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FOREWORD.

In 1988 the European Space Agency started with a series of studies with
the goal to prepare the geodetic user community for a dedicated gravity field
mission and stimulate cooperation among various groups. Thereby it was left
open whether the planned mission should be based on the principle of
satellite-to-satellite tracking, on satellite gradiometry or on a combination
of these two methods. In the course of these studies it turned out that the
group of the dipartimento di ingegneria idraulica, ambientale e del rileva-
mento of the politecnico di Milano and that of the faculty of geodetic
engineering of the Delft University of Technology worked much along the same
line. At various occasions very exciting and stimulating exchange of ideas
took place between these two groups. In 1991 it was therefore decided to
publish the main line of their development in gradiometry analysis, the
so-called timewise and spacewise approach, in a joint report.

Compared with the benefit it would have been rather cumbersome to try to
homogenize the adopted style of presentation and notation of the two groups.
Thus little effort was spent on this aspect. We hope that this does not hamper
reading.

The authors like to thank the European Space Agency for its support of
the CIGAR-studies and the Netherlands Geodetic Commission for publishing this

report.

Delft, april 1993,

Reiner Rummel.






1. INTRODUCTION.

All our current knowledge of the global gravitational field of the earth
is derived from an analysis of the motion of artificial satellites. While in
the pioneering days only the oblateness coefficient J, and thereafter J; could
be determined, subsequently complete sets of spherical harmonic coefficients
up to degree ¢ and order m 36 could be computed. Very advanced laser and radio
tracking techniques, more and more satellites with a large variety in orbit
characteristics, an increasing number of ground stations and 1last but not
least more sophisticated computers and computational models made this
development possible.

However there exist natural limits for further improvement. Whereas, for
example, the still existing indeterminancy of individual spherical harmonic
coefficients far away from the resonance bands of the satellites can probably
be overcome in the near future through almost continuous space-borne tracking
of low flying spacecrafts, the attenuation of the gravitational field with
increasing altitude represents a natural barrier. The only way out of this
dilemma is satellite gradiometry, the measurement of second derivatives of the
gravitational potential V. When expressed in a spherical harmonic series,
double differentiation roughly results in an amplification of the coefficients

representing the gravity field by a factor £2 (with £ the degree of the
R )2
R+h’ ’
can be compensated (R is the earth’s mean radius, h the altitude of the

expansion). This way the attenuation effect, which is approximately (

satellite). This is illustrated in Figure 1. Figure 1 shows the signal degree-
order variances of the unknown part of the gravitational potential, the
disturbance potential T, at the earth’s surface (altitude O km) and at 200 km.
For the highest degree (240) the attenuation effect is three orders of magni-
tude. The second radial derivative of T, T,,, has a much flatter spectrum at
the earth’s surface than T. The information about the spatial details of the
field is much more pronounced. Thus, T,, at 200 km altitude still contains

considerable information at high spherical harmonic degrees.
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Figure 1: Altitude attenuation effect of the disturbance potential T can to a
large extent be compensated by dealing with the second radial
derivative T,, (degree-order variances based on OSU 86F, all quanti-

ties dimensionless: T/(GM/R); T,,/(2GM/R3)).

A satellite gradiometer measures at maximum all nine components of the
a2v
ax1ox]
linear combinations of these components. Gradiometers are either based on the

gravitational tensor T;; = (with V gravitational potential) or certain

principle of differential accelerometry or on that of torsion measurement. The
components may be given in a space fixed coordinate triad, in case of a space-
. stable orientation of the instrument in the spacecraft, or in some local, e.g.
rotating, triad. In the latter case the measured elements contain components
of inertial motion as well. All these points and many related aspects are left
aside here. For a discussion of the instrumentation refer to (Wells, 1983),
(Paik & Richard, 1986), (Reinhardt et al., 1982); for a treatment of the
gradiometer principles refer to (Rummel, 1986). Here we assume an ideal
situation, where the gradiometer components are given in known orientation,
along perfectly aligned axes and where the only signal source 1is the

gravitational field of the earth. No disturbing acceleration exists. The
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gradient components are provided in either the local orthonormal, spherical
triad e;, i = 1,2,3 (with e; = e, directing north, e, = g, directing east, and
e; = e, radially outwards) or the orbit triad e, 0 = 1,2,3 (with g = g,
along track, e, = e; crosstrack, perpendicular to the orbit plane, and e3 = g,
radially outwards). Each component is measured independently of all others
with a certain measurement error.

The purpose of this report is a discussion of alternative ways of deter-
mining an approximation of the earth’s gravitational field from satellite
gradiometry with the field expressed in a series of spherical harmonics. Error
propagation and linear parameter estimation shall be analyzed. The subject is
not new. From the days satellite gradiometry 1is wunder consideration,
representation and analysis of its results in terms of spherical harmonics has
been considered, see e.g. (Kdhnlein, 1967), (Glaser & Sherry, 1971) or Reed’s
dissertation of 1973. Now, however with actual mission plans for the
gradiometric satellite ARISTOTELES growing more and more concrete, a revision
seems appropriate and timely.

It is remarkable to observe that dynamic satellite geodesy and physical
geodesy, although strongly benefitting from each other, developed as two
rather independent branches of geodesy. No serious attempt for a wunified
theory of gravity field determination has been undertaken. The former
addresses gravitational field estimation from the solution of the equations of
motion, the latter solves gravitational field and shape of the earth in the
form of a boundary value problem related to the earth’s surface. Gradiometer
measurements are ideally suited for a study of the similarities and
differences of these two approaches. Consider first the satellite as a carrier
of an instrument that delivers the gravitational tensor components T;; at
regular intervals. At each time the position of the instrument is expressed by
the coordinate triple {¢,A,r}, representing the position of the satellite’s
center of mass, which is usually known only approximately. With each
revolution of the spacecraft a new circle of densely spaced measurements is
delivered. Depending on the choice of the orbit, in particular of the
inclination I and precession rate of its node, Q, an almost arbitrarily dense,
global coverage of the sphere can be achieved. With T,;(¢,A,r) - or by

approximation Fij(¢,h), if the height variation of the satellite can be
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neglected or all observations are reduced to one sphere, ¢(0,r) - each tensor
component represents a gravity related functional, given on a known (or
unknown) boundary surface. The determination of the global gravity field in
terms of spherical harmonics from such a functional 1is carried out by
quadrature techniques or the solution of a geodetic boundary value problem
(g.b.v.p.). As the measurements are considered a function of position only,
this view 1is denoted the spacewise approach. It fully coincides with the
techniques well established in the field of physical geodesy. This view shall
be treated in chapter two.

Equally well the measured sequence of tensor components may be viewed as a
discrete time series, Fij(t), ideally spanning the entire mission length
without interruption . In this case the determination of spherical harmonics
becomes possible only after connecting the spherical harmonic representation
given in an earth fixed coordinate system with the time series provided along
the inclined, slowly precessing orbital plane. Various ways are conceivable
for this connection and for the parametrization of the time series, but the
intimate relation to satellite perturbation theory is evident. We denote this
the timewise approach to be treated in chapter 3. It is particular suited for
studies of the influence of the choice of the orbit parameters on gravity
field recovery and, as measurement sampling is actually a time process, for
analysis of realistical instrument error models.

The close connection of the timewise approach with orbit perturbation
analysis, as usually applied in dynamic satellite geodesy, becomes even more
pronounced if we look at a measured tensor component from a slightly different
angle. In differential accelerometry, as it has to be applied within the
ARISTOTELES mission, an arbitrary tensor component is measured by prohibiting
‘two neighboring test masses from their free motion (fall) in orbit and by
constraining them to a fixed levitated position inside the instrument by means
of a feedback mechanism. The feedback signal suitably differentiated is
translated into the gradient measure. It permits the reconstruction - or is
equivalent to the measurement - of the relative acceleration between two
adjacent test masses in free fall at known distance, as discussed in (Misner,
Thorne & Wheeler, 1971). Hence the signal could be modelled by means of

perturbation theory of two neighbouring space trajectories. As the two
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trajectories are highly similar, their absolute shape and location 1is of
lesser importance. The gradiometric information is concealed in their relative

differences (Rummel, 1978, Schneider, 1984).






2. SPACEWISE APPROACH.

In the present chapter the determination of the spherical harmonic coeffi-
cients of the gravitational potential, starting from observations assigned to
well defined points on a surface or averaged over suitably chosen regions
(usally rectangular blocks), is illustrated. A preliminary discussion
concerning the choice of the orbit, in order to obtain a complete coverage of
the earth, by data distributed in a very thin shell, is presented in section
1. The error introduced by shifting the data to a single surface is explicitly
estimated, and is proved to be of the same order as the instrumental error for
gravity gradient measurements. The observational model 1is introduced in
section 2. The spatial distribution expected for measurements during the whole
mission, and their block-averaging procedure are described; the use of Wiener
measures for the treatment of noisy data defined in a continuum is 1illu-
strated. Section 3 deals with the least-squares approach for the estimation of
a finite number of coefficients from discrete data. The particular structure
of the normal matrix is analysed, in order to 1illustrate the numerical
problems arising in the solution of the normal system. The presence of
aliasing and its main features are discussed. The determination of potential
coefficients by quadrature formulas is the topic of section 4; in particular,
the discretization error is evaluated by suitable simulations. The general
structure of boundary operators is analysed in section 5; the procedures to
estimate functionals of the solution, and in particular spherical harmonic
coefficients, from a boundary condition expressed as an operator acting on the
unknown function, are illustrated. Such procedures are applied in section 6 to
particular cases of different gravity gradient components; finally, the
simultaneous use of different kinds of data (for example, different components
of the gravity gradient) in an overdetermined probIem approach is discussed in

section 7.

2.1. Is it possible to use satellite observations in a boundary value problem

approach?

Our objective is to determine the gravity field of the earth from satel-
lite observations, to a considerable degree of resolution. To this aim, we

design a reference orbit:



o as low as possible in order to decrease the exponential damping of the
harmonic coefficients of the potential, the 1limit being imposed by the drag
effects on the satellite of the upper layers of the atmosphere,

o with a polar inclination, so that all the fluctuations of the potential are
explored, without neglecting polar caps,

o with a mean motion having a suitable rate to the earth’s angular velocity,
so that satellite subtracks, as seen from the ground, tend to distribute in
longitude without repetitions, and

o with an eccentricity as small as possible, so that the satellite is sampling
a potential which has always the same spectrum, as a function of ¢ and A.

Among many possible solutions, 1n order to perform a spectral analysis of the

observations along the orbit (timewise Fourier approach) a possible orbit has

been identified, which is of great interest because it is frozen in inertial
space; it is known as Cook’s orbit and is described in detail in (Colombo,

1984). Another possible elementary choice is to have, as closely as possible,

a purely circular orbit; so, by using a suitable measuring rate and a suitable

rate of the satellite’s to the earth’s period, one realizes that the

measurement points, as seen from the earth, tend to distribute in an irregular
fashion, however approaching more and more the condition of a continuous

distribution, i.e.

lim Sup Inf d(p;,p;) = 0 , (2.1)
Now 4 j

(i,j =1,...N)

over the sphere of radius r equal to the orbit’s radius.

We shall come back, later on, to the 1limit distribution obtained in this
way and to the effects it has on the estimation of the potential coeffi-
cients.

We just want to stress here that this rather simplistic choice has at
least one good point from the practical point of view: the presence of a
relevant drag effect tends by itself to circularize the orbit, 1i.e. to
decrease the eccentricity e, so that it would be a waste of fuel to try to
keep e constant.

This can be seen for instance from the Lagrange dynamical equations in



terms of Kepler’s elements. Let’s remodel the drag perturbation by a simple

force-function like (cf. Kaula, 1966, § 3)

F=E -paw (2.2)
2a
a = semi major axis
L =GM = 3.986 1014 m3 sec™2
D = drag force, assumed to be constant
M = mean anomaly,

describing essentially a satellite moving under the central field p/r within

l@:—D
a oM ’
opposite to the direction of motion. With this force function Lagrange

a constant density atmosphere causing a constant tangential effect

equations read

(2.3)

(n = pl/2 a-3/2 = mean motion).

These equations already describe the main effects of drag, which does not
affect w, i, Q and gives rise to a decay of a, related to the law of energy, a
decrease of e and an increase in the angular velocity M due to the necessity

of balancing the stronger attraction implied by the decrease of a.
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So the satellite will spiral down, towards the earth’s surface, preserving
an osculating motion of almost circular type; after a certain time, for
instance a few hours, the original state is restored by firing the rockets and
suitably manoeuvering the satellite.

We shall assume (see e.g. (Rummel & Colombo, 1985)) that these control
operations are suitable to keep the satellite in a layer of radial distance
varying *5 km around a mean value. Already at that point, the image of the
mission we are designing suggests the idea of applying some boundary value
problem technique to determine the unknown anomalous potential; in general
this can be pursued, on condition that the data we have are expressed in terms
of point-wise functionals of the anomalous potential T. This can be very
difficult if our data are derived from some type of tracking, because the
orbit anomaly vector (i.e. the difference between the actual position of the
satellite and that calculated from a model gravity by orbit integration) is a
non-local functional of T; on the other hand gradiometric measurements are
local by their very nature and so they lend themselves to be easily handled in
a b.v.p. mode. To this aim it is much simpler to treat data that are ascribed
to points on a very simple surface, like a sphere; if we want to have that
property fulfilled we need therefore to move the observation points to a mean
sphere. There might be some objection to this approach, because it is very
much in the spirit of modern geodesy to avoid "reductions"; after all it has
been this concept to push for Molodenskii’s theory and, later on, for the
foundation of collocation theory. On the other hand we should take into
account that in our case the observation point will move in vacuuml, avoiding
errors due to the unknown mass density, and that we make computations within

the harmonicity domain where our functions are in any way smoothedz.

1It is easy to verify that the variations of density due to the residual

atmosphere in a layer of a few kilometers, are immaterial for the computation
of the 2nd order gradient.

2The transformation of the spectrum of a second derivative, going from the
earth’s surface to the level of the satellite, is governed by the approximate
_ h)2+3
R
radius) which assumes the values 0,2 or 0,04 or 0,002 for £ = 50 or 100 or

transfer function (1 (h = satellite’s height, R = earth’s mean



To move the gravity gradient components radially we need their radial

2
derivatives: since every component of I' = {55_%§_} in the degree ¢ of the
%25
spherical harmonic representation is also a homogeneous function of degree
-(£+3), we can write (note that I', as well as Fem, are 3 x 3 matrices),
] _ _ (£+3)
E FEm B r rem (2'4)

Just to fix the ideas, we shall think of rim as one of the V.. harmonic compo-

nents. Then it is

(k) (£+1)(£+2) (R)&+3
(Fem)” (ﬁ] ——Rz— [F] uem Yem((p,h) . (25)

Formula (2.4) is useful in the linearized equation

F(rg,e,A) = ZE Fe(ro,w,h) = 22 Zm Fem(ro,w,h) =

ér
= Foem(r,w,h) e z (£+3)I“o

Z,m & m

R

em(r,w,h) (2.6)

where the correction is expressed in terms of the "observed" harmonic compo-
nents FO&Jr,w,A) and of the radial shift 8r = ro-r. The summation in (2.6) is
over m ({m| £ &), and £ (£ = 0,1,2,...); we just ask ourselves what is the
error we would commit, if we computed the second term in the right hand side
of (2.6) by considering only the terms TIg,0,0 and Ty, as given (i.e. the
point mass and the J,-dipole terms). Referring to the (rr)-derivative and

setting3

200 at the height of 200 km.

3Please note that with the same notation u, in slightly different contexts, we
shall mean the normal potential, while &u will be replaced by the more
customary T to mean the anomalous potential.



Su =u - [%][1 + J2 u2,0 [g]z I—)z(sin ¢)]

(2.7)
BTy )er = (B0 )y,
we get
<8r2>
O‘Z(r) = —rz— Ze(2+3)20‘2(61"em) =
<dr2> 2 2 2(u 2(R 2l+e
= —= Z£(£+3) (8+2)7 (&+1) [ﬁg] [F] (Zmauim). (2.8)

In (2.8) we have implicitly assumed that the "orbit discrepancy" &r is

distributed independently from the geographical position (w,A)4, so that

L
E{sr2( £ 6u2 Yé )2} =
_em m m
¢
= <8r2> T 8u2 = <8r2>¢2(s8u) . (2.9)
m %lm 2

By assuming the simple Kaula rule, i.e.

10-10

and noting that u/R3 = 1.5 - 1076 sec ~2 after neglecting some minor terms, we

find

o2(Ir) = f?%fi (2.2) - 10712 . (1.6) - 10710 Z£(£+1)(£+2)(2+3)q2+3
(q = [?]2 = 0,94) . (2.11)

In order to use (2.11), to obtain a rough estimate of the error we must decide

on <8r2> and we have to estimate the sum

4

More precisely we shall agree that 8r is uniformly distributed in ro # S km
and that we would find the same distribution of ér even if we rotated the
underlying anomalous gravity field.



+00

z

£(q) (0+1) (£+2) (243)qt*3 =

2L
383 "2 g3 3 4
=q 73 {= - -q')
T 33 1% @ a -9
=@ (2 () -6 - 20 (2.12)
- @ gt T % T e - '

As for the first problem, we stipulate that the distribution of 8r in r * 5 km

is uniform. This is in reasonable agreement with the law (2.3). In this case

5
<dr2> = 1 J x2 dx = 8.3 km?
10 I¢
and
<dra> -7
—z = 1.9 10 . (2.13)

As for (2.9) a rough computation shows that

f(q) = 3.9 - 105 . (2.14)
Summarizing from (2.11), (2.12), (2.13), (2.14) we obtain

o(I') ~5.1 «- 10712 gec2 = 5.1 - 103 E , (2.15)

The estimate (2.15) says that with a realistic gradiometer the measuring error
will in any way dominate the error committed by moving the measure point to a
fixed sphere, while using in g; only the (0,0) and (2.0) terms.

Even in case we avail ourselves of a very accurate instrument, say with an
r.m.s. error of 1073 E, we can easily understand that, by accepting a certain
bias (say 10% of the coefficients) in a first iteration, one can exploit a
much better model to compute the reduction gg dr, so that a second iteration
is certainly not needed. At this point ws can already say that, after some
manipulations, our data are given at points on a sphere of radius R + h (where

e.g. h = 200 km) and we can proceed almost straightforwardly to form a field
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of mean block values, as customary in geodesy, after defining for instance a
suitable grid of equi-angular blocks; e.g. in the sequel we shall use systema-
tically a 19 x 1° geographical grid.

The last point to be discussed, before we can reason only in an earth-
fixed coordinate system (e.g. in radial coordinates r, ¢, A), is how to relate
the gradiometric tensor, which by 1its very nature 1is measured in a
satellite-fixed frame, to the same tensor in a local frame referred to the
(ex, &y, €z) unit vectors. The transformation from the instrument frame to an
orbit frame where z points in the radial direction, u is tangent (along track)
and v out of plane (cross-track), is a matter of identifying the attitude
either by some extra device (star-tracker)} or by exploiting the observations
themselves; as pointed out we shall not deal with this problem here. Yet it
remains to rotate from the orbit-related (u,v,z) system to the local system
(x,y,z) where x points to north, y to east and z to the zenith of the
satellite. The interesting point here is that there is an asymmetric behavior

between the ascending and descending arcs, as illustrated in Figure 2.1.

Ua

<V

ud
Figure 2.1: The geometry of ascending and descending orbit-related systems.

The azimuth A is given by the ratio of the earth’s velocity @ to the

satellite’s velocity, i.e. disregarding the sign,

tg A = "c% , (2.15)

with a satellite of 1.5 hours period and considering a local equatorial frame,

where it is maximal, we find A = 3.59,



Now the rotation can be accomplished rather easily if we take into account

first of

component

With these two operators we can find the two components of the tensor,
depend on the orientation but are worth measuring,
channels orthogonal to the u-axis,

lar drag effects.

all that the z axis remains

82T
352 does not need to be changed,
= -sin A o cos A —
ox ay
= sin A 9_ . cos A —
B ax ay

Namely we can write

ﬂ = —-gin A _6_.2__T_ - cos A _8_2_.1‘__

av,0z dxdz dydz

2T gin A &L | o a T

avqdz dx0z dydz '
which, combined, give

2 o2T il ) = -cos A 2T

2 dv,0z dvy0z dydz

The orthogonal combination, with the minus

tion compared with (2.18),

(< 6 10-

82T
av2
a

82T
ave
d

and again

82T
(av2

a

N =

because, while

2y, for the second derivatives

As

2
+ cos2 A é—; + 2 sin A
dy

82T

112
sine A —=
%2

32T

in2
sinc A —
ax2

2
+ cos2 A g§; - 2 sin A

combining the two in a sunm,

82T, _ . 5 , 82T , , 82T
+ 5@) = sin< A &‘2‘ + COS A W—
2.9

invariant so that for

instance the

and that

(2.16)

that do

because they involve only

which is the most disturbed by the irregu-

(2.17)

(2.18)

sign, conveys only little informa-

cos A ~ 1, sin A is rather small

one can write

cos A 827
9x 0y
(2.19)
32T
COSAW s
(2.20)



Taking advantage of the harmonicity of T, we easily reduce (2.20) to the form

1 82T | 82T 5, 82T _ 2 x _ iz ay 02T
5 (EVE + 5;3) + sin2 A 322 = (cos2 A sin2 A) 3z (2.21)

In this relation the first member can be considered as an observable and we
2
get in this way a functional relation to g—g: naturally this creates a corre-

dy
2
lation with the observable gzg, but since sin2 A = 3.7 - 1073, this corre-

lation is small and we shall neglect it in the further treatment of the data.
Concluding and summarizing we can say that after the radial correction,

after the block averaging and after creating the combinations (2.18) and

(2.21), we can assume that observation equations are given at the centers of

the blocks, which expressed in terms of spherical coordinates, read

_ 82T
l-‘zz - a‘r"z‘
= 1 3°T 1 aT
P2y = rcos ¢ 8rdrx T2 cos ¢ OA (2.22)
r.. = 1 32T _tg ¢ T , 1t
YY © r2 cos2p 9AZ rZ 3d¢ r or

It is the task of the boundary value problem approach to analyze these as
boundary relations for T, to indicate the more or less optimal methods to
derive from these a suitable solution and demonstrate how the theoretical
recipes can be implemented by practical numerical methods.

As a very last remark we want to stress that the information coming from
satellite observations and elaborated in the form of a b.v.p. will supply us
in the end with a solution which represents the anomalous potential T at the
satellite’s altitude; it is then an open question how this model can be
backward continued, down to the earth’s surface. We will not tackle this
difficult problem here, but we will confine ourselves to mention that the
easiest way of doing it is Jjust to represent T in a spherical harmonic
expansion and then truncate it to a maximum degree N: the truncated model then
automatically gives a representation of T at the ground level. Naturally, the
choice of N is a crucial point, because we would not like to amplify and

propagate too much noise in our model; the criterion for the choice of N will
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be discussed in the next paragraph. It is also worth mentioning that by the
way our series will not really converge on the earth surface, but fortunately
the degree at which adding new terms to the sum gives a worse rather than a
better approximation, is so high that we will not be able to come close to
such a resolution (Moritz, 1980)}. Henceforth we close the paragraph by saying
that our aim is to solve a b.v.p. with boundary conditions (2.22), in the
sense that we want to estimate the coefficients au&n of the expansion of T in
a spherical harmonic series on the earth’s sphere (r = R), up to some maximal

degree N to be specified later.

2.2. The observational model for spectral estimation from block averages.

In this paragraph we consider the problem of deriving estimates of the

harmonic coefficients u, of a function u defined on the unit sphere so that

+o £
u(P) = ie _%m u&]Y&JP) . (2.23)

As input data we shall consider the values of u on a set of points {P;;
i=1,...,4,) distributed in some way on the sphere; since this is for us
the most important case, we shall mainly consider P; as the centers of a
regular geographical grid, dividing meridians in N equal intervals and
parallels in 2N equal intervals, so that &,,, = 2N2 (for instance if N = 180,
lax = 64800, corresponding to a grid of 19 x 10 blocks). Furthermore we shall
assume that the available values of u{(P;} come from observations including

measurement errors, i.e. modelled by the equation

Up(Py) = u(P;) + vy ; (2.24)
if we assume a stochastic model for v;, for instance

E{v;} =0 (2.25)

E{Viv_j} = 0]2)61J s (2.26)
1
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we can formulate our problem as to derive estimates for u, from (2.23),
(2.24) (2.25), (2.26) when uy(P;) are given.

Stated in this way, it is a pure problem of spectral estimation on the
sphere and we use it as a preparation to treat the more complicated b.v.p.’s,
which however fall in a class of problems very close to this whenever the
boundary operator has diagonal representation in terms of spherical harmonics.

This problem has naturally received much attention from geodesists and we
Jjust mention some authors for reference, without any pretension of complete-
ness: (Colombo, 1981), (Marsh et al., 1988), (Moritz, 1976), (Pavlis, 1988),
(Rapp and Cruz, 1986), (Rummel, Teunissen, and Van Gelderen, 1989), (Sanso,
1990).

There are essentially two ways in which this problem can be approached:
one is to reduce the solution space by truncating the series (at most) at the
degree N, so that the number of unknowns, (N+1)2, becomes smaller than the
number of observations 2N2 (this happens at least if N Z 3) and then a simple
least squares approach can be applied, with or without prior information; the
other one 1is to consider first the data as a continuum, apply the very

definition of u, by a quadrature formula, 1i.e.

I

A

1
G4 = 7= & u(P)Y, (P)de , (2.27)

I
and then try to approximate this in terms of the discrete available data. Also
in this second case, as for the first one, there is a natural limit over which
any discretization of (2.27) would loose its meaning namely ¢ = N.

In fact it is just enough to consider u(P;) along parallels and observe
that for each parallel one has 2N observations, so that the corresponding
maximum frequency, above which the spectrum starts folding and the
correspondence between values and coefficients is lost (i.e. the so-called
Nyquist frequency), is exactly N. Before we come, in the next paragraph, to
describe the error propagation we can expect by following one or the other
approach, we must give some thought to the covariance structure (2.26) and see
whether and how it 1is verified under the theoretical hypothesis of an
instrument orbiting on a polar circular orbit and measuring at a constant rate

of 1/s Hz, e.g. 1 measurement every s = 4 seconds. As a first computation, let
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us start by disregarding the effect of the rotation of the earth on any single
orbit; since the angular velocity of the satellite is constant and equal to n
(mean motion), the satellite spends a time T = %2 to cross a belt of amplitude
Ap in latitude, taking t/s = A¢/ns observations; moreover if the nodes tend to
distribute uniformly along the equator, as for a mission of duration T there
are N. = g% cycles, i.e. 2N, = %I crossings of the equator, we expect that
dN, = %ﬁ N. of them will fall in a sector of width AA. Therefore if we have a

block of 8° x 8% we find in it about

n = ApAX T _ 82
07 272 s = 64800

0l

(2.28)

observations. For a mission of a duration of 6 months and a 19 x 10 block, we
expect 60 observations per block distributed as almost 4 observations along 16

different tracks.

Figure 2.2: Distribution of observation points.

As we can see this distribution does not depend on A, so that, if we allow
the earth to rotate under it in the average we must expect the same number of
observations per block. If we assume that each observation has an independent
error v with the same variance 03, we can also say that by averaging the
observed ug values over the points P;j; falling into the block

Bi; = {id = ¢ = (i+1)8; jd = A = (j+1)8}, i.e., by forming



_ 1 Do
UO(Plj) = n—o ?k uO(Pijk) » (229)

we should find a quantity affected by independent random noise

5y, = Lox (2.30)
Vi = — Vi 2.30
ij ng ik Uik
v
with variance og = oo Indeed ;ij is not the only error we commit by
0

expressing the average of u over the block B;; through (2.29), because there

is as well the bias, given by the formula

1 20
b(Plj) = U(Pij) - o Zk u(Pijk) . (2.31)
01

This error depends on the specific shape of u and on the exact location of
Pijx- A big effort has been devoted to the reduction of b; the simplest
solution is probably to note that the second term in the right hand side of
(2.31) represents some kind of average of u over the block B;;, so that we can

expect more closely

— 1 1 Do
b(Pij) = = I U.(P)dO'p - — Zk u(Pijk) =0 . (232)
By j By | No 1

Formula (2.32) would not be such a good step forward, if we took it
rigorously, because the action of averaging u over a square block is compli-

cated when expressed in spectral terms; however most authors accept the appro-

ximation of considering (2.32) as an average over a circular cap C of radius

Yo such that the area of C equals the area of B at the equator, 1i.e.,
nz
21'[( 1-cos WO) = N—z

In this way the integral operator in (2.32) becomes a simple moving
average, of which it is easy to verify the representation

J u(Q)dog = u(P) = = (P) (2.33)
C

tn B Y Yoa

Ql -

where [32 are the famous Pellinen coefficients
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1 Vo .
——— woi P2 (cos Ylsin ¢ dy . (2.34)

Be('//o) = 1
From (2.33) we see that our problem has just been changed from the estimation

of u, from ug(P;;), to the estimation of u, = By u, from uy(Py;). As we

haveezlarified, the stochastic structure of fﬂe errors Fij is that of a zero
average white noise of uniform variance og = og/no. This is verified if we are
right in claiming that the residual bias implied by the various approximations
is negligible as compared to the noise; a deeper discussion on the
representation of block averaging in spectral terms, with more references, can
be found for instance in (Rapp, 1989). Before closing this paragraph we want
to discuss the stochastic model we would obtain by letting the side of our
square blocks tend to zero.

We first note that by using (2.28) and (2.30), where we set Ny = T/s =

total number of the observations, we can write for any pair of blocks, identi-

fied by the coordinates (wi,Aj), (wz,hk) of their centers,

2 2n2

B Ve = %0 %5 v N B B (2.35)
Now we observe that the area of a block is given by Ac;; = cos ¢; Ap AA, so
that after introducing the field of measures
dpyj = vy Aoy ’
for the moment defined only on our family of blocks, we get
2n203
E{duij dugk} = 612 5jk Ny cos ¢i Aoij . (2.36)

Consequently for any pair of sets A,B constituted by a number of blocks, we

discover that

2n203
E{u(A)u(B)} = N J cos ¢ do . (2.37)
0  AnB
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Now if A and B are any measurable sets over ¢, by considering them as limits
of multiblock sets, we see that (2.37) continues to hold; since it is also for

any A

E{u(A)} =0 , (2.38)

we see that our field of stochastic measures, extended in this way, is in fact

2n202
No

measures to b.v.p.’s is illustrated in (Sansd, 1988). The most important

a field of Wiener measuress, with density

cos ¢; the relevance of such

application of such a measure is the definition, as a limit in the mean square

sense, of the corresponding integral of any square integrable function f
I = J £(P)du(P) , (2.39)

which is indeed a random function belonging to the linear space spanned by
{du(P)}.

Notably for such integrals, the Wiener rules hold
E{I;} = E{ J £(P)du(P)} =0 (2.40)

E{I;I5) = E{ JJ f(P)g(Q)du(P)du(P)} =

2n2c2
v

No

J f(P)g(P)cos ¢ do . (2.41)

These formulas will be of fundamental importance for the computation of error

" models in the b.v.p. approach.

5The other characteristic of Wiener measures, i.e. the fact that they are

normal random variables, is plausible in this case with the measurement
noise.
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2.3. The least squares approach.

From the discussion developed in the preceding paragraph we receive the

following problem; by defining a function

u(P) = £ (P)

tm Y Y
(2.42)

Y = Bl

of which we have observed values at the centers of a regular grid,

GO(PIJ) = G(Pl)) + Vij (243)
with a noise characterized by the stochastic behaviour

E{;ij} =0
(2.44)

E{v v

= 2
1] ek} s S c ’

i "jk o

we want to estimate {GEm}' Stated in this way the problem is naturally
underdeterminated (2N2 observations for a set of infinite unknowns), however
since we know that we cannot find any solution with a resolution higher that
that implied by the maximum degree N, we just substitute (2.42) by the

truncated formula

N L
u(P) = %2 _%m u, Yﬂm(P) (2.45)

with (N+1)2 unknown parameters, so that the problem becomes overdetermined and
we can apply to it a least squares criterion. Let us see how does it work in

this case. By forming the normal system we get

= ' {i?j Ynk(Pij)Yﬂm(Pij)}uEm = i?j Ynk(Pij)uo(Pij) (2.46)
(¢=n)



that we shall divide by 2N2, just for convenience in further computations. So
(2.46) is a classical normal system with the vector of unknowns

X = {Glm; Im| = ¢, £ =N}, with normal matrix

1
N=iopm = Y (P Y, (P D) (2.47)

and with known normalized term

L, = {2%7 Z Ynk(Pij)ﬁo(Pij)} . (2.48)
Naturally since the components of our unknown vector have two indices, the
same is true for Ly, while the elements of N have four indices. But it is easy
to understand how to vectorize it. The computation of the solution of (2.46)
would become a hard test whenever N > 100, was it not for the regular pattern
of the grid points Py;.

In fact, as pointed out by Colombo (1981), if we apply formula (2.47) by
summing first along the parallels, i.e. over the index j{a; =33, J =
0,1,...2N-1}, we can take advantage of the usual orthogonality relations

holding for finite Fourier transforms, i.e.

2N-1 sin mA; 1 0
Zj {Sin kAJ CcOSs kAJ} = N5mk . (2.49)
0 COS mA; 0 1 + 3pp

Accordingly the elements of the normal matrix N become

_ (1+60m) s g P
1

Vkotn = 7 20 %ak 21 Paln] @0P0)m| )) : (2.50)

Formula (2.50) implies that by reordering the unknowns as well as the normal

matrix first by degrees and then by orders (see figure 2.3) we find that N has

a block diagonal structure with maximum block dimension N+1.
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N+1

m=0 n=20
1
N N

m=1 n=1 ()
N N

Figure 2.3: Structure of the normal matrix after suitable ordering

of the unknowns.

The inversion of such a matrix poses no problem from the numerical point of
view. So we can find our least squares solution and we know that it is
efficient, i.e. of minimum variance in the class of linear estimators. This
nice property, however, holds only if the deterministic model is correct, i.e.
if there are no biases, since, as we know, the least squares approach is very
sensitive to biases. The method interprets the biases as additive noise and
spreads them among the residuals of all the observations in an effort of
reducing their amplitude. This is indeed our case since we can write for the

known normal term:
Jlu (P ) + v+ uN(P )]}
N ij i) 1]

= LN + Lv + LN , (2.51)

where we can put



u(P) = uy(P) + uN(P) =
N _ v
= §£,m ugm Yem(P) + Zz’m Uem Yem(P) . (2‘52)
N+1

Interchanging the summation in GN with that in (2.51) we see that

N
L ={Z

1 = _
N ol,m 2N2 [zi,j Ynk(Pij)Yem(Pij)]uﬂm} B

N x . (2.53)
Subsequently the normal system can be written as

Nx=Nx+L +LN , (2.54)
showing that the 1.s. estimate % would be unbiased only on condition that

IV =0 . (2.55)

Otherwise we have a bias in ; given by
E{x-x} = N-1 LN : (2.56)

To understand whether (2.55) has any chance to be verified, we can imagine to
study the limit of LN if we keep fixed the truncation degree N, but we let the
number of blocks Ny (which formerly was exactly 2N2) tend to infinity. After

we observe that

2n2
and that
Ac(P) = cos ¢ Ap AX ,

we can write
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Y (P W) Aoy

1
N =
L e zij ij’ cos ¢,

uN(P)
cos ¢

do} . (2.57)

This formula shows that LN does not vanish because of the presence of the term
(cos ¢)-1 describing essentially the density of data distribution which indeed
tends to increase towards the poles. In fact (2.57) tells us that all

frequencies ({,k) with £ > N but such that

LN 3
J P (¢)P (@)dp =0 , (2.58)
nk k
-2

will contribute to the bias in the (n,k) component of LN; in other words there
is an aliasing of power from the components (£, k) (£ = N) into the lower
frequency components. This aliasing is characteristic of the 1.s. approach.

We can observe that formula (2.58) enforces a "selection rule" saying that
odd degrees will generate aliasing in odd degrees only and similarly with the
even degrees. A few simple numerical tests have been designed to give evidence
to this phenomenon. At first 19 x 19 blocks were generated with a field6
truncated at Np,x = 90; the coefficients of this field were then estimated via
least squares and compared to the original coefficients. The software used was
a modified version of that written by Colombo (1981).

The comparison is displayed in Figure 2.4 in terms of the histogram of the

relative differences defined as

d = |est.coeff. (£,m) - true coeff. (£, m) |

[true coeff. (Z,m)] (2.59)

6In this as well as in the subsequent simulations the model 0OSU-81 has been
used.
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Least Squares Estimate
Input and Output Degrees: 0 - 90

Thousands
4._
3_<
2_
. LA ]
0 ,—v*h:((;(x"?‘—-—x\r\(@t: - __m —""‘I """" - A S A S
«1E-6; 1E-5 1E-4 1E-3 1E-2 1E-1 1 > 1
coeff ¢ | 0.014 0.17 1.534 | 1.898 | 0.254 | 0.027 | 0.001 | 0.035
coeff s| 0.084 | 0172 | 1.543 | 1.814 | 0.294 | 0.023 | 0.002 | 0.001

Bl coeff c N coeff s

Note: Only degrees 21 - 90 were compared

Figure 2.4: Histogram of the index d (2.59).
Input degrees 0-90.
Output degrees 0-90.

As one can see the result is not fully satisfactory. This however is mostly
due to numerical problems that arise in handling together unknown coefficients
with magnitudes ranging over 6-7 orders. In fact if we repeat the same experi-
ment, only eliminating the first 20 degrees, we get the result shown in Figure
2.5, which seems very good indeed.

This first experiment actually confirms the correctness of the least squares

estimates when the deterministic model is also correct.
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Least Squares Estimate
Input and Output Degrees: 21 - 90

Thousands
4
3 -t
2 —
1 -
0 - f — f f f f
< 1E-6 | 1E-5 1E-4 1E-3 1E-2 1E-1 1 > 1
coeff ¢| 3.82 0.124 | 0.009 | 0.002 0 0 0
coeff s 3.821 | 0.124 0.01 0 0 0 0 0

Bl cocffc XN coeff s
IC(Est) - C(Rapp81)I/C(Rapp81)

Figure 2.5: Histogram of the index d (2.59).
Input degrees 21-90.
Output degrees 21-90.

In the next experiment we rather want to put in evidence the presence of
aliasing. To this aim we have generated a 10 x 19 sphere by using only the odd
degrees between 91 and 101 of the O0SU-81 model; with this input we then
estimated, by the least squares algorithm, all the odd-degree coefficients
between 21 and 89. In order to weigh the amount of bias generated in this way,
‘we have compared the estimated coefficients with the (physically meaningful)

mean power of the same degree in the original model, i.e. we have computed the

index
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ratio = (2.60)
¢
1
2
241 2 Vin
&B o estimated coefficients
uzm true coefficients.

In Figure 2.6 we display the behaviour of this ratio for the degrees 89 and
87.

One should believe that the only coefficients affected by a significant
aliasing are those which are close to the cut frequency; in fact just

observing the absolute ratio

absolute ratio = (2.61)

and plotting only the orders and degrees where this index is larger than 0.5
and 0.1 respectively, one gets the distribution shown in Figure 2.7. One can
see that the influence of aliasing is in fact diffused also in the lower

degrees, in particular at low orders.
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Figure 2.6: Index (2.60) for degrees 89, 87.
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Ratio: Est.Coeff. / RAPP81 Coeff.

Ratio > 0.5
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Figure 2.7: Spectral positions of the coefficients for which the index (2.61)

is larger than 0.5 and 0.1 respectively.
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2.4. The quadrature formulas approach.

We return to the problem stated at the beginning of paragraph 2.3, as
defined by formulas (2.42), (2.43), (2.44). In this paragraph we follow a
different strategy of solution, namely we first try to transform the obser-
vation equation (2.43) into its continuous counterpart; then we give the exact
solution of the estimate of ﬁem for the continuous case, which is nothing but
a suitable quadrature formula; finally we use a discretized version of the
quadrature formula to arrive at the point where we can explicitly estimate Gem
in terms of the observable quantities.

This approach is not optimal, contrary to the 1l.s. approach, however it
avoids the aliasing implied by the truncation of the representation (2.42) at
a cut-off frequency. The only bias contalned in it is the unavoidable approxi-
mation of the quadrature formula by means of a summation.

Instead we need at least to compute the model of the error propagation,
within this approach, first of all to be able of judging upon its performance
and also to use it in further combinations.

In this paragraph we shall only analyze the case in which the orthonorma-
lity properties of the spherical harmonics at {Yem(P)} are exploited; more
general cases will be analyzed in the next paragraph.

So first of all we consider the limit of formula (2.43) and we notice that
this cannot be performed straightforwardly as the variance of Eij would tend
to infinity for (ApAA) » 0, according to formula (2.35); so in order to give a
suitable meaning to this limit process, we just write the equation by multi-
i.e. as

plying it by Aoy,

GO(PU)AO‘” = G(PIJ)AGXJ _ij ij (2.62)

and we reinterpret it in terms of fields of measures on the unit sphere. We

therefore define a measurement field duy(P) as
dpo (Pyj) ~ ug(Py;)Acy , (2.63)

its properties being defined by equating it to the second member in (2.62).

Furtheron, we define the deterministic field, related to its density u
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d”ﬁ(Pij) = U(ij) Aoij . (2.64)

Finally we define a purely random Wiener measure dy,(P), describing the obser-

vational noise

d“w(Pij) x ;ijAo‘ij y (265)
whose stochastic properties have been illustrated in § 2.2 ultimately in
formulas (2.36), (2.38). Let us note that in this case we do not have a real

density v(P), since there exists no regular function v(P) verifying the Wiener

properties (2.18), (2.19). Formula (2.62) then becomes
dpu (P) = du_(P) + du (P) . (2.66)
] u W

With such measures we can for instance compute Wiener integrals on the sphere,

so that (2.66) could be written in the equivalent form

J f dpg(P) = J £ u do(P) + [ f du,(P) , (2.67)
for any f square integrable over o¢. If we take f = %ﬁ ng in (2.67) we get
Lry, dug=13, + 7Y, du, : (2.68)
in Zm ¢m  4m Ln
and since
EAL £ Y, du} =0
an Lm W
we see that the functional
ﬁem = i—n IY, (P)dug(P) (2.69)

is a correct estimator. Naturally we cannot really compute (2.69) from the
observations at hand, i.e. from Go(Pij), however we can approximate (2.69) by

the discretized formula
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~

uem = lll—n Zij GO(PiJ)ng(Plj)Aolj . (270)

In this way we introduce a bias which represents the discretization error. As
we have already stated, in order that these estimates be meaningful, i.e. in
order that the discretization error be reasonably small, we must limit formula
(2.70) to the degrees £ for which £ = N, if the sphere o has been gridded by
2N2 square blocks.

As for the random noise propagated to a we can get

en’

~ _1
du, = J Y, du, . (2.71)

Therefore the error in the model that we can construct from the estimates ﬁe ,
m

is

~ —_— N ~ +0 —_—
e(P) = u(P) - u(P) = Eg’m 6u£m Yzm(P) - N?f’m u, YgéP) . (2.72)
We define the global mean square error as
E2 = E{; J e2(P)do} : (2.73)

where the expectation E is taken over the population of the noise du,. From

(2.73) we can write
E2 = E2 + EZ2 (2.74)
c (o]
where we have defined the commission error as
E{80° } (2.75)
oﬂ,m ﬂm ’ ’

and the omission error as
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- +00 . +00 -
Eo = I, JUp = 22 oy (2.76)
N+1’ N+1
n o .2

The latter part can sometimes be analytically computed if we assume some
simple law for the degree variances, e.g. like Kaula’s rule. As for the

computation of the commission error, from (2.36) we have

0‘2
2y = Y 2
E{Suem} 8N, J YEm(P) cos ¢ do . (2.77)

On the other hand by recalling the summation rule

n
S Y

(P)Yg (Q) = (2n+1)P,(cos yYpq)
_e m m

¢

and the fact that Pe(l) = 1, from (2.77) we find

2 A2 05(22+1)
_%m E{&uem} = NG J cos ¢ do =

c2(28+1)nw?
=V _ . (2.78)

8Ng
It is not desirable to push further this computation because the direct obser-
vation of ﬁo(Pij) is not a case of real interest here; whence, after having
explained the principle of the computation of E2, we close the paragraph only
‘reporting a small numerical experiment designed to control the bias intro-
duced by the discretized formula (2.70) (and by the numerical noise). To this
aim we have produced a 10 x 10 grid of values of a potential u truncated at

degree 160; more precisely we have used the 0OSU-81 model from degree 21 to

degree 160.
We have then used formula (2.70), discretized with Ac;; ~ 10 x 10 and
computed the corresponding coefficients ﬁl , with no other noise but the
m

intrinsic numerical one.
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The result, in terms of relative differences

|a

d = —&Inu—l_
2
is displayed in Figure 2.8, showing that the estimation procedure is quite
satisfactory.
B.V.P. Estimate
Input and Output Degrees : 21 - 160
absolute frequency ( x 1000 )
12 —
10 7
8 -
6 —
4 —
2 -
<1E-6 | 1E-5 1E-4 | 1E-3 1E-2 1E-1 1 > 1
coeff ¢| 11.238 | 1.033 | 0.267 | 0.183 | 0.152 | 0.129 | 0.035 | 0.004
coeff s| 11.386 | 1.05 | 0.271 | 0.172 | 0.115 | 0.042 | 0.005 0
Bl cocffc NNcoefrs
IC(Est) - C(Rapp81)i/C(Rapp81)

Figure 2.8: Histogram of discretization errors of quadratic formulas

in terms of relative differences.
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2.5. From b.v.p.’'s to quadrature formulas.

The problem now is to see whether and how we will repeat the reasoning of
§ 2.4, if instead of G(Pij) we are rather given, always at the centers of the

grid blocks, a functional relation defined through some boundary operator B
(BU)(PiJ) = fO(Pij) . (2.79)

Since the operators of interest contain radial derivatives also (e.g. in TI,,
as defined in (2.22)), formula (2.79) would not be meaningful if not
complemented by the harmonicity condition in the exterior of the boundary
sphere

Au =0 , (r > rg) ; (2.80)

it is in fact the harmonicity condition that relates the values of u within
the domain (r > rp) with the values of u on the boundary (r = rg).
Again we must transform (2.79) into an observation equation involving
fields of measures on ¢; whence we put
fo(PU)AO‘U ~ d“‘O(Pij) (Observation field) (2-81)
vy 80y ~ dpy(Pyj) (observation noise) (2.82)
and we write

duo(P) = (Bu) (P)dop + du,(P) : (2.83)

We must give a precise meaning to (2.83). We then take any square integrable

function g defined on o, (g € Lg), and set
<gp> = 2= § g(P)du(P) (2.84)

where the integral should be interpreted as an usual integral if u has a

regular Lg density (du = pdo, p € Lg), or as a Wiener integral if u is a



Wiener measure. With this convention, we stipulate that (2.83) means
<g,lp> = <g,Bu> + <g,u,> , (2.85)

whatever is g in Lg.

As we can see, in (2.85) it is written that if we compute the functional
<g,M,>, with the field of observations py, we get a deterministic part and a
stochastic part, <g,u,>, of =zero mean, which has the characteristics of a
noise. It follows that if it is our aim to find some functional h of u, namely

if we want to estimate <h,u>, with no bias, we must only find g such that
<g,Bu> = <h,u> . (2.86)

Any operator of interest to us is a polynomial in the differential operators
a 8 8

8¢’ 8x° a8r
of isclated poles, like

whose coefficients are smooth functions of ¢, A with the exception

etc. Under these conditions it is easy to see
cos ¢

that the domain of B in Lg
Dg = {uel?2 ; Bue L2}
o o

is dense in that space. Consequently it is possible to give, in a unique way,

the definition of the adjoint of B, namely
<B*v,u> = <v,Bu> . . (2.87)

If we extend, when necessary, the definition of B to make it equal to (B*)*,
we find that both B and B* are closed operators, i.e. the graph {u,Bu},
considered as a manifold in the product space Lé ® Lg, is closed. For these
operators a very useful theorem was stated by Banach, the closed graph theorem
(cf. Yosida, 1978, chap. II, § 6) maintaining that if B (or B*) is defined on
the whole space, Lg in our case, then it is continuous. Now assume that both B

and B* are invertible, i.e. that

Bu=0=>u=0 ; Bv=0=v=20 (2.88)



and that the range of B, Rg = {Bu; u € D}, is closed; then first of all Ry is

dense in Lg as if v 1 Rg then, V u € Dg (which is by hypothesis dense in Lg),
0 = <v,Bu> = <B*v,u> s B'vy = 0= v =0 ;

consequently Ry is the whole Lg since it is a closed set, dense in such a
space; therefore B~! happens to be a closed operator defined on the whole
space Lg and then it is also continuous (i.e. bounded) by the closed graph
theorem. The same holds true for B* by the symmetry of the adjunction opera-
tion. A very useful sufficient condition guaranteeing the applicability of the

above theory is that
<u,Bu> = <B*u,u> Z c|uj? (2.89)
as mentioned in (Yosida, ibid (Chap. VII, § 5, corollary 2)J}.

Before returning to our specific problem, let us mention that even if for

a certain operator B it is not true that
Bu=0=2u=20 R

but we can find a subspace of Lg such that (2.89) holds in this subspace, then
our theorem will be true on this subspace only and in particular both B-1l and
(B*)"! will exist as bounded operators in this subspace. Now we can go back to
the problem (2.86) and assume that B is such that (2.89) is satisfied (at
least for a subspace of Lg); we observe that in (2.86) the unknown is g, while
u is an arbitrary element in Dy, which is by hypothesis dense in Lg; then

(2.86) is equivalent to
B*tg = h (2.90)
and the solution of this equation, i.e.

g = (B*)"1h
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exists and is unique for every h € Lg by virtue of our assumptions. Let us

take now

and we see that we can formulate the following theorem.
Theorem: If B has a dense domain in Lg and if condition (2.89) is fulfilled,

then there exists one and only one sequence of functions 21&m in Lg, i.e.

= +3)-1
Zem (B*) Yﬂm , (2.91)
such that {Z&m’BYﬂm} form a complete bi-orthogonal system
<Z£m’BYnk> = Senaek (2.92)
and that the functionals
~ N
u, <Z£m,u0 (2.93)

are unbiased estimates of u if po 1is related to u by the observation

&n)

equation (2.85). The same holds true for any closed subspace of Lg, spanned by

a subsequence of {YEm }, if condition (2.89) is fulfilled in this subspace
imj

only; in this case {22 }o= {(B*)1 Yé } is bi-orthogonal to all {BY }

imj imj Zimi

as well as orthogonal to all {Y&ﬁ not belonging to the subsequence mentioned

above. Some important remarks are in order when considering the possible

applications of this theorem to our problems.

Remark 2.5.1: 1f B commutes with the rotation group, i.e. if we can state that

for any rotation operator R defined by

Rf(x) = £(Rx) (2.94)

7 On the right hand side R means only the 3-D rotation matrix to be applied
to the vector x, identified by a point on the unit sphere ¢.
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we have

RBu(x) = BRu(x) , (2.95)

then the operator B is diagonal in the spherical harmonics representation, and

more particularly

BYem = bBY&n , (2.96)
so that B is also self-adjoint and, if bB # 0, we have
z, =Ly (2.97)
n bg U ’
In case be = 0 for a sequence of degrees {{;}, we still have formula (2.97)
t

for n{n;}, and we also know that the coefficients u, ~are not estimable from
i

our observation field pg. The same remark is valid for operators not commuting

in general with rotations, but in any way diagonal with respect to the basis

{Yim}, i.e. such that
BY, =b,Y . (2.98)

Remark 2.5.2: Up to now we have not considered the action of block averaging
our observations. As 1t was pointed out in chapter 2.2 this action can be
approximately described by a moving average operator A defined by

Au(P) =

S~ ulQ)deyg (2.99)

Cp

al lw

where Cp is the spherical cap of center P and of radius ¥, such that its
surface C = 2n(l-cos Yo) has a pre-established value. The operator A commutes
with rotations and it has the diagonal representation

AY (2.100)

tn = Bo¥on
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where BE are the Pellinen coefficients already mentioned in chapter 2.2 (cf.
(2.33) there). For the block averaged field we must then substitute the

observation equation (2.83) with
diug = (ABu)de + dp, , (2.101)

where dﬁw is again a Wiener measure with the stochastic structure related to
the individual error variance 05, as in formula (2.36) of 2.2. Accordingly the

sought sequence sz becomes in this case

i

-1 -
(B*A) Y&n

-1 -1 =
ATL(BY) Y,

-1
A Z&n . » (2.102)

When B is diagonal over the basis {Y, }, then (2.102) is very easily computed,

im
since then

_ tm 1
Z = A"l T = Y ; (2. 103)
tn BBy, I

if B is not diagonal however, (2.102) can be easily computed only if the

explicit form of the representation of 2&n in terms of sz is known.

2.6. The numerical solution of gradiometric b.v.p.’'s: examples.

In this paragraph we shall apply the theory of chapter 2.5, to construct
global models starting from the knowledge of the observables Fzz or Fzy or Fyy
(cf. chapter 2.1), given as the average at the centers of the blocks of a 19
x 10 degree grid. Assuming that one has about 60 measurements per block with

o, = 1072 E, one would expect for the average noise a oy value

og = 0.13 1072 E . (2.104)
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We have applied the same noise (2.104) to each of the components, although we
know that Fzy is expected to be a more noisy observation.

To be more precise we have performed numerical experiments with Fzz and
Fzy, for which the system {Z&n} is easily found. As for the Fyy, although we
have a theoretical recipe to find approximately Z&n, the corresponding numeri-

cal example is still a work for the future.

a. The I',, component.

In this case the boundary operator is (cf. (2.22) in chapter 2.1)

this is naturally a rotationally invariant operator with eigenvalues

_ (@+1) (4+2) [5]£+3 (2.106)

L R2 T

As we see b, are all positive so that the theory of chapter 2.5 applies and we

4
can simply put

~

_ 1 _
tn = Dodn YpnHo” =

u
12
N 1
(A“O(Pl_]) = rzzo(Pij)AO‘ij) , (2.107)

expressing our estimates in terms of the observables. What is interesting in
formula (2.106) is not so much to prove its effectiveness in retrieving the

potential coefficients, but rather to study how the noise 1is propagated

12
through it. A first look at the ratio between input power per degree ( Z, uzm)
12 . -t
and estimated power per degree ( Z up ) as it 1is shown in Figure 2.9,
_Em m

confirms the quality of the estimate when no other noise but the numerical one
is added in the experiment; the oscillation band, as one can realize, is

smaller than * 1%.



BVP: Coefficients Estimate

Z Z Derivative {Odd Degrees)

1.008
1.007 -
1.006 -
1.005 —
1.004
1.003 —
1.002 -
1.001

0.999 —

0.998 -
0.997

0.996 —
0.995
0.994 —
0.993 -

0.992 T T T I T T T T T T T T T T T
] 20 40 60 80 100 120 140 160

Mean Output Power / Mean Input Power

Degree L

Figure 2.9: Ratio of estimated power over input (true) power per degree.

It should be noted that in this case no B2 coefficients have been applied,
~because we have as a matter of fact used point values for T,,. As for the
error propagation, it can be derived theoretically from (2.107) and the Wiener
rule; noting that p, is the random part of pg we can write

~

_ 1

Following the same reasoning as in chapter 2.4, formulas (2.73), (2.74),

(2.75), (2.77), (2.78), we find here
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Ny 02(28+1)m?
v

2 =
Ec 22 —_Stq()-—b%__— . (2- 109)

We can transform this into the commission error for geoid undulations by using

the Bruns’ relation so that a potential T is transformed into a height anomaly

Al
I
S|

In this way we find

E.(Q) = E;-—T) (2.110)

and we can plot E.(Z) against the maximum degree N, obtaining a representa-

tion well visualizable in cm units: the curve is shown in Figure 2.10.

Cumulative Commission Error

Theoretical Curve

1.5

1.4 —

1.3 -

1.2 1

1.1 7

(em)

Error
o
©
|

0.5 T T T T T T T T T T T T T T T
0 20 40 60 80 100 120 140 160

Degree L

Figure 2.10: Theoretical cumulative commission error.



This curve has been tested against its empirical counterpart obtained from a

discretized version of (2.107), i.e.

~

s, = bZW Zi5 Yy, (Piy)Bum,(Pyy) (2.111)

where Ap,(P;;) was generated from

Auw(Plj) = vij Aoij ,

by extracting a white noise Fij with an r.m.s. 0.13 : 1072 E. The result can
be seen in Figure 2.11 and despite the presence of a small systematic

difference, we consider it as a confirmation of the theory.

Cumulative Commission Error

Theoretical and Empirical

1.63
1.56 -
1.49 -
1.42 S
1.354
1.28 4
.21 4
14
.07 S
.00 4
.93
.86 1
.79
.72
.65
.58
.51 4

44 T T T T T T T T T T T T T T T
0 20 40 60 80 100 120 140 160

(em)

Error

OO O OO O O O F =

Degree L

Theor. Emp.
Figure 2.11: Comparison between theoretical and simulated cumulative

commission error function.
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Another important qualitative information we want to draw from this
experiment is the ratio between the mean square power of the signal to be

estimated and the mean square power of the noise affecting it, i.e. the index

(2.112)

This is shown in Figure 2.12 and we see that in the range 2 = ¢ s 160 the
signal to noise ratio is well above 1, in fact it ranges from 500 to 10.
Before passing to another example we want to solve the problem of defining

the cut-off degree in this case. To this aim we must note that the commission
02 (28+1)n2
2
8N0b£
omission error, if we assume a simple Kaula’s rule, will decrease with
AP 10-10 . -
R 1.6 —3 we must stop our estimation at that degree N where the former

equals the latter since, from this point on we expect the oscillations caused

error Ei will increase degree by degree by the quantity , while the

by the propagated noise to be larger than the power of the corresponding
degree. Equating the two terms and recalling formula (2.106) we find after

some obvious simplifications

6 20+6

4.8 - 10°% g =1
(q = 6:600,
9 = %200

‘ which has the solution

L = 250 . (2.113)

This value seems a little pessimistic but not too far from other results on

the same problem (cf., 0. Colombo, 1989a).



Signal / Nolse (Mean Square Values)

Signai / Nolse (Mean Square Values)

BVP: Signal to Noise Ratio

Z Z Derivative (with O orders)
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BVP: Signal to Noise Ratio
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Figure 2.12: Signal to noise ratio degree by degree.



b. The ' component.
zy

In this case the boundary operator is

1 82 1 e}

B = r cos ¢ 8roAa " 2 cos ¢ 8A : (2.114)
so that, observing that
a = -
s ™ Yy ;
we find
_ m(£+2) R.%+3
B Yim = Cos ¢ R2 () Y&_m ‘ (2.115)

Now we must observe that the operator {cos ¢B} is such that its range is
spanned by {Y&{ m # 0}, i.e. it is a subspace of Lg, In this subspace its
eigenvalues b&n are all positive so that we can define a bi-orthogonal system

{Z&J by the formula

¢, -m
P

m=#0 (2.116)

Z&l= Cos ¢

r

[b _ m(2+2) [R]e+3]
dn ~ T RZ

The bi-orthogonality of Z&]with BY&lis obvious and thus we see that

A~ 1 _
Yy = Im I Z&]duo =

1
= 5 In J YL-m cos ¢ dug , m=#20 (2.117)

2

is the proper unbiased estimation formula. The correctness of (2.117) can be
verified for instance by a graph analogous to that in Figure 2.9, where the
ratio between mean input power and mean output power is displayed degree per

degree. The oscillation band is now smaller than * 1 9/,, (cf. Figure 2.13).
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BVP: Coefficients Estimate

Z Y Derivative (Odd Degrees)
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0.9999 —
0.9998 —
0.9997 —

0.9996 -

Mean Output Power / Mean input Power
i

0.9995 —
0.9994 —
0.9993 -
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Figure 2.13: Input and output power ratio per degree.

In this case the propagated noise and the corresponding curve of the cumu-
lative commission error in terms of geoid undulations is not easy to compute

theoretically, however it can be computed for a numerical experiment from

2 1 XN ¢ ~2
E.(Q) = " gg jm Su, (2.118)
where
S0, = b Ty cos ¢ d (2.119)
tn ~ b, 4n 2,-m ¢ Gl ' '
m



The result is shown in Figure 2.14, where we immediately see the inferior

quality of the coefficients determined from T as compared to those

zy

determined from I,,.

Empirical Cumulative Commission Error

Y Z Derivative
28

26

22 -

20

18

16 —

Error ( em )

12 -

10 -

0 20 40 60 80 100 120 140 160

Degree L
Figure 2.14: The cumulative commission error.
This fact is also reflected in a less favorable signal to noise ratio, which

reaches the value 1 already at degree = 160: the corresponding curve is shown

in Figure 2.15.
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Figure 2.15: The signal to noise ratio for the I',;, observable.
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c. The Ty, commponent.

This case is significantly more complicated than the others, because of
the form of the boundary operator

1 a2 tg ¢ 8 8

_ _ 1
B = =2 ¢ A2 r2 3p 't ar (2.120)

It is not obvious here how to visualize the set {Z&n}; so it Dbecomes
meaningful to check condition (2.89) of chapter 2.5, to be sure that such a

sequence exists. As a matter of fact we see that

1 = o1 8Ty,
an <T,BT> = 4in i rZ cos? ¢ (ah) do

1 aT

T I Jdx J dep sin ¢ T 3¢ +
1 1 8T
+ In I T(F g)do‘ . (2.121)

The first integral in (2.121) is negative or zero; the second can be written

as

_ 1 . 1 pT/2 1_ 1 >

Anre J da [sin ¢ 2 T ]—n/z Yan T 22 Jdo T
__ 1 PO o _ 1 2 (R)2l+4a
= - i [T2(p = ms2) + T2(p = - w2)] + 5R2 Ze’m u, [r]

The third integral is easy to compute in harmonic components, to give

1 6T 1

1 _ 2 [R)28+a

By combining the three integrals we see that

1 < _ 1 1, 2 (R)28+a
o <TBT> S - gz 2+ 5)“em[F] z

(2.122)

itA

1 5 u2 R 28+4
ﬁz Zmr
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so that -B satisfies the required condition and the theory of chapter 2.5
applies.

As for the determination of Z&“ this can be devised only by an approxi-
mate algorithm, that we summarize in the sequel. The first step comes from the
consideration that BY&n is proportional to cos mA or sin mA, according to the

sign of m. Accordingly it becomes natural to put

COS mA m=z20
2, =X, (p)cos ¢ (2.123)
I I -sin mA m < O s

Xp o = %o )

where the choice of introducing a factor cos ¢ 1is Just for convenience. By
applying the orthonormality relation

n’ 2

8 ,
j mk

after separating the dependence from A, we arrive at the relation

145 n/2 _
——mo J X, (¢)D P (¢)dp = &, R (2.124)
m jm  jm EJ
-Tt/2
where
Dy, = [-m2 - 1 sin 2¢ 9 _Jt (1 + cos 2¢)] (2.125)
Jm 2 Op 2 ) :

On the other hand we can put

(jr21+1 cos 2kg sin 2kg (j even)
= m
Dijjm = Zk Djk (2126)
0 sin(2k+1)g cos(2k+1)e) (j odd)
(m even) {m odd)

where the coefficients D?k can be expressed explicitly in terms of Kaula’s
inclination functions (cf. (Brovelli & Sansd, 1990)).Accordingly it comes

natural to put
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+0 cos 2k¢ sin 2ke
X, = Z X, , (2.127)
sin(2k+1)¢p cos(2k+1)yp

with the same ordering as in formula (2.126). Inserting (2.126) and (2.127) in
(2.124) we get four infinite systems according to whether m is even or odd and
both j and £ are even or odd; the cases j even and ¢ odd or vice versa are
automatically accounted for by the simple fact that cosine and sine functions
are orthogonal (over [-m/2,m/2]) because one is an even and the other an odd
function. Naturally we are not able to solve numerically infinite systems, but
we can always truncate the sum in (2.127) at a certain number L; one should be
aware that in this way some aliasing is introduced, however we expect it to be
very small if we take e.g. L = 300, because in this way all frequencies up to
600 are represented. An interesting remark 1s that once the coefficients X?k
are computed, and this can be done once for all, it is possible to give an
explicit formula for the estimate ﬁ&n by combining them with the Fourier

>

coefficients of the observational field ryr

2.7. How to deal with the overdetermined b.v.p.’s.

So far we have discussed how to determine the coefficients of the
anomalous potential from one set of data; for 1instance we have treated

separately the three types of observables TI,,, T I',y,. In this way we get

zy> yy
three different estimates of the same set of coefficients with the exception
of the coefficients of order zero, which cannot be estimated from Fzy;
moreover it is to be noticed that in principle it is not reasonable to assume
that from each of the three observables the coefficients are estimated up to
. the same maximum degree L.

Hence we can say that if we introduce a vector x defined as
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Ugo

Ug -9

Ujo
X = U11 (2. 128)

Uz_2

uLy

and a projector P selecting which coefficients are estimated from one specific

observable, we can write the observation equations

X = Pix + v (2.129)
and consider the problem of deriving one common estimate x from (2.129). We
will do that by applying the least squares method, which is known to supply
optimal estimates (among linear estimators), when the correct stochastic

structure of the residuals v; (i.e. X; which enter into (2.129) as pseudo

J
observables) is taken into account. Before doing that however an important

remark is in order.

Remark 2.7.1: When we put the problem of combining the estimates §j by
equations (2.129), we have already abandoned the request of an optimal
exploitation of the observations, even in the field of linear estimators.

In fact in principle no finite vector, like X, can draw completely the
information contained in a continuous field, e.g. T',,: 6nly pushing the degree
of estimation to infinity, in spite of the fact that each single coefficient
can carry only very little signal as compared to the noise, can we have a
complete extraction of the information from the observations. This purpose can
be pursued and would lead to optimal estimates obtained as solutions of
suitable integral equations (cf., Sanso, 1988); this approach however is more
complicated and it is beyond the scope of this work.

Then we go back to the problem (2.129) and, for the moment, we assume to

be able to compute the covariance matrices Cj of §j; it should be noted that



if we assume that each estimate §j is derived from a different and independent
observation, then we can assume that also §j and §k are independent for j # k.
With this specification the least squares estimate from (2.129) is

obtained by the formula
R - -1 —1a
x = (£PJC'Py)  TPICTTX : (2.130)

We can observe that, should each observable supply an estimate for the same
set of coefficients so that P; = I, then formula (2.130) would assume the form

of a single vector weighted average
-1,-1 -1a

Also, according to the least squares theory, we are in principle able to

compute the covariance matrix of x, namely

1

C.. = (Z,PIC; Py)” (2.132)

and to test the hypothesis, implicit in our formulation, that the theoretical

value of og is 1, based on the sample estimate

2 ity
oo = Tn, = (L2 (2.133)
(n; = dimension of PJQJ) ,

and on the customary use of the x2 statistics. Noting that the dimension of
the normal matrix, i.e. the dimension of x, is (L+1)2, the computation of
(2.130) would be a serious problem, was it not for the particular shape of Cj,
which comes out to be block diagonal, at least for the cases of interest in
gradiometry. In fact we can observe that for all three observables studied
here, the bi-orthogonal system {Z&} is such that it is proportional to simple
trigonometric functions in A, so that for any function p depending only on ¢,

we can state



-1 -
<Z£m,p§k> == J sz(P)an(P)p(wP)do =0 (2.134)

whenever m # k.

Subsequently let us start from estimates of the type
G&n = <2, ,Ho> , (2.135)

where the observational field contains a noise (Wiener field) du, with covari-

ance structure
E{du,(P)du,(Q)} = 8(P,Q)p(¢p)dop R (2.136)

as it is for us (cf. formula (2.4) in paragraph 2.2). Then from formula
(2.134) we see that

nk

E{(uem—uﬂm)(u —unk)} = E{<22m’“w><znk’“w>} =

= <Z£m,p(w)2nk> = (2.137)

- Cen,mamk
Formula (2.137) shows that when the components of x are reordered, first by
order and then by degree, we find for the covariance matrices a block diagonal
structure. In other words, formula (2.130) can be applied by splitting the
computation order by order, so that at most we must solve systems of a few

hundreds unknowns each time.

Remark 2.7.2: Although with the above discussion we see that our solution is
now computable, one could be willing to produce a quick estimate of x at the
expense of optimality, but without introducing biases. This can be done by

simply taking a weighted average of the estimated coefficients.
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3. TIMEWISE APPROACH.

The classical theory of global spherical harmonic analysis of the earth’s
gravitational field from tracking observations to artificial satellites has
recently been described e.g. in (Marsh et al., 1988) or in (Reigber, 1989). In
essence, in a linear least-squares adjustment the spherical harmonic coeffi-
cients are determined from a large number of tracking observations, such as
range, range rate, or Doppler measurements. Now and in the sequel the coeffi-
cients shall be denoted AE&n and Ag&; (the difference between the actual
series coefficient and an approximate value, used for the computation of the
reference orbit). The elements of the design matrix, connecting the
observations with the unknown harmonic coefficients, are derived from the
equations of motion. They are computed by numerical integration simultaneously
with the integration of the reference orbit. In the early days of satellite
geodesy considerable effort has been invested into the'development of adequate
analytical theories for their determination. The estimability of individual
coefficients largely depends on the quality of the employed measurements and
on the orbits of the involved satellites, in particular their resonance
characteristics.

With the introduction of new satellite techniques, such as satellite-to-
satellite tracking (SST) and gradiometry, the classical theory needed to be
revisited. Typical for the new techniques is
- the orbit altitude is chosen extremely low (160 to 220 km);

- the inclination is close to 90° (polar orbit), and

- in principle a continuous stream of homogeneous measurements becomes avail-
able, independent of tracking from ground stations.

Thus the expectation is that the spherical harmonic coefficients can be deter-

mined complete up to high degree and order, from one satellite mission only.

This implies, for example, for an expansion up to N = 200 or 300 an adjustment

with 40 000 or 90 000, respectively, unknown coefficients. In principle even

for problems of this dimension, with the use of modern vectorized computers,

the classical approach can be followed and simulations in this direction have

been successfully carried out by Balmino & Barriot (1990). However the effort

is enormous and it is logical that more economic methods are investigated. The



computational burden but alsc the new situation of obtaining practically a
continuous data stream suggested to look into semi-analytical methods that
would produce block symmetries in the system of linear equations to be solved.
Such an approach promises computational advantages so important that a slight
loss in model precision would be acceptable, if the latter can be compensated
by carrying out several iterations. This approach shall be denoted timewise in
the sequel since the observations are considered functions of time.

The timewise approach was conceived for spherical harmonic analysis of SST

data, see (Kaula, 1983), {(Wagner, 1983), and (Colombo, 1984a). Thereby the

observable range rates or the coefficients of their expansion into a Fourier
series are connected with potential coefficients through the solution of
Hill’s or Lagrange planetary equations. More recently Colombo (1987 and 1989a)
followed a similar approach for the components of the gradient tensor. In a
certain way this case is easier than that of SST, because gradiometry and
orbit improvement can be kept almost separately. It requires in a first step
computation of the second derivatives of the disturbance potential expressed
e.g. 1in Keplerian elements, (Kaula, 1966). This way a linear connection
between gradients and potential coefficients is established. In a second step,
the linear relation 1is used for error propagation so as to yield the a
posteriori variance-covariance matrix of the potential coefficients. It
becomes block diagonal since the expressions decouple according to order m and
parity (n-m). Hence no orbit uncertainties are taken into account. Their

inclusion would however be straightforward.

. 3.1. Principles of timewise method.

The principles of the timewise method for the error-analysis of gradio-
meter measurements have been developed by Colombo (1987 and 1989a). They shall
be described and extended in this and following parts of chapter three.
Thereby the notation shall be similar to that commonly employed in dynamic
satellite geodesy and therefore quite different from that used in chapter 2.

From the solution of Laplace’ equation outside the attracting masses the
gravitational potential of the earth can be written as an infinite series of

spherical harmonics:
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£+1
V(P) = % =* {B_] m%e [C&n cos mA + §&n sin mAP]?%m(cos 6,) (3.1)

2=0 \'P 0
=1
with p = GM the gravitational constant times the earth’s mass, R the mean

radius of the earth, {6p,Ap,rp} the spherical coordinates of the computation
point P, {Ezm,§2m} the infinite set of fully-normalized spherical harmonic
coefficients of degree £ and order m, and P&n the fully-normalized associated
spherical harmonics. In case a geo-centric coordinate system is chosen, the
coefficients of degree one become zero by definition.

Introduction of a known set of approximate coefficients ¢, and Eim leads

Im
to a corresponding expression of the disturbance potential T:

L+ '
= @ ® B___ 2 ~ = . =
T(P) R EZ [rp] = [AC&n cos mAP + AS&n sin mAP]P&n(cos ep) (3.2)
=0 m=0
%1
where AC, =C, - ¢ and AS, =S, -s are considered the unknowns of

our problem.

For the timewise approach the problem has to be formulated along the
orbit. Hence (3.2) is transformed from the earth-fixed {6,A,r}-system to the
orbit system, where the disturbance potential becomes a function of the Kepler
orbit elements a, e, I, §, w, and M (semi-major axis, eccentricity,
inclination, right ascension of the node, argument of perigee, and mean
anomaly). This transformation is described in (Kaula, 1966) and has been

" recently discussed in (Sneeuw, 1991). It leads to

= e—m:e
La1 AC
T(P) = Ho * (R stostE (9 tn cos ¥,  (3.3)
R e_ I'p _ _ Zmp Y= Emp
=0 m=0 p=0 ASEm
l-m:0
A§ e—m e
In .
+ | sin ¢%m }
AC P
l-m:0
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where

F&m(l) ... normalized inclination functions
and
w&m = (-2plw, + mw, (3.4)
with
W, = w + M ("o" referring to "orbit")
and
we = Q - B¢ ("e" referring to "earth").
With w&m= ¢&m(t-to) the disturbance potential T is expressed as a function

of time along the orbit.

In eq. (3.3) a number of assumptions is contained. The orbit is assumed to
be circular (e = 0). Consequently e does not appear in (3.3) and no eccen-
tricity functions need to be introduced, cf. (Kaula, 1966). Small eccentrici-
ties could be introduced quite easily, however. For the nominal or reference
orbit it is assumed a = e=1-= 0 and constant Q, b, M and éc (earth’s angular
velocity). Eq. (3.3) has the structure of a time series of T from which it
should be possible to determine the unknown coefficients AERm and Ag&{

In gradiometry the second derivatives Vij of the gravitational potential
are measurable. Ideally they are measured in a local orthonormal cartesian
triad, the instrument frame. After subtraction of the approximate gradients

V' , computed with the chosen normal field, we arrive at iy = Vi5 = Viy. The
ij

r can be built from the first and second derivatives of V in the orbit

ij
elements r, I, wy,, and w,. Denoting
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B {-m: even
AC

_ &m
@, = _
S ) 2-m: 0dd
and
_ ¢-m: even
6 - AS&n
&n - —
Ac&mﬂ—m:odd

eq. (3.3) is written as

R 2 e

b ¥ TV F (I){a, cos ¥ + B, siny } . (3.5)
R ) r Emp Im emp Im gmp

=0 m=0 p=0

Then we obtain, for example, for T.. = 82T/8r2

241
Tr =g° ZA [—] = F&m(l){a&]cos w&m *+ B, sin w&m} . (3.6)

and
Ag = (8+1)(8+2)/r2

For convenience the index range of the ¢, m and p summations has been sup-

pressed. Analogous expressions are found for all other derivatives in r,

I, w,
and w,.

They are contained in Table A-1 of Appendix 1.

From Appendix 1 we take the expressions for the second derivatives Ti; in

the local cartesian gradiometer triad. They are given in Table 3.1.
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TABLE 3.1: T;; components in local cartesian gradiometer triad.

WoWo

-1
Tyy 5— [tan w T -tan w_ cos I T +cos I T +T ]
r<sin I cos wg 0 We 0 Wwg Wy  Welg

1 1
sz F Tl‘wo FZ T(J)O
Tyy “Txx T2e
T,, __ ! 3 -1 O R N &
y r sin I cos wg r “w, r Wo Wer rwg
1

-1
rsinwg 7 1t Tt

TZZ Tl" r

From Table 3.1 it is seen that the components Tyy and Ty, can be written in
two ways depending on whether they are based on the curvilinear coordinates
{r,I,w,} or {r,w,,w,}. The same holds true for Tyy, but we prefer to derive it
indirectly from T,, and T,, via Laplace’equation. Furthermore we observe that
Tyy and Ty, contain sin w, or cos w, in the denominator. They will cause
singularities for certain arguments, but much worse, spoil the orthonormality
properties of our "sine-cosine"-series to be used at a later stage. There
exist two strategies to circumvent this problem. One is described in (Schrama,
1990; appendix B)}. Thereby the upper expressions of Tyy and Ty, are multiplied

by cos? w, and the lower ones by sin2 w,. The sum yields e.g. for Ty,

1 1 1 1 1
2Ty2 {Sin I [_ F Trwe + ﬁ Twe] + cot 1 [F Trwo : Two]}COS wo +
ety =L 1 )sinw (3.7)
r rl Fé I [ . .
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The singularity is gone, the orthogonality of the "sine-cos"-series is main-
tained by manipulations described in (Schrama, ibid). The second approach,
proposed in (Betti & Sansd, 1989) starts from the orbit system. The orbit
plane defines the equator of a rotated coordinate system, with latitude ¢’ =

0. The derivative in cross-track direction can therefore be written as

1
Ty = 2 T,
and
T 1 sin ¢
X T r2 cos ¢ 9wy T2 cos? ¢ wg
1 1
Tyz - F Trﬂo’ Fé T§0’
. . . y _ 1
The derivatives are evaluated along the orbit (¢’ = 0). Thus T,, = = Tw’wb

Hence all that is required, is the derivative of T, eq. (3.6), with respect to

’

¢’ . As shown in (Betti & Sans¢é, ibid) and discussed in (Sneeuw, 1991) it is

u L Rl}"'1 L 2-1 =
T, =22 5 |= T =T F* (I){a* cos y + B* siny, } (3.8)
[} R I} r f,mp im emp Im Emp
=0 m=0 p=0
where
=
. AS&n
M
AC&n
-
. AC&n
n =
{ AS&In

Lm
vative with respect to ¢’.

and F* p(I) is a new type of inclination function that incorporates the deri-
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Actually it is more logical to introduce an index k = £-2p, replacing p

{cf. (Sneeuw, 1991)). For the range of k it holds

[k]—£(2)+2] if the series contains Fﬂ = Fzm or its derivatives
mp

or

[k|-2+1(2)e-1] if it contains F* = F*k
P,mp fm

Then the general expression of an arbitrary second derivative (i, j) becomes

241
o= Mo R (15) (k[ g% %) i
TIJ R i [r] EEA&( F@m [aZm cos ll}km * Bem sin wkm] (3.9)
with
Ym = ko, + mw, . (3.10)

All Aéij) are listed in Table 3.2 together with a pointer * indicating the
reference to F*k, «* and B*, respectively, and a second one (+-) indicating
m

Em ’ ﬂm
that /-a* takes the place of B, /8% and B, /8% that of «
m I’ " im " "l

g 7% tn” %’

Eq. (3.9) together with Table 3.2 provides the linear model connecting the
tensor of the gravitational disturbance potential, T;j, with the unknown
coefficients AEEm and Ag&{

Let us now assume a certain component T;; is measurable and has been
observed at N equidistant points along the orbit. The observed values are
~collected in the vector T of dimension (N x 1). Also the unknown coefficients
form one vector ¢. If the summation over degree ¢ is truncated at a maximum
degree fmax and the three first degree terms are kept zero by definition its
length is L = (max + 1)2 - 3. Then with (3.9) a linear adjustment model can

be formulated:

Ac + € (3.11)

1
1l
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TABLE 3. 2: Aéij) of the tensor components
T;j in the local cartesian gradiometer triad
component (1ij) h@k pointers
XX -(L+1+k2)/r2
Xy -k/r2 *
XZ -(£+2)k/r? (+ -)
yy -((2+1)2-k2)/r2
yZ -(2+2)/r2 : *(+ =)
zz (£+1) (2+2) /T2
with observation error vector €, where E{€} = 0 and the a priori variance
covariance matrix be E{eeT} = QF = GSI with I a N x N unit matrix and 03 the

variance of the observed gradients. The coefficient matrix A is of dimension

N xL. If Nz L and A of full rank the least-squares solution becomes
¢ = (AT Qpl A)71 AT Q! r (3.12)
and the a posteriori variance-covariance matrix:
Qc = (AT Qfl A1
which becomes under the above assumption of constant variance

Qe = o2(ATA) . (3.13)
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Thus with A given the expected error propagation of a gradiometer mission can
be tested for a variety of assumed a priori error variance levels without
gradiometer data actually being available. It should be obvious that the main
diagonal of Q. contains the expected variance of the individual coefficients
AEEm and Ag&n
such an error propagation experiment depends on the complexity of solving the

and the off-diagonal terms their covariances. The feasibility of

linear system (3.13). With A of dimension (N x L) the normal matrix ATA is of
dimension L. x L. For fmax = 200 its size is of the order of 40 000 x 40 000.
The solution of a system of this size would put extreme constraints on the
accuracy, speed and size of even the most advanced supercomputers, cf.
(Balmino & Barriot, 1990).

Colombo (1989b) could show that under a number of simplifying conditions
ATA attains a block diagonal structure with the maximum sub-block of size
(} fmax + 1) x {({ fmax + 1). Thus a situation comparable to the spacewise
approach of chapter 2 can be achieved. The main line of the steps required to
achieve the block-diagonality shall be discussed in the following.

Each element of the normal matrix ATA consists of the inner product of two
columns of A referring to two spherical harmonic coefficients (¢;,m;) and
(£&5,m5;). The inner product extends over all sampling points s, s = 1...N. Let
one arbitrary element of the normal matrix, belonging to the gradient compo-

nent (ij) and referring to the coefficients (¢,m;) and ({,my), be denoted

héiéigzmz' Then eq. (3.9) gives:
2 +1 +1
s RY! RY? N (ij) =™k
(ij) - Mo [B = J 1
h 1m122m2 ﬁz [I‘f [FT S§1 [Ellﬂlkl Felml cos wklml(S)
(i) =Mk
x [szezkz F22m2 cos tpkzmz(s)]

(3.14)

2 & +8y+2 .
= Ho B SR A(lj) (ij) 'F'.‘(*)kl F‘(*)kz
R r kq ko 81 kq eZkz ﬂlml 22m2

[ sN cos /] (s) cos ¢ (s)]
s=1 kqmq komp
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with analogous expressions for the products cos wk o (s) sin wk . (s) and
1my 2m2
(s) sin wk (s). Any block diagonality depends now on the
1m1 2mg
applicability of the orthogonality relationships of trigonometric functions to

sin
l/Jk

the sum over s.

With (3.10) it is

Yem = Vim(t-to) = ng + Vet
and (3.15)

'i’km

K(w+M) + m(Q-65) = ko, + mo,

It is assumed that the total mission length T is exactly one repeat period (no

repetition of groundtracks). With a sampling interval At this results in
T

N = X% Then the mission period consists of the relative primes N, nodal days
and Ny orbit revolutions, or T = N, %E = Np %E . It follows (neglecting W%n
We Wo

which simply results in a constant phase shift)

Uim = (KNg + mNy) 2% jAt = 2m(k + m De) Ny J
T No N
=2nbkmno§ J=1,...,N . (3.16)

The conditions for by, (and consequently each frequency) to be unique are

derived in (Schrama, 1990). It can be shown that the number of revolutions

No must be a prime number and

Ny > 2 fmax (3.17)

With these conditions fulfilled and the time series being uninterrupted the

orthogonality relationships of trigonometric functions yield



0] if m; # my and/or k, # ky

g if m =my # 0 and ky = ks
or m =my =0 and (ky = kp # 0 or ky = -k, # 0)
N if my = my =0 and ki =k, =0

If now the sequence of elements of c, i.e. of the coefficients AE&n and Ag&;
is chosen first according to m and then according to parity (£ even or odd)
the desired block-diagonality is attained with the largest block of size
(L fmax +1) x (3 fmax + 1) for even Imax, even ¢ and m = 0. An individual

non-zero element of the normal matrix ATA is finally

an o Np? (R byrlar2 G a1 Bk Tlerk
1) = — — — ij ij
helmgz 2 Re (I‘] E Aeﬂ( A1121( Felm Fezm for m # 0O
and (3.18)
(1 N p2 (R bivbor2 (1) A (11) (F(ok Bk + B(0-k Tk
Wy =35 |z 1) ij - -
Pt © 2 R2 [r] DD ApY (Fymk Fymk s By Fit k) for m = 0.
with, in addition
(1j) [AC C = h{ij) (AS S _
hﬂﬂiz{ACQm’Acﬂgﬂ hﬁﬂﬁz[AS&m’AsﬂyJ (except for m = 0)
(13) [AC S = RKij) [AS = _
h£1m£2 [Acelm’ AS22“1] hglmez [Asglm’ Acezm] 0

The Aé;ﬂ together with the appropriate inclination functions for a certain
component ij are taken from Table 3.2.

We are now in a position to compute for all gradiometer components or
arbitrary combinations of the latter the elements of the normal matrix. After
solving the L x L system of linear equations and introduction of the a priori

measurement error variance of each component the posteriori variances of the



coefficients are derived. The solution procedure can be done individually for

each sub-block. We shall return later to this method with some examples.

3.2. Lumped coefficient method.

The method just described could be classified as timewise approach in the
time domain, because the observables are provided as a time series and solved
as such. An important modification of this method, also from the practical
point of view, is the timewise approach in the frequency domain. Thereby the
original time series is transformed to the frequency or spectral domain. This
means a DFT is computed. The Fourier coefficients serve as intermediary
(pseudo-)observables from which the AE&D and A§&n are derived in a second
step. Since these pseudo-observables represent linear combinations of a
sequence of spherical harmonics they are comparable to lumped coefficients
well-known from dynamic satellite geodesy (cf. (Wagner & Klosko, 1977)). The
idea described here has been proposed for satellite-to-satellite tracking by
Kaula (1983). It has been applied to satellite gradiometry in (Schrama, 1990
and 1991).

The practical advantage of this method is the following. It is reasonable
to assume that a gradiometer measures with homogeneous precision throughout
the entire mission, e.g. with the earlier quoted 0.01 E/VHZ. However it is not
realistical to assume that the measurement errors represent perfectly white
noise from the zero to the Nyquist frequency, defined by the sampling rate. We
know, for example, that the measurement spectrum of the ARISTOTELES gradio-
meter will be white only in the band from 5-1073 Hz to 0.125 Hz, corresponding
to a range from 27 to 675 cycles/revolution (cpr). We shall return to this
aspect later. With the frequency domain approach an arbitrary type of noise
model can conveniently be introduced.

Let us return to eq. (3.9), the series representation of the gradient
disturbance Tij. It is a summation over degree ¢, order m and index k. If we
carry out a summation over degree ¢ we find

Ty

.= (ij) (ij) i
3 E E [Akm cos ¥+ Bkm sin wkm] (3.19)
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with coefficients
R £+a1
A1) = Ho 5 B AL F(®k g(*)
km x Im In

and

B = Mo ¢ [E]es‘1 AN F(ok gs) (3.20)
km g \r £k em In ) '

Eq. (3.19) is a Fourier series. Under the conditions described in the previous
chapter, eq. (3.17), the (k,m)-combinations uniquely fill the entire spectrum.
Hence it must be possible, with the observable T;; given as a function of
time, to derive the coefficients Aé;ﬁ and Bi;ﬁ by straightforward Fourier
transformation and then consider them as pseudo-observations. Per order m the
Fourier coefficients are a linear combination in ¢ of the potential
coefficients AC and AS, . Hence the name lumped coefficients.

Lm Im
Collecting all Ai;ﬂ and BiU) in the vector y the linear system
m

y =Bc + v (3.21)

can be established with E{v} = 0 and E{WT} = Qy, where the elements of the
coefficient matrix B follow from (3.20) and v denotes the residual vector in
the frequency domain. In this case the a posteriori variance-covariance

matrix becomes
Qc = (BT Q;‘ B)-1 . (3.22)

Error modelling: In the case of a white noise error spectrum QF and Qar become
diagonal, where Qr = ogI and Q7 = og %E I. In the case of band-limited and/

or coloured noise Q still remains diagonal, with the diagonal containing the

variance elements of the noise model, say 0im. An example of the latter type

is discussed in (Schrama, 1990). In that case Q is, as expected, a

r
full-matrix, e.g. with Toeplitz structure (cf. (Levinson, 1947)). From (3.20)
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and (3.22) the element of the normal matrix BTQ;lB - this time with the error

model oi built in - becomes
m

h(ij) = 1 “_2 R hrlee T AlL)) AL F(®k F(*k 1 (3.23)
elmez 2 R r K glk 221( £1m sz O'Rm
: s cr s 2 2 At T . .
For white noise it is oy, = o T and A N. Thus we see that in this case

the frequency domain method coincides with the time domain approach.

Or in other words: After a long derivation it turns out that the frequency
domain method is more convenient. The £ime domain method only adds the DFT
from time to frequency domain, which is carried out in (3.23) implicitely.
The variance-covariance matrix of the observations in the frequency domain
approach remain diagonal both in the white noise and the band-1limited/coloured
noise case, and block-diagonality can in all cases easily be proven. In the
time domain approach the variance-covariance matrix is diagonal only under the
assumption of white measurement noise. Although block-diagonality is main-
tained in the band-limited/coloured noise case too, this is much more

difficult to show.

3.3. Error analysis of gradiometric mission scenarios.

The two timewise methods described in chapters 3.1 and 3.2 permit rather
realistical analyses of mission outcomes prior to any satellite launch. Still,
the solution of the block diagonal normal matrix for gravity field estimation
simulations up to degree 200 or 300 requires a considerable effort and
. requires most of all for efficient computation algorithms for the inclination
functions, see Appendix A-3. We shall now describe in short the main elements
of an error propagation study. Then, with some examples, the effects of the
measurement bandwidth limitation and of a non-polar orbit shall be shown.

Eqs. (3.13) and (3.22) yield the error variances of the estimated poten-
and AS, . Let us note the individual variance of a

Im Im
coefficient oi (C) or oim(§), respectively. The error degree variance is then
m

tial coefficients AC



g
GE(E’g) = mgo(oﬁm(ﬁ) + oﬁm(g))

and the expected average error variance of the individual coefficient:

(C,8) = ¢2(C,S)/(28+1) . (3.24)

g =%

2
Zm

Both quantities are dimensionless. The corresponding error degree-order and
degree variances of all those quantities related to the disturbance quantities
by a linear, self-adjoint operator are determined by the eigenvalue of the
latter. In general if the error degree variances or degree—order variances of

a quantity q are to be computed it is

of(q) = Aﬁ(q,T)oﬁ(E,g) ‘ (3.25a)

and
2 (q) = A2(q,T)e2 (C,S) ) (3.25Db)
Im ¢ In

We are mostly interested in the expected error of geoid heights or gravity

anomalies. Their eigenvalues are (with dimensions included)

A (pag, T) = v(£-1) gravity anomaly (3.26)
where y is normal gravity and

Ag(N,T) = R . geoid height (3.27)

A list of relevant eigenvalues is given in Table 3.3. Mean values, e.g. of
size 10 x 19, can be incorporated in the same manner by the eigenvalues B, of

a smoothing operator, c.f. (Meissl, 1971; Pellinen, 1966).



TABLE 3.3: Dimensionless Eigenvalues AE(T,-).

Ae(T,N) 1 geoid height

Ae(T,Tr) -1/(2+1) gravity disturbance (Hotine)

Az(T,e) 1/VE(E+1) surface gradient (vectorial
deflection of the vertical)

AE(T,Ag) 1/(8-1) gravity anomaly (Stokes)

AE(T,Trr) 1/7((2+1)(2+2)) vertical gradient

Ap(T,€;) 1/ (VI(I+17(2+2)) horizontal gradients (T,,,T,,)

Ae(T,AFzz) 4/7((€-1)(2+4)) gradient anomaly Al,,

Ay (T, (ATx4, ATy;)) 1/ (VE(Z+17(£-1)) vect. grad. anomalies (AT,,,ATy,)

Ap(T, 28Ty, 1/V{T-1)2(Z+1) (Z+2)| grad. anomalies {24Ty, AT, ATy}

ATy ~ATy })
A, (T(r), T(R)) (R/r)e+1 upward continuation of T, T., T,.
Ae(A,A) Be(wo) operator from quantity A to its

smoother version A

Ae(BT,Ag) Qg(Wo)/2 Stokes truncation operator

The error propagation of ch. 3.1 and 3.2 leads to estimates of the
commission error in a function space of finite dimension. Actually one also
needs to know the effect of the neglected high degree and order part, the
omission error. It is usually modelled by a signal degree-variance model, e.g.
of Tscherning & Rapp (1974) or Moritz (1980). A degree-variance model, with
signal degree-variances Cp> provides an estimate of the expected signal
content per degree of the earth’s gravity field. Since we have no reliable
observational evidence of the high degree part - the part we want to determine
by satellite gradiometry - these models could be off by orders of magnitude,
as they represent purely an extrapolation to high degrees of the well-known
lower ones.

With 0i(q) (or o%m(q)) representing the commission error spectrum of a
desired (smoothed) quantity gq, and ce(q) (or c&xq)) the omission part the two

error variances become
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Emax

02 (q) = ™% 52(q) = =M% (20+41)02 (q) commission
co L In
£=2 £=2
and (3.28a,b)
ogn(q) = 2 ¢ (q) = o (2£+1)c&m(q) . omission
0=lmax+1 0=lmax+1
The total error variance becomes
2 = g2 2
c2(q) ocn(q) + Gon(q) . (3.29)

This procedure corresponds to ideal low pass filtering with cut-off degree
Imax. A more optimal situation is attained with a Wiener-Kolmogorov type

filter

ce(q)

which simulates a least-squares collocation situation. In that case it is

2 = X2 2 e
oco(q) 2%2 hE og(q) commission
and
2 _ © R .
Gou(q) 2?2 (1 hg)cg(q) omission.

Eq. (3.29) still holds. This concludes the description of all elements of our
method of error propagation simulation.

It remains now to show what type of questions we can address with these
methods. In ch. 3.1 all assumptions were described that apply to this model.
The simplifications refer (1) to the orbit, (2) to the comensurability of Ng
and N,, i.e. to a balance of the mission length and orbit choice, (3) to the
maximum resolution fImax (< gg) and (4) to the regular sampling without

interruption. The orbit is assumed to be circular (e = 0). For the reference



orbit it 1is assumed a=e=1=0 and constant Q, Q, M, and éo- Actual
deviations from these assumption can be taken into account by iteration. The
mission length must be one (or several) full repeat cycle(s).

The following variables remain (see again (Colombo, 1987)) to be defined:

1. Each gradient component T;; or a combination of components

2. Measurement noise level and noise spectrum (incl. bandwidth

limitations) of each component.
3. Sample rate At.
4, Mission duration T (N = T/At).
5. Inclination I.

6. Mission altitude h = r - R.

Out of the six possibilities three can be varied without having to solve the
large system of equations again, just by rescaling (ATA)-l. These are mission
length T and sample rate At and in case of white noise, the a priori noise
level oy. Slightly more effort is required for a change in h, as shown in
(Colombo, 1ibid) and (Schrama, 1990). The downward continuation operators
[§]£+1 = ﬁgﬁ e for each degree are not included in the normal matrix
elements (3.18) or (3.23). Instead their reciprocal value is put into a diago-

nal matrix D. Then the solution for any desired h becomes
DT(ATA)-1D

Finally changes in (1.} or (5.) require a full new computation.



3.4. Case studies of gradiometric error propagation.

With a few examples we try to demonstrate the use of this type of gradio-
metric error simulation. Two cases shall be considered: the consequences of a

bandlimited error spectrum, and the effect of a non-polar orbit.

3.4.1. Bandwidth limitation.
In the course of the ARISTOTELES system studies it became clear that it

would not be realistical to assume that the gradiometer noise is white over
the entire measurement spectrum (0 Hz to 0.125 Hz) with a std.dev. of
0.01 E/VHZ. This specification can only be met over the band from 5-10-3 Hz
(= 27 cpr) to 0.125 Hz. What the exact noise characteristics will be below
5.10-3 Hz is still uncertain. It is certain, however, that the zero frequency
and the frequencies close to the zero frequency are not measurable at all. In
other words the gradiometer is no absolute measurement and shall exhibit low
frequency drift. Causes for these short-comings are e.g. thermal noise (no
cryogenic cooling) or imperfections 1in the matching of the accelerometer
components, that result in violations of the common-mode rejection principle.

It is therefore useful to look into the effect of any band-limitation of
the instrument. To simulate this case the by, frequency lines below a certain
frequency are given a close to infinity variance value oim.

Let us assume conditions (3.17) of c¢h. 3.3 are met, which means no
overlapping of frequencies by, occurs. We test the effect of a white noise
spectrum limited between B; and B,. The upper limit B is determined by the
sample frequency, in our case 0.125 Hz, and therefore B> = 665. For B; three
cases shall be tested: B; = 27 (5-103 Hz), B; = 4 (8-10"% Hz) and By = 0.
With this information a list can be established of all (k,m) outside the

frequency range. For the spectral lines (k,m) the weight E%- in (3.23) takes
km
the value zero, 1.e. the error variance goes to infinity.
Close inspection of eq. (3.23) reveals that these zero weights can have
two consequences. Either the value of element héijé of the normal matrix
1me2
simply decreases without getting zero. This implies that the involved spheri-

cal harmonic coefficients are still estimable but will get a higher a
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posteriori error variance. Or h‘iﬂlz becomes zero, which leads to a singula-
rity of the normal matrix, if ¢ = ¢, (diagonal element). One can, for
example, easily see that all spherical harmonic degrees ¢ less than (; cause
singularity. They are not estimable.

There are two ways to deal with the singularities. One can simply declare
these coefficients not estimable and eliminate the corresponding rows and
columns of the normal matrix. This corresponds to eliminating the coefficients
from the original linear system. It is saying that no information about these
coefficients is available, neither from gradiometry nor from elsewhere. This
is the appropriate approach when analyzing the information content purely from
the gradiometric experiment itself. In real world information about these
coefficients is very 1likely to be avallable or comes from complementary
sensors, such as on-board GPS, see (Schrama, 1991). This prior information can
easiest be implemented by adding to each diagonal element of degree ¢ and

order m the prior variance o2 (prior):

Im
.. .. 1
(ij) = (ij)
hp p’ (new) = ;1) (old) + o2 (prior) : (3.31)

The procedure is called regularization. It can be applied to all diagonal

elements and is interpreted as optimal weighting between prior and measured
information. A very common choice for cim (prior) are the degree-order signal
variances Cp, 25 derived from one of the available signal degree-variance
models such as Kaula’s rule or the Tscherning-Rapp degree-variance model. More
appropriate seems the use of the error variances of one of the geopotential
models that came available recently, such as GEM-T1, GRIM-4, or TEG-1.

In Figure 3.1 the effect of bandwidth limitation on the degree-order
error spectrum is demonstrated with an extreme example. It is assumed that
either no bandwidth limitation exists at all (white noise over the full spec-
trum), or that no information 1is available either below B; = Bpin =
4 (8-1074 Hz) or below By = Bpin = 27 (5-10°3 Hz). The following mission

scenario is assumed: measured gradiometer components (zz) and (yy); error

std.dev. 0.01 E/VHz, mission duration 6 months; sample rate 4 s; altitude 200
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km; inclination 900. Regularization 1is applied with the Tscherning-Rapp
degree-variance model. For comparison also a signal degree-order spectrum is
included based on Kaula's rule of thumb. It can be seen that with By, = 27
very little improvement of our current gravity field knowledge would be

achieved.
=90 . T, +T

zz

log deg—ord var.

-12

0 60 120 180 240

degree

Figure 3.1: Effect of complete lower bandwidth limitation on error spectrum

(per degree and order).

For comparison a more favorable situation is shown in Figure 3.2. It is based
on the noise characteristics expected for the ARISTOTELES gradiometer. The
. gradiometer measures the components (zz) and (yy). The measurement band is
limited between B,;, = 4 and B, = 665. For the range between f,;, = 4 and 27 %
coloured noise is assumed, for the range between B = 27 and B, white noise
with 0.01 E/vHZ. All other parameters agree with those used for Figure 3.1.

Regularization was carried out with the Tscherning-Rapp model.
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Figure 3.2: Error degree-order spectrum for a combined bandlimited

(< Bpin = 4), coloured noise (4 < % < 27), white noise 0.01 E/VAZ

model. For comparison ideal noise model of Figure 3.1 and the

signal spectrum are included too.

Figure 3.3 shows the scenario expected for the ARISTOTELES mission. The
mission parameters are altitude 200 km, duration 6 months and inclination
920.3. The gravity field is determined from a combination of gradiometry ((zz)
+ (yy)) and GPS carrier phase measurements. For GPS the assumptions are
std.dev. 3 cm white noise in x,y,z and sample rate 30 s; for gradiometry 1/f

coloured noise between B8 = 4 and 27 and white noise 0.01 E/vHZ above 27;

sample rate 4 s.
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Figure 3.3: Combination of spaceborne GPS (3 cm) and gradiometry ((zz) and

(yy)): the ARISTOTELES scenario.

3.4.2. Non-polar orbit.

A second aspect of special interest is the effect of a non-polar orbit.
The polar orbit, usually assumed in the spacewise approach, would lead to a
complete coverage of the sphere with data. It 1is, however, not a very
realistic assumption, as it 1is not possible to keep a spacecraft in a
“perfect" polar orbit. Usually one will have to do with a slightly non-polar
orbit, say I = 920 or e.g. a sun-synchronous orbit with I = 96.339, It is then

. the question what the effect of this non-ideal situation is. So far we did not
study this question in depth.

It is obvious that with an inclination I # 90° the two polar regions with
half angle (909 - 1) are not covered with data. This should affect the
estimation of spherical harmonics, as they depend on global support. If regu-
larization is applied the polar gaps get so-to-say covered with data (value
zero) but of inferior quality. Singularity is avoided in this case. With the
mission duration unchanged the total data rate remains unchanged as well.

Hence non-polar inclination results in denser data coverage of all covered

3.24



regions. Finally the outcome shall depend on the type of observed gradient
component. At maximum latitude (¢ = I) the out-of-plane gradient components

are looking towards the poles. All these aspects together are of influence.

10+ T T T Y T

10-5 |

10-6 -

107 |

108 |

RMS per coefficient

109

10104

101
0 120

Degree 1

Figure 3.4: The r.m.s. per coefficient per degree derived from T,, for
I = 90y, 93° and 960 at h = 200 km. The mean r.m.s. per coefficient per
degree is computed using a least squares approach for T,, assuming 4 < B <
o, a 1/8 behavior below Bpin, = 27 cpr, a sampling time of 4 s and mission

duration of 6 months.

Figure 3.4 shows the effect of non-polar data coverage with the I',, component.
The effective measurement band used for this case is that of Figure 3.2. More-
over we assumed a 4 s sampling rate and 6 months of data. It must be pointed

out that the choice for fmax dominates the outcome of these computations. Here

we have chosen fmax = 120 which corresponds to latitude steps of 1.59 on the
sphere. Yet is remarkable that the I = 930 case results in an optimum for
Imax = 120 whereas I = 90° and I = 969 are suboptimal. A reason could be an
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improved coverage for a 1.50 equivalent grid near the poles at I = 939; namely

for the most northern and southern parallels.
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4. SPACEWISE VERSUS TIMEWISE - A COMPARISON.

In the previous two chapters the main characteristics of the spacewise and
timewise analysis were described. We shall conclude with a short comparison.

In chapter 2 two versions of the spacewise approach were discussed, the
least-squares method (ch. 2.3) and the quadrature method (ch. 2.4). It was
demonstrated that, although the quadrature approach 1is not optimal, it
possesses a number of advantages, such as the avoidance of aliasing and most
of all simplicity. Both spacewise approaches are intimately connected to the
solution of the geodetic boundary value problem (g.b.v.p.). Satellite gradio-
metry becomes one data source 1in the geodetic arsenal and various
overdetermined or mixed b.v.p. can be addressed. An immediate practical
advantage of the spacewise approach is that it does not depend on a continous
data stream. Data gaps, interruptions, Jjumps e.g. as a result of manoeuvres do
not pose a problem as long as the sphere is covered sufficiently dense. Even
larger data gaps after completion of a mission can be corrected for by inter-
polation or insertion of a priori information. On the other hand the spacewise
approach lacks any connection to the peculiarities of the orbit, its varia-
tion in heights, its resonance behaviour or its uncertainty. In addition, it
is not obvious how to implement coloured measurement noise models.

Also the timewise approach was divided into two categories, the timewise
approach in the time domain (ch. 3.1) and that in the frequency domain or
lumped coefficient approach (ch. 3.2). However we could show that under the
assumption of an uninterrupted data stream the time domain approach can be
reduced to the lumped coefficient method. The timewise methods are closer
related to the physics of a space experiment. All orbit features are naturally
built in, orbit errors can easily be added, combination with tracking measure-
ments in one model 1is possible, and sample and measurement noise charac-
teristics are part of the model. The block diagonality of the normal matrix
can be maintained, however, only under the very stringent condition of the
availability of a full number of repeat cycles. Hence there exists no easy way
to test for example the effect of orbit manceuvres or data gaps.

Thus we see that from the theoretical and practical point of view timewise
and spacewise approach are complementary, the former closer related to the

g.b.v.p. and therefore to physical geodesy and the latter to orbit dynamics



and consequently to satellite geodesy. For a polar, spherical orbit and denser
data both methods should approach towards the same limit. This 1limit must be
the solution of the fixed (classical) boundary value problem with one, several
or all second derivatives of the gravitational potential as boundary
functions. The boundary surface 1is a sphere at satellite altitude and
generated by the total set of observations. In the case of the spacewise
method this 1limit is understood in the sense described in chapter 2, in that
of the timewise method it 1is attained as an infinite set of consecutive
revolutions that densely cover the sphere in the 1limit. However this
proposition needs to be proven. See in particular (Migliaccio & Sanso, 1989)
and (Brovelli & Sanso, 1990).

After this being said the equivalence of the four methods (IA = spacelike
quadrature, IB = spacelike least-squares, IIA = timelike time domain, II B =
timelike lumped coefficient) 1is shown experimentally. For this purpose the
propagated error spectrum is determined for the observed component T,,. It is
assumed measurement noise std.dev. o = 1072 E/vHZ, altitude h = 200 km, eccen-
tricity e = 0, inclination I = 900, sample rate At = 4 s, mission length T = 4
months. For method IA the degree-order variance is computed according to eq.

(2.78) with
2 = e 2
o5 o
For method IB it is assumed that first 19 x 19 block equal angular averages

are computed from the point measurements. This yields 60 samples per block.

The std.dev. of each block is determined as

9
N

_.2 _
C1x1 = ——

3)

In the case of method IIA and IIB formulas (3.13) and (3.14) and (3.23),
respectively, are applied. Error propagations showed that the four methods are

in complete agreement.



APPENDICES.

A-1: Coordinate systems.

The gravitational potential is usually expressed as a series of spherical
harmonics using the spherical coordinates r, A, 6 (see fig. A-1.1)
(6 = 900-¢).

FIGURE A-1.1.

When dealing with satellite methods an expression of the geopotential as
function of the orbital elements a, e, I, Q, w, M (respectively the semi-major
axis, eccentricity, inclination, right ascension of node, argument of perigee
and mean anomaly) is more convenient. Here we shall deal with circular orbits
(hence e = 0) and consider a to be constant throughout a mission, leaving us
with four orbital elements, which may be considered variables to locate a
point on the orbit. For convenience we furthermore introduce the variables w,

and w, defined as:

W = w + M

(A-1.1)
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where 6; is the right ascension of the Greenwich meridian. In the case of a
circular orbit w is not defined. The subscript "o" refers to orbit and the
subscript "e" to earth (see Schrama, 1989).

Points along a satellite orbit are not arbitrarily located in space but
are related to each other due to the satellite motion. Consider a satellite
orbit with constant w,. Letting the three parameters r, I, w, vary all points
in 3-dimensional space can be located. Hence r, I, w, may be considered as
coordinates. However, this is not the case if we consider an orbit with
constant I and varying w.. Then all the points in 3-dimensional space with
8 < 90° - I can not be located using r, w,, w, as coordinates. But since we
are only interested in the points along orbits, this possibility (constant I,
varying r, w,, w,) is also of use to us. It will appear later that both cases
may be used to describe the potential derivatives.

The angles A, 6, w,, w, are in fact taken with respect to a geocentric
cartesian coordinate system (X,Y,Z2), connected to the earth in such a way that
the X-axis points in the direction of the Greenwich meridian and the Z-axis
coincides with the rotation axis of the earth (see Figure A-1.1).

The last coordinate system we have to consider is the local, right-handed
Cartesian coordinate system (x,y,z) in which the actual gradiometric
measurements are taken. The z-axis of this system points radially outwards,
the x-axis points along-track and the y-axis cross-track.

Whenever convenient, the four coordinate systems mentioned above will be

denoted by:
{%;, i =1,2,3} (x,vy,2) local cartesian coordinates
{x;, I =1,2,3} (X,Y,2) geocentric cartesian coordinates
{Xay a =1,2,3} (r,I,w,) or (r,we,w,) orbit coordinates
{x), A =1,2,3} (r,a,0) spherical coordinates

In the following the relationship between these different coordinate systems
will be treated as far as necessary for the gradiometry analysis. We need
these relations since we want to express the measurements done in the local

cartesian coordinate system in terms of potential coefficients as they appear



in a series expansion of the gravitational potential, either in spherical
coordinates (spherical harmonic expansion) or in orbit coordinates (expan-

sion in inclination functions).

Potential expansion.

The expression for the earth’s gravitational disturbance potential in a

series of spherical harmonics using the spherical coordinates x, = (r,A,0) is:

© R L+1 ¢ B _
T=H 5 |2 T [AC, cos mA + AS, sin mAlP, (cos 8) (A-1.2)
r n Im Im Im

R ¢=0 =0
£+1
where g : gravitational constant times mass of the earth
R : mean equatorial radius
AC, ,AS normalized potential coefficients
Zm’ "

ﬁem(cos 6) : normalized Legendre functions

Z,m : degree and order.

This expression may be transformed to a series expansion in the orbital para-
meters (r,I,w.,w,) (see Appendix A-3 or Kaula, 1966) which yields for a cir-

cular orbit:

= Ko
TR§

\ 0z Ffmp(l) cos w@mp + sin ¢%mp (A-1.3)

Im ACEm 0

H n 1 H

where "e" refers to the case where £-m is even and "o" refers to £-m is odd

and

Flmp: normalized inclination functions

w@mp: (£-2plw, + mw,.
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Potential derivatives.

From eq. (A-1.2) and (A-1.3) all the first and second order derivatives of
the potential with respect to r, A, 8and r, I, w,, w, can be derived.

The derivatives with respect to the spherical coordinates from eq. (A-1.2)
are well known and easy to derive. Since they are not really needed in ﬁhis
context they are not explicitly given here. We need the partial derivatives
with respect to r, I, w,, w. from eq. (A-1.3). Since, as explained earlier,
either the orbit parameters (r,I,w,) or (r,we,w,) are considered as coordi-
nates we do not need the mixed second order partial derivatives with respect
to I and w..

All the partial derivatives can be written in the following manner:

4a1
= Ho (a) B Fla) (a) (a) gi —
T. = § % Aea [ ] E E Feap(l) (aei cos wﬂmp + Bez sin wlmp) (A-1.4)

where the "a" is not an index but a symbolic notation for expressing one of

the partial derivatives. So a can take the values:
r,I,w,, we

or as (ab) for the second derivatives
rr, 1], wow,, Wele
rl, rw,, rog, Iw,, Ww,

2
With this convention, for example when ab = rI, the notation T,, means g?%f

Now let us introduce the following notation:



AT £-m: even

_ fm =, 8 =
“om = _AS FZmp a1 Fl’,mp
fm 42-m: odd
AS £-m: even 5
B = 2m f" = a_ F
m Zmp 812 Imp

Aclim £-m: odd

Then we find for the factor Aéab) and the products Féab’(l) océab) and
mp m

F(ab) g(ab) the values listed in Table A-1.1 below.
Emp om
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TABLE A-1.1.

wo [ g Py e Fisy o
r - (2:1) %tm i:.Emp Bom femp

I 1 “tm kap Bom I?,emp

w, 1 (Z—Zp)Bemfemp -(e‘ZP)angemp
We 1 mBZmﬁﬂmp —maemfemp

rr Sﬁilié&igl “gmfgmp Bemfemp

IT 1 “gmfzmp Bemfzmp

W W, -1 (B—Zp)zaemfemp (e—ZP)ZBEmFEmp
WeWe -1 mZQEmFEmp mzﬁemfemp

rl - (2:1) “gmfkmp Bﬂmfkmp

ro, _ (E:l) (E_Zp)Bemmep —(B—Zp)aemfemp
ro, _ (2:1) mBEmFEmp —maemfemp

Wy W, -1 m(B—Zp)ameem b m(ﬂ-Zp)Bemﬁgmp
Tw, 1 (e-2p)By Fy o -(-2pley Fy
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Coordinate transformation.

We assume that the gradiometer delivers the second order potential
derivatives (or after linearization those of the disturbance potential T) with
respect to the local cartesian coordinates X, vij = 52;%;?‘ So we want to
express these Vij in a series expansion in terms of potentgal coefficients.
Since we can easily obtain the derivatives of V with respect to X (eq. A-1.4)
we need the transformation from X to X

Differentiating the potential once and using the chain rule of differen-
tation gives

ox
V. = av av a

i~ 3x., 9x_ ox.
1 a 1

= A?va (summation over a) . (A-1.5)

Differentiating again yields:

_ v _ a8 A3y ) = @ (axa v .
ij Ox . 0x . a% . ia x . Ox, 8%
i77] J J i a
82x ax ax
- a 4av + a &8 (BV ) b -
Ox.0x . Ox x., 9x ax % .
i) a i b a J
= A2 v o+ A%aby (A-1.6)

ij a i"j ab

We have the Va and Vab from eq. (A-1.4) and Table A-1.1. What we still need in
order to carry out the transformation are the partial derivatives between the
two coordinate sets: A? and A?j. These can be obtained in the following way.
Consider a point P’ in the neighbourhood of P (P is the origin of the local

system). The geocentric cartesian coordinates of P’, xI(P’), can be written as

0

XI(P ) = X1

+ BYP)x. (P) (A-1.7)
I i

in which
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o _ J
X: = BI(P)hJ(P)

I
hI(P) = 0
0
r(P)

and B is the transformation matrix derived through successive rotations over

—W,, —I, -we, or
B = Ry(~wg)R; (~1)R5(-w,)

Eq. (A-1.7) states that the geocentric cartesian coordinates of P’ are the sum
of the geocentric coordinates of P (first term on the right hand side) and the
rotated local coordinates of P’ (second term). For all points P’ defined in
this way the elements of x? and Bi(P) are functions of the (constant) orbit
coordinates x, of point P. Thus eq. (A-1.7) gives the geocentric Cartesian
coordinates of P’ as a function of its local Cartesian coordinates.

Assuming P’ lies on a (nearby) orbit we may also write the geocentric

cartesian coordinates of P’ as
x.(P') = BY (P’ )h.(P") (A-1.8)
I | J :

where the elements of Bf and hI are now functions of the orbit coordinates of

P’. From eq. (A-1.7) the partial derivatives become

]
>
v

1]
>

and from eq. (A-1.8)

axI a x
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Using the chain rule of differentiation
obtained since
-1, 1

A
i

a2 = ah
i a

The second partial derivatives A?j are

differentiating the chain rule above.

As mentioned above, we can take

the desired partial derivatives A? are

obtained in a similar manner by again

as Xa-coordinates either (r,I,w,) or

(r,we,w,). In the former case, we find for the partial derivatives:
8z ax r 6y2 r
a1 _ 1 8’1 _ -1 3°1 _ -cos w,
dy r sin w, dyodz r? sin w, axay r2 sin2 w,
Bw, _ 1 62wo - _ Cos w, 62w° N §
ax r 2 2 . dxdz 2
dy r sin w, r
All the other partial derivatives are zero. In the latter case we have:

or _ ar _1 gr _1
2z "1 2T R
ax dy
Owe _ -1 0w, -cos I sin w,
dy r sin I cos w, 6y2 r? sin? 1 cos’ w,
azwe - 1 azwe - -sin w,
dydz r® sin I cos W, Oxdy r® sin I cos® W,
dw, _ 1 azwo _ -1 8 W, _ _sin w, cos 1
8x r dx0dz 2 dx8y 2 2 .
r r cos w, sin I

A-1.



dw, _

dy

2
W, _

2
cos I d w, _ -cos 1

6y2

r sin I cos w 2 .
° dydz r- sin I cos w,
. .2 .2 . 2
sin wy(sin” I sin” w, - 2sin” I + 1)
2 .. 2 3
r sin I cos™ w,

and all the others being zero.

Note that the derivatives of w, are not the same in both cases.

Now we may

compute from eq. (A-1.6) the local gradients Vij and find in the case of

(r,I,w, ):

XX

v

Xz

yz

zz

xy_

Yy

PV Vg
r oo
TCOS Wo 1 v
s .2 . Tw,
rsin w, r sin w,
-Lv o+ ly
2 Yo I Tw,
(A-1.9)
CoS Wo v 1 vV o+ 1 v
. W, r r . IT
r- sin w, r sin o,
-1 1

In the case of the parameter set (r,w.,w, ) we find

XX

v
Xy

V. o+ L N
r 2

I T

Wolg

-1

[tan w,V - tan w, cos I V + V +cos IV I
w w w

2_. w
r'sin I cos w, € ° ero oo
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\"4 =lv —1_V
Xz T W, 2 W,
r
1 1
Voo =7 Vo * 3 5 5 [-tan w, cos I Vo * V.t
vy r- sin” I cos” w, € eve
+ tan wo(sin2 I sin® Wy = 2sin® 1 + 1)Vw -
[o]
2
- 2cos IV + cos” 1V 1
wewo wOwO
e p— v -1y v  scsIV ]
yz T sin I cos w, r w, r W, WeT W, T
V' =V
zz rr
which simplify in the case of I = g to:
v =2iv +Ly
XX Tr r 2 W,
r
xy = 2 — vw ©w, 251n 20 vw
Y r® cos we °° r cos w, °©
v =1y Ly
XZ T Wy T 2 W
r
Yoy = % vr * 1 Vo we R Vw
vy r cos w, °¢°¢ r- cosw, °
v z 2 1 Vo, ~ r cés Wy Wl
y r- cos w, ° ° e
v =V
zz rr

Note that some gradients expressed in the parameters (r,I,w,) have a singula-
rity at the points w, = 0 and w, = m and those expressed in (r,w,,w,) in the
points w, = % g due to the respective sine and cosine terms in the denomina-

tors. This 1is nothing to be surprised about since also the well-known
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expressions for the gradients in spherical coordinates (see e.g. Rummel, 1986
or Tscherning, 1976) have the same kind of singularities for the points
p = ¢ g (poles). Of course these singularities have no physical meaning but

are caused by the choice of the coordinate system.
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A-2: Legendre recursions.

A numerical evaluation of Legendre polynomials and functions up to high
degree and order is most easily done using recursive relationships. Starting
from the recursive formulas for the Legendre functions the equivalent
recursive formulas for the first and second order derivatives are obtained by
simple differentiation with respect to the argument 6. We find for the
recursive relationships:

1. Diagonal recursion (n = 2):

pZ'E = f, sin 6 Pe__l’n_1
PB,Z = f,(cos 8 P£-1,2-1 + sin 6 Pﬂ-l,ﬂ—l)
PZ,Z = fy(~-sin 6 132__1’2__1 + 2 cos 0 P&q,bq + sin 6 P2-1,2—1)

2. Horizontal recursion - first step (n = 1):

ol
|

=f, cos 6 P

2,8-1 £-1,81
Fk,2—1 = fy(-sin @ Fﬂ—l,ﬂ—1 + cos 6 ﬁk—l,g—l)
52,8—1 = f,(-cos 6 ﬁ£—1,e—1 + 2 sin 6 ﬁk—1,2-1 + cos 6 52_1’2_1)
3. Horizontal recursion - next steps:
ﬁﬂ,m = f3(f, cos © ﬁe—l,m - fg ﬁe—l,m)
?k,m = f3(-f, sin @ ﬁg—l,m + f, cos @ ﬁk_l,m - f5 ﬁk-z,m)
?Z’m = f5(-f, cos @ F£-1,m - 2f, sin @ ﬁk—l,m + f, cos 6 ?Z_am
- fs Py, )



where

_ J2i+
f1 = 2L
f, = V22+1

£ = [/ 28+1
3T (£-m) (£+m)

£, = V2I-T
_ /(&-m-1) (Z+m-1)
fs =

2L-3

As starting values we use:

P =1 P = v¥3 sin 6
00 11

PP =0 P’ = V3 cos @

_oo0 11

P" =0 P* = -¥3 sin 6
00 11

All the above relationships are valid for normalized Legendre functions.
Vertical (downwards) recursions are also possible, but they have the
disadvantage that a factor sin! @ appears in the formulas. For small 8 this
factor can lead to numerical singularities. Another disadvantage of downwards
recursions is that possible numerical errors or underflows will distort a much

greater part of the ¢, m-scheme (see Koop and Stelpstra, 1989).
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A-3. Inclination functions.

A-3.1. An explicit expression for inclination functions.

Inclination functions appear in the transformation of the potential func-
tion V(r,¢,A) to a function V(r,wg,w.,1). Here r, ¢ and A represent the
spherical coordinates, radius, latitude and longitude respectively whereas r,

Wy, We and I are related to orbital elements, compare figure A-3.1.

Ze

Xe

Figure A-3.1: Orbital elements r, wg, w,, and I.

The relation between (r,¢,A) and (r,wp,w., 1) is

I COS Wy Cos A cos ¢
y | = R3(~wg)Ry(-1) | r sinwy | = r | sin A cos ¢
0 sin ¢

where R denotes a rotation matrix. This results in:

COS W, COS Wg — sin w, sin wy cos I cos ¢ cos A
sin w, cos wg + cos w, sin wy cos I = cos ¢ sin A (A-3.1a-c)

sin wg sin I = sin ¢

compare also (Schrama, 1989; p. 16 and 71). In order to derive the inclination

functions eq. (A-3.1la-c) are substituted in the expression:



R £+1
- [C, cos mrA +S, sin mAlP, (sin ¢) . (A-3.2)
Lm Im Lm

ng(r‘,¢,l) = r

TI=

First we will derive binominal expansions for cos mA and sin mA. Using the

formula of De Moivre we find that

eij = (cos A + j sin A)" = cos mA + j sin mA

where j = ¥-1. Accordingly

cos mA = % [ejmh + e-ij] ,
(A-3.3a,b)
sin mA = %i [eij - e—ij]
Furthermore we know that
JmA Jm(A-we) jmWe
e = e e
(A-3.4a,b)
— jmA —jm(?\-we) - jme
e = e e

Additionally the terms cos(A-w,) and sin(A-w,) are related, in the spherical

triangle A, B, C in figure A-3.1, to wg, I and ¢:

cos(A-w,) = £OS % | sin(A-w,) = sin wo cos I (A-3.5a-b)
cos ¢ cos ¢
. A substitution of (A-3.5a-b) in (A-3.4a-b) results in:
im(A-We)  jmWe
e e =
_ 1 [ + 3 I si Im [ 3ol ]
= oo cos wg + J cos I sin wy cos mwe + J sin mw,
n m) .. cosS I sin® wg cos™*® w, s s
= s -
SEO [s] J coshe [cos mw, + J sin mwe] (A-3.6a)

A-3.2



and

-im(A-Wwg) -~ JmWe
e e =
s [m .y COsS I sinS wg cos™ S wy o
- _is _ )
= sfo [s] (-3) cosmg [cos mw, - j sin mw,] . (A-3.6b)

From eq. (A-3.6a-b) substituted in (A-3.3a-b) it follows that:

n mj| .. cosS I sin® wy cos™ S w ..
cos mA = Re X js 0 9 [cos mwe + J sin mw,]
s=0 \S cos™¢
(A-3.7a-b)
. m m) .. cosS I sins wy cos™S w . :
sin mA = Re X js 0 0 [sin mw, - j cos mw,]
s=0 \|S cos™¢

compare also (Kaula, 1966). Secondly we multiply (A-3.7a-b) with the Legendre

functions:
k -

P2 (sin ¢) = cos"¢ = T2 sin2"12t¢ ,

m t=0 mt

(A-3.8)
(-1)t(22-2t )

T

Imt

2ber (o-t)1 (2-m-2t)!

(k = integer part of (£-m)/2)

which can be found in (Kaula, ibid) or (Heiskanen and Moritz, 1967). Substi-

tution of (A-3.7a-b) and (A-3.8) in (A-3.2) results in:

sin mw,)

R £+1
[—] {(Cﬂm cos mwe + S,

r

<
i
foe i

im

. d-m-2t
T sin
0 Emt

+ j(c (1)

M=

sin mw, - SE COS MWe)} x
m

em t

L-m-2t+s

5 [m] j° lcos® I cos™ ® wy sin wo (A-3.9)
=0

x

s S
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where we replaced sin ¢ by sin wy - sin I.

let a =2 -m -2t + s and b = m - s, then cosP wy sin® wy is expressed in a

binomial expansion:

Py b -
sin® wy cos® wy =

(-1)2j2 a @k [a] (b] ¢ _jla+b-2c-2d) Wy
= 5335 = 2 (-1)" e
23* c=0 d=0 d

Eq. (A-3.10) substituted in (A-3.9) results in:

. _EBZH
Em_Rr t

-m-2t+s m-s
(_j)Eﬂm2t+S 2=t 5 5 [2-m—2t+s][m-s]

- m
T2 sin‘ NS ST [m] js cossI x
o <¢mt s=0 {8

it M=

c=0 d=o0 c a
(-1)° o) [ (E-2(trerd)) wgrmwe ] (C, -js,)
Im Ln
Note that
(j)s(_j)e—m—2t+s _ (_1)£-m-2t+s (j)e-m—2t+25
Remember that
ji = (-1)'? for even i and
=g gt = e for odd 1i.
For £-m:even one gets
jﬂ—m+2(s-t) _ (_1)(€-m)/z ssmt (g ykes-t
( 1)e-m-#zt-s - ( 1)s

so that

A-3.4

(- 1 (290 - 790172 (190 + 700"

(A-3.10)

(A-3.11)



(-1)% - (-1t = (-1)

For £-m:odd one gets

je—m+2(s—t) = j(-1) (l-m-1)/2 +s-t

L-m-2t+s

(-1) = (-1)(-1)°

so that

(L-m-1)72 +s-t _ _j(_l)zs(—l)k-t = ‘j(-l)k+t

-1 - §5(-1)
In eq. (A-3.11) for £ - m: even:

(Cﬂm - szm)ejx = (CEm - Sem)(cos x + j sin x)

= (Cﬂm cos X + Sﬂm sin x) + \](—-Sem cos X + Cﬂm sin x)
and for £ - m: odd:
-3 P jx_.:__- .
J(Cﬂm J Sem)e J(Clm cos x + Slm sin x)
+ (-S

’n cos X + Cem sin x)

Keeping only the real part of eq. (A-3.11):

2



it M3

{a1 Kk
v =¥ [B] s T sinbﬂ_Zt(I) (—1)k+t [2] cos®I x
t= 0

s

2t-£ bm-2tes m-s ) o ot+s) (m-s
2 z z
c=0 d=0 c d

] (-1)c x

C S&n £-m: even
cos(x) + sin(x)
“Stm Ctm £-m: odd
where (x) = (£-2(t+c+d))w, + mw,. The next step is a rearrangement of the

indices. We substitute p = t + ¢ + d. The ranges of p are as follows:

Pmin = 0 for t =0, c=0 and d=0

Taking into account that cp,, is decreased when dy,x 1S increased, Cpax 18

optimal when

d =0 ; S =m 3 Cpay = -2t

and as a result p=t+£-2t+0=¢-1t from which we conclude that

0O <p=2~2and t = p. With this we find:

R ™ ' C&n S&“ £-m: even
Yim = R [?] Zo Feme M ) g | % Ve T | o | 5 Vem
fm fm £-m: odd
wﬂmp = ({-2plwy + mw,
tmax L-mn-2t k+t 2t-{
Fe (1) = £ T2 sin (1) (-1) 2
mp t=0 mt
Cmax
m —_— -
. 5 [m] c0s’I [Z m 2t+s] [ m-s ] (-1)°
s=0 |s c p-t-c
c=Cpin
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with k = (£-m)/2, tpax = min(k,p),

min(8-m-2t+s,m-s).

Cpin = Max(0,p-t),  Cpax

As a result the explicit expression for the inclination function Fﬂm (1)
p

becomes:
tnax m Cmax (22_2t)'(_1)k+2t+c
Fy (1) =% & 2 2l-2t
me 0 %7 c=cpin 2 t1(2-t)! (L-m-2t)!
x sinz"m_Zt(I) [m] coss(I) [2—m—2t+s] [ n-s ]
s c p-t-c
k+2t+c

Note that (-1) = (-1)¥° as is found in (Kaula, 1966).

A.3.2. Related inclination functions.

In appendix A.1 we computed the potential derivatives with respect to
local cartesian coordinates (x,y,z). We found, for example, for the derivative
in y-direction (cross-track):

1

Vy = ———— V; ‘ (A-3.2.1)
r sin w,

In order to compute V; we need the derivatives of the inclination functions

BFZmp
with respect to I: Femp(I) = 57

as will be shown in the next section. However, when trying to integrate eq.

These derivatives can be easily computed
(A-3.2.1) over the whole sphere, orthogonality properties are lost due to the
factor sin wy in the denominator. Furthermore, the point for which wy = 0
appears to be a singularity. Following (Betti & Sansd, 1989) the idea is now
to write the cross-track derivative as

V. = % v (A-3.2.2)

where ¢’ is the angle perpendicular to the orbital plane (see figure A-3.2).



Figure A-3.2: Orbit plane and cross-track angle ¢’.

In that case both problems mentioned above will not occur. When comparing eq.

(A-3.2.1) and (A-3.2.2) we see that

.1 =V
sin wg 1 ¢

so that a series expansion for Vw, has to exist in which the term sin™! wg is
already incorporated. This expansion can be found in an analogous manner as in
the foregoing section A-3.1, where we derived the inclination functions.

Taking the derivative of eq. (A-3.1.9) with respect to I and deviding by

sin wp we find

av 241
1 ¢m _ p (R k m mj .
sinw, I R [;] Re[fo Teme 2 [s] ] f‘”g‘“e)h‘%’]
where
f(1) = sinbﬂth_II cos® 1 I[(£-m-2t)cos?I - s sin2I]
jmWe
glwe) = (CEm ~ jSem)e (A-3.2.3)
. l-m-2t+s-1 m-s
h(wg) = sin Wy cos Wg
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Proceeding now in an equivalent way as in the foregoing section we arrive at

e e

av 41 £-1 S -C
_Tl___ __£E =k B T F* (I) tm cos w* + &m sin w*
sin wy 81 R (r Lmp Lmp Lmp

p:O C S
Im Jo Im do
where
wzmp = (£-2p-1)wy + mw, (A-3.2.4)
tmax S O 2t-2+1
F* (I) = % T 2 f(1)2 (-1)k+1
Zmp t=0 th s=0 s

C;ax £-m-2t+s-1 m-s (-1)°
* c p-t-c
¢=Cpin

f(I) as in eq. (A-3.2.3)

k = integer part of (£-m)/2

tmax = min(k,p)

Chax = min(£~m-2t+s-1,m-s)

Cpin = max(0,p-t).

Computation of the related inclination functions F;mp(l) is done in an equi-
valent manner as the inclination functions and their derivatives w.r.t I as

will be shown in the next section.

A-3.3. Computation of inclination functions.

Inclination functions may be computed using recurrent relations as we did
in the former section for the Legendre functions. Another possibility is to
formulate the problem in terms of an unit potential function developed along a
great circle with inclination I as described in Wagner (1983) and Schrama
(1989). The related inclination functions szp can be computed in the same
way, as well as the derivatives of the inclination functions with respect to
I.

Since the procedure for computation of F&m (or the normalized inclination

functions ?&‘) is clearly described in Schrama (ibid), we will show here only
p
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the analogous method for the f; .
mp

Along a circular unit orbit (defined by Q=6;=e =0, a=1 and

av
M + w = u) we evaluate the function —55?, which can be obtained by applying
the chain rule
Ve Venoo Vw2
8¢’ 8¢ O’ A B¢’
ave _
® =P  (cos mA + sin mA) (A-3.3.1)
d¢ Lm
avem _
- mPem (cos mA - sin mA)

where we used the unit potential function V&\defined by u =R =1 = E&‘— §bn
= 1.

Now we have to find the partical derivatives 2%7, g%T‘ From Figure A-3.2
we have

X = cos ¢ cos A X' = cos ¢’ CcOS Wy

Y = cos ¢ sin A Y’ = cos ¢’ sin wg (A-3.3.2)

Z = sin ¢ Z’ = sin ¢’

Between the two systems x; and x;» only a rotation about the X-axis by an

angle I exists:

X 1 0 0 X’
=10 cosl -sin I Yy’ (A-3.3.3)
0 sin I cos I Zz’
Using (A-3.3.3) in (A-3.3.2) leads to:
COS ¢ COS A = COS ¢’ COS Wy
cos ¢ sin A = cos ¢’ sin wy cos I - sin ¢’ sin I (A-3.3.4a,b,c)

sin ¢ cos ¢’ sin wg sin I + sin ¢’ cos I
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Differentiating (A-3.3.4c) yields for ¢’ = O:

8¢ _ cos 1
d¢p* cos ¢

and differentiating the quotient of (A-3.3.4b) and (A-3.3.4a)

A _ _sin I cos A
¢’ cos ¢

Now we have from eq. (A-3.2.4) for the unit potential

£-1 -1 |e
P’ _ o e : —Dry—
Vem = pEO Femp{cos(l 2p-1)u + . sin(£-2p-1)u}
0

which in fact is a Fourier series.

Introducing k* = £-2p-1 this yields

-1
Q’ _ = o *
Vo . z {(Fém(£—1+k*)/2 * Fﬂm(bqfk*)/z)cos kKfu +
x*=0/1,2
_1 e
* - > s
* (Fem(2-1—k*)/2 FZm(£-1+k*)/2) 1 sin ku}
0
where k* =0, 2, 4, ., -1 for odd ¢
k*=1, 3, 5, ..., &1 for even ¢

Comparison with an ordinary Fourier series

£-1
Vw = Cw cos iu + S "sin iu
gm i=0 i i

yields
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Fy =c” for odd ¢
In(l-1)/2 )

_zm(&d+k*)/2 = (Cf; + Sf;)/z for £&-m: even

Fzm(bq_k*)/z = (Cf; - Sf;)/z for {&-m: even

I—:hzm(2—-1+k“*)/2 = (Cf; = Sf;)/z for £-m: odd

_;m(bq_k*)/z = (Cf; + Sf;)/z for £-m: odd

The coefficients C , and S, are derived by computing the unit potential at
Kk N

discrete points along a great circle and performing a FFT.
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