.817	+4.437	+0.126	7553	56.254	$\begin{array}{r} 51.943 \\ 31.209 \\ \hline \end{array}$
		389		5	3	2	550231.996	-2.599	-0.787	5502	29.397	
		5		16	6	10	3595959.983	+0.017	$+0.017$	36000	00.000	00.000
88	Sleen (reformed church)	393	136135143-	$\begin{array}{r}5 \\ 4 \\ 5 \\ 4 \\ 4 \\ \hline 22 \\ \hline\end{array}$	2 3 3 0 2 10	312422	970444.333 403725.441 534356.668 643531.531 1035822.873	$\begin{aligned} & +5.979 \\ & +2.070 \end{aligned}$	$\begin{aligned} & +0.142 \\ & +2.719 \\ & +0.519 \\ & -2.113 \\ & -2.113 \\ & \hline-0.846 \end{aligned}$	$\begin{array}{r} 9704 \\ 4037 \\ 5343 \\ 6435 \\ 10358 \\ \hline \end{array}$	44.333 31.420 58.738	$\begin{aligned} & 44.475 \\ & 28.160 \\ & 57.187 \\ & 29.418 \\ & 20.760 \\ & \hline 00.000 \end{aligned}$
		390										
		411										
		490										
		491										
		5					3600000.846	-0.846		36000	00.000	
89	Uithuizermeden (reformed church)	400	$\begin{aligned} & 139 \\ & 138 \\ & 137 \\ & 144 \\ & 145 \end{aligned}$	4 3 4 3 4 18	3 0 2 1 2 8	1 3 2 2 2 0	$\begin{aligned} & 86 \\ & 23 \\ & 60 \end{aligned} 50.103$	$\begin{aligned} & +3.201 \\ & -6.441 \\ & -2.806 \\ & -1.028 \\ & +4.351 \\ & \hline-2.723 \end{aligned}$	$\begin{array}{\|} +0.954 \\ -3.311 \\ -1.120 \\ -1.129 \\ +1.882 \\ \hline-2.724 \end{array}$	$\begin{aligned} & 8623 \\ & 6021 \\ & 8803 \\ & 7742 \\ & 4728 \\ & \hline \end{aligned}$	$\begin{aligned} & 53.304 \\ & 19.873 \\ & 04.949 \\ & 52.025 \\ & 49.849 \\ & \hline \end{aligned}$	51.057 23.003 06.635 51.924 47.380 59.999
		398										
		395										
		414										
		415										
		5					3595962.723			35959	60.000	
90	Holwierde (tower)	403	$\begin{aligned} & 140 \\ & 139 \\ & 145 \\ & 146 \\ & 147 \end{aligned}$	$\begin{array}{r}4 \\ 2 \\ 3 \\ 5 \\ \hline 19\end{array}$	301310	21222	795923.002 650610.302 1042233.112 445032.479 654123.121	$\begin{aligned} & +3.401 \\ & -1.954 \\ & +3.700 \\ & -4.078 \\ & -3.085 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.050 \\ & -2.146 \\ & -0.113 \\ & -2.645 \\ & +0.838 \\ & \hline \end{aligned}$	$\begin{array}{r} 7959 \\ 6506 \\ 10422 \\ 4450 \\ 6541 \\ \hline \end{array}$		$\begin{array}{r} 25.052 \\ 08.156 \\ 32.999 \\ 29.834 \\ 23.959 \\ \hline \end{array}$
		401										
		416										
		418										
		422										
		5				9	3600002.016	-2.016	-2.016	36000	00.000	00.000

Table 9 (continued)

1	2	3	4	5	6	7	8	9	10	$8+9=11$	$8+9=12$	$8+10=13$
91	Midwolda (reformed church)	406	141 140 147 148 149	5	2	3	1024814.743	-0.673	-0.539	10248	14.070	14.204
		404		2	0	2	572139.019	-5. 399	-1.045	5721	33.620	37.974
		421		5	3	2	611641.103	+1.676	-2.323	6116	42.779	38.780
		424		4	2	2	480747.366	+6. 060	+2.568	4807	53.426	49.934
		428		2	0	2	902538.805	-2.700	+0.303	9025	36.105	39.108
		5		18	7	11	3600001.036	-1.036	-1.036	36000	00.000	00.000
92	Onstwedde (reformed church)	410	$\begin{aligned} & 142 \\ & 141 \\ & 149 \\ & - \\ & - \\ & \hline 143 \end{aligned}$	3	0	3	431546.021	+0.392	+2.621	4315	46.413	48.642
		407		3	1	2	491422.426	-3.499	-2.924	4914	18.927	19.502
		427		3	2	1	575501.906	+3.070	+1. 095	5755	04.976	03.001
		492		3	2	1	1222354.236	-••	-1.927	12223		52.309
		493		2	1	1	364845.873		-1.927	3648		43.946
		413		5	3	2	502210.426	-3.680	+2.174	5022	06.746	12.600
		6		19	9	10	3600000.888	-0.888	-0.888	36000	00.000	00.000
93	Pilsum (Pfarrkirche)	431	$\begin{aligned} & 150 \\ & 146 \\ & 144 / 5 \\ & - \end{aligned}$	4	2	2	954511.111	-2.842	-1.473	9545	08. 269	09.638
		419		4	2	2	790045.636	+3.878	+1.337	7900	49.514	46.973
		417		4	1	3	715036.186	-11.819	-1.220	7150	24.367	34.966
		494		5	3	2	1132329.631	+ 8.219	-1.209	11323	37.850	28.422
		4		17	8	9	3595962.564	-2. 564	-2.565	35959	60.000	59.999
94	Emden (townhall)	430	150	3	0	3	472546.286	-0. 009	-2.353	4725	46.277	43.933
		433	151	4	2	2	464235.453	-0.924	-1.861	4642	34.529	33.592
		437	152	4	1	3	754036.186	-0.100	-0.651	7540	36.086	35.535
		425	148	4	2	2	810023.667	-1.648	+1.009	8100	22.019	24.676
		423	147	4	3	1	530157.002	+1. 241	+1.313	5301	58.243	58.315
		420	146	4	3	1	560844.657	-1.811	-0.707	5608	42.846	43.950
		6		23	11	12	3600003.251	-3.251	-3.250	36000	00.000	00.001
95	Leer (great church)	495		6	5	1	290706.348	-5.792	-1.110	2907	00.556	05.238
		429	149	7	4	3	313918.207	+2. 104	+1.062	3139	20.311	19.269
		426	148	5	4	1	505146.510	-0.760	+0.180	5051	45.750	46.690
		436	152	4	1	3	504046.349	+0.488	+0.611	5040	46.837	46.960
		439	153	3	0	3	344920.244	-0.099	-0.180	3449	20.145	20.064
		442	154	4	2	2	445859.943	+3.472	+2.139	4459	03.415	02.082
		445	155	2	1	1	242944.775	-1.870	-1.203	2429	42.905	43.572
		496	156	5	3	2	932257.237	+2.844	-1.111	9322	60.081	56.126
		8		36	20	16	3595959.613	+0.387	+0.388	36000	00.000	00.001

Table 9 (continued)

Table 9 (continued)

1	2	3	4	5	6	7	8	9	10	$8+9=11$	$8+9=12$	$8+10=13$
102	Jever (tower of the castle)	456	$\begin{aligned} & 159 \\ & 158 \\ & 163 \\ & - \\ & 162 \\ & 161 \\ & 160 \end{aligned}$	5	3	2	301753.908	-0.700	+0.291	3017	53.208	54.199
		453		5	3	2	454219.298	+0.167	+0.878	4542	19.465	20.176
		467		6	3	3	581234.291		-0.406	5812	34.291	33.885
		468		6	3	3	1095904.896		-0.406	10959	04.896	04.490
		469		5	2	3	392559.564		-0.406	3925	59.564	59. 158
		461		5	4	1	355518.309	+0.266	-0.470	3555	18.575	17.839
		459		4	2	2	402650.160	-0.159	+0.093	4026	50.001	50.253
		7		36	20	16	3600000.426	-0.426	-0.426	36000	00.000	00.000
103	Varel (tower of the Lutheran church)	463	162	3	1	2	872451.858	-	-0.056	8724	51.858	51.802
		464	-	3	0	3	500553.067	- . . .	-0.056	5005	-•••	53.011
		465	-	4	2	2	263005.752	-•••	-0.056	2630		05. 696
		466		3	0	3	961822.318		-0.056	9618		22.262
		462	161	5	3	2	994047.348	-0.254	-0.120	9940	47.094	47,228
		5		18	6	12	3595960.343	-0.343	-0.344	35959	60.000	59.999
104	Herentals (catholic church)	No observations										
105	Biesselt (mill)	No observations										
106	Borkum (beacon light)	No observations										

This is e.g. the case with angle 475 in the station Naarden (No. 41). As, however, Krayenhoff's sum of the adjusted spherical angles in that station must be 360°, the adjusted angle $475=96^{\circ} 57^{\prime} 53^{\prime \prime} .942$ and the correction $p_{475}^{\prime}=-4^{\prime \prime} .211$ can easily be derived. I noted these amounts in italic numbers in columns 12 and 9. The adjusted angles can be found in the Table alphabétique des azimuths on the pages 182-202 of the second edition of Krayenhoff's book.

Table 9 gives also an easy survey of the 73 station equations in Krayenhoff's network. As e.g. in Amsterdam (station No. 40) the sum of the angles, reduced to horizon and centre is $360^{\circ} 00^{\prime} 00^{\prime \prime} .149$, one finds:

$$
p_{185}+p_{189}+p_{162}+p_{160}+p_{157}+p_{182}+0^{\prime}: 149=0
$$

As already said the number of side equations is 54 . Fifty one of them can easily be found for around each of the central points $12,14,17,18,22-25,28,29,31-37$, $40,42,43,47-50,54,56,59-61,63,66-70,72,74-76,79,81-83,86,87,89-91,94$, 98 , and 99 lies a number of triangles the base angles of which are measured or can be derived from other measured angles.

For each of these central points now holds that, after the adjustment, the sum of log sine left base angles must be alike to the sum of log sine right base angles.
For Harlingen (station No. 74) e.g. one finds:
$\log \sin \left(354+p_{354}\right)+\log \sin \left(327+p_{327}\right)+\log \sin \left(322+p_{322}\right)+\log \sin \left(319+\mathrm{p}_{319}\right)+$
$\log \sin \left(344+\mathrm{p}_{344}\right)+\log \sin \left(347+\mathrm{p}_{347}\right)+\log \sin \left(350+\mathrm{p}_{350}\right)=\log \sin \left(352+\mathrm{p}_{352}\right)+$
$\log \sin \left(325+\mathrm{p}_{325}\right)+\log \sin \left(323+\mathrm{p}_{323}\right)+\log \sin \left(320+\mathrm{p}_{320}\right)+\log \sin \left(345+\mathrm{p}_{345}\right)+$
$\log \sin \left(348+\mathrm{p}_{348}\right)+\log \sin \left(351+\mathrm{p}_{351}\right)$,
with e.g.
$\log \sin \left(354+p_{354}\right)=\log \sin 354+p_{354} \frac{\mathrm{M}}{\rho} \cot 354$.
In this formula $\mathrm{M}=0.43429448$ is the modulus of Briggs' system of logarithms. For $\rho=206264^{\prime}: 806, p$ is expressed in seconds. As $\frac{M}{\rho}=0.0000021055$ and $354=$ $58^{\circ} 05^{\prime} 48^{\prime \prime} .707(\cot 354 \simeq 0.62252)$ one finds:
$10^{6} \log \sin \left(354+\mathrm{p}_{354}\right)=10^{6} \log \sin 354+1.311 \mathrm{p}_{354}$.
Worked out the condition runs as follows:

$$
\begin{aligned}
& 1.311 \mathrm{p}_{354}+0.238 \mathrm{p}_{327}+2.395 \mathrm{p}_{322}+0.862 \mathrm{p}_{319}+1.096 \mathrm{p}_{344}+0.234 \mathrm{p}_{347}+ \\
& 2.016 \mathrm{p}_{350}-0.733 \mathrm{p}_{352}-2.177 \mathrm{p}_{325}-0.004 \mathrm{p}_{323}-1.950 \mathrm{p}_{320}-0.468 \mathrm{p}_{345}- \\
& 2.127 \mathrm{p}_{348}-0.266 \mathrm{p}_{351}-32.127=0
\end{aligned}
$$

It will be clear that multiplication by 10^{6} saves the writing of a great number of ciphers zero.

A 52nd side equation can be borrowed from a chain of triangles around the former Zuiderzee (see Fig. 12). Starting e.g. from Harderwijk-Kampen=HK one finds for Urk-Kampen (UK):

$$
\sin \mathrm{UK}=\frac{\sin \mathrm{HK} \sin \left(239+\mathrm{p}_{239}\right)}{\sin \left(\alpha+\mathrm{p}_{\alpha}\right.}
$$

and, in the same way:

$$
\sin \mathrm{UB}=\frac{\sin \mathrm{UK} \sin \left(288+\mathrm{p}_{288}\right)}{\sin \left(287+\mathrm{p}_{287}\right)}
$$

whence:

$$
\sin \mathrm{UB}=\frac{\sin \mathrm{HK} \sin \left(239+\mathrm{p}_{239}\right) \sin \left(288+\mathrm{p}_{288}\right)}{\sin \left(\alpha+\mathrm{p}_{\alpha}!\sin \left(287+\mathrm{p}_{287}\right)\right.}
$$

in which UB (in are measure) is the length of the side Urk-Blokzijl.

$$
\begin{aligned}
& \alpha+\rho_{\alpha}=59^{\circ} 44^{\prime} 27.348-\rho_{230}-\rho_{240} \\
& \beta+\rho_{\rho}=105^{\circ} 28^{\prime} 58.430+\rho_{238}+\rho_{240}-\rho_{208}-\rho_{203}-\rho_{200}-\rho_{279}
\end{aligned}
$$

Fig. 12.
Proceeding in the same way one finds the sides Urk-Lemmer, Urk-Staveren, Staveren-Enkhuizen,, Naarden-Amersfoort, Amersfoort-Harderwijk, Harderwijk-Veluwe, and, finally, Harderwijk-Kampen:
$\sin \mathrm{HK}=\frac{\sin \mathrm{HK} \sin \left(239+\mathrm{p}_{239}\right) \sin \left(288+\mathrm{p}_{288}\right) \ldots \ldots \ldots \sin \left(194+\mathrm{p}_{194}\right) \sin \left(243+\mathrm{p}_{243}\right)}{\sin \left(\alpha+\mathrm{p}_{\alpha}\right) \sin \left(287+\mathrm{p}_{287}\right) \ldots \ldots . \sin \left(196+\mathrm{p}_{196}\right) \sin \left(242+\mathrm{p}_{242}\right)}$
from which follows (in a logarithmic form) a similar condition as found in the preceding 51 side equations. It will be clear that the amount $\alpha+\mathrm{p}_{\alpha}$ in the condition must be derived from triangle Urk-Kampen-Harderwijk ($\mathrm{E}=1.887$):

$$
\left(\alpha+\mathrm{p}_{\alpha}\right)=180^{\circ} 00^{\prime} 01^{\prime \prime} 887-\left(239+\mathrm{p}_{239^{\prime}}+240+\mathrm{p}_{240}\right)=59^{\circ} 49^{\prime} 27^{\prime \prime} .348-\mathrm{p}_{239}-\mathrm{p}_{240}
$$

An analogous amount $\beta+p_{\beta}$, necessary for the determination of the still missing 53 rd and 54 th side equation in the network is mentioned in Fig. 12. It is an angle of the Zuiderzee pentagon the other four angles of which are also known.

If one starts from a provisional length of an arbitrary side of this pentagon I used the length of the chord Harderwijk-Urk $=34896.065 \mathrm{~m}$ borrowed from Krayenhoff's tableau définitif (triangle 84) - then the lengths of all the other sides of the pentagon can be computed by a repeated application of the sine rule in the spherical triangles of Fig. 12. The computation is an extension of the computations necessary for the determination of the 52 nd side equation just mentioned. As the spherical excess of all triangles is known the computation can rather easily be done by the application of Legendre's theorem. To the length of Krayenhoff's chord Harderwijk-Urk $=34896.065 \mathrm{~m}$ the small amount of 0.043 m must then be added in order to find the spherical side of the pentagon.

The results, computed with a Brunsviga table calculating machine and Peters' eight place trigonometric tables and verified by a computer computation, are shown in table 10. The spherical length of the side Urk-Enkhuizen e.g. is $20851.9043+0.1064 \mathrm{p}_{239}-0.0240 \mathrm{p}_{240}-\ldots-0.0477 \mathrm{p}_{287}+0.0342 \mathrm{p}_{288}$, etc.
I continued the computation via the sides Harderwijk-Amersfoort, HarderwijkVeluwe, and Harderwijk-Kampen to the side Harderwijk-Urk from which it started. As the two lengths must be equal to each other the difference found between them must be zero. The computation described is an alternative determination of the 52 nd side equation mentioned before. The equation is mentioned in table 13 and it runs:

$$
-1.4897-0.2498 p_{161}+0.2164 p_{162}+\ldots-0.0798 p_{287}+0.0572 p_{288}=0
$$

It shows that, if one computes the spherical sides of the triangles in Fig. 12 with Krayenhoff's uncorrected angles, the amount found for Harderwijk-Urk is 1.49 m smaller than that from which one started. In my opinion it is a small amount if the primitive goniometer used for the angular measurement and the perimeter of the pentagon (140 km) is taken into consideration.

In a pentagon with 5 known sides and 5 known angles are three redundant data. One of them, relating to the sum of the angles of the pentagon, was already worked up in the 149 th polygon condition.

Table 10

anglesi	$\begin{aligned} & \text { Harderwijk- } \\ & \text { Urk } \end{aligned}$	Urk-Enk- huizen	EnkhuizenEdam	EdamNaarden	Naarden- Harderwijk
	34896.108	20851.9043	27028.6651	25348.7895	31529.5874
161					-0.2258
162					+0.1955
164					+0. 0833
166					-0.0649
185				-0.0913	-0.1135
186				+0.1511	+0.1879
188				-0.1141	-0.1419
189				+0.0243	
190					+0.1108
191					+0.0261
193					-0.1624
225				-0.1685	-0.2095
226				+0.0132	+0.0164
233			-0. 0933	-0.0875	-0.1089
234			+0.0471	+0.0442	+0.0550
236			-0.1913	-0.1794	-0.2232
237			-0.0688		
238				+0. 2322	+0.2889
239		+0.1064	+0.1380	+0.1294	+0.1609
240		-0.0240	-0.0311	-0.0292	-0.0363
275			-0.0580	-0.0544	-0.0677
276			+0.1448	+0.1358	+0,1689
277		-0.0005	-0.0007	-0.0006	-0.0008
278		+0.0981			
279			+0.1336	+0.1253	+0.1559
281		-0.0930	-0.1206	-0.1131	-0.1407
282		+0.0203	+0. 0263	+0.0247	$+0.0307$
284		-0.0296	-0.0384	-0.0360	-0.0448
285		+0.0735	+0. 0952	+0.0893	+0.1111
287		-0.0477	-0.0618	-0.0579	-0.0721
288		+0.0342	+0.0443	+0.0415	+0.0517

The two remaining side equations are similar to those of a closed polygon in a flat plane: the sum of the projections of the sides on the x - and y-axis of an arbitrary coordinate system must be zero. As the determination of the two conditions in a flat plane is easiest, I reduced the lengths of the sides of the pentagon on the conformal sphere to lengths in the plane of projection of the R. D. and the angles between the great circles on the sphere to angles between chords in the plane of projection. This could easily be done as Krayenhoff's stations Naarden, Edam, Enkhuizen, and Urk are, apart from small alterations, the same as those computed in the R. D. -coordinate system. Harderwijk is not an identical point (see section 4, page 17) but provisional coordinates of Krayenhoff's station could be computed. With those of the other 4 points they are mentioned in table 11. The amounts $\Delta \mathrm{l}_{\mathrm{P}}$ (in mm per 100 m) in the last column are the corrections to a distance of 100 m on the sphere in the respective points in order to find the corresponding distance in the plane of projection.

Table 11

Angular points P Zuiderzee pentagon	prov. coordinates (km)		$\Delta 1_{\mathrm{P}}$ $(\mathrm{mm} / 100 \mathrm{~m})$
	$\mathrm{Y}^{\prime} \mathrm{P}$		
Naarden	-15.346	+15.661	-8.915
Edam	-23.099	+39.794	-7.911
Enkhuizen	-6.395	+61.043	-6.898
Urk	+13.944	+56.448	-7.135
Harderwijk	+15.620	+21.592	-8.774

They can be computed with the formula:

$$
\begin{equation*}
\Delta 1_{\mathrm{P}}=-9.210+\frac{\mathrm{X}_{\mathrm{P}}^{\prime 2}+\mathrm{Y}_{\mathrm{P}}^{\prime 2}}{1629.38} \tag{8}
\end{equation*}
$$

X_{P}^{\prime} and Y_{P}^{\prime} in this formula are expressed in $k m \quad$ [49].
The correction from the chord $P Q$ on the sphere to the chord $P Q$ in the plane of projection is:

$$
\begin{equation*}
\Delta l_{\mathrm{PQ}}=\left(\Delta \mathrm{l}_{\mathrm{P}}+\Delta \mathrm{l}_{\mathrm{Q}}\right): 2 \tag{9}
\end{equation*}
$$

($\Delta^{1}{ }_{\mathrm{PQ}}$ in mm per 100 m) and that from the arc on the sphere to the chord on the sphere

$$
\begin{gather*}
\mathrm{C}_{\mathrm{PQ}}=-1 \begin{array}{r}
3 \\
\mathrm{PQ}
\end{array}: 9777.2 \ldots \tag{10}\\
\left(1_{\mathrm{PQ}} \text { in } \mathrm{km}, \mathrm{C}_{\mathrm{PQ}} \text { in } \mathrm{cm}\right) \quad[50]
\end{gather*}
$$

As for the side Naarden-Harderwijk $l_{P Q}=-2.7885 \mathrm{~m}$ and $C_{P Q}=-0.0321 \mathrm{~m}$, the length of the side Naarden-Harderwijk in the plane of projection is:

$$
\begin{aligned}
& (31529.5874-2.7885-0.0321)-0.2258 p_{161}+0.1955 p_{162}+\ldots \ldots \ldots \\
& =31526.7668-0.2258 p_{161}+0.1955 p_{162}+\ldots \ldots \ldots \ldots
\end{aligned}
$$

It will be clear that the computation of the reductions of the terms in the upper row in table 10 will do: the influence of the reduction on $-0.2258 p_{161}+0.1955 p_{162}$ etc. is so small that it may be neglected. The principal term, the amount 31526. 7668 m , is also mentioned in Fig. 14 and, in the same way, that of the other sides of the pentagon. The corrections to these amounts must also be borrowed from table 10.

As in the conformal stereographic projection circles on the sphere are circles in the plane of projection and great circles through Amersfoort (C) are projected as straight lines, the small angle ϵ between arc and chord in the plane of projection for a side $P Q$ is the half of the spherical excess E of the triangle $P Q C$ (see Fig. 13).

Fig. 13

If O is the area of this spherical triangle then:

$$
\begin{aligned}
& \mathrm{E}: 4 \pi=\mathrm{O}: 4 \pi \mathrm{R}^{2}, \text { whence: } \\
& \mathrm{E}_{\mathrm{rad} .}=\mathrm{O}: \mathrm{R}^{2} \text { and: } \\
& \epsilon_{\mathrm{PQ}}^{\prime \prime}=\left(\rho: 2 \mathrm{R}^{2}\right) \mathrm{O}
\end{aligned}
$$

As the spherical area is approximately equal to the area in the plane of projection and the latter is:

$$
\begin{aligned}
& \left(X_{Q}^{\prime} Y_{P}^{\prime}-X_{P}^{\prime} Y_{Q}^{\prime}\right): 2, \text { one finds: } \\
& \epsilon_{P Q}^{\prime \prime}=\left(\rho: 4 R^{2}\right)\left(X_{Q}^{\prime} Y_{P}^{\prime}-X_{P}^{\prime} Y_{Q}^{\prime}\right)
\end{aligned}
$$

For $\mathrm{R}, \mathrm{X}^{\prime}$, and Y^{\prime} in km one finds:

$$
\begin{equation*}
\epsilon^{\prime \prime} \mathrm{PQ}=0.0012658\left(\mathrm{X}_{\mathrm{Q}}^{\prime} \mathrm{Y}_{\mathrm{P}}^{\prime}-\mathrm{X}_{\mathrm{P}}^{\prime} \mathrm{Y}_{\mathrm{Q}}^{\prime}\right) \tag{11}
\end{equation*}
$$

The formula gives, with its sign, ϵ in a clockwise direction from the arc $P Q$ to the chord.
For $\mathrm{P}=$ Edam and $\mathrm{Q}=$ Enkhuizen e.g. one finds $\epsilon_{\mathrm{PQ}}=+1^{\prime \prime} .463$. As for $\mathrm{P}=$ Edam and $Q=$ Naarden, $\epsilon=-0^{11} .315$ and the measured spherical angle 481 at Edam between Enkhuizen and Naarden is $124^{\circ} 01^{\prime} 02^{\prime \prime} .685$, that between the chords is: $124^{\circ} 01^{\prime} 02^{\prime \prime} .685+\left(-0^{\prime \prime} .315-1^{\prime \prime} .463\right)=124^{\circ} 01^{\prime} 00^{\prime \prime} .907$. With the other reduced angles the amount is mentioned in column 2 of table 12.

From the angles of the flat pentagon now follow in an arbitrary coordinate system xy the gridbearings ψ of the sides.
If the positive x-axis is chosen along the side Harderwijk-Urk (see Fig. 14) the gridbearings are the amounts in column 3 of table 12. The two amounts for HarderwijkUrk are of course the same: their difference is the 149 th polygon condition already mentioned on page 57.

Fig. 14.

Table 12

angular point Zuiderzee pentagon	angles in plane of projection	Gridbearings ψ in coordinate system xy Fig. 14
1	2	3
Harderwijk		$90^{\circ} 00^{\prime} 00^{\prime \prime} .000$
Urk	$\begin{aligned} & 105^{\mathrm{o}} 28^{\prime} 56^{\prime \prime} .160 \\ & +\mathrm{p}_{239}+\mathrm{p}_{240^{-}} \mathrm{p}_{279} \\ & -\mathrm{p}_{280^{-}}-\mathrm{p}_{283}-\mathrm{p}_{286} \end{aligned}$	$\begin{aligned} & 15^{\mathrm{o}} 28^{\prime} 56^{\prime \prime} .160+\mathrm{p}_{239} \\ & +\mathrm{p}_{240^{-}} \mathrm{p}_{279^{-}} \mathrm{p}_{280^{-}} \mathrm{p}_{283} \\ & -\mathrm{p}_{286} \end{aligned}$
Enkhuizen	$\begin{aligned} & 115^{\mathrm{o}} 26^{\prime} 22^{\prime \prime} .152 \\ & +\mathrm{p}_{484} \end{aligned}$	$\begin{aligned} & 310^{\mathrm{o}} 55^{\prime} 18^{\prime \prime} .312+\mathrm{p}_{239} \\ & +\mathrm{p}_{240^{-\mathrm{p}_{279}}-\mathrm{p}_{280^{-}} \mathrm{p}_{283}} \\ & -\mathrm{p}_{286} \mathrm{p}_{484} \end{aligned}$
Edam	$\begin{aligned} & 124^{o} 01^{\prime} 00.907 \\ & +\mathrm{p}_{4} 81 \end{aligned}$	$\begin{aligned} & 254^{\mathrm{o}} 56^{\prime} 19.219+\mathrm{p}_{239} \\ & +\mathrm{p}_{240^{-}} \mathrm{p}_{279^{-}} \mathrm{p}_{280^{-}}-\mathrm{p}_{283} \\ & -\mathrm{p}_{286}+\mathrm{p}_{484}+\mathrm{p}_{481} \end{aligned}$
Naarden	$\begin{aligned} & 96^{\circ} 57^{\prime} 58^{\prime \prime} .567 \\ & +\mathrm{p}_{475} \end{aligned}$	$\begin{aligned} & 171^{\circ} 54^{\prime} 17.786+\mathrm{p}_{239}{ }^{\prime \prime} \\ & \mathrm{p}_{240^{-}} \mathrm{p}_{279^{-}} \mathrm{p}_{280^{-}} \mathrm{p}_{283}- \\ & \mathrm{p}_{286}+\mathrm{p}_{484}+\mathrm{p}_{481}+\mathrm{p}_{475} \end{aligned}$
Harderwijk	$\begin{aligned} & 98^{\circ} 05^{\prime} 34^{\prime \prime} .508 \\ & +\mathrm{p}_{478} \end{aligned}$	$\begin{aligned} & 89^{\circ} 59^{\prime} 52^{\prime \prime} .294+\mathrm{p}_{239^{+}} \\ & \mathrm{p}_{240^{-}}-\mathrm{p}_{279}-\mathrm{p}_{280^{-}} \mathrm{p}_{283^{-}} \\ & \mathrm{p}_{286}{ }^{+\mathrm{p}_{484}+\mathrm{p}_{481}+\mathrm{p}_{475}} \\ & +\mathrm{p}_{478} \end{aligned}$
Urk		

A combination, finally, of the lengths 1 of the sides of the pentagon (Fig. 14) with their reductions (table 10) and the gridbearings ψ in table 12 gives, as $\Sigma 1 \sin \psi=0$ and $\Sigma 1 \cos \psi=0$, the 53 rd and 54 th side equation in the network. With the 52nd already mentioned they can be found in table 13. The 53rd e.g. runs as follows:

$$
+1.1735-0.0318 \mathrm{p}_{161}+\ldots-0.1832 \mathrm{p}_{481}-0.0974 \mathrm{p}_{484}=0
$$

Table 13

angles i	Side equation No.			angles i	Side equation No.		
	52	53	54		52	53	54
	-1.4897	+1. 1735	-0.6834	238	+0.3197	-0.1836	-0.3463
161	-0.2498	-0.0318	+0.2235	239	+0.2764	-0.1781	0.0000
162	+0.2164	+0.0275	-0.1936	240	+0.0984	+0.0402	0.0000
164	+0.0922	+0.0117	-0.0825	242	-0.2425		
166	-0.0718	-0.0091	+0.0643	243	+0.1038		
185	-0.1256	+0.0721	+0.1361	275	-0.0749	+0.0868	+0.0431
186	+0.2080	-0.1194	-0.2253	276	+0.1869	-0.2167	-0.1077
188	-0.1571	+0.0902	+0.1702	277	-0.0009	+0.0009	0.0000
189		-0.0235	-0.0063	278		+0.0262	+0.0946
190	+0.1226	+0.0156	-0.1097	279	+0. 1725	-0.2000	-0.0993
191		+0.0037	-0.0259	281	-0.1557	+0.1557	0.0000
192	+0.1123			282	+0.0340	-0.0340	0.0000
193	-0.1797	-0.0229	+0.1607	284	-0.0496	+0.0496	0.0000
194	+0.2122			285	+0.1229	-0.1229	0.0000
196	-0.1276			287	-0.0798	+0.0798	0.0000
225	-0.2319	+0.1332	+0.2512	288	+0.0572	-0.0572	0.0000
226	+0.0182	-0.0104	-0.0197	475		-0.1513	-0.1907
233	-0.1205	+0.1397	+0.0694	478		0.0000	-0.1692
234	+0.0608	-0.0705	-0.0350	481		-0.1832	-0.0720
236	-0.2470	+0.2864	+0.1423	484		-0.0974	+0.0270
237		+0.0520	-0.0451				

14. Analysis of the closing errors in the angles around the central points

It is obvious that Krayenhoff noticed that in all central points of his network the sum of the angles measured there had to be 360°. In tableau I of his Précis Historique he mentions even the amounts found for the "tours d'horizon" and their differences with 360°. For Amsterdam (station No. 40) e.g. it is $0^{\prime \prime} .149$, for Naarden (station No. 41) 3 ". 501 . They may be found in section 13 (table 9).

This is so much the more remarkable because Krayenhoff's predecessor Delambre, from whom he borrowed so much, took no accuunt of these station conditions in the 8 cases in which this had to be done. He only paid attention to the closing errors in the triangles. At Vouzon, e.g. (about 30 km south of Orléans) the closing error in the tour d'horizon of 5 measured angles is 1.76 . After the adjustment of the network, however, it increases to 9 ". 49

The closing errors in Krayenhoff's tours d'horizon are very small. In order to investigate their reliability I computed the standard deviation $m \sqrt{\mathrm{n}}$ in the sum of n angles around the several central points, assuming for the standard error m in an angle the amounts $m=\frac{2 " 4}{\sqrt{2.28}}= \pm 1 " .6$ for the years 1802-1807 and $\mathrm{m}=\frac{4!9}{\sqrt{2.12}}= \pm 3^{\prime \prime} .4$ for the years 1810 and 1811 found in section 8.

Table 14

Central points		$\begin{gathered} \mathrm{m} \\ " \end{gathered}$	n	$\begin{gathered} m \sqrt{n} \\ " \prime \end{gathered}$	Closing error "	Central points		m	n	$\begin{gathered} m \sqrt{n} \\ \prime \prime \end{gathered}$	Closing error
No.	Name					No.	Name				
1	2	3	4	5	6	1	2	3	4	5	6
55	Schagen	1.6	6	3.9	-1.855	75	Sneek	1.6	6	3.9	-0.217
47	Veluwe	1.6	7	4.2	-2. 030	43	Imbosch	1.6	5	3.6	-0.193
48	Zutphen	1.6	6	3.9	+2.160	24	Hilvarenbeek	1.6	5	3.6	-0.171
90	Holwierde	3.4	5	7.6	+2. 016	63	Uelsen	1.6	5	3.6	+0.138
79	Leeuwarden	-	5	5.5	-2.197	40	Amsterdam	1.6	6	3.9	+0. 149
59	Kampen	1.6	6	3.9	-2. 269	25	Helmond	1.6	6	3.9	+0.127
35	Nieuwkoop	1.6	5	3.6	+2.361	84	Coevorden	-	5	5.5	$+0.110$
89	Uithuizermeden	3.4	5	7.6	+2. 723	46	Harderwijk	1.6	5	3.6	-0.084
14	Hulst	1.6	6	3.9	-2.309	28	Rotterdam	1. 6	6	3.9	-0.060
93	Pilsum	3.4	4	6.8	+2. 564	80	Dokkum	3.4	6	8.3	+0.045
18	Hoogstraten	1.6	6	3.9	+2.648	31	Gouda	3.4	6	8.3	+0.037
94	Emden	3.4	6	8.3	+3.251	87	Rolde	3.4	5	7.6	-0.017
41	Naarden	1.6	5	3.6	+3. 501	22	Willemstad	1. 6	6	3.9	-0.017
* 3 angles in 1807 and 2 in 1810 (see table 3)											

The results may be found in table 14. Next to the 13 largest closing errors in column 6 in the left part of the table and the 13 smallest in the right part one finds in column 5 the amounts $m " \sqrt{n}$, the standard deviation which can be expected in the sum of the n angles. For Naarden (station No. 41) one finds in the left part $\mathrm{m} \sqrt{\mathrm{n}}=3.6$ and for the closing error $+3^{\prime \prime} .501$. In the right part the amounts for Amsterdam (station No. 40) are 3 ". 9 and +0.149 , respectively.

For the computation of column 5 for the stations Leeuwarden and Coevorden I took into account that 3 angles were measured with the accurate instrument and 2 with the less accurate one. Therefore the amount in column 5 is:

$$
\sqrt{3(5.87: 2.28)+2(24.33: 2.12)}=5^{\prime \prime} .5 .
$$

As can be seen from the table the closing error is, even for all the 26 cases, smaller than the standard error in the sum of n angles that can be expected in connection with the accuracy of the angular measurement. For the stations with the smallest closing errors the disharmony is of course the most remarkable. At Dokkum (station No. 80) e.g. the closing error is 0 ". 045 whereas a standard deviation $m \sqrt{n}=8.3$ in this closing error could be expected. The station Gouda shows the same great disharmony. Here, however, is some doubt: it might be possible that the amount 3.4 in column 3 must be 1.6 . In that case the angles at Gouda should have been measured with the "accurate" instrument.

Anyhow it is clear that Krayenhoff's closing errors in column 6 are much too low. There can be only one conclusion: in retaining or rejecting measured series Krayenhoff will have been guided by the wish to make the "errors" as small as possible. This endeavour, though often applied in those days, was rightly condemned by Gauss and Cohen Stuart. I am convinced, however, that Krayenhoff was honest in this matter, and did not try to flatter intentionally his observations. There are even indications that he left it to Van Swinden to decide which series should be used for the computation of the network and which should be rejected. These indications can be borrowed from Krayenhoff's letter to Van Swinden, dated June 3rd, 1803 [52]. It was found in the archives of the Netherlands Geodetic Commission by Mr. Van der Schraaf, assistant secretary of that commission. He gives an excerpt of the text of this letter in his paper [28], already mentioned before (page 74). In my opinion it is an important letter which may throw some light on the responsibility for the arbitrariness in the choice of the series which should be used for the computation. I therefore give a translation of the passage in question with the quintessence of it underlined:
"I take the liberty, persuaded as I am by your permission so kindly given, to "submit these operations which have been faithfully registered without withholding "the smallest detail or arbitrary arrangement, respectfully to your judgment as "a University professor in order to give an equal sharp statement as given about "the observations of the French astronomers and therefore to choose from all the "observations those which, with rejection of the others, should be used for the "composition of the triangles which will only depend on your decision". Unfortunately I know no answer to this letter. Baron Krayenhoff at Amersfoort could not give me any information either concerning correspondence between his ancestor and professor Van Swinden.

Though Krayenhoff's letter dates from the beginning of his measurements and was written 1.2 years before the publication of his Précis Historique, it remains
possible, however, that Van Swinden influenced Krayenhoff's decisions in this matter. In a report, dated May 13th, 1813, signed by Van Swinden, Florijn, and Vrolik, but composed by Van Swinden [53], he does not say anything more concerning this question than: "Monsieur Krayenhoff a examiné ses observations d'après cette règle" (sum angles around a central point is 360°)' et il a trouvé que les déviations sont excessivement petites".
15. Analysis of the closing errors in the triangles

In order to investigate the reliability of the closing errors in the triangles I arranged the greater part of the observations from table 9 in the 160 triangles $2-161$ of table 15. Their number is the same as that in tableaux II and III of the Précis Historique. I have not copied No. 1. It is the last triangle, DuinkerkenMont Cassel-Watten, of Delambre's network. With the exception of the numbers $20,21,29,41,53,79,84,129,137,144,145$, and 156 (12 in total) all the angles of these triangles were measured. They give rise to the $160-12=148$ conditions already mentioned before.

The closing errors range between 0.000 in triangle Oldenzaal-Uelsen-Bentheim (91) and 7 ". 657 in triangle Oosterland-Kijkduin-Oosterend (107). According to Krayenhoff the large deviation in the latter triangle was caused by an error in the eccentricity of the signal Kijkduin during the measurement of the angle 309 at Oosterend: by a gust of wind the signal was blown down and, without Krayenhoff's knowledge, "erected anew in a place that differed more than a foot from the original one" [54] .

Table 15

	5	\pm	$\begin{aligned} & \text { N N O } \\ & 1+ \end{aligned}$		$\stackrel{9}{+} \stackrel{\sim}{+}$		$\stackrel{O}{+}+\frac{10}{+}+$	$\stackrel{\infty}{+} \underset{+}{\infty} \underset{+}{0}$		$\stackrel{10}{+-1} \underset{+}{+} \stackrel{0}{+}$		¢ ${ }_{\text {N }}^{\text {F }}$		－${ }_{\text {N }}^{\infty} \stackrel{\infty}{+}$
	$>$	$\begin{array}{ll} \underset{\sim}{7} & 0 \\ \underset{\sim}{1} & 0 \\ \underset{\sim}{1} & \\ \hline 10 \end{array}$	$\stackrel{\infty}{\infty} \bigcirc$					$\begin{aligned} & -7 \infty \\ & \underset{+}{7} \infty \infty \end{aligned}$				$\begin{array}{ll} \infty \\ \stackrel{\infty}{+} & \infty \\ + \\ \hline \end{array}$		¢ ${ }_{\text {－}}^{\infty} \times$
		$\stackrel{N}{-}$												
		ت	늣웅 ${ }^{10}{ }^{\circ}{ }^{\circ}$ 丸		かo $\dot{\circ} \dot{\circ}$ 당 N ${ }^{\circ}$		N $\dot{4} 10 \dot{\circ}$ ๗ొㅇ －					か～N $\stackrel{1}{\circ} \dot{\circ} \dot{0}$ 芯 ${ }^{\circ}$		
	$=$	$\stackrel{r}{\text { r }}$												
完		0°									$\begin{aligned} & 18 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$			
				$\begin{aligned} & 8 \\ & 8 \\ & \infty \\ & \infty \end{aligned}$		$3 \begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 0 \\ & 1 \end{aligned}$			0		$: \begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{array}{lll} \infty & N & 0 \\ 0 & -1 & 0 \\ 0 & -1 & 0 \\ 1 & \infty & \infty \end{array}$	\|r	$\begin{array}{\|lll\|l} \hline \infty & \infty & \infty & 8 \\ \infty & N & N & 8 \\ \infty & 0 & 0 & 0 \\ \infty & \infty & \infty & \infty \\ \hline \end{array}$
	2	－	ザ 甘 犬 $\dot{\circ} \dot{0} \dot{0}$		$\begin{array}{lll} 10 & 1 & 0 \\ 10 & 10 \\ 0 & 0 \\ 0 & 0 & 0 \\ + & + & + \end{array}$								$\begin{aligned} & -\underset{1}{2} \\ & \stackrel{y}{2} \\ & 0 \\ & 1 \end{aligned}$	$\begin{array}{\|ccc\|c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 \\ 0 & \dot{+} & 0 \\ + & + & + \\ \hline \end{array}$
	－	\bullet	$\left\lvert\, \begin{array}{ccc}6 & 0 \\ 0 & 8 \\ 0 \\ 0 & 0 \\ 1 & 1\end{array}\right.$		$\left\lvert\, \begin{array}{lll}10 & \square \\ \infty & 8 \\ 0 & 0 \\ 0 \\ 0 & 0 \\ + & + \\ +\end{array}\right.$	－		芯 $\begin{gathered}\infty \\ \infty \\ \infty\end{gathered}$ $\begin{array}{r} \dot{0} \dot{0} \dot{+} \end{array}$		$\begin{array}{lll} 0 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 \\ + & + & 0 \\ + & + \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & \vdots \\ & + \end{aligned}$		吅	$\begin{array}{\|ccc\|c} 0 & 0 & 0 & \infty \\ 0 & 0 & 0 & 0 \\ 0 & \dot{0} & 0 \\ + & \dot{0} & 0 \\ + & + \\ + & + \end{array}$
		15							$\begin{aligned} & 2 \\ & \infty \\ & 0 \\ & 0 \\ & 10 \\ & 0 \\ & 10 \\ & 0 \\ & \\ & \hline \end{aligned}$				∞ ∞ ∞ - - 0 0 8 0 0 ∞ - -1	
ar．oue ${ }^{\circ} \mathrm{N}$		＋	－No		¢		$\cdots \infty$	욱국		号		$\stackrel{0}{\sim}$		
	$\stackrel{\circ}{8}$	∞	－Nの		いが		$\infty \rightarrow$	ナ		ロート		$\sim \sim \infty$		$\llcorner\infty$
	$\begin{gathered} \text { ğ } \\ \text { त̃ } \end{gathered}$	N												
		\square	\sim		∞		＋	15		\cdots		－		∞

Table 15 （continued）

$\underset{\sim}{*}$	© Nom + +	No․		$\stackrel{9}{7} \stackrel{9}{+} \stackrel{10}{+}$	N ${ }_{\text {No }}^{+}$	$\begin{aligned} & \mathbb{N} \underset{+}{\mathbb{N}} \underset{+}{\oplus} \\ & \hline+0 \end{aligned}$	¢	セ0～～～～
$\begin{array}{ll} \hline-\vec{I} & \\ \vdots & 2 \\ \vdots & 2 \\ & 11 \end{array}$	$\begin{aligned} & \text { HiN } \\ & \underset{H}{\circ} \underset{+}{N} \\ & + \end{aligned}$	$\begin{aligned} & \text { E W } \\ & \underset{\circ}{\circ} \mathrm{O} \\ & +++ \end{aligned}$				$\begin{aligned} & 00 \\ & \circ \\ & +7 \\ & +7 \end{aligned}$		
$\stackrel{\text { N }}{\sim}$								
\cdots	$\begin{aligned} & 106 \\ & \text { No } \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$							
$\stackrel{\sim}{4}$								
0°								
${ }^{10}$								
－						$\begin{array}{lll\|l} 0 & \infty & 0 & N \\ 8 & \stackrel{1}{2} & \underset{1}{1} \\ \dot{0} & \dot{0} & 0 \\ 1 & + & 1 & + \\ \hline \end{array}$		
ω	（1）｜cc｜	（1）｜c						
\sim								
H	N	～～¢ ¢ ¢	～～${ }_{\sim}^{\circ}$	－N M M		¢	악궈	が枵
∞	$\sim \infty$	にO	윽N	こ～～N	$\stackrel{\sim}{\sim}$	サ읙		サッ
N			$\begin{array}{r} 60 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$					
\cdots	σ	$\stackrel{-}{\square}$	\cdots	$\stackrel{\text { N }}{\sim}$	$\stackrel{9}{-}$	$\stackrel{\text { H }}{\text { H }}$	$\stackrel{10}{\sim}$	$\stackrel{\square}{\square}$

Table 15 （continued）

$\underset{\sim}{H}$	－	－${ }_{\text {－1 }}^{\text {N }} \stackrel{\infty}{+}$		$$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{1} \infty \\ & 1 \end{aligned}$	H ¢ ¢ ¢ + + +		$\stackrel{0}{0 \infty} \underset{+}{+1}+\underset{+}{+}$	$\begin{aligned} & \infty \sim \infty \\ & +\cdots+\underset{+}{+} \\ & +\quad \end{aligned}$
$\begin{aligned} & -1 \\ & \underset{-1}{-1} \\ & \underset{\sim}{1} \pi \end{aligned}$		$\begin{aligned} & \text { Bio } \\ & \underset{+}{\mathrm{N}} \underset{+}{\mathrm{N}}+ \end{aligned}$	$\begin{aligned} & 680 \\ & +\quad .0 \\ & ++4 \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\mathbb{G}} \underset{+}{H} \\ & +\underset{+}{+} \end{aligned}$					
$\stackrel{\text { N }}{\sim}$	－둥 出会灾 －	に ๓ ๗ バ ジ 荡品品	が呙 $\infty \times \mathfrak{\infty}$ 욱 Nない		엉 $\dot{B} \dot{B}_{\circ}^{\circ} \dot{\circ}$ A M				～N 둥 ヘis 風 m
$\stackrel{\square}{\sim}$	5 $\infty{ }^{\circ}{ }^{\circ}$ H N N －				N $10^{\circ} \mathscr{B}^{\circ} 0^{\circ}$ た○ ल				 $\dot{\sim} \dot{\infty}$ 瓦 $\mathfrak{\infty}$
$\stackrel{\text { ¢ }}{+}$						$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		
							$\begin{aligned} & \hline \text { 甘木 } \\ & \text { on } \\ & \text { ® } \end{aligned}$		
${ }^{10}$					$\begin{array}{ll\|l} \hline 8 & 0 & 10 \\ \hline & 0 & 8 \\ 10 & 0 & 0 \\ 10 & \text { on } & 0 \\ \hline \end{array}$	\rightarrow 8형 的以	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 1 \end{aligned}$		
上		$\begin{array}{lll\|l} n & \infty & 0 & H \\ \infty & 0 \\ 0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{array}$		$\begin{array}{\|cc\|}\infty & \infty \\ \infty & \infty \\ 0 & \sim \\ 0 \\ 0 & 0 \\ + & 1\end{array}$	$\left\|\right.$$\infty$ 0 0 0 0 1 1 1 1$\|$	$\begin{array}{ccc} \infty & 0 & 0 \\ 0 & -1 \\ \\ 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 1 & 1 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \dot{0} \end{aligned}$		$\begin{array}{lll\|l} 0 & \infty & 0 & - \\ 8 & \underset{7}{7} & 0 \\ \hline 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{array}$
\bullet		$\|$0 0 ∞ 0 ∞ 0 0 0 1 1	0 -1 -1 0 0 10 ∞ 0 0 0 + + + + +	8 - +	$\left\|\begin{array}{c}\text { ci } \\ \text { ¢ } \\ \text {－} \\ \text { i }\end{array}\right\|$		这		
15						$\begin{aligned} & 6 \\ & 0 \\ & 0 \\ & \hline \end{aligned} \mathbf{4} 0$	긍 0 0 0 8 8 0 0 \sim		
H	¢	악 $8^{\circ} \mathrm{B}$	ก ค ค \％					ペ ¢ ¢	1296
∞	$\underset{\sim}{4}$	ザ込	$\stackrel{\sim}{\sim}$	$\stackrel{10}{\sim} \stackrel{\infty}{\sim}$	$\stackrel{\infty}{\sim} \stackrel{\sim}{\sim}$	¢ ${ }^{\circ}$ N		N	N
N									
\square	$\stackrel{-}{\sim}$	$\stackrel{\infty}{\sim}$	$\stackrel{\square}{\square}$	－	$\stackrel{-1}{\sim}$	N		が	H

Table 15 （continued）

－	$\begin{array}{r} +10 \infty \\ +7 \\ +\quad+ \\ \hline \end{array}$	$\begin{array}{ccc} \infty & \text { H } \\ 1 & 1 & + \\ \hline \end{array}$	$\begin{array}{ccc} \infty & 0 & \infty \\ 1 & 1 & 1 \\ \hline \end{array}$	$\begin{aligned} & \text { NO } \\ & +7 \end{aligned}$	$\begin{aligned} & 10 \sim \mathrm{~N} \\ & 1+1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline N 0 \mathrm{~N} \\ & +\quad 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { HN } \\ & +\underset{+}{\infty} \\ & +\quad \end{aligned}$	$\begin{aligned} & \hline \stackrel{\leftrightarrow}{+} \underset{+}{\infty} \underset{+}{\infty} \\ & +\quad \end{aligned}$
						$\begin{aligned} & \text { 벟 } \\ & +\underset{+}{H} \end{aligned}$	$\begin{aligned} & \stackrel{\leftrightarrow}{\circ} \underset{\sim}{\mathbb{N}} \underset{+}{\underset{+}{+}} \end{aligned}$	$\begin{aligned} & \text { © } \\ & \underset{y}{*} \underset{+}{+} \\ & + \end{aligned}$
$\stackrel{\text { N }}{ }$	$\stackrel{\infty}{\sim}$ か $\dot{\circ}$ ペ $\stackrel{1}{\circ}$ 응 内	の $\infty_{\infty}^{\infty} \stackrel{\infty}{-}$ $\dot{\circ} \dot{\circ} \dot{\circ}$ N N	サN゚ $\dot{+\infty} \dot{\circ}$ H8 8 －	 © $\infty<$		$\dot{\circ} \dot{0}$ ${ }^{\infty}{ }^{\infty}$ ס 드N		벙 응 宛灾 둥
\cdots			が命 هi \dot{B}° H8 ${ }^{\circ}$ ぶNㅜㅇ	1588 ©		1 0 $\dot{\sigma}^{\circ} \stackrel{\circ}{\circ} \dot{\circ}$ ず ఠ్ల్ N N		
¢10								
${ }^{\circ}{ }^{\circ}$							$\begin{array}{ll\|l} 8 & 0 & 0 \\ 8 & 0 & 0 \\ 0 & \infty & 0 \\ 0 & 0 & 0 \\ e & 0 & j \\ m & 0 \end{array}$	
\propto								
－				$\begin{array}{lll\|l} 0 & \infty & 0 \\ \sim & 8 & 0 \\ & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & + & 1 & 1 \end{array}$		$$		$\begin{array}{lll\|l} \infty & 0 & - & - \\ N & 8 & 8 & \underset{\infty}{\infty} \\ 0 & i & 0 & 0 \\ 1 & 1 & + & 1 \end{array}$
\bullet				$\|$8 ∞ 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1	$\left\|\begin{array}{c}8 \\ 8 \\ 0 \\ -1\end{array}\right\|$			
15								
H	989	゙Nセ	过运足	Noか	$\infty \times 1$	$\underset{\infty}{\infty}$		∞
∞	$\stackrel{\sim}{\sim} \stackrel{\infty}{\sim}$	～～～～${ }_{\text {N }}$	$\stackrel{\text { N }}{\sim}$	サの ${ }_{\text {N }}^{\text {N }}$			－${ }_{\sim}^{\infty}$ N	－${ }_{\sim}^{\infty}$ N
N								
\checkmark	เง	$\stackrel{\oplus}{\sim}$	－	$\stackrel{\infty}{\sim}$	－	¢	$\stackrel{-1}{2}$	$\stackrel{\sim}{\circ}$

Table 15 （continued）

\pm	드¢ $\stackrel{0}{+}$		－ －$_{+}^{\text {¢ }}$	+7 + F + +	鱼7	$\stackrel{+}{+} \times 7$	0∞ 1 1 1	-0 11 1
$\begin{aligned} & 7 \\ & \begin{array}{c} 7 \\ 1 \\ \\ \end{array} \\ & \hline 10 \end{aligned}$								
～	 ஷi 웅			－∞ シio io が		Nㅗㅇ 움 헝 		
7	 $\dot{\circ} \dot{\circ}$ 							
\sim_{5}^{+}								
$\stackrel{1}{+}^{+}$								
－								
\cdots								
15								
H	の䍖梁	\＃゙ 88	ㄷ．．$\overbrace{\circ}^{\circ} 8$	윽을응		욱을		N～～～
∞	か ${ }_{\text {N }}$ N	Nั内 \sim_{\sim}^{\sim}	®	～～～～		㷌枵呺	\％号	式 ¢゙吅 $^{\circ}$
\sim								
\rightarrow	¢	¢	$\stackrel{\square}{\circ}$	$\stackrel{\circ}{\circ}$	尔	$\stackrel{\infty}{\circ}$	¢	＋

Table 15 （continued）

㞧	$\begin{array}{ccc} \sim & \infty & \sim \\ 1 & 1 & 1 \end{array}$		$\begin{array}{lll} 4 & 4 \\ 1 & 1 & + \\ \hline \end{array}$		Nロー $1++$	$\underset{+}{7} \underset{+}{+}$	$\begin{aligned} & \text { NO } \\ & 1+\underset{1}{1} \end{aligned}$	$\begin{aligned} & \infty \underset{\sim}{+1} \\ & ++ \end{aligned}$	$\begin{aligned} & +\underset{+}{\#} \\ & +\underset{+}{2} \end{aligned}$
$\begin{array}{ll} -1 & 0 \\ & 0 \\ & 11 \end{array}$	$\begin{aligned} & -7 \infty \text { 봉 } \\ & +++ \end{aligned}$			$\begin{aligned} & \text { 토 } \infty \infty \\ & +++ \end{aligned}$	$\begin{aligned} & \text { ㄷㅇㅇ } \\ & + \text { + } \end{aligned}$	$\begin{aligned} & \text { Nㅗㅇ } \\ & \underset{H}{7} \underset{+}{+} \end{aligned}$	$\begin{aligned} & \infty \text { ※゙녿 } \\ & +++ \end{aligned}$	$\begin{aligned} & \text { 帚 펃 돋 } \\ & ++ \end{aligned}$	
$\stackrel{\text { N }}{ }$	風が 도 Hi 꺽 N －N N			サi $\dot{\circ} \dot{\circ} \dot{\circ} \dot{\circ}$ 엉 －\rightarrow		$\begin{aligned} & \text { NSE } \\ & \text { Hi M } \\ & \text { Hi } \\ & \text { N } \\ & \text { N N N } \end{aligned}$			
\cdots			$8 \circ \stackrel{\square}{\circ}$ 웅 웅 芯	 엉	89 $\dot{8}$ $\rightarrow \underset{\sim}{1}$				
＋	∞ 웅 $\dot{0} \infty$	$\begin{aligned} & \substack{3 \\ 4 \\ 4 \\ 8 \\ 8 \\ \hline \\ \hline} \end{aligned}$							
${ }^{\circ}$	贸 $\circ-\dot{0}$	$\begin{aligned} & N \\ & \underset{\sim}{0} \\ & 0 \\ & 0 \end{aligned}$							
∞	$\begin{array}{lll} \text { is 옹 } \\ \text { No } \\ \text { ज } \\ \hline \end{array}$	0							$\begin{array}{lll\|l} 0 & -1 & 0 \\ \text { H1 } & 8 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 \end{array}$
－		1							
ω	$\left\lvert\, \begin{array}{cc}0 & 1 \\ \infty & 1 \\ \infty & \pm \\ \infty & \\ 0 & 0 \\ 0 & 0 \\ 1 & 1\end{array}\right.$								
م									
＊	욱둑		득윽극	윽 걱		－	哭	N	凩
∞	우유융		かへ		¢		－1800	－	－${ }^{-1}$
N									
－	F		\％	$\stackrel{9}{7}$	H	$\stackrel{8}{7}$	${ }_{4}$	$\stackrel{\sim}{4}$	$\stackrel{\infty}{+}$

Table 15 （continued）

サ	1080 $+\quad 1+$ 10	$\stackrel{9}{7}+$		$\stackrel{N}{1}-1$	$\begin{aligned} & 4 \sim N \\ & 111 \\ & 1 \end{aligned}$	$\begin{gathered} 10 \propto 5 \\ 1+1 \\ \hline \end{gathered}$	$\bullet 0$ + +	－${ }^{+\infty}+$ ++
$\begin{array}{\|l} \overrightarrow{-1} 9 \\ { }_{1}^{1} \\ \underset{\sim}{1} \end{array}$	$\begin{aligned} & \text { NNN } \\ & +\underset{+}{7}+ \end{aligned}$			$\begin{aligned} & \text { 용 } \varnothing_{8} \\ & +++ \end{aligned}$	$\begin{aligned} & \text { 각 } \\ & +++ \end{aligned}$	$\begin{aligned} & \text { 고N } \\ & \text { N+ } \end{aligned}$	용극	$\begin{aligned} & \infty \underset{\sim}{\infty} \\ & =1 \\ & +\underset{+}{7}+ \end{aligned}$
$\stackrel{\text { N }}{\sim}$			ザロ ヘi $\dot{\text { ® }}$ \％잉 స్	Nㅣㄱ 아 円่ คั か ヘึ ํํㄱ			숭 $\dot{\circ} \dot{\circ} \dot{4}$ $\stackrel{9}{\circ}$ －	
\cdots						ㅇN © $\dot{\circ} \dot{\circ}$ がき ค욱	$\stackrel{\infty}{\infty} \infty$ $\dot{\circ} \dot{\circ}$ 为审宸 －	
는								
σ								
∞								
－			$\begin{array}{lll\|l} \infty & \# & 0 \\ i & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & + & 0 \\ i & 1 & + & 1 \end{array}$					
ω					$\left\lvert\, \begin{array}{cc}\text { H } \\ \text { ¢ } \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ +\end{array}\right.$		$\begin{array}{lll\|l} 0 & 0 & \infty \\ =1 & 0 & 0 \\ 0 & 0 \\ \dot{0} & 0 \\ + & + & +\infty \\ \hline \end{array}$	
¢								
＋		※ N サ ¢	出思罗思	※	${ }^{\circ} \mathrm{B}$		号	
∞	N゚¢ ¢	๗®N	¢ため゙	サから	Home	10%	나ㅇㅏㅏ	
N								
\square	$\stackrel{\square}{7}$	18	－	ำ	\％	婯	15	\bigcirc

Table 15 （continued）

$\underset{\sim}{H}$	＋ + + + +	$\stackrel{\text { Noの }}{+}$	$\begin{aligned} & 0 \text { © } 1010 \\ & +++ \end{aligned}$		No H	or	No 윤	
		$\begin{aligned} & 8 刃 8 \\ & 7 \\ & 7 \\ & \hline \end{aligned}$		$\begin{aligned} & 8 \stackrel{003}{7} \underset{7}{7} \\ & +7 \end{aligned}$		$\begin{aligned} & \text { H゙ } \text { H }_{\infty} \\ & +++ \end{aligned}$		$\begin{aligned} & \text { ㄱNㅇㅇㅇㅇㅇ } \\ & \text { + } \end{aligned}$
$\stackrel{\text { N }}{\sim}$	N ${ }^{\circ}$ \＃ $\dot{\circ} \dot{\circ}$ \％${ }_{\circ}^{\circ}$ ค N N్	옹 $\therefore{ }^{\circ} \infty$ 잉 合 곡 N	Nㅇㅇㅇㅇㅇ上゙ ザ 这 －		いN～ロ 安安灾 ه্ た ค ¢		∞ $\underset{\sim}{\infty} \underset{\sim}{\infty}$ 웅	ザ シ • $\dot{+\infty} \dot{8}$ ∞ 웅
\cdots					$8 \overbrace{\mathrm{~N}}^{\infty}{ }_{\sim}^{\infty}$ $\dot{\circ}{ }^{\circ}{ }^{\circ}$ － ঞ్		 $\dot{\square}^{\circ} \dot{\infty} \dot{\circ}$ 오N N	
$\left\lvert\, \begin{array}{ll} - \\ \underset{10}{+} & 0 \\ \hline \end{array}\right.$								
${ }^{2}$								
∞		$\begin{array}{ll\|l} \hline \mathfrak{F} & 6 & \text { in } \\ \hline 1 & \text { is } & 8 \\ 0 & 0 \\ \hline \end{array}$						
\sim								
\bullet						H｜｜c｜c		
L								
\nrightarrow		ザ00		온Nㅗㄷ		$\stackrel{\circ}{\stackrel{\circ}{\sim} \stackrel{\infty}{\sim}}$	$\stackrel{\infty}{\stackrel{\infty}{\sim}} \underset{\sim}{\infty} \underset{\sim}{\infty}$	$\stackrel{\infty}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty}$
∞	¢ ¢ ¢	¢ ${ }_{\sim}^{\sim}$	内¢ ¢			かった	が号罧	아요
N								
-1	$\stackrel{5}{5}$	∞	15	8	$\stackrel{\rightharpoonup}{6}$	O	8	ठु

Table 15 （continued）

出	「 ${ }_{\text {L }}$	$\stackrel{10}{\text { N }} \stackrel{\text { N }}{+}$	－¢ Nㅡㄴ		$\underset{1}{9} \underset{1}{4} \underset{1}{N}$	サণ		
		$\begin{aligned} & \mathscr{O} \underset{\sim}{\#} \\ & +\underset{y}{7} \end{aligned}$	¢ $\stackrel{\infty}{\infty} \infty$ + +	$\begin{aligned} & \text { ®O } \varnothing_{\infty}^{\infty} \\ & +++ \end{aligned}$		$\begin{aligned} & \text { ®® } \\ & +\infty \\ & +++ \end{aligned}$	$\begin{aligned} & \text { N® } \mathscr{N}_{2} \\ & +++ \end{aligned}$	$\begin{aligned} & 8.10 \\ & +\infty \\ & +++ \end{aligned}$
$\stackrel{\text { N }}{\sim}$					满 $\infty \dot{\infty}$ にか N～N	$\stackrel{\infty}{\sim} \sim \infty$ $\dot{0} \dot{8}^{\circ} \stackrel{0}{0^{\circ}}$ SO 축	$\underset{\circ}{\circ} \mathrm{N}$ $10 \infty^{\circ}{ }^{\circ}$ $\operatorname{sig}_{5}^{\infty} \stackrel{\infty}{\circ}$ © N	$\begin{aligned} & \text { NO } \\ & \text { O } \\ & \infty \\ & \infty \\ & \infty \\ & 0 \\ & 0 \\ & \text { No } \\ & \text { N N } \\ & \text { N } \end{aligned}$
\cdots		강ㅇㅇㅇ ம் 豳 －${ }_{-1}^{\sim}$						
$\stackrel{\sim}{4} 0$								
${ }^{+} \times$								
－								
\cdots								
15								
H	$\begin{aligned} & \infty \infty \\ & \infty \\ & \sim \\ & \sim \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \end{aligned}$	억 心	が号券	독	우웅ㅇㅇ N		
∞		각ํ			$\underset{\sim}{\sim}$			
N								
\cdots	$\stackrel{5}{6}$	\bigcirc	$\stackrel{\square}{6}$	∞	8	앙	F	N

Table 15 （continued）

\＃	$\begin{array}{ccc} \infty & \infty \\ & \infty \\ 1 & \infty \\ \hline \end{array}$		$\stackrel{-}{\infty} \stackrel{\infty}{\infty}$	ボホ			11	
		$\stackrel{\infty}{+} \underset{+}{+} \underset{+}{+}$	¢ ¢ ¢ ¢ ¢＋＋		Fぜな	$\begin{aligned} & \stackrel{-}{4} \underset{1}{20} \\ & + \\ & + \end{aligned}$	｜$\stackrel{10}{7}$	$$
$\stackrel{\text { N }}{\sim}$		$\infty \stackrel{\infty}{\circ}{ }_{\infty}^{\infty}$ －i © －${ }^{\circ} 8$ ヘ	∞ $\stackrel{\infty}{\circ} \dot{0}$ 잉 ¢	ㅇN N ポ 동 $\stackrel{\infty}{\infty}$ N		$\begin{aligned} & 10 \\ & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \infty \\ & \infty \\ & 0 \\ & \hline \end{aligned}$		
\cdots				$\infty \times \underset{\sim}{\infty}$ 	お㐌 คั～～் 엉 $\stackrel{\circ}{\circ} \stackrel{\text { N }}{ }$	 	へ が ぶゥ © 6 \rightarrow	$\ddot{J}_{0}^{\infty}{ }_{0}^{\infty}$ $\therefore \dot{\infty}$ ー 甘＊
$\left\|\begin{array}{ll} - & 0 \\ \stackrel{4}{4} & 0 \end{array}\right\|$								
${ }^{+1} \times$								$\begin{array}{ll\|l} \infty & 0 & 0 \\ 0 & 0 \\ 0 & 8 \\ 0 & 0 & 0 \\ \hline \end{array}$
－		$\begin{array}{lll} \infty & \infty & \infty \\ \sim & 0 \\ \sim & \infty \\ \hline \end{array}$					$\left\|\begin{array}{lll}0 & 0 \\ \hline 8 & 0 \\ 0 & \\ 0 & \\ 0 & - \\ 1 & +\end{array}\right\|$	$\begin{array}{ccc\|c} \infty & \infty & 0 & \infty \\ 0 & \infty \\ 1 & \infty & \infty \\ 0 & 0 & 0 \\ 0 & 0 & 0 & \dot{N} \\ 1 & 1 & 1 & 1 \end{array}$
\bigcirc	$\begin{array}{ccc\|c} \circ & 0 & 0 & \infty \\ \infty & \underline{1} & \mathbf{N} & - \\ \dot{-} & \dot{1} & 0 \\ 1 & 1 & + & 1 \end{array}$				c｜c｜c			
15	$$			용 엉 				
H	옹으N	$\stackrel{N}{N} \underset{\sim}{\sim} \underset{\sim}{\sim}$			N	H゙心		드N
∞	$\stackrel{\circ}{\sim}$	$\stackrel{\infty}{*}+\infty$	\％${ }_{7}$		T－0 \％		앙） 1	
N								
－	$\stackrel{\sim}{*}$	＊	녿	$\stackrel{\square}{-}$	닫	$\stackrel{\infty}{\sim}$	$\stackrel{\square}{\circ}$	∞

Table 15 （continued）

$\underset{\sim}{*}$	$\stackrel{0}{+} \underset{+}{7} \underset{+}{\circ}$		$\stackrel{N}{\underset{1}{-1}+\underset{+}{7}}$		$0 \underset{1}{0} \underset{1}{0}$	ホ N ¢		$\stackrel{\sim}{\sim}$	だ ザ	HM H		O O O	
$\begin{array}{\|l\|l\|} \hline-7 & 0 \\ \overrightarrow{1} & 2 \\ & 7 \\ \hline \end{array}$	$\begin{aligned} & 1000 \\ & \stackrel{0}{7} \underset{+}{+} \\ & ++\underset{+}{4} \end{aligned}$				$\begin{aligned} & +8 O \neq 0 \\ & +7+ \end{aligned}$	$\begin{aligned} & \mathbf{N}_{\infty}^{\infty} \stackrel{\rightharpoonup}{0} \\ & +\underset{+}{+} \end{aligned}$		$\begin{aligned} & \underset{\sim}{\sim} \underset{\sim}{+} \\ & ++\underset{+}{+} \end{aligned}$		$\begin{aligned} & \text { 등 } \overbrace{0} \\ & ++7 \end{aligned}$			
$\stackrel{\text { N }}{\sim}$					Nㅗㅇ옹 ヘ $\dot{\circ} \dot{\circ}$ 눙 $\underset{\sim}{\wedge}$								
ت			드N คั 둥 罗 Nㅡㄴ		$\stackrel{\infty}{\sim}$ is 농 N N H N					붂 ヘ ${ }^{\infty}{ }^{\infty}$ ๗ N		궁 内ㅇㅇ $\stackrel{\infty}{\infty}{ }_{\circ}^{\infty}$ ヘ N	
$\underset{+}{+}$	둥 ∞ が			$\begin{aligned} & 0 \\ & \text { in } \\ & 0 \\ & 8 \end{aligned}$			$\begin{aligned} & -\infty \\ & \infty \\ & \infty \\ & -i \\ & -\infty \end{aligned}$			12% 순 ํ		$\underset{6}{\infty} \stackrel{1}{\circ}$ నั $\mathfrak{\sim}$ คั	－
0	농ㅇㅇㅇ $\stackrel{\leftrightarrow}{\circ}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 8 \\ & 8 \end{aligned}$		$\begin{aligned} & 10 \\ & 0 \\ & 0 \\ & 8 \\ & 8 \end{aligned}$			$\begin{aligned} & -\infty \\ & \infty \\ & \infty \\ & -1 \end{aligned}$				$\begin{array}{\|l} 10 \\ 10 \\ \text { io } \\ \text { a } \end{array}$	$\stackrel{1}{\infty} \underset{\sim}{\circ}$ ヘั ค ค ค ค	$\left\{\begin{array}{l} \infty \\ \infty \\ \infty \\ \infty \end{array}\right.$
∞	$\begin{array}{lll} 10 & 0 & n \\ + & 1 \\ \infty & 1 \\ \infty & \infty & \infty \\ & \infty \end{array}$	$1 \begin{aligned} & 8 \\ & 8 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$		$\begin{aligned} & 8 \\ & 8 \\ & \infty \\ & \infty \\ & \hline \end{aligned}$			$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{ll\|l} \infty & \infty & \text { in } \\ 0 & \infty \\ 0 & 8 \\ \infty & H & \infty \\ \infty & 0 & 0 \\ \hline \end{array}$		$\stackrel{\circ}{\circ} \mathrm{B}$ 영皆	$\begin{aligned} & 8 \\ & 8 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$		8 0 0 0 \square
\sim	응 No $7{ }_{1}{ }_{1}$	$: \begin{gathered} \underset{\sim}{N} \\ \underset{\sim}{1} \\ \hdashline i \end{gathered}$	옹 rioㅇ	－			1				$\left\lvert\, \begin{aligned} & \text { 苟 } \\ & \infty \\ & \mathbf{0} \\ & \mathbf{1} \end{aligned}\right.$		co
\bigcirc	$\left\lvert\, \begin{array}{ccc}0 & 0 \\ 8 & 0 \\ 0 & 0 \\ 0 & 7 \\ 1 & 1\end{array}\right.$	$\xrightarrow{\sim}$	\％\％\％ $\dot{\circ} \dot{0}-\dot{i}$	$\begin{aligned} & \text { N } \\ & \stackrel{0}{0} \\ & 0 \\ & 1 \end{aligned}$								8.8 8 8 8 －i ${ }^{\circ}$	促
15	옹 $\stackrel{\sim}{\sim} \dot{+}_{+}^{\circ}$ 운 内	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$		$\begin{aligned} & N \\ & \mathbf{N} \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$						N ∞_{\circ}° 소 석 웅옹 	$\begin{aligned} & \infty \\ & \underset{\sim}{1} \\ & \dot{O} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & -1 \end{aligned}$	$\begin{array}{lll}1 \infty \\ \infty & \text { 앙 } & \infty \\ \infty & 0 \\ \infty\end{array}$ ๙～内 サ옥 연용	－
H			だ		๗厃	®ึ				너N		응 엉	
∞	苑				風出年			¢ ¢ $_{4}$	下枵8	↔○		${ }_{+}^{\infty} 80$	
N													
\cdots	∞		－		∞	\pm		$\stackrel{1}{\infty}$	\bigcirc	∞		∞	

Table 15 （continued）

$\stackrel{H}{\square}$		$\infty_{1}^{\infty} \underset{1}{\infty} \underset{0}{0}$		$\begin{gathered} \stackrel{N}{7} \\ \underset{\sim}{7} \\ \underset{1}{7} \\ \hline \end{gathered}$		$\begin{aligned} & \infty \propto \infty \\ & +\quad+\quad \infty \end{aligned}$	$\begin{array}{ccc} \text { No } \\ \text { No } \\ \text { it } \\ \hline \end{array}$	$\stackrel{10}{0} \underset{i}{\circ}$
$\begin{array}{ll} \overrightarrow{1} & 2 \\ 1 \\ \underset{\sim}{1} & 11 \end{array}$	$\begin{aligned} & \text { Nis } \\ & \stackrel{0}{\circ} \stackrel{0}{+} \\ & ++ \end{aligned}$	Weo No + +	$\stackrel{\text { No }}{+}$	$\begin{aligned} & \infty \text { © }-\underset{+}{+} \\ & +\underset{+}{2} \end{aligned}$				
$\stackrel{\text { N }}{\sim}$	ザ ∞ が $\stackrel{\infty}{\circ} \stackrel{0}{\circ}$ か N			 봉 옹 $\stackrel{\infty}{5}$ N m				
$\bar{\sim}$	内 サ ※ N べゥ ค่ ヘั ㄷㅇㅇ ค 듯		18 ® ค ค ํ ザ	$\underset{+1}{\infty}$ 옹 옹 かった ヘ	$\bigcirc \stackrel{\infty}{\circ} \underset{\sim}{\circ}$ $\therefore \dot{8}$ 菏 $\stackrel{\circ}{-}$－${ }^{\infty}$		ザ $\dot{\circ} \dot{0}$ 옹 ＊	
$\stackrel{\square}{4}$								
\bigcirc								
10								
ᄃ	$\begin{array}{llll} 10 & 0 \\ \stackrel{\infty}{5} & \stackrel{0}{1} \\ 0 & 0 \\ 0 \\ 0 & + \\ 1 & + \\ 0 \end{array}$			$\begin{array}{lll\|l} 0 & \infty & 0 & -1 \\ 0 & \circ \\ \mathrm{~N} & \mathrm{~N} & 0 \\ \dot{0} & \dot{0} & \dot{0} & \dot{0} \\ +1 & + & + \end{array}$		$\begin{array}{ll\|l} \infty & \sim & \infty \\ \infty \\ \infty \\ \infty \\ \infty & 0 \\ 0 & 0 \\ +1 & 0 \\ +1 & i \end{array}$		
ω			∞ 8 -1 0 8 0 8 0 0 0 + 1 1	$\begin{aligned} & 0 \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & +0 \\ & +1 \\ & +1 \\ & \hline \end{aligned}$				
\bigcirc								
＋	にな	$\mathfrak{1 0}$ N N N	Rep				$\stackrel{\sim}{N} \stackrel{N}{N} \stackrel{\sim}{N}$	$\underset{N}{\mathbb{N} \stackrel{0}{N} \stackrel{0}{N} \text { N }}$
∞	1880	588	－78 8	$\bigcirc 8$	\％	1080	\％ 0	的
N								
－	∞	8	$\stackrel{\square}{\sigma}$	今	$\stackrel{8}{8}$	が	$\stackrel{18}{\circ}$	8

Table 15 （continued）

\＃		$$		ザ ホ N		$\begin{gathered} -\infty \\ x_{0} \text { o } \\ 1 \\ 1 \end{gathered}$	$\begin{aligned} & \text { No } \\ & \text { No } \\ & 1 \end{aligned}$	$\begin{aligned} & 895 \\ & 80 \\ & i 1 \\ & \hline \end{aligned}$
$\begin{array}{ll} -1 & 0 \\ & 0 \\ \underset{\sim}{1} & 11 \end{array}$	$\begin{aligned} & 0 \\ & \infty \\ & +0 \\ & +1 \\ & + \end{aligned}$					＋	－	1098 +080 +
$\stackrel{\text { N }}{\sim}$	ザ ${ }^{\circ}$ ヘiค $\stackrel{\circ}{\circ}{ }_{\circ}^{\circ}$ \％ N N N		サへ か $\dot{\sim} \dot{\sim}$ 第 것N					$\underset{+}{\infty}{ }^{\circ}$ 웅 －io i ©ㅇ․ㅇ Nor
$\stackrel{7}{7}$		N N ※ ベゥ்合 ึ్నึ						ふi －io－i －5 H ペサ
$\left\lvert\, \begin{array}{ll} 1 \\ 1 \\ 10 & 0 \\ \hline \end{array}\right.$								
${ }^{\circ} \mathrm{o}$						$\begin{array}{ll\|l} \hline 7 & \infty & 0 \\ 0 & 0 & 0 \\ 4 & 0 & 0 \\ \hline \end{array}$		
10								
－						$\begin{array}{lll\|l} 0 & \infty & 0 & H \\ \infty & 5 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 & \ddots & 0 \\ + & 1 & 1 & 1 \end{array}$	$\begin{array}{ll\|ll} & 10 & \infty & 0 \\ \circ & \infty & 0 \\ N & 0 \\ 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & + & 1 & 1 \end{array}$	
ω						$\begin{array}{ll\|l} \hline 8 & 18 & \pi 8 \\ 8 & 0 \\ \hline \end{array}$		
L								
＋	$\stackrel{\sim}{\sim} \stackrel{\infty}{\sim} \stackrel{\sim}{N}$	O		$\begin{aligned} & \infty \\ & \substack{\infty \\ \infty \\ \infty \\ \infty \\ \infty \\ \infty} \\ & \infty \end{aligned}$	No		웅	No
∞	ᄃ	\cdots	¢ $\sim_{0}^{0} 8$	\％ 8 8	웅앙			O®
N								
\checkmark	$\stackrel{\text {－}}{\circ}$	$\stackrel{\infty}{\infty}$	8	$\begin{aligned} & 8 \\ & \hline 1 \\ & \hline \end{aligned}$	$\begin{array}{r} -2 \\ -1 \end{array}$	N	$\stackrel{8}{\mathrm{O}}$	荌

Table 15 （continued）

$\underset{\sim}{4}$	$\begin{array}{lll} \infty & \circ & 0 \\ \infty & \infty \\ 1 & 1 & 1 \end{array}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \underset{\sim}{\sim} \underset{\sim}{\infty} \\ & \hline 1 \end{aligned}$	$\underset{1}{9} \stackrel{m}{1} \stackrel{10}{7}$	No	WN N N	$\underset{1}{-1} \stackrel{1}{+} \stackrel{N}{N}$	$\stackrel{\text { a }}{+3}$	$\stackrel{9}{\square}$
	$\begin{gathered} \text { N in } \\ 1 \\ 1 \end{gathered}$	$\begin{aligned} & -1+\infty \\ & \underset{1}{1}+\infty \\ & 1+1 \end{aligned}$		$\stackrel{\infty}{+} \underset{+}{+} \underset{+}{\circ}$	$\begin{aligned} & \text { M } \\ & +\underset{+}{+} \underset{+}{\infty} \\ & + \end{aligned}$		$\begin{aligned} & \infty \stackrel{\sim}{\infty} \underset{+}{m} \underset{+}{\underset{+}{+}} \end{aligned}$	
$\stackrel{\sim}{\sim}$	※～～ $\underset{\sim}{\circ} \dot{\circ}$ © 등 ーの	안 ヘレ゚ 芜 ∞ た～～～	N～5 10 i ${ }^{\circ}$ © 독	ค゚ ค～ －※ N が	$$	$\underset{\sim}{\circ} \stackrel{0}{\circ}$ $\dot{\omega} \dot{\infty} \dot{\sim}$ $\overbrace{0}^{\circ} \circ$ －${ }_{\sim}^{\circ} \stackrel{\infty}{\infty} \stackrel{\infty}{-}$		
\cdots		요웅 $\underset{\sim}{\sim}$ ∞ ๗						
$\left\lvert\, \begin{array}{ll} 1 & 0 \\ + \\ & 0 \\ \hline \end{array}\right.$					$\begin{aligned} & \mathfrak{B} \underset{\sim}{N} \underset{\sim}{N} \underset{\sim}{N} \\ & \infty \\ & \infty \\ & \sim \\ & \sim \end{aligned}$			
0								
∞								
－								
\bigcirc								｜cc｜c
ת								ד～ำ 옹内오 영 숭
＋	항		등ㅇㅇㅇㅇㅇㅇ	으요N		$\stackrel{\leftrightarrow}{\infty} \stackrel{N}{\infty} \underset{\infty}{\infty}$		N్ల్ల్ల
∞	8 O	\bigcirc B \％	¢ ¢ ¢	¢下N	$\bigcirc \bigcirc$	N゙か	N゚ざ	ヒNさ
N								
\square	$\stackrel{10}{0}$	8	든	$\stackrel{\infty}{\circ}$	－	$\stackrel{\square}{7}$	少	永

Table 15 （continued）

$\underset{\sim}{H}$	$\underset{1}{-7} \underset{1}{7} \quad \stackrel{2}{1}$		$\underset{i}{\sim} \underset{1}{\infty} \underset{1}{\infty}$	$\begin{array}{ccc} N & N & 0 \\ \infty \\ 1 & 0 & 0 \\ 1 \end{array}$		$\begin{array}{lcc} \text { No } \\ \hline 0 \\ \hline \end{array}$			$\begin{aligned} & \stackrel{\sim}{\circ} 9 \\ & ++\underset{+}{7} \end{aligned}$	$\begin{array}{\|c} \mathfrak{F} \mathbb{N}_{+}^{\circ} \\ ++ \end{array}$	
$\begin{array}{\|ll} \underset{F}{7} & 0 \\ \vdots & \pi \\ & 11 \end{array}$				$\begin{aligned} & 996 \\ & +{ }_{7} 0 \end{aligned}$				$\begin{aligned} & -7 \infty \\ & +\underset{+}{+} \\ & + \end{aligned}$	$\begin{aligned} & \text { WN } \\ & \underset{\sim}{7} \\ & ++ \end{aligned}$	$\begin{aligned} & 8 N \\ & 0 N \\ & +7+ \end{aligned}$	
$\stackrel{\text { N }}{\sim}$											
$\stackrel{-}{7}$						ค $8 \stackrel{\circ}{8} \stackrel{\circ}{4}$ © ํㅗㄱ	กi ∞ เค่ ค่ © 回				
$\left\lvert\, \begin{array}{ll} 1 \\ \hline 10 & 0 \\ \hline \end{array}\right.$		$\begin{aligned} & 2 \\ & \text { W } \\ & \text { - } \end{aligned}$			$\begin{gathered} \infty \\ 10 \\ N \\ 0 \\ 0 \\ \hline \end{gathered}$						－
0°	風等 $\stackrel{\circ}{-1} \stackrel{\infty}{\circ}$										岂
∞		$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & \infty \\ & 0 \end{aligned}$			$\begin{aligned} & 8 \\ & 8 \\ & 0 \\ & 0 \\ & -1 \end{aligned}$						（1）
－	궁 $\circ \dot{\circ} \dot{\circ}$	$\begin{aligned} & 0 \\ & i \\ & i \\ & i \end{aligned}$		∞ －かi	$\begin{aligned} & \dddot{2} \\ & \stackrel{0}{2} \\ & i \end{aligned}$			$\begin{array}{ll\|l} +\infty & \infty & \infty \\ + & \infty \\ \hline \end{array} \infty$			－
\bullet		$\begin{aligned} & \infty \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$			$\begin{aligned} & \text { I } \\ & \underset{4}{15} \end{aligned}$						$\xrightarrow{-}$
ค	웅 킹 $\stackrel{\circ}{\square}{ }^{\circ}{ }^{\circ}$ N 获				10 0 0 0 10 0 10 10 2 2 1						N－1
＋	$\begin{aligned} & \text { L® } \\ & \text { N్ల } \\ & \hline \sim \end{aligned}$		$\begin{aligned} & \infty \\ & \text { N్ } \\ & \text { N్ల } \\ & \hline N \end{aligned}$	N్ల్ల్ల్ల్ల్ల		H1 に	にo	OH			
\propto	ださ		$\stackrel{\sim}{6} \stackrel{\infty}{\sim}$	¢		$\overbrace{0}^{\infty} \underbrace{}_{0}$	오요	용N	ざミN	过忒	
\sim											
\checkmark	$\stackrel{刃}{\underset{\sim}{2}}$		$\begin{aligned} & \text { H } \\ & \overrightarrow{-1} \end{aligned}$	$\stackrel{\stackrel{1}{7}}{7}$		$\begin{aligned} & 0 \\ & \underset{F}{7} \end{aligned}$	$\stackrel{\rightharpoonup}{\square}$	$\stackrel{\infty}{\boldsymbol{l}}$	$\begin{aligned} & 0 \\ & 7 \end{aligned}$	－	

Table 15 （continued）

$\underset{\sim}{H}$		$\begin{array}{ccc} N & H \\ 1 & 1 & 1 \end{array}$	$\underset{1}{\circ}$	$\begin{array}{ccc} 0 & 0 \\ 0 & 0 \\ i & 0 \\ 1 & 1 & 0 \end{array}$	${ }_{1}^{10} \underset{1}{7}$	$\stackrel{\circ}{8} \stackrel{1}{\circ} \underset{1}{7}$	어N	H80
$\left\|\begin{array}{cc} -1 & 2 \\ -1 & 0 \\ 1 & 11 \\ \cline { 1 - 1 } \end{array}\right\|$			N N ¢－	$\stackrel{9}{9} \stackrel{-}{+}$	$\begin{aligned} & N \nsubseteq \\ & +\underset{+}{+} \end{aligned}$	$\stackrel{\leftarrow}{-7}$	$\begin{aligned} & \text { H응 } \\ & \text { N } \\ & +1 \\ & + \end{aligned}$	－
$\stackrel{\text { N }}{ }$								
\cdots	옹 ジ ボ 당 늣				Nㅣㅇ 8 N 웅 ค 턱		\cdots －i ${ }^{\circ}$ N ポ	8둑 ウ் ジ 的 \rightarrow N
$\left\|\begin{array}{cc} 5 & 0 \\ \text { is } & 1 \end{array}\right\|$								
σ								
${ }^{10}$		$\begin{array}{ll\|l} \hline \infty & 10 & 10 \\ +1 & 8 \\ 0 & 8 & 8 \\ 0 & 10 & \infty \\ \hline 1 & 10 & 0 \\ 1 \end{array}$						$\begin{array}{ll\|l} 38 & 8 & 8 \\ 108 & 8 \\ 0 & N & 6 \\ \hline \end{array}$
－								
ω	$\begin{array}{ll\|l} \text { O} & \infty & 0 \\ 8 & \infty \\ \infty & 0 \\ \hline \end{array}$			｜cc｜c				
15								
H		N	R	$\begin{array}{ll} \infty \\ 10 \\ 10 \\ 10 & 8 \\ \hline 0 \end{array}$	-iNe	$\begin{aligned} & 418 \\ & \text { He e } \\ & \text { ée } \end{aligned}$	Ros	$\underset{\sim}{\circ} \underset{\sim}{\text { NNㅇ }}$
∞	ポった。	パ゙さ		$\stackrel{10}{\sim}$	$\cdots \infty$	¢ ¢ ¢ ¢		かo
N								
\sim	$\stackrel{\rightharpoonup}{\text { N̈ }}$	N	ヘ	H	＋	－	$\stackrel{\text { N }}{\text {－}}$	$\stackrel{\infty}{\text { N }}$

Table 15 （continued）

$\underset{\sim}{4}$	$\|$$\substack{\text { ¢ } \\ 1}$			$\begin{aligned} & \text { HN N N } \\ & \text { N } \\ & \text { N1 } \\ & 1 \end{aligned}$		$$	$\stackrel{\infty}{\circ} \stackrel{1}{\circ}$ 111	111
	110	$\underset{1}{\underset{1}{4} \underset{+}{\circ} \circ}$	$\begin{aligned} & \text { OH O } \\ & \underset{+}{N}+\underset{+}{\circ} \end{aligned}$	$\begin{aligned} & \text { H NO } \\ & +\underset{+}{+} \end{aligned}$		$\underset{\sim}{\circ} \underset{1}{\circ}$	$\underset{+}{\underset{+}{+10} \underset{+}{N}}$	$10+10$ $\sim+$ +
$\stackrel{\text { N }}{\sim}$		 ம் ذi 닝 ๗． กํ ㄲ				용ㅋㄱ シ்ஸ ®N N HN N	$\cdots \infty$ ヘ่ เค ค ず คึ 궁	
$\stackrel{H}{\square}$			か N ๗்ல் 耸 ๗ल		N N N $\dot{\circ}$ ヘ。 든 คึ คึ			$\overbrace{6}^{-\infty}$ $15 \dot{\circ} \dot{\circ}$ \％ 그ㄱㅛㅜㅇ
$\left\lvert\, \begin{array}{ll} r & 0 \\ +5 \\ \hline 10 & 1 \end{array}\right.$								
${ }^{\circ}$								
15								
－	$\left\|\begin{array}{lll}02 & 4 \\ \hline & \infty \\ 0 & + \\ 0 & 0 \\ 0 & 0 \\ 1 & 1\end{array}\right\|$							
ω	，	$\begin{array}{ll\|l} \hline 8 & \mathfrak{N} & \infty \\ 8 \\ \hline \end{array}$	（1）｜cc｜c					穴
15								
H	$\|$$\infty$ ∞ ∞ ∞ $\rightarrow+$ \rightarrow	$\underset{\sim}{\infty} \underset{\infty}{\mathbb{N}} \underset{\sim}{N}$	$\underset{\sim}{\bullet} \underset{\infty}{\underset{\sim}{N}} \stackrel{\infty}{\infty}$	$\begin{array}{ll} \infty \\ N \\ \infty & \infty \\ \infty & \infty \\ \infty \end{array}$	$\underset{\sim}{\infty} \underset{\infty}{\infty} \underset{\sim}{\infty}$	$\begin{array}{lll} \infty \\ \infty \\ \infty & \infty \\ \infty & \infty \\ \infty & \infty \\ \infty \end{array}$	$\begin{array}{lll} \infty & \infty \\ \infty \\ \infty \\ \infty \\ \infty & 0 \\ \infty & 0 \end{array}$	$\underset{\sim}{-1} \underset{\sim}{\infty}$
∞	－	－	$\rightarrow \infty$	N \sim_{∞}^{\sim}	$\underset{\infty}{\infty}$	$\underset{\infty}{\infty}$	$\underset{\infty}{\infty} \times \infty$	
N				$\begin{aligned} & 0 \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				
\cdots	－	$\begin{aligned} & 0 \\ & \text { n } \end{aligned}$	$\begin{aligned} & \overrightarrow{-1} \\ & \stackrel{n}{2} \end{aligned}$	N	$\begin{aligned} & \text { M్ß } \\ & \underset{\sim}{2} \end{aligned}$	H	$\begin{aligned} & 10 \\ & 9 \\ & \hline 1 \end{aligned}$	0 -1

Table 15 （continued）

\pm		获荷					$\begin{gathered} \infty \\ \infty \\ \infty \\ \underset{\sim}{\infty} \\ \underset{\sim}{N} \\ \hline \end{gathered}$	
			$\begin{aligned} & \text { +N゚ } \\ & +i \end{aligned}$		$\stackrel{\circ}{\infty}$			
$\stackrel{\text { N }}{ }$	サㅇㅇㅇㅇ ヘi ${ }^{\circ} \mathrm{B}$ సた ค N N				ザ囚゚ロ คิ ค் だか $\stackrel{\infty}{\infty}$	ค ® ∞ －N N		がが心 亏i is $\stackrel{\infty}{\infty} \stackrel{-1}{\circ} \stackrel{\infty}{\underset{\sim}{\infty}}$ N N
$\underset{\sim}{-}$			옹ㅇㅇㅇ ผ่ คึ ํㅜㅇ $\cdots{ }^{2}$ N				N ${ }_{\sim}^{\infty}$ N $\infty_{0}^{\infty} \infty$ ${ }^{10} 9$ 둥	ャッロ ล่ ํㅗ ถ่ 内
$\stackrel{\sim}{+} \underset{\sim}{+}$								
${ }^{\circ}$								
∞								
－								a A － － 1
\bigcirc	$\left\|\begin{array}{l}0 \\ \infty \\ \infty \\ \sim \\ 1\end{array}\right\|$							
15								
\nrightarrow	せ 心1	B్			$\begin{aligned} & 085 \\ & \underset{\sim}{\circ} 8 \underset{\sim}{\circ} \\ & \hline \end{aligned}$	옹악		$\stackrel{\text { 㭼1 }}{ }$
∞	1888		088	∞ \＆${ }^{\circ}$	∞ ¢	$\leftarrow \infty$	∞ ¢	$\begin{gathered} \infty 88 \\ \infty \\ -1 \\ \hline \end{gathered}$
N								
\rightarrow	ヘ	$\underset{\sim}{\infty}$	$\begin{aligned} & \text { ®్లి } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{4} \end{aligned}$	$\underset{\sim}{7}$	$\underset{\Psi}{\underset{\sim}{*}}$	$$	$\xrightarrow{\rightrightarrows}$

Table 15 （continued）

荘	$\begin{aligned} & \text { 등 N } \\ & \text { N } \end{aligned}$		Ho			N Nㅡㅇ		
$$			$\begin{aligned} & \infty \\ & \cdots \\ & \cdots \\ & \cdots \\ & \cdots \end{aligned} 1$				$\stackrel{0}{\infty} \underset{\sim}{1} \underset{1}{1} \stackrel{0}{4}$	$\begin{gathered} \text { No } \\ \stackrel{\rightharpoonup}{7} \stackrel{0}{7} \\ \underset{1}{7} \\ \hline \end{gathered}$
$\stackrel{\sim}{\square}$				๓ N $\infty \underset{\sim}{\infty}$ ※ิ	N○ ํํ 잉 © 内		뻥 잉 악 $\dot{\infty} \dot{\infty} \dot{\circ}$ 잉 © －${ }^{\circ}$	ヘ잉 $\infty \times \infty$等 고우N
$\stackrel{-}{7}$						농 ம் க் 	옹요 $\dot{\circ} \dot{\circ} \dot{\circ}$ 앙 논 －	あなが出 が心 サ ন্응
								$\begin{array}{llll} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \\ 7 & 0 & 0 & 0 \end{array}$
\bigcirc								
∞		$\begin{array}{l\|l\|l} \hline \text { B } 8: 8 \\ \text { B } \\ \text { His } & 8 \\ 0 & 0 \\ 0 \end{array}$		$$				
－								$$
\bullet				$\begin{array}{ll\|l} 0 & \infty & 0 \\ 8 & 0 \\ 0 & 0 & 10 \\ 0 & \dot{0} & 0 \\ + & 1 & 1 \\ + \end{array}$				
\llcorner								
\square			N ${ }_{\text {N }}^{\text {N }}$	H゙섮				
∞	¢ 8 ¢	－\％\％	ふ®	お和 ${ }^{\circ}$	N\％${ }^{\circ}$	が®	ザ灾景	봉ㅇㅇㅇ
N								
\rightarrow	$\begin{aligned} & 98 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \stackrel{O}{4} \\ & \underset{H}{2} \end{aligned}$	$\underset{\sim}{\text { V }}$	$\begin{aligned} & \infty \\ & \underset{\sim}{1} \end{aligned}$	$\stackrel{g}{\underset{\sim}{2}}$	$\begin{aligned} & 0 \\ & \stackrel{8}{4} \end{aligned}$	$\stackrel{10}{1}$	$\xrightarrow{\text { N1 }}$

Table 15 （continued）

\pm	$\begin{array}{ccc} 0 & 0 \\ 6 & 0 \\ 1 & 0 \\ 1 & 1 \\ \hline \end{array}$	$\begin{aligned} & \text { No } \\ & \text { No } \\ & \text { of } \\ & 1 \\ & 1 \end{aligned}$		｜$\|c\| c_{\text {N }}^{\text {N }}$				$\begin{gathered} \text { Fon } \\ \text { on } \\ \text { on } \\ 1 \\ i \end{gathered}$
$\begin{array}{ll} -\overrightarrow{7} & 0 \\ 1 & \\ \underset{\sim}{1} & 11 \end{array}$				$\|\mid \stackrel{\substack{\infty \\ \\ \hline}}{ }$	$\stackrel{6}{6} \stackrel{0}{0} \stackrel{0}{1}$		$\begin{gathered} \circ \\ \underset{N}{\infty} \underset{\sim}{\circ} \\ \underset{1}{N} \\ 1 \end{gathered}$	
$\stackrel{\sim}{\sim}$	\％ 18 ∞ 논 获－${ }^{\circ}$ 욱 웅	तN ヘ் $\dot{0}$ $\sim_{\infty}^{\infty}{ }^{\circ}$ N No			管 8 $\dot{\sim} \dot{\circ}$ $\ddot{m}_{0}^{\infty}{ }_{0}^{\infty}$ N N N	サ－9 9 $\stackrel{\circ}{\circ} \dot{\infty}$ 合 ल ल N		に会 is $\dot{\circ}$ N ㄴㅇㅇ N
$\vec{\sim}$	N N ※ 甘 灾灾 出 ${ }^{\circ} \infty$ －-N	문 둥 かi N N			옥옹 －～் $\underset{\sim}{6} 8$ N	๗ 守 $\dot{\boldsymbol{\sigma}} \dot{\infty}$ 용 ก ๓ N	ค 家灾 N ค욱	 ヘั่ ஸ் 농 8 かNN
$\underset{+1}{+}$								
0°								
∞								
－				$\left\|\begin{array}{cc}-1 & 0 \\ -1 & 0 \\ \cdots & 0 \\ \underset{1}{1} & + \\ +\end{array}\right\|$				
\bullet	8 8 8 0 0 0 0 1 0 0		只				∞ 0 0 0 \sim 0 0 1 0 0 0 0 0 1 1 1	$\begin{array}{lll\|l} \infty & 9 & 0 & \ddot{H} \\ \infty & \infty & \stackrel{0}{0} & \underset{N}{N} \\ \dot{\infty} & \dot{0} & 0 \\ + & 1 & 1 & + \end{array}$
\sim			농上 円i 					
H				运宕｜			芯通合	閣乐号号
∞	18	1288	128%	¢ ¢ ¢ 1	$\stackrel{\infty}{\infty}$		$8{ }^{\circ} 8$	$\underset{\sim}{8} 8$
N								
\neg	会	棠	$\begin{aligned} & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$	苍	－	$\stackrel{9}{0}$	8 0 1

Table 15 (continued)

1	2	3	4	5	6	7	$5+6$		$5+7$	11	12	$12-11$$=13$	14
							8	9	10				
161	Westerstede Jever Varel	$\begin{aligned} & 100 \\ & 102 \\ & 103 \end{aligned}$	$\begin{aligned} & 460 \\ & 461 \\ & 462 \end{aligned}$	442356.880	-1. 254	-0.651	4423	55.626	56.229	$\begin{aligned} & 24885.63 \\ & 20867.51 \\ & 35062.45 \end{aligned}$	$\begin{aligned} & 24884.00 \\ & 20865.97 \\ & 35060.04 \end{aligned}$	$\begin{aligned} & -163 \\ & -154 \\ & -241 \end{aligned}$	$\begin{aligned} & -270 \\ & -244 \\ & -392 \end{aligned}$
				355518.309	+0.266	-0.470	3555	18.575	17.839				
				994047.348	-0.254	-0.120	9940	47.094	47.228				
				1800002.537	-1.242	-1.241	18000	01.295	01.296				
162	Jever Varel Stolham	$\begin{aligned} & 102 \\ & 103 \end{aligned}$	$\begin{aligned} & 469 \\ & 463 \end{aligned}$	$\begin{aligned} & 3925 \\ & 8724.564 \\ & 87 \\ & \hline \end{aligned}$		$\begin{aligned} & -0.406 \\ & -0.056 \end{aligned}$	3925 8724 5309	59.564 51.858 09.827	59.158	$\begin{aligned} & 19752.66 \\ & 31066.21 \\ & 24885.63 \end{aligned}$	\bar{Z}	\bar{Z}	$\overline{-270}$
									51.802				
									10.283				
							18000	01.249	01.243				
163	Esens Jever Wangeroge	$\begin{aligned} & 101 \\ & 102 \end{aligned}$	$\begin{array}{r} 504 \\ 467 \\ \hline \end{array}$	$\begin{array}{lll} 69 & 00 & 19.405 \\ 58 & 12 & 34.291 \end{array}$		$\begin{aligned} & -0.133 \\ & -0.406 \end{aligned}$	6900 5812 5247	19.405 34.291 07.417	19.272	$\begin{aligned} & 24565.26 \\ & 22364.68 \\ & 20954.23 \end{aligned}$	$\overline{\overline{20952.64}}$	$\overline{-}$	$\overline{-249}$
									33.885				
									07.951				
							18000	01.113	01.108				

Conformably to table 14 I mentioned in the left part of table 16 the 13 largest and in the right part the 13 smallest closing errors (column 4) and the standard deviations in the sum of the three angles (column 3) which could be expected in the several triangles (column 1) because of the accuracy of the angular measurement. If all three angles are measured with the same instrument this standard deviation is of course $m " / 3$ with $m=1 " .6$ or $m=3 " 4$. In some exceptional cases (triangles 121,103 and 33) column 3 must be computed from $\left(m_{A}^{2}+m_{B}^{2}+m_{C}^{2}\right)^{\frac{1}{2}}$.

Table 16

$\begin{gathered} \text { Trian- } \\ \text { gle } \end{gathered}$	m	$\mathrm{m} \sqrt{1 /}$	closing error "	$\begin{gathered} \text { Trian- } \\ \text { gle } \end{gathered}$	m	m ${ }_{\text {" }}$	closing error "
1	2	3	4	1	2	3	4
107	1.6	2.8	+7.657	99	1.6	2.8	$+0.110$
31	1.6	2.8	-5.243	153	3.4	5.9	+0.104
$121 *$	-	4.1	-3.958	109	1.6	2.8	+0.090
148	3.4	5.9	-3.757	$103 *$	-	4.1	+0.080
55	1.6	2.8	-3.155	37	1.6	2.8	-0.075
68	1.6	2.8	-2.875	51	1.6	2.8	+0.070
143	3.4	5.9	-2.819	131	3.4	5.9	+0.043
130	3.4	5.9	+2.607	158	3.4	5.9	-0.040
128	3.4	5.9	+2.596	$33^{* *}$	-	4.1	+0.039
88	1.6	2.8	+2.466	95	1.6	2.8	-0.038
149	3.4	5.9	-2.459	30	1.6	2.8	+0.026
138	3.4	5.9	+2.448	14	1.6	2.8	-0.012
67	1.6	2.8	-2.394	91	1.6	2.8	0.000
* 2 angles in 1807, 1 in 1810; (see table 3)				${ }^{* *} 2$ angles in 1802,1 in 1810			

One sees that for 24 out of 26 triangles and especially in the right part of the table the closing error is much smaller than the standard deviation in the sum of the three angles that may be expected. As in section 14 here, too, is only one conclusion: From the several series of measured angles Krayenhoff must have chosen those, which gave a small closing error.

It does not appear from the Précis Historique whether Krayenhoff saw the relation between the angles of the Zuiderzee pentagon, expressed by the 149 th polygon condition:

$$
\mathrm{p}_{240}+\mathrm{p}_{239}+\mathrm{p}_{478}+\mathrm{p}_{475}+\mathrm{p}_{481}+\mathrm{p}_{484}-\mathrm{p}_{279}-\mathrm{p}_{280}-\mathrm{p}_{283}-\mathrm{p}_{286}-7^{\prime \prime} .706=0
$$

on page 57 .

If one substitutes, however, in this equation the amounts p found by Krayenhoff (they can be borrowed from table 9 , column 9) then one finds $+0.097=0$. The very small difference of about 0 ". 1 shows in my opinion that Krayenhoff must have seen the condition the angles had to comply with.
16. Analysis of the closing errors in the side equations

A survey of the reliability of the closing errors in the side (sine) equations, finally, is given in table 17. The 13 largest closing errors (left part, column 5) are mentioned there next to the standard deviations M in the closing errors (column 4) which can be expected on the ground of the accuracy of the angular measurement. In the same way one finds in the right part of the table the 13 smallest closing errors and the corresponding amounts M.

Table 17

Central Points		M^{2}	M	Closing error	Central Points		M^{2}	M	Closing error
No.	Name				No.	Name			
1	2	3	4	5	1	2	3	4	5
86	Groningen	354.9	18.8	-37.488	98	Aurich	461.5	21.5	+4.985
72	Robbezand	79.2	8.9	+37.369	70	Meppel	245.8	15.7	+4.967
81	Drachten	322.8	18.0	+37.166	14	Hulst	146.1	12.1	+4.522
79	Leeuwarden	248.6	15.8	-37. 127	60	Lemelerberg	172.3	13.1	-3.406
74	Harlingen	148.0	12.2	-32.127	36	Utrecht*	123.4	11.1	-2.952
43	Imbosch	78.2	8.8	-32.006	23	Breda	76.6	8.8	-2.086
31	Gouda	184.0	13.6	+31.540	67	Staveren	52.3	7.2	-1.920
82	Oosterwolde	425.6	20.6	-30.927	33	's-Hertogenbosch	77.0	8.8	+1.457
76	Oldeholtp	206.6	14.4	+30.414	32	Gorinchem	75.7	8.7	+1.345
59	Kampen	91.4	9.6	-29.078	87	Rolde	364.5	19.1	-0.670
89	Uithuizermed	787.	42.3	+27.150	22	Willemstad ${ }^{*}$	80.4	9.0	-0.476
94	Emden	338.6	18.4	+24.512	63	Uelsen	132.9	11.5	-0.407
90	Holwierde	892.8	29.9	-24.024	24	Hilvarenbeek	81.9	9.0	+0.089
Assumed that at Dordrecht, Gouda and Leiden Krayenhoff measured with the less accurate instrument									

The amounts in column 5 are the known terms of the side equations around the central points mentioned in column 2. For Harlingen (station No. 74) e. g. this
term is -32.127 . It can be found from the equation:

$$
\begin{aligned}
& 1.311 \mathrm{p}_{354}+0.238 \mathrm{p}_{327}+2.395 \mathrm{p}_{322}+0.862 \mathrm{p}_{319}+1.096 \mathrm{p}_{344}+0.234 \mathrm{p}_{347^{+}} \\
& +2.016 \mathrm{p}_{350^{-}}-0.733 \mathrm{p}_{352^{-}}-2.177 \mathrm{p}_{325^{-}} 0.004 \mathrm{p}_{323^{-}}-1.950 \mathrm{p}_{320^{-}}-0.468 \mathrm{p}_{345^{-}} \\
& -2.127 \mathrm{p}_{348^{-}}-0.266 \mathrm{p}_{351}-32.127=0
\end{aligned}
$$

derived in section 13 (page 76).
The square M^{2} of the standard deviation in the sum of the amounts:

$$
\begin{aligned}
& \text { 1. } 311 \mathrm{p}_{354}+0.238 \mathrm{p}_{327}+\ldots \ldots-0.266 \mathrm{p}_{351} \text { is: } \\
& \mathrm{M}^{2}=1.311^{2} \mathrm{~m}_{354}^{2}+0.238^{2} \mathrm{~m}_{327}^{2}+\ldots \ldots .+0.266^{2} \mathrm{~m}_{351}^{2} \text { with } \\
& \mathrm{m}_{354}^{2}=\mathrm{m}_{327}^{2}=\mathrm{m}_{322}^{2}=\mathrm{m}_{319}^{2}=\mathrm{m}_{344}^{2}=\mathrm{m}_{347}^{2}=\mathrm{m}_{352}^{2}=\mathrm{m}_{325}^{2}=\mathrm{m}_{323}^{2}= \\
& =\mathrm{m}_{320}^{2}=\mathrm{m}_{345}^{2}=\mathrm{m}_{351}^{2}=2.61 \text { and } \mathrm{m}_{350}^{2}=\mathrm{m}_{348}^{2}=11.5 .
\end{aligned}
$$

One finds $\mathrm{M}^{2}=148.0$ or $\mathrm{M}= \pm 12.2$. The closing error is rather large, about 2.6 M . The closing error in the side equation around Robbezand (station No. ${ }^{72}$) is very bad. It is more than 4 M . It might be possible that this bad result must be attributed to lateral refraction: for all the ten angles concerned with the equation the signal on the sand-bank in the middle of the Dutch shallows was one of the sighting points. As already remarked, Krayenhoff was convinced of the existence of lateral refraction [55]. Gauss too was of that opinion. Bessel, however, considered lateral refraction the scapegoat for bad observers [56].

I dare not say whether the strongly heated sand and heather fields of the Veluwe will also have furthered lateral refraction. If so it might be an explanation for the great disharmony between the amounts in column 4 and 5 for the station Imbosch.

For the other side equations round the stations in the left part of the table the disharmony is not too great. For the numbers 89,94 and 90 the results are even very good and for the other ones the closing error is smaller than 2.5 M . In the right half of the table all closing errors are very much smaller than the amounts M. It is obvious to assume that for:

$$
\simeq 5<\mid \text { closing error } \mid<\simeq 24
$$

the harmony between the closing errors and the computed M's will in general be better which pleads both for the observations used by Krayenhoff and the amounts m computed in table 6 (section 8).

For the side equation round Amsterdam (station No. 40) e.g. $\mathrm{M}=11.0$ and the (absolute) amount of the closing error is 22.309. For those round Bergen op Zoom
(No. 17, $\mathrm{M}=8.4$), Rotterdam (No. 28, $\mathrm{M}=11.2$), Grave (No. 34, $\mathrm{M}=11.0$), Amersfoort (No. 42, $\mathrm{M}=9.3$), and Oldenzaal (No. $61, \mathrm{M}=11.3$) the absolute amounts of the closing errors are $9.229,19.575,7.680,20.334$, and 11.317 , respectively.

17. Consideration on the rejection of series measured in the triangulation

As already remarked in sections 14 and 15 the closing errors round the central points and those in the triangles of the network are much too low in connection with the standard deviation in the angular measurement. Apparently Krayenhoff was inclined - may be advised by van Swinden - to reject those series which made several closing errors too large in his opinion. For Cohen Stuart this rejectable method was the reason to condemn Krayenhoff's triangulation. He was of the opinion that in principle all the 1514 series in which the 505 angles of table 4 (see section 7) were measured, had to be used and that the 389 series mentioned in column 5 of that table were wrongly rejected. "In order not to fall myself into arbitrariness" he remarks on page 29 of his book "I rejected only those series (11 in total) where an apparent error could be proved" [57] .

In retaining all the other 378 series Cohen Stuart went much too far in my opinion. He took into too little account that the dynamic Krayenhoff on all hours of the day tried to get results from his measurements, even under less favourable weather conditions. His observation registers in which he noted faithfully all his observations prove this. It is clear that of the great number of measurements or better - of attempts for measurements, many had to be rejected because too heavy heat shimmer, too strong wind and arising fog, rain or darkness made the results of these series unreliable. It won't do to retain the series as Cohen Stuart did.

For the station Enkhuizen (No. 57; see table 5 in section 7), I already gave some examples. Some other ones are given in table 18. The first part of the table relates to all the observations in Amsterdam (station No. 40), the second part to all the observations at Rhenen (station No. 37) and the third part to the 6 series of angle 87 measured at the station Den Haag (No. 27). The fourth part finally, relates to the 36 series with 16 repetitions each in which the 7 angles at Jever (station No. 102) were measured with the less accurate instrument. As one sees from the asterisks in column 2 only 16 of the 36 series at this station were retained. The weather conditions during the measurements at Jever were translated from the Dutch text in the copy at Topografische Dienst at Delft.

Table 18

Number		Eccentric angle	Weather conditions ${ }^{*}$)
angle	series		
185	2	$53^{\circ} 24^{\prime} 29^{\prime \prime} .000$	Very faint objects; inconvenient heat shimmer; very uncomfortable position
185	$7{ }^{*}$	33.333	Slight fog; objects rather visible; towards the end of the series it begins to rain
185	$11 *$	$30^{\prime \prime} .000$	Twilight (june 18th, 8 p.m.) makes the objects less visible, especially the weighhouse steeple at Alkmaar
189	3	$78^{\circ} 49^{\prime} 09^{\prime \prime} .166$	Very faint objects; now and then heat shimmer
189	10	$09^{\prime \prime} .772$	Tower of Edam very clearly visible, that of Naarden less clearly
189	12**	11.136	A kind of haze makes the objects less visible
162	4^{*}	$38^{\circ} 0129.423$	Slight fog; Utrecht very faint and only now and then lit up. Also Naarden
162	13	(31. 50)	Very faint objects; series stopped because of rain
162	$14 *$	29.583	Slight fog, inconvenient heat shimmer; objects, however, visible
160	5	$43^{\circ} 13^{\prime} 16^{\prime \prime} .000$	Slight fog
160	$15 *$	13 ". 958	Notwithstanding the hazy atmosphere the objects rather visible
160	17^{*}	$13^{\prime \prime} .958$	Objects clearly visible; inconvenient heat shimmer
157	6	$76^{\text {O }} 4125.000$	Slight fog; Haarlem rather visible
157	16^{*}	21.250	Inconvenient heat shimmer; the tower of the abbey at Nieuwkoop very faint
157	$18 *$	$23^{\prime \prime} .571$	Very faint objects; haze forces to break off the observation
157	$19 *$	$23^{\prime \prime} .750$	Objects very clearly visible; very good observation
182	1 *	$69^{\circ} 52^{\prime} 47^{\prime \prime} .000$	Very faint objects
182	$8{ }^{*}$	$49^{\prime \prime} .750$	Rather visible objects; good observation
182	9^{*}	50.250	As the preceding observation

*). The series marked with an asterisk were retained.

173	9	$40^{\circ} 06^{\prime} 40^{\prime \prime} .750$	Veluwe very faint; heavy heat shimmer
173	20^{*}	30.1000	Very good observation
170	$7{ }^{*}$	$61^{\circ} 43^{\prime} 26.1666$	Heavy heat shimmer; Veluwe hardly visible; doubtful observation
170	8^{*}	$25^{\prime \prime} .909$	Very good observation
167	6	$34^{\circ} 59^{\prime} 41^{\prime \prime} .136$	Heat shimmer; Amersfoort hardly visible; doubtful observation
167	19^{*}	37". 500	Very good observation
140	5	$45^{\circ} 13{ }^{\prime} 07^{\prime \prime} .500$	Gorinchem bad; very inconvenient heat shimmer; very doubtful observation
140	16^{*}	01". 590	Very good observation
140	$17{ }^{*}$	$00^{\prime \prime} .000$	Excellent observation
143	4^{*}	$40^{\circ} 21^{\prime} 45^{\prime \prime} .000$	Good observation
143	$18{ }^{*}$	45". 000	Very good observation
145	3^{*}	$59^{\circ} 41^{\prime} 50^{\prime \prime} .625$	Very good observation
145	11^{*}	45.000	Very good observation
145	14^{*}	$40^{\prime \prime} .000$	Good but objects lit up only by intervals; doubtful observation
148	2^{*}	$30^{\circ} 31^{\prime} 50.447$	Very good observation
148	10^{*}	45.208	Very good observation
148	13^{*}	40 ". 500	Nijmegen faint; doubtful observation
177	$1{ }^{*}$	$47^{\circ} 24^{\prime} 13^{\prime \prime} .636$	Very raint objects
177	12^{*}	13.333	Horizon hazy; still good observation, Imbosch faint
177	$15 *$	15.'000	Imbosch very faint; heavy heat shimmer; still good observation
87	2^{*}	$62^{\circ} 23^{\prime} 40^{\prime \prime} .909$	Very strong wind; good visibility
87	3 *	43.250	Less strong wind; rather good observation
87	4^{*}	36.500	Very inconvenient strong wind; doubtful observation
87	$5 *$	$42^{\prime \prime} .000$	Very inconvenient strong wind; doubtful observation
87	7	45.500	Very good visibility; very good observation
87	9	44.250	Excellent objects; excellent observation

456	3	$30^{\circ} 17^{\prime} 58^{\prime \prime} .125$	In the beginning rather good visibility; at the end faint
456	10^{*}	65.1000	Very clear objects
456	20^{*}	66.250	Clear objects
456	28	63.750	Because of twilight it is very difficult to point at Strakholt
456	35	63 "' 750	Visible objects
453	2^{*}	$45^{\circ} 42^{\prime} 43^{\prime \prime} .750$	Visible objects
453	9	40.000	Visible objects
453	19	39 ". 375	Visible objects
453	34	43 ". 750	The objects now and then lit up
453	$36{ }^{*}$	41 ". 875	Excellent objects
467	*	$58^{\circ} 12^{\prime} 26^{\prime \prime} .250$	Visible objects
467	8^{*}	45.000	Rather visible objects
467	$17 *$	41". 250	Visible objects
467	18^{*}	${ }^{41}{ }^{\prime \prime}{ }^{\prime 2} 250$	Visible objects
467	25	36.250	Visible objects; Esens at the end faint
467	$33 *$	43 ". 125	Clearly visible objects
468	4	$109^{\circ} 59^{\prime} 25^{\prime \prime} .000$	Very clearly visible objects
468	14^{*}	37". 500	Faint objects; can be distinguished, however
468	$15 *$	45.000	Rather visible objects; Wangeroge partially lit up
468	21	$30^{\prime \prime} .000$	Excellent objects
468	$24 *$	38.	Visible objects; very strong wind
468	30	33". 750	Excellent objects
469	5	$39^{\circ} 26^{\prime} 18^{\prime \prime} .750$	Very clearly visible objects
469	13^{*}	15". 937	Stolham very faint; Varel clearly visible
469	16	25.'625	Stolham very faint; Varel clearly visible
469	22^{*}	13.125	Good observation
469	$29 *$	${ }_{15}{ }^{\prime \prime} .000$	Excellent observation
461	${ }^{6}$	$35^{\circ} 55^{\prime} 35^{\prime \prime} .000$	Westerstede faint; rather good observation
461	$12 *$	$33^{\prime \prime} .750$	Westerstede lit up and faint; Varel very clearly visible
461	23	45. ${ }^{\prime \prime} 000$	Good observation
461	27	38.125	Clearly visible objects
461	31 *	${ }^{37}{ }^{3}, 500$	Excellent objects
459	$7{ }^{*}$	$40^{\circ} 27{ }^{03}{ }_{\text {, }} 750$	The objects very faint
459	11	04,375	Visible objects
459	26 *	${ }^{06 .} 250$	Clearly visible objects
459	32^{*}	01.875	Clearly visible objects

In my opinion it is absolutely justified that at Enkhuizen (see table 5) Krayenhoff did not use the series 6 (Edam very faint, doubtful observation) and 7 (inconvenient heat shimmer, doubtful observation) in his computation. Because of the weather conditions it seems also justified to reject series 2 of the measurements in Amsterdam and the series 9, 6 and 5 at Rhenen. It seems even unjustifiable to maintain series 13 in Amsterdam. For after only 10 repetitions the series of the angle 162 between Utrecht and Naarden was stopped because of the rain. I should be able to supply these examples with many others.

On the other hand Krayenhoff is also inconsequent in his retaining or rejecting series and his method is in many cases incomprehensible if one does not see it against the background of getting good closing errors in the station equations and the triangles. In table $5 \mathrm{e} . \mathrm{g}$. he retained series 12 notwithstanding the weather description "very strong wind, objects rather visible, doubtful observation". I am convinced that he would have rejected it if it would have influenced the said errors in an unfavourable way.

In table 18 one can ask oneself why series 10 in Amsterdam was rejected and series 12 was retained and why, notwithstanding the unfavourable weather conditions, the series 16 and 18 were retained. Series 18 was even broken off after 14 repetitions because of fog. For the same reason it is incomprehensible that at Rhenen the series 7 and 13 were retained. Here too the examples can be extended with many others.

A clear example of arbitrariness I give for the station Den Haag. It concerns the eccentric angle 87 between Brielle and Rotterdam. The series 2, 3, 4 and 5 are retained. The series 7 and 9 , however, measured under ideal weather conditions on April 28th, 1810 at $8^{h} .30$ and $9^{h} .30$ a.m., respectively, are rejected. It is impossible to trace the reasons for the rejection. However, it cannot have been his intention to make the closing error in triangle 31 look better than it is, for according to table 9 (column 9) the sum of the measured angles 85,86 and 87 , reduced to horizon and centre, must be corrected with +5.242 in order to find a closure. This amount would have been smaller if the series 7 and 9 should have been retained and the doubtful observation in series 4 would have been rejected. That he did not do that might, at any rate for this case, plead for the care with which Krayenhoff selected the series to be used for the computation of his network.

In my opinion the most serious and inadmissible arbitrariness occurs in the choice of the series in the northern part of the network. The station Jever (No. 102)
is an example. It seems correct (see the 4th part of table 18) that for the determination of the eccentric angles 456 and 453 the series $10,20,2$ and 36 were retained and that 3,28 and 34 were rejected. But why were the series 35, 9 and 19 rejected, measured under the same weather conditions as those of series 2 ? For the determination of angle 467 the weather condition in series 1 was apparently better than in series 8 . Nevertheless 1 was rejected and 8 retained and with 8 the series 18 and 35 . Apparently Krayenhoff wished to use here those observations which gave the highest amount for the angle.

From the six series in which angle 468 was measured the same preference is perceptible: the series with the "very good objects" (No. 4) and "excellent objects" (Nos. 21 and 30) were rejected and series 14 (faint objects) was retained. For the determination of angle 469 it is incomprehensible that series 5 was rejected and 13 was retained but if 13 had to be used why should 16 then be rejected? Only one series (No. 12) was used for the determination of angle 461. It is the worst of the five measured series. It is incomprehensible that 12 (Westerstede faint) was retained and the good and even excellent observations in the series 23, 27 and 31 were rejected. Apparently Krayenhoff found it necessary to use here the series with the lowest amount of the angle. The same can be said of the measurement of angle 459: the two lowest amounts in the series 7 and 32 were used notwithstanding "the objects (were) very faint" during the measurement of series 7. As one sees the weather conditions during the measurement of the series 11 and 26 were much better; nevertheless these series were rejected. It must be said that it is here a question of a serious arbitrariness, apparently only in order to find small closing errors. In table 19 I give a survey of the series which should have been used with less arbitrariness (column 2). The means of these series are in column 4. Columns 5 and 6 give the reductions to horizon and centre. I borrowed the amounts from Krayenhoff's computations. The reduced angles and those according to the Précis Historique are in the columns 7 and 8 . As one sees the closing error in the station Jever is -7.246 instead of +0.426 found by Krayenhoff. The first amount is much better in harmony with the accuracy of the angular measurement than the latter.

Table 19

Angles	Series		Measured mean	Reduction to		Reduced angles	Angles acc. to P. H.	Diff.
	Retained	Rej.		hor.	centre			
1	2	3	4	5	6	$4+5+6=7$	8	7-8=9
456	$10^{*}, 20^{*}, 35$	3 ,	$30^{\circ} 17^{\prime} 65^{\prime \prime} .000$	+0". 258	$-11^{\prime \prime} .975$	$30^{\circ} 17^{\prime} 53^{\prime \prime} .283$	$30^{\circ} 17^{\prime} 53^{\prime \prime} .908$	-0.625
453	$2^{*}, 9,19$	28 34	$45^{\circ} 42^{\prime} 41^{\prime \prime} .250$	$+0^{\prime \prime} .255$	-23.770	$45^{\circ} 42^{\prime} 17^{\prime \prime} .735$	$45^{\circ} 42^{\prime} 19.298$	$-1{ }^{\prime \prime} .563$
467	$\int_{1,8^{*}, 17,18}^{*},$	-	$58^{\circ} 122^{\prime} 38^{\prime \prime} .854$	+0"184	- 9 ". 018	$58^{\circ} 12^{\prime} 30^{\prime \prime} .020$	$58^{\circ} 12^{\prime} 34{ }^{\prime \prime} .291$	-4.271
468	25, $4,14^{*}, 15^{*}$,	-	$109^{\circ} 59^{\prime} 35^{\prime \prime} .000$	+0."880	-36.400	$109{ }^{\circ} 58^{\prime} 599^{\prime \prime} .480$	$109^{\circ} 58^{\prime} 64.1 .896$	$-5^{\prime \prime} .416$
469	$\begin{gathered} 21,24^{*}, 30 \\ 5,13,22^{*}, \\ 29^{*} \end{gathered}$	16	$39^{\circ} 26^{\prime} 15^{\prime \prime} .703$	+0". 115	-15". 238	$39^{\circ} 25^{\prime} 60^{\prime \prime} .580$	$39^{\circ} 25^{\prime} 59 . .564$	+1".016
461	6, 12 ${ }^{*}, 23$,	-	$35^{\circ} 55^{\prime} 37.1 .875$	+0". 121	-15". 562	$35^{\circ} 55^{\prime} 22^{\prime \prime} .434$	$35^{\circ} 55^{\prime} 18^{\prime \prime} .309$	+4". 125
459	$\begin{aligned} & 27,31 \\ & 7_{32^{*}}^{*}, 11,26, \end{aligned}$	-	$40^{\circ} 27^{\prime} 04^{\prime \prime} .062$	+0'. 337	-15 ". 177	$40^{\circ} 26^{\prime} 49.222$	$40^{\circ} 26^{\prime} 50^{\prime \prime} .160$	-0'.938
	32	4	$360^{\circ} 01^{\prime} 57^{\prime \prime} .744$	+2' ${ }^{\prime \prime} 150$	$-127^{\prime \prime} .140$	$359^{\circ} 59^{\prime} 52^{\prime \prime} .754$	$360^{\circ} 00^{\prime} 00^{\prime \prime} .426$	-7". 672

18. Krayenhoff's computation of his triangulation network and his efforts to make it
a closing mathematical figure
As an introduction to the computation of his triangulation network I already explained in some preceding sections how Krayenhoff reduced the measured space angles to the horizon (section 10) and to centre (section 11) and how the spherical angles of the several triangles, reduced to horizon and centre, were reduced to plane angles between the chords on the sphere (section 12). The further computation of the network can then be distinguished into:
a) a provisional computation of the lengths of the sides of the network;
b) a final computation of the lengths of the sides.

Both computations are carried out in the volume folio mentioned in section 4 under d . The provisional lengths may be found in tableau II of the Précis Historique, the final lengths in tableau III.

As Krayenhoff measured no base line in his network he had to start from the length of the chord Duinkerken-Mont Cassel $=27458.585 \mathrm{~m}$ of Delambre's triangulation [58].

For the computation of the provisional lengths of the sides Krayenhoff only took into account that in any triangle the sum of the measured angles reduced to horizon, centre and chords had to be 180°. In this phase he paid no attention to the other conditions. The condition was of course never quite satisfied. In contradistinction to Delambre who corrected each of the angles with a third of the closing error, Krayenhoff gave corrections which were dependent on the accuracy of the several angles. If, in his opinion, the angles of a triangle had the same weight, each of the angles was corrected with the same amount (e.g. in triangle 8). In other cases one of the angles remained unaltered; the closing error was then distributed over the two other angles (e. g. in triangle 9). In still other cases two angles remained unaltered and the "worst" angle obtained the whole of the closing error (e.g. in triangle 10).

After this very individual adjustment the provisional lengths of the sides (chords) were computed with the use of a 7 place logarithmic trigonometric table. Up to and including the sides of triangle Aardenburg-Brugge-Gent (10) there was only one way to do this as the first part of the triangulation network is a chain. After triangle 10, however, the results of the computation are dependent on the chosen route. Krayenhoff computed a great number of sides of his network in several chains of triangles marked in green, red, blue and yellow on a map belonging to the first edition of his Précis Historique. A small part of this map is represented in Fig. 15. The first

Fig. 15
(red) chain, marked with a dash-dot-dash line, follows the western part of the network. The second (blue) chain, marked with a dotted line, begins at the side Gent-Aardenburg of triangle 11 and goes in a northeastern direction. A third (green) chain, marked with a dashed line, starts from the side Bergen op ZoomHoogstraten in the blue chain and takes its way through the triangles $25,24,34$, $35,45,48,47,56,57,58,67(, 56,57,66$, respectively).

An example of the computation of the triangles $34-37$ is given in table 20 . The logarithms of the sines of the adjusted angles and those of the sides have been left out.

Table 20

No. triangle	Stations		Angles between chords		Opposite sides (metres)
	No.	Name	"measured"	adjusted	
1	2	3	4	5	6
34	$\begin{aligned} & 22 \\ & 29 \\ & 23 \end{aligned}$	Willemstad Dordrecht Breda	$\begin{array}{\|} 67^{\circ} 40^{\prime} 54^{\prime \prime} .094 \\ 66^{\circ} 08^{\prime} 56^{\prime \prime} .186 \\ 46^{\circ} 10^{\prime} 10^{\prime \prime} .439 \\ \hline 180^{\circ} 00^{\prime} 00^{\prime \prime} .719 \end{array}$	$\begin{array}{r} 67^{\circ} 40^{\prime} 54^{\prime \prime} .094 \\ 66^{\circ} 08^{\prime} 55^{\prime \prime} .467 \\ 46^{\circ} 10^{\prime} 10^{\prime \prime} 439 \\ \hline 180^{\circ} 00^{\prime} 00^{\prime \prime} .000 \end{array}$	$\begin{aligned} & 26280.054 \\ & 25982.048 \\ & 20493.428 \end{aligned}$
35	$\begin{aligned} & 29 \\ & 23 \\ & 32 \end{aligned}$	Dordrecht Breda Gorinchem	$77^{\circ} 000^{\prime} 25^{\prime \prime} .834$ $44^{\circ} 32^{\prime} 14^{\prime \prime} .181$ $58^{\circ} 27^{\prime} 20^{\prime \prime} .434$ $180^{\circ} 00^{\prime} 00^{\prime \prime} .449$	$77^{\circ} 00^{\prime} 25^{\prime \prime} .694$ $44^{\circ} 32^{\prime} 14^{\prime \prime} .042$ $58^{\circ} 27^{\prime} 20^{\prime \prime} .264$ $180^{\circ} 00^{\prime} 00^{\prime \prime} .000$	$\begin{aligned} & 30047.141 \\ & 21627.959 \\ & 26280.054 \end{aligned}$
36	$\begin{aligned} & 23 \\ & 32 \\ & 33 \end{aligned}$	Breda Gorinchem 's-Hertogenbosch	$46^{\circ} 10^{\prime} 45^{\prime \prime} .292$ $83^{\circ} 02^{\prime} 42^{\prime \prime} .796$ $50^{\circ} 46^{\prime} 29^{\prime \prime} .983$ $179^{\circ} 59^{\prime} 58^{\prime \prime} .071$	$46^{\circ} 10^{\prime} 45^{\prime \prime} .935$ $83^{\circ} 02^{\prime} 43^{\prime \prime} .439$ $50^{\circ} 46^{\prime} 30^{\prime \prime} .626$ $180^{\circ} 00^{\prime} 00^{\prime \prime} .000$	$\begin{aligned} & 27985.413 \\ & 38501.810 \\ & 30047.296 \end{aligned}$
37	$\begin{aligned} & 23 \\ & 24 \\ & 33 \end{aligned}$	Breda Hilvarenbeek 's-Hertogenbosch	$\begin{array}{r} 41^{\circ} 25^{\prime} 15^{\prime \prime} .184 \\ 92^{\circ} 49^{\prime} 52^{\prime \prime} .231 \\ 45^{\circ} 44^{\prime} 52^{\prime \prime} .479 \\ \hline 179^{\circ} 59^{\prime} 59^{\prime \prime} .894 \end{array}$	$41^{\circ} 25^{\prime} 15^{\prime \prime} .219$ $92^{\circ} 49^{\prime} 52^{\prime \prime} .267$ $45^{\circ} 44^{\prime} 52^{\prime \prime} .514$ $180^{\circ} 00^{\prime} 00^{\prime \prime} .000$	$\begin{aligned} & 25503.359 \\ & 38501.810 \\ & 27611.651 \end{aligned}$

The differences in length between the common sides in the several chains are mentioned in foot notes on the concerning pages of the Précis Historique.

The common sides Assenede-Hulst (triangles 13 and 14) e.g. and Hulst-Bergen op Zoom (triangles 17 and 18) give differences of 0.14 m and 0.12 m , respectively, in the computation of the red and the blue chain. As the two sides, however, lie close to the side Aardenburg-Gent from which the computation in the two chains was started, these small differences could be expected. Bigger differences can be expected e.g. for the sides Gouda-Nieuwkoop (triangles 46 and 47) and Nieuwkoop-Amsterdam (triangles 55 and 56) in the red and the green chain as they lie rather far from the side Bergen op Zoom-Hoogstraten from which the computation in the latter chain started. The differences for these sides appear to be 0.65 m and 0.82 m , respectively. As can be seen from table 20 the difference of the computation of Breda-Gorinchem in the triangles 35 and 36 is 0.16 m . For the sides Gorinchem-Utrecht (triangles 48 and 49), AmersfoortUtrecht (triangles 58 and 59) and Amersfoort-Harderwijk (triangles 67 and 68) they are $0.09 \mathrm{~m}, 0.01 \mathrm{~m}$, and 0.88 m , respectively.

On page 30 of the Précis Historique Krayenhoff gives a table in which the differences larger than 1 m are mentioned. Table 21 gives the sides with differences larger than 0.90 m .

Table 21

Triangle		Common Side	Length (metres)		Diff. (m)
a	b		a	b	
69	70	Imbosch-Zutphen	17909.51	17910. 44	0.93
94	95	Medemblik-Oosterland	18684. 56	18685.47	0.91
100	84	Urk-Kampen	24702.72	24701. 62	1.10
108	109	Oosterland-Robbezand	17266.49	17267.47	0.98
121	127	Leeuwarden-Ballum	27370.20	27373.63	3.43
131	132	Groningen-Drachten	33692.45	33691.27	1.18
139	140	Groningen-Holwierde	25354.37	25355. 55	1.18
142	143	Rolde-Onstwedde	27158.26	27156. 94	1.32
151	152	Emden-Aurich	21460.17	21458.94	1.23
158	159	Jever-Aurich	30291.85	30290.04	1.81

It appears that the greatest difference by far occurs in the common side Leeuwar-den-Ballum of the triangles 121 and 127 (see Fig. 16). It is 3.43 m . It is peculiar that just in the apex Ballum (castle; station No. 78) of these triangles and also in the angular point Ballum of triangle 120 , Krayenhoff made some alterations in the
angles 350,368 and 348 measured there. As in this phase of the computation, however, he did not alter the base angles of the triangles 121 and 127 at Harlingen, Leeuwarden and Dokkum, the large difference cannot be caused by this alteration.

Fig. 16

In my opinion it must be imputed to too long a distance Leeuwarden-Dokkum $=$ 19560.910 m in this phase of the computation and a less favourable form of triangle 127: the length Leeuwarden-Ballum is about 1.4 times that of Leeuwar-den-Dokkum. Of course the alterations influence the closing errors of the three triangles in Fig. 16. I have shown that in table 22.

Table 22

$\begin{aligned} & \text { Tri- } \\ & \text { an- } \\ & \text { gle } \end{aligned}$	$\begin{aligned} & \text { An- } \\ & \text { gle } \end{aligned}$	Spherical angle	Reduct. to chords	Angle between chords	$\begin{aligned} & \text { Angle pages } \\ & \text { 106-107 } \\ & \text { P. H. } \end{aligned}$	Diff.	Closing error P. H.	Correct closing error
1	2	3	4	3+4=5	6	5-6=7	8	7+8=9
120	348	$44^{\circ} 42^{\prime} 56^{\prime \prime} .427$	-0". 471	$44^{\circ} 42^{\prime} 55^{\prime \prime} .956$	$44^{\circ} 42^{\prime} 52^{\prime \prime} .^{\prime \prime} 459$	+3".497	-2.204	
121	350	$46^{\circ} 14^{\prime} 27^{\prime \prime} .202$	-0.484	$46^{\circ} 14^{\prime} 26^{\prime \prime} .718$	$46^{\circ}{ }^{\circ} 4^{\prime} 32^{\prime \prime} .115$	-5.397	+1.432	-3'.965
127	368	$44^{\circ} 01^{\prime} 51^{\prime \prime} .040$	-0'. 349	$44^{0} 01^{\prime} 50^{\prime \prime} .691$	$44^{\circ} 01^{\prime} 48^{\prime \prime} .347$	+2". 344	-2'. 842	-0.498

According to tableau I the spherical angles in column 2 have the values mentioned in column 3 (see also table 9, station No. 78). The reductions to the chords (I have not verified them) are the amounts in column 4. The "angles des cordes" on the pages 106 and 107 of the Précis Historique are therefore the amounts in column 5 instead of those in column 6. The difference for angle 350 amounts to -5.397 (column 7). As, according to the Précis Historique, the closing error in the (plane) triangle 121 is +1 ". 432 (column 8), it ought to be -3.965 (column 9). I don't know why Krayenhoff made the alterations: in any case not in order to obtain better closing errors: those in column 9 of the table are a little better than those of column 8 .

Mentioning the results as given in tableau II, the computation of a triangulation before Krayenhoff's time would have been finished. For - I remarked it already even Delambre did not use the station equations and the side (sine) equations in his network. As far as I know Krayenhoff was the first who was not satisfied with these results. In his Précis Historique (pages 30-33) he writes on the differences in table 20:
"Pour faire disparattre ces différences, grandes ou petites, j^{\prime} ai da entreprendre "un second calcul dont voici les principes.
"J'ai fait à chaque tour d'horizon l'addition des logarithmes des sinus des angles "inverses ou opposés des triangles dont il est composé, ayant leur sommet au "centre de la station; les sommes de ces deux séries de logarithmes doivent "nécessairement être égales et ce qui differe doit être considéré comme erreur. "Par exemple le tour d'horizon à Breda (23e station) est composé de sept triangles.
"Les séries des logarithmes des sinus des angles inverses pris du premier calcul
" [59] sont comme il suit (see table 23):
Table 23

Stations		Number		Left (right) base angles between chords (tableau II)		Corrected log sine (tableau III)
	Name	$\begin{gathered} \text { tri- } \\ \text { angle } \end{gathered}$	$\begin{aligned} & \text { an- } \\ & \text { gle } \end{aligned}$			
No.				angle	log sine	
1	2	3	4	5	6	7
29	Dordrecht	35	97	$77^{\circ} 00{ }^{\prime} 25^{\prime \prime} .694$	9.9887364	9.9887365
32	Gorinchem	36	101	$83^{\circ} 02^{\prime} 43^{\prime \prime} .439$	9.9967928	9.9967928
33	's-Hertogenbosch	37	105	$45^{\circ} 44^{\prime} 52$ ". 514	9.8550808	9.8550821
24	Hilvarenbeek	26	73	$44^{\circ} 31^{\prime} 50^{\prime \prime} .193$	9.8458978	9.8458970
18	Hoogstraten	25	70	$74^{\circ} 47^{\prime} 31^{\prime \prime} .972$	9.9845187	9.9845187
17	Bergen op Zoom	24	66	$47^{\circ} 15^{\prime} 24^{\prime \prime} .676$	9.8659349	9.8659349
22	Willemstad	34	94	$67^{\circ} 40^{\prime} 54.094$	9.9661833	9.9661833
					9.5031447	9. 5031453
32	Gorinchem	35	99	$58^{\circ} 27^{\prime} 20^{\prime \prime} .264$	9.9305595	9.9305586
33	's-Hertogenbosch	36	102	$50^{\circ} 46^{\prime} 30^{\prime \prime} .626$	9.8891171	9.8891146
24	Hilvarenbeek	37	104	$92^{\circ} 49^{\prime} 52.267$	9.9994696	9.9994697
18	Hoogstraten	26	72	$67^{\circ} 31^{\prime} 20^{\prime \prime} .354$	9.9656854	9.9656854
17	Bergen op Zoom	25	68	$34^{\circ} 51^{\prime} 49.824$	9.7571136	9.7571136
22	Willemstad	24	65	$89^{\circ} 20^{\prime} 31.983$	9.9999713	9.9999714
29	Dordrecht	34	95	$66^{\circ} 08^{\prime} 55^{\prime \prime} .467$	9.9612304	9.9612320
					9.5031469	9. 5031453

> "J'ai traité de même plusieurs tours d'horizon à la fois qui étaient en rapports "plus ou moins éloignés entr'eux et après avoir reconnu les différences des "logarithmes des sinus des angles inverses de tous les triangles qui les composent, "j'ai de nouveau consulté mes régistres pour examiner s'il y avait moyen de faire "disparaftre ces irrégularités, en substituant aux observations sur lesquelles "j'avais basé mon premier calcul d'autres qui fussent plus d'accord entr'elles et "qui remplissent les conditions désirées, ce qui m'a souvent réussi. Après cette "substitution il me devait rester encore des petites corrections à faire pour que "la somme des angles sphériques à chaque tour d'horizon fut exactement de 360° "et celle des triangles de 180° après avoir diminué chaque angle de sa portion "dans 1 'excès sphérique.
> "C'est après cette méthode, à la vérité longue et pénible, mais la seule qui put "atteindre un but satisfaisant que le calcul définitif de la triangulation a été "exécuté, tel qu'il est présenté dans le tableau No. III. On y verra que les "valeurs des cotée communs, déduites de deux séries de triangles, sont égales "entr'elles à moins d'un centimetre. J'aurais même pu parvenir à un plus grand "degre de précision en me servant de tables de logarithmes à plus de sept "décimals mais cela m'a paru absolument inutile".

From this ample quotation - the underlining is mine - it appears how Krayenhoff adjusted his network as a "thinking observer" (the expression is of Van der Plaats [60]). He had not yet the disposal of the strict scientific method of the least squares, and even if he had known it he could not have used it in practice as it requires the solution of 276 normal equations. It testifies to his great perseverance and his devotion to his work that he followed the way described, "longue et pénible" indeed.

First making up a great number of sine conditions from which that round the station Breda in table 22 is an example. Then the comparison of all the angles in these equations with the results of the observation registers. For, dependent on the accuracy which Krayenhoff attached to the several observations, he had to decide - see the underlined quotation - which angles and to which amounts they had to be altered in order that they should satisfy the several conditions. Then the determination of the small corrections to the angles in the several stations and triangles, necessary to satisfy the station and triangle conditions and, finally, a second computation of the sides of the network with the adjusted angles.

The results of this computation can be found in tableau III of the Précis Historique. As an example I give in table 24 the computation of the same triangles 34-37 as given in table 20 for tableau II.

Table 24

No. tri-angle		Stations	Adjusted angles between chords	\log sine	log opposite sides	opposite sides (metres)
	No.	Name				
1	2	3	4	5	6	7
34	$\begin{aligned} & 22 \\ & 29 \\ & 23 \end{aligned}$	Willemstad Dordrecht Breda	$\begin{aligned} & 67^{\circ} 40^{\prime} 54^{\prime \prime} .095 \\ & 66^{\circ} 08^{\prime} 57^{\prime \prime} .188 \\ & 46^{\circ} 10^{\prime} 08^{\prime \prime} .717 \end{aligned}$	$\begin{aligned} & 9.9661833 \\ & 9.9612320 \\ & 9.8581681 \end{aligned}$	4.4196252 4.4146739 4. 3116100	$\begin{aligned} & 26279.991 \\ & 25982.077 \\ & 20493.214 \end{aligned}$
			$180^{\circ} 00^{\prime} 00^{\prime \prime} .000$			
35	$\begin{aligned} & 29 \\ & 23 \\ & 32 \end{aligned}$	Dordrecht Breda Gorinchem	$\begin{aligned} & 77^{\circ} 00^{\prime} 25^{\prime \prime} .845 \\ & 44^{\circ} 32^{\prime} 14^{\prime \prime} .579 \\ & 58^{\circ} 27^{\prime} 19^{\prime \prime} .576 \\ & \hline \end{aligned}$	9.9887365 9. 8459500 9.9305586	4.4778031 4. 3350166 4.4196252	$\begin{aligned} & 30047.134 \\ & 21628.010 \\ & 26279.991 \end{aligned}$
			$180^{\circ} 00^{\prime} 00^{\prime \prime} .000$			
36	$\begin{aligned} & 23 \\ & 32 \\ & 33 \end{aligned}$	Breda Gorinchem 's-Hertogenbosch	$46^{\circ} 10^{\prime} 47^{\prime \prime} .204$ $83^{\circ} 02^{\prime} 43^{\prime \prime} .606$ $50^{\circ} 46^{\prime} 29^{\prime \prime} .190$ $180^{\circ} 00^{\prime} 00^{\prime \prime} .000$	$\begin{aligned} & 9.8582460 \\ & 9.9967928 \\ & 9.8891146 \end{aligned}$	4.4469343 4. 5854811 4.4778029	$\begin{aligned} & 27985.577 \\ & 38501.810 \\ & 30047.121 \end{aligned}$
37	$\begin{aligned} & 23 \\ & 24 \\ & 33 \end{aligned}$	Breda Hilvarenbeek 's-Hertogenbosch	$41^{\circ} 25^{\prime} 15^{\prime \prime} .493$ $92^{\circ} 49^{\prime} 51^{\prime \prime} .320$ $45^{\circ} 44^{\prime} 53^{\prime \prime} .187$ $180^{\circ} 00^{\prime} 00^{\prime \prime} .000$	$\begin{aligned} & 9.8205865 \\ & 9.9994697 \\ & 9.8550821 \end{aligned}$	4.4065979 4. 5854811 4.4410935	$\begin{aligned} & 25503.388 \\ & 38501.810 \\ & 27611.726 \end{aligned}$

The \log sines of the left and right base angles between the chords in column 5 of table 24 agree with the amounts in column 7 of table 23 where the adjustment of the sine conditions took place. The angles in column 4 of table 24 are of course computed from the log sines in column 5.

Because of the alteration of the angles of the triangles the lengths of the sides in tableau III (table 24) don't agree with those in tableau II (table 20). For every triangle Krayenhoff mentions in foot notes the differences of the two computed sides with the analogous amounts from the computation in tableau II. Those for the sides Dordrecht-Breda and Breda-Willemstad in triangle 34 (see tables 20 and 24) are -0.06 m and -0.21 m . For the triangles 35,36 and 37 these amounts are -0.01 m and $+0.05 \mathrm{~m},+0.16 \mathrm{~m}$ and -0.17 m , and +0.03 m and 0.00 m , respectively. These very small amounts rise in triangle 67 to +1.03 m for the side Amersfoort-Harderwijk and to +1.06 m for the side Naarden-Harderwijk.

As Krayenhoff started his adjustment in the southern part of the network it is obvious to suppose that, also because of the use of a less accurate repetition circle, there will be the tendency that in the northern part the corrections to the angles will be greater in order to make the network a closing mathematical figure. The correctness of this supposition can be seen from the amounts p^{\prime} in column 9 of table 9. If one leaves $p^{\prime}=-10^{\prime \prime} .361$ at the station Oosterend (No. 71) out of consideration (as already said this correction is also influenced by the re-erection of the signal Kijkduin), then the correction $p^{\prime}=-11.819$ to angle 417, measured at the station Pilsum (No. 93) between the sighting points Holwierde and Borkum is very large, even the largest in the network.
But several other amounts p^{\prime} are also large, especially if one take into consideration that they are given in thousandths of a second. Those larger than 5 " are mentioned in table 25. From the columns 1 and 2 can be seen that almost all corrections relate to angles measured in the northern part of the network.

Table 25

Station		Triangle	Angle	Corr.p'	Station		Triangle	Angle	$\underset{\mathrm{p}^{\prime}}{\text { Corr. }}$
No.	Name				No.	Name			
1	2	3	4	5	1	2	3	4	5
21	Brielle	31	85	+5". 242	81	Drachten	128	370	$-6{ }^{\prime \prime} .^{251}$
71	Oosterend	110	317	-7.375	85	Hornhuizen	130	374	-6.432
73	Vlieland	111	320	-6. 329	82	Oosterwolde	133	382	+5. 296
76	Oldeholtpa	124	360	-5. 928	87	Rolde	133	384	-5". 602
76	"	125	361	+6.014	88	Sleen	135	390	+5.979
78	Ballum	127	368	+7. 674	89	Uithuizermeden	138	398	-6. 6.441
80	Dokkum	127	369	-5". 942	91	Midwolda	140	404	-5". 399
80	"	128	372	+5. ${ }^{\prime \prime} .530$	91	"	148	424	+6". 060
80	"	130	373	$+6.000$	93	Pilsum	144/5	417	-11.819

It seems logical to assume that in this part there will also be the tendency that the differences between the lengths of the sides in tableau II and tableau III will be the greatest. This is confirmed indeed by Krayenhoff's computation. For the side Drachten-Groningen in triangle 131 this difference is -1.63 m and for the side Dokkum-Groningen -1.62 m . In triangle 143 the difference between the two computations is +1.80 m for the side Sleen-Onstwedde and +1.27 m for the side Rolde-Onstwedde. They are the largest in the network, only - and to a great extent - surpassed by the differences -2.58 m in the side Dokkum-Ballum and
-3.05 m in the side Leeuwarden-Ballum of triangle 127. As the latter side, computed in triangle 121 of tableau III (see also Fig. 16), differs "but" +0.39 m from the computation in tableau II, the bad harmony between both results will probably have to be imputed to too long a distance Dokkum-Leeuwarden = 19560.910 m found in tableau II and in the rather bad shape of triangle 127. I discussed this matter already in the text belonging to Fig. 16 (see page 122). In tableau III the length Leeuwarden-Dokkum is 19559.600 m (difference -1.31 m).

The large differences in length found from the computation in two chains in tableau II (see table 20) and the big corrections p^{\prime} to the angles in the stations in column 2 of table 25 make it likely that in the part of Krayenhoff's network bordered approximately by the angular points Ballum, Dokkum, Groningen, Oosterwolde, Oldeholtpa, Sneek and Harlingen and formed by the triangles 127, $128,131,132,125,124,123,122$ and 121 the accuracy is the worst. It is just this part of the triangulation - I mentioned it already in my Introduction (section 1) - that was criticized by Gauss and, later on, by Verdam. The big corrections p^{\prime}, given e.g. to the angles Drachten ($p_{370}^{\prime}=-6^{\prime \prime} .251$), Leeuwarden ($p_{371}^{\prime}=-1^{\prime \prime} .876$) and Dokkum ($p_{372}^{\prime}=+5^{\prime \prime} .530$) of triangle 128 , however, need not be representative for the accuracy of the measurements. It might be possible that with much smaller corrections to the observations a closure of the network can be obtained. Gauss demonstrated it already in his criticism: for the part of the network just mentioned one finds in an adjustment according to the least squares of the 27 measured angles $[p p]=97.88$ whereas Krayenhoff's [$\left.p^{\prime} p^{\prime}\right]$ for the same part of the triangulation amounts to $\left[p^{\prime} \mathrm{p}^{\prime}\right]=341.42$ [61].

I remarked already that in Krayenhoff's time an adjustment of the network according to the least squares would have been impossible even if one had known the method. But Krayenhoff was the first who adjusted a whole triangulation according to a method found by himself. He did not only see all the conditions in the several triangles and the conditions the angles around the central points had to comply with but also the greater part (51) of the 54 side (sine) conditions. If one substitutes e.g. in the side equation round Harlingen in section 13 (see page 76) Krayenhoff's amounts p^{\prime}, one finas $+0.376=0$. As the equation was multiplied by 10^{6} the sum of \log sine left base angles round Harlingen differs but 0.00000038 from the sum of log sine right base angles. As Krayenhoff used a seven place logarithmic trigonometric table for his computations the amount may be neglected. After the computation of the lengths of the sides in the several chains the differences in the common sides appear seldom to be more than 1 or 2 cm . The biggest difference, 4 cm , can be found in the side Rolde-Onstwedde of the triangles 142 and 143. They
seem to prove - I return to this subject in section 22 - that Krayenhoff succeeded in making an almost closing mathematical figure of his network.

In my opinion he was the first who used sine conditions in the adjustment of a triangulation, though not in the form Gauss used them later on. It seems that the geometrical theorem underlying these conditions which holds for the flat plane as well as for the sphere, was published for the first time (in 1803) by Carnot [62] in his Géométrie de position but that Krayenhoff found it anew. At any rate he was the first who applied it in a geodetic problem. The very simple proof of the theorem may be found on page 31 of the second edition of the Précis Historique. The proof is not included in the first edition.

It is not known whether professor Van Swinden [3] and (or) Jacob de Gelder [45], Huguenin [63] and (or) other collaborators in the triangulation [64] advised or cooperated in a design for the adjustment. The three mentioned above were at any rate good mathematicians.

Nothing in the text and the tables of his book shows that Krayenhoff noticed the 52nd, 53rd and 54th side equation round the former Zuiderzee and mentioned in table 13. They differ considerably - especially the 53 rd and 54 th - from the normal shape. It cannot be taken him amiss: even the great Gauss made in 1834 [65] a similar mistake in the adjustment of 63 measured angles in 21 triangles of the triangulation of Oldenburg. They surround (see Fig. 17) an "empty" heptagon. From

Fig. 17
the "adjusted" angles of the triangles follow the angles of the inner heptagon. Their sum is $900^{\circ} 00^{\prime} 32^{\prime \prime} .714$. As the spherical excess of the heptagon is $17{ }^{\prime \prime} .814$, the error in the sum of the inner angles is 14.900 . In the adjustment of the 21 triangles which proceeded according to the measurement of the angles Gauss apparently forgot to take into account the polygon condition, similar to Krayenhoff's condition for the Zuiderzee pentagon [66] and also the three special conditions similar to those mentioned in the numbers 52,53 and 54 of Krayenhoff's network and represented in Fig. 14 and table 13.

On page 87 (year 1891) of his paper [20] Van der Plaats says that Krayenhoff must have noticed one of the two conditions 53 and 54 . This opinion seems hardly credible. Why should he have seen one of them and overlooked the other which is completely of the same structure ? Moreover, Van der Plaats' explanation given there is incorrect. Therefore Krayenhoff's ignorance of the three equations 52-54 cannot have influenced his choice of the series of angles which occur in these equations. I already said (see section 13 page 78 and table 13) that a closing error of -1.49 m for the not-adjusted angles in condition 52 is very small in my opinion. Those for the conditions 53 and 54 and for all $\mathrm{p}^{\prime} \mathrm{s}=0$ (see table 13) are also very small: +1.17 m and -0.68 m respectively. For Krayenhoff's amounts p^{\prime} which can be borrowed from table 9 (column 9) these closing errors can even be reduced to $-0.64 \mathrm{~m},+0.80 \mathrm{~m}$ and +0.38 m , respectively.

In order to get a reliable impression of the accuracy of Krayenhoff's triangulation, an adjustment of the whole network according to the method of the least squares will have to be done and, after that, a comparison of the lengths of its sides with the sides between the identical points of the R.D. -triangulation network.
19. Adjustment of the spherical angles of the triangulation network according to the method of the least squares

In order to determine the corrections $p_{1}, p_{2}, \ldots \ldots . p_{504}, p_{505}$ to the 505 spherical angles measured, in such a way that $[\mathrm{pp}]=$ minimum, one must determine the 276 normal equations from the 276 condition equations mentioned in section 13.

Their general form is:

$$
\begin{aligned}
& {[\Phi \mathrm{a}] \mathrm{K}_{\mathrm{a}}+[\Phi \mathrm{b}] \mathrm{K}_{\mathrm{b}}+\ldots \ldots \cdot|\Phi \theta| \mathrm{K}_{\theta}+\lceil\Phi \zeta] \mathrm{K}_{\zeta}+\mathrm{W}_{\Phi}=0} \\
& (\Phi=\mathrm{a}, \ldots \ldots \ldots, \zeta)
\end{aligned}
$$

The first equation therefore runs as follows:

$$
\lfloor\mathrm{aa}] \mathrm{K}_{\mathrm{a}}+[\mathrm{ab}] \mathrm{K}_{\mathrm{b}}+\ldots+[\mathrm{a} \theta] \mathrm{K}_{\theta}+\lceil\mathrm{a} \zeta\rfloor \mathrm{K}_{\zeta}+\mathrm{W}_{\mathrm{a}}=0
$$

the 276th:

$$
[\zeta \mathrm{a}] \mathrm{K}_{\mathrm{a}}+[\zeta \mathrm{b}] \mathrm{K}_{\mathrm{b}}+\ldots++\lfloor\zeta \theta] \mathrm{K}_{\theta}+[\zeta \zeta] \mathrm{K}_{\zeta}+\mathrm{W}_{\zeta}=0
$$

The computation of the coefficients [aa] ,, l J $\zeta 1$ and the solution of the 276 correlates $\mathrm{K}_{\Phi}(\Phi=\mathrm{a}, \ldots \ldots, \zeta)$ was done with the I. B. M. 360/65-computer of the Delft University of Technology. The corrections $p_{i}(i=1,2, \ldots, 504,505)$ can then be computed from:

$$
\mathrm{p}_{\mathrm{i}}=\mathrm{a}_{\mathrm{i}} \mathrm{~K}_{\mathrm{a}}+\mathrm{b}_{\mathrm{i}} \mathrm{~K}_{\mathrm{b}}+\ldots \ldots+\theta_{\mathrm{i}} \mathrm{~K}_{\theta}+\zeta_{\mathrm{i}} \mathrm{~K}_{\zeta}
$$

From these amounts follows:

$$
[\mathrm{pp}]=-[\mathrm{KW}]
$$

which gives an insight into the internal accuracy of the triangulation. These computations were also carried out by the computer. The result is given in the tables 9 (column 10) and 15 (column 7). The amounts p_{i} are rounded off to a thousandth of a second. The adjusted angles $\alpha_{i}+p_{i}$ may be found in column 13 of table 9 and column 10 of table 15. The large corrections p^{\prime} which Krayenhoff gave (and had to give because of his arbitrary adjustment) to the angles of triangle 128 - I discussed them on page 127 of section 18 - are now reduced to much more reasonable amounts p. As $[\mathrm{pp}]=-[\mathrm{KW}]=870.1, \mathrm{~m}_{\alpha}^{2}=\frac{870.1}{276}=$ 3.152 , the internal accuracy of the triangulation network can be characterized by the standard deviation $\mathrm{m}_{\alpha}= \pm 1^{\prime \prime} .775$ in the measured angle. It deviates but little from the mean of the amounts $\sqrt{\frac{2^{\prime \prime}!4}{2.25}}=1^{\prime \prime} .6$ (southern part of the network, accurate instrument) and $\frac{4^{\prime!} 9}{\sqrt{2.1}}=3^{\prime \prime}!4$ (northern part of the network, less accurate instrument), found at the end of section 8. The largest negative $\mathrm{p}\left(\mathrm{p}_{370}\right)$ is -4 ". 463 , the largest positive one, $\left(p_{332}\right)$, is $+3^{\prime \prime} .941$.

In the histogram of Fig. 18 the several p^{\prime} s have been arranged in a surveyable manner. The class interval is 0 ". 4. The number of p^{\prime} s between $-0^{\prime \prime} .2$ and +0.2 e.g. is 76 , that between +1 ". 4 and +1 ". 8 is 13 , etc. On the same scale and for the same class interval the figure also gives the number of $p^{\prime} s$ which must be expected according to Gauss' law of probabilities (standard deviation $m= \pm 1^{\prime \prime} .775$) if the distribution of errors would have been a normal one (between -0.2 and +0.2 , forty five, between +1.4 and $+1^{\prime \prime} .8$, thirty one, etc.). As can be seen the numbers in the corresponding classes don't match very well. According to the adjustment of the network the number of the small p^{\prime} s is much too high and accordingly that of the larger p's too low. Here too one can see that Krayenhoff's results of his

Fig. 18
angular measurements were influenced by his endeavour to get small closing errors in the station equations and in the angle equations for the several triangles.
20. Provisional adaptation of the adjusted network to the points Rhenen and Gorinchem of the R. D.-triangulation

In order to compute the final lengths of the sides of the triangulation network one could start, as Krayenhoff did, from the side Duinkerken-Mont Cassel, the only length that he had at his disposal. It is better, however, to use a more reliable length, not situated in the utmost southern part of the network but in the centre. For a provisional computation of the coordinates of the angular points of Krayenhoff's network in the R.D. -coordinate system I started from the baseline Rhenen (No. 37)-Gorinchem (No. 32). The coordinates of its terminal
points, both of them determined by the R. D. in 1895, are:

$$
\begin{aligned}
X_{37}^{\prime} & =+12163.650 & , & Y_{37}^{\prime} \\
X_{32}^{\prime} & =-28577.386 & , & Y_{32}^{\prime}=-36148.952
\end{aligned}
$$

If one assumes that the spires of both towers remained unaltered between Krayenhoff's time and 1895 - I cannot prove the contrary - one then finds from these coordinates a length of the chord on the conformal sphere of 43118.84 m . Starting from the side Duinkerken-Mont Cassel Krayenhoff found 43117.29 m for the same length in tableau III of his Précis Historique (page 125). The relative difference is $1.55: 43118.84=0.000036$. From this almost ideal very long baseline the provisional coordinates of the angular points of Krayenhoff's network can be computed in the following way.

In Fig. 19 I called Gorinchem the left base point L and Rhenen the right base point R of triangle 49.

Fig. 19

Utrecht is the apex T that must be computed from the coordinates of L and R and the adjusted spherical angles $138=\alpha$ and $140=\beta$ between the arcs of the circles in triangle 49.

If the angles between arc and chord in R and L are ${ }^{\epsilon}{ }_{R T},{ }^{\epsilon}{ }_{R L},{ }^{\epsilon}{ }_{\mathrm{LR}}$ and ${ }^{\epsilon} \mathrm{LT}$, respectively (from arc to chord to the right is positive), the angles β^{\prime} and α between the chords can be computed from:

$$
\left.\begin{array}{c}
\beta^{\prime}=\beta+\left(\epsilon \mathrm{RT}^{-\epsilon} \mathrm{RL}\right) \tag{12}\\
\alpha^{\prime}=\alpha+\left(\epsilon \mathrm{LR}^{-\epsilon} \mathrm{LT}\right)
\end{array}\right\}
$$

From the gridbearing

$$
\overline{\mathrm{RL}}=\arctan \frac{\mathrm{X}_{\mathrm{L}}^{\prime}-\mathrm{X}_{\mathrm{R}}^{\prime}}{\mathrm{Y}_{\mathrm{L}}^{\prime}-\mathrm{Y}_{\mathrm{R}}^{\prime}} \quad \text { of } \mathrm{RL}
$$

and the angle $\dot{\beta}$ follows the gridbearing of RT:

$$
\overline{\mathrm{RT}}=\overline{\mathrm{RL}}+\beta^{\prime}
$$

In the same way:

$$
\overline{\mathrm{LT}}=\overline{\mathrm{LR}}-\alpha^{\prime}
$$

From intersection then coordinates of T follow.
For $\epsilon_{R L}$ (in seconds of arc) one has (see formula 11 in section 13):

$$
\epsilon_{R L}^{\prime \prime}=0.0012658\left(X_{L}^{\prime} \mathrm{Y}_{\mathrm{R}}^{\prime}-\mathrm{X}_{\mathrm{R}}^{\prime} \mathrm{Y}_{\mathrm{L}}^{\prime}\right)
$$

and, in the same way:

$$
\begin{align*}
& \epsilon_{\mathrm{RT}}^{\prime \prime}=0.0012658\left(\mathrm{X}_{\mathrm{T}}^{\prime} \mathrm{Y}_{\mathrm{R}}^{\prime}-\mathrm{X}_{\mathrm{R}}^{\prime} \mathrm{Y}_{\mathrm{T}}^{\prime}\right) \tag{13}\\
& \epsilon_{\mathrm{LR}}^{\prime \prime}=0.0012658\left(\mathrm{X}_{\mathrm{R}}^{\prime} \mathrm{Y}_{\mathrm{L}}^{\prime}-\mathrm{X}_{\mathrm{L}}^{\prime} \mathrm{Y}_{\mathrm{R}}^{\prime}\right)=-\epsilon_{\mathrm{RL}}^{\prime \prime} \\
& \epsilon_{\mathrm{LT}}^{\prime \prime}=0.0012658\left(\mathrm{X}_{\mathrm{T}}^{\prime} \mathrm{Y}_{\mathrm{L}}^{\prime}-\mathrm{X}_{\mathrm{L}}^{\prime} \mathrm{Y}_{\mathrm{T}}^{\prime}\right) \\
& \left(\mathrm{X}^{\prime} \text { and } \mathrm{Y}^{\prime} \text { in } \mathrm{km}\right) .
\end{align*}
$$

For the computation of $\epsilon_{\mathrm{RT}}{ }^{\prime \prime}$ and $\epsilon^{\prime \prime} \mathrm{LT}$ in (13) the unknown coordinates of T are necessary. As, however, ${ }^{\epsilon}$ RT and $\epsilon_{\text {LT }}$ are very small, (very) provisional coordinates are sufficient. They can be found from an intersection for which $\alpha^{\prime} \simeq \alpha$ and $\beta^{\prime} \simeq \beta$.
From the formula for α^{\prime} and β^{\prime} in (12) and the analogous formula $\gamma^{\prime}=\gamma+$ $+\left(\epsilon_{\mathrm{TL}}-\epsilon_{\mathrm{TR}}\right)$ for the apex angle T of triangle RLT follows:

$$
\left(\epsilon_{\mathrm{RT}}^{\prime \prime}-\epsilon_{\mathrm{RL}}^{\prime \prime}\right)+\left(\epsilon_{\mathrm{LR}}^{\prime \prime}-\epsilon_{\mathrm{LT}}^{\prime \prime}\right)+\left(\epsilon_{\mathrm{TL}}^{\prime \prime}-\epsilon_{\mathrm{TR}}^{\prime \prime}\right)=-\mathrm{E}^{\prime \prime}
$$

in which E is the spherical excess of the triangle.
As $\epsilon_{\mathrm{LR}}=-\epsilon_{\mathrm{RL}}, \epsilon_{\mathrm{TL}}=-\epsilon_{\mathrm{LT}}$ and $\epsilon_{\mathrm{RT}}=-\epsilon_{\mathrm{TR}}$, one finds:

$$
\begin{equation*}
\epsilon_{\mathrm{RL}}^{\prime \prime}+\epsilon_{\mathrm{LT}}^{\prime \prime}+\epsilon_{\mathrm{TR}}^{\prime \prime}=\frac{1}{2} \mathrm{E}^{\prime \prime} \tag{14}
\end{equation*}
$$

The formula gives the opportunity of checking the computed $\epsilon^{\prime} \mathrm{s}$ as the spherical excess of the triangle was already known.
As an example I give underneath the computation of the coordinates X_{36}, Y_{36} of the apex Utrecht of triangle 49.

As $\alpha=138=51^{\circ} 15^{\prime} 00^{\prime \prime} .834, \beta=140=45^{\circ} 12^{\prime} 46^{\prime \prime} .577, \epsilon^{\prime} \mathrm{RL}=+1^{\prime \prime} .354$ and
$\overline{\mathrm{RL}}=\arctan \frac{\mathrm{X}_{\mathrm{L}}^{\prime}-\mathrm{X}_{\mathrm{R}}^{\prime}}{\mathrm{Y}_{L^{\prime}}^{\prime}-\mathrm{Y}_{\mathrm{R}}^{\prime}}=250^{\circ} 53^{\prime} 50^{\prime \prime} .350$, one finds for the (very) provisional
coordinates of T:

$$
\mathrm{X}_{\mathrm{T}^{\prime}}=-18223.0 \quad, \quad \mathrm{Y}_{\mathrm{T}^{\prime}}=-7146.0
$$

and from these coordinates and those of \mathbf{R} and L :

$$
\epsilon_{\mathrm{LT}}=+0^{\prime \prime} .575 \text { and } \epsilon_{\mathrm{RT}}=+0^{\prime \prime} .618 \text { (see formula 13). }
$$

The check of formula (14) gives:

$$
\epsilon_{\mathrm{RL}}^{\prime \prime}+\epsilon_{\mathrm{LT}}^{\prime \prime}+\epsilon_{\mathrm{TR}}^{\prime \prime}=+1^{\prime \prime} .311=\frac{1}{2} \mathrm{E}^{\prime \prime} .
$$

Therefore (formula 12):

$$
\begin{aligned}
& \alpha^{\prime}=\alpha+\left(\epsilon_{\mathrm{LR}}^{\prime \prime}-\epsilon_{\mathrm{LT}}^{\prime \prime}\right)=51^{\circ} 14^{\prime} 58^{\prime \prime} .905 \\
& \beta^{\prime}=\beta+\left(\epsilon_{\mathrm{RT}}^{\prime \prime}-\epsilon_{\mathrm{RL}}^{\prime \prime}\right)=45^{\circ} 12^{\prime} 45^{\prime \prime} .841
\end{aligned}
$$

The intersection of (Utrecht), now with the correct base angles α and β^{\prime} gives the required coordinates:

$$
X_{36}=-18222.796 \quad, \quad Y_{36}=-7146.191
$$

In a similar way the coordinates $\mathrm{X}_{42}=-0.587, \mathrm{Y}_{42}=-0.575$ of the apex Amersfoort of triangle 59 can be computed from the base angles and the coordinates of the base points Utrecht (L) and Rhenen (R) of that triangle.

As the spires of Utrecht and Amersfoort in 1895 are assumed to be identical with those in Krayenhoff's time, the coordinates in the R. D. -system:

$$
\begin{array}{ll}
\mathrm{X}_{36}^{\prime}=-18222.582, & \mathrm{Y}_{36}^{\prime}=-7145.440 \\
\mathrm{X}_{42}^{\prime}= & 0.000, \quad \mathrm{Y}_{42}^{\prime}=0.000
\end{array}
$$

already give some impression of the accuracy of Krayenhoff's measurements.
Proceeding in the same way all the angular points of Krayenhoff's triangulation network were computed in the XY-coordinate system. The computation, done with the computer, was checked by computing the coordinates of 54 points of the network in a second way. Those of Nieuwkoop (No. 35) e. g. in the first computation were determined by intersection from Gouda and Utrecht (triangle 47) and those of Amsterdam (No. 40) from Haarlem and Nieuwkoop (triangle 55). If in a second computation Nieuwkoop is determined from Utrecht and Amsterdam by intersection in triangle 56, one must find the same coordinates, apart of course from small rounding-off errors. The second computation is a check on the condition equations, the solution of the normal equations and the determination of the adjusted angles of the network.
21. Final adaptation of Krayenhoff's adjusted triangulation to 65 identical points of the R.D. -network

The coordinates XY of all the 106 angular points of Krayenhoff's triangulation, computed in the preceeding section, are mentioned in the columns 3 and 4 of table 26. The sequence of the stations is the same as in table 9. In columns 5 and 6 one finds behind the stations Gorinchem (No. 32) and Rhenen (No. 37) the (same) coordinates from which the computation in columns 3 and 4 was started. The other coordinates in columns 5 and 6 - in total 65 pairs - are those of the points which are identical or are supposed to be identical with the towers of Krayenhoff's network. With the exception of Oosterwolde (No. 82) and Midwolda (No. 91) all these points were determined in the first order triangulation network between 1885 and 1907.

In his publication 'Topografische Kaart en Rijksdriehoeksmeting " [67] Heuvelink also gives a list of identical points. It is almost the same as mine. In 1920, however, Heuvelink had not yet the disposal of the coordinates X'Y' of Gent (No. 10), Antwerpen (No. 15), Kirch Hesepe (No. 64), Oosterwolde (No. 82), Midwolda (No. 91), Leer (No. 95) and Herentals (No. 104).

The R. D. -observation pillar in the isle of Vlieland is identical with the beaconlight No. 73 in Krayenhoff's time [68]. The lighthouse in the isle of Borkum, already determined in R.D. -coordinates in 1888, is not identical with the former beacon-light No. 106, though it was built almost in the same place.

In my opinion Heuvelink mentions wrongly as identical points Harikerberg (No. 50, $\mathrm{X}^{\prime}=+78741.774, \mathrm{Y}^{\prime}=+9584.122$) and Lemelerberg (No. 60, $\mathrm{X}^{\prime}=+69322.687, \mathrm{Y}^{\prime}=+35847.558$) though the stones which marked Krayenhoff's triangulation points could not be found again in 1894 and 1889 respectively.

Calling, as Heuvelink did, Dordrecht (No. 29, $\mathrm{X}^{\prime}=-50150.388, \mathrm{Y}^{\prime}=-37683.375$), Nieuwkoop (No. 35, $X^{\prime}=-41573.752, Y^{\prime}=-350.257$) and Edam (No. 53, $\mathrm{X}^{\prime}=-23098.677, \mathrm{Y}^{\prime \prime}=+39794.418$) identical points, is a mistake. The municipal land surveying department at Dordrecht informed me that it appeared from deformation measurements that points on the platform of the tower are moving away from each other and that since very long the tower is sagging to the northnorthwest. It is true that provisions could be made in order to stop the deformation but the sagging of the tower still proceeds. With regard to the tower of Edam the municipality wrote to me [69] that between 1803 and 1899 the tower sagged to the northeast. The municipality of Nieuwkoop was as kind as to inform me in detail on the sagging to the southwest of the tower of the former abbey [70].

Table 26

Stations i		System Krayenhoff		System R. D.		System XY adapted to system $\mathrm{X}^{\prime} \mathrm{Y}^{\prime}$		Differences$\stackrel{v}{i}_{(\mathrm{cm}}^{\mathrm{w}_{\mathrm{i}}}$	
No.	Name	X_{i}	Y_{i}	X_{i}	$\mathrm{Y}_{\mathrm{i}}{ }^{\text {i }}$	$\mathrm{X}_{\mathrm{i}}^{\prime \prime}$			
1	2	3	4	5	6	7	8		10
1	Duinkerken	-211162.91	-120207.05			-211164.95	-120204. 23		
2	Mont Cassel	-204324.09	-146809. 50			-204326.48	-1468 06. 88		
3	Hondschoote	-196668. 81	-126802.18			-196670. 89	-126799. 59		
4	Nieuwpoort	-184511. 53	-110825.57			-184513.33	-110823. 09		
5	Diksmuide	-176949.20	-121691.01			-176951. 12	-121688. 68		
6	Oostende	-172281. 58	-100059.02			-172283.17	-100056. 68		
7	Brugge	-151094. 57	-103116.63			-151096. 13	-103114.60		
8	Hooglede	-161870.93	-128385.42			-161872.89	-128383. 33		
9	Tielt	-144602.84	-126441.49			-144604.71	-126439. 64		
10	Gent	-116435.66	-121288. 16	-116438.10	-121287. 08	-116437. 34	-121286. 70	+76	+38
11	Aardenburg	-135313.46	- 96340.74	-135315.21	- 96338.52	-135314.85	- 96338.91	+36	-40
12	Assenede	-114116.58	-101899.20	-114118.36	-101897.84.	-114117.97	-101897. 70	+39	+15
13	Middelburg	-123063.27	- 71444.56	-123064.60	- 71443.32	-123064. 26	- 71442.81	+34	+51
14	Hulst	- 93008.85	- 96449.34	- 93009.69	- 96448.54	- 93010.08	- 96448.12	-39	+42
15	Antwerpen	- 68921.95	-103524.08	-68922.96	-103523.10	- 68923.19	-103523. 23	-23	-13
16	Zierikzee	-101897. 15	- 55143.18	-101897.97	- 55142.05	-101897. 82	- 55141.67	+15	+38
17	B.O. Zoom	- 76334.53	- 72933.95	- 76335.44	- 72933.16	- 76335.36	- 72932.88	+ 8	+28
18	Hoogstraten	- 43543.01	- 83733.63	- 43543.86	- 83733. 53	- 43543.87	- 83733. 07	- 1	+46
19	Lommel	- 5073.99	-103095.01	- 5074.79	-103095.49	- 5074.97	-103095. 08	-18	+41
20	Nederweert	+ 25174.22	- 96630.15	+ 25173.46	- 96630.71	+ 25173.45	- 96630.63		+ 9
21	Brielle	- 84301.49	- 27387.66	- 84301.96	- 27386.16	- 84301.69	- 27386.30	+27	-13
22	Willemstad	- 65636.50	- 51105.90	- 65636.93	- 51105.36	- 65636.98	- 51104.90	- 5	+46
23	Breda	- 42438.73	- 62807.03	- 42438.97	- 62806.85	- 42439.28	- 62806.41	-31	44
24	Hilv. beek	- 17429.39	- 74507.96	- 17429.86	- 74508.43	- 17430.01	- 74507. 74	-15	+69
25	Helmond	+ 18678.59	- 75246.04	+ 18678.37	- 75246.75	$+18678.10$	- 75246.34	-27	+42
26	Vierl. beek	+ 43200.11	- 61990.79	+ 43199.65	- 61991.94	$+43199.90$	- 61991.40	+25	+54
27	Den Haag	- 74077.14	- 8107.89	- 74077.22	- 8106.07	- 74077.03	- 8106.60	+19	-53
28	Rotterdam	- 62066.03	- 25616.79	- 62066.00	- 25615.64	- 62066.12	- 25615.74	-12	-10
29	Dordrecht	- 50150.21	- 37684.40			- 50150.43	- 37683.57		
30	Leiden	- 61286.22	+ 472.87	- 61286.17	+ 473.98	- 61285.93	+ 474.01	+24	$+3$
31	Gouda	- 46450.88	- 15855.63	- 46450.83	- 15854.87	- 46450.78	- 15854.77	+ 5	+11
32	Gorinchem	- 28577.39	- 36148.95	- 28577. 39	- 36148.95	- 28577.50	- 36148.42	-11	+53
33	's-Bosch	- 5494.42	- 51970.21	- 5494.58	- 51970.34	- 5494.68	- 51970.07	-10	+27
34	Grave	+ 24356.87	- 43898.76			+ 24356.85	- 43899.02		
35	Nieuwkoop	- 41573.31	- $\quad 350.61$			- 41572.96	- 349.76		
36	Utrecht	- 18222.80	- 7146.19	- 18222.58	- 7145.44	- 18222.45	- 7145.70	+13	-26
37	Rhenen	+ 12163.65	- 22038.97	+ 12163.65	- 22038.97	+ 12163.90	- 22038.97	+25	00
38	Nijmegen	+ 32735.26	- 34071.23	+ 32735.42	- 34071.93	$+32735.42$	- 34071.57	00	+36
39	Haarlem	- 51065.98	+ 25397.80	- 51065.62	+ 25399.10	- 51065.30	+ 25398.89	-33	-21
40	Amsterdam	- 34299.80	$+24524.64$	- 34299.28	$+24525.50$	- 34299.06	+ 24525.49	+22	
41	Naarden	- 15346.30	$+15659.36$	- 15346.01	$+15660.58$	- 15345.61	+ 15659.90	+40	-67
42	Amersfoort	0.59	- 0.58	0.00	0.00	- $\quad 0.07$	- 0.32	- 7	-32
43	Imbosch	$+41641.56$	- 12983.32			+ 41642.05	- 12983.71		
44	Hettenheuvel	+ 58285.14	- 25702.52			+ 58285.51	- 25703.20		
45	Bocholt	+ 84518.60	- 34555.07			+ 84518.95	- 34556.16		

Table 26 (continued)

1	2	3	4	5	6	7	8	9	10
46	Harderwijk	+ 15619.22	+ 21592.60			$+15620.11$	+ 21592.72		
47	Veluwe	+ 32148.66	+ 8950.05	+ 32149.33	+ 8950.75	+ 32149.44	+ 8949.89	+11	-86
48	Zutphen	+ 55316. 02	- 1418.45	+ 55316.85	- 1418.50	+ 55316.73	1418.99	-12	-49
49	Groenlo	+ 84421.44	- 11836.27	+ 84422.95	- 11836.40	+ 84422.11	- 11837.27	-83	-87
50	Harikerberg	+ 78740.00	+ 9584.13			+ 78740.97	+ 9583.29		
51	Ahaus	+110997.99	- 7585.10			+110998.83	- 7586.46		
52	Alkmaar	- 43134.02	+ 53170.06	- 43132.50	+53171.31	- 43132.90	+ 53171.14	-41	-17
53	Edam	- 23100.44	+ 39792.40			- 23099.44	+ 39793.15		
54	Hoorn	- 22163.72	+ 54040.54			- 22162.51	+ 54041.33		
55	Schagen	- 39878.90	+ 70422.87			- 39877. 52	+ 70423.98		
56	Medemblik	- 19155.91	$+68798.18$	- 19154.01	+ 68799.85	- 19154.48	+ 68798.99	-47	-86
57	Enkhuizen	- 6396.96	+ 61041.59	- 6395.43	+ 61042.26	- 6395.59	+ 61042.18	-16	- 8
58	Urk	+ 13942.35	+ 56446.81	+ 13944.28	+ 56447.59	+ 13943.73	+ 56447.09	-55	-49
59	Kampen	+ 35867.95	+ 45070.46	+ 35869.42	+ 45070.45	+ 35869. 26	$+45070.38$	-16	- 7
60	Lemeler	g+ 69321.08	+ 35847.41			+ 69322.39	+ 35846.81		
61	Oldenzaal	+105090.63	+ 18608.64	+105091.42	+ 18608.61	+105091. 82	+ 18607.46	+41	115
62	Bentheim	+120696. 12	+ 17852.54	+120696.78	+ 17852.64	+120697. 37	+ 17851.13	+59	151
63	Uelsen	+100642.96	+ 40800. 75			+100644. 46	+ 40799.72		
64	K. Hesepe	+125193.75	+ 53875.92	+125194.07	+ 53875.60	+125195. 53	+ 53874.59	146	-101
65	Kijkduin	- 44739.49	$+88759.95$			- 44737.87	$+88761.20$		
66	Oosterlan	- 25331.18	+ 86433.30	- 25328.84	+ 86434.74	- 25329.52	+ 86434.26	-68	-48
67	Staveren	- 1811.99	$+80866.03$			- 1810.32	+ 80866.63		
68	Lemmer	+ 21815.10	+ 76786.92	+ 21816.73	+ 76787.67	+ 21816.80	+ 76787.16	+ 7	-51
69	Blokzijl	+ 38749.85	$+63790.33$	+ 38751.73	+ 63790.81	+ 38751.44	+ 63790.28	-30	-53
70	Meppel	+ 54254.91	$+60626.16$	+ 54256.50	+ 60626.04	+ 54256.51	+ 60625.88	$+1$	-16
71	Oosterend	- 34454.18	+103488.67	- 34451.61	+103490.80	- 34452.30	+103489.83	-69	-98
72	Robbezand	- 16004.54	+100964.95			- 16002.63	+100965. 84		
73	Vlieland	- 21939.77	+126979.93	- 21935.61	+126980.44	- 21937. 52	+126981.00	191	+55
74	Harlingen	+ 1656.47	+113380.71	+ 1659.31	+113381. 11	+ 1658.63	+113381. 39	-68	+28
75	Sneek	$+18202.68$	$+97584.99$	+ 18204.88	+ 97585.41	+ 18204.67	+ 97585.37	-21	- 4
76	Oldeholtpa	+ 44711.71	+ 82529.67	+ 44713.93	+ 82529.12	+ 44713.59	+ 82529.61	-34	+49
77	Midsland	- 6816.40	+136631.04			- 6813.94	+136631.93		
78	Ballum	+ 19975.88	+143152.85			+ 19978. 54	+143153.38		
79	Leeuwarden	+ 26891. 77	+116668. 52	+ 26894.38	+116668. 84	+ 26894. 07	+116668.85	-31	+ 1
80	Dokkum	+ 40666.35	+130556. 02			+ 40668.90	+130556.21		
81	Drachten	+ 47794.81	+106075. 11	+ 47796.98	+106074. 53	+ 47797.04	+106075. 10	+ 6	+57
82	Oosterwolde	+ 60823.03	$+93695.73$	+ 60825.19	+ 93695.13	+ 60825.13	+ 93695.48	- 6	+35
83	Beilen	+ 76025.80	$+78797.67$	+ 76027. 53	+ 78796.64	+ 76027.74	+ 78797.15	+21.	+51
84	Coevorden	+ 91499.07	+ 57086.41	+ 91500.34	+ 57085.68	+ 91500.76	+ 57085.58	+42	-10
85	Hornhuizen	$+64678.78$	+137608: 53	+ 64681.42	+137608.70	$+64681.53$	+137608.40	+12	-30
86	Gronin	+ 78881.15	+119065. 31	+ 78883.13	+119065. 17	+ 78883.69	+119064.90	+56	-26
87	Rolde	+ 84499.16	$+93505.04$	+ 84501.39	+ 93503.96	$+84501.36$	+ 93504.45	- 3	+49
88	Sleen	+ 95501. 12	+ 70011.49	+ 95502.75	+ 70010.74	+ 95503.01	+ 70010.65	+27	- 9
89	Uith. meden	+ 87945.02	+140252.78	+ 87947.55	+140252.60	$+87947.89$	+140252.32	$+34$	-28
90	Holwierde	+ 98769.38	+134793.54			$+98772.23$	+134792.91		
91	Midwolda	+108449. 59	+116835. 62	+108451.41	+116834. 15	+108452.21	+116834.78	$+80$	+63
92	Onstwedde	+111159.07	+ 98683.17	$+111160.76$	+ 98681.52	+111161.44	+ 98682.21	+69	+69
93	Pilsum	+111232. 25	+149059.59	+111236. 22	+149058. 28	+111235.34	+149058. 83	-88	+55
94	Emden	+121106.75	+136362.15			+121109.70	+136361.20		
95	Leer	+137723.72	+121428.60	+137725.86	+121426. 10	+137726. 52	+121427. 36	+66	126

Table 26 (continued)

1	2	3	4	5	6	7	8	9	10
96	Barssel	+157483.11	+115414.06			+157485.90	+115412.51		
97	Hage	+125540.99	+162697.47			+125544.34	+162696. 56		
98	Aurich	+138955. 10	+148279.84			+138958.29	+148278.68		
99	Strakholt	+149962.61	+137408.10			+149965.69	+137406. 74		
100	Westerstede	+169529.04	+125652.99			+169532.03	+125651.30		
101	Esens	+147160.78	+168352.02			+147164.29	+168350. 82		
102	Jever	+166631.75	+160600.32			+166635.23	+160598.81		
103	Varel	+182849.51	+141719.49			+182852.78	+141717.67		
104	Herentals	- 38561.50	-108953.69	- 38562.32	-108954.04	- 38562.70	-108953. 30	-38	+74
105	Biesselt	+ 35556. 31	- 43271.88			+ 35556. 34	- 43272.30		
106	Borkum	+ 84989.78	+160189.07			$+84992.93$	+160188.73		

From Krayenhoff's measurements and the R. D. -coordinates X'Y'I had already predicted these changes. It remains possible, however, that there are still other R.D. -points which are assumed to be identical with Krayenhoff's stations but have in fact changed a little. It is very difficult to discover such alterations. They occur especially in the western part of The Netherlands where several towers are built on weak peat ground.

Whether the R. D. -station Veluwe is identical indeed with Krayenhoff's "Observatoire" (No. 47) (see my considerations on page 17) is also subject to some light doubt.

It will be clear that by the great number of identical points in both networks the (provisional) choice of the base Rhenen-Gorinchem was rather arbitrary. In order to adapt Krayenhoff's adjusted network as well as possible to the R. D.triangulation a similarity transformation was applied on all the 65 identical points. The result of the transformation, the coordinates $X^{\prime \prime} Y^{\prime \prime}$, is mentioned in the columns 7 and 8 of table 26 . The columns 9 and 10 give for the identical points the remaining differences v and $w(i n c m$) in X - and Y-direction. In Fig. 20 these differences are represented as vectors. The smallest (in Nederweert, No. 20) is 9 cm , the largest (in Vlieland, No. 73) is 199 cm .

From the directions and the lengths of the rather long vectors in Oldenzaal (No. 61), Bentheim (No. 62) and Kirch Hesepe (No. 64) can be seen that the distances Oldenzaal-Bentheim and Bentheim-Kirch Hesepe of the network are hardly influenced by the coordinate differences in columns 9 and 10 of table 26. The mutual position of the three points is almost the same as in the R.D. for the spherical R. D. -angle $94^{\circ} 20^{\prime} 39^{\prime \prime} .3$ in Bentheim between Oldenzaal and Kirch Hesepe also corresponds exactly with the sum of the two adjusted angles 261 and 262.

Fig. 20

The position of Coevorden with respect to Kirch Hesepe and Bentheim is also very good. The sum $88^{\circ} 19^{\prime} 42^{\prime \prime} .2$ of the two adjusted spherical angles 264 and 306 is but $0^{\prime \prime} .4$ greater than the amount $88^{\circ} 19^{\prime} 41^{\prime \prime} .8$ found from the R. D. coordinates of the three points.
From the coordinates $X^{\prime \prime} Y^{\prime \prime}$ in columns 7 and 8 in table 26 finally follow the 263 distances between the projections of the angular points of Krayenhoff's network and from these distances the final lengths of the chords k on the conformal sphere. Of course the formulae (8) and (9) in section 13 , necessary for this computation, must now be used with the opposite sign. All the lengths k can be found in column 12 of table 15. The differences $v=k-k \quad(k$ are the chords in the Précis Historique) are given in column 13. As one sees from $\mathrm{v}=+1.18 \mathrm{~m}$ in triangle 2 the side Duinkerken-Mont Cassel is 1.18 m longer than the amount from which Krayenhoff started his computation. If in the triangulation
chain between Assenede and Duinkerken no important errors are made in the carrying-forward of the "ideal" baseline then one might conclude that Krayenhoff's baseline has a relative error of about $+1.18 \mathrm{~m}: 27459 \mathrm{~m}=+0.000043$. It does not seem quiteimpossible if we take into account that it was derived from the measurement of a baseline near Melun, about 30 km south of Paris and about 280 km from Duinkerken.

As the amounts v relate to the ideal baseline and the amounts k^{\prime} to the lengths computed with Krayenhoff's baseline, I reduced the $v^{\prime} s$ to amounts $v^{\prime}=$ $\mathrm{v}-0.000043 \mathrm{k}$. They are mentioned in column 14 of table $15 . \mathrm{v}^{\prime}$ for Duin-kerken-Mont Cassel is of course zero. Apart from small errors in Krayenhoff's computation of the side lengths the other ones are only caused by the different adjustments of the angles in the network. The very large negative amounts $v\left(v^{\prime}\right)$ in the northern part of the triangulation will be analysed in section 22.
22. Comparison between the side lengths in tableau III of the Précis Historique and those found from the adjustment according to the method of the least squares.

As I already remarked before, a great number of tests at random in Krayenhoff's adjusted network give the impression that the triangulation is about a closing mathematical figure. The closure of the angles round the station Breda (station No. 23 , table 9, columns 11 and 12), the closure of the sine equations round that station and the closure of the angles in the triangles round $\mathrm{Br} e \mathrm{da}$ is an arbitrary example.

In his system of adjustment of the triangulation, however, Krayenhoff was dependent on a chain of triangles in which a side length was computed. A length of 26279.991 m for the chord Dordrecht-Breda e.g. in his Précis Historique (see triangle 34 in table 24) does not implicate that a same amount will be found along an arbitrary other route. Moreover the network cannot be a closing mathematical figure because Krayenhoff overlooked the three conditions round the Zuiderzee.

In order to show that in reality the closure of the network is but a seeming closure, I compared the lengths of a great number (297) of sides in column 12 of table 15 with those found in the Précis Historique (column 11). They are the rays in those 51 central points of the network which are surrounded by numbered triangles. If one takes as an example the central point Amsterdam (No. 40), surrounded by the triangles $57,56,55,64,65$ and 66 , one sees that even all the sides in these triangles have positive amounts v. For the 6 rays to the surrounding points in this station I copied these differences in column 4
of table 27. With the lengths of the rays k in column 5 one finds for the relative differences the amounts in column 6. They have a mean of about +0.000054 or, in other words, Krayenhoff's too small distances in Amsterdam must be multiplied by about 1.000054 in order to find the side lengths in column 12 of table 15 which match as well as possible the side lengths in the R.D.-system.

Table 27

Station	Rays to	Triangle	$\begin{gathered} \text { Diff. v } \\ \text { (cm) } \\ \text { table } 15 \end{gathered}$	Distances k(km) table 15	Relative differences
1	2	3	4	5	6
Amsterdam (No. 40)	Naarden Utrecht Nieuwkoop Haarlem Alkmaar Edam	$\begin{aligned} & 57 \\ & 56 \\ & 55 \\ & 64 \\ & 65 \\ & 66 \end{aligned}$	$\begin{aligned} & +114 \\ & +167 \\ & +117 \\ & +98 \\ & +192 \\ & +106 \end{aligned}$	20.925 35.519 25. 918 16.789 29.977 18.935	+0.000054
					+ 47
					+ 45
					+ 58
					+ 64
					+ 56
					+0.000054
Aurich (No. 98)	Esens Jever Strakholt Leer Emden Hage	$\begin{aligned} & 157 \\ & 158 \\ & 159 \\ & 153 \\ & 152 \\ & 151 \end{aligned}$	$\begin{aligned} & -150 \\ & -220 \\ & -99 \\ & -169 \\ & -132 \\ & -126 \end{aligned}$	21.681 30.289 15.469 26.876 21.459 19.690	-0.000069
					- 73
					- 64
					- 63
					- 62
					- 64
					-0.000066

In the second example Aurich (station No. 98) in table 26 all the differences in column 4 are negative. Krayenhoff's side lengths are about 6.6 cm per km too long. They must be multiplied by about 0.999934 in order to find the lengths of the sides belonging to an "ideal" baseline and an adjustment of the angles according to the least squares.

The amounts 1.000054 in Amsterdam and 0.999934 at Aurich are once again mentioned in table 28 together with the 49 other scale factors which were computed in an analogous way. For a good survey of the local situation they are also mentioned on the map in Fig. 21. It appears that the factor 1.000050 in Assenede (No. 12) agrees very well yet with that of the baseline Duinkerken-

Table 28

Station		Scale factor	Station		Scale factor	Station		Scale factor
No.	Name		No.	Name		No.	Name	
1	2	3	1	2	3	1	2	3
12	Assenede	1. 000050	40	Amsterdam	1. 000054	70	Meppel	1. 000019
14	Hulst	1. 000052	42	Amersfoort	1. 00.0040	72	Robbezand	1. 000033
17	Bergen op Zoom	1. 000051	43	Imbosch	1. 000030	74	Harlingen	1. 000046
18	Hoogstraten	1.000045	47	Veluwe	1. 000033	75	Sneek	1. 000026
22	Willemstad	1. 000051	48	Zutphen	1. 000028	76	Oldeholtpa	1. 000013
23	Breda	1. 000047	49	Groenlo	1. 000023	79	Leeuwarden	1. 000030
24	Hilvarenbeek	1. 000043	50	Harikerberg	1. 000018	81	Drachten	1. 000013
25	Helmond	1. 000043	54	Hoorn	1. 000051	82	Oosterwolde	1. 000002
28	Rotterdam	1. 000047	56	Medemblik	1. 000044	83	Beilen	1. 000008
29	Dordrecht	1. 000047	59	Kampen	1. 000027	86	Groningen	0.999985
31	Gouda	1.000045	60	Lemelerberg	1. 000018	87	Rolde	0.999986
32	Gorinchem	1. 000046	61	Oldenzaal	1. 000013	89	Uith. meden	0.999980
33	's-Hertogenbosch	1. 000043	63	Uelsen	1. 000008	90	Holwierde	0.999961
34	Grave	1. 000039	66	Oosterland	1. 000037	91	Midwolda	0.999957
35	Nieuwkoop	1. 000044	67	Staveren	1. 000031	94	Emden	0.999944
36	Utrecht	1. 000046	68	Lemmer	1. 000025	98	Aurich	0.999934
37	Rhenen	1. 000038	69	Blokzijl	1. 000023	99	Strakholt	0.999935

Mont-Cassel (1.000043), found at the end of section 21. The stations along the west side of the network, the red chain in Fig. 15, as far as about Hoorn (No. 54) and Medemblik (No. 56) also have about the same scale factors as Assenede. More to the east and the north, however, the picture changes. At Gorinchem (No. 32), 's-Hertogenbosch (No. 33) and Utrecht (No. 36) where the factor is about 1.000045 there is still a good agreement with that at Bergen op Zoom (No. 17), Hoogstraten (No. 18), Breda (No. 23) and Hilvarenbeek (No. 24). At Rhenen (No. 37), however, it falls to 1.000038 and at Veluwe (No. 47) to 1. 000033 . At Kampen (No. 59), Lemmer (No. 68), Blokzijl (No. 69) and Sneek (No. 75) it is about 1.000025 and east of Kampen at Lemelerberg (No. 60) and Uelsen (No. 63) 1.000018 and 1.000008 respectively. At Oosterwolde (No. 82) and Beilen (No. 83) the scale of Krayenhoff's network is about the same as that of the R. D. At Groningen (No. 86) and Rolde (No. 87) the factor is about 0.999985 . Still more to the northeast it falls rapidly to 0.999934 at Aurich (No. 98), about the end of the triangulation.

Fig. 21

Though the several amounts cannot lay claim to a high accuracy - the relative differences for the different rays at the same station sometimes differ too much it is unmistakable that a constant scale in Krayenhoff's network is out of the question. As, however, the scale factor gradually changes from about 1.000050 in the south to about 0.999935 in the north of the triangulation the not-constant scale cannot be found from local checks. Notwithstanding the great trouble to make his network a closing mathematical figure, Krayenhoff did not succeed in his attempt. He could not even succeed for the plain reason that his time was not yet ripe for such an operation.
23. Comparison of the angles and sides (chords) of the adjusted network with the results of the R. D.

A reliable judgment of the accuracy of Krayenhoff's triangulation can only be obtained - Van der Plaats remarked it already - if its angles and sides are compared with those of another triangulation of uncontested higher order. A survey of this comparison is given in table 29. In this table I mentioned the 57 triangles of which the angular points (column 2) of Krayenhoff's triangulation coincide or are assumed to coincide with those of the R. D. Column 4 gives the

Table 29

No.	Station	Spherical angles		Spherical angles acc. R. D.	Diff. seconds	Opposite sides (chords)		Diff. cm
tri-		No.	$\begin{gathered} \text { Adj. least sq. } \\ o, \quad " \end{gathered}$					
an-				0		From adj.	R.D.	
1	2	3	4	5	5-4=6	7	8	8-7=9
11	Gent Aardenburg Assenede	$\begin{aligned} & 28 \\ & 29 \\ & 30 \end{aligned}$	435612.120	435610.580	-1. 540	21912. 24	21912.35	+ 11
			381131.533	381131.756	+0.223	19525. 93	19526. 21	+ 28
			975217.420	975218.737	+1.317	31382. 54	31382. 91	$+37$
			1800001.073	1800001.073	0			
12	Aardenburg Middelburg Assenede	$\begin{aligned} & 31 \\ & 32 \\ & 33 \end{aligned}$	782945.794	782947.726	+1.932	31740.39	31740.02	- 37
			423412.101	423415.547	+3.446	21912.24	21912.35	+ 11
			585563.613	585558.235	-5.378	27745.42	27744.62	- 80
			1800001.508	1800001.508	0			
13	Middelburg Hulst Assenede	$\begin{aligned} & 34 \\ & 35 \\ & 36 \end{aligned}$	335206.793	335209.189	+2.396	21799.26	21799.94	+ 68
			541408.789	541401.592	-7.197	31740.39	31740.02	- 37
			915346.169	915350.970	+4.801	39095. 30	39095. 80	+ 50
			1800001.751	1800001.751	0			
14	Hulst Gent Assenede	$\begin{aligned} & 37 \\ & 38 \\ & 39 \end{aligned}$	321152.698	321151.841	-0.857	19525. 93	19526.21	+ 28
			363015.508	363017.105	+1.597	21799.26	21799.94	+ 68
			1111752.798	1111752.058	-0.740	34141.99	34142.75	+ 76
			1800001.004	1800001.004	0			
15	Hulst Antwerpen Gent	$\begin{aligned} & 40 \\ & 41 \\ & 42 \end{aligned}$	1165717.367	1165726.699	+9.332	50723.94	50725. 06	+112
			365205.113	365201.586	-3.527	34141.99	34142.75	+ 76
			261039.454	261033.649	-5.805	25104.23	25103.92	- 31
			1800001.934	1800001.934	0			
16	Hulst Middelburg Zierikzee	$\begin{aligned} & 43 \\ & 44 \\ & 45 \end{aligned}$	380547.414	380547.709	+0.295	26715. 71	26715.95	+ 24
			772150.610	772147.710	-2.900	42251. 62	42251.78	+ 16
			643224.556	643227.161	+2.605	39095. 30	39095.80	+ 50
			1800002.580	1800002.580	0			
17	Hulst Zierikzee B. O. Zoom	$\begin{aligned} & 46 \\ & 47 \\ & 48 \end{aligned}$	472905.902	472905.043	-0.859	31144.81	31144.80	
			430112.128	430110.425	-1.703	28827. 37	28827. 22	- 15
			892944.243	892946.805	+2.562	42251.62	42251.78	- 16
			1800002.273	1800002.273	0			
18	Hulst B. O. Zoom Antwerpen	$\begin{gathered} 49 \\ 50 \\ 51 \end{gathered}$	710147.829	710147.115	-0.714	31475.87	31475.55	- 32
			485736.893	485736.138	-0.755	25104. 23	25103. 92	- 31
			600037.010	600038.479	+1.469	28827. 37	28827. 22	- 15
			1800001.732	1800001.732	0			
19	B. O. Zoom Antwerpen Hoogstraten	$\begin{aligned} & 52 \\ & 53 \\ & 54 \end{aligned}$	580858.511	580855.067	-3.444	32183. 79	32183.25	- 54
			654032.667	654037.377	+4.710	34525.34	34525.48	+ 14
			561031.159	561029.893	-1.266	31475.87	31475.55	- 32
			1800002.337	1800002.337	0			
20	Antwerpen Hoogstraten Herentals	$\begin{aligned} & 55 \\ & 56 \\ & - \end{aligned}$	480514.390	480517.786	+3.396	25708. 04	25708.39	$+35$
			631331.173	6313 35.781	+4.608	30842.37	30842.68	+ 31
			684116.307	68.4108 .303	-8.004	32183. 79	32183.25	- 54
			1800001.870	1800001.870	0			

Table 29 (continued)

1	2	3	4	5	6	7	8	9
21	Hoogstraten Lommel Herentals	$\begin{array}{r} 57 \\ 58 \\ \hline \end{array}$	520635.055	520633.149	-1.906	33996.90	33996. 76	$\begin{aligned} & -14 \\ & +35 \\ & +\quad 13 \end{aligned}$
			363821.588	363823.154	+1.566	25708.04	25708. 39	
			911505.569	911505.909	+0.340	43068. 12	43068. 25	
			1800002.212	1800002.212	0			
22	Zierikzee Willemstad Brielle	$\begin{aligned} & 59 \\ & 60 \\ & 61 \end{aligned}$	511631.098	511634.062	+2.964	30183.25	30183.92	$\begin{aligned} & +67 \\ & +36 \\ & +\quad 19 \end{aligned}$
			580907.191	580907.430	+0.239	32864. 00	32864.36	
			703424.079	703420.876	-3.203	36485. 93	36486. 12	
			1800002.368	1800002.368	0			
23	Willemstad Zierikzee B. O. Zoom	$\begin{aligned} & 62 \\ & 63 \\ & 64 \end{aligned}$	573210.510	573209.469	-1. 041	31144.81	31144.80	$\begin{array}{rr} -\quad 1 \\ -\quad 11 \\ +\quad 19 \end{array}$
			411125.592	411124.225	-1.367	24309.66	24309.55	
			811625.792	811628.200	+2.408	36485. 93	36486. 12	
			1800001.894	1800001.894	0			
24	Willemstad B. O. Zoom Breda	$\begin{aligned} & 65 \\ & 66 \\ & 67 \end{aligned}$	89.2033 .340	892036.100	+2.760	35377.82	35378. 16	$\begin{aligned} & +34 \\ & +23 \\ & -11 \end{aligned}$
			471524.669	471524.573	-0.096	25983.27	25983. 50	
			432403.590	432400.926	-2.664	24309.66	24309.55	
			1800001.599	1800001.599	0			
25	B. O. Zoom Breda Hoogstraten	$\begin{aligned} & 68 \\ & 69 \\ & 70 \end{aligned}$	345149.892	345149.217	-0.675	20956. 78	20956.82	$\begin{aligned} & +\quad 4 \\ & +\quad 14 \\ & +\quad 34 \end{aligned}$
			702038.755	702037.294	-1.461	34525.34	34525.48	
			744733.120	744735.256	+2.136	35377.82	35378. 16	
			1800001.767	1800001.767	0			
26	Breda Hoogstraten Hilv. beek	$\begin{aligned} & 71 \\ & 72 \\ & 73 \end{aligned}$	675649.579	675650.334	$+0.755$	27696. 79	27696.85	$\begin{array}{ll} + & 6 \\ - & 4 \\ + & 4 \end{array}$
			673120.910	673119.918	-0.992	27612.88	27612.84	
			443150.869	44.3151 .106	+0.237	20956. 78	20956. 82	
			1800001.358	1800001.358	0			
27	Hoogstraten Hilv. beek Lommel	$\begin{aligned} & 74 \\ & 75 \\ & 76 \end{aligned}$	461028.584	461026.003	-2.581	31144.24	31143.99	$\begin{aligned} & -25 \\ & +\quad 13 \\ & +\quad 6 \end{aligned}$
			935454.814	935457.704	+2.890	43068. 12	43068. 25	
			395438.780	395438.471	-0.309	27696. 79	27696. 85	
			1800002.178	1800002.178	0			
28	Hilv. beek Lommel Helmond	$\begin{aligned} & 77 \\ & 78 \\ & 79 \end{aligned}$	652715.831	652716.545	$+0.714$	36604.24	36604.30	$\begin{array}{r} 6 \\ +\quad 10 \\ +\quad 25 \end{array}$
			635011.505	635012.790	+1.285	36117.68	36117.78	
			504235.254	504233.255	-1.999	31144.24	31143.99	
			1800002.590	1800002.590	0			
29	Helmond Nederweert Lommel	$\begin{aligned} & 80 \\ & 81 \\ & - \end{aligned}$	572124.867	572123.869	-0.998	30932.36	30932.26	$\begin{aligned} & -10 \\ & +\quad 6 \\ & -\quad 39 \end{aligned}$
			851006.743	851010.498	+3.755	36604.24	36604.30	
			372830.134	372827.377	-2.757	22349.95	22349. 56	
			1800001.744	1800001.744	0			
30	Helmond Nederweert Vierl. beek	$\begin{aligned} & 82 \\ & 83 \\ & 84 \end{aligned}$	1012946.711	1012949.102	+2.391	39050. 78	39050.26	$\begin{aligned} & -52 \\ & -51 \\ & -\quad 39 \end{aligned}$
			442322.294	442320.794	-1.500	27876. 50	27875.99	
			340652.541	340651.650	-0.891	22349.95	22349. 56	
			1800001.546	1800001.546	0			
31	Brielle Rotterdam den Haag	$\begin{aligned} & 85 \\ & 86 \\ & 87 \end{aligned}$	573033.948	573035.607	+1.659	21234.10	21234.63	$\begin{aligned} & +53 \\ & +38 \\ & +39 \end{aligned}$
			600611.042	600610.253	-0.789	21824.28	21824.66	
			622316.049	622315.179	-0.870	22307.16	22307. 55	
			1800001.039	1800001.039	0			

Table 29 (continued)

1	2	3	4	5	6	7	8	9
32	Brielle Rotterdam Willemstad	$\begin{aligned} & 88 \\ & 89 \\ & 90 \end{aligned}$	562112.241	562112.459	+0.218	25739. 54	25740. 10	$\begin{aligned} & +56 \\ & +67 \\ & +39 \end{aligned}$
			772818.325	772818.951	+0.626	30183.25	30183. 92	
			461030.853	461030.009	-0.844	22307.16	22307. 55	
			1800001.419	1800001.419	0			
36	Breda Gorinchem 's Bosch	$\begin{aligned} & 100 \\ & 101 \\ & 102 \end{aligned}$	461047.413	461047.138	-0.275	27986. 82	27986.66	$\begin{array}{r} -16 \\ -15 \\ -18 \end{array}$
			830243.984	830244.607	+0.623	38503.58	38503.43	
			504630.716	504630.368	-0.348	30048.63	30048.45	
			1800002.113	1800002.113	0			
37	Breda Hilv. beek 's Bosch	$\begin{aligned} & 103 \\ & 104 \\ & 105 \end{aligned}$	412516.013	412519.458	+3.445	25504. 59	25504. 94	$\begin{aligned} & +35 \\ & -15 \\ & -\quad 4 \end{aligned}$
			924953.213	924948.957	-4.256	38503.58	38503.43	
			454452.555	454453.366	+0.811	27612.88	27612.84	
			1800001.781	1800001.781	0			
38	Hilv. beek 's Bosch Helmond	$\begin{aligned} & 106 \\ & 107 \\ & 108 \end{aligned}$	631605.274	631605.688	+0.414	33559.72	33559.94	$\begin{aligned} & +22 \\ & +10 \\ & +35 \end{aligned}$
			735910.483	735908.520	-1.963	36117.68	36117.78	
			424446.326	424447.875	+1.549	25504. 59	25504. 94	
			1800002.083	1800002.083	0			
42	Rotterdam den Haag Leiden	$\begin{aligned} & 117 \\ & 118 \\ & 119 \end{aligned}$	360943.559	360940.965	-2.594	15403. 55	15403.19	$\begin{aligned} & -36 \\ & -15 \\ & +53 \end{aligned}$
			892422.023	892416.005	-6. 018	26103.16	26103. 01	
			542555.246	542563.858	+8.612	21234.10	21234.63	
			1800000.828	1800000.828	0			
43	Rotterdam Leiden Gouda	$\begin{aligned} & 120 \\ & 121 \\ & 122 \end{aligned}$	561643.009	561646.691	+3.682	22063. 14	22063.31	$\begin{aligned} & +17 \\ & -25 \\ & -15 \end{aligned}$
			435808.792	435806.822	-1.970	18416. 39	18416. 14	
			794509.211	794507.499	-1.712	26103.16	26103.01	
			1800001.012	1800001.012	0			
48	Gouda Gorinchem Utrecht	$\begin{aligned} & 135 \\ & 136 \\ & 137 \end{aligned}$	654630.611	6546 34. 385	+3.774	30798.46	30799. 12	$\begin{aligned} & +66 \\ & +\quad 2 \\ & +43 \end{aligned}$
			610112.474	610107.966	-4.508	29543. 74	29543.76	
			531218.759	531219.493	+0.734	27044.42	27044. 85	
			1800001.844	1800001.844	0			
49	Gorinchem Utrecht Rhenen	$\begin{aligned} & 138 \\ & 139 \\ & 140 \end{aligned}$	511500.834	511501.177	+0.343	33842.92	33842.93	$\begin{aligned} & +1 \\ & -17 \\ & +66 \end{aligned}$
			833215.211	833210.185	-5.026	43119. 01	43118.84	
			451246.577	451251.260	+4.683	30798.46	30799.12	
			1800002.622	1800002.622	0			
50	's Bosch Gorinchem Rhenen	$\begin{aligned} & 141 \\ & 142 \\ & 143 \end{aligned}$	860644.390	860643.353	-1.037	43119. 01	43118.84	$\begin{array}{r} -17 \\ +\quad 6 \\ -16 \end{array}$
			533147.364	533148.782	+1.418	34754.76	34754.82	
			402130.703	402130.322	-0.381	27986.82	27986.66	
			1800002.457	1800002.457	0			
57	Utrecht Amsterdam Naarden	$\begin{aligned} & 161 \\ & 162 \\ & 163 \end{aligned}$	340609.253	340607.527	-1.726	20926. 22	20925. 77	$\begin{aligned} & -45 \\ & +38 \\ & -18 \end{aligned}$
			380109.760	380113.861	+4.101	22988.39	22988.77	
			1075242.146	1075239.771	-2.375	35520.94	35520. 76	
			1800001.159	1800001.159	0			
58	Utrecht Naarden Amersfoort	$\begin{aligned} & 164 \\ & 165 \\ & 166 \end{aligned}$	612357.391	612360.416	+3. 025	21927.50	21928.08	$\begin{aligned} & +58 \\ & +21 \\ & +38 \end{aligned}$
			513630.000	513627.927	-2.073	19575. 02	19575. 23	
			665933.609	665932.657	-0.952	22988.39	22988. 77	
			1800001.000	1800001.000	0			

Table 29 (continued)

1	2	3	4	5	6	7	8	9
59	Rhenen Utrecht Amersfoort	$\begin{aligned} & 167 \\ & 168 \\ & 169 \end{aligned}$	345935.974	345937.781	$+1.807$	$\begin{aligned} & 19575.02 \\ & 25174.96 \\ & 33842.92 \end{aligned}$	$\begin{aligned} & 19575.23 \\ & 25175.08 \\ & 33842.93 \end{aligned}$	$\begin{aligned} & +21 \\ & +12 \\ & +\quad 1 \end{aligned}$
			473120.086	473121.605	+1. 519			
			972905.177	972901.851	-3.326			
			1800001.237	1800001.237	0			
60	Rhenen Amersfoort Veluwe	$\begin{aligned} & 170 \\ & 171 \\ & 172 \end{aligned}$	614255.089	614249.628	-5.461	$\begin{aligned} & 33375.06 \\ & 36877.73 \\ & 25174.96 \end{aligned}$	$\begin{aligned} & 33375.03 \\ & 36878.53 \\ & 25175.08 \end{aligned}$	$\begin{aligned} & -\quad 3 \\ & +80 \\ & +\quad 12 \end{aligned}$
			763939.122	763946.186	+7.064			
			413727.859	413726.256	-1.603			
			1800002.070	1800002.070	0			
64	Amsterdam Haarlem Alkmaar	$\begin{aligned} & 182 \\ & 183 \\ & 184 \end{aligned}$	695243.333	695245.398	+2. 065	$\begin{aligned} & 28884.84 \\ & 29978.99 \\ & 16790.26 \end{aligned}$	$\begin{aligned} & 28885.00 \\ & 29978.96 \\ & 16790.38 \end{aligned}$	$\begin{aligned} & +16 \\ & -\quad 3 \\ & +12 \end{aligned}$
			770230.752	770227.988	-2.764			
			330447.111	330447.810	+0.699			
			1800001.196	1800001.196	0			
99	Urk Lemmer Blokzij1	$\begin{aligned} & 283 \\ & 284 \\ & 285 \end{aligned}$	522102.170	522106.858	+4.688	$\begin{aligned} & 21348.34 \\ & 25873.37 \\ & 21811.99 \end{aligned}$	$\begin{aligned} & 21348.61 \\ & 25873.13 \\ & 21811.78 \end{aligned}$	$\begin{aligned} & +27 \\ & -24 \\ & -21 \end{aligned}$
			733919.206	733916.007	-3.199			
			535939.755	535938.266	-1.489			
			1800001.131	1800001.131	0			
100	Urk Blokzij1 Kampen	$\begin{aligned} & 286 \\ & 287 \\ & 288 \end{aligned}$	435446.201	435451.750	+5. 549	$\begin{aligned} & 18941.70 \\ & 24703.15 \\ & 25873.37 \end{aligned}$	$\begin{aligned} & 18942.18 \\ & 24703.00 \\ & 25873.13 \end{aligned}$	$\begin{aligned} & +48 \\ & -15 \\ & -24 \end{aligned}$
			644532.232	644530.635	-1.597			
			711942.689	711938.737	-3.952			
			1800001.122	1800001.122	0			
101	Kampen Blokzij1 Meppel	$\begin{aligned} & 289 \\ & 290 \\ & 291 \end{aligned}$	410057.580	410055.324	-2.256	$\begin{aligned} & 15825.55 \\ & 24086.01 \\ & 18941.70 \end{aligned}$	$\begin{aligned} & 15825.33 \\ & 24085.95 \\ & 18942.18 \end{aligned}$	$\begin{aligned} & -22 \\ & -\quad 6 \\ & +48 \end{aligned}$
			871264.603	871259.753	-4.850			
			514558.575	514565.681	+7.106			
			1800000.758	1800000.758	0			
115	Lemmer Sneek Oldeholtpa	$\begin{aligned} & 331 \\ & 332 \\ & 333 \end{aligned}$	854621.117	854628.490	+7.373	$\begin{aligned} & 30487.10 \\ & 23606.98 \\ & 21110.44 \end{aligned}$	$\begin{aligned} & 30487.47 \\ & 23607.13 \\ & 21109.93 \end{aligned}$	$\begin{aligned} & +37 \\ & +15 \\ & -51 \end{aligned}$
			503313.413	503312.686	-0.727			
			434026.728	434020.082	-6.646			
			1800001.258	1800001.258	0			
116	Blokzijl Lemmer Oldeholtpa	$\begin{aligned} & 334 \\ & 335 \\ & 336 \end{aligned}$	700836.203	700842.223	+6.020	$\begin{aligned} & 23606.98 \\ & 19665.88 \\ & 21348.34 \end{aligned}$	$\begin{aligned} & 23607.13 \\ & 19664.92 \\ & 21348.61 \end{aligned}$	$\begin{aligned} & +15 \\ & -96 \\ & +27 \end{aligned}$
			513464.326	513452.618	-11.708			
			581620.471	581626.159	+5.688			
			1800001.000	1800001.000	0			
117	Meppel Blokzijl Oldeholtpa	$\begin{aligned} & 337 \\ & 338 \\ & 339 \end{aligned}$	545525.237	545520.171	-5. 066	$\begin{aligned} & 19665.88 \\ & 23893.34 \\ & 15825.55 \end{aligned}$	$\begin{aligned} & 19664.92 \\ & 23892.61 \\ & 15825.33 \end{aligned}$	$\begin{aligned} & -96 \\ & -73 \\ & -22 \end{aligned}$
			835307.207	835309.124	+1.917			
			411128.339	411131.488	+3.149			
			1800000.783	1800000.783	0			
118	Meppel Oldeholtpa Beilen	$\begin{aligned} & 340 \\ & 341 \\ & 342 \end{aligned}$	734127.299	734129.575	+2.276	31536.70	31536. 16	$\begin{aligned} & -54 \\ & -58 \\ & -73 \end{aligned}$
			593941.436	593941.410	-0.026	28359. 09	28358. 51	
			463852.911	463850.661	-2.250	23893. 34	23892.61	
			1800001.646	18.00001 .646	0			
122	Sneek Harlingen Leeuwarden	$\begin{aligned} & 352 \\ & 353 \\ & 354 \end{aligned}$	704832.870	704833.081	+0.211	25448. 89	25448. 56	$\begin{array}{r} -33 \\ -\quad 1 \\ -\quad 56 \end{array}$
			510538.662	510542.060	+3.398	20969. 04	20969.03	
			580549.615	580546.006	-3.609	22875.95	22875.39	
			1800001.147	1800001.147	0			

Table 29 (continued)

1	2	3	4	5	6	7	8	9
123	Sneek Leeuwarden Drachten	$\begin{aligned} & 355 \\ & 356 \\ & 357 \end{aligned}$	493036.389	493038.740	+2.351	23434.35	23434.28	$\begin{array}{r} -7 \\ -43 \\ -\quad 1 \end{array}$
			873623.273	873618.514	-4.759	30786. 72	30786.29	
			425301.581	425303.989	+2.408	20969.04	20969.03	
			1800001.243	1800001.243	0			
124	Sneek Drachten Oldeholtpa	$\begin{aligned} & 358 \\ & 359 \\ & 360 \end{aligned}$	453607.212	453606.509	-0.703	23747. 09	23746. 96	$\begin{aligned} & -13 \\ & +37 \\ & -43 \end{aligned}$
			663158.085	663164.808	$+6.723$	30487. 10	30487.47	
			675156.401	675150.381	-6.020	30786.72	30786.29	
			1800001.698	1800001.698	0			
125	Oldeholtpa Drachten Oosterwolde	$\begin{aligned} & 361 \\ & 362 \\ & 363 \end{aligned}$	474854.989	474855.402	$+0.413$	17972.04	17971.97	$\begin{aligned} & -7 \\ & -\quad 14 \\ & -\quad 13 \end{aligned}$
			535523.791	535523.196	-0.595	19603. 03	19602.89	
			781542.093	781542.275	+0.182	23747. 09	23746. 96	
			1800000.873	1800000.873	0			
126	Oldeholtpa Oosterwolde Beilen	$\begin{aligned} & 364 \\ & 365 \\ & 366 \end{aligned}$	413111.636	413115.077	+3.441	21286. 03	21285. 95	$\begin{aligned} & -8 \\ & -54 \\ & -14 \end{aligned}$
			1005125.021	1005119.201	-5.820	31536.70	31536. 16	
			373724.380	373726.759	+2.379	19603. 03	19602.89	
			1800001.037	1800001.037	0			
132	Oosterwolde Drachten Groningen	$\begin{aligned} & 379 \\ & 380 \\ & 381 \end{aligned}$	815419.579	815416.653	-2.926	33691. 06	33690.92	$\begin{array}{r} -14 \\ +14 \end{array}$
			661258.382	661261.521	+3.139	31140.04	31140.18	
			315243.442	315243.229	-0.213	17972.04	17971.97	
			1800001.403	1800001.403	0			
133	Oosterwolde Groningen Rolde	$\begin{aligned} & 382 \\ & 383 \\ & 384 \end{aligned}$	550102.578	550109.489	+6.911	26169.99	26170.86	$\begin{array}{r} +87 \\ -\quad 3 \\ +\quad 14 \end{array}$
			475025.910	475023.513	-2.397	23677.12	23677. 09	
			770833.041	770828.527	-4.514	31140.04	31140.18	
			1800001.529	1800001.529	0			
134	Oosterwolde Rolde Beilen	$\begin{aligned} & 385 \\ & 386 \\ & 387 \end{aligned}$	435730.729	435732.382	+1.653	16973.82	16973.96	$\begin{aligned} & +14 \\ & -\quad 8 \\ & -\quad 3 \end{aligned}$
			603053.362	603052.121	-1.241	21286.03	21285.95	
			753136.795	753136.383	-0.412	23677. 12	23677. 09	
			1800000.886	1800000.886	0			
135	Beilen Rolde Sreen	$\begin{aligned} & 388 \\ & 389 \\ & 390 \end{aligned}$	841961.545	841953.967	-7.578	25942.16	25941.50	$\begin{aligned} & -66 \\ & -30 \\ & +14 \end{aligned}$
			550231.209	550233.530	+2.321	21365.86	21365.56	
			403728.160	403733.417	+5.257	16973.82	16973.96	
			1800000.914	1800000.914	0			
136	Coevorden Beilen Sleen	$\begin{aligned} & 391 \\ & 392 \\ & 393 \end{aligned}$	524049.942	524053.567	+3.625	21365.86	21365.56	$\begin{array}{r} -30 \\ +\quad 4 \\ -62 \end{array}$
			301426.309	301429.959	+3.650	13530. 72	13530.76	
			970444.475	970437.200	-7.275	26661.48	26660.86	
			1800000.726	1800000.726	0			
138	Groningen Hornhuizen Uith. meden	$\begin{aligned} & 396 \\ & \mathbf{3 9 7} \\ & 398 \end{aligned}$	603631.582	603630.015	-1.567	23414.63	23414.40	$\begin{aligned} & -23 \\ & +10 \\ & -25 \end{aligned}$
			590206.602	590209.906	+3. 304	23043.62	23043. 72	
			602123.003	602121.266	-1.737	23356. 32	23356.07	
			1800001.187	1800001.187	0			
141	Groningen Midwolda Onstwedde	$\begin{aligned} & 405 \\ & 406 \\ & 407 \end{aligned}$	275727.637	275726.070	-1. 567	18352.64	18352.72	$\begin{aligned} & +8 \\ & +41 \\ & -17 \end{aligned}$
			1024814.204	1024821.627	+7.423	38173.23	38173.64	
			491419.502	491413.646	-5.856	29651.06	29650.89	
			1800001.343	1800001.343	0			

Table 29 (continued)

adjusted spherical angles according to the method of the least squares, column 5 those computed from the R. D. -coordinates in columns 5 and 6 of table 26. In an analogous way column 7 gives the opposite sides (chords) according to the adjustment (see also column 12 in table 15). The R. D. -sides are in column 8. Columns 6 and 9 finally give the differences in the angles and side lengths respectively. The side lengths in the two systems of a number of identical sides in not-identical triangles are mentioned at the end of the table.

In his publication [67] Heuvelink makes a similar comparison between the R. D. results and the amounts published by Krayenhoff in tableau III of his Précis Historique. Because of Krayenhoff's arbitrary adjustment of his network, however, this comparison is not a standard for the determination of the accuracy of the triangulation. Moreover the triangles 33 on page 9 of the publication [67],34, 35 (page 10), 44, 45, 46, 54, 55 (page 11), 47, 56 (page 12), $86,87,88,89,74$, $102,103,104$ (page 13), 65 and 66 (page 16) don't belong in that table for the reason already mentioned in section 21.

A graphical survey of the 171 v 's in column 6 of table 29 is given in the histogram of Fig. 22. It gives a picture of the external accuracy of the triangulation and it agrees fairly well with a normal distribution with a standard deviation $m= \pm 3^{\prime}!57$ as is sketched in the figure. As could be expected the external accuracy is worse than the inner accuracy: $29 \mathrm{v}^{\prime} \mathrm{s}$ are even greater than $5^{\prime \prime}$. The greatest $\mathrm{v}^{\prime} \mathrm{s}$ occur

Fig. 22
in triangle 116 (about $+6^{\prime \prime}!0,-11^{\prime}!7$ and $+5^{\prime}!7$, respectively) though the lengths of the sides of the triangle are about 20 km . It might be possible - I already remarked it before - that similar changes as described for Edam, Dordrecht and Nieuwkoop influenced the results of the computations. If, e. g. , I had not known the non-identity of the R. D. point Edam and Krayenhoff's station No. 53,
the v^{\prime} s for the angles 185,186 , and 187 in triangle 65 would have been $-3!!933$, $+13!.993$ and $-10 \prime!060$ respectively and those for the angles 188,189 and 190 of triangle $66,+15^{\prime}!680,-5^{\prime}!685$ and $-9 '!994$ respectively. They would have considerably spoilt the external accuracy of the triangulation.

In my opinion the amounts v in column 9 are small and very often even considerably smaller than Baeyer's demand for distances between far distant points. The worst relative error in the side length of a triangle is 1 to 20,000 for the side Blokzijl-Oldeholtpa in the triangles 116 and 117.

It will be clear that the accuracy of the lengths between far distant points in the network, necessary for the determination of the shape of the earth, will be still much better. As an example I computed the R. D. -distances from the astronomical stations Amsterdam (No. 40) to Gent (No. 10) in the south and Leer (No. 95) in the north. The first chord is 167356.02 m , the second one 197436.23 m . As the corrections from chord to arc are +4.79 m and +7.87 m respectively, the lengths on the sphere are 167360.81 and 197444.10 m respectively. From the coordinates in columns 7 and 8 of table 26 one finds in the same way 167360.20 m and 197445.11 m . The differences are +0.61 m and -1.01 m respectively, the relative differences +0.0000036 and -0.0000051 . They are about a factor 10 better than Baeyer demanded.

In the utmost northern part of the network where reliable data for a correct comparison are missing, I made a superficial comparison between Krayenhoff's adjusted results and the adjusted angles and side lengths of Gauss' triangulation in Oldenburg. From preliminary computations it appeared that the angular points Jever, Westerstede, Aurich and Leer of the triangles IV and V of the Oldenburgtriangulation (see Fig. 17 in section 18) are identical with Krayenhoff's stations Nos. 102, 100, 98 and 95. The triangles are once again represented in Fig. 23.

Fig. 23

The adjusted angles Leer in V and Jever in IV are therefore comparable with the sum of Krayenhoff's adjusted angles 439 and 442 (at Leer) and 456 and 459 (at Jever), respectively. Though Krayenhoff has not measured the angles α and β at Westerstede and γ and δ at Aurich, I could compute them from the coordinates $\mathrm{X} " \mathrm{Y}$ " in table 26. As these coordinates are rounded-off at cm, α, β, γ, and δ are rounded-off at tenths of a second in column 4 of table 30 . $\alpha+\beta$ is of course alike to $444+457, \gamma+\delta$ to $440+455$. In column 5 are the results of the angles according to the adjusted Oldenburg-triangulation. I borrowed them from [65] page 25. The agreement is excellent as may be seen from the differences in column 6. For the triangles IV and V the largest difference is +4 ': 5 in γ.

Table 30

No. triangle	Station	Spherical angles		Sph. angles Oldenb. tr.	Diff. v. seconds	Opposite sides (chords)		Diff. v. m.
		No.	Kr.least sq.			$\begin{array}{\|c\|} \hline \text { Kr. least } \\ \text { sq. } \\ \hline \end{array}$	Oldenb.	
1	2	3	4	5	$5-4=6$	7	8	$8-7=9$
IV	Jever Westerstede Aurich	$\begin{gathered} 456+459 \\ \alpha \\ \delta \end{gathered}$	$\begin{aligned} & 70^{\circ} 44^{\prime} 44^{\prime \prime} .452 \\ & 48^{\circ} 45^{\prime} 22^{\prime \prime} .5 \\ & 60^{\circ} 29^{\prime} 55^{\prime \prime} .6 \\ & \hline \end{aligned}$	$70^{\circ} 44^{\prime} 46^{\prime \prime} .559$ $48^{\circ} 45^{\prime} 22^{\prime \prime} .089$ $60^{\circ} 29^{\prime} 53^{\prime \prime} .893$	$\begin{aligned} & +2.107 \\ & -0.4 \\ & -1.7 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 38029.68 \\ 30289.16 \\ 35060.04 \end{array}$	$\begin{aligned} & 38030.78 \\ & 30289.88 \\ & 35060.78 \end{aligned}$	$\begin{aligned} & +1.10 \\ & +0.72 \\ & +0.74 \end{aligned}$
			$180^{\circ} 00^{\prime} 02^{\prime \prime} .541$	$180^{\circ} 00^{\prime} 02^{\prime \prime} .541$	0			
V	Aurich Westerstede Leer	$\begin{gathered} \gamma \\ \beta \\ 439+442 \end{gathered}$	$\begin{aligned} & 56^{\circ} 07^{\prime} 23^{\prime \prime} \cdot 3 \\ & 44^{\circ} 044^{\prime} 16^{\prime \prime}{ }^{\prime} \\ & 79^{\circ} 48^{\prime} 22^{\prime} .146 \end{aligned}$	$\begin{aligned} & 56^{\circ} 07^{\prime} 27^{\prime \prime} .758 \\ & 44^{\mathrm{o}} 04^{\prime} 15^{\prime \prime} .059 \\ & 79^{\mathrm{o}} 48^{\prime} 19^{\prime \prime} .331 \end{aligned}$	$\begin{aligned} & +4.5 \\ & -1.6 \\ & -2.815 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} 32080.02 \\ 26875.85 \\ 38029.68 \end{array}$	$\begin{aligned} & 32081.49 \\ & 26876.47 \\ & 38030.78 \end{aligned}$	$\begin{aligned} & +1.47 \\ & +0.62 \\ & +1.10 \end{aligned}$
			$180^{\circ} 00^{\prime} 02^{\prime \prime} 147$	$180^{\circ} 00^{\prime} 02^{\prime \prime} .148$	+0. 001			
III	Westerstede Jever Varel	$\begin{aligned} & 460 \\ & 461 \\ & 462 \end{aligned}$	$\begin{aligned} & 44^{\mathrm{o}} 23^{\mathrm{\prime}} 56^{\mathrm{I} \mathrm{\prime}} .229 \\ & 35^{\mathrm{o}} 55^{\prime} 17^{\prime \prime} .839 \\ & 99^{\mathrm{o}} 40^{\prime} 47^{\prime \prime} .228 \end{aligned}$	$\begin{aligned} & 44^{\mathrm{o}} 23^{\prime} 50^{\prime \prime} .443 \\ & 35^{\mathrm{o}} 55^{\prime} 28^{\prime \prime} .795 \\ & 99^{\mathrm{o}_{4}^{\prime}} 40^{\prime \prime} .059 \end{aligned}$	$\begin{array}{r} -5.786 \\ +10.956 \\ -5.169 \\ \hline \end{array}$	$\begin{aligned} & 24884.00 \\ & 20865.97 \\ & 35060.04 \end{aligned}$	$\begin{aligned} & 24883.67 \\ & 20867.85 \\ & 35060.78 \end{aligned}$	$\begin{aligned} & -0.33 \\ & +1.88 \\ & +0.74 \end{aligned}$
			$180^{\circ} 00^{\prime} 01^{\prime \prime} .296$	$180^{\circ} 00^{\prime} 01^{\prime \prime} .297$	+0.001			

The deviations in triangle III are larger. They even amount to $+10!956$ for the angle at Jever between Varel and Westerstede. It might be possible that it must be ascribed to Krayenhoff's arbitrary choice of series $12\left(35^{\circ} 55^{\prime} 18^{\prime \prime} .309\right)$ at Jever for his further computations which I also used for the rigorous adjustment of the triangulation. If, for the computation of angle 461, he would have used the mean $35^{\circ} 55^{\prime} 22^{\prime \prime} .434$ of the four series mentioned in table 19 , the amount +10 ". 956 in column 6 of table 30 would probably have been less. It is also possible, however, that it is caused by an alteration in the spire of the Lutheran church at

Varel between Krayenhoff's measurements in 1811 and those for the Oldenburgtriangulation in 1831. For in the years 1827, 1828 (and 1833) extensive repairs of the tower and its skylight might have altered the position of the spire [71] . This possible alteration, however, is independent of Gauss' own measurement (in 1825) of the angle at Jever between Varel and Esens. According to his letter to Schumacher [72] it amounts to $152^{\circ} 22^{\prime} 36.585$: "Der Winkel zwischen Varel und Esens ist nach meiner Messung auf das Zentrum reduziert $152^{\circ} 22^{\prime} 36^{\prime \prime} .585$ mit Vorbehalt einer kleinen Reduktion wegen des Umst andes dass mein Heliotrop in Varel nicht genau im Zentrum des Turms stand welche Reduktion ich noch nicht berechnet habe die aber nur einen Bruch einer Sekunde betragen kann während Krayenhoff $35^{\circ} 55^{\prime} 18^{\prime \prime} .309+40^{\circ} 26^{\prime} 50^{\prime \prime} .160+30^{\circ} 17^{\prime} 53^{\prime \prime} .908+45^{\circ} 42^{\prime} 19^{\prime \prime} .298=$ $152^{\circ} 22^{\prime} 21^{\prime \prime} .675$ (findet) oder nach seiner eignen Ausgleichung $152^{\circ} 22^{\prime} 21^{\prime \prime} .243^{\prime \prime}$.

The amounts mentioned in the above quotation are of course Krayenhoff's angles $461+(456+459)+453$ (see Fig. 23). In the adjustment of the angles according to the least squares this sum is $152^{\circ} 22^{\prime} 22^{\prime \prime} .466$, a large difference indeed with Gauss' measurement (14.119 smaller). I cannot find a plausible explanation for it. A substitution of the adjusted amount $152^{\circ} 2222.466$ by the sum of the angles $461,456,459$ and 453 in column 7 of table $20\left(152^{\circ} 22^{\prime} 22^{\prime \prime} .674\right)$ gives no solution: both the amounts differ too little from each other. The result $70^{\circ} 45^{\prime} 27^{\prime \prime} .036$ of Gauss' measurement of the angle Westerstede-Jever-Aurich is about 42 " greater than the mean of the amounts $70^{\circ} 44^{\prime} 44^{\prime \prime} .452$ and $70^{\circ} 44^{\prime} 46^{\prime \prime} .559$ of the adjusted Krayenhoff- and Oldenburg triangulations respectively (see table 30) and almost $45^{\prime \prime}$ greater than the sum of the angles 456 and 459 in column 7 of table 19. It is certain, however, that the explanation cannot be found from computations from the table on the pages 206 and 207 of Gaede's paper [9]. The differences found from these computations are much greater.

The lengths of the sides (chords) of the triangles IV, V and III of the Oldenburgtriangulation are mentioned in column 8 of table 30 . I borrowed them from the arcs [73] on page 25 of [65] and the reductions c from arc to chord:

$$
c_{\mathrm{cm}}=-1 \begin{aligned}
& 3 \\
& \mathrm{~km}
\end{aligned}: 9777.2 \text { (see formula } 10 \text { in section } 13 \text {). }
$$

The length of the chord Jever-Varel e.g. is: 24883.69-(24.884 ${ }^{3}$:9777.2) $\mathrm{cm}=24883.67$.
The chords in Krayenhoff's adjusted system are in column 7 of the table. I borrowed them from column 12 of table 15 (section 15). If one leaves the dubious triangle III out of consideration, the v's in column 9 are all positive which might be ascribed to a difference in scale between the two triangulations of about 0.000029 (3 cm per km).

24. Final consideration of the geodetic part of the triangulation

The excellent side lengths in the adjusted triangulation network - it must be said once again - are obtained by the introduction of a fictitious 'ideal" baseline. As there was no baseline available - it seems logical that the one near Melun could not be used as it lies about 280 km south of Duinkerken and the distances Duin-kerken-Amsterdam and Amsterdam-Jever are about 230 km and 250 km respectively - this "baseline" was found from a similarity transformation by which the figure of the network with its 106 angular points and 505 adjusted angles was adapted as well as possible to 65 identical points of the R. D. -triangulation network. Another baseline would have given worse results. If one can agree with this ideal baseline - there is hardly any alternative and the measurement of a baseline was not excluded by Baeyer - and if one wishes to accentuate Baeyer's requirements for a relative accuracy of 0.00005 for long distances in the network, then Cohen Stuart wrongly rejected Krayenhoff's triangulation as Van der Plaats anticipated already.

Concerning Baeyer's requirement that the closing error in the angles of a triangle should only exceptionally surpass $3^{\prime \prime}$, it must be said that this requirement relates to triangles in a triangulation chain [74]. According to Cohen Stuart - and I agree with him - this requirement is not necessary for triangles in a triangulation network, the angles of which can be verified in other ways.

According to the Précis Historique the number of triangles with closing errors greater than 3 " is only 5 (the numbers $31,55,107,121$ and 148) though I also agree with Cohen Stuart that this number was kept low by a choice from the measured series. Especially in the northern part of the network (see the considerations for the station Jever in tables 18 and 19) this arbitrariness went much too far. Already before, however, I explained that I don't agree with Cohen Stuart's thesis that in principle all the measured series had to be used for the computation. The result would have been unnecessarily worse. If one admits that there is a talk of a choice of the series, one must also admit that this choice, based on the reliability of the observations in the series, was a good one. The corrections p to all the 505 angles are very low, much lower than appears from Krayenhoff's primitive adjustment ($\mathrm{m}= \pm 1^{\prime \prime} .775$, see Fig. 18). The two largest are $\mathrm{p}_{370}=-4!463$ and $\mathrm{p}_{375}=-4!206$ in the triangles 128 and 130 . With an intentionally influenced choice of the series they could not have been so good. For the consequences of such a choice on the corrections to the other observations could not possibly be predicted the more - I repeat it once again - because Krayenhoff saw "only" 273 of the 276 conditions the angles of the network had to comply with.

It seems to me that it is justified that Krayenhoff's triangulation was highly praised at the time of its completion (1811). If it had (could have) been adjusted according to the least squares and provided with the baseline already mentioned before, it would even have satisfied the requirements of more than 50 years later (1864).

Cohen Stuart, however, rejected the measurement. After all we must be grateful for this rejection because in an indirect way this rejection was the motive for the measurement of the R. D. -triangulation network. Measured with the utmost care according to scientific methods and adjusted according to the least squares it satisfies high requirements of accuracy still in our days.

It will be clear that the judgment on the triangulation given above, relates to the geodetic part. On the astronomical part Cohen Stuart only writes a few sentences on page 32 of his booklet. In the next chapter this part of the triangulation will also be submitted to an extensive investigation.

II - ASTRONOMICAL PART OF THE TRIANGULATION

25. Introduction

In order to give Krayenhoff's adjusted network its correct place on the ellipsoidical earth it is necessary that at least of one angular point the geographical latitude φ and the longitude λ are known and the azimuth of at least one side. As, however, Delambre had already determined the coordinates of the common point Duinkerken of both triangulations ($\varphi=51^{\circ} 02^{\prime} 08^{\prime \prime} .73, \lambda=+0^{\circ} 02^{\prime} 23^{\prime \prime} .000$ with respect to Cassini's meridian of Paris) [75] and the astronomical azimuth $205^{\circ} 12^{\prime} 29^{\prime \prime} .65$ of the side Watten-Duinkerken (counted from the south in a clockwise direction [76]) all the data for the computation of the coordinates of all the angular points of the network and the azimuths of all the sides were already available. Krayenhoff must be praised that, notwithstanding these data, he thought it necessary to check his computations by measuring the latitudes φ of his stations Amsterdam (No. 40) and Jever (No. 102) and the azimuths A of the sides Amster-dam-Utrecht and Jever- Varel. The determinations of latitudes on the Naval Observatory in Den Haag (The Hague) and on the cathedral at Utrecht, already executed between 1801 and 1803 are left out of consideration: they are not used for the computation of the network. The determinations of latitudes in Amsterdam and at Jever will be discussed in the sections 26 and 27 respectively. They were executed with the repetition circle (diameter about 38 cm) already mentioned in section 5 and probably pictured next to Krayenhoff's portrait in Fig. 1. The determinations of azimuths will be discussed in the sections 28 and 29.

It is obvious that the coordinates φ_{i} and λ_{i} of the angular points $(i=1,2, \ldots \ldots$, 105,106) and the azimuths A of the sides of the network are dependent on the reference ellipsoid on which they are computed. For the computation of his own triangulation Delambre used the ellipsoid of which the radius of the equator was 6375737 metres and the flattening $1: 334$. As the results of this triangulation were not yet known when Krayenhoff computed his own network, he had to use the same data. From these data and those mentioned above follows, according to Précis Historique page 34 , an azimuth of $25^{\circ}{ }_{19} 9^{\prime} 42^{\prime \prime} .433$ for the side DuinkerkenWatten and, from the adjusted angle $42^{\circ} 06^{\prime} 09.730$ of triangle 1 at Duinkerken, an azimuth of $343^{\circ} 13^{\prime} 32^{\prime \prime} .703$ for the side Duinkerken-Mont Cassel. From this azimuth and the coordinates of Duinkerken the computation of the angular points $2,3, \ldots \ldots, 105,106$ of the network and the azimuths of the sides was started. The computation with Delambre's formulae in his Méthodes analytiques can be found in the volume folio mentioned under \underline{f} at the end of section 4 . The results φ and λ (λ with respect to the meridian of Paris) are mentioned in the alphabetic
order of the stations on the pages 149-154 of the Précis Historique. The azimuths are shown on the pages 155-174. The coordinates of Amsterdam e.g. are $\varphi=52^{\circ} 22^{\prime} 30^{\prime \prime} .188, \lambda=+2^{\circ} 32^{\prime} 54^{\prime \prime} .360$ and the azimuth Amsterdam-Utrecht $\mathrm{A}=332^{\circ} 41^{\prime} 20^{\prime \prime} .350$, those of Jever $\varphi=53^{\circ} 344^{\prime} 23^{\prime \prime} .433, \quad \lambda=+5^{\circ} 34^{\prime} 10^{\prime \prime} .416$ and the azimuth Jever-Varel $A=321^{\circ} 20^{\prime} 33^{\prime \prime} .733$.

Later on, after the appearance of the first edition of the Précis Historique, Krayenhoff computed the φ 's, λ^{\prime} 's and $A^{\prime} s$ a second time, now according to the results of Delambre's triangulation on the ellipsoid with a radius of the equator of 6356356.1 m and a flattening of 0.003229489 or about $1: 309.65$ [77] ; For this computation he started from the coordinates of Amsterdam $p=52^{\circ} 22^{\circ} 30.13$, found from his own determination (see section 26), $\lambda=0$ (the meridian of Amsterdam) and from the azimuth Amsterdam-Utrecht $A=332^{\circ} 41^{\prime} 19^{\prime \prime} .940$ also found from his own observations (see section 28). The results of the computations of the coordinates φ and λ may be found on the pages 177-181, of the azimuths on the pages 182-202 of the second edition of the Précis Historique. φ and λ of Duinkerken, e.g., are $51^{\circ} 02^{\prime} 09^{\prime \prime} .65$ and $-2^{\circ} 30^{\prime} 28^{\prime \prime} .35$ respectively, φ and l of Jever $53^{\circ} 344^{\prime} 22^{\prime \prime} .71$ and $+3^{\circ} 011^{\prime \prime} 12$. 22 . The azimuths Duinkerken-Mont Cassel and Jever-Varel are $343^{\circ} 13^{\prime} 33^{\prime \prime} .569$ and $321^{\circ} 20^{\prime} 30^{\prime \prime} .411$, respectively.

I don't know where Krayenhoff computed these φ^{\prime} 's, λ 's and A's. The computation cannot be found in the volume folio \underline{f} already mentioned before.

26. Determination of the latitude in Amsterdam (station No. 40)

For the determination of latitudes in Amsterdam and at Jever Krayenhoff used a repetition circle with a diameter of 14 (Paris) inches (about 38 cm). It was made at his own expense by Lenoir in Paris. "It was an excellent instrument that could be handled in an easy way without the risk of getting disadjusted and above all I was very pleased with the accuracy of both the levels" [78]. In section 6 I already explained how, with a vertical limb, zenith distances could be measured with it. I don't know whether the instrument still exists and, if so, where it is. Baron Krayenhoff at Amersfoort could give me no information concerning this question.

For the determination of latitudes Krayenhoff applied the measurement of circum meridian zenith distances of the pole star (α Ursae minoris). The chronometer used for the time registration was made by the clockmaker Knebel in Amsterdam. "La marche m'en était parfaitement connue, au moyen des observations correspondantes du soleil, répétées autant de fois que les circonstances le permirent" [79]. As I shall prove in section 27 it was adjusted to keep mean solar time.

If one knows the approximate longitude of the stations where the latitude must be determined (Krayenhoff used for Amsterdam $\lambda=+2^{\circ} 32^{\prime} 53^{\prime \prime}=+10^{\mathrm{m}} 12^{\mathrm{S}}$ east of Paris), then it is possible to compute in advance from the known right ascension α of the star at which moment (Krayenhoff expressed it in mean solar time) on a fixed day Polaris will pass the meridian of the Western tower in Amsterdam, either in upper or in lower transit. In the example of table 31 this moment is $12^{\mathrm{h}} 18^{\mathrm{m}} 43^{\mathrm{S}}\left(24^{\mathrm{h}} 18 \mathrm{~m}_{43^{\mathrm{S}}}\right.$) mean solar time (see column 7). It refers to the observation of Polaris on October 3rd, 1810 [80]. At that moment the star passed the meridian in upper transit. As the timekeeper was $15{ }^{\mathrm{m}} 54{ }^{\mathrm{S}}$ slow at that moment, the chronometer time of transit was $12{ }^{\mathrm{h}} 02^{\mathrm{m}_{4}} 49^{\mathrm{S}}$ (column 7).

Table 31

About half an hour before transit Krayenhoff began his observations in a series (in this case series 8) and he continued them till about half an hour after transit according to the method of the measurement of vertical angles already described before. In that time about 40 observations on the star were made. For every pointing when the star passed through the intersection point of the cross wires the timekeeper was read by the calling out method and the chronometer reading noted down in column 2. The first reading with, as usual in Krayenhoff's measurements, zero on the limb, is $11^{\mathrm{h}} 30{ }^{\mathrm{m}} 51^{\mathrm{s}}$ in table 31. As the time of transit on the timekeeper is $122^{\mathrm{h}} 02^{\mathrm{m}} 49^{\mathrm{s}}$, the hour angle t in column 4 is $-31^{\mathrm{m}} 58^{\mathrm{s}}$. It is expressed in mean solar time. In the table I only give the time observations 1-5, 18-22 and 36-40 and the accessory hour angles \underline{t} for the 40 pointings at the star. After the reading $12^{\mathrm{h}} 02^{\mathrm{m}} 49^{\mathrm{S}}$ on the timekeeper, t alters of course from negative into positive. The star is then at the west side of the meridian.

As the measured zenith distance of the star is not constant, it has no sense to give the reading on the limb for all the 40 measurements. In order to have some check, however, on the regularity of a series, Krayenhoff used to note the sum of the first $2,10,20,30,40$ measured angles. The latter amount in column 3 is $1436^{\circ} 43^{\prime} 30^{\prime \prime}$.

In order to find the zenith distance of the star when it passes the meridian, all circum meridian zenith distances must be reduced to meridian zenith distance. How this was done is not described in the Précis Historique and here too one must consult Delambre's Méthodes analytiques in order to find how Krayenhoff computed these reductions. One can find the derivation of the formula used on the pages 47-52 of the book. Underneath I give an other derivation. A similar one can be found e.g. in R. Roelofs: "Astronomy applied to landsurveying" (Amsterdam 1950, page 143).

Fig. 24

In Fig. 24, P is the celestial North pole, Z the zenith and S the star that passed the meridian in S^{\prime} between P and Z in upper transit. On the moment of its observation its hour angle is t. If one calls δ the declination of the star, z its zenith distance, z_{m} its meridian zenith distance and φ the latitude of the station then:

$$
\mathrm{PS}=90^{\circ}-\delta=\mathrm{p}=\mathrm{PS}^{\prime}, \quad \mathrm{SZ}=\mathrm{z}, \quad \mathrm{~S}^{\prime} \mathrm{Z}=\mathrm{z}_{\mathrm{m}} \text { and } \mathrm{PZ}=\mathrm{p}+\mathrm{z}_{\mathrm{m}}=90^{\circ}-\varphi
$$

In triangle PSZ holds:

$$
\cos \mathrm{z}=\sin \delta \sin \varphi+\cos \delta \cos \varphi \cos \mathrm{t}
$$

If Δz is the correction given to z in order to find z_{m} then:

$$
\mathrm{z}+\Delta \mathrm{z}=\mathrm{z}_{\mathrm{m}} \text { or } \mathrm{z}=\mathrm{z}_{\mathrm{m}}-\Delta \mathrm{z} \text {, so that: }
$$

$$
\cos z=\cos \left(z_{m}-\Delta z\right)=\cos z_{m}+\Delta z \sin z_{m}-\frac{(\Delta z)^{2}}{2} \cos z_{m}
$$

and, as $z_{m}=\left(90^{\circ}-\varphi\right)-\left(90^{\circ}-\delta\right)=\delta-\varphi:$

$$
\begin{aligned}
& \cos \mathrm{z}=\cos (\delta-\varphi)+\Delta \mathrm{z} \sin (\delta-\varphi)-\frac{(\Delta \mathrm{z})^{2}}{2} \cos (\delta-\varphi)=\cos \delta \cos \varphi+\sin \delta \sin \varphi+ \\
& +\Delta \mathrm{z} \sin (\delta-\varphi)-\frac{(\Delta \mathrm{z})^{2}}{2} \cos (\delta-\varphi)=\sin \delta \sin \varphi+\cos \delta \cos \varphi \cos \mathrm{t}
\end{aligned}
$$

whence:

$$
\begin{aligned}
& \Delta \mathrm{z} \sin (\delta-\varphi)-\frac{(\Delta \mathrm{z})^{2}}{2} \cos (\delta-\varphi)=-\cos \delta \cos \varphi(1-\cos \mathrm{t})= \\
& =-2 \cos \delta \cos \varphi \sin ^{2} \frac{1}{2} \mathrm{t}
\end{aligned}
$$

If in the first instance the small amount with $(\Delta z)^{2}$ is neglected, then a good provisional amount for $\Delta \mathrm{z}$ is:

$$
\begin{aligned}
& \Delta \mathrm{z}=\frac{-2 \cos \delta \cos \varphi}{\sin (\delta-\varphi)} \sin ^{2} \frac{1}{2} \mathrm{t} \text { whence: } \\
& \frac{(\Delta \mathrm{z})^{2}}{2} \cos (\delta-\varphi)=\frac{2 \cos ^{2} \delta \cos ^{2} \varphi}{\sin (\delta-\varphi)} \cot (\delta-\varphi) \sin ^{4} \frac{1}{2} \mathrm{t}
\end{aligned}
$$

A better approximation for Δz is therefore:

$$
\begin{aligned}
& \Delta \mathrm{z}_{\mathrm{rad}}=\frac{-2 \cos \delta \cos \varphi}{\sin (\delta-\varphi)} \sin ^{2} \frac{1}{2} \mathrm{t}+2\left(\frac{\cos \delta \cos \varphi}{\sin (\delta-\varphi)}\right)^{2} \cot (\delta-\varphi) \sin ^{4} \frac{1}{2} \mathrm{t}, \text { or: } \\
& \Delta \mathrm{z}^{\prime \prime}=-2 \rho \prime \frac{\cos \delta \cos \varphi}{\sin (\delta-\varphi)} \sin ^{2} \frac{1}{2} \mathrm{t}+2 \rho \mathrm{f}\left(\frac{\cos \delta \cos \varphi)}{\sin (\delta-\varphi)}\right)^{2} \cot (\delta-\varphi) \sin ^{4} \frac{1}{2} \mathrm{t}
\end{aligned}
$$

from which Δz can be computed if δ and t are known and an approximate value of φ.
It will be clear - Delambre mentions it in the example on page 156 of his Méthodes analytiques - that, in order to find the correct hour angles t, the chronometer must be adjusted to keep sidereal time. Krayenhoff's timekeeper, however, kept, as already said, mean solar time. If he made no mistake in the computation of the moment of transit ($12^{\mathrm{h}} 18 \mathrm{~m}_{43} 3^{\mathrm{s}}$ mean solar time) - I could not verify that - the hour angles in column 4 had to be multiplied by $366.2422: 365.2422=1.002738$. The great hour angle in the 40 th observation is then $+35^{\mathrm{m}} 35^{\mathrm{s}}=+8^{\mathrm{o}} 53^{\prime} 45^{\prime \prime}$ instead of the amount $+35^{\mathrm{m}} 29^{\mathrm{s}}=+8^{\circ} 52^{\prime} 15^{\prime \prime}$ used by Krayenhoff. The small difference is hardly of any practical influence on the final result, though it exceeds the influence of the
second correction term in a considerable manner (some tenths of a second of arc). A consideration on the influence of an error $d t$ in an hour angle t will be given in section 27 (page 166).

Krayenhoff's computation of his final result can be found in column 7 of table 31 . The sum of the measured angles $1436^{\circ} 43^{\prime} 30^{\prime \prime}$ augmented with the sum of the reductions $-935^{\prime \prime} .510$ and +0 ". 141 in columns 5 and 6 is the 40 -multiple of the "measured" zenith distance $35^{\circ} 54^{\prime} 41^{\prime \prime} .866$ of the star. If this distance is augmented with the refraction $+41^{\prime \prime} .089$ and the amount $p=90^{\circ}-\delta=1^{\circ} 42^{\prime} 06^{\prime \prime} .515$ one finds $90^{\circ}-\varphi=37^{\circ} 37^{\prime} 29^{\prime \prime} .470$ and $\varphi=52^{\circ} 22^{\prime} 30^{\prime \prime} .530$. The readings of the barometer 28 inches 2.4 lines $=338.4$ lines $=338.4 \times 2.256 \mathrm{~mm}=763 \mathrm{~mm}$ and the thermometer $+11^{\circ} .5$ were of course necessary for the computation of the refraction.

At lower transit (see Fig. 25) the star S passes the meridian in S^{\prime}. Its hour angle, at that moment 180°, is $180^{\circ}+\mathrm{t}$ when it is in S . In an analogous way as already described one can derive the reductions $\Delta \mathrm{z}$ which must be given to the measured zenith distances $z=Z S$ of the star in order to find the meridian zenith distances $z_{m}=S^{\prime} Z$. The formula runs as follows:

$$
\begin{equation*}
\Delta \mathrm{Z}^{\prime \prime}=+2 \rho^{\prime \prime} \frac{\cos \delta \cos \varphi}{\sin (\delta+\varphi)} \sin ^{2} \frac{1}{2} \mathrm{t}-2 \rho^{\prime \prime}\left(\frac{\cos \delta \cos \varphi}{\sin (\delta+\varphi)}\right)^{2} \cot (\delta+\varphi) \sin ^{4} \frac{1}{2} \mathrm{t} \tag{16}
\end{equation*}
$$

Fig. 25

In Amsterdam Krayenhoff measured 24 latitudes: 11 between September 20 th and December 16th, 1810 (upper transit of Polaris) and 13 between April 23rd and May 25 th, 1811 (lower transit). For his computation of the latitude φ of the station he used all observations; not a single series was rejected. A survey of the series is given in table 32 with the dates of the measurements (column 2)
and the number of repetitions (column 3). Though both means are about alike, the measurements in 1810 are much better than those of 1811. Those in 1810 give a standard deviation in the determination of a latitude $m= \pm 1_{11}^{\prime \prime} .089$, those in 1811 $m= \pm 3^{\prime}!302$. The standard deviation in the mean $52^{\circ} 2230.187$ of the 11 series in 1810 is $\mathrm{M}= \pm 0^{\prime}!328$, that in the mean $52^{\circ} 22^{\prime} 30^{\prime \prime} .315$ of the 13 series in 1811 is $\mathrm{M}= \pm 0!$ 957. I cannot explain this large difference. Unfavourable weather conditions during the measurements cannot have been the cause: only on May 11th (series 5) Krayenhoff calls them "good". On all the other observation days they were "very good". In 1810, however, they were "difficult" for the series 1, 2,4 and 10 and even "very difficult" for the series 5 and 6. For the final result of the latitude φ of his eccentric station on the tower Krayenhoff used $\varphi=52^{\circ} 22^{\prime} 30^{\prime \prime} .251$,

Table 32

the mean of the results of 1810 and 1811. It has a standard deviation $M= \pm 0!506$. As the measurements were executed outside the centre on the north side of the (balustrade of the) first gallery of the tower (about midway between the points E and F in Fig. 9 of section 11), a correction $-0^{!}$! 122 was computed because of the reduction to centre [81].

The latitude φ of the station Amsterdam is therefore $52^{\circ} 22^{\prime} 30^{\prime \prime} .129$. It is but $1^{\prime \prime} .828$ smaller than the amount $52^{\circ} 22^{\prime} 31^{\prime \prime} .957$ found with De Groot's formula [82] from the R. D. -coordinates $\mathrm{X}^{\prime}=-34299.277, \mathrm{Y}^{\prime}=+24525.501$ of the spire S . In my opinion it is a very good result. The sensitivity of the level A on the lower telescope of the repetition circle used must therefore have been much better than the amount of $25^{\prime \prime}$ per 2 mm found for the instrument pictured in Figures 3 and 4.
27. Determination of the latitude at Jever (station No. 102)

The latitude of the station Jever was determined in an analogous way to that of Amsterdam by measuring circum meridian zenith distances of the pole star in lower transit. The measurements were carried out between August 28th and September 7th, 1811 in an eccentric station 8.787 m north of the centre "in a drawing room of the castle". The results of the seven series measured are mentioned in the left part of table 33 (column 4). The standard deviation in a measured φ is $\mathrm{m}= \pm 0^{\prime \prime}!845$, that in the mean $53^{\circ} 34^{\prime} 23^{\prime \prime} .713$ of the 7 series $\mathrm{M}= \pm 0!319$.

Table 33

In the same eccentric station Krayenhoff also measured the circum meridian zenith distances of the stars α, y and ϵ (in lower transit) of the constellation Ursae Majoris (Great Bear). As can be seen from columns 1 and 2 of the right part of the table there was one measured series on the α-star (Dubhe), two on the \mathcal{Y}-star and three on the ϵ-star. In the same night (September 26 th) even three series could be measured on α, γ and ϵ, respectively. As the stars pass the meridian of a station in the sequence of their right ascensions (R.A.), one can make a programme - and apparently Krayenhoff did so - how the measurements for that night had to be arranged. As Krayenhoff does not mention these R.A. in his computation registers, Dr. Van Herk of the Leiden Observatory was as kind as to give me both R. A. and δ (declination) of the three stars for the year ${ }^{1811_{0}}$. He borrowed them from the Connaissance des Temps of that year. One can find them in columns 2 and 3 of table 34.

Table 34

Urs. maj.	Connaissance des Temps		According to Roelofs		Acc. to Krayenhoff δ Aug. 26, 1811
	R. A. 1811_{0}	$\delta 1811_{0}$	R. A. 1811^{0}	$\delta 1811{ }_{0}$	
1	2	3	4	5	6
α	$10^{\mathrm{h}} 51^{\mathrm{m}} 57^{\mathrm{s}} .5$	$62^{\circ} 46^{\prime} 06^{\prime \prime}$	$10^{\mathrm{h}} 51 \mathrm{~m}_{54}{ }^{\text {s }} .74$	$62^{\circ} 45^{\prime} 55.3$	$62^{\circ} 45^{\prime} 59^{\prime \prime} .048$
v	114349.8	544443	114351.67	544444.3	544441.620
ϵ	124540.2	565916	124542.83	565914.9	565921.296

Prof. Roelofs, former professor of geodesy and photogrammetry at the Delft University of Technology, computed for me the coordinates 18110 from the amounts 1968_{0}. They are mentioned in the columns 4 and 5 . The amounts for δ used by Krayenhoff on August 26th are given in column 6. A part of the differences between the comparable columns 2 and 4 and 3 and 5 respectively will be caused by the inaccurate determinations of right ascensions and declinations in the beginning of the 19th century, another part perhaps by the conversion of R.A. and $\delta 1968_{0}$ into the corresponding amounts $1811{ }_{0}$. F or the arrangement of the programme mentioned above the right ascensions of the three stars are once again given in table 35 , both according to the Connaissance des Temps (column 2) and to Roelofs (column 4).

As one sees from columns 3 and 5 the differences in transit between α and γ, γ and ϵ, and α and ϵ are about $51^{\mathrm{m}} 54^{\mathrm{s}}, 61^{\mathrm{m}} 51^{\mathrm{s}}$ and $113^{\mathrm{m}} 45^{\mathrm{s}}$ respectively. They are expressed in sidereal time. Assuming that the right ascensions 1811_{0}

Table 35

Urs. Maj.	Right ascension Conn. des Temps${ }^{1811_{0}}$	Diff	Right ascension acc. to Roelofs 1811_{0}	Diff.	Transit acc.to Krayenhoff (mean solar time)	Differences	
						sol. time	sid. time
1	2	3	4	5	6	7	8
α	$10^{\mathrm{h}} 51^{\mathrm{m}} 57{ }^{\text {s. }} 5$	$51^{\mathrm{m}} 52^{\mathrm{s}} .3$	$10^{\mathrm{h}} 51^{\mathrm{m}} 54^{\mathrm{s}} .74$	$51^{\mathrm{m}} 56^{\mathrm{s}} .93$	$12^{\mathrm{h}} 33^{\mathrm{m}} 00^{\mathrm{s}} .7$	$51^{\mathrm{m}} 45^{\text {S }} .1$	$51^{\mathrm{m}_{53}{ }^{\text {S }} 6}$
v	$\begin{array}{lll} 1143 & 49.8 \end{array}$	$61 \quad 50.4$	$1143 \quad 51.67$	$61 \quad 51.16$	$\begin{array}{lll} 13 \quad 24 \quad 45.8 \end{array}$	$61 \quad 40.9$	$61 \quad 51.0$
ϵ	124540.2		124542.83		$\begin{array}{lll}14 & 26 & 26.7\end{array}$		
		$113{ }^{\mathrm{m}} 42^{\text {s }} 7$		$113{ }^{\text {m }} 48^{\text {S }} .09$		$113 \mathrm{~m}_{26}{ }^{\text {S }} 0$	$113{ }^{\mathrm{m}} 44.6$

in the table are about the same as those used by Krayenhoff on August 26th, 1811 then the measurements to α must have been ended shortly before those to γ began. The difference of almost 62 (sidereal) minutes between transit of γ and ϵ allows to continue the measurements of the zenith distances of γ till about 25 minutes after transit and to begin those of ϵ about 25 minutes before transit. Then there is about 12 minutes to switch over from one programme to the other one, that it to say from a zenith distance of about $\left(180^{\circ}-\varphi\right)-\delta_{y} \simeq 71^{\circ} 41^{\prime}$ to a zenith distance of about $\left(180^{\circ}-\varphi\right)-\delta_{\epsilon} \simeq 69^{\circ} 26$. The meridian zenith distance of Dubhe is about $63^{\circ} 40^{\prime}$.

These theoretical considerations are confirmed by the observation register and by the computation of the hour angles of the stars in the volume e mentioned at the end of section 4 . For the α-star Krayenhoff says there that its transit is at $1.2^{\mathrm{h}} 33^{\mathrm{m}} 00^{\mathrm{s}} .7+3^{\mathrm{m}} 29^{\mathrm{s}} .7=12^{\mathrm{h}} 36^{\mathrm{m}_{30} \mathrm{~s}}$. For the $\gamma-$ and $\epsilon-$ star it is $13^{\mathrm{h}} 24^{\mathrm{m}} 45^{\mathrm{S}} .8+3^{\mathrm{m}} 29^{\mathrm{S}} .2=13^{\mathrm{h}} 28^{\mathrm{m}} 15^{\mathrm{S}}$ and $14^{\mathrm{h}} 26^{\mathrm{m}} 26^{\mathrm{S}} .7+3^{\mathrm{m}} 28^{\mathrm{S}} .3=14^{\mathrm{h}} 29^{\mathrm{m}} 55^{\mathrm{s}}$ respectively. It will be clear that the amounts of about $3{ }^{\mathrm{m}} 29^{\mathrm{S}}$ are the corrections which must be given to the true moments of transit in order to find the chronometer moments. The "true" moments are repeated in column 6 of the table. The differences in column 7 differ considerably from those in columns 3 and 5 . If, however, they are multiplied by 1.002738 , that is to say if one passes from mean solar time to sidereal time, they are about alike. The consideration is a proof that Krayenhoff's time keeper kept mean solar time indeed as already indicated in the heads of columns 6 and 7. Apparently the moments of transit in mean solar time of the three stars are computed in a correct manner. He only omitted - and I assume he was fully aware of that - to convert the small hour angles into sidereal time.

As the declination δ of e.g. the α-star of the Great Bear is much smaller than that of Polaris, it will be clear that the terms:

$$
\frac{\cos \varphi \cos \delta}{\sin (\varphi+\delta)} \text { and }\left(\frac{\cos \varphi \cos \delta}{\sin (\varphi+\delta)}\right)^{2} \cot (\varphi+\delta)
$$

in (16) will be much greater than the corresponding terms in the computation of the meridian zenith distance of the pole star.

For Dubhe they are 0.303212 and 0.045517 respectively. As the first pointing at that star was made at an hour angle $\mathrm{t}=-21 \mathrm{~m}^{\mathrm{m}} 48^{\mathrm{s}}$ mean solar time ($\frac{1}{2} \mathrm{t}=-10^{\mathrm{m}} 54^{\mathrm{s}}=-2^{\mathrm{o}} 43^{\prime} 30^{\prime \prime}$) one finds for the two correction terms in (16) $+282!723$ (Krayenhoff $+283!24$) and $+0^{\prime \prime}!096$ (Krayenhoff $+0^{\prime}!07$) respectively. The influence of a small error dt in t on the computation of

$$
\Delta \mathrm{z}_{1}^{\prime \prime}=+2 \rho^{\prime \prime} \frac{\cos \varphi \cos \delta}{\sin (\varphi+\delta)} \sin ^{2} \frac{1}{2} \mathrm{t}
$$

can be found by differentiating this formula with respect to t. The result is:

$$
\mathrm{d} \Delta z_{1}^{\prime \prime}=\frac{\cos \varphi \cos \delta}{\sin (\varphi+\delta)} \sin t \mathrm{dt} t^{\prime}!
$$

In the example of Dubhe already given before $t=-21^{m} 48^{s}=-5^{\circ} 27^{\prime} 00^{\prime \prime}$ and $\frac{\cos \varphi \cos \delta}{\sin (\varphi+\delta)}=0.303212$ so that:

$$
\mathrm{d} \Delta \mathrm{z}_{1}^{\prime \prime}=-0.02880 \mathrm{dt}^{\prime \prime}
$$

The hour angle $\mathrm{t}=-21^{\mathrm{m}} 48^{\mathrm{S}}$ in this example, however, was expressed in mean solar time. Its equivalent in sidereal time is $-21^{m} 51^{\mathrm{S}} .58$. dt is therefore $-3^{s} .58=-53^{\prime \prime} .7$ so that $d \Delta z_{1}^{\prime \prime}=+1^{\prime \prime} .547$, not an insignificant amount if a computation in thousandths of a second is taken into consideration.
A small error $\mathrm{d} \varphi$ in the assumed latitude $\varphi=53^{\circ} 34^{\prime} 23^{\prime \prime}$ on the computation of:

$$
\Delta \mathrm{z}_{1}(\mathrm{rad})=2 \cos \delta \sin ^{2} \frac{1}{2} \mathrm{t} \frac{\cos \varphi}{\sin (\varphi+\delta)}
$$

can be expressed by:

$$
\mathrm{d} \Delta \mathrm{z}_{1}^{\prime \prime}=-\frac{2 \cos \varphi \cos \delta}{\sin (\varphi+\delta)} \sin ^{2} \frac{1}{2} \mathrm{t}\{\tan \varphi+\cot (\varphi+\delta)\} \mathrm{d} \varphi "
$$

For:

$$
\frac{\cos \varphi \cos \delta}{\sin (\varphi+\delta)}=0.303212, \mathrm{t}=-5^{\circ} 27^{\prime} 00^{\prime \prime}, \text { and } \delta_{\alpha} \simeq+62^{\circ} 45^{\prime} 59^{\prime \prime}
$$

one finds:

$$
\mathrm{d} \Delta \mathrm{z}_{1}^{\prime \prime}=-0.0012 \mathrm{~d} \varphi{ }^{\prime \prime}
$$

This amount can be neglected.
The latitudes found from the six series measured on the three stars of Ursae Majoris are mentioned in column 4 of the right part of table 33. The standard deviation in the determination is $m= \pm 1^{\prime}!394 ; \mathrm{M}= \pm 0^{\prime}!569$. Like in table 32 here,
too, the means in the left and right part of the table are almost alike. For the final φ of his eccentric station Krayenhoff used the mean of the two means $\varphi=53^{\circ} 344^{\prime} 23^{\prime \prime} .729 \pm 0^{\prime \prime} .326$. As the reduction to centre is $-0^{\prime \prime} .284$, the latitude of the centre of the station Jever is $\varphi=53^{\circ} 34{ }^{\prime} 23^{\prime \prime} .445$. From the R. D. coordinates $X^{\prime \prime}=+166635.23, Y^{\prime \prime}=+160598.81$ in columns 7 and 8 of table 26 in section 21, computed from Krayenhoff's adjusted triangulation network, one finds with De Groot's formula $\varphi=53^{\circ} 3423.1929$, a difference of about 0.5 with the measurement. It is an excellent result in my opinion.
28. Determination of astronomical azimuths. General considerations and results of the measurement of the azimuth Amsterdam-Utrecht
"I tried", says Krayenhoff on page 13 of his Précis Historique, 'to do azimuth observations of the sun with the repetition circle with which I determined latitudes in Amsterdam and at Jever. The instrument was perfectly suited for such a determination as it could be set up in any arbitrary plane through the station and the sun's movement could be followed in an easy way. But, either by the lack of experience of the two observers in this kind of observations or by the refraction which is very variable in Holland, I never obtained satisfactory results with it. I deleted them even from my observation registers though I had already made a considerable number of observations. I was therefore obliged to change my working method. I replaced the repetition circle by a transit instrument with a telescope of 1.03 m length mounted on an axis of 0.772 m , excellently centred and provided with a good level".

In eccentric stations at the east, south and west side of the gallery of the towers in Amsterdam and at Jever the instrument was set up in the vertical plane through the station and the spire where to the azimuth had to be determined. "In order to be sure", says Krayenhoff on page 36 of the Précis Historique, 'that the telescope moved in the vertical plane, the level was minutely centred. Just before the sun's transit I made once again sure of the correct position of the telescope and, after having placed the opaque glass in front of it, it was turned (in a vertical direction) towards the sun in order to registrate the moments on which the vertical cross-wire touched the right and the left side of the sun. By a second observer these moments were read on the chronometer in seconds or half-seconds. They were immediately noted down in the registers". Apparently Krayenhoff used here the method of time observation by calling out. How Krayenhoff computed his azimuths can only be seen from the formulae (1) up to and including (4) on page 42 of his book. He gives them without any com-

Fig. 26a
Fig. 26b
ment and there are even mistakes in them, fortunately, however, not in their application in the computation register.

A derivation of the correct formulae can be found from Figures 26a and 26b. In Fig. a P is the (north) pole, Z the zenith and S_{1} the sun when the hour angle t_{1} of its centre, expressed in mean solar time, corresponds with the time between the sun's transit through the meridian and the moment its right side R touches the vertical cross-wire. As both moments are known, t_{1} is known. If δ_{1} is the sun's declination and φ the latitude of the station then $\mathrm{S}_{1} \mathrm{P}=90^{\circ}-\delta_{1}$ and $\mathrm{ZP}=90^{\circ}-\varphi$ are known. z_{1} is the sun's zenith distance and A_{1} its azimuth. Conformably to Krayenhoff's computations it is counted from the north in an anti-clockwise direction. From Napier's analogies [83] one finds in the spherical triangle $\mathrm{PS}_{1} \mathrm{Z}$:

$$
\begin{aligned}
& \tan \frac{1}{2}\left(\mathrm{~A}_{1}-\mathrm{S}_{1}\right)=\frac{\sin \frac{1}{2}\left\{\left(90^{\circ}-\delta_{1}\right)-\left(90^{\circ}-\varphi\right)\right\}}{\sin \frac{1}{2}\left\{\left(90^{\circ}-\delta_{1}\right)+\left(90^{\circ}-\varphi\right)\right\}} \cot \frac{1}{2} \mathrm{t}_{1}
\end{aligned}
$$

or:

$$
\begin{aligned}
& \tan \frac{1}{2}\left(\mathrm{~A}_{1}-\mathrm{S}_{1}\right)=\frac{\sin \frac{1}{2}\left(\varphi-\delta_{1}\right)}{\cos \frac{1}{2}\left(\varphi+\delta_{1}\right)} \cot \frac{1}{2} \mathrm{t}_{1} \cdots \cdots \cdots \\
& \tan \frac{1}{2}\left(\mathrm{~A}_{1}+\mathrm{S}_{1}\right)=\frac{\cos \frac{1}{2}\left\{\left(90^{\circ}-\delta_{1}\right)-\left(90^{\circ}-\varphi\right)\right\}}{\cos \frac{1}{2}\left\{\left(90^{\circ}-\delta_{1}\right)+\left(90^{\circ}-\varphi\right)\right\}} \cot \frac{1}{2} \mathrm{t}_{1}
\end{aligned}
$$

or:

$$
\begin{equation*}
\tan \frac{1}{2}\left(\mathrm{~A}_{1}+\mathrm{S}_{1}\right)=\frac{\cos \frac{1}{2}\left(\varphi-\delta_{1}\right)}{\sin \frac{1}{2}\left(\varphi+\delta_{1}\right)} \cot \frac{1}{2} \mathrm{t}_{1} \ldots \ldots \ldots \ldots . \tag{18}
\end{equation*}
$$

From (17) and (18) Krayenhoff computed with logarithms $\frac{1}{2}\left(A_{1}-S_{1}\right)=p$ and $\frac{1}{2}\left(A_{1}+S_{1}\right)=q$ so that $A_{1}=p+q$. It is Krayenhoff's formula (3). (1) and (2) agree with (17) and (18) respectively.

The angle PZR, the demanded azimuth, can be found by diminishing A_{1} with the amount $d A_{1}$. It can be computed from the right angled triangle $S_{1} R Z$ as $\frac{1}{2} d$, the radius of the sun's disc on the day of the observation, is known and z_{1} can be computed in triangle $\mathrm{S}_{1} \mathrm{PZ}$.

According to Delambre's second and fourth formula one finds in the latter triangle:

$$
\frac{\sin \frac{1}{2}\left(\mathrm{~A}_{1}-\mathrm{S}_{1}\right)}{\cos \frac{1}{2} \mathrm{t}_{1}}=\frac{\sin \frac{1}{2}\left\{\left(90^{\circ}-\delta_{1}\right)-\left(90^{\circ}-\varphi\right)\right\}}{\sin \frac{1}{2} \mathrm{z}_{1}}
$$

or:

$$
\begin{equation*}
\sin \frac{1}{2} \mathrm{z}_{1}=\frac{\cos \frac{1}{2} \mathrm{t}_{1} \sin \frac{1}{2}\left(\varphi-\delta_{1}\right)}{\sin \frac{1}{2}\left(\mathrm{~A}_{1}-\mathrm{S}_{1}\right)} \tag{19}
\end{equation*}
$$

and:

$$
\frac{\cos \frac{1}{2}\left(\mathrm{~A}_{1}-\mathrm{S}_{1}\right)}{\sin \frac{1}{2} \mathrm{t}} \mathbf{1}=\frac{\sin \frac{1}{2}\left\{\left(90^{\circ}-\varphi\right)+\left(90^{\circ}-\delta_{1}\right)\right\}}{\sin \frac{1}{2} \mathrm{z}_{1}}
$$

or:

$$
\begin{equation*}
\sin \frac{1}{2} \mathrm{z}_{1}=\frac{\sin \frac{1}{2} \mathrm{t}_{1} \cos \frac{1}{2}\left(\varphi+\delta_{1}\right)}{\cos \frac{1}{2}\left(\mathrm{~A}_{1}-\mathrm{S}_{1}\right)} \tag{20}
\end{equation*}
$$

As $\frac{1}{2}\left(\mathrm{~A}_{1}-\mathrm{S}_{1}\right.$) was already found in (17), z_{1} can be computed from (19) or (and) (20). (19) agrees with the first part of Krayenhoff's formula (4). According to (20) the second part, however, is wrong. As he made no use of this check, he did not find his error.

From Fig. 26a now follows:

$$
\begin{equation*}
\sin d A_{1}=\sin \frac{1}{2} d: \sin \left(z_{1}-r_{1}\right) \cdot \tag{21}
\end{equation*}
$$

and therefore:

$$
\mathrm{A}=\mathrm{A}_{1}-\mathrm{dA} \mathrm{~A}_{1} .
$$

In (21) $\frac{1}{2} \mathrm{~d}$ is the sun's radius. It ranges from about $16^{\prime} 18^{\prime \prime}$ on January 1 st to about 1545 on July 2nd. r_{1} in the formula is the refraction; z_{1} must be reduced with this amount as the sun's zenith distance belonging to the moment of the observation is somewhat smaller than the computed distance z_{1}.
The second contact of the vertical cross-wire with the sun's disc - now at its left side L - is shown in Fig. 26b. The hour angle of the sun's centre S_{2} is now t_{2}, a little larger than t_{1}. The azimuth A_{2} can be computed with (17) and (18), z_{2} with (19) and (or) (20) and dA_{2} with (21).
$\mathrm{A}=\mathrm{A}_{2}+\mathrm{dA}_{2}$ is the azimuth to the terrestrial object (the spire). Apart from observation errors it must be alike to $A=A_{1}-\mathrm{dA}_{1}$. As an example I give Krayenhoff's computation of the azimuth Amsterdam-Nieuwkoop, measured as series 51 on April 26th, 1811 (see table 36).

Table 36

Contact	Chron. time	Chron. corr.	Hour angle t		$\underset{\delta}{\text { Declination }}$
			in time	in arc	
1	2	3	4	5	6
$1(\mathrm{R})$ $2(\mathrm{~L})$	$\begin{aligned} & 12^{\mathrm{h}} 38^{\mathrm{m}} 21^{\mathrm{s}} .5 \\ & 12^{\mathrm{h}} 40^{\mathrm{m}} 34^{\mathrm{s}} .0 \end{aligned}$	$+2^{\mathrm{m}} 11^{\mathrm{s}} .067$ $+2^{\mathrm{m}} 11^{\mathrm{S}} .081$	$0^{\mathrm{h}} 40^{\mathrm{m}} 32^{\mathrm{s}} .567$ $0^{\mathrm{h}} 42^{\mathrm{m}} 45^{\mathrm{s}} .081$	$10^{\circ} 08^{\prime} 08^{\prime \prime} .505$ $10^{\circ} 41^{\prime} 16^{\prime \prime} .215$	$13^{\circ} 18^{\prime} 52^{\prime \prime} .40$ $13^{\circ} 18^{\prime} 54.20$

The ridiculous "accuracy" of the hour angles in column 4 and 5 is of course for Krayenhoff's responsibility.
For $\varphi=52^{\circ} 22^{\prime} 30^{\prime \prime}$ one finds with (17) and (18):

$$
\begin{aligned}
& \mathrm{p}=\frac{1}{2}\left(\mathrm{~A}_{1}-\mathrm{S}_{1}\right)=77^{\mathrm{o}} 26^{\prime} 099^{\prime \prime} .435 \\
& \mathrm{q}=\frac{1}{2}\left(\mathrm{~A}_{1}+\mathrm{S}_{1}\right)=\frac{87^{\circ} 04^{\prime} 42^{\prime \prime} .555}{} \quad \text { and therefore: } \\
& \mathrm{p}+\mathrm{q}=\mathrm{A}_{1} \quad=164^{\circ} 30^{\prime} 51^{\prime \prime} .990
\end{aligned}
$$

From (19) follows $z_{1}=39^{\circ} 53^{\prime} 45^{\prime \prime} .484$.
As $r_{1}=47.330$ one finds from (21):

$$
\begin{aligned}
& \mathrm{dA}_{1}=2448.888 \quad \text { so that: } \\
& \mathrm{A}=\mathrm{A}_{1}-\mathrm{dA}_{1}=164^{\mathrm{o}} 06^{\prime} 03^{\prime \prime} .102
\end{aligned}
$$

In an analogous way Krayenhoff computes for the second contact with the sun's disc:

$$
\mathrm{A}=\mathrm{A}_{2}+\mathrm{dA}_{2}=164^{\circ} 06^{\prime} 09^{\prime \prime} .509
$$

It differs 6.4 from the first computation. The mean, used in the further computations is $164^{\circ} 06^{\prime} 06^{\prime \prime} .305$ or, counted from the south in a clockwise direction, $\mathrm{A}=15^{\circ} 53^{\prime} 53^{\prime \prime} .695$.
As according to Krayenhoff the reduction to centre is - 8 ". 136 the azimuth from the station Amsterdam to Nieuwkoop is $15{ }^{\circ} 53^{\prime} 45^{\prime \prime} .559$. In order to find the azimuth to Utrecht it must be diminished with the adjusted spherical angle 160. As (see table 9, columns 11-12) Krayenhoff found $43^{\circ} 12^{\prime} 45^{\prime \prime} .673$ for it, the result is $332{ }^{\circ} 4059$. 886 .

On page 36 of the Précis Historique Krayenhoff gives a sketch of the eccentric stations A, H and K on the first gallery of the Western tower where he did his observations. It gives the impression that A, where, among others, the azimuth to Nieuwkoop was measured, lies midway between B and H of Fig. 9. According to this sketch K lies midway between H and E and H midway between B and F. The sketch in Calcul des Observations astronomiques, however,
deviates from that in the Précis Historique. As is explicitly said in the text, A, H and K lie on the balustrade. In Fig. 27 I marked the three points in accordance with the latter description.

Fig. 27
In K Krayenhoff measured the azimuths to Muiderberg, Naarden and Weesp, in A to Utrecht, Breukelen, Wilnis, Mijdrecht and Nieuwkoop and in H those to Heemstede and Haarlem. As Muiderberg, Weesp, Breukelen, Wilnis, Mijdrecht and Heemstede are no angular points of Krayenhoff's triangulation network and all azimuths had to be reduced to the azimuth Amsterdam-Utrecht, in K the horizontal angles between Naarden and Muiderberg and between Naarden and Weesp had to be measured with the repetition circle and to be reduced to centre. In an analogous way in A the horizontal angles were measured between Utrecht and Breukelen, Wilnis and Mijdrecht, respectively, and in H the angle between Haarlem and Heemstede. I don't know how Krayenhoff got knowledge of the approximate distances to the several sighting points, necessary for the computation of the reduction to centre. .One can find the concerning data in the observation registers octavo X and XI . In column 1 of table 39 are the
amounts (reduced to centre) which the ray to Utrecht must turn to the right in order to coincide with that to the other 9 towers.

It will be clear that from the provisional azimuth of the side AmsterdamUtrecht found from the computation of the triangulation and the angles mentioned above provisional azimuths to Muiderberg, etc. could be found. They enabled Krayenhoff to make a programme, that's to say to compute in advance at which chronometer time of a certain day the sun's transit through the vertical of Muiderberg, Naarden, etc. could be expected.

Table 37

Table 37 (see also Précis Historique, page 37), gives a survey of the programme measured on April 26th, 1811. The preparations for the measurement in K of the azimuth to Muiderberg will have been started at about half past seven. After the sun's transit through the vertical of Weesp at about $9^{h} 15^{m}$ the instrument could be carried to A where the measurement of the azimuth to Utrecht could be expected at about $10{ }^{\mathrm{h}} 43^{\mathrm{m}}$. That to Nieuwkoop could be observed at the same station at about $122^{\mathrm{h}} 40^{\mathrm{m}}$ and the observation in H of the azimuth to Heemstede at about $16^{\mathrm{h}} 25^{\mathrm{m}}$. The programme ended that day after the observation of the sun's transit through Haarlem at about $17^{\mathrm{h}} 30 \mathrm{~m}$.

Column 6 (Remarks) gives the reading of the chronometer at noon on April 25th and 26 th respectively and the chronometer rate per 24 hours. Only with these data
and those in columns 4 and 5 a correct computation of the hour angle is not possible because nowhere in his registers Krayenhoff mentions the equation of time e, the difference between the hour angles of the true sun and the mean sun at apparent noon of the observation days. It is also not immediately clear whether "Chronometer at noon" means "at apparent noon" or "at mean noon". The latter question can easily be solved. As on April 26th e (apparent time minus mean time) is $+2{ }^{\mathrm{m}} 12^{\mathrm{S}} .6$ the (fictitious) mean sun will pass the meridian of Amsterdam $2{ }^{\mathrm{m}} 12^{\mathrm{S}} .6$ later than the true sun and the vertical plane through Amsterdam and Nieuwkoop about the same amount later. As, according to column 2 of table 36 , the first contact of the (true) sun with the vertical crosswire through Nieuwkoop was at $12^{\mathrm{h}} 38^{\mathrm{m}} 21^{\mathrm{s}} .5$ chronometer time, that with the mean sun would be at about $12^{\mathrm{h}} 40^{\mathrm{m}} 34^{\mathrm{S}}$. 1 chronometer time. If one supposes that at local mean noon of April 26th the chronometer reading is $11^{\mathrm{h}} 57^{\mathrm{m}} 49.2$ (see column 6 of table 37) the hour angle of the (mean) sun would be about $12 \mathrm{~h}_{40} \mathrm{~m}_{34}$. ${ }^{\mathrm{s}}$ -$-11^{\mathrm{h}_{57}} \mathrm{~m}_{49^{\mathrm{S}} .2=42^{\mathrm{m}_{44}} \mathrm{~s}^{\mathrm{s}} .9 \text { which is in contradiction with the amount } 0{ }^{\mathrm{h}} 40^{\mathrm{m}_{32}}{ }^{\mathrm{s}} .567}$ in column 4 of table 36 . 'Noon" in table 37 means therefore local apparent noon.
In order to check the computation of the chronometer rate -0 S 893 per 24 hours mentioned in table 37 and that of some hour angles t , Dr. Van Herk of Leiden Observatory was as kind as to send me a copy of the pages 44 and 45 of the Connaissance des Temps of 1811 in which for April the amounts e can be found in the column "Temps moyen au midi vrai". For my use of course they had to be reduced from the meridian of Paris to that of Amsterdam. For April 22nd up to and including April 26 th, I mentioned them in column 3 of table 38. From these amounts and the chronometer readings at local apparent noon in column $2-\mathrm{I}$ borrowed them from Krayenhoff's observation registers - the chronometer readings at local mean noon could be computed (column 4). From these amounts follow the chronometer corrections (column 5) and the rate of the chronometer in 24 hours (column 6). As one sees the amounts are negative: the chronometer gains. Between the two succesive transits of the mean sun on April 26th and April 27th the rate is $-0^{\mathrm{S}} .471$. Apparently Krayenhoff used the amount $-0^{\mathrm{S}} .893$ of the previous days. The difference is hardly of any practical influence. Between transit of the true sun on April 26th at a chronometer time $111_{57}{ }^{\mathrm{m}} 49$. ${ }^{\mathrm{S}} .193$ and the first contact in the vertical of Nieuwkoop at $12^{\mathrm{h}} 38^{\mathrm{m}} 21^{\mathrm{S}} .5$ clock time are $40^{\mathrm{m}} 32{ }^{\mathrm{s}} .307$ clock time or $40^{\mathrm{m}} 32^{\mathrm{s}} .282$ mean time. In this time interval e increases from $+2^{\mathrm{m}} 12^{\mathrm{s}} .6$ to $+2^{\mathrm{m}} 12^{\mathrm{s}} .887$ so that the hour angle t is $\mathrm{t}_{1}=40^{\mathrm{m}} 32^{\mathrm{s}} .282+$ $+2^{\mathrm{m}} 12^{\mathrm{S}} .887-2^{\mathrm{m}} 12^{\mathrm{S}} .6=40^{\mathrm{m}} 32^{\mathrm{S}} .569$. According to table 36 Krayenhoff finds $40^{\mathrm{m}} 32^{\mathrm{S}} .567$. For Haarlem (first contact at $177^{\mathrm{h}} 27^{\mathrm{m}} 09^{\mathrm{S}} .5$ (see table 37) the computation is:

$$
\begin{array}{r}
\mathrm{t}_{1}=\left\{\left(17^{\mathrm{h}} 27^{\mathrm{m}} 09^{\mathrm{S}} .5-11^{\mathrm{h}} 57^{\mathrm{m}} 49^{\mathrm{s}} \cdot 193\right)-0^{\mathrm{s}} 204\right\}+2^{\mathrm{m}} 14^{\mathrm{S}} .933-2^{\mathrm{m}} 12^{\mathrm{s}} \cdot 6= \\
=5^{\mathrm{h}} 29^{\mathrm{m}_{2}} 22^{\mathrm{s}} .436
\end{array}
$$

Table 38

Date 1811	Chronometer at local apparent noon	Equation of time (apparent-mean)	Chronometer at local mean noon	Chronometer correction	Rate per 24 hours
1	2	3	$4=2+3$	5	6
$\begin{gathered} \text { April } \\ 22 \end{gathered}$	$11^{\mathrm{h}} 58^{\mathrm{m}} 31.527$	${ }_{+1} \mathrm{~m}_{26}{ }^{\text {S }} .8$	$11^{\mathrm{h}} 59^{\mathrm{m}}{ }_{58}{ }^{\mathrm{S}} .327$	$+1^{\text {S }} .673$	$-0^{\text {S }} .788$
23	${ }_{58}{ }^{\mathrm{m}} 20^{\mathrm{s}} .115$	$+1^{\mathrm{m}} 39^{\mathrm{S}} .0$	${ }_{11}{ }^{\mathrm{h}} 59^{\mathrm{m}} 59^{\mathrm{s}} .115$	$+0^{\text {S }} .885$	$-0^{\text {S }} .893$
24	$58{ }^{\mathrm{m}} 09^{\mathrm{S}} .308$	$+1^{\mathrm{m}} 50{ }^{\text {S }} .7$	$12^{\mathrm{h}} 00^{\mathrm{m}} 00^{\mathrm{S}} .008$	$-0^{S} .008$	$-0^{\text {S }} .893$
25	$57^{\mathrm{m}} 58{ }^{\mathrm{S}} .901$	$+2^{\mathrm{m}} 02^{\mathrm{S}} .0$	$12^{\mathrm{h}} 00^{\mathrm{m}} 00^{\mathrm{S}} .901$	$-0^{\text {S }} .901$	$-0^{\text {S }} .892$
26	$57^{\mathrm{m}} 49^{\text {S }} .193$	$+2^{\mathrm{m}} 12^{\mathrm{s}} .6$	$12^{\mathrm{h}} 00{ }^{\mathrm{m}} 01 \mathrm{~s} .793$	$-1^{\text {S }} .793$	$-0^{\text {S }} .471$
27	$57{ }^{\mathrm{m}} 39{ }^{\text {s }} .464$	$+2^{\mathrm{m}} 22^{\text {s }} .8$	$12^{\mathrm{h}} 00 \mathrm{~m}_{02}{ }^{\text {s }} 264$	$-1^{\text {S }} .264$	

With a chronometer rate -0.471 per 24 hours (table 38 column 6), which is somewhat better indeed, $\mathrm{t}_{1}=5^{\mathrm{h}} 29^{\mathrm{m}} 22^{\mathrm{s}} .532$ according to my computation. Krayenhoff finds $5^{\mathrm{h}} 29^{\mathrm{m}} 22^{\mathrm{s}} .517$. The differences, $-0^{\mathrm{S}} .081$ and $+0^{\mathrm{S}} .015$ respectively, are of course of no importance because the uncertainty in the reading of the moment the vertical cross-wire touches the sun's limb is more than 0.5 seconds. The accuracy of the computation is not at all adapted to that of the observation. In the examples mentioned above I followed this bad working method only for a check on Krayenhoff's computations.

In Amsterdam Krayenhoff measured 89 azimuths. Only the first 53 of them were computed. The computation of 3 azimuths to Utrecht, 2 to Breukelen, 4 to Wilnis, 4 to Mijdrecht, 3 to Nieuwkoop, 1 to Heemstede, 2 to Haarlem, 5 to Muiderberg, 6 to Naarden and 6 to Weesp, all of them measured between April 27th and May 23 rd, 1811 , were omitted. The results of the computation, all of them reduced to centre, are given in table 39 in sequence of the stations A, H and K where they were measured. Column 2 gives the sequence of the 53 measurements.

Originally it was Krayenhoff's intention to use only those series which deviated no more than 20" (!) from the azimuth Amsterdam-Utrecht that could be computed from the azimuth Duinkerken-Mont Cassel and the adjusted angles of the

Table 39

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Azimuth from Amsterdam to} \& \multirow[t]{2}{*}{Series} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& \text { Date } \\
& 1811
\end{aligned}
$$} \& \multirow[t]{2}{*}{Azimuth} \& \multicolumn{2}{|c|}{v"} \& \multirow[t]{2}{*}{Computation stand. deviation}

\hline \& \& \& \& + \& - \&

\hline 1 \& 2 \& 3 \& 4 \& 5 \& 6 \& 7

\hline Utrecht

$0^{\circ} 00^{\prime} 00^{\prime \prime} .000$ \& $$
\begin{array}{r}
1^{*} \\
7^{*} \\
12^{*} \\
17 \\
26 \\
32 \\
39^{\circ} \\
47^{\circ} \\
\hline 6
\end{array}
$$ \& April

1
2
19
20
23
24
25

26 \& $$
\begin{array}{r}
332^{0} 41^{\prime} 12^{\prime \prime} .000 \\
41^{\prime} 14^{\prime \prime} .830 \\
41^{\prime} 16^{\prime \prime} .703 \\
41^{\prime} 43^{\prime \prime} .198 \\
41^{\prime} 60^{\prime \prime} .970 \\
41^{\prime} 41^{\prime \prime} .593 \\
40^{\prime} 12^{\prime \prime} .052 \\
40^{\prime} 34^{\prime \prime} .561 \\
\hline 332^{\circ} 41^{\prime} 31^{\prime \prime} .549
\end{array}
$$ \& \[

$$
\begin{aligned}
& 19.549 \\
& 16.719 \\
& 14.846 \\
& \\
& \hline \\
& \hline 51.114
\end{aligned}
$$

\] \& | 11.649 |
| :--- |
| 29.421 |
| 10.044 |
| | \& \[

$$
\begin{aligned}
\lfloor v v\rfloor & =1984.3 \\
\mathrm{~m}^{2} & =396.9 \\
\mathrm{~m} & = \pm 19^{\prime \prime} .9
\end{aligned}
$$
\]

\hline Breukelen

$7^{0} 42^{\prime} 05^{\prime \prime} .848$ \& $$
\begin{aligned}
& 18 \\
& 33^{*} \\
& 40 \\
& 48 \\
& \hline 4
\end{aligned}
$$ \& April

20
24
25
26 \& $340^{\circ} 23^{\prime} 66^{\prime \prime} .910$
$23^{\prime} 40^{\prime \prime} .543$
$22^{\prime \prime} 56^{\prime \prime} .354$
$23^{\prime} 05^{\prime \prime} .704$

$340^{\circ} 23^{\prime} 27^{\prime \prime} .378$ \& \[
$$
\begin{array}{r}
31.024 \\
21.674 \\
\hline 52.698
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 39.532 \\
& 13.165 \\
& \hline 52.697
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
{[\mathrm{vv}] } & =3168.3 \\
\mathrm{~m}^{2} & =1056.1 \\
\mathrm{~m} & = \pm 32.5
\end{aligned}
$$
\]

\hline Wilnis

$23^{\circ} 06^{\prime} 133^{\prime \prime} .590$ \& $$
\begin{aligned}
& 19 \\
& 27^{*} \\
& 34^{*} \\
& 41^{*} \\
& 49^{\circ} \\
& \hline 4
\end{aligned}
$$ \& April

20
23
24
25
26 \& $355^{\circ} 47^{\prime} 71^{\prime \prime} .181$
$47^{\prime} 23^{\prime \prime} .115$
$47^{\prime} 35^{\prime \prime} .019$
$47^{\prime} 33^{\prime \prime} .287$
$46^{\prime} 34^{\prime \prime} .658$

$355^{\circ} 47^{\prime} 40^{\prime \prime} .650$ \& \& $$
30.531
$$

$$
30.531
$$ \& \[

$$
\begin{aligned}
{[\mathrm{vv}] } & =1325.5 \\
\mathrm{~m}^{2} & =441.8 \\
\mathrm{~m} & = \pm 21^{\prime \prime} .0
\end{aligned}
$$
\]

\hline Mijdrecht

\[
30^{\circ} 38^{\prime} 25^{\prime \prime} .597

\] \& | 2 |
| :---: |
| 8^{*} |
| 20 |
| 28^{*} |
| 35^{*} |
| 42^{*} |
| 50 |
| 7 | \& April

1
2
20
23
24
25
26 \& $3^{\circ} 19^{\prime} 18^{\prime \prime} .787$
$19^{\prime} 58^{\prime \prime} .090$
$19 \cdot 84^{\prime \prime} .746$
$19^{\prime} 53^{\prime \prime} .239$
$19^{\prime} 42^{\prime \prime} .608$
$19^{\prime} 46^{\prime \prime} .138$
$19^{\prime} 09^{\prime \prime} .648$

$3^{\circ} 19^{\prime} 44^{\prime \prime} .751$ \& \[
$$
\begin{array}{r}
25.964 \\
\\
2.143 \\
35.103 \\
\hline 63.210
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
13.339 \\
39.995 \\
8.488 \\
1.387 \\
\hline 63.209
\end{array}
$$

\] \& \[

$$
\begin{aligned}
{[\mathrm{vv}] } & =3762.4 \\
\mathrm{~m}^{2} & =627.1 \\
\mathrm{~m} & = \pm 25^{\prime \prime} .0
\end{aligned}
$$
\]

\hline Nieuwkoop \& $$
\begin{gathered}
3^{*} \\
13 \\
21 \\
29^{*}
\end{gathered}
$$ \& \[

$$
\begin{gathered}
\hline \text { April } \\
1 \\
19 \\
20 \\
23
\end{gathered}
$$

\] \& \[

$$
\begin{array}{r}
15^{0} 53^{\prime} 49 " .302 \\
54^{\prime} 47^{\prime \prime} .401 \\
54^{\prime} 41^{\prime \prime} .694 \\
54^{\prime} 22^{\prime \prime} .223
\end{array}
$$

\] \& 31.232 \& \[

$$
\begin{array}{r}
26.867 \\
21.160 \\
1.689
\end{array}
$$

\] \& \[

$$
\begin{aligned}
{[\mathrm{vv}] } & =3921.0 \\
\mathrm{~m}^{2} & =653.5
\end{aligned}
$$
\]

\hline
\end{tabular}

Table 39 (continued)

1	2	3	4	5	6	7.
$43^{\circ} 12^{\prime} 455^{\prime \prime} .673$	$\begin{aligned} & 36 * \\ & 43 \\ & 51 \\ & \hline 7 \end{aligned}$	$\begin{gathered} \hline \text { April } \\ 24 \\ 25 \\ 26 \end{gathered}$	$54^{\prime} 14^{\prime \prime}, 392$ $54^{\prime} 43^{\prime \prime} .164$ $53^{\prime} 45^{\prime \prime} .559$ $15^{\circ} 54^{\prime} 20^{\prime \prime} .534$	$\begin{array}{r} 6.142 \\ 34.975 \\ \hline 72.349 \end{array}$	22.630	$m= \pm 25^{\prime \prime} .6$
Heemstede $107^{\circ} 29^{\prime} 24^{\prime \prime} .184$	$\begin{gathered} 4^{0} \\ 9^{*} \\ 22^{*} \\ 37 \\ 52 \\ \hline 4 \end{gathered}$	April 1 2 20 24 26	$\begin{array}{r} 80^{\circ} 09^{\prime} 499^{\prime \prime} .085 \\ 10^{\prime} 30^{\prime \prime} .483 \\ 10^{\prime} 52^{\prime \prime} .723 \\ 10^{\prime} 25^{\prime \prime} .982 \\ 10^{\prime} 12^{\prime \prime} .519 \\ 80^{\circ} 10^{\prime} 30^{\prime \prime} .427 \end{array}$	$\begin{array}{r} \\ \\ 4.445 \\ 17.908 \\ \hline 22.353 \end{array}$	$\begin{array}{r}\hline 0.056 \\ 22.296 \\ \\ \hline 22.352\end{array}$	$\begin{aligned} {[\mathrm{vv}] } & =837.6 \\ \mathrm{~m}^{2} & =279.2 \\ \mathrm{~m} & = \pm 16^{\prime \prime} .7 \end{aligned}$
Haarlem $119^{\circ} 53^{\prime} 42^{\prime \prime} .595$	$\begin{gathered} 5 \\ 10 \\ 38 \\ 53^{\circ} \\ \hline 3 \end{gathered}$	April 1 3 24 26	$92^{\circ} 34^{\prime} 30^{\prime \prime} .320$ $34^{\prime} 29^{\prime \prime} .598$ $34^{\prime} 38^{\prime \prime} .071$ $34^{\prime} 05^{\prime \prime} .070$ $92^{\circ} 34^{\prime} 32^{\prime \prime} .663$	2.343 3. 065 \qquad 5.408	$\frac{5.408}{5.408}$	$\begin{aligned} {[\mathrm{vv}] } & =44.1 \\ \mathrm{~m}^{2} & =22.1 \\ \mathrm{~m} & = \pm 4.7 \end{aligned}$
Muiderberg $310^{\circ} 05^{\prime} 58^{\prime \prime} .980$	$\begin{aligned} & 14^{*} \\ & 23 \\ & 30 \\ & 44^{*} \\ & \hline 4 \end{aligned}$	$\begin{gathered} \hline \text { April } \\ 20 \\ 23 \\ 24{ }^{\star} \\ 26 \end{gathered}$	$\begin{array}{r} 287^{\circ} 46^{\prime} 82^{\prime \prime} .975 \\ 46^{\prime} 47^{\prime \prime} .772 \\ 46^{\prime} 56^{\prime \prime} .415 \\ 46^{\prime} 75^{\prime \prime} .948 \\ \hline 287^{\circ} 47^{\prime} 05^{\prime \prime} .778 \end{array}$	$\begin{array}{r} 18.006 \\ 9.363 \\ \hline 27.369 \end{array}$	$\begin{aligned} & 17.197 \\ & \\ & 10.170 \\ & \hline 27.367 \end{aligned}$	$\begin{aligned} {[\mathrm{vv}] } & =811.0 \\ \mathrm{~m}^{2} & =270.3 \\ \mathrm{~m} & = \pm 16.4 \end{aligned}$
Naarden $321^{\circ} 58^{\prime} 50^{\prime \prime} .070$	$\begin{gathered} 6^{*} \\ 15^{*} \\ 24 \\ 31^{*} \\ 45^{*} \\ \hline 5 \end{gathered}$	$\begin{gathered} \hline \text { April } \\ 2 \\ 20 \\ 23 \\ 24 \\ 26 \end{gathered}$	$\begin{array}{r} 294^{\circ} 39^{\prime} 61^{\prime \prime} .725 \\ 39^{\prime} 78^{\prime \prime} .983 \\ 39^{\prime} 48^{\prime \prime} .829 \\ 39^{\prime} 83^{\prime \prime} .312 \\ 39^{\prime} 70^{\prime \prime} .942 \\ \hline 294^{0^{\prime}} 40^{\prime} 08^{\prime \prime} .758 \end{array}$	$\begin{array}{r} 7.033 \\ 19.929 \\ \hline 26.962 \end{array}$	$\begin{array}{r} 10.225 \\ 14.554 \\ 2.184 \\ \hline 26.963 \end{array}$	$\begin{aligned} {[\mathrm{vv}] } & =767.8 \\ \mathrm{~m}^{2} & =191.9 \\ \mathrm{~m} & = \pm 13^{\prime \prime} .9 \end{aligned}$
Weesp $331^{\circ} 55^{\prime} 59^{\prime \prime} .390$	$\begin{aligned} & 11^{*} \\ & 16^{*} \\ & 25 \\ & 46^{*} \\ & \hline 4 \end{aligned}$	$\begin{gathered} \hline \text { April } \\ 19 \\ 20 \\ 23 \\ 26 \end{gathered}$	$\begin{array}{r} 304^{0} 36^{\prime} 92^{\prime \prime} .915 \\ 36^{\prime} 99^{\prime \prime} .497 \\ 36^{\prime} 59^{\prime \prime} .675 \\ 36^{\prime} 65^{\prime \prime} .044 \\ \hline 304^{\circ} 379^{\prime \prime} .283 \end{array}$	$\begin{aligned} & 19.608 \\ & 14.239 \\ & \hline 33.847 \end{aligned}$	$\begin{aligned} & 13.632 \\ & 20.214 \end{aligned}$ 33.846	$\begin{aligned} {[\mathrm{vv}] } & =1181.7 \\ \mathrm{~m}^{2} & =393.9 \\ \mathrm{~m} & = \pm 19.8 \end{aligned}$

Table 40

triangulation network. According to the Table alphabetique des azimuths on page 155 of the Précis Historique this azimuth is $332^{\circ} 41^{\prime} 20^{\prime \prime} .350$. Of the 8 series directly measured to Utrecht only the numbers 1, 7 and 12 fulfil this condition. Also series 33 for the azimuth to Breukelen could be used because ($340^{\circ} 23^{\prime} 40^{\prime \prime} .543-$ $\left.7^{\circ} 42^{\prime} 05^{\prime \prime} .848\right)-332^{\circ} 41^{\prime} 20^{\prime \prime} .350=14^{\prime \prime} .335$ is less than $20^{\prime \prime}$. In column 2 of table 39 I marked these series with an asterisk. In total there are only 26 of these series. Later on Krayenhoff receded from this intention and finally he rejected only 5 series. I marked them with an ${ }^{\circ}$. For the direct azimuth to Utrecht it concerns the series 39 and 47. On page 42 of the Précis Historique Krayenhoff says that these two series and the numbers 49 to Wilnis, 4 to Heemstede and 53 to Haarlem were rejected 'because of their too big deviations which do suppose some disadjustment in the setting up of the telescope". It is clear that by this method Krayenhoff introduced anew an element of arbitrariness which does not exclude an intentional influence upon the final result. It must be said, however, that the rejected series are very bad indeed. The other series must be called bad as can be seen from the standard deviations m in the determination of an azimuth computed in column 7 of table 39. m's of 19 ". 9 for an azimuth to Utrecht, 32 ". 5 to Breukelen and 25.6 to Nieuwkoop, e.g. show that this part of the triangulation is very bad indeed. In sections 30 and 31 I shall treat the influences which will have caused these bad results.

The computation of the final azimuth Amsterdam-Utrecht is given in table 40. The sequence of the numbers of the series in column 1 is the same as that in column 2 of table 39. The azimuths in column 2 for the series $1-32$ are of course the same as those in column 4 of table 39. Those for the series 18-48 in column 4 of table 39 must be diminished by $7{ }^{\circ} 42^{\prime} 05^{\prime \prime} .848$ in order to find those in column 2 of table 40 , etc. The mean azimuth is $332^{\circ} 41^{\prime} 19^{\prime \prime} .940$. The standard deviation in any azimuth is $\pm 22^{\prime \prime} .8$, that in the mean of the 48 measurements $\pm 3^{\prime \prime} .3$. It is almost incomprehensible that the azimuth differs but 0 ". 5 from the amount $332^{\circ} 41^{\prime} 19^{\prime \prime} .452$ which can be computed from the R. D. -coordinates $X^{\prime} Y^{\prime}$ of the two stations [84]. In the Table alphabetique des azimuths on page 155 of the Précis Historique Krayenhoff finds $332^{\circ} 41^{\prime} 20^{\prime \prime} .350$.
29. Measurement and computation of the azimuth Jever-Varel

The determination of the azimuth Jever-Varel was done in the same way as that of the side Amsterdam-Utrecht, already amply discussed in the preceding section. In the eccentric stations E, S and W of the castle at Jever, Krayenhoff measured 85 azimuths to the surrounding points indicated in Fig. 28. The measurements were done between August 13th and September 6th, 1811. On page 44 of the Précis

Fig. 28

Historique Krayenhoff says that he computed the first 62 of them and that he rejected 16 observations, "because of their too great irregularity that made me suppose an error in the observation".

In contradistinction to what he did in Amsterdam the results of the computation of the rejected observations are not mentioned in his registers. A survey of the measured azimuths, reduced to centre, can be found in table 41. It is arranged in the same way as table 39.

It must be said that Krayenhoff's statement of 62 computed azimuths does not agree with his registers for apparently he computed the azimuth $339^{\circ} 34{ }^{\prime} 29$ ". 089 to Bockhorn, measured as series 70 on September 5th. If one assumes that the series 71 and 72 measured on the same day to Etzel and Wittmund respectively were also computed then one must conclude that 72 azimuths were computed and that only the last 13, measured on September 6th, remained uncomputed. Apparently 46 computed azimuths were retained and therefore 26 rejected.

Table 41

Table 41 (continued)

Table 41 (continued)

Table 41 (continued)

As table 41 shows, four observations to Schortens (the series 12, 50, 57 and 68) were rejected. Series 81 was not computed. Only one series (38) was retained and in this series the difference between the computation from the right and the left side of the sun's disc is 36.4 .

To Etzel none of the 5 azimuths was retained and all azimuths to Wittmund and Burhafe were rejected or not computed. It will be clear that, just like in Amsterdam, here too the results of the determination of the azimuths are very bad. The standard deviations in column 7 are about the same as those in table 39. In order to reduce the 46 retained azimuths to 46 values for the azimuth JeverVarel they must be diminished by the horizontal angles mentioned in column 1. They are derived from Krayenhoff's measurements in his eccentric stations. I give these angles, reduced to centre, in table 42. In part I Varel is the left sighting point and Schortens, Neustadt, etc. the right one. In part II Varel is right and Sande, Marienhausen, etc. left. In III and IV where the angles between Wangeroge and Fedderwarden, Eckwarden, Niende, Accum, Burhafe and Wittmund are given, Wangeroge is left and right sighting point respectively.

Table 42

I	$\begin{aligned} & \text { Varel-Schortens } \\ & \qquad \begin{array}{l} \text { " -Neustadt } \\ \text { " -Bockhorn } \\ \text { " - Etzel } \end{array} \end{aligned}$	$\begin{gathered} 8^{o_{1}} 14^{\prime} 11^{\prime \prime} .193 \\ 15^{\mathrm{o}} 3347^{\prime \prime} .555 \\ 18^{o_{1}} 13^{\prime} 30^{\prime \prime} .154 \\ 38^{\mathrm{o}} 008^{\prime \prime} .750 \end{gathered}$	II	Sande - Varel Marienhausen - " Kniphausen $-"$ Sillenstede $-"$ Langwarden - "	$\begin{array}{r} 4^{o} 17^{\prime} 03^{\prime \prime} .545 \\ 9^{o} 16^{\prime} 48^{\prime \prime} .151 \\ 37^{o_{5}^{\prime}} 53^{\prime} 04^{\prime \prime} .924 \\ 53^{o_{4}^{\prime}} 40^{\prime \prime} 00^{\prime \prime} .989 \\ 58^{o_{5}^{\prime}} 59^{\prime} 20^{\prime \prime} .000 \end{array}$
III	Wangeroge-Fedder- warden " \quad-Eck- " warden "	$\begin{aligned} & 104^{\circ} 15^{\prime} 07^{\prime \prime} .286 \\ & 107^{\circ} 50^{\prime} 06^{\prime \prime} .641 \\ & 117^{\circ} 52^{\prime} 59^{\prime \prime} .995 \\ & 122^{\circ} 06^{\prime} 40^{\prime \prime} .892 \end{aligned}$	IV	Burhafe -Wangeroge Wittmund-	$\begin{aligned} & 68^{\circ} 45^{\prime} 21^{\prime \prime} .147 \\ & 78^{\circ} 34^{\prime} 29^{\prime \prime} .339 \end{aligned}$

As Wangeroge (see Fig. 2 and the dotied line in Fig. 28) is a sighting-point in Krayenhoff's first order triangulation network, the angle between Wangeroge and Varel was not measured again because it is the sum of the angles 468 and 469 . In his adjustment Krayenhoff found $149{ }^{\circ} 25^{\prime} 04^{\prime \prime} .460$ for it (see table 9).

I treated this less interesting part of the measurements rather fully because Krayenhoff made several mistakes in his reduction of the measured azimuths to the azimuth Jever-Varel. A serious mistake in his sloppy computations of this part of his work is that, instead of the reduction $-318^{\circ} 25^{\prime} 02^{\prime \prime} .181$ for the 5 azimuths to Eckwarden, he used $-318^{\circ} 26^{\prime} 02^{\prime \prime}$. 181. Four similar mistakes of 1^{\prime} in the reduction of the azimuths in the series 4 and 47 to Marienhausen, in series 39 to Neustadt and in series 45 to Niende and some small errors make that the mean azimuth in table 43 is $321^{\circ} 20^{\prime} 45^{\prime \prime} .325$ instead of $321^{\circ} 20^{\prime} 34^{\prime \prime} .905$ mentioned in his computation on page 45 of the Precis Historique. The standard deviation in a determination of an azimuth is 25.2 , that one in the mean of the 46 determinations $3^{\prime \prime} .7$. The amounts are almost the same as those found in Amsterdam. Starting from the azimuth Duinkerken-Mont Cassel and with the "adjusted" angles of his triangulation network Krayenhoff found $321^{\circ} 20^{\prime} 33^{\prime \prime}$. 733. Later on he computed the azimuth again, now starting from his measured azimuth Amsterdam-Utrecht $=332^{\circ} 41^{\prime} 19$ ". 940 (see table 40). According to page 192 of the Prẻcis Historique he now found $321^{\circ} 20^{\prime} 30^{\prime \prime} .411$. From the coordinates $X^{\prime \prime} Y^{\prime \prime}$ of Jever and Varel in table 26, I find $321^{\circ} 20^{\prime} 37^{\prime \prime} .69$. It differs $7^{\prime \prime} .64$ from the azimuth in table 43. Because of the large standard deviation in the latter determination and the arbitrary adjustment of the not quite closing network the difference is explicable.

Table 43

On page 22 of [65] Gauss mentions for the azimuth Bremerlehe-Varel $58^{\circ} 15^{\prime} 58^{\prime \prime} .861$ (see also Fig. 17 in section 18). From this azimuth an azimuth Jever-Varel $=321^{\circ} 20^{\prime} 35^{\prime \prime} .5$ can be computed as Van der Plaats showed already on page 294 of his paper [20]. The small difference (2 ". 2) with the amount $321^{\circ} 20^{\prime} 37^{\prime \prime} .69$ mentioned above in my opinion shows the good harmony between the orientation of the Oldenburg-triangulation and that of Krayenhoff's network, adjusted according to the least squares and adapted as well as possible at identical points of the R. D. The good agreement between the adjusted angles and the side lengths in the two networks was already shown in section 23.

For the original computation of his network Krayenhoff started, as already remarked before, from the azimuth $343^{\circ} 13^{\prime} 32$ " 703 of the side Duinkerken- MontCassel, found from Delambre's measurements. If the same azimuth is computed from the coordinates $X^{\prime \prime} Y^{\prime \prime}$ in column 7 and 8 of table 26 one finds $343^{\circ} 13^{\prime} 32^{\prime \prime} .507$, a difference of only 0 ". 2. According to page 187 of the Précis Historique Krayenhoff's computation of this azimuth - for this computation he started from his own determination of the azimuth Amsterdam-Utrecht - is $343^{\circ} 13^{\prime} 33^{\prime \prime} .569$. Here too the difference with my adjustment of the triangulation is very small (1".062).

30. Instrumental errors, affecting the accuracy of the determination of azimuths

From the sections 28 and 29 it appears that the internal accuracy of the determinations of azimuths in Amsterdam and at Jever is very bad indeed. These bad results will partially be due to errors of the transit instrument used. As it is probably lost we know no more of it than Krayenhoff says in the only sentence already quoted in section 28.

It will be clear that the method used for the determination of the sun's azimuth implicates that, after having pointed with the telescope at the terrestrial object, its line of sight must move in a vertical plane through the station when the telescope is turned in the sun's direction. This can be attained when:
a the horizontal axis of the instrument is horizontal indeed;
\underline{b} the line of sight of the telescope is perpendicular to the horizontal axis.
The realization of the horizontal axis can be obtained by a level on this axis. Its bubble tube axis must be parallel to the connecting line of the two supporting points at a distance of 0.772 m from each other. When the bubble is centred, the axis will be horizontal. Nowhere in the Précis Historique, however, it is to be found whether Krayenhoff investigated the instrument on these important conditions. On the level used he only says that it was good. On its sensitivity, however, important for a correct horizontal position of the axis, nothing is known.

If condition \underline{b} is satisfied but the bubble tube axis and the 'horizontal' axis deviate the small angle α, the line of sight of the telescope will move in a plane that is not vertical. Then in azimuthal sense, as can be easily derived, there is an error:

$$
\Delta_{1}=\alpha^{\prime \prime} \cot \mathrm{z}
$$

in which z is the sun's zenith distance at the moment of its observation. As for the observation of the azimuth to Nieuwkoop on April 26th, 1811 (series 51 in table 36) $\mathrm{z} \simeq 40^{\circ}, \Delta_{1} \simeq 1.2 \alpha^{\prime \prime}$ 。"
For an assumed amount $\alpha=10^{\prime \prime}$ - the sensitivity of the levels of the repetition circle in Figures 3 and 4 is about 20 "per $2 \mathrm{~mm}-\Delta_{1} \simeq 12^{\prime \prime}$. The error is of a systematic character. It is minimum (zero) when the sun rises or sets in the direction of the terrestrial object, maximum when the sun (the terrestrial point) is in the meridian. The terrestrial point Etzel (azimuth about $359{ }^{\circ}{ }^{\circ} 1^{\prime}$, see table 41) is therefore badly chosen. For the series 41 on August 24th, 1811 $\mathrm{z} \simeq \varphi-\delta\left(\varphi\right.$ is the latitude of Jever and δ the sun's declination) is about 42° so that $\Delta_{1} \simeq 11^{\prime \prime}$.
If condition \underline{b} is not satisfied and the angle between the sighting line of the telescope and the horizontal axis is $90^{\circ}-\beta$ instead of 90°, the small error β manifests itself in an azimuthal sense as:

$$
\Delta_{2}=\beta^{\prime \prime} \cot z \tan \frac{1}{2}\left(90^{\circ}-z\right)
$$

Here too the systematic error is minimum for $z=90^{\circ}$ and maximum when the sun (the terrestrial object) is in the meridian. For series 51 to Nieuwkoop one finds:

$$
\Delta_{2}=0.56 \beta^{\prime \prime}
$$

for series 41 to Etzel:

$$
\Delta_{2}=0.49 \beta^{\prime \prime}
$$

The amount β is unknown. An estimation may be found if one remarks that the realization of the line of sight perpendicular to the horizontal axis is dependent on the accuracy with which in Krayenhoff's time the vertical cross-wire could be shifted with the horizontal correction screw of the reticule in a direction perpendicular to the line of sight. If we assume that this accuracy is about 0.15 mm , then β for the 1.03 m long telescope is about 0.00015 radians or about $30^{\prime \prime} . \Delta_{2}$ for series 51 in Amsterdam (Nieuwkoop) and series 41 at Jever (Etzel) is then about $18^{\prime \prime}$ and $15^{\prime \prime}$ respectively.
The considerable amounts Δ_{1} and Δ_{2} in these considerations are very rough estimates. As Krayenhoff left us in uncertainty about all concerning the investigation of his instrument and its eventual adjustment the considerations remained unfortunately rather speculative. In the next section I can be more positive.
31. Determination of standard deviations in azimuths

The standard deviation in an azimuth A because of the standard deviation m_{t} in the measured hour angle t and the standard deviation m_{φ} in the measured latitude φ can be determined by application of the law of propagation of errors to the formula:

$$
\begin{equation*}
\cot \mathrm{A}=\frac{\sin \varphi \cos \mathrm{t}-\cos \varphi \tan \delta}{\sin \mathrm{t}}=\mathrm{F} . \tag{22}
\end{equation*}
$$

from which A, counted from the south in a clockwise direction, can be computed from the data φ, t and δ (see Fig. 29). A standard deviation m_{δ} in the sun's declination δ will be left out of consideration as Krayenhoff borrowed δ from the Connaissance des Temps.

Fig. 29
The law runs as follows:

$$
\left(\frac{\partial F}{\partial A}\right)^{2} m_{A}^{2}=\left(\frac{\partial F}{\partial t}\right)^{2} m_{t}^{2}+\left(\frac{\partial F}{\partial \varphi}\right)^{2} m_{\varphi}^{2}
$$

As

$$
\begin{aligned}
& \frac{\partial F}{\partial A}=-\frac{1}{\sin ^{2} A}, \\
& \frac{\partial F}{\partial t}=-(\sin \varphi+\cot A \cot t) \text { and } \\
& \frac{\partial F}{\partial \varphi}=\frac{\cos \varphi \cos t+\sin \varphi \tan \delta}{\sin t}
\end{aligned}
$$

one finds:

$$
\begin{align*}
& \left(\frac{1}{\sin ^{2} A}\right)^{2} \mathrm{~m}_{\mathrm{A}}^{2}=(\sin \varphi+\cot \mathrm{A} \cot t)^{2} \mathrm{~m}_{\mathrm{t}}^{2}+\left(\frac{\cos \varphi \cos \mathrm{t}+\sin \varphi \tan \delta}{\sin \mathrm{t}}\right)^{2} \mathrm{~m}_{\varphi}^{2} \\
& \mathrm{~m}_{\mathrm{A}}^{2}=\left\{\sin ^{2} \mathrm{~A}(\sin \varphi+\cot \mathrm{A} \cot \mathrm{t})\right\}^{2} \mathrm{~m}_{\mathrm{t}}^{2}+\left\{\frac{\sin ^{2} \mathrm{~A}(\cos \varphi \cos \mathrm{t}+\sin \varphi \tan \delta)}{\sin \mathrm{t}}\right\}^{2} \mathrm{~m}_{\varphi}^{2} \tag{23}
\end{align*}
$$

As in the term with m_{φ}^{2} :

$$
\frac{\sin \mathrm{A}}{\sin \mathrm{t}}=\frac{\sin \left(180^{\circ}-\mathrm{A}\right)}{\sin \mathrm{t}}=\frac{\cos \delta}{\sin \mathrm{Z}},
$$

one can also write this term as:

$$
\left\{\frac{\sin \mathrm{A}(\cos \varphi}{\varphi \cos \delta \cos \mathrm{t}+\sin \varphi \sin \delta)} \underset{\sin \mathrm{z}}{2}\right\}^{2} \mathrm{~m}_{\varphi}^{2}=(\sin \mathrm{A} \cot \mathrm{z})^{2} \mathrm{~m}_{\varphi}^{2} .
$$

Applying the same trick to the term with m_{t}^{2} one finds:

$$
\begin{aligned}
& \left\{\sin ^{2} A(\sin \varphi+\cot A \cot t)\right\}^{2} \mathrm{~m}_{t}^{2}= \\
& \left\{\sin A \frac{\cos \delta}{\sin z}(\sin \varphi \sin t+\cot A \cos t)\right\}^{2} \mathrm{~m}_{t}^{2}= \\
& \left\{\frac{\cos \delta(\sin \varphi \sin A \sin t+\cos A \cos t)}{\sin z}\right\}^{2} \mathrm{~m}_{t}^{2}
\end{aligned}
$$

At pleasure (23) can therefore be written as:

$$
\mathrm{m}_{\mathrm{A}}^{2}=\left\{\sin ^{2} \mathrm{~A}(\sin \varphi+\cot \mathrm{A} \cot \mathrm{t})\right\}^{2} \mathrm{~m}_{\mathrm{t}}^{2}+(\sin \mathrm{A} \cot \mathrm{z})^{2} \mathrm{~m}_{\varphi}^{2} \ldots(24)
$$

or as:

$$
\mathrm{m}_{\mathrm{A}}^{2}=\left\{\frac{\cos \delta(\sin \varphi \sin \mathrm{A} \sin \mathrm{t}+\cos \mathrm{A} \cos \mathrm{t})}{\sin \mathrm{z}}\right\}^{2} \mathrm{~m}_{\mathrm{t}}^{2}+(\sin \mathrm{A} \cot \dot{\mathrm{z}})^{2} \mathrm{~m}_{\varphi}^{2}
$$

In (24) the computation of the term with $\mathrm{m}_{\mathrm{t}}^{2}$ is easier than in (25). For $\mathrm{A}=\mathrm{t}=0$, however, the formula cannot be used. According to (25), however, the coefficient is $\left(\frac{\cos \delta}{\sin \mathrm{z}}\right)^{2}$ or, as in that case $\mathrm{z}=\varphi-\delta$:

$$
\left(\frac{\cos \delta}{\sin (\varphi-\delta)}\right)^{2}
$$

As Etzel (see table 41) lies almost in the meridian of Jever, the coefficient of m_{t}^{2} for the observation 41 on August 24th, 1811 is about:

$$
\left\{\frac{\cos 11^{\circ}}{\sin \left(53^{\circ}-119\right.}\right\}^{2}=\left(\frac{0.98}{0.67}\right)^{2}=(1.5)^{2}
$$

so that:

$$
\mathrm{m}_{\mathrm{A}} \simeq 1.5 \mathrm{~m}_{\mathrm{t}},
$$

for the coefficient of m_{φ}^{2} in this case is zero. For the stations Amsterdam and Jever ($\sin \mathrm{A} \cot \mathrm{z}$) ${ }^{2}$ will always remain very small as a small z (cot z large) implicates a small A (sin A small) and a large A. ($\sin \mathrm{A}$ large) a large $\mathrm{z}(\cot \mathrm{z}$ small).

If the formulae (24) and/or (25) are applied to the example of the measured azimuth Amsterdam-Nieuwkoop, series 51 (see table 36 and the text belonging to that table), one finds:

$$
\begin{equation*}
\mathrm{m}_{\mathrm{A}}^{2}=(1.49)^{2} \mathrm{~m}_{\mathrm{t}}^{2}+(0.34)^{2} \mathrm{~m}_{\varphi}^{2} . \tag{26}
\end{equation*}
$$

For an estimate of m_{φ} one can use the results of the determination of the latitudes of Amsterdam and Jever in sections 26 and 27 (see table 32 and 33).

As the standard deviations in the mean of 11 series in Amsterdam in 1810 and in the mean of 13 series in 1811 is $M=\frac{+0}{1 \prime} .328$ and $M= \pm 0_{1 \prime}^{\prime \prime \prime} .957$ respectively and those in Jever in 7 and 6 series $M= \pm 0.319$ and $M= \pm 0.569$ respectively, m_{φ} can be estimated at about 0.6 .

I think the standard deviation in a chronometer reading "by calling out" can be estimated at about $0.5 \mathrm{sec}=7^{\prime \prime} .5$. In this standard deviation the accidental part of the error made in the determination of the moment the sun's limb touches the vertical cross-wire is included. We know nothing, however, of the systematic part of this error, caused by the psychological and physical disposition of the (two) observers to judge, either too early or too late, the real moment of contact of the cross-wire with the sun's disc. It may influence the result of the determination of t in a considerable manner.

As Krayenhoff determined the azimuth to the terrestrial object from the mean of two observations R and L (see Fig. 26), m_{t} is about $7^{\prime \prime} .5: \sqrt{2} \simeq 5^{\prime \prime} .3\left(m_{t}^{2} \simeq 28\right)$. Because of the small influence of the term ($\sin \mathrm{A} \cot \mathrm{z})^{2} \mathrm{~m}_{\varphi}^{2}$ in (24) and (25) on $\mathrm{m}_{\mathrm{A}}^{2}$ it can be neglected so that:

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{A}}=\sin ^{2} \mathrm{~A}(\sin \varphi+\cot A \cot t) \mathrm{m}_{\mathrm{t}} \text {, or } \\
& \mathrm{m}_{\mathrm{A}}=\frac{\cos \delta(\sin \varphi \sin A \sin \mathrm{t}+\cos \mathrm{A} \cos \mathrm{t})}{\sin \mathrm{z}} \mathrm{~m}_{\mathrm{t}}
\end{aligned}
$$

or, for the example Nieuwkoop in Fig. 27:

$$
\mathrm{m}_{\mathrm{A}}=1.49 \mathrm{~m}_{\mathrm{t}}= \pm 7^{\prime \prime} .9
$$

and for the azimuth to Etzel (Fig. 28):

$$
\mathrm{m}_{\mathrm{A}}=1.5 \mathrm{~m}_{\mathrm{t}}= \pm 8^{\prime \prime} .0
$$

As for the small hour angles t the zenith distances z of the sun are also small, the unfavourable influence of the determination of time on the sun's azimuth is once again increased by the systematic error due to the disadjustment of the instrument used. It is incomprehensible, that Krayenhoff did not see this and, both in Amsterdam (Fig. 27) and at Jever (Fig. 28), used so many sighting points for his determination of azimuths in southern directions and so few at the west side of the horizon. Instead of measuring the very bad azimuths in Amsterdam to Wilnis and Mijdrecht ($3555^{\circ} 48^{\prime}$ and $3{ }^{\circ} 20^{\prime}$ respectively) Krayenhoff should at any rate have computed the azimuths to Muiderberg, Naarden, Weesp, Heemstede and Haarlem measured between April 27th and May 23rd, 1811 which he let uncomputed. Because of the much smaller coefficient of $\mathrm{m}_{\mathrm{t}}^{2}$ in (24) or (25) it would have improved the accuracy of the determination also because of the small influence of the systematic error due to the disadjustment of the
instrument. For a tower with an azimuth $A=90^{\circ}$ and on March 21st and September $\operatorname{23rd}\left(\delta=0, \mathrm{z}=90^{\circ}\right)$ the coefficient of $\mathrm{m}_{\mathrm{t}}^{2}$ is $\sin ^{2} \varphi$ so that $\mathrm{m}_{\mathrm{A}}=\sin \varphi \mathrm{m}_{\mathrm{t}}$. For Amsterdam it amounts to $\mathrm{m}_{\mathrm{A}}=0.79 \mathrm{~m}_{\mathrm{t}}=4.2$. The systematic errors Δ_{1} and Δ_{2}, discussed in section 30 are zero.

It will be clear that for the determination of the standard deviation in the azimuth to Utrecht (in Amsterdam) and to Varel (at Jever) the standard deviation in the horizontal angular measurement must be taken into account. In order to reduce e.g. the measured azimuth Amsterdam-Nieuwkoop to the azimuth AmsterdamUtrecht, the first must be diminished with the angle Nieuwkoop-AmsterdamUtrecht (160). As it has a standard deviation $\mathrm{m}_{\alpha} \simeq 1^{\prime \prime} .6$ (see section 8) the astronomical azimuth reduced to Utrecht would have a standard deviation:

$$
\mathrm{m}_{\mathrm{A}} \simeq \sqrt{7.9^{2}+1.6^{2}} \simeq \pm 8^{\prime \prime} .1
$$

It is but hardly larger than the dominating amount 7". 9.
For the reduction of the measured azimuth to Heemstede to that to Utrecht three horizontal angles are necessary (the angles Haarlem-Amsterdam-Heemstede, Haarlem-Amsterdam-Nieuwkoop, and Nieuwkoop-Amsterdam-Utrecht, so that, instead of m_{α}^{2} the amount $3 \mathrm{~m}_{\alpha}^{2}$ must be superposed at the square of the standard deviation in the astronimical measurement. Here too the latter amount dominates in the final result.
In the example of the fictitious tower with an azimuth $A=90^{\circ}$ (see above) measured on March 21 st or September 23rd, m_{A} would be:

$$
\mathrm{m}_{\mathrm{A}}=\sqrt{\sin ^{2} \varphi \mathrm{~m}_{\mathrm{t}}^{2}+3 \mathrm{~m}_{\alpha}^{2}}=\sqrt{4.2^{2}+7.7} \simeq 5.0
$$

According to column 7 of the tables 39 and 41 all the standard deviations in the measurement of an azimuth are much higher than the amounts found in this section. Neither in Amsterdam nor at Jever an obvious improvement of the accuracy of the azimuths at the west side or the east side of the horizon is perceptible. The observations 14,72 and 15 at Jever to Wittmund and Burhafe were even rejected. The systematic instrumental errors discussed in section 30 must therefore have been of paramount influence.

The remaining errors v in columns 3 and 4 of tables 40 and 43 don't give the impression to be accidental. This can be seen very clearly in table 43: at Varel (4 series 11-67), Eckwarden (5 series 18-62), Kniphausen (3 series 24-44) and Marienhausen (4 series 4-47) all the amounts v are negative; at Sillenstede (5 series $16-42$), Fedderwarden (4 series $1-30$) and Niende (6 series $2-63$) all v 's are positive. I can't see it otherwise than that, both in Amsterdam and at Jever, the excellent external results of Krayenhoff's determination of azimuths must only be ascribed to chance. From the very bad measurement such excellent results cannot possibly be predicted.
32. Survey of the geographical coordinates φ and λ of all the points of the triangulation network and the azimuths of all the sides and, for the common points and sides, a comparison with the R.D.-results

As I already said in section 25 Krayenhoff computed from his triangulation the geographical coordinates φ and λ of all the stations of his network and the azimuths A of all the sides, once starting from the latitude φ and the longitude λ of Duinkerken (No.1) - the latter with respect to Paris - and the azimuth Duinkerken (No.1)-Mont Cassel (No. 2), already determined by Delambre, once from his own determination of the latitude of Amsterdam (No. 40) and his azimuth Amsterdam (No. 40)-Utrecht (No. 36). In the latter computation on the ellipsoid with a radius of the equator $\underline{\mathrm{a}}=6356356.1 \mathrm{~m}$, and a flattening $\mathrm{p}=0.003229489$ (about $1: 309.65$) the longitudes are determined with respect to Amsterdam. The results of the two computations are to be found in tableau IV and V respectively of the Précis Historique.

Nowhere in his book, however, Krayenhoff mentions how the various latitudes, longitudes and azimuths were computed and even the computation of the results with respect to Amsterdam cannot be found in his registers [85]. It will be clear that, here too, he made use of Delambre's formulae, mentioned in his Méthodes analytiques.

It lies beyond the scope of this book to derive these formulae. The interested reader can find the derivation on the pages 59 and following of Delambre's book where - on page 78 - he also refers to Legendre's studies in this field, already published in the Mémoires de l'Académie of the year 1787.
For $\varphi_{Q}-{ }^{\varphi} P^{\prime}, \lambda_{Q}-\lambda_{P}$ and $A_{Q P}-\left(180^{\circ} \pm A_{P Q}\right)-P, Q$ (and R) are successive angular points of a triangle of the network - Delambre finds on page 83 of his book:

$$
\begin{align*}
& \left(\varphi_{\mathrm{Q}}-\varphi_{\mathrm{P}}\right)^{\prime \prime}=-\left(\delta^{\prime \prime} \cos \mathrm{A}_{\mathrm{PQ}}+\frac{1}{2} \delta^{\prime \prime} \sin \delta \sin ^{2} \mathrm{~A}_{\mathrm{PQ}} \operatorname{tg} \varphi_{\mathrm{P}}\right)\left(1+\mathrm{e}^{2} \cos ^{2} \varphi_{\mathrm{P}}\right) \\
& \left(\lambda_{\mathrm{Q}}-\lambda_{\mathrm{P}}\right)^{\prime \prime}=-\frac{\delta^{\prime \prime} \sin \mathrm{A}_{\mathrm{PQ}}}{\cos \varphi_{\mathrm{Q}}} \tag{27}
\end{align*}
$$

and:

$$
\left\{\left(\mathrm{A}_{\mathrm{QP}} \pm 180^{\circ}\right)-\mathrm{A}_{\mathrm{PQ}}\right\}^{\prime \prime}=-\left(\delta^{\prime \prime} \sin \mathrm{A}_{\mathrm{PQ}} \operatorname{tg} \varphi_{\mathrm{Q}}+\frac{1}{4} \delta^{\prime \prime} \sin \delta \sin 2 \mathrm{~A}_{\mathrm{PQ}}\right)
$$

with:

$$
\delta^{\prime \prime}=\rho^{\prime \prime} \frac{\mathrm{K}}{\mathrm{a}}\left(1+\frac{1}{2} \mathrm{e}^{2} \sin ^{2} \varphi_{\mathrm{P}}\right) \quad[86]
$$

In the latter expression K is the length of the chord $P Q$ found from the computation in tableau III of the Précis Historique, a the radius of the equator (6356356.1 m)
and e the eccentricity of the earth ellipsoid, determined by:

$$
e^{2}=\frac{a^{2}-b^{2}}{a^{2}} \text { with } \frac{a-b}{a}=p=1: 309.65
$$

The azimuths in the formulae are counted from the south in a clockwise direction.
Delambre's formulae deviate considerably from those used nowadays for analogous computations. I give them underneath and I borrowed them from a publication of the Netherlands' Rijksdriehoeksmeting. The translation of the Dutch title runs: Formulae and tables for the computation of the geographical latitudes and longitudes of the angular points and the azimuths of the sides of the triangulation network (Delft, 1903). The derivation of the various formulae may be found in geodetic textbooks. The formulae run (azimuths from the north in a clockwise direction):

$$
\begin{aligned}
& s \sin A_{P Q}=s_{1} \quad s \cos A_{P Q}=s_{2} \\
& \left(\varphi_{Q}-\varphi_{P}\right)^{\prime \prime}=[1] s_{2} \quad-[2] s_{1}^{2}-[3] s_{2}^{2}-[4] s_{1}^{2} s_{2} \\
& \left(\lambda_{Q}-\lambda_{P}\right)^{\prime \prime}=[5] \sec \varphi_{P} s_{1}+[6] s_{1} s_{2}+[7] s_{1} s_{2}^{2}-[8] s_{1}^{3} \\
& \left\{\left(A_{Q P} \pm 180^{\circ}\right)-A_{P Q}\right\}^{\prime \prime}=[5] \tan \varphi_{P} s_{1}+[9] s_{1} s_{2}+[10] s_{1} s_{2}^{2}-[11] s_{1}^{3} .
\end{aligned}
$$

s in these formulae is the length (in metres) of the geodesic between the points P and Q,

$$
\begin{aligned}
& {[1]=\rho^{\prime \prime}: R} \\
& \text { [2] }=\rho^{\prime \prime} \tan \varphi_{\mathrm{P}}: 2 \mathrm{RN} \\
& \text { [} 3 \text {] }=3 \rho^{\prime \prime} \delta \tan \varphi_{\mathrm{P}} \cos ^{2} \varphi_{\mathrm{P}}: 2 \mathrm{RN} \\
& {[4]=\rho^{\prime \prime}\left(1+3 \tan ^{2} \varphi_{\mathrm{P}}+\delta \cos ^{2} \varphi_{\mathrm{P}}-9 \delta \tan ^{2} \varphi_{\mathrm{P}} \cos ^{2} \varphi_{\mathrm{P}}\right): 6 \mathrm{RN}^{2}} \\
& \text { [5] = } \rho^{\prime \prime}: N \\
& \text { [6] }=\rho^{\prime \prime} \sec \varphi_{\mathrm{P}}{\tan \varphi_{\mathrm{P}}}: \mathrm{N}^{2} \\
& {[7]=\rho^{\prime \prime} \sec \varphi_{\mathrm{P}}\left(1+3 \tan ^{2} \varphi_{\mathrm{P}}+\delta \cos ^{2} \varphi_{\mathrm{P}}\right): 3 \mathrm{~N}^{3}} \\
& {[8]=\rho " \sec \varphi_{\mathrm{P}} \tan ^{2} \varphi_{\mathrm{P}}: 3 \mathrm{~N}^{3}} \\
& \text { [9] }=\rho^{\prime \prime}\left(1+2 \tan ^{2} \varphi_{\mathrm{P}}+\delta \cos ^{2} \varphi_{\mathrm{P}}\right): 2 \mathrm{~N}^{2} \\
& {[10]=\rho^{\prime \prime} \tan \varphi_{\mathrm{P}}\left(5+6 \tan ^{2} \varphi_{\mathrm{P}}+\delta \cos ^{2} \varphi_{\mathrm{P}}\right): 6 \mathrm{~N}^{3}} \\
& \left.[11]=\rho^{\prime \prime} \tan \varphi_{\mathrm{P}}{ }^{\left(1+2 \tan ^{2} \varphi_{\mathrm{P}}\right.}+\delta \cos ^{2} \varphi_{\mathrm{P}}\right): 6 \mathrm{~N}^{3}
\end{aligned}
$$

in which:

$$
\begin{aligned}
\mathrm{R} & =\mathrm{a}\left(1-\mathrm{e}^{2}\right):\left(1-\mathrm{e}^{2} \sin ^{2} \varphi_{\mathrm{P}}\right)^{\frac{3}{2}} \\
\mathrm{~N} & =\mathrm{a}:\left(1-\mathrm{e}^{2} \sin ^{2} \varphi_{\mathrm{P}}\right)^{\frac{1}{2}} \\
\delta & =\mathrm{e}^{2}:\left(1-\mathrm{e}^{2}\right)
\end{aligned}
$$

It will be clear that δ is another δ than that used in Delambre's formulae. $\underline{\text { a }}$, \underline{e} and φ_{P} are the same quantities as those of Delambre.
With φ_{i} as an argument and for any arbitrary ellipsoid given by its \underline{a} and \underline{b} or its \underline{a} and p the coefficients[1]up to and including[11] can be tabulated. The accuracy of the table in the said R.D. -publication is as such, that a correct computation of ${ }^{\varphi} Q^{-}-\varphi_{P}$, etc. in thousandths of a second is found.
With the fourth and the first of the formulae (27) Krayenhoff computed first from the known latitude φ_{P} (Amsterdam, No. 40) and the azimuth A ${ }_{P Q}$ (AmsterdamUtrecht) the latitude φ_{Q} of Utrecht (No. 36) and after this with the second and the third of the formulae the longitude λ_{Q} of Utrecht and the azimuth A_{QP} at Utrecht to Amsterdam. By adding the adjusted spherical angle 56 to the azimuth $A_{P Q}$ he could find the azimuth $A_{P R}$ in Amsterdam to Nieuwkoop (No. 35) and, with the same formulae used for the determination of Utrecht (Q), the coordinates $\varphi_{35}, \lambda_{35}$ of the angular point R (Nieuwkoop) and the azimuth $A_{R P}$ at Nieuwkoop to Amsterdam. From the now known azimuths Amsterdam-Utrecht, Utrecht-Amsterdam, Amster-dam-Nieuwkoop and Nieuwkoop-Amsterdam and the adjusted angles of the network the geographical coordinates of Naarden (in triangle 57), Gouda (triangle 47) and Haarlem (triangle 55) can be determined in the same way, etc. A check is even possible - and Krayenhoff computed every point twice indeed - when e.g. Naarden is computed from the coordinates of Amsterdam and those of Utrecht. As the φ 's and λ 's of arbitrary points, however, are dependent on the route of the computation in the not-closing network, the results of the two computations will differ, because of a small inaccuracy of the used formulae (27) and the influences of the "adjustment" of the triangulation. Krayenhoff could have separated these two influences - but he did not do so - by computing in his triangle Amsterdam (P)-Utrecht (Q)-Nieuwkoop (R) (and in every other triangle of the network) the successive differences:

$$
\begin{aligned}
& \varphi_{\mathrm{Q}}-\varphi_{\mathrm{P}},{ }^{\varphi_{\mathrm{R}}}-\varphi_{\mathrm{Q}},{ }^{\varphi_{\mathrm{P}}}-\varphi_{\mathrm{R}}, \lambda_{\mathrm{Q}}-\lambda_{\mathrm{P}} \\
& \lambda_{\mathrm{R}}-\lambda_{\mathrm{Q}},{ }^{\lambda_{\mathrm{P}}}-\lambda_{\mathrm{R}},\left\{\left(\mathrm{~A}_{\mathrm{QP}} \pm 180^{\circ}\right)-\mathrm{A}_{\mathrm{QP}}\right\}, \\
& \left\{\left(\mathrm{A}_{\mathrm{RQ}} \pm 180^{\circ}\right)-\mathrm{A}_{\mathrm{QR}}\right\} \text { and }\left\{\left(\mathrm{A}_{\mathrm{PR}} \pm 180^{\circ}\right)-\mathrm{A}_{\mathrm{RP}}\right\}, \text { respectively. }
\end{aligned}
$$

Both the sum of the φ-differences and the λ-differences must be zero. That of the A-differences, diminished with the spherical excess E of the triangle concerned must also be zero.
Table 44

	$\xrightarrow{0}$			$\begin{aligned} & \text { 안아아아 } \end{aligned}$	か얬ㅇNN 안웅			$\begin{aligned} & 0 \infty \text { N } \\ & \text { M } \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$
	∞ 1 1	$\stackrel{-1}{-1}$	11	$\left\|\left\|\left\|\left\lvert\, \begin{array}{c}\text { ¢ } \\ \text { \％} \\ 0 \\ 0\end{array}\right.\right.\right.\right.$			1900 0 0	
	$\begin{aligned} & \text { د } \\ & \text { : } \end{aligned}$	\bigcirc			 			
	$\dot{8}$	\bigcirc	11					0
		∞		덩ㅇㅇㅇㅇ ${ }_{\sim}^{\infty}$ 엉 8 거N けTけT		 0000 아	$\begin{aligned} & \text { Non } \\ & \text { No } \\ & 0 \\ & 0 \end{aligned}$	뭉ㄱNㅇㅇㅇㅇㅇㅇ 今が tilili
	L0	\cdots						パかの○ $\underset{+}{9+\underset{+}{+}+\underset{+}{2}}$
	$\underset{i}{9}$	－	11	$\left\|\left\|\left\|\left\lvert\, \begin{array}{l}\text { a } \\ \hline\end{array}\right.\right.\right.\right.$	N上式 8		H0， 0	N
	$\begin{aligned} & \text { دi } \\ & \text { in } \end{aligned}$	50			동ㅇㅇㅇ읍示至	 		
	0	＋	，	$1\left\|\left\|\left\lvert\, \begin{array}{c}\text { N } \\ \text { N } \\ \text { ¢ } \\ \text { ¢ }\end{array}\right.\right.\right.$				
		∞			${ }_{\circ}^{\circ}{ }^{\circ}{ }^{-1} \operatorname{Na}^{\infty} \stackrel{\infty}{-}$ へNなみか 	둥 © \＃® 하궁욱 N が 的的的的號	$⿻ 日 禸$ $\infty+\infty$ N 出子呺舁 	
	$\dot{0}$	－	Nのみ	crooso		¢¢ ¢ ¢ ¢		

Table 44 (continued)

Table 44 (continued)

The amounts φ_{i} and $\lambda_{i}(i=1,2 \ldots \ldots .105,106)$, published in tableau V of the Précis Historique, are mentioned in columns 5 and 10 respectively of table 44. They relate to the stations i in columns 1 and 2 of the table. I don't know why Varel (No. 103) is missing in this list. Its coordinates are mentioned indeed in tableau IV of the book.

Columns 4 and 3 give the latitudes φ of the stations according to the R.D. and to my own adjustment of Krayenhoff's triangulation. The longitudes (Amsterdam=0) can be found in columns 9 and 8 respectively. I computed - that's to say the computer computed for me-these latitudes and longitudes from the coordinates $X_{i}^{\prime} Y_{i}^{\prime}$ and $X_{i}^{\prime \prime} Y_{i}^{\prime \prime}$ in columns 5-6 and 7-8 respectively of table 26. De Groot's formulae used for the computation can be found in [82], page 6. They run as follows:

$$
\begin{aligned}
\varphi_{\mathrm{i}}= & 52^{\circ} 09^{\prime} 222^{\prime \prime} .178+3236.033 \mathrm{Y}_{\mathrm{i}}^{\prime}-32.592 \mathrm{X}_{\mathrm{i}}^{\prime 2}-0.247 \mathrm{Y}_{\mathrm{i}}^{\prime 2}-0.850 \mathrm{X}_{\mathrm{i}}^{\prime 2} \mathrm{Y}_{\mathrm{i}}^{\prime}- \\
& -0.065 \mathrm{Y}_{\mathrm{i}}^{\prime 3}+0.005 \mathrm{X}_{\mathrm{i}}^{\prime 4}-0.017 \mathrm{X}_{\mathrm{i}}^{\prime 2} \mathrm{Y}_{\mathrm{i}}^{\prime 2}, \\
\lambda_{\mathrm{i}}= & 0^{\circ} 300^{\prime} 13.522+5261.305 \mathrm{X}_{\mathrm{i}}^{\prime \prime}+105.979 \mathrm{X}_{\mathrm{i}}^{\prime} \mathrm{Y}_{\mathrm{i}}^{\prime}+2.458 \mathrm{X}_{\mathrm{i}}^{\prime} \mathrm{Y}_{\mathrm{i}}^{\prime 2}-0.819 \mathrm{X}_{\mathrm{i}}^{\prime 3}+ \\
& +0.056 \mathrm{X}_{\mathrm{i}}^{\prime} \mathrm{Y}_{\mathrm{i}}^{\prime 3}-0.056 \mathrm{X}_{\mathrm{i}}^{\prime 3} \mathrm{Y}_{\mathrm{i}}^{\prime} .
\end{aligned}
$$

For the computation of the φ 's and λ 's of Krayenhoff's network, adjusted according to the least squares and adapted as well as possible to the R. D. -system $X^{\prime} Y^{\prime}$, the coordinates $X^{\prime \prime} Y^{\prime \prime}$ must of course be used. In the given formulae $X_{i}^{\prime} Y_{i}^{\prime}\left(X_{i}^{\prime \prime} Y_{i}^{\prime \prime}\right)$ have a unit of length of 100 km . It will be clear that the $\varphi^{\prime} \mathrm{s}$ and λ 's relate to a position on Bessel's ellipsoid. For the longitudes with respect to Greenwich the $\lambda_{i}{ }^{\prime}$ s must be augmented with $4^{\circ} 533^{\prime} 01.978$.
It is interesting to consider the longitude of Duinkerken: $\lambda_{1}=-2^{\circ} 30^{\prime} 27^{\prime \prime} .721+$ $+4^{\circ} 53^{\prime} 01^{\prime \prime} .978=+2^{\circ} 22^{\prime} 34^{\prime \prime} .257$ with respect to Greenwich, found from my adjustment of Krayenhoff's triangulation and the amount $0^{\circ} 02^{\prime} 23^{\prime \prime} .000$ east of Paris found by Delambre. As, according to the Astronomical Ephemeris 1971, Cassini's meridian of Paris lies $0{ }^{\mathrm{h}} 09^{\mathrm{m}} 20 . \mathrm{s}$. 91 east of Greenwich, Delambre would have found for Duinkerken $\lambda_{1}=+2^{\circ} 22^{\prime \prime} 36.6$ with respect to Greenwich. It differs $2^{\prime \prime} .3$ or 0 . 15 from the amount just mentioned. In this difference, in my opinion very small, not only the inaccuracies of Delambre's measurement between Paris and Duinkerken are included and those of Krayenhoff's triangulation between Amsterdam and Duinkerken, but also those in the determination of the differences in longitude between Greenwich and Paris and Greenwich and Amersfoort respectively on two different ellipsoids. For the latter difference the difference $0{ }^{\mathrm{h}} 17{ }^{\mathrm{m}} 56.15=$ $=4^{\circ} 29^{\prime} 02^{\prime \prime} .250$ between Greenwich and the Leiden Observatory was already determined in 1880 and 1881 by H. G. van de Sande Bakhuyzen [87]. That between
the meridian circle at Leiden $\left(\mathrm{X}^{\prime}=-61832.511, \mathrm{Y}^{\prime}=+346.653\right.$) and Amersfoort $\left(X^{\prime}=Y^{\prime}=0.000\right)$ is $0^{\circ} 54^{\prime} 13^{\prime \prime} .228$. It was computed in 1897 from the R. D. -triangulation network. The sum of the two amounts $5^{\circ} 23^{\prime} 15^{\prime \prime} .478$, the longitude of Amersfoort, was rounded off by the R.D. at $5^{\circ} 23^{\prime} 15^{\prime \prime} .500$.

The latitude $\varphi_{1}=51^{\circ} 02^{\prime} 11_{\prime \prime}^{\prime \prime} .302$ of Duinkerken, computed from my adjustment of the network, differs $2^{\prime \prime} .57$ from the result $51^{\circ} 02^{\prime} 08^{\prime \prime} .730$ of Delambre's measurement and 1 ". 65 from Krayenhoff's result $51^{\circ} 02^{\prime} 09^{\prime \prime} .65$ in tableau V of the Précis Historique. The latter difference, however, must be imputed to Amsterdam's latitude $\varphi_{40}=52^{\circ} 22^{\prime} 30^{\prime \prime} .13$ from which he started his computation (column 5 of table 44). If he had used the correct latitude $52^{\circ} 22^{\prime} 31^{\prime \prime} .96$ (column 4), he would have found about 1 ". 83 less or -0 ". 18 . As the difference 1.83 holds for all the latitudes in Krayenhoff's computation of the network, it will be clear that the amounts in column 7 of the table are all of them positive. For the small projections in the direction north-south of the vectors in Fig. 20 (section 21) represent but fractions of a second of arc in latitude.

As Krayenhoff's computation of the sides of his network, however, is influenced by a gradually changing scale factor, this influence must be perceptible in the latitudes. If one diminishes the differences in column 7 with the just mentioned amount 1.83 in Amsterdam, one finds, as already said, for Duinkerken - 0.18 but for Jever +0 " 61 . They demonstrate once again that in the southern part of the network Krayenhoff's side lengths are too short and in the northern part too long.

Analogous considerations may be held for the comparison between the λ ' s in column 8 and those in column 10 (table 44). Their differences in column 11 are affected by the scale factors already mentioned before. In table 45 I give an example both for an almost constant longitude (φ-influence, left side of the table) and an almost constant latitude (λ-influence, right side). In both parts of the table the connection between the columns 3 and 4 is very clear.

Table 45

Stations		Scale factors table 28	Column 7 table 44 minus 1!'83	Stations		Scale factors table 28	Column 12 table 44 minus 0!' 01
No.	Name			No.	Name		
1	2	3	4	1	2	3	4
49	Groenlo	1. 000023	$-0^{\prime \prime} .09$	74	Harlingen	1. 000046	+0.09
50	Harikerberg	1. 000018	-0.11	79	Leeuwarden	1. 000030	-0.01
60	Lemelerberg	1. 000018	-0.13	86	Groningen	0.999985	-0.40
83	Beilen	1. 000008	-0.18	91	Midwolda	0.999957	-0.66
87	Rolde	0.999986	-0.22	99	Strakholt	0.999935	-1.02
86	Groningen	0.999985	-0.29				
89	Uithuizermeden	0.999980	-0.37				

For a comparison of the geographical azimuths of the triangulation network in the various systems I made table 46. In column 6 are Krayenhoff's azimuths; they are borrowed from tableau V of the Précis Historique. The azimuths in Duinkerken (station No. 1) are in No. 1 of the table. That one to Nieuwpoort (station No. 4) is $248^{\circ} 1455.97$, etc. In column 4, I give the azimuths according to my own adjustment of the network and - where possible - in column 5 the azimuths according to the R. D. triangulation. Those in columns 4 and 5 are computed from the coordinates $X^{\prime \prime} Y^{\prime \prime}$ and $X^{\prime} Y^{\prime}$ respectively in table 26.

An example of the computation of the R. D.-azimuth Rhenen (No. 37)-Gorinchem (No. 32) is illustrated in Fig. 30.

Fig. 30
In Rhenen the line RY' is parallel to the Y^{\prime}-axis of the R. D. -coordinate system, the direction of the astronomical north at Amersfoort. The angle γ between the meridian of Rhenen and the Y^{\prime}-axis, counted from the meridian in a clockwise direction, is the convergence of the meridians. It can be computed with De Groot's formula on page 6 of the H.T.W. [49] :

$$
\begin{aligned}
v_{37}^{\prime \prime}= & +4154.7761 \mathrm{X}_{37}^{\prime}+109.0111 \mathrm{X}_{37}^{\prime} \mathrm{Y}_{37}^{\prime}+2.4507 \mathrm{X}_{37}^{\prime} \mathrm{Y}_{37}^{\prime 2}-0.8168 \mathrm{X}_{37}^{\prime 3}+ \\
& +0.0561 \mathrm{X}_{37}^{\prime} \mathrm{Y}_{37}^{\prime 3}-0.0561 \mathrm{X}_{37}^{\prime 3} \mathrm{Y}_{37}^{\prime}=+502.463
\end{aligned}
$$

Table 46

No.	$\frac{\text { From }}{\text { to }}$	No.	Geographical Azimuths			Differences $\mathrm{v}^{\prime \prime}$	
			Adj. least sq.	R. D.	P. H.	5-4	4-6
1	2	3	4	5	6	7	8
1	Duinkerken Nieuwpoort Hondschoote Mont Cassel	$\begin{aligned} & 4 \\ & 3 \\ & 2 \\ & \hline \end{aligned}$	$\begin{array}{lll} 248 & 14 & 54.74 \\ 292 & 06 & 29.58 \\ 343 & 13 & 32.51 \\ \hline \end{array}$		$\begin{aligned} & 14^{\prime} 55^{\prime \prime} .97 \\ & 06 \\ & 30.21 \\ & 13 \\ & 13.57 \\ & \hline \end{aligned}$		$\begin{aligned} & -1.25 \\ & -0.63 \\ & -1.06 \\ & \hline \end{aligned}$
2	Mont CasselDuinkerken Hondschoote	$\begin{aligned} & 1 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1631846.67 \\ & 1984009.64 \\ & \hline \end{aligned}$		$\begin{aligned} & 1847.76 \\ & 4010.48 \\ & \hline \end{aligned}$	-	$\begin{aligned} & -1.09 \\ & -0.84 \\ & \hline \end{aligned}$
3	Hondschoote Mont Cassel Duinkerken Nieuwpoort Diksmuide	$\begin{aligned} & 2 \\ & 1 \\ & 4 \\ & 5 \\ & \hline \end{aligned}$	184442.38 1121617.35 2150428.27 2531632.52		$\begin{array}{ll} 44 & 43.24 \\ 16 & 18.02 \\ 04 & 29.18 \\ 16 & 33.47 \\ \hline \end{array}$		$\begin{aligned} & -0.86 \\ & -0.67 \\ & -0.91 \\ & -0.95 \\ & \hline \end{aligned}$
4	Nieuwpoort Hondschoote Duinkerken Oostende Diksmuide	$\begin{aligned} & 3 \\ & 1 \\ & 6 \\ & 5 \\ & \hline \end{aligned}$	351209.68 683224.71 2263426.55 3230546.30		$\begin{array}{ll} 1210.61 \\ 32 & 26.00 \\ 34 & 27.41 \\ 05 & 47.40 \\ \hline \end{array}$		$\begin{aligned} & -0.93 \\ & -1.29 \\ & -0.86 \\ & -1.10 \\ & \hline \end{aligned}$
5	Diksmuide Hondschoote Nieuwpoort Oostende Brugge Hooglede	$\begin{aligned} & 3 \\ & 4 \\ & 6 \\ & 7 \\ & 8 \\ & \hline \end{aligned}$	$\begin{array}{r} 731930.69 \\ 1431103.69 \\ 1901154.11 \\ 2321944.82 \\ 2915751.97 \\ \hline \end{array}$		2931.69 1104.84 1155.07 1945.81 5752.90		$\begin{aligned} & -1.00 \\ & -1.15 \\ & -0.96 \\ & -0.99 \\ & -0.93 \\ & \hline \end{aligned}$
6	Oostende Diksmuide Nieuwpoort Brugge	$\begin{aligned} & 5 \\ & 4 \\ & 7 \\ & \hline \end{aligned}$	$\begin{array}{r} 101431.34 \\ 464221.72 \\ 2761639.02 \\ \hline \end{array}$		$\begin{array}{r} 1432.30 \\ 4222.61 \\ 1640.05 \\ \hline \end{array}$		$\begin{aligned} & -0.96 \\ & -0.89 \\ & -1.03 \\ & \hline \end{aligned}$
7	Brugge Hooglede Diksmuide Oostende Aardenburg Gent Tielt	$\begin{array}{r} 8 \\ 5 \\ 6 \\ 11 \\ 10 \\ 9 \\ \hline \end{array}$		\square \square	$\begin{array}{ll} 24 & 06.62 \\ 36 & 36.40 \\ 30 & 54.61 \\ 04 & 01.86 \\ 58 & 27.30 \\ 45 & 09.95 \\ \hline \end{array}$		$\begin{aligned} & -1.03 \\ & -1.03 \\ & -1.07 \\ & -0.72 \\ & -1.19 \\ & -1.02 \\ & \hline \end{aligned}$
8	Hooglede Diksmuide Brugge Tielt	$\begin{aligned} & 5 \\ & 7 \\ & 9 \\ & \hline \end{aligned}$	$\begin{array}{lll} 112 \quad 08 & 01.51 \\ 201 & 17 & 25.73 \\ 261 & 46 & 20.65 \\ \hline \end{array}$	-	$\begin{array}{rl} 08 & 02.47 \\ 17 & 26.75 \\ 46 & 21.65 \\ \hline \end{array}$	-	$\begin{aligned} & -0.96 \\ & -1.02 \\ & -1.00 \end{aligned}$
9	$\frac{\text { Tielt }}{\text { Hooglede }}$ Brugge Gent	$\begin{array}{r} 8 \\ 7 \\ 10 \\ \hline \end{array}$	$\begin{array}{r} 815746.00 \\ 1624955.47 \\ 2580110.23 \end{array}$	—	$\begin{aligned} & 5747.05 \\ & 4956.52 \\ & 01 \quad 11.15 \end{aligned}$		$\begin{aligned} & -1.05 \\ & -1.05 \\ & -0.92 \end{aligned}$
10	Gent Tielt Brugge Aardenburg Assenede Hulst Antwerpen	$\begin{array}{r} 9 \\ 7 \\ 11 \\ 12 \\ 14 \\ 15 \\ \hline \end{array}$	$\begin{array}{r} 781948.37 \\ 1162152.54 \\ 1413456.05 \\ 1853108.16 \\ 2220123.70 \\ 2481203.13 \\ \hline \end{array}$	 $34 \quad 61.23$ 31 011.81 0128.92 1202.57	$\begin{aligned} & 1949.37 \\ & 2153.83 \\ & 3457.09 \\ & 31 \\ & 09.27 \\ & 01 \\ & 124.20 \\ & 12 \end{aligned} 03.78$	$\begin{aligned} & - \\ & +5.18 \\ & +3.65 \\ & +5.22 \\ & -0.56 \end{aligned}$	$\begin{aligned} & -1.00 \\ & -1.29 \\ & -1.04 \\ & -1.11 \\ & -0.50 \\ & -0.65 \\ & \hline \end{aligned}$

Table 46 (continued)

1	2	3	4	5	6	7	8
11	A ardenburg						
	Brugge	7	651427.66		1428.39		-0.73
	Middelburg	13	2044037.46	4040.53	4038.00	+3.07	-0.54
	Assenede	12	2831023.31	1028.25	1024.08	+4.94	-0.77
	Gent	10	3212154.82	2160.01	2155.78	+5.19	-0.96
12	Assenede						
	Gent	10	53223.53	3227.19	3224.63	+3.66	-1.10
	Aardenburg	11	1032440.99	2445.93	2441.83	+4.94	-0.84
	Middelburg	13	1622044.58	2044.16	2045.48	-0.42	-0.90
	Hulst	14	2541430.76	1435.14	1431.36	+4.38	-0.60
13	Middelburg						
	Aardenburg	11	244826.77	4829.84	4827.33	+3.07	-0.56
	Zierikzee	16	2310017.29	0017.40	0018.81	+0.11	-1. 52
	Hulst	14	3082207.93	2205.11	2209.13	-2.82	-1.20
	Assenede	12	3421414.71	1414.30	1415.56	-0.41	-0.85
14	Hulst						
	Gent	10	421642.45	1647.72	1642.98	$+5.27$	-0.53
	Assenede	12	742835.15	2839.56	2835.78	+4.41	-0.63
	Middelburg	13	1284243.94	4241.15	4245.23	-2.79	-1.29
	Zierikzee	16	1664831.34	4828.86	4832.08	-2.48	-0.74
	Bergen op Zoo	m17	2141737.24	1733.90	1737.48	-3.34	-0.24
	Antwerpen	15	2851925.02	19 21. 02	1925.70	-4.00	-0.68
15	Antwerpen						
	Gent	10	684333.10	4332.57	4333.81	-0.53	-0.71
	Hulst	14	1053538.16	3534.16	3538.89	-4. 00	-0.73
	Bergen op Zoom	17	1653615.22	3612.64	3615.14	-2.58	+0.08
	Hoogstraten	18	2311647.88	1650.01	1648.70	+2.13	-0.82
	Herentals	104	2792202.24	2207.80	2203.51	+5.56	-1.27
16	Zierikzee						
	Middelburg	13	511423.52	1423.63	1425.08	+0.11	-1.56
	Brielle	21	2111250.16	1247.76	1248.84	-2.40	+1.32
	Willemstad	22	2622921.27	29 21.82	2920.82	+0. 55	+0.45
	Bergen op Zoom	17	3034046.86	4046.04	4047.32	-0.82	-0.46
	Hulst	14	3464158.98	4156.47	4159.67	-2.51	-0.69
17	Bergen op Zoom						
	Hulst	14	342835.23	2831.87	2835.50	-3.36	-0.27
	Zierikzee	16	1235819.49	5818.68	5820.02	-0.81	-0.53
	Willemstad	22	2051445.19	1446.88	1444.93	+1.69	+0.26
	Breda	23	2523009.90	3011.45	3010.02	+1. 55	-0.12
	Hoogstraten	18	2872159.81	2160.67	2160.33	+0.86	-0.52
	Antwerpen	15	3453058.34	3055.73	3058.24	-2.61	+0.10
18	Hoogstraten						
	Antwerpen	15	515341.95	3344.07	3342.84	+2.12	-0.89
	Bergen op Zoom		1074413.10	4413.96	4413.70	+0.86	-0.60
	Breda	23	1823146.25	3149.22	3146.34	+2.97	-0.09
	Hilvarenbeek	24	2500307.15	0309.13	0307.17	+1.98	-0.02
	Lommel	19	2961335.70	1335.14	1335.48	-0. 56	+0.22
	Herentals	104	3482010.78	2008.29	2011.19	-2.49	-0.41
19	Lommel						
	Herentals	104	800108.65	0106.50	0109.54	-2.15	-0.89
	Hoogstraten	18	1163930.20	3929.65	3930.10	-0.55	+0.10
	Hilvarenbeek	24	1563409.00	3408.12	3408.98	-0.88	+0.02
	Helmond	25	2202420.52	2420.91	2419.82	+0.39	+0.70
20	Nederweert						
	Lommel	19	781308.06	1305.68	1307.57	-2.38	+0.49
	Helmond	25	1632314.78	2316.18	2313.32	+1.40	+1.46
	Vierlingsbeek	26	2074637.04	4636.98	4636.39	-0.06	+0.65

Table 46 (continued)

1	2	3	4	5	6	7	8
21	Brielle						
	Zierikzee	16	312430.10	2427.70	2428.79	-2.40	+1.31
	den Haag	27	2065819.77	5818.75	5816.29	-1.02	+3.48
	Rotterdam	28	2642853.79	2854.36	2852.85	+0.57	+0.94
	Willemstad	22	3205006.06	5006.82	5005.82	+0.76	+0.24
22	Willemstad						
	Bergen op Zoom 17		252148.24	2149.94	2147.99	+1.70	+0.25
	Zierikzee	16	825358.85	5359.40	5358.47	+0. 55	+0.38
	Brielle	21	1410306.06	0306.83	0305.88	+0.77	+0.18
	Rotterdam	28	1871336.89	1336.84	13 35. 74	-0.05	+1.15
	Dordrecht	29	2282020.05		2020.03		+0.02
	Breda	23	2960114.92	0113.84	0114.56	-1.08	+0.36
23	Breda						
	Hoogstraten	18	23223.85	3226.83	3223.94	+2.98	-0.09
	Bergen op Zoom 17		725302.56	5304.12	5302.76	+1. 56	-0.20
	Willemstad	22	1161706.12	1705.05	1705.84	-1.07	+0.28
	Dordrecht	29	1622715.86	-	2714.93		+0.93
	Gorinchem	32	2065930.80	5929.90	5929.91	-0.90	+0.89
	's-Hertogenb.	33	2531018.21	1017.04	1017.70	-1.17	+0.51
	Hilvarenbeek	24	2943534.26	3536.50	3533.63	+2.24	+0.63
24	Hilvarenbeek						
	Hoogstraten	18	702042.45	2044.44	2042.56	+1.99	-0.11
	Breda	23	1145233.32	5235.55	5232.77	+2.23	+0. 55
	's-Hertogenb.	33	2074226.45	4224.51	4225.03	-1.94	+1.42
	Helmond	25	2705831.78	5830.20	5831.53	-1.58	+0.25
	Lommel	19	3362547.63	2546.74	2547.57	-0.89	+0.06
25	Helmond						
	Lommel	19	404020.92	4021.31	4020.26	+0.39	+0.66
	Hilvarenbeek	24	912256.15	2254.57	2255.97	-1. 58	+0.18
	's-Hertogenb.	33	1340742.47	0742.44	0741.76	-0.03	+0.71
	Grave	34	1902847.43		2846.89	-	+0.54
	Vierlingsbeek	26	2414909.31	4908.34	4908.98	-0.97	+0.33
	Nederweert	20	3431856.03	1857.44	1854.55	+1.41	+1.48
26	Vierlingsbeek			$\begin{aligned} & 5856.42 \\ & 0548.07 \\ & \hline \end{aligned}$		$\begin{aligned} & -0.08 \\ & -0.98 \end{aligned}$	
	Nederweert	20	275856.50		5855.91		+0. 59
	Helmond	25	620549.05		0548.82		+0.23
	Grave	34	1341934.00		1933.58		+0.42
	Biesselt	105	1581644.52		1644.40		+0.12
27	den Haag						
	Brielle	21	270509.36	0508.34	0505.89	-1. 02	+3.47
	Leiden	30	2351731.32	1737.16	1728.13	+5.84	+3.19
	Rotterdam	28	3244153.34	4153.17	4151.23	-0.17	+2.11
28	Rotterdam						
	Willemstad	22	71550.07	1550.03	1548.93	-0.04	+1. 14
	Brielle	21	844408.39	4408.98	4407.51	+0. 59	+0.88
	den Haag	27	1445019.39	5019.24	5017.33	-0.15	+2. 06
	Leiden	30	1810003.01	0000.20	00 00. 86	-2.81	+2.15
	Gouda	31	2371645.94	1646.89	1645.79	-0.95	+0.15
	Dordrecht	29	3143908.48		3907.99		+0.49
29	Dordrecht						
	Willemstad	22	483047.86		3047.89		-0.03
	Rotterdam	28	1344723.98		4723.54		+0.44
	Gouda	31	1890245.35		0244.52		+0.83
	Gorinchem	32	2652124.53		2123.86		+0.67
	Breda	23	3422151.22		2150.27		+0.95

Table 46 (continued

1	2	3	4	5	6	7	8
30	Leiden						
	Rotterdam	28	10021.92	0019.10	0019.76	-2.82	+2.16
	den Haag	27	552617.12	2622.95	2613.96	+5.83	+3.16
	Haarlem	39	2013518.83	3517.50	3520.72	-1.33	-1.89
	Nieuwkoop	35	2714108.06		4108.92		-0.86
	Gouda	31	3170213.17	0212.27	0212.25	-0.90	+0.92
31	Gouda						
	Dordrecht	29	90509.04		0508.20		+0.84
	Rotterdam	28	572725.90	27 26.84	2725.80	+0.94	+0.10
	Leiden	30	1371235.23	1234.34	1234.37	-0.89	+0.86
	Nieuwkoop	35	1965545.53		5543.92		+1.61
	Utrecht	36	2521912.02	1909.43	1910.76	-2.59	+1.26
	Gorinchem	32	3180542.57	0543.82	0542.20	+1.25	+0.37
32	Gorinchem						
	Breda	23	270849.86	0848.96	0849.01	-0.90	$+0.85$
	Dordrecht	29	853609.63		3609.02		+0.61
	Gouda	31	1381805.17	1806.42	1804.85	+1.25	+0.32
	Utrecht	36	1991917.72	1914.39	1916.79	-3.33	+0.93
	Rhenen	37	2503418.54	3415.57	3416.61	-2.97	+1.93
	's-Hertogenb.	33	3040605.91	0604.35	0604.48	-1. 56	+1.43
33	's-Hertogenbosch						
	Hilvarenbeek	24	275030.23	5028.28	5028.83	-1.95	+1.40
	Breda	23	733522.83	3521.65	3522.42	-1.16	+0.41
	Gorinchem	32	1242153.58	2152.02	2152.21	-1. 56	+1.37
	Rhenen	37	2102837.99	2835.37	2836.81	-2.62	+1.18
	Grave	34	2544830.51		4829.68	-	+0.83
	Helmond	25	3135119.80	5119.76	5119.04	-0.04	+0.76
34	Grave						
	Helmond	25	103244.32		3243.83		+0.49
	's-Hertogenb.	33	750852.32		0851.59		+0.73
	Rhenen	37	1510734.63		0734.14		+0.49
	Nijmegen	38	2204340.65		4340.52		+0.13
	Biesselt	105	2670430.57		0430.38		+0.19
	Vierlingsbeek	26	3140649.39		0648.93		+0.46
35	Nieuwkoop						
	Gouda	31	165901.96		5900.34		+1.62
	Leiden	30	915447.33		5448.25		-0.92
	Haarlem	39	1591659.82		1661.24		-1.42
	Amsterdam	40	1954910.64		4910.16		+0.48
	Utrecht	36	2854450.98		4449.91		+1.07
36	Utrecht						
	Gorinchem	32	192619.33	2615.99	2618.43	-3.34	$+0.90$
	Gouda	31	723838.08	3835.49	3836.90	-2.59	+1.18
	Nieuwkoop	35	1060101.61		0100.62	-	+0.99
	Amsterdam	40	1525237.36	5236.26	5236.79	-1.10	+0.57
	Naarden	41	1865846.63	5843.79	5844.88	-2.84	+1. 75
	Amersfoort	42	2482244.02	2244.20	2241.54	+0.18	+2.48
	Rhenen	37	2955404.08	5405.81	5401.50	+1.73	+2.58
37	Rhenen						
	's-Hertogenb.	33	304043.77	4041.14	4042.64	-2.63	+1. 13
	Gorinchem	32	710214.45	0211.46	0212.62	-2.99	+1.83
	Utrecht	36	1161461.00	1462.72	1458.50	+1.72	+2. 50
	Amersfoort	42	1511436.95	1440.50	1434.07	+3.55	+2.88
	Veluwe	47	2125732.07	5730.13	5731.07	-1.94	+1.00
	Imbosch	43	2530349.12	-	0346.31	-	+2.81
	Nijmegen	38	3002749.35	2750.96	2748.95	+1.61	+0.40
	Grave	34	3305916.69		5916.16		+0.53

Table 46 (continued)

1	2	3	4	5	6	7	8
38	$\begin{aligned} & \hline \text { Nijmegen } \\ & \hline \text { Grave } \\ & \text { Rhenen } \\ & \text { Imbosch } \\ & \text { Hettenheuvel } \\ & \text { Biesselt } \\ & \hline \end{aligned}$	$\begin{array}{r} 34 \\ 37 \\ 43 \\ 44 \\ 105 \\ \hline \end{array}$	$\begin{array}{r} 404926.68 \\ 1204154.09 \\ 2031619.03 \\ 2521423.18 \\ 3431944.28 \end{array}$	$\overline{4155.71}$	$\begin{array}{ll} 49 & 26.54 \\ 41 & 53.71 \\ 16 & 17.77 \\ 14 & 20.76 \\ 19 & 43.67 \\ \hline \end{array}$	$\begin{aligned} & +1.62 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.14 \\ & +0.38 \\ & +1.26 \\ & +2.42 \\ & +0.61 \end{aligned}$
39	Haarlem Leiden Alkmaar Amsterdam Nieuwkoop	$\begin{array}{r} 30 \\ 52 \\ 40 \\ 35 \\ \hline \end{array}$	$\begin{array}{r} 214213.37 \\ 1952048.25 \\ 2722318.96 \\ 3391013.82 \\ \hline \end{array}$	$\begin{aligned} & 4212.03 \\ & 2053.30 \\ & 2321.28 \end{aligned}$	$\begin{aligned} & 4215.30 \\ & 2047.85 \\ & 2320.00 \\ & 10 \quad 15.22 \\ & \hline \end{aligned}$	$\begin{aligned} & -1.34 \\ & +5.05 \\ & +2.32 \end{aligned}$	$\begin{aligned} & -1.93 \\ & +0.40 \\ & -1.04 \\ & -1.40 \\ & \hline \end{aligned}$
40	Amsterdam Nieuwkoop Haarlem Alkmaar Edam Naarden Utrecht	$\begin{aligned} & 35 \\ & 39 \\ & 52 \\ & 53 \\ & 41 \\ & 36 \\ & \hline \end{aligned}$	$\begin{array}{r} 155406.06 \\ 923501.45 \\ 1624744.79 \\ 2155147.87 \\ 2944010.81 \\ 3324120.56 \\ \hline \end{array}$	$35 \quad 03.78$ $27 \quad 49.17$ $40 \quad 05.59$ $41 \quad 19.45$	$\begin{array}{ll} 54 & 05.61 \\ 35 & 02.54 \\ 27 & 43.43 \\ 51 & 46.51 \\ 40 & 10.01 \\ 41 & 19.94 \end{array}$	$\begin{aligned} & \hline+2.33 \\ & +4.38 \\ & \hline-5.22 \\ & -1.11 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.45 \\ & -1.09 \\ & +1.36 \\ & +1.36 \\ & +0.80 \\ & +0.62 \end{aligned}$
41	Naarden Utrecht Amsterdam Edam Harderwijk Amersfoort	$\begin{array}{r} 36 \\ 40 \\ 53 \\ 46 \\ 42 \\ \hline \end{array}$	70043.11 1145325.25 1620036.94 2585833.32 3152413.12	0040.25 5320.02 2412.33	$\begin{aligned} & 0041.36 \\ & 5324.50 \\ & 0035.67 \\ & 5829.61 \\ & 2411.58 \\ & \hline \end{aligned}$	$\begin{aligned} & -2.86 \\ & -5.23 \\ & \hline-0.79 \end{aligned}$	$\begin{aligned} & +1.75 \\ & +0.75 \\ & +1.27 \\ & +3.71 \\ & +1.54 \\ & \hline \end{aligned}$
42	Amersfoort Utrecht Naarden Harderwijk Veluwe Rhenen	$\begin{aligned} & 36 \\ & 41 \\ & 46 \\ & 47 \\ & 37 \\ & \hline \end{aligned}$	683519.70 1353453.32 2155253.70 2542635.34 3310614.48	$\begin{aligned} & 35 \quad 19.89 \\ & 34 \quad 52.55 \\ & \hline 26 \quad 31.85 \\ & 06 \quad 18.04 \end{aligned}$	$\begin{array}{ll} 35 & 17.27 \\ 34 & 51.83 \\ 52 & 51.63 \\ 26 & 31.93 \\ 06 & 11.57 \end{array}$	$\begin{aligned} & +0.19 \\ & -0.77 \\ & \hline-3.49 \\ & +3.56 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.43 \\ & +1.49 \\ & +2.07 \\ & +3.41 \\ & +2.91 \end{aligned}$
43	Imbosch Nijmegen Rhenen Veluwe Zutphen Hettenheuvel	$\begin{aligned} & 38 \\ & 37 \\ & 47 \\ & 48 \\ & 44 \\ & \hline \end{aligned}$	$\begin{array}{r} 232232.72 \\ 732408.92 \\ 1570436.54 \\ 2301528.33 \\ 3075201.59 \\ \hline \end{array}$		22 31.56 24 06.22 04 35.16 15 28.12 52 00.68		$\begin{aligned} & +1.16 \\ & +2.70 \\ & +1.38 \\ & +0.21 \\ & +0.91 \end{aligned}$
44	Hettenheuvel Nijmegen Imbosch Zutphen Groenlo Bocholt	$\begin{aligned} & 38 \\ & 43 \\ & 48 \\ & 49 \\ & 45 \end{aligned}$	723157.53 1280323.42 1734155.27 2424318.83 2891857.95		31 55.23 03 22.53 41 53.76 43 18.99 18 58.38	\square	$\begin{aligned} & +2.30 \\ & +0.89 \\ & +1.51 \\ & -0.16 \\ & -0.43 \\ & \hline \end{aligned}$
45	Bocholt Hettenheuvel Groenlo Ahaus	$\begin{aligned} & 44 \\ & 49 \\ & 51 \\ & \hline \end{aligned}$	$\begin{array}{r} 1093651.81 \\ 1804322.72 \\ 2252633.35 \\ \hline \end{array}$		$\begin{aligned} & 36 \quad 52.34 \\ & 43 \quad 23.96 \\ & 26 \quad 35.41 \\ & \hline \end{aligned}$		$\begin{aligned} & -0.53 \\ & -1.24 \\ & -2.06 \\ & \hline \end{aligned}$
46	Harderwijk Amersfoort Naarden Urk Kampen Veluwe	$\begin{aligned} & 42 \\ & 41 \\ & 58 \\ & 59 \\ & 47 \\ & \hline \end{aligned}$	360346.38 792007.65 1772540.39 2205730.88 3073532.94		$\begin{array}{ll} 03 & 44.38 \\ 20 & 04.06 \\ 25 & 33.98 \\ 57 & 25.34 \\ 35 & 27.94 \\ \hline \end{array}$		$\begin{aligned} & +2.00 \\ & +3.59 \\ & +6.41 \\ & +5.54 \\ & +5.00 \\ & \hline \end{aligned}$

Table 46 (continued

1	2	3	4	5	6	7	8
47	Veluwe						
	Rhenen	37	331126.38	1124.45	1125.48	-1.93	+0.90
	Amersfoort	42	744854.20	4850.70	4850.91	-3.50	+3.29
	Harderwijk	46	1274660.52		4655.57		+4.95
	Kampen	59	1861507.56	1509.52	1502.25	+1.96	+5.31
	Lemelerberg	60	2342862.53		2859.36		+3.17
	Zutphen	48	29428 60.08	2862.05	2858.19	+1.97	+1.89
	Imbosch	43	3365809.19		5807.80		+1.39
48	Zutphen						
	Imbosch	43	502459.76		2459.59		+0.17
	Veluwe	47	1144459.89	4461.87	4458.06	+1.98	+1.83
	Lemelerberg	60	2011412.01		1410.84		+1.17
	Harikerberg	50	2452844.72		2843.03		+1.69
	Groenlo	49	2901958.05	1954.04	1956.60	-4. 01	+1.45
	Hettenheuvel	44	3534003.93		4002.45		+1.48
49	Groenlo						
	Bocholt	45	04334.57		4335.83	\square	-1.26
	Hettenheuvel	44	630126.05		0126.32		-0.27
	Zutphen	48	1103958.31	3954.33	3956.95	-3.98	+1.36
	Harikerberg	50	1660704.17		0704.04		+0.13
	Ahaus	51	2615303.14		5304.24		-1.10
50	$\begin{aligned} & \text { Harikerberg } \\ & \hline \text { Zutohen } \end{aligned}$						
	Lemelerberg				4503.58 1057.36		$+1.58$
	Oldenzaal	61	2520024.12		0024.27		-0.15
	Ahaus	51	2985606.67		5606.86	-	-0.19
	Groenlo	49	3460322.92		0322.82	-	+0.10
51	Ahaus						
	Bocholt	45	454507.25		4509.44		-2.19
	Groenlo	49	821126.72		1127.93		-1.21
	Harikerberg	50	1191813.00		1813.26		-0.26
	Oldenzaal	61	1683415.46		3415.53		-0.07
	Bentheim	62	2020858.05		0858.92		-0.87
52	Alkmaar						
	Haarlem	39	152610.80	2615.87	2610.40	+5.07	+0.40
	Schagen	55	1901048.68		1040.57		+8.11
	Hoorn	54	2670706.95		0702.39		+4.56
	Edam	53	3031345.54		1342.91		+2.63
	Amsterdam	40	3422123.66	2128.06	2122.25	+4.40	+1.41
53	Edam						
	Amsterdam	40	355934.30		5932.96		+1. 34
	Alkmaar	52	1232754.26		2751.69		+2. 57
	Hoorn	54	1832933.74		2929.05		+4.69
	Enkhuizen	57	2175363.83		5358.00		+5. 83
	Naarden	41	3415507.94		5506.65		+1. 29
54	Hoorn						
	Edam	53	33010.49		3005.86		+4. 63
	Alkmaar	52	872153.17		2148.73		+4.44
	Schagen	55	1323011.08		3004.43		+6.65
	Medemblik	56	1911539.85		1532.01		+7. 84
	Enkhuizen	57	2454752.63		4747.13		+5.50
55	Schagen						
	Alkmaar	52	101260.44		1252.39	-	+8.05
	Kijkduin	65	1644069.25		4055.16		+14.09
	Oosterland	66	2214727.33		4715.02	-	+12.31
	Medemblik	56	2740051.52		0042.90	-	+8.62
	Hoorn	54	3121735.71		1728.99		+6.72

Table 46 (continued)

1	2	3	4	5	6	7	8
56	Medemblik Hoorn Schagen Oosterland Staveren Enkhuizen	$\begin{aligned} & 54 \\ & 55 \\ & 66 \\ & 67 \\ & 57 \end{aligned}$	111744.69 941532.51 1602837.45 2345642.50 3010420.21	$\overline{\overline{2838.27}} \overline{\overline{0431.73}}$	$\begin{aligned} & 1736.82 \\ & 1523.93 \\ & 2827.92 \\ & 5632.73 \\ & 0412.48 \end{aligned}$	$\overline{+0.82}$ +11.52	$\begin{aligned} & +7.87 \\ & +8.58 \\ & +9.53 \\ & +9.77 \\ & +7.73 \end{aligned}$
57	Enkhuizen Edam Hoorn Medemblik Staveren Urk	$\begin{aligned} & 53 \\ & 54 \\ & 56 \\ & 67 \\ & 58 \end{aligned}$	38 05 46.55 65 58 59.15 121 13 22.43 19256 52.76 282 39 18.69	$\begin{aligned} & \overline{1333.94} \\ & \hline 39 \quad 13.79 \\ & \hline \end{aligned}$	05 40.81 58 53.69 13 14.76 56 44.74 39 09.81	$\overline{-}$ +11.51 -4.90	$\begin{aligned} & +5.74 \\ & +5.46 \\ & +7.67 \\ & +8.02 \\ & +8.88 \\ & \hline \end{aligned}$
58	Urk Enkhuizen Staveren Lemmer Blokzijl Kampen	$\begin{aligned} & 57 \\ & 67 \\ & 68 \\ & 69 \\ & 59 \\ & \hline \end{aligned}$	10253 39.82 147 20 09.76 201 19 23.89 253 40 26.04 297 35 12.21	53 34.93 19 18.35 40 25.20 35 16.95	$\begin{array}{ll} 53 & 31.02 \\ 20 & 02.22 \\ 19 & 15.33 \\ 40 & 17.92 \\ 35 & 04.79 \\ \hline \end{array}$	$\begin{array}{r} -4.89 \\ \hline-5.54 \\ -0.84 \\ +4.74 \\ \hline \end{array}$	$\begin{aligned} & +8.80 \\ & +7.54 \\ & +8.56 \\ & +8.12 \\ & +7.42 \\ & \hline \end{aligned}$
59	Kampen Veluwe Harderwijk Urk Blokzij1 Meppel Lemelerberg	$\begin{aligned} & 47 \\ & 46 \\ & 58 \\ & 69 \\ & 70 \\ & 60 \end{aligned}$	$\begin{array}{r} 61753.91 \\ 411146.44 \\ 1175035.78 \\ 1891018.55 \\ 2301116.06 \\ 2854957.55 \\ \hline \end{array}$	$\begin{aligned} & \frac{1755.88}{5040.51} \\ & 1019.24 \\ & 1114.57 \end{aligned}$	$\begin{aligned} & 1748.60 \\ & 1140.94 \\ & 5028.46 \\ & 1012.54 \\ & 11 \\ & 49 \\ & 49.17 \\ & \hline \end{aligned}$	$\begin{array}{r} +1.97 \\ \hline+4.73 \\ +0.79 \\ -1.49 \end{array}$	$\begin{aligned} & +5.31 \\ & +5.50 \\ & +7.32 \\ & +6.01 \\ & +5.89 \\ & +5.92 \end{aligned}$
60	Lemelerberg Zutphen Veluwe Kampen Meppel Beilen Coevorden Uelsen Oldenzaal Harikerberg	$\begin{aligned} & 48 \\ & 47 \\ & 59 \\ & 70 \\ & 83 \\ & 84 \\ & 63 \\ & 61 \\ & 50 \\ & \hline \end{aligned}$	21 24 16.66 54 55 09.55 106 13 21.37 149 30 30.27 189 40 54.61 227 02 51.20 261 49 17.75 296 32 19.63 341 04 40.94		$\begin{array}{lll} 24 & 15.59 \\ 55 & 06.52 \\ 13 & 15.59 \\ 30 & 23.22 \\ 40 & 48.42 \\ 02 & 47.06 \\ 49 & 16.12 \\ 32 & 18.60 \\ 04 & 39.74 \\ \hline \end{array}$		$\begin{aligned} & +1.07 \\ & +3.03 \\ & +5.78 \\ & +7.05 \\ & +6.19 \\ & +4.14 \\ & +1.63 \\ & +1.03 \\ & +1.20 \\ & \hline \end{aligned}$
61	Oldenzaal Harikerberg Lemelerberg Uelsen Bentheim Ahaus	$\begin{aligned} & 50 \\ & 60 \\ & 63 \\ & 62 \\ & 51 \end{aligned}$	721850.38 1165705.46 1695314.47 2735935.21 3483033.51	$\overline{\bar{Z}} \overline{\overline{5930.54}}$	18 50.63 57 04.54 53 13.40 59 34.77 30 33.60	\bar{Z}	$\begin{aligned} & -0.25 \\ & +0.92 \\ & +1.07 \\ & +0.44 \\ & -0.09 \end{aligned}$
62	$\begin{aligned} & \hline \text { Bentheim } \\ & \hline \text { Ahaus } \\ & \text { Oldenzaal } \\ & \text { Uelsen } \\ & \text { Kirch Hesepe } \end{aligned}$	$\begin{aligned} & 51 \\ & 61 \\ & 63 \\ & 64 \\ & \hline \end{aligned}$	$\begin{array}{rrr} 22 & 16 & 06.07 \\ 94 & 10 & 26.20 \\ 140 & 15 & 09.53 \\ 188 & 31 & 05.39 \\ \hline \end{array}$	$\begin{aligned} & \overline{1021.52} \\ & \hline 3100.81 \end{aligned}$	$\begin{array}{ll} 16 & 07.08 \\ 10 & 25.88 \\ 15 & 08.49 \\ 31 & 04.82 \\ \hline \end{array}$	$\overline{-4.68}$	$\begin{aligned} & -1.01 \\ & +0.32 \\ & +1.04 \\ & +0.57 \\ & \hline \end{aligned}$
63	Uelsen Lemelerberg Coevorden Kirch Hesepe Bentheim Oldenzaal	$\begin{aligned} & 60 \\ & 84 \\ & 64 \\ & 62 \\ & 61 \\ & \hline \end{aligned}$	821118.37 1515145.07 2430809.86 3200130.65 3495027.46		$\begin{array}{ll} 11 & 16.89 \\ 51 & 41.04 \\ 08 & 08.15 \\ 01 & 29.52 \\ 50 & 26.41 \\ \hline \end{array}$	\qquad	$\begin{aligned} & +1.48 \\ & +4.03 \\ & +1.71 \\ & +1.13 \\ & +1.05 \end{aligned}$
64	Kirch Hesepe Bentheim Uelsen Coevorden	$\begin{aligned} & 62 \\ & 63 \\ & 84 \end{aligned}$	$\begin{array}{rrr} 8 & 34 & 52.11 \\ 63 & 25 & 37.55 \\ 96 & 54 & 34.28 \end{array}$	$\frac{3447.50}{5429.29}$	$\begin{aligned} & 34 \quad 51.57 \\ & 25 \quad 35.96 \\ & 54 \quad 32.35 \end{aligned}$	$\frac{-4.61}{-4.99}$	$\begin{aligned} & +0.54 \\ & +1.59 \\ & +1.93 \end{aligned}$

Table 46 (continued)

1	2	3	4	5	6	7	8
65	Kijkduin Oosterend Oosterland Schagen	$\begin{array}{r} 71 \\ 66 \\ 55 \\ \hline \end{array}$	$\begin{array}{r} 2142356.25 \\ 2761827.48 \\ 3443735.25 \\ \hline \end{array}$		$\begin{array}{ll} 23 & 38.51 \\ 18 & 15.31 \\ 37 & 21.09 \\ \hline \end{array}$		$\begin{aligned} & +17.74 \\ & +12.17 \\ & +14.16 \end{aligned}$
66	Oosterland Schagen Kijkduin Oosterend Robbezand Staveren Medemblik	$\begin{aligned} & 55 \\ & 65 \\ & 71 \\ & 72 \\ & 67 \\ & 56 \\ & \hline \end{aligned}$	$\begin{array}{r} 415742.70 \\ 963217.72 \\ 1513333.66 \\ 21223 \\ 283.50 \\ 340 \\ 34 \\ \hline \end{array} 2410.73$	$\bar{\square}$ $\overline{3336.26}$ $\overline{2411.76}$	$\begin{array}{ll} 57 & 30.37 \\ 32 & 05.60 \\ 33 & 22.45 \\ 23 & 28.45 \\ 00 & 54.72 \\ 24 & 01.34 \\ \hline \end{array}$	\bar{Z} +2.70 $+\quad$ +0.83	$\begin{array}{r} +12.33 \\ +12.12 \\ +11.21 \\ +11.05 \\ +12.01 \\ +9.59 \end{array}$
67	Staveren Enkhuizen Medemblik Oosterland Robbezand Harlingen Sneek Lemmer Urk	$\begin{aligned} & 57 \\ & 56 \\ & 66 \\ & 72 \\ & 74 \\ & 75 \\ & 68 \\ & 58 \\ & \hline \end{aligned}$			$\begin{array}{ll} 59 & 58.95 \\ 08 & 49.95 \\ 17 & 39.48 \\ 45 & 01.36 \\ 03 & 53.92 \\ 06 & 10.65 \\ 46 & 18.75 \\ 08 & 54.14 \end{array}$		$\begin{array}{r} +8.04 \\ +9.72 \\ +11.91 \\ +8.15 \\ +11.96 \\ +9.87 \\ +8.08 \\ +7.65 \end{array}$
68	$\begin{aligned} & \hline \text { Lemmer } \\ & \hline \text { Urk } \\ & \text { Staveren } \\ & \text { Sneek } \\ & \text { Oldeholtpa } \\ & \text { Blokzijl } \\ & \hline \end{aligned}$	$\begin{aligned} & 58 \\ & 67 \\ & 75 \\ & 76 \\ & 69 \end{aligned}$	$\begin{array}{r} 212461.29 \\ 1000313.50 \\ 1702416.69 \\ 2561037.74 \\ 3074541.97 \\ \hline \end{array}$	$\begin{aligned} & 2455.72 \\ & \hline 2418.61 \\ & 1047.10 \\ & 4539.71 \end{aligned}$	$\begin{array}{ll} 24 & 52.73 \\ 03 & 05.53 \\ 24 & 06.24 \\ 10 & 29.14 \\ 45 & 33.75 \\ \hline \end{array}$	$\begin{aligned} & -5.57 \\ & \hline+1.92 \\ & +9.36 \\ & -2.26 \end{aligned}$	$\begin{array}{r} +8.56 \\ +7.97 \\ +10.45 \\ +8.60 \\ +8.22 \end{array}$
69	Blokzijl Kampen Urk Lemmer Oldeholtpa Meppel	$\begin{aligned} & 59 \\ & 58 \\ & 68 \\ & 76 \\ & 70 \\ & \hline \end{aligned}$	$\begin{array}{r} 91226.45 \\ 735758.63 \\ 1275738.29 \\ 1980614.57 \\ 2815921.83 \\ \hline \end{array}$	$\begin{aligned} & 12 \quad 27.15 \\ & 5757.79 \\ & 5736.05 \\ & 06 \\ & 18.27 \\ & 59 \\ & \hline \end{aligned}$	1220.43 5750.60 5730.16 0607.77 5915.03	$\begin{aligned} & +0.70 \\ & -0.84 \\ & -2.24 \\ & +3.70 \\ & +5.57 \end{aligned}$	$\begin{aligned} & +6.02 \\ & +8.03 \\ & +8.13 \\ & +6.80 \\ & +6.80 \\ & \hline \end{aligned}$
70	Meppel Kampen Blokzijl Oldeholtpa Beilen Lemelerberg	$\begin{aligned} & 59 \\ & 69 \\ & 76 \\ & 83 \\ & 60 \\ & \hline \end{aligned}$	$\begin{array}{r} 502419.14 \\ 1021017.77 \\ 1570543.00 \\ 2304710.29 \\ 32920 \end{array} 07.78$	$\begin{array}{ll} 24 & 17.65 \\ 10 & 23.33 \\ 05 & 43.50 \\ 47 & 13.07 \end{array}$	$\begin{array}{ll} 24 & 13.32 \\ 10 & 11.05 \\ 05 & 36.66 \\ 47 & 05.37 \\ 20 & 00.66 \\ \hline \end{array}$	$\begin{aligned} & -1.49 \\ & +5.56 \\ & +0.50 \\ & +2.78 \end{aligned}$	$\begin{aligned} & +5.82 \\ & +6.72 \\ & +6.34 \\ & +4.92 \\ & +7.12 \\ & \hline \end{aligned}$
71	Oosterend Kijkduin Vlieland Robbezand Oosterland	65 73 72 66	343071.91 2073812.45 2772250.30 3312658.30	$\begin{aligned} & \frac{3826.41}{2660.90} \\ & \hline \end{aligned}$	3054.14 3805.92 2236.97 2647.00	$\begin{array}{r} +13.96 \\ +2.60 \end{array}$	$\begin{array}{r} +17.77 \\ +6.53 \\ +13.33 \\ +11.30 \\ \hline \end{array}$
72	Robbezand Oosterland Oosterend Vlieland Harlingen Staveren	$\begin{aligned} & 66 \\ & 71 \\ & 73 \\ & 74 \\ & 67 \\ & \hline \end{aligned}$	$\begin{array}{r} 323016.29 \\ 973563.20 \\ 1667733.48 \\ 2344211.08 \\ 3243460.64 \end{array}$		$\begin{array}{ll} 30 & 05.24 \\ 35 & 49.94 \\ 57 & 23.14 \\ 42 & 01.73 \\ 34 & 52.40 \end{array}$		$\begin{array}{r} +11.05 \\ +13.26 \\ +10.34 \\ +9.35 \\ +8.24 \end{array}$
73	Vlieland Oosterend Midsland Harlingen Robbezand	71 77 74 72	274666.25 2371138.03 2994138.87 3465313.21	$\frac{4680.26}{4141.84}$	$\begin{array}{ll} 46 & 58.97 \\ 11 & 27.77 \\ 41 & 30.10 \\ 53 & 02.04 \\ \hline \end{array}$	$\frac{+14.01}{+2.97}$	$\begin{array}{r} +7.28 \\ +10.26 \\ +8.77 \\ +11.17 \\ \hline \end{array}$

Table 46 (continued)

1	2	3	4	5	6	7	8
74	Harlingen						
	Staveren	67	60634.59		0622.56		$+12.03$
	Robbezand	72	545450.01		5440.67		+9.34
	Vlieland	73	1195839.42	5842.33	5831.49	+2.91	+7.93
	Midsland	77	1595953.44		5944.92		+8.52
	Ballum	78	2113728.85		3718.29		+10.56
	Leeuwarden	79	2623547.44	3544.90	3535.62	-2. 54	+11.82
	Sneek	75	3134126.14	4126.96	4113.61	+0.82	+12.53
75	Sneek						
	Staveren	67	502037.69		2027.86		+9.83
	Harlingen	74	1335316.09	5316.90	5303.68	+0.81	+12.41
	Leeuwarden	79	2044148.90	4149.98	4134.28	+1.08	+14.62
	Drachten	81	2541225.30	1228.72	1214.47	+3.42	+10.83
	Oldeholtpa	76	2994832.52	4835.23	4821.96	+2.71	+10.56
	Lemmer	68	3502145.98	2147.91	2135.47	+1.93	+10.51
76	Oldeholtpa						
	Blokzijl	69	181035.03	1038.73	1028.24	+3.70	+6.79
	Lemmer	68	762655.52	2664.89	2647.01	+9.37	+8. 51
	Sneek	75	1200722.27	0724.98	0711.86	+2.71	+10.41
	Drachten	81	1875918.67	5915.36	5905.98	-3.31	+12.69
	Oosterwolde	82	2354813.60	4810.76	4804.57	-2.84	+9. 03
	Beilen	83	2771925.26	1925.84	1919.42	+0. 58	+10.84
	Meppel	70	336.5906 .73	5907.25	5900.32	+0.52	+6.41
77	Midsland						
	Vlieland	73	572232.55		2223.05		$+9.50$
	Ballum	78	2561413.34		1403.60		+9.74
	Harlingen	74	3395346.32		5337.72		+8.60
78	Ballum						
	Harlingen	74	315045.24		5034.67		+10.57
	Midsland	77	763338.56		3328.90		+9.66
	Dokkum	80	3013423.59		3406.78		+16.81
	Leeuwarden	79	3453617.64		3605.49		+12.15
79	Leeuwarden						
	Sneek	75	244766.51	4767.59	475186	+1.08	+14.65
	Harlingen	74	825356.15	5353.59	5344.42	-2.56	+11.73
	Ballum	78	1654071.72		4059.65	-	+12.07
	Dokkum	80	2250471.85		0459.02	-	+12.83
	Drachten	81	2971143.24	1149.07	1129.19	+5.83	+14.05
80	Dokkum						
	Leeuwarden	79	451471.75		1458.97		+12.78
	Ballum	78	1214918.73		4902.05		+16.68
	Hornhuizen	85	2540665.14		0646.89		+18.25
	Groningen	86	2871272.69		1257.14		+15.55
	Drachten	81	3441464.72		1448.95		+15.87
81	Drachten						
	Oldeholtpa	76	80140.38	0137.04	0127.63	-3. 34	+12.75
	Sneek	75	743338.44	3341.85	3327.71	+3.41	+10.73
	Leeuwarden	79	1172640.02	2645.84	2626.10	+5.82	+13.92
	Dokkum	80	1641962.70		1947.01	-	+15.69
	Groningen	86	2475318.22	5312.33	5304.98	+4.11	+13.24
	Oosterwolde	82	3140616.62	0613.85	0605.30	-2.77	+11.32
82	Oosterwolde						
	OIdeholtpa	76	555947.46	5944.60	5938.47	-2.86	+8.99
	Drachten	81	1341529.65	1526.88	1518.42	-2.77	+11.23
	Groningen	86	2160949.24	0943.53	0935.46	-5.71	+13.78
	Rolde	87	2711051.79	1053.02	1044.17	+1.23	+7.62
	Beilen	83	3150822.48	0825.40	0815.61	+2.82	+6.87

Table 46 (continued)

1	2	3	4	5	6	7	8
83	Beilen						
	Lemelerberg	60	94565.35		4559.16		+6. 19
	Meppel	70	510245.57	0248.34	0240.72	+2.77	+4.85
	Oldeholtpa	76	974138.46	4139.01	4132.75	+0. 55	+5.71
	Oosterwolde	82	1351862.85	1865.76	1856.09	+2.91	+6.76
	Rolde	87	2105039.78	5042.15	5033.77	+2.37	+6.01
	Sleen	88	2951041.20	1036.12	1033.87	-5. 08	+7.33
	Coevorden	84	3252507.50	2506.07	2500.98	-1.43	+6.52
84	Coevorden						
	Lemelerberg	60	471840.95		1836.90		+4. 05
	Beilen	83	1453548.56	3547.13	3542.12	-1.43	+6.44
	Sleen	88	1981638.42	1640.69	1631.41	+2.27	+7.01
	Kirch Hesepe	64	2763052.99	3048.04	3050.90	-4.95	+2.09
	Uelsen	63	3314532.78		4528.71		+4.07
85	Hornhuizen						
	Dokkum	80	742430.34		2412.17	-	+18.17
	Borkum	106	2224444.52		4428.75	-	+15.77
	Uithuizermeden	89	2641724.22	1724.17	1708.95	-0.05	+15.27
	Groningen	86	3231930.80	1934.07	1917.41	+3.27	+13.39
86	Groningen						
	Oosterwolde	82	362261.41	2255.68	2247.67	-5.73	+13.74
	Drachten	81	681544.82	1538.91	1531.71	-5.91	+13.11
	Dokkum	80	1074039.44		4024.11		+15.33
	Hornhuizen	85	1432933.74	2936.99	2920.48	+3. 25	+13.26
	Uithuizermeden	89	2040565.24	0567.01	0553.34	+1. 77	+11.90
	Holwierde	90	2323566.80		3552.40		+14.40
	Midwolda	91	2751465.06	1471.38	1453.67	+6.32	+11.39
	Onstwedde	92	3031232.75	1237.45	1222.03	+4.70	+10.72
	Rolde	87	3483235.43	3232.16	3221.27	-3.27	+14.16
87	Rolde						
	Beilen	83	305652.05	5654.43	5646.06	+2.38	+5.99
	Oosterwolde	82	912745.32	2746.55	2737.84	+1. 23	+7.48
	Groningen	86	1683618.32	3615.08	3604.26	-3. 24	+14.06
	Onstwedde	92	2600028.76	0029.20	0020.41	+0.44	+8.35
	Sleen	88	3355420.77	5420.90	5416.67	+0.13	+4.10
88	$\underline{\text { Sleen }}$						
	Coevorden	84	181938.57	1940.84	1931.55	+2. 27	+7. 02
	Beilen	83	1152423.13	2418.04	2415.88	-5. 09	+7.25
	Rolde	87	1560151.34	0151.46	0147.30	+0.12	+4.04
	Onstwedde	92	2094548.49	4548.50	4546.04	+0.01	+2.45
89	Uithuizermeden						
	Groningen	86	241253.80	1255.58	1241.90	+1.78	+11.90
	Hornhuizen	85	843416.90	3416.84	3401.77	-0.06	+15.13
	Borkum	106	1723723.57		3706.72		+16.85
	Pilsum	93	2501975.52	1985.45	1958.75	+9.93	+16.77
	Holwierde	90	2974862.82		4848.60	-	+14.22
90	Holwierde						
	Groningen	86	525040.02		5025.71		+14.31
	Uithuizermeden	89	1175648.18		5634.06		+14.12
	Pilsum	93	2221921.20		1910.87		+10.33
	Emden	94	2670951.05		0939.27		+11.78
	Midwolda	91	3325075.00		5059.31		+15.69
91	Midwolda						
	Groningen	86	953618.88	3625.16	3607.69	+6.28	+11. 19
	Holwierde	90	1525756.89		5741.31		+15.58
	Emden	94	2141435.64		1424.09		+11. 55
	Leer	95	2622225.58	2230.03	2217.52	+4.45	+8. 06
	Onstwedde	92	3524764.79	4763.53	4753.62	-1.26	+11.17

Table 46 (continued

1	2	3	4	5	6	7	8
92	Onstwedde						
	Sleen	88	295722.70	5722.66	5720.31	-0.04	+2.39
	Rolde	87	801935.27	1935.65	1927.06	+0.38	+8.21
	Groningen	86	1233523.94	3528.61	3513.47	+4.67	+10.47
	Midwolda	91	1724943.51	4942.25	4932.40	-1.26	+11.11
	Leer	95	2304446.41	4449.03	4437.38	+2.62	+9.03
93	Pilsum						
	Holwierde	90	422836.66		2826.40		+10.26
	Borkum	106	1141871.64		1850.77		+20.87
	Hage	97	2274240.02		42 28. 62		+11.40
	Emden	94	3232749.70		2736.89		+12.81
94	Emden						
	Midwolda	91	342363.32		2351.82	\square	+11.50
	Holwierde	90	872561.68		2550.06		+11.62
	Pilsum	93	1433445.62		3432.91		+12.71
	Hage	97	1910029.58		0019.19		+10.39
	Aurich	98	2374263.17		4253.72		+9.45
	Leer	95	3132338.62		2329.80		+8.82
95	Leer						
	Onstwedde	92	510414.38	0417.00	0405.57	+2.62	+8.81
	Midwolda	91	824333.65	4338.10	4325.88	+4.45	+7. 77
	Emden	94	1333520.31		3511.63		+8.68
	Aurich	98	1841567.34		1558.47		+8.87
	Strakholt	99	2190527.44		0518.61	-	+8.83
	Westerstede	100	2640429.49		0422.03		+7.46
	Barssel	96	2883413.05		3404.93		+8.12
96	Barssel						
	Leer	95	1084817.04		4809.08		+7.96
	Westerstede	100	2313035.29		3027.30		+7.99
97	Hage						
	Emden	94	110412.46		0402.06		+10.40
	Pilsum	93	475319.63		5308.32		+11.31
	Esens	101	2565119.22		5108.65		+10.57
	Aurich	98	3183437.36		3426.51		+10.85
98	Aurich						
	Leer	95	41734.36		1725.45	-	+8.91
	Emden	94	575613.06		5603.71		+9.35
	Hage	97	1384365.41		4354.70		+10.71
	Esens	101	2035414.90		5406.20		+8.70
	Jever	102	2474015.48		4007.50		+7.98
	Strakholt	99	3161842.35		1834.62		+7.73
99	Strakholt						
	Leer	95	391437.80		1429.03		+8.77
	Aurich	98	1362626.47		2618.84		+7.63
	Jever	102	2172966.51		2959.63		+6.88
	Westerstede	100	3024724.56		4716.94		+7.62
100	Westerstede						
	Barssel	96	513929.88		3921.95		+7.93
	Leer	95	842728.77		2721.53		+7.24
	Strakholt	99	1230114.63		0107.18		+7.45
	Jever	100	1771707.98		1701.52		+6.46
	Varel	103	2214064.24		4057.15		$+7.09$
101	Esens						
	Aurich	98	240039.71		0031.05	-	+8.66
	Hage	97	770713.07		0702.67	-	+10.40
	Jever	102	2932859.30		2850.66	-	+8.64

Table 46 (continued)

Just as for the computation of the φ - and λ-coordinates, here too the unit of length for X^{\prime} and Y^{\prime} is 100 km .

The small angle ϵ between chord and arc at Rhenen to Gorinchem is, as already discussed before:

$$
\epsilon_{37}^{\prime \prime}=0.0012658\left(\mathrm{X}_{37}^{\prime} \mathrm{Y}_{32}^{\prime}-\mathrm{X}_{32}^{\prime} \mathrm{Y}_{37}^{\prime}\right)=-1^{\prime \prime} .354
$$

It is counted from the chord to the arc in a clockwise direction (here therefore negative).

As the gridbearing of the chord Rhenen-Gorinchem is:

$$
\psi_{37-32}=\arctan \frac{\mathrm{X}_{32}^{\prime}-\mathrm{X}_{37}^{\prime}}{\mathrm{Y}_{32}^{\prime}-\mathrm{Y}_{37}^{\prime}}=250^{\circ} 53^{\prime} 50^{\prime \prime} .350
$$

the geographical azimuth Rhenen-Gorinchem is:

$$
\begin{equation*}
A_{37-32}=\left(\psi_{37-32}+\gamma_{37}+\epsilon_{37}\right) \pm 180^{\circ}=71^{\circ} 02^{\prime} 11.459 \tag{28}
\end{equation*}
$$

It is counted from the south in a clockwise direction.
With (28) all the azimuths were determined with the computer, those in column 4 of course with the coordinates $X^{\prime \prime} Y^{\prime \prime}$. As the latter coordinates were rounded-off by the computer at cm , a computation of $\psi_{i k}$ in (28) in hundredths of a second of arc is not quite justified when the distances $\underline{\underline{i}} \underline{\mathrm{k}}$ are small [88].

Column 7 (table 46) gives the differences $v^{\prime \prime}$ between the azimuths of the sides in the R. D. -system and my own computation of the network which is adapted as well as possible to that of the R.D. It guarantees, as already said before, not only an ideal base length, but also an ideal orientation of the triangulation. Like the vectors in Fig. 20, the v^{\prime} 's in column 7 of the table give an impression of the accuracy of Krayenhoff's triangulation. Especially in the southern part of the network the agreement between the R. D. -results and my own computation is excellent. See e.g. the very small v's for the azimuths in the stations No. 16 up to and including No. 26.

In the stations No. 10 up to and including No. 15 the agreement is somewhat less. I don't know whether these larger deviations must be imputed to a less accurate measurement or to small alterations in some spires. Especially in rather short sides between "identical" stations these alterations have of course a great influence.

The rather large vector 0.98 m (see Fig. 20) at Medemblik (station No. 56), about perpendicular to the direction to Enkhuizen (station No. 57) e.g., at a distance of only 14.9 km , causes a deviation $\mathrm{v}=+11!52$ at Medemblik and $\mathrm{v}=+11!.51$ at Enkhuizen. They are only surpassed by the v's $+13!.96$ at Oosterend (No. 71) to Vlieland (No. 73) and $v=+14!!01$ at Vlieland to Oosterend. The very large vector 1.99 m at Vlieland, about perpendicular to the direction to Oosterend caused these large deviations. Perhaps lateral refraction may have contributed to this phenomenon as for its full length of 26.6 km the connecting line Vlieland-Oosterend passes the Dutch-shallows. As one sees and as could be expected the v's in column 7 have an accidental character. In every station there are positive and negative v 's.

The v's in column 8 of table 46 demonstrate only the differences in azimuth as a result of my own adjustment of the network and that of Krayenhoff. For the azimuth in Amsterdam (No. 40) to Utrecht (No. 36) this v is $+0^{\prime}!62$. If the v is required between the R. D. -azimuth and the amount $332^{\circ} 41^{\prime} 19^{\prime \prime} .94$ from which Krayenhoff started his computation, the v's in columns 7 and 8 must of course be added. The amazing result $-0!49$ was already discussed at the end of section 28 . As Krayenhoff's network is not a closing mathematical figure, it will be clear that the azimuths of the sides are dependent on the route chosen for their computation. Any other arbitrary route would have given other results. In the southern part of the triangulation the agreement between Krayenhoff's azimuths and those found from my own computation is very good indeed. For the station Nos. 1-15 all v's in column 8 are slightly negative. A little more to the northeast their signs change into positive but up to and including the station No. 45 (Bocholt) they remain very small with the exception perhaps of Amersfoort (No. 42). It might be possible that the neighbourhood of the Zuiderzee-pentagon, not adjusted in Krayenhoff's computations, asserts here its influence upon the azimuths of the sides. In the stations Harderwijk (No. 46) and Veluwe (No. 17) the neighbourhood of the Zuiderzeepentagon is also perceptible. The v^{\prime} 's in these stations are rather large but more to the east (stations Nos. 48-51, 60-64) this influence decreases.

In the narrow strip between Noordzee (North Sea) and Zuiderzee where the sides of the triangles are small (stations Nos. 54-57 e.g.) the v's are very large. At

Schagen (station No. 55), e. g. the azimuth to Oosterland (No. 66) in my computation deviates even $12: 31$ from that in the Précis Historique. Around the Zuiderzee at Staveren (No. 67), Lemmer (No. 68), Urk (No. 58), Kampen (No. 59) and Blokzijl (No. 69) the v's in column 8 remain very bad and all positive and at Drachten (station No. 81), about the centre of the part of the network criticized by Gauss [11] the v's are almost the largest of the triangulation. Only because of Krayenhoff's incorrect adjustment of his network the small amounts v in Amsterdam (No. 40) changed into the large deviations $v=+13!!92$ and $v=15!!69$ in the azimuths to Leeuwarden (No. 79) and Dokkum (No. 80). It must be remarked once again, however, that these large deviations say nothing whatever about the accuracy of Krayenhoff's observations. At the end of section 29 I already remarked that the azimuth Jever (No. 102)-Varel (No. 103) $=321^{\circ} 20^{\prime} 37^{\prime \prime} .69$ computed from the coordinates $X^{\prime \prime} Y^{\prime \prime}$ in table 26 agrees excellently with the amount $321^{\circ} 20^{\prime} 35^{\prime \prime} .5$ which can be derived from Gauss' Oldenburg-triangulation (difference +2 '!2). As already shown in table 43 Krayenhoff's direct observation of the azimuth gives $321^{\circ} 20^{\prime} 45^{\prime \prime} .33 \pm 3^{\prime \prime} .7$ (difference - $7!!64$).

33. Conclusions

According to Baeyer's demands for a Middle European triangulation in 1864, should Krayenhoff's measured angles be used or be rejected ? It is very difficult to give an answer to this question as it is dependent on the way one wishes to judge Krayenhoff's network. From a theoretical point of view there can be made several objections indeed. I already discussed some of them in my final consideration of the geodetic part of the triangulation (section 24).

Cohen Stuart's most serious objection is - and I agree with him - that in many cases observations were rejected which, according to Krayenhoff, did not fit in the computation of the network. The closing errors in the triangles and the central points are therefore much too small and not at all in accordance with the standard deviation in the angular measurement. Especially for the measurements in the years 1810 and 1811 in the northern part of the territory this number of rejected series was large, 41 and 51 percent respectively (see tables 3 and 4). The main reason for this rejection, however, was the less accurate instrument used in those years of which Krayenhoff complains seriously in his Précis Historique. For the measurements in the years $1802,1803,1805$ and 1807 with the accurate instrument the number of rejected series was only about 12 percent and much too small for a serious influence on the result of the computation.

As I already remarked before, however, I cannot agree with Cohen Stuart that in principle all the rejected series (389 out of 1514) should have been used for the computation. In my opinion he did not take into account that the dynamic Krayenhoff tried to measure when the weather conditions seemed favourable. It will be clear that a great number of series which he began could not be finished because of changing circumstances or, if finished, could not be maintained because of too bad weather conditions at the end of the series (too strong wind or heat shimmer, darkness, rain, mist, haze or fog). In table 18 I illustrated this with several examples. In other cases, also mentioned in table 18 and the text of section 17 I too cannot agree with the arbitrary and inadmissable rejection of a number of series.

Another objection to the triangulation is the bad reduction of the measured angles to centre. In Fig. 9 (section 11) I illustrated the influence of the slope of the Western tower in Amsterdam (station No. 40) on the accuracy of this reduction. As it is inherent to the repetition circle used, Krayenhoff cannot be blamed for it. But he should be reproached for his method of angular measurement which always began with a reading zero on the limb of the instrument and, for the same number of repetitions of the same angle, always ended at the same place of the limb. Therefore accidental errors in the calibration of the limb could not be made harmless. The academic objection that spheroidical angles are no spherical angles (the plane through the vertical of the station P and the sighting point Q does not coincide with the plane through the vertical of the station Q and the sighting point P) need not to be taken into account; with regard to the accuracy of Krayenhoff's observations its influence is too small by far. The objection that no baseline was measured and the whole triangulation had to be built on the side Duinkerken-Mont Cassel in the utmost southwestern part (extrapolation about 500 km) was already discussed before.

From a theoretical point of view the astronomical part of the triangulation is very bad. In this part of his work Krayenhoff did not convert mean solar time, read from his chronometer, into sidereal time, necessary for the computation of circum meridian zenith distances of Polaris. In my opinion, however, he knew what he did: because of the small hour angles the errors made are so small that they can almost be neglected.

The worst part by far of the astronomical measurements is the determination of azimuths, just like the determination of latitudes, executed in the stations Amsterdam (No. 40) and Jever (No. 102) and described in sections 28 and 29. For this determination Krayenhoff could not lean upon Delambre who used a method with
which Krayenhoff could not obtain satisfactory results. By the inexpert manner, however, with which he executed a method of himself - even to towers almost in the meridian of his stations - the results are very bad indeed. A great number of systematic and accidental errors could have been made harmless or reduced to much smaller amounts if he should have chosen his terrestrial points a little south of the direction of the rising or setting sun.

In section 24 I already stated that, as for the practical results of the triangulation, Krayenhoff's measured angles would have satisfied Baeyer's demands for a middle European triangulation. As one knows here I don't agree with Cohen Stuart. The proof for my statement may be found in table 29 and in Fig. 22 of section 23 where I compared the 171 angles in the 57 triangles of Krayenhoff's network which are identical or are assumed to be identical with those of the R.D., with the R.D. -results. The comparison shows that the external accuracy of an angle can be given by the amount $m \simeq \pm 3!!6$, which is worse indeed than the inner accuracy $m \simeq \pm 1!!8$ found in section 19. One should not forget, however, - see also my considerations in section 23 - that eventual errors on my part in the assumed identity of the towers in the two systems cause the external accuracy to become worse.

The deviations v in the triangles in the southern part of the network in general are better than those in the northern part. The accuracy of the instrument used will probably be the main reason for this phenomenon. Several angles in the northeast, however, - see e.g. the excellent agreement between the angles in the triangles $122,125,134,138$ and $143-$ have very small v's. .They prove that there can hardly be any talk of seriously influencing the observations. Some triangles in the south of the triangulation (see e.g. the numbers 13 and 15) are worse than might be expected.

The differences \underline{v} for the side lengths between the identical points in table 29 are very small in my opinion (see e.g. the excellent v 's in the triangles $17,23,26$, 125, 132 and 134). As already said before the lengths in Krayenhoff's system were computed with an "ideal" baseline length which matches as well as possible the R. D. triangulation network. The excellent harmony between the angles of triangle 143 apparently could not be retained in the side lengths. The sides in the R. D. -system are about 27 mm per km smaller than those in Krayenhoff's adjusted network. The difference remains far beyond Baeyer's demand, 50 mm per km for long distances. The excellent relative differences 4 mm per km and 5 mm per km in the very long sides Gent-Amsterdam (167.4 km) and AmsterdamLeer (197.4 km) respectively must of course be ascribed to the "ideal baseline"
of the triangulation. As already remarked the amounts are a factor 10 better than Baeyer demanded.

From a practical point of view the results of the determination of latitudes in Amsterdam (No. 40) and Jever (No. 102) are good in my opinion. According to table 44 the latitude Krayenhoff found for Amsterdam is but $1!83$ smaller than the one computed from the R. D. -coordinates $X^{\prime} Y^{\prime}$ (also see the end of section 26). Krayenhoff's direct determination $\varphi=53^{\circ} 343^{\prime} 23^{\prime \prime} .445$ of the centre of his station Jever (see the end of section 27) differs but $0^{\prime}!484$ from the amount $53^{\circ} 34^{\prime} 23^{\prime \prime} .929$ found from the computation from the coordinates X " Y " of that station. The amount $53^{\circ} 34^{\prime} 22^{\prime \prime} .71$ in tableau V of the Précis Historique (see column 5 of table 44) is less good because it is affected by the changing scale factors in Fig. 21. The computation of the latitude (and longitude) of Duinkerken (No. 1) in column 5 (and 10) is also affected by these scale factors.

The very bad internal accuracy of the determination of the astronomical azimuths Amsterdam-Utrecht and Jever-Varel appeared to give excellent practical results. The azimuth from Amsterdam to Utrecht deviates only $0!49$ from that of the R.D. The one from Jever to Varel is worse: Krayenhoff's direct measurement $321^{\circ} 20^{\prime} 45^{\prime \prime} .33$ deviates $7!\prime 64$ from the amount $321^{\circ} 20^{\prime} 37^{\prime \prime} .69$ computed from the adjusted coordinates $\mathrm{X}^{\prime \prime} \mathrm{Y}^{\prime \prime}$. The latter azimuth agrees excellently with the amount $321^{\circ} 20^{\prime} 35^{\prime \prime} .5$ which can be derived from Gauss' Oldenburg-triangulation.
The azimuth Duinkerken-Mont Cassel $343^{\circ} 13^{\prime} 32$ ". 51 computed from the coordinates $\mathrm{X}^{\prime \prime} \mathrm{Y}^{\prime \prime}$ differs but 0 '! 19 from the amount found by Delambre. From this amount Krayenhoff started his computations in tableau IV of the Précis Historique.

Strictly speaking the considerations on the accuracy of the astronomical part of the triangulation have nothing to do with the question whether the results of the triangulation should be rejected or retained. Baeyer's demands related only to the accuracy of the angles in the triangles of the network. All the other operations should be done anew. The excellent agreement mentioned above justifies the supposition that a better result could hardly be expected.

It seems incredible that, after the publications of the R (ijks) D (riehoeksmeting) nobody apparently hit upon the idea to compare the excellent results of this triangulation with those of Krayenhoff's network, exuberantly praized just after the appearance of the Précis Historique and reviled by Gauss and Cohen Stuart in later days. But the work has been done at last. In some respects the results of this study may be considered a third edition of the Precis Historique. All the
tables with the exception of tableau II (the computation of the provisional lengths of the sides) and tableau IV (the computation of the latitudes and the longitudes with respect to Paris) are included in this study. Should the bad criticism be maintained or, as Van der Plaats hoped and expected, ought Krayenhoff to be rehabilitated ? The reader may draw his own conclusions.

My opinion on Krayenhoff's triangulation - the first in which an attempt was made to adjust an extensive network - can be summed up by Van der Plaats' quotation from Racine's Brittannicus, already mentioned in the introduction of this book:
"J'ose dire pourtant que je n'ai mérité,
'Ni cet excès d'honneur, ni cette indignité".

REFERENCES

[1] Précis Historique des opérations géodésiques et astronomiques, faites en Hollande pour servir de base à la topographie de cet état, exécutées par le lieutenant général Baron Krayenhoff (first edition, The Hague, 1815, second edition, The Hague, 1827).
[2] J. B. J. DELAMBRE (1749-1822), French astronomer, from 1792 till 1799 occupied with the measurement of the arc of the meridian of Paris between Dunkirk and Barcelona.
[3] J.H. van SWINDEN (1746-1823), professor of mathematics and physics in Amsterdam and member of the executive Council of the Republic.
[4] H.C. SCHUMACHER (1780-1850), professor of astronomy and mathematics in Copenhagen, pupil and friend of Gauss.
[5] F.W. BESSEL (1784-1846), German astronomer, friend of Gauss.
[6] H.W. M. OLBERS (1758-1840), German physician and astronomer, friend of Gauss.
[7] CARL FRIEDRICH GAUSS (1777-1855), German mathematician and physicist.
[8] Briefwechsel mit Bessel, page 457.
[9] GAEDE: Beitrage zur Kenntniss von Gauss' praktisch-geodatischen Arbeiten (Zeitschrift fur Vermessungswesen 1885, pages 113-137, 145-157, 161-173, 177-192, 193-207, and 225-245). The quotation may be found on page 181.
[10] Briefwechsel mit Schumacher, Band I, page 349.
[11] JORDAN's Handbuch der Vermessungskunde, erster Band, Stuttgart, 1920, page 511.
[12] F. KAISER (1808-1872), Dutch astronomer.
[13] L. COHEN STUART (1827-1878), Dutch geodesist.
[14] F. KAISER en L. COHEN STUART: De eischen der medewerking aan de ontworpen graadmeting in Midden Europa voor het Koningrijk der Nederlanden, Amsterdam, 1864, (72 pages).
[15] [14] page 9.
[16] [14] page 9.
[17] [14] page 21.
[18] F.J. STAMKART (1805-1882), inspector of weights and measures from 1833 till 1867 at Alkmaar and Amsterdam. He wrote several publications in the field of mathematics, mechanics, physics and astronomy. In 1844 Leiden University appointed him doctor honoris causa in mathematics and physics. From 1867 till 1878 he was professor at the Polytechnical School at Delft, the later University of Technology. From 1865 till his death he was engaged with his unsuccessful measurement of the Netherlands' part for the Middle European triangulation.
[19] Verslag Rijkscommissie voor Graadmeting en Waterpassing over het jaar 1887 (Tijdschrift voor Kadaster en Landmeetkunde, 1888, page 116).
[20] J. D. van der PLAATS: Overzicht van de graadmetingen in Nederland (Tijdschrift voor Kadaster en Landmeetkunde, 1889, pages 217-243, 257-306, and 1891 pages $65-101,109-133$).
[21] [20], page 109.
[22] [20], pages 113-114.
[23] [20] , page 123.
[24] [20], page 130.
[25] [20] , page 122.
[26] Levensbijzonderheden van den luitenant generaal baron C.R.T. Krayenhoff, door hem zelven op schrift gesteld en in het licht gegeven door H. W. Tydeman (Nijmegen, 1844).
[27] Nieuw Nederlands biografisch woordenboek, vol. II, columns 719-725.
[28] N. van der SCHRAAF: Historisch overzicht van het driehoeksnet van Krayenhoff (Nederlands geodetisch tijdschrift, April 1972, pages 65-81).
[29] N.D. HAASBROEK: Gemma Frisius, Tycho Brahe and Snellius and their triangulations (Publication of the Netherlands Geodetic Commission, 1968), pages 63-66.
[30] [1], page 4.
[31] An examination of Perny's triangulation may be found in [20] , page 237. It is very bad indeed though the closing errors of the triangles are small. Apparently in order to prevent contradictions in the computations the angles of the triangles Middelburg-Goes-Hulst and Hulst-Antwerpen-Lier were not even measured.
[32] [14], page 44.
[33] [20], page 271.
[34] The Dutch text of this letter was published in Algemeene Konst en LetterBode of April 10th, 1804. Van der Schraaf gives the text on page 71 of his paper [28].
[35] [20], page 272.
[36] C.R.T. KRAYENHOFF: Verzameling van Hydrographische en Topographische waarnemingen in Holland (Doorman en Comp., Amsterdam, 1813), page XII. Van der Schraaf gives the text on page 71 of his paper [28] .
[37] In his letter dated January 31st, 1971, Baron A. Krayenhoff at Amersfoort wrote to me that his father, Baron C.R.T. Krayenhoff, presented this copy to Topografische Dienst.
[38] [20], page 276.
[39] C. W. MOOR: Triangulaties in Nederland na 1800 (Library of the Sub-Department of Geodesy of the Delft University of Technology, Delft, 1953).
[40] [39], page 9.
[41] BERTHAUT: La Carte de France 1750-1798, tome 1, pages 102-106.
[42] [1] , page 12.
[43] Library Leiden University, Codex 241, octavo II, page 31, series 19.
[44] Instructie voor de geographische ingenieurs bij het depot-generaal van oorlog van het Koningrijk Holland (March 4th, 1808).
[45] JACOB de GELDER (1765-1848), especially in the first years of the triangulation Krayenhoff's assistant during the measurements, had an important part in the computation of the network. In 1819 he was appointed professor of mathematics and physics in the university of Leiden. His biography (by professor G. J. Verdam) may be found in Algemeene Konst en Letter-Bode of December, 1848.
[46] [1], pages 7 and 8.
[47] [39], page 10.
[48] ADRIEN MARIE LEGENDRE (1752-1833), French mathematician.
[49] On account of the great lengths of the sides the formula is somewhat more accurate than that on page 6 of the Dutch 'Handleiding voor de technische werkzaamheden van het Kadaster (H.T.W. 1956)".
[50] [29], page 101.
[51] [20], foot-note on page 263.
[52] Archives Netherlands Geodetic Commission, file Krayenhoff, letter No. 26.
[53] [1] , pages IX-XVIII (XIV).
[54] [1] , page 103.
[55] [1] , page 12.
[56] [20], page 279
[57] The series are mentioned on page 38 of [14].
[58] Base du système métrique, tome 2, page 801.
[59] Also see the angles in column 5 of table 20 for the stations Nos. 22, 29, 32,33 and 24.
[60] [20], page 85.
[61] [11], page 512.
[62] L.N. M. CARNOT (1753-1823), French general and military genius.
[63] ULRICH HUGUENIN (1755-1833) was a Dutch artillery officer. He was very often abroad. In Germany he met Gauss in 1798 or 1799. For some time he was Krayenhoff's assistant for his triangulation. In an interesting paper in the Dutch language "A conflict between Gauss and a Dutch mathematician" (Wiskundig tijdschrift, year 1918-1919, No. 3, pages 140-145) from which I borrowed these data, the author, the Dutch Gauss-connoisseur S. C. van Veen, writes on Huguenin's merits in the mathematical field, especially on his publication in 1803 of the construction of $2 \pi: 17$ of which Gauss had already given an elegant solution in 1796.
[64] Krayenhoff mentions their names on the pages 46 and 47 of the Précis Historique but forgets Huguenin in his enumeration.
[65] Generalbericht Europaische Gradmessung, year 1865, pages 22-28.
[66] Polygon condition 149; see section 13, page 57.
[67] Hk.J. HEUVELINK: Topografische kaart en Rijksdriehoeksmeting (Delft, 1920), pages 8-16.
[68] In the reconnaissance of the R. D.-triangulation one reads concerning this point: the place of the beacon-light is indicated by a block of brickwork, covered up with a free stone plate in the centre of which a bronze pin approximately indicates Krayenhoff's triangulation point.
[69] Letter dated December 21st, 1970, No. 3933.
[70] Letter dated December 2nd, 1970, No. 4663/32c with a copy of Ph. J. C. G. van HINSBERGEN: De geschiedenis van Nieuwkoop (the history of Nieuwkoop), pages 153-159.
[71] [9], page 237.
[72] Briefwechsel Gauss-Schumacher II, 1860, letter 259, page 29.
[73] log (Jever-Varel) (Prussian Rhinel. roods) 3.8200069
\log reduction Rhinel. roods to toises $9.7 \underline{139117}$
\log (Jever-Varel) (toises) $\quad \frac{9}{4} \overline{1060952}$
Jever-Varel $=12767.18$ toises; 1 toise $=1.949036 \mathrm{~m}$ Jever-Varel $=24883.69 \mathrm{~m}$.
[74] [14], page 20.
[75] Base du système métrique, tome 2, page 648; the plus-sign of the longitude means east of Paris.
[76] Base du système métrique, tome 2, pages 123 and 800.
[77] Base du système métrique, tome 3, pages 134 and 135.
[78] [1], page 12.
[79] [1], page 13.
[80] Series 8 on page 6 verso of the register Observations astronomiques, Codex 241, in Library Leiden University.
[81] Krayenhoff used for this reduction to "centre" (the point C in Fig. 9) an eccentricity $\mathrm{e}=3.792 \mathrm{~m}$ which is impossible in my opinion. According to the original drawing 1:40 of Fig. 9 the distance between the middle of the balustrade and C is 4.74 m .
[82] Handleiding voor de Technische werkzaamheden van het Kadaster (H.T.W. 1956), page 6.
[83] JOHN NAPIER (1550-1617), Scotch mathematician.
[84] Gridbearing chord Amsterdam-Utrecht ($333^{\circ} 05^{\prime} 12.821$) plus angle between arc and chord ($+0^{\prime \prime} .876$) plus angle between astronomical north and grid north in Amsterdam ($-0^{\circ} 23^{\prime} 544^{\prime}$ 246). The latter amount was computed with De Groot's formula in [49], page 6.
[85] Van der Plaats (page 229 of his paper [20]) thinks that the computation is in the archives of the (Dutch) Ministery of Defence.
[86] Delambre and Krayenhoff called $\varphi_{\mathrm{P}}, \varphi_{\mathrm{Q}}, \lambda_{\mathrm{P}}, \lambda_{\mathrm{Q}}, \mathrm{A}_{\mathrm{PQ}},\left(\mathrm{A}_{\mathrm{QP}} \pm 180^{\circ}\right)$ and a: $\mathrm{L}, \mathrm{L}^{\prime}, \mathrm{M}, \mathrm{M}^{\prime}, \mathrm{Z}, \mathrm{Z}^{\prime}$ and R respectively. In the expressions for $\varphi_{Q}{ }^{-\varphi}{ }_{P}$ and δ Krayenhoff calls $1+\mathrm{e}^{2} \cos ^{2} \varphi_{\mathrm{P}}=\mathrm{q}$ and $\rho\left(1+\frac{1}{2} \mathrm{e}^{2} \sin ^{2} \varphi_{\mathrm{P}}\right): \mathrm{a}=\mathrm{p}$
[87] Détermination de la différence de longitude Leyde-Greenwich, exécutée en 1880 et 1881 par H. G. et E.F. van de Sande Bakhuyzen, published in Annalen der Sternwarte Leiden, Band 7 (1897), page 245 and following.
[88] If in table 9 (column 13) one compares e.g. the adjusted angles 185, 189, 162, 160, 157 and 182 at the station Amsterdam (No. 40) with the amounts computed from the differences of the astronomical azimuths in table 46, the differences

KRAYENHOFF's triangulation (1802-1811) in Belgium, The Netherlands and a part of north-western Germany

lation (1802-1811)
 therlands and stern Germany

$40 \underbrace{15}_{114}$ vierlingsbeek (26)

Scale

KRAYENHOFF's triangulation (1802-1811) in Belgium, The Netherlands and a part of north-western Germany

nds and Germany

[^0]: As the sign \approx for "approximately equal to" was not available on the typewriter used, it has been replaced by \simeq.

