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Abstract 
The multi-beam echo-sounder (MBES) system allows for unprecedented performance in map-
ping sea- and river-floors with a 100% coverage. It measures with a single acoustic ping the wa-
ter depths along a wide swathe perpendicular to the ship track using the travel times of the echo 
signals received in the acoustical beams. MBES ping rates depend on the water depth, but typi-
cally are a few tens of Hz. The MBES opening angle is about 150 degrees and contains several 
hundred narrow beams, thereby providing high-resolution bathymetric maps. The bathymetry is 
obtained on-line. Frequently, however, knowledge about the water column sound speeds is in-
sufficient for correctly converting the measured travel times to depths. Here, we present a 
method for estimating the unknown sound speeds from the MBES data itself. This method can 
be applied as soon as data along overlapping swathes become available. For this semi-online 
processing, efficient optimization approaches have been implemented. In addition to the travel 
times, the MBES also provides measurements of the backscatter strengths in each beam, which 
are known to contain information about the sediment types. We show results of applying a 
model-based classification method that employs the MBES backscatter data and discriminates 
between sediments in the most optimal way. The method has been applied for classification of 
sediments in a large number of areas. Here, we will show classification results for parts of the 
river Waal and the North Sea.  
 
1. Introduction 
The multi-beam echo-sounder (MBES) system allows for unprecedented performance in map-
ping the bathymetry of sea- and river-floors. The system measures with a single acoustic ping 
the water depths along a wide swathe perpendicular to the ship track, thereby covering a large 
area of the sea- or river-floor at once. 
 
The MBES opening angle is about 150 degrees. Beamsteering at reception allows for determin-
ing the (two-way) travel-time of the received signals as a function of angle. Water depths along 
the swathe can be derived from the combination of travel-time and angle, provided that the local 
sound speed profile in the water column is known (Beaudoin 2004). Typically, the number of 
beams amounts to several hundreds, thereby providing high resolution bathymetric maps. It is 
standard practice to carry out MBES surveys with at least a small overlap between adjacent 
swathes. The sounding density depends on the MBES opening angle, the sailing speed, the over-
lap and the water depth. For a water depth of 50 m and a ping rate of 5 Hz, typically 1 – 5 
soundings per square meter are obtained. The resulting amount of data acquired per day of sur-
veying is at least a few gigabytes. Still, the bathymetry is determined on-line, and the bathymet-
ric map is established on the fly. However, the increased use of the MBES has given rise to ad-
ditional requests from the user community, resulting in high demands with respect to e.g. the 
accessibility of the data. Two of these applications are considered in this paper. The focus, how-
ever, lies on the physical principles behind these applications. 
 
The first deals with the possibilities to use the MBES in environments with a highly dynamic 
water column. To capture the resulting variations in the water column sound speeds, a large 
number of sound speed measurements are needed. Due to the high costs involved, often only a 
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limited number of measurements are taken. This can result in insufficient knowledge about the 
sound speeds in the water column, preventing a correct conversion of the measured travel times 
to depths. The resulting errors in the derived bathymetry may be such that the survey needs to 
be repeated. An alternative approach is to exploit the redundancy in the MBES measurements, 
resulting from the overlap between adjacent swathes. The maximum time between measuring 
two overlapping swathes typically amounts to several hours. Since bottom features, such as 
mega ripples and sand waves, are not expected to vary significantly on this time-scale, the bot-
tom can be assumed to be stable over the course of the survey. Consequently, the depths as de-
termined from the measured travel times along two overlapping swathes should be the same at 
equal points on the seafloor. The sound speeds are then estimated by minimizing the difference 
between the water depths at the overlapping parts of the swathes. This method not only provides 
the bathymetry for which errors due to insufficient knowledge about the water column sound 
speeds have been diminished, but it also estimates the water column sound speeds. In principle, 
the method allows for MBES bathymetric measurements where no sound speed information is 
acquired as long as the overlap between adjacent swathes is sufficient. This method can be ap-
plied as soon as data along overlapping swathes become available. For this semi-online process-
ing, efficient minimization approaches have been implemented. 
 
The second demand from the user community considers the use of acoustic measurements for 
classifying the sediments. To extract, in addition to bathymetry, also the sediment composition 
from the MBES measurements would allow for huge cost savings, since it eliminates the need 
for costly sampling campaigns. Knowledge about the sediment composition is of importance in 
e.g. marine habitat studies, morphodynamic or sediment transport studies. 
 
It is well-known that the acoustic signals as received by the MBES are affected by the interac-
tion with the sediment. The interaction is dependent on the sediment type. Fine muddy sedi-
ments, for example, are known to result in low backscattering, whereas coarse sediments such 
as gravel result in high backscatter (APL 1994). By employing this knowledge, in theory, the 
MBES can be used also for sediment classification purposes. However, the process of extracting 
sediment type from the backscatter measurements requires dedicated processing steps. We have 
developed a model-based method that employs the MBES backscatter measurements for sedi-
ment classification. The method fully accounts for statistical fluctuations in the backscatter in-
tensity and consequently discriminates between sediments in the most optimal way. It estimates 
both the number of seafloor types present in the survey area and the probability density function 
for the backscatter strength at a certain angle for each of the seafloor types. Other MBES classi-
fication approaches have been developed both by commercial companies and universities. 
(Simons 2008) (Clarke 1994), (Hellequin 2005) (Canepa 2005) All classification approaches 
currently can only be applied in a post-processing step and are not yet automated. 
 
Section 2 of this paper describes the approach taken towards eliminating the sound speed in-
duced errors in the bathymetry by estimating the prevailing water column sound speeds. The 
performance of the method is demonstrated by applying it to MBES data that have been ac-
quired in the Maasgeul, the Netherlands, which is known to be highly variable with regards to 
the water column sound speed. Section 3 presents the model-based classification method based 
on the MBES backscatter data. The method has been applied for classification of sediments in a 
large number of areas. Here, we will present classification results for parts of the river Waal and 
the North Sea. 
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2. Compensation of multi-beam echo-sounder (MBES) bathymetric measurements 
for errors due to the unknown water column sound speed 
2.1 Description of the approach 
MBES systems emit acoustic pulses in an opening angle of 1 to 2 degrees in along-track direc-
tion, and about 150 degrees in the across-track direction. Beamforming in across-track direction 
is applied to determine the corresponding two-way travel-times for a selected number of arrival 
angles. Water depths along the swathe, spanned by the across-track opening angle, are deter-
mined from the combination of two-way travel-time and angle. Hereto, either propagation along 
straight sound rays is assumed, or in case the curvature of the sound rays cannot be neglected, 
ray-trace calculations are carried out. 
 
Inaccurate knowledge about the water column sound speeds results in an erroneous bathymetry 
in two ways: 
1. Errors in the beamsteering process. In case the actual sound speed deviates from the meas-

ured sound speed, the actual beamsteering angles differ from the beamsteering angles aimed 
for, and are unknown. 

2. Errors in the conversion from the angle and travel-time combinations to water depths along 
the swathe. 

 
Figure 1 shows the geometry of a typical MBES survey, consisting of a series of tracks sailed 
parallel to each other. Track distances are such that a certain overlap exists between adjacent 
swathes. 
 

 
 

Figure 1. Schematic of an MBES survey. 
Arrows indicate sailing directions, grey-
shaded rectangles the area measured per 
track. 

 
 

Figure 2. Example of ‘droopy’ effects along a 
cross-cut. The MBES measurements were car-
ried out near the entrance to the harbor of 
Rotterdam. 

 
Figure 2 shows an example of the typical bathymetric behavior along a cross-cut, such as indi-
cated in Figure 1, in case erroneous sound speeds are used. The area in which these MBES were 
taken is located close to the entrance of the Rotterdam harbor, where mixing of fresh and salt 
water occurs. The number of parallel tracks amounted to 12. The bathymetry was estimated 
from the measured travel-times, employing all sound speed information available, i.e., sound 
speeds measured at the transducer head for the beamsteering and a single sound speed profile 
for calculating the sound propagation through the water column. The colors indicate the 
bathymetry as estimated for each of the tracks. Differences in water depths along the overlap-
ping parts of adjacent swathes amount to almost 0.5 m. 
 
Currently, efforts to reduce these effects mainly aim at collecting additional sound speed profile 
measurements. In addition, research has been carried out to assess the potential of using 
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oceanographic models for predicting the prevailing sound speeds. (Calder 2004) In this paper, a 
different approach is taken, where the sound speeds are estimated from the MBES data and no 
additional sound speed profile measurements are needed. 
 
The method that has been developed for eliminating these effects fully exploits the redundancy 
of measurements in the overlap region between two adjacent swathes. The measurements are the 
two-way travel-times per beam and swathe. For estimating the unknown bathymetry and sound 
speeds, a model is required that predicts these two way travel times, given a set of values for the 
unknowns. Hereto, the seafloor is modeled with an interpolated grid function, with the water 
depths at the grid positions being unknowns that need to be determined. We aim to minimize a 
function that represents the mismatch between measurements and model output, i.e., 
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where N and S are the total numbers of MBES beams and swathes, respectively. The measured 
two-way travel-times are denoted by Tk,j. The modeled two-way travel-times are denoted by tk,j . 
The model that calculates tk,j, accounts for both the effect of sound speed on the beamsteering 
and on the propagation through the water column. The unknowns are the sound speed profiles 
for each of the swathes and the bathymetry. These unknowns should be estimated such that E 
becomes minimal. 
 
For the minimization we have considered two different optimization techniques: 
– The method of Differential Evolution (DE) (Snellen 2008); 
– Gauss-Newton (GN). 
 
DE is a global optimization technique and can be seen as a modified version of a Genetic Algo-
rithm. It does not make use of derivatives, but searches within all possible solutions for promis-
ing solutions. DE has been applied extensively, showing good to very good performance in lo-
cating the global optimum of a function. The advantages lie in its robustness (i.e., its insensitiv-
ity to the shape of the energy landscape) and the fact that it does not pose requirements on the 
behavior of the function considered. The drawback is that it requires a significant number (1000 
– 3000) of forward model calculations, in this case model calculations for tk,j. 
 
The advantage of GN lies in its efficiency, i.e., it requires much less computations. The draw-
backs are that it is a local method, likely to end up in a local minimum in case multiple minima 
exist, and that it requires expressions for the derivatives of the function with respect to the un-
known parameters (unless calculated numerically). These derivatives are dependent on the as-
sumed model for tk,j. For the situation at hand, for example, each parameterization of the water 
column sound speed results in different expressions for tk,j. 
 
Based on a series of DE inversions for different parameterizations of a shallow water sound 
speed profile (constant sound speed, linearly varying sound speed, and a water column consist-
ing of two different layers, each with a different sound speed), all were found to give similar 
results for the estimated bathymetry. Therefore, for GN we have assumed a constant sound 
speed throughout the water column. This results in one unknown sound speed for each of the 
tracks. The unknowns (~250) to be optimized are thus the depths at the grid positions and the 
sound speeds for each of the swathes. 
 
The optimization procedure is as follows: For the seafloor, we use a fixed grid of closely spaced 
horizontal positions, denoted Xn in the across-track direction. At every position Xn, Zn denotes 
the corresponding water depth. These Zn are part of the unknowns to be estimated. Between the 
grid points the depth is interpolated linearly. For every beam j at angle k,j, the point where the 
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acoustic beam impinges on the model seafloor is denoted as (xk,j, zk,j). Figure 3 shows a sche-
matic overview of this model. 
 
Let the MBES be located at (Xk,MBES, Zk,MBES), then the function for tk,j can be derived by calcu-
lating the intersection between the sound ray and the line between the grid points, as illustrated 
in Figure 3. 

Figure 3. Illustration of the model for tk,j. On the right side of the MBES we show the path of a 
sound ray through water column. The ray impinges at the seafloor in between the grid points Xn 
and Xn+1 at coordinates (xk,j, zk,j). tk,j is calculated as 2Rk,j /c. 
 
The position at which these two lines intersect is given by: 
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Values for tk,j are calculated employing the water column sound speed ck as 
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where ck is the sound speed in swathe k. 
 
For each realization of the unknowns, i.e., the sound speeds ck and the depths Zn, values for tk,j 
are calculated. Minimizing E of Eq. (1) implies a search for those values of the unknowns that 
minimize the difference between the measured (Tk,j) and calculated travel times (tk,j). To solve 
for Eq. (1) in a least-squares sense requires the iterative Gauss-Newton approach. For this, the 
expressions for the derivatives of tk,j to all unknowns have been determined. In general, two to 
three iterations were found to be sufficient for localizing the optimal values for Zn and ck. Either 
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the optimized depths can be used directly as the corrected bathymetry, or the optimized sound 
speeds can be used to recalculate the bathymetry for each beam and each ping. 
 
In (Snellen, 2009) simulations are presented to assess the required overlap. It was found that 
both an increasing noise level and a decreasing overlap result in increased deviations of the es-
timations from the true bathymetry and sound speeds, but that still the deviation is limited, with 
mean errors in the sound speed and bathymetry seldom exceeding 1 m/s and 0.2 m. 
 
2.2 Results 
The method has been applied to MBES data that were collected in the Maasgeul, the Nether-
lands. The black rectangle in Figure 4 indicates the area of the measurements. The data have 
been collected during a standard survey, during which a single sound speed profile was meas-
ured. The sound speed values at the MBES transducer were measured continuously. 
 
The left plot of Figure 5 shows the bathymetry as determined from the MBES measurements, 
where all available sound speed information was used for converting the measured travel times 
to water depths. Artifacts running parallel to the sailing direction are clearly visible. These show 
a typical ‘droopy’ structure, indicating that they are caused by errors in the conversion from 
travel times to water depths due to insufficient knowledge about the prevailing sound speed pro-
files. These droopy effects are most pronounced in the outer beams. However, the bathymetric 
errors are also present directly underneath the sonar. 
 
The plot on the right of Figure 5 shows the bathymetry as obtained after application of the re-
fraction-correction method described above. Clearly the artifacts have been eliminated. The 
beam trawl marks (depths of several dm’s) are still visible. 
 
It can be concluded that the proposed method strongly increases the potential of the MBES to 
accurately measure the bathymetry in environments with a strongly varying water column. The 
availability of efficient optimization techniques allows for application of the bathymetry correc-
tion in real time, i.e., as soon as the first overlaps become available. 

Figure 4. The Maasgeul area (close to the Rotterdam harbor) where the MBES measurements 
were taken. 
 

 



39Management of massive point cloud data: wet and dry 

the optimized depths can be used directly as the corrected bathymetry, or the optimized sound 
speeds can be used to recalculate the bathymetry for each beam and each ping. 
 
In (Snellen, 2009) simulations are presented to assess the required overlap. It was found that 
both an increasing noise level and a decreasing overlap result in increased deviations of the es-
timations from the true bathymetry and sound speeds, but that still the deviation is limited, with 
mean errors in the sound speed and bathymetry seldom exceeding 1 m/s and 0.2 m. 
 
2.2 Results 
The method has been applied to MBES data that were collected in the Maasgeul, the Nether-
lands. The black rectangle in Figure 4 indicates the area of the measurements. The data have 
been collected during a standard survey, during which a single sound speed profile was meas-
ured. The sound speed values at the MBES transducer were measured continuously. 
 
The left plot of Figure 5 shows the bathymetry as determined from the MBES measurements, 
where all available sound speed information was used for converting the measured travel times 
to water depths. Artifacts running parallel to the sailing direction are clearly visible. These show 
a typical ‘droopy’ structure, indicating that they are caused by errors in the conversion from 
travel times to water depths due to insufficient knowledge about the prevailing sound speed pro-
files. These droopy effects are most pronounced in the outer beams. However, the bathymetric 
errors are also present directly underneath the sonar. 
 
The plot on the right of Figure 5 shows the bathymetry as obtained after application of the re-
fraction-correction method described above. Clearly the artifacts have been eliminated. The 
beam trawl marks (depths of several dm’s) are still visible. 
 
It can be concluded that the proposed method strongly increases the potential of the MBES to 
accurately measure the bathymetry in environments with a strongly varying water column. The 
availability of efficient optimization techniques allows for application of the bathymetry correc-
tion in real time, i.e., as soon as the first overlaps become available. 

Figure 4. The Maasgeul area (close to the Rotterdam harbor) where the MBES measurements 
were taken. 
 

 

  
 

Figure 5. Left plot: Bathymetry as determined from the MBES measurements before application 
of the proposed method. Right plot: bathymetry obtained from application of the correction 
method. 
 
3. Sediment classification with the multi-beam echo-sounder 
3.1 Description of the method 
The approach presented classifies the sediments in an area based on the measured backscatter. 
The backscatter intensity varies with incidence angle. This angular dependence masks effects of 
variation in sediment type and morphology in the backscatter images. Therefore, MBES sys-
tems apply corrections to the measured backscatter intensities to eliminate this angle depend-
ence, e.g. by assuming Lambert’s law. The backscatter images obtained from the MBES after 
angle correction are comparable to those obtained with a side-scan sonar system (SSS). These 
maps can be used for classification purposes by resolving textures or spatial variability in the 
data., e.g. as in (Blondel 2009). On the other hand, the variation of the backscatter strength ver-
sus angle with sediment type can potentially be used for classification (Simons 2008), (Clarke 
1994) (Canepa 2005). A problem in this latter approach arises for areas where the sediment type 
varies along the swathe. In this case, it is difficult to discriminate between the angular variation 
itself and real sediment type variation along the swathe. 
 
Therefore, we have selected an alternative approach. The approach proposed here employs the 
backscatter data still containing the angular dependence. It is, therefore, not dependent on the 
corrections applied to eliminate this angular dependence. However, instead of using the angular 
behavior of the backscatter strength as the classifying parameter, it uses backscatter measure-
ments per angle. Additionally, it accounts for the ping-to-ping variability of the backscatter in-
tensity that partly masks the information about sediment characteristics. The classification 
method employs the backscatter values (in dB) per receiver beam, i.e., backscatter values that 
have been obtained from averaging (or filtering) over the Ns independent scatter pixels in a re-
ceiver beam. Corrections for propagation losses and footprint are applied, and backscatter val-
ues are provided for each of the MBES beams. 
 
Due to the small pulse length Tp employed by the shallow water MBES systems (typically ~100 
s) the signal footprint is also small. The beam footprint is determined by the water depth H, the 
beam angle and the MBES transducer characteristics, and typically is much larger than the sig-
nal footprint. The number of scatter pixels Ns per beam footprint for a beam at angle  with the 
vertical is given by 
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with c the water column sound speed and Ωrx the beam opening angle in the across-track direc-
tion. This expression only holds for beams away from normal incidence. 
 
If Ns is sufficiently large for the central limit theorem to hold, the backscatter values per beam 
are distributed according to a normal distribution. For water depths of a few meters, as encoun-
tered e.g. in river environments, Ns is not sufficiently large for the assumption of a normal dis-
tribution to hold, and the measured backscatter strengths are averaged over a number of subse-
quent pings and beams to increase Ns (Amiri-Simkooei 2009). 
 
Based on the assumption of normally distributed backscatter strengths per sediment type, we 
apply the following approach towards classification of the sediments. 
 
Step 1: Nonlinear curve fitting. The algorithm starts by fitting a model to the histogram of meas-
ured backscatter strengths. The data consist of all averaged backscatter data as measured for a 
certain angle (or set of angles in shallow water situations). The model that we fit to the histo-
grams, therefore, consists of a sum of m Gaussian probability density functions (PDFs), each 
PDF representing a sediment type with mean backscatter strength ky  and standard deviation σyk 
(both in dB), i.e., 
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with ( | )jf y x  the value of the model at backscatter value yj, and vector x containing the un-

known parameters, i.e., 
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with c the water column sound speed and Ωrx the beam opening angle in the across-track direc-
tion. This expression only holds for beams away from normal incidence. 
 
If Ns is sufficiently large for the central limit theorem to hold, the backscatter values per beam 
are distributed according to a normal distribution. For water depths of a few meters, as encoun-
tered e.g. in river environments, Ns is not sufficiently large for the assumption of a normal dis-
tribution to hold, and the measured backscatter strengths are averaged over a number of subse-
quent pings and beams to increase Ns (Amiri-Simkooei 2009). 
 
Based on the assumption of normally distributed backscatter strengths per sediment type, we 
apply the following approach towards classification of the sediments. 
 
Step 1: Nonlinear curve fitting. The algorithm starts by fitting a model to the histogram of meas-
ured backscatter strengths. The data consist of all averaged backscatter data as measured for a 
certain angle (or set of angles in shallow water situations). The model that we fit to the histo-
grams, therefore, consists of a sum of m Gaussian probability density functions (PDFs), each 
PDF representing a sediment type with mean backscatter strength ky  and standard deviation σyk 
(both in dB), i.e., 
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Figure 6. Histograms of measured backscatter data (60 degree beam) fitted to the model for m 
= 4, 5, 6 and 7, respectively. 
 
This means that we choose the hypothesis that, given the observation y, maximizes the likeli-
hood . We, therefore, have to determine the intersections of the m normal PDFs, result-
ing from the fitting procedure of Step 1. This results in m non-overlapping acceptance regions 
Ak. 
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Step 3: Assigning sediment type to acoustic classes. Now, a sediment type needs to be assigned 
to each of the acceptance regions. The result of this step can be accomplished by a comparison 
of the ky  values with a combination of data found in the literature, model outcomes and knowl-
edge of the surveyed area based on e.g. cores or samples. 
 
Step 4: Quality assessment. Based on the so-called decision matrix of the multiple-hypothesis-
testing problem, probabilities of incorrect decision are determined. 
 
Step 5: Mapping. By plotting sediment type versus position, e.g. with different colors represent-
ing different sediment types, a classification map of the area is obtained. 
 
3.2 Results 
The approach described in section 3.1 has been applied to MBES data acquired in a large num-
ber of different areas, with different sediment types. For the current paper, we present results for 
two different areas. 
 
The first area is the Cleaver Bank area in the North Sea, the Netherlands. The upper plot of Fig-
ure 7 shows the bathymetry in the area, indicating water depths from ~30 to ~60 m. The data 
were acquired in 2004. The MBES used for the measurements was an EM3000 dual-head sys-
tem, working at a frequency of 300 kHz. The pulse length amounts to 150 s. The opening an-
gles in both the along-track and across-track direction amounts to 1.5. In total 254 beams are 
formed by the system. In practice, however, the number of beams at which measurements are 
taken is less and typically amounts to 160. 
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Figure 7. Upper plot) The bathymetry in the Cleaver Bank area. Middle plot) The tracks sailed 
during the survey, superimposed on a geological map of the area. Lower plot) Classification of 
the sediments by application of the proposed classification method. Also indicated is the Folk 
class as a function of position as determined from the grabs. The sediment types present are, 
i.e., sandy gravel (sG), gravelly sand (gS), slightly gravely sand ((g)S), sand (S), muddy sand 
(mS), and sandy mud (sM). 
 
The data were provided as raw data files (4.5 GB) from which the backscatter strength as a 
function of angle and position has been extracted. The middle plot of Figure 7 shows the tracks 
sailed during the survey. The ping rate is about 5 Hz. The survey lasted for about 32 hours, re-
sulting in ~600.000 pings collected during the survey. For the water depths in the area which 
range from 30 to 60 m, this corresponds to a 1 – 5 measurements per square meter. 
 
For each ping the backscatter strength at a predefined angle is selected. By applying the method 
as described in the previous section it is found that, based on the backscatter strengths, 6 sedi-
ment types could be discerned in the surveyed area. Samples of the sediment were employed to 
assign a sediment type to each of the acoustic classes. The resulting classification map is shown 
at the bottom of Figure 7. Also shown in this plot are the sediment types according to the sam-
ples. Clearly, the acoustic classification method reveals a distribution of the sediments over the 
area that is in good agreement with the distribution indicated by analysis of the sediment sam-
ples. 
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Figure 8 shows the classification map for the second MBES data set, acquired along a part of 
the river Waal, close to St. Andries. Again the system is a 300 kHz MBES with a maximum of 
254 beams. The ping rate is about 35-40 Hz, resulting in ~2 million pings in the surveyed area. 
Sediments in this area are coarser then those at the Cleaver Bank. As with the Cleaver Bank 
area, the acoustic classification results are in very good agreement with the sediment samples. 
 

Figure 8. Acoustic classification map for an area of the Waal, close to St. Andries. The three 
colors indicate the three acoustic classes. The results of the sample analysis are shown by the 
squares. MGS indicates the mean grain sizes. 
 
4. Summary and conclusions 
In this paper two methods are described that focus on improving the performance of MBES sys-
tems. For both, efficient access to the individual data points within the large number of meas-
urements is essential. 
 
The first aims at eliminating errors in the bathymetry due to erroneous sound speed information 
by employing the overlap between adjacent MBES swathes. In principle, this method allows for 
MBES surveys where no information regarding the prevailing sound speeds is acquired. The 
approach has been optimized with regards to computational efficiency. Consequently, the 
method can be employed in real-time during the survey. The only requirement is that there ex-
ists overlap between adjacent swathes. 
 
In addition, the performance of the MBES with regards to classification of the sediments is 
demonstrated. For the research presented in the paper, the classification has been carried out 
after the survey. However, for practical situations where it might be of interest to establish a 
picture of the sediment distribution while surveying, another approach can be selected, where 
each new measurement is added to the previous measurements. The fitting procedure has then to 
be repeated during the survey, thereby building up and refining the overview of the sediment 
distribution in the area of the survey. 
 
The combination of high-resolution bathymetry and high-resolution classification results can 
provide important new insights in the mechanisms governing the sediment distribution. Further 
future developments in this field will be to fully exploit the entire time series, i.e. the complete 
received signal per beam, for improved classification. This requires storing the received signal 
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for each ping and each beam, whereas currently the signal is reduced to two parameters, being 
the two-way travel time and backscatter strength. The advantage of obtaining more information 
is, therefore, counteracted by a significant increase in data rate with at least a factor of 100 to 
1000. Allowing classification approaches that employ the complete signal per beam to be ap-
plied real-time is expected to require a significant research effort. 
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