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Chapter 0. 

INTRODUCTION. 

In this study a functional model for the adjustment of spatial geodetic net- 
works is described. The model can be used both for terrestrial first order 
networks including astronomical observation variates and for engineering 
surveys, e.g. for the measurement of deformations,or for setting out high 
structures. 

0.1 Starting points. 

In this study, the use of quaternion algebra for the formulation of spatial 
functional relations and difference equations is of vital importance [l41 . 
This choice is based on the historical background of the theory, and, in 
particular, on the way in which it could be linked with the methodological 
starting points formulated by W. Baarda within the scope of his two-dimen- 
sional polygon theory in the complex plane [2]. 
These starting points are used in the preceding theory and may be shortly 
summarized as follows : 
-An exclusive use is made of operationally defined coordinate systems, or, 
in W. Baardals terminology : S-coordinate systems [3]. 
-Observation variates are put together in so-called "form quantitiesw, 
because the definition of a coordinate system has to be based on variables 
that are invariant in similarity-transformations. This means the use of 
distance-ratios, which requires an algebraic system in which division 
is defined. 
-The model may not contain assumptions or artificial structures (e.g. an 
ellipsoid) necessitating 19model-corrections" of observation variates. 
-The adjustment model is set up primarily according to the method of 
condition equations, i.e. the Itstandard problem Iw in J.H. Tienstrats 
terminology. It is true that the method of observation equations (standard 
problem 11) is much more usual in international literature, but it is 
considered to be less satisfactory for the present theoretical investi- 
gation, because of the sometimes vague definition of unknown variates, the 
unsystematic way of introducing approximate values, and the greater risk of 
singularities slipping in [4]. 
In view of these starting points, quaternion algebra proves to be a magni- 
ficent and efficacious and indispensable tool. For vectors whose dimension 
is more than two, it is the only associative algebra in which division is 
defined and in which there are no zero-divisors (contrary to vector calculus). 

It is true that the use of quaternion algebra for our purpose gives rise to 
some problems,but these are limited to the practical elaboration of the 
system of formulae : 
-Because of the absence of the commufative property of multiplication, 
the formulae generally contain one extra factor (the relations themselves) 
or one extra term (the difference equations) in comparison with analogue 
formulae in the two-dimensional theory; for example, cansider the trans- 
formation of system i to system r : 



('9- ( i )  - 1  
9 - 'ri Pri 9 Pri 

-The vectors described are three-dimensional, the spatial rotation has three 
independent parameters, however, quaternions have four components (with 
basis-units 1, i, j, k). This means that the first component of a quater- 
nion is equal to zero, if the quaternion represents a vector : 

qLL = 0 + i x iL + j yik + k ziL ( v e c t o r )  

Chapter 3 shows that in dimensionless difference quantities (ic which all 
four components#O ! )  there is, both for observation variates and coordi- 
aate quantities a linear dependence between the components of the relative 
difference-variate : 

For the rotation-quaternion : 

in which all four components f O ,  the situation is even slightly more com- 
plicated. This is discussed in Chapter 1. 
-In quaternion algebra, there is no complete "function theoryn, as is the 
case with complex numbers. Quaternion functions cannot be integrated, though 
they can be differentiated. This is sufficient for the purpose of this 
study. 

In addition to the theoretical considerations concerning the choice of 
quaternion algebra, it is of great importance that here we have an elegant 
methodical structure for geodetic methods in all three dimensions : one- 
dimensional levelling, two-dimensional "plane surveyingw and three-dimen- 
sional first order networks and networks for the construction of high buildings. 

In [3] it has already been shown that a one-dimensional network is a "special 
case1' of a two-dimensional network, as far as the structure of the adjust- 
ment model, and especially the description of the precision, are concerned. 
In the present study (see Chapter 4 )  it is shown that the two-d&mensional 
structure is, in turn, a special case of the three-dimensional one. This 
uniformity of structure means that the overall system developed by the 
"Delft schooln for the description of stochastic aspects is universally 
applicable to three-dimensional problems (intecnal and external reliability ; 
S-transformations and criterion matrices; the X-theory [5]  , [6] , [3] , [7]. 

0.2 Historical background of the theory. 

As early as 1960, hence a considerable time before the finalisation of the 
theory pertaining to the "polygon theory in the complex planet1, Baarda con- 
cluded that quaternion algebra would be the most appropriate tool for the 



function model of three-dimensional polygon networks. Furthermore, he made 
an initial exploration of the practical elaboration [a] ; in these manus- 
cripts some cardinal pcints of the system of formulae are solved, such as 
the use of isomorphy between quaternions and matrices, the definition of a 
spatial analogue for the two-dimensional TT-quantity, and, closely connected 
with it, the three-dimensional coordinate condition and its difference 
equation. Rotations are also briefly described: this aspect was worked out 
by i3.Vermaat some years later C231 . In his graduation paper the present 
author worked out these studies to a provisional termination [l81 . The 
model described there displays a number of "greyn spots: for example, the 
linear dependences within the condition model have not been obtained 
from algebraic analysis, but from computer-aided determination of the rank of 
matrices. Furthermore, the interpretation of a number of concepts and 
auxiliary quantities is "geometricm rather than "algebraicw in nature. 
The gravest shortcoming was the total absence of the transfer to S-coordi- 
nates. In the period elapsed since then, the theory has been completed and 
perfected. The main points studied were : 
-the transfer to S-coordinates after adjustment by the method of condition 
equations, and the links between the transformation designed for this pur- 
pose and the general three-dimensional S-transformation, developed in the 
same period by W. Baarda and later by M. Molenaar C171 . 
-the analysis of the linear dependen&s in the condition model. 
-the analysis of the special position accorded to the first azimuth (see 
section 4.2). 
As time went by, the progress of the investigation was slowed down more and 
sot-e by the exigencies of the author's daily work, where he was, at first, 
mainly occupied with the implementation of the two-dimensional polygon 
theory, as developed by Baarda, in cartographic measurements and in engi- 
neering survey networks. Nevertheless, this practical environment and the 
study in the three-dimensional theory have had positive effects on each 
other. For example, there turned out to be a strong similarity between, on 
the one hand, the way in which horizontal orientation unknowns eiin networks 
with non-parallel first axes are transferred via observation variates from 
one side of the network to the next : 

etc. (see 3.30 and 3.40). 
On the other hand, the way in which the initial arguments Cp;of interlinked 
alignment elements (i) of a track depends upon the initial argument Q* and 
the angles @ of alignment elements : 

etc. . 
( pi : parameters of the alignment element i, stc; 
@ =  0 for straight element) 



The recognition of this agreement led, in 1974, to the development of an 
original practical algorithm for the automated solution of alignment 
equations from conditions, such as the constraint condition [l91 . 
In addition, a profound study in the years 1977-1978, leading to a geo- 
detic system for the control of automatic track maintenance machines, 
clearly showed that particularly the theory of the S-transformations is 
indispensable in the formulation of purpose dependent standards for 
practical geodetic activities C201 . 
This example refers to the complex plane; as soon as a three-dimensional 
measuring process is used in the case of setting out,or deformation-measure- 
ments of high civil engineering structures the same applies there, and a 
good functional model is indispensable. 

0.3 Practical applications. 

The model described here is the missing link in an operational theory for 
terrestrial-geodetic networks. Here, we must make a distinction between two 
fields of application, each with its own theoretical and practical problems: 
the first order geodetic networks (slightly inclined "planew networks of 
which the points are more than 10 km spaced apart, and with astronomical 
orientation of local systems) and the networks for the determination of 
deformation and for setting out of high buildings and bridges (small net- 
works with great differences in height; the direction of the local gravity 
and thus the first axis of the theodolite are considered to be parallel). 
The problems involved in the conventional procedures in the first order 
networks are clearly outlined in some papers by W. Baarda 191 : the necessary 
corrections of observation variates; the regional adaptation of ellipsoids; 
the units of length, which cannot be equal to the instrumental units of 
length; the problems encountered during the connection of these networks; 
the vague determination of the third dimension and the inaccurate definition 
of the so-called Laplace equation. 
It would seem possible to solve part of these problems by the addition of 
zenith angles and the determination of longitude and latitude in all (or 
most of the) stations, and also by the measurement of distances; in accor- 
dance with this ~rocedure some test networks have been measured since 
1965, particulariy in mountainous areas in Germany and Switzerland [22], 
C211, C121. 
However, with regard to these test networks, it becomes apparent from 
publications that the procedure chosen does not comply with the starting 
points formulated in this introduction: the adjustment is not done in a 
"S-systemn,only the method of observation equations is used, and the use of 
distance ratios is left out of consideration altogether. 

Regarding the second field of application, that of small networks for civil 
engineering problems, only a small number of publications is available. This 
may well be caused by the fact that in practical geodesy, confronted with 
"spatial objectsn, no three-dimensional measurement procedure is chosen, (one 
might choose spatial radius vectors, possibly supplemented by measurement of 
some height-differences per floor or storey), but the problem is split up 
into a two-dimensional procedure for the planimetry and a one-dimensional 
procedure for the differences in height. This may lead to very complicated 
prdblems in the implementation of the measurements, the horizontal position 



of the higher storeys being defined very poorly. An example illustrating 
this is described in [l l] . 

0.4 Suggestions for further research. 

This study only covers the description of a functional model for three- 
dimensional terrestrial networks, in which optional astronomiual obser- 
vation variates are admitted. 
Further studies, focused on practical applications are required on, inter 
alia, the following problems : 
0.4.1. 
After the model has been programmed, it will be possible, with the aid of 
other computer programs of the Department of Geodesy of the Delft University 
of Technology, designated by the collective name SCAN, to study the optimal 
construction of networks for the two fields of application. 
0.4.2. 
The interaction between zenith angles and the astronomical observation 
variates and also the effects of all these observation variates on precision 
and on the internal and external reliability. 
0.4.3. 
What is the relation between vertical refraction and the so-called Z-condi- 
tions in the sides of the network, arising from the direct and reverse 
measurement of zenith angles ? 
(see also F3], [l01 , [l ] for the problems encountered in measuring zenith 
angles 1.  
0.4.4. 
In chapter 2.3 is suggested, to choose a measuring procedure in which astro- 
nomical longitudes (and possibly latitudes) are measured simultaneously in 
each pair of stations, in order to eliminate the influence of star coordi- 
nates and polar motion, and to reduce the influence of time. This has to be 
elaborated further, both practically and theoretically. 
0.4.5. 
In Itengineering survey networkspp, the direction of the vertical (the first 
axis of the theodolite) is not determined by astronomical observations. 
In which cases it is to be preferred to introduce two unknowns for the 
direction of the vertical in every networkpoint; in which cases is it 
possible to start from the assumption that these are all parallel to each 
other ? How should the network be designed in these various situations ? 

In all these problems, the purpose of the network, and especially the ques- 
tion whether the nvertical componentw (perpendicular to the earth surface) 
is by itself significant or only serves to improve the "horizontal com- 
ponent", play an important role. 

0.5 Guide lines for the reader. 

In Chapter 1 the algebraic apparatus is described : arithmetic procedures; 
the geometrical interpretation; rotations, difference equations and iso- 
morphic matrices. 
In Chapter 2 the introduction of terrestrial and geodetic-astronomical 



observation varihtes is described. 
In Chapter 3 the fundamental quantities described in Chapter 2, are linked 
to more complex structures: successive rotations, vector rotations. 
Subsequtntly, the first linear dependency is derived and inverse functions 
are established (differences of observation variates, expressed in differen- 
ces of coordinate quantities). Finally the transfer of orientation unknowns 
8 ;  is discussed, and, simultaneously, that of the length factors. 
Chapter 4 deals with three important differences between the three-dimen- 
sional and the two-dimensional model; these differences are caused by the 
fact that the quaternion quotient : 

is not fully invariant in similarity transformations, contrary to the 
analogue quantity : 

in the two-dimensional model. The differences referred to concern : 
-The role of the orientation unknowns and the first azimuth. 
-The fact that the relations must be established in one of the local systems, 
and the effects thereof on estimators and weight coefficients of obser- 
vation variates. 
-The introduction of S-coordinates by the inclusion of the stochastic ttbasis - 
transformaLion" E,, ; lRr 
When using the adjustment method of condition equations, this transformation 
ifRlntered in the formula by which, aft r adjustment, coordinate quantities f q are computed from the estimators X of observation variates : - - 

with r 
(R) : "S-coordinates'' T 

When using the method of observation equations, the basis transformation, 
in the form of four unknowns, is entered in the correction equations. 

Regarding this chapter, the method of observation equations seems to be 
less sensible for these complications, so it may be once more concluded that 
this method is theoretically weaker than the method of condition equations, 
because it may be applied on the basis of a much more superficial analysis, 
thus involving the risk that the model is incomplete or incorrect. 
This chapter also considers the numbers of quantities and condition equations 
in the adjustment model for a closed polygon. 
Finally in Chapter 5 the condition model is given, starting from W. Baardats 
theory for the complex plane and building on the conclusions in the Chapters 
3 and 4. It becomes apparent that the structure remains strongly affiliated 



with that in the complex plane, be it that there are more types of obser- 
vation variates and more types of conditions in it and that the relations 
between the conditions are considerably more complicated. Finally, the 
correction equations for the adjustment model of observation equations are 
established. 



Chapter 1 

QUATERNION ALGEBRA. 

1.1 Units and definitions. 

Quaternion algebra was formulated about 1843 by W.R. Hamilton O h ) ,  
It is a hypercomplex algebra with four base elements 

As in algebra with complex numbers, the following applies : 

The scalar unit 1 is an inactive operand in multiplications by the 
three others : 

The three "imaginary" units generate each other in accordance with cyclic 
multiplication rules : 

k i ' =  j 

They are non-commutative : 

j L = - k  

i k  = - j  

A quaternionQ has four base components, e.g. W, X, y and z : 



We introduce the following terms and notations : 
-the scalar part of Q  : Sc { Q  1 = W 

-the vector part of Q  : VC { Q  \ = ix+jy+kz 
-the i-component of Q  : Vi { Q  f = X 
-the j-component of Q  : Vj { Q f  = Y 
-the k-component of Q  : Vk { Q  5 = Z 
-the norm of Q  : 

2 2 2 2  + N ( Q \ =  w+x +y +z 

Hence : 

1.2 Addition, subtraction, multiplication and division. 

We consider two quaternions : 

$ , = w , + i r , + j  y , + k  z, 

q 2 =  w2+ i x,+j y,+k zz 

The sum and the difference of q, and are then defined as : 
2 

4,  + @z = W I  + WL + C L ~ + L ~ ~  +j [y,+yI] + k C Z ,  +zz] 

@,-+, = W,-W, + i i s - ~ . ]  + J  [r,-?,l + ~Lz . - zz ] .  

Multiplication by a scalar a gives : 

qj = aw,  + L a x ,  + j a y ,  + k a z ,  

Applying the rules of multiplication (1.11, (1.2) and (1.31, the product of 
G, and becomes : 

Now it becomes directly apparent that the product is non-commutative : 

4, q z  # +z 4 ,  . 



However, t h e  fo l l owing  still a p p l i e s  : 

The product  is commutative, i f  t h e  v e c t o r  components o f  G, and G2are 
n p a r a l l e l w ,  o r  i f  : 
( w i t h  a and b be ing  scalars) 

We d e f i n e  t h e  "conjugaten o f  i$j as : 

t h e r e f o r e  : 

(4T)T= + 
It a l s o  f o l l o w s  from (1 .8 )  : 

F u r t h e r ,  see (1 .5 )  and (1 .6)  : 

T h i s  means : 

s o ,  by d e f i n i t i o n ,  t h e  i n v e r s e  o f  @ r e a d s  : 

Remark : 
Because of ( 1 . 6 ) ,  i t  f o l l o w s  from W (Q} = 0 t h a t  = 0; t h e r e f o r e  t h e  i n v e r s e  
o f  4 is always d e f i n e d ,  excep t  when 4 = 0. 
Consequently,  i n  qua t e rn ion  a l g e b r a  t h e r e  occur  no z e r o  d i v i s o r s .  



Because furthermore, with (1.15) : 

the following applies by definition : 

This can be extended to products with more than two factors ; suppose : 

then, with (1.16) : 

1.3 A geometrical interpretation of quaternions. 

The iinaginary units i, j and k may be regarded as unit vectors in Rj, com- 
posing together a right-handed trirectangular trihedral (see fig.1) 

Then a quaternion q with scalar part : 

I 
fig. l 

becomes a vector in R 3 
= O +  i x + j g + k z .  

From (1.6) it follows that : 

1.3.1 
The geometrical significance of the quaternion quotient. 

We consider two quaternions q and q2 whose scalar parts vanish : 1 

q2 = O  + i x Z + j  9 % + k z 1  

Then, according to (1.8) the product of ql and q2 is : 



Because w e  c o n s i d e r  x l ,  y l ,  and z , ,  r e s p e c t i v e l y  X , y2 and z2 as components 
o f  two v e c t o r s  i n  a r e c t a n g u l a r  c a r t e s i a n  coordinaze system i n  R %he laws 
o f  "vec tor  a n a l y s i s n  can be a p p l i e d  t o  (1.191, s o  : 3' 

"scalar productv  : 

X ,  4- Y,5z + = l 2 2  = q, q 2  = PI J ,  C OS X 

"vec tor  productn  : 

Here 8 i s  t h e  a n g l e  between two v e c t o r s  and e is t h e  u n i t  normal vec to r  on 
t h e  p l ane  through t h e  two v e c t o r s ,  which, because t h e  X-, y-, z-system is 
a right-handed t r i h e d r a l  system, f i t s  i n  wi th  t h e  s ense  o f  r o t a t i o n  o f  
q1 to q2* 

There are two p o s s i b i l i t i e s  : (see f i g . 2 )  

a : reversed  sense  of r o t a t i o n  q -pq 1 2 '  
a e = e  upwards" 

- - A  
OC = M  

b : c lock  wise sense  of  r o t a t i o n  q j q  1 2 '  
4 e = e4 'l downward* 'l ( e = - 2) 

- 01 = O r  - B  = 2 T - 6 r a  

fig. 2 

I n  view o f  (1.19) and (1.20) ,  t h e  product  o f  q l  and q2 is : 



According to (1.15) and (1.11) : 

- 1 If, in (1.21) q2 is replaced by q2 , (1.21) passes consequently into : 

Here the length-ratio 

comes into play, consequently : 

We now follow the pattern of Baardats "Polygon theory in the complex planew 
[2] and define the angle d in the horizontal plane as the difference of two 

directions r : 

0( = r, - r2 

The angle a (in the plane of ql and q2) that fits with this choice is : 

Since the graduations of the horizontal circle of a theodolite are'numbered 
clockwise (seen from above), a positive rotation on this circle is right- 
handed and fits in with eb. Replacing in ( 1 .22)ea by eb one obtains : 

The approximate equality for 2 in ( 1.23 ) is only valid when q l and q2 are 
near-horizontal. 

From (1.23) it becomes apparent that the four components of the quaternion 
quotient qlq-' deternine the shape of a triangle and also describe the 
spatial posiZion of the plane of that triangle; 

Suppose : 



consequently : 

A V } the q9shapeqq of the triangle 

C 

D n2 } two out of the three components of the unitnormalvector 
3 

The computation rules for v,a, n en n3 are : 2 

h 3  = O  
v 

If q1 and q2 lie approximately in the i-, j- plane of 
the system of coordinates and e "points downwardsw 

\ 6 (i.e. the theodolite is not upside down) the following 
applies : (see fig. 4) 

e 

6 n , = + ~  

then 2 must be chosen such that : 

s ign ( A 3 1  = sign {C \ 
fig. 4 

1.3.2 
Decomposition into orthogonal components. 

We consider the quaternions : 

f 
fig. 5 

According to (1.23) we obtain : (see fig. 5 )  

e < ' = L - [ ~ . ) a + f n ; ~ ]  . 
-e, 

Here, f is the unit normal vector on the plane through e and q, so : 

N ( f  j = I ; S E { $ \  = o ; + f- '= - C  
therefore : 



According t o  (1.23) : 

Here g is t h e  u n i t  normal v e c t o r  on t h e  p lane  through e and f ,  s o  g l ies i n  
t h e  p lane  o f  e and q (see fig. 6 ) ;  

e q  e-' =4, [ e w a + %  L"] 

in re lat ion  t o  e 

Consequently : c; -+-- o r  e[eq-'3-' : = 

-z +Y..;z 3 

9 
e q e-1 

f ig.6 Remark : eqe  - 1 = e - 1 q e  - 
This  means : (see fig. 7 )  

I 4 = xrq - i q e ] :  i s  the ~omponent o { q  
perpendicular t o  e 

t 1 (1.25) 7 = l/,Cq + e-cle] : is t h e  component of q 
para l le l  to e 

Remark : 
In s t ead  o f  t h e  u n i t  normal v e c t o r  e used here ,  
a v e c t o r  d wi th  N i d ) +  l  can a l s o  be used i n  
(1.24) and (1.25) .  

1.3.3 
Rotat ions.  
We wish t o  r o t a t e  a qua t e rn ion  ( v e c t o r )  q wi th  Sq q } = 0 over  a n  a n g l e  e 
about  an  a x i s  ( v e c t o r )  e ; 8 is a right-handed r o t a t i o n  with r e s p e c t  t o  e .  

27~-e Assume : (see fig.8) - 

qr is t h e  vec to r  after r o t a t i o n  
q' is t h e  component o f  q I e 
qN is t h e  component o f  q ' l  e 

I 
From (1.25) it  fo l lows  t h a t  : 

4 ' =  K [ ~  - (1.26) 

f ig. 8 

I t  

According t o  ( 1.23) and because N { q f = N { q ] , s o  v= l ,  it a p p l i e s  t h a t  : 



We substitute (1.26) in the right-hand member and (1.27) in the left-hand 
member of this equation : 

The components of q and qr parallel to e are equal to each other; therefore, 
see(1.25) : 

The addition of the equations I and I1 now leads to : 

Now assume that the I1rotation quaternion" p is defined as : 

then I11 becomes the general rotation formula of quaternion algebra : 

Two important properties apply here : 

In (1.29) the norm of a rotation quaternion need not equal unity. To show 
this, let h be a scalar, let N { p 1 = 1 and define : 

From the derivation of the rotation quaternion it follows that the four 
components comply with the following nform-rule" : 



2 2 2  w i t h  : a + Q  + C = 1 .  I 

This will prove important for the differentiation of rotation quaternions, 
because also 

must of course comply with (1.32). 

The expression (1.29) can also be used for the description of a rotation 
of the coordinate system over an angle 8 about an axis e : 

A rotation of the coordinate system over an angle 8 about an axis e is, in 
fact, equivalent to the rotation of the vectors over-9 about e, so, with 
the following rotation quaternion : 

p =  c d 3 2 e  - e & ~ e  (1.32') 

Let the vector q be described on two different 
systems ( 1 )  and (2) : (see fig. 9 )  

W '  + i,' xi + j' + C' zr  

q"'= w2 + i2 E' + jiy2 + k2 zz 
fig.9 

Then, introducing the notation p=p,, for the rotation quaternion transfor- 
ming q(') into qtZ) , the rotation formula is : 

w i t h :  p2 (=  -e& k/,e 

The coordinate system rotates about e; therefore : 

which means that the rotation quaternion p itself is invariant relative 
to the rotation of system (1 to system (2f. This also becomes apparent from : 

And, since from the definition of the rotation quaternion it directly 
follows that 



i t  a l s o  a p p l i e s  t h a t  : 

We can combine (1.34) and (1.36) t o  : 

Thi s  i m p l i e s  t h a t  t h e  components o f  a r o t a t i o n  qua te rn ion  apply  t o  both 
systems,  whose r o t a t i o n  r e l a t i v e  t o  each o t h e r  is descr ibed  by t h a t  qua te r -  
nion . 
Success ive  r o t a t i o n s .  

On what system should t h e  r o t a t i o n  qua te rn ion  be descr ibed  i n  t h e  case o f  
succes s ive  r o t a t i o n s  o f  t h e  system ? 
We first c o n s i d e r  two succes s ive  v e c t o r  r o t a t i o n s  o f  t h e  v e c t o r  q : (see 
fig. 10)  

q1 Kq2 4 ,  -@ q 2 - W  43 

The v e c t o r s  q l ,  q and q and t h e  r o t a t i o n s  B 
and a are a l l  deszr ibed  3 e l a t i v e  t o  t h e  system: 

k1 
q 3  [ L ' ,  j i ,  k ' ]  

fig.10 

According t o  (1.28) and (1.29) t h e  r o t a t i o n  formulae are : 

(1) - (1)  - - f  F i r s t  s t e p  : q z  = p qi p 

- 
w i t h :  (, = c P . ~ B  + Z / l i r k a .  I 

Second s t e p  : (4 )  ( 4 )  = -i 
9 ,  = F  9% P 

- - - 
w i t h :  = h Z +  g& I 

Subsequent ly ,  w e  cons ide r  t h e  two oppos i t e  rotations of the system : 

Now t h e  fo l l owing  must apply : 



According to (1.33) the rotation formula for the first step reads : 

Hence : 

Subsequently, for the second step : 

In this formula, pj2 is, however, according to (1.371, described on system 
( 2 )  or system (3). 

- 
In this expression p32 ) represents the opposite rotation of 5, so : 

Therefore : 
( 3 )  -' - 1  (2) -1  

q , = ~  F F i f ;  - 
From (1.42) it follows : 

Hence : 

- ! = - I  ( I )  = -1 
To verify this result, we apply (1.42) to q2 instead of ql : 

C, ) 
= q i  

and, subsequently (1.44) to q3 instead of q 1 '  



- - (1)  - 
by (1.39) : = p  q, p = 

(1 ) 
by (1.38) : = q, . 

b by (1.45~) and (1.45 1 ,  (1.40) has been verified. 

Finally, we convert (1.44) to the form with system rotations instead of 
vector rotations : 

Substitution in (1.44) leads to : 

In view of (1.37) this may be read as : 

It being agreed that rotation quaternions are always described on one of 
their own systems, the top-indices may be omitted; thus the general rotation 
formula for system rotations becomes : 

or, in view of (1.35) : 

1.4 Differentiation of quaternions. 

The difference quantities of quaternion functions. 

We consider the quaternion 4 : 

Suppose the components W, X, y and z are functions of (scalar) quantities 



so that : 

The introduction of the difference quantities A a then leads to the 
difference quantity A $' of the quaternion, according to : 

Expanding the four functions W, X, y and z in Taylorls series, and neglec- 
ting terms of the second and higher orders, we obtain : 

+ L [L [..,a; . )  + F % *aL] + 
L Oa; 

+ j [ 3 (  .., a',. . . )+c 5% A ~ J  + 
L Da; 

+ k[2 (.., a;,.) +c % 
L DaL 

In view of (1.50) we thus obtain : 

Subsequently, we consider the quaternion function R of several quaternions 
@i 

The introduction of quaternion differences A@', see ( 1.51 , then leads to 
the difference A R  of a quaternion function : 

In this formula, too, the right-hand member can be expanded in Taylorls 
series. But, becaus. of the non-commutativity of multiplication, it is 
essential to take acount of the sequence of the factors. 



The d i f f e r e n c e  a u a n t i t v  o f  t h e  i n v e r s e  a u a t e r n i o n  : 

Let  : 

R = 4-' 
and : 

s o ,  m u l t i p l i e d  by @-[-A@ : 

[R+AR]  [@+a@] = 1 .  

hence :R(; i  + R ~ l j .  + AR 4 , 1 

and,  s i n c e  R@= 1 : 
-1 

A'R G = - R  A+ = - G  A G .  
hence : 

AR = - & - ' A +  ~ j . '  

1.4.2. 
The d i f f e r e n c e  a u a n t i t v  o f  r o t a t i o n  a u a t e r n i o n s  

We c o n s i d e r  t h e  r o t a t i o n  qua t e rn ion  p f o r  t h e  system r o t a t i o n ;  see (1.33) : 

According t o  (1.52) : 

If p =  p12, t h e  fo l l owing  a p p l i e s  i n  t h i s  exp re s s ion  : 

(4 )  o r  (2) e = e  

Of c o u r s e  t h i s  does  n o t  app ly  t o  t h e  d i f f e r e n c e  q u a n t i t y  h e ;  suppose : 

is d e f i n e d  o n l y  on t h e  (1)-system; t hen  : 

We w i l l  now c o n s i d e r  t h e  meaning o f  t h i s  f o r  p + b p  ; p + A p  must comply 
w i th  t h e  Mform-rulew (1.32).  T h i s  means : 

2 2 
IL : X[e+ae) +& [e+ae]  = l 

I1 h a s  been complied w i t h .  



I means, s i n c e  N { e ) = 1 : 
fig. l1 

e i t h e r  : ~e = 0 ( 1  .56a! 

o r  : ~ e l e  ( N { a e l < < N { e l )  ( 1 . 5 6 ~ )  

( 1  .56a) is complied wi th ,  if t h e  a x i s  of r o t a t i o n  is, f o r  example , de f ined  
as one o f  t h e  t h r e e  u n i t  v e c t o r s  o f  t h e  system : 

From s e c t i o n  2.3 it w i l l  become apparen t  t h a t  t h i s  s i t u a t i o n  a p p l i e s  t o  t h e  
f i v e  s t e p s  i n t o  which an  nastronomicalw r o t a t i o n  is s p l i t  up. 

b L 1.56 is complied wi th ,  i f  Sc { e A e } = 0. 

When : e=O+ia+jb+kc, 

t h i s  is t h e  case i f  : 

Thi s  is t h e  case i f  c is def ined  as a func t ion  o f  a and b : 

This  means t h a t  i n  a r o t a t i o n  qua te rn ion ,  a maximum number o f  t h r e e  inde- 
pendent v a r i a b l e s  can occur  : 
t h e  a n g l e  o f  r o t a t i o n  8 and two o u t  o f  t h r e e  components o f  t h e  a x i s  o f  
r o t a t i o n  e. Th i s  is i n  agreement wi th  t h e  func t ion  o f  t h e  r o t a t i o n  qua te rn ion .  
Fu r the r  e l a b o r a t i o n  o f  (1.541, u s i n g  : 

r e s u l t s  i n  : 

P r e m u l t i p l i c a t i o n  by : 

then r e s u l t s  i n  : 

From t h i s  it becomes appa ren t  t h a t ,  if (1.56) has  been f u l f i l l e d  : 

e ~ c [ p ' a ~ \ , - & ~ e . S e j e ~ e \  = o  ( 1.58) 



T h i s  a l s o  a p p l i e s  t o  a r o t a t i o n  composed o f  s e v e r a l  s t e p s ,  f o r  example : 

Then we o b t a i n ,  a c c o r d i n g  t o  (1.521, etc. : 

Hence : 

I n  t h i s  e x p r e s s i o n  we f i n d ,  a c c o r d i n g  t o  (1.58) : 

S C { ( ~ ' A P ) ~ J  = S C ( ( ~ ' A P ) , ~ ]  = ~ ~ ( ( p ' l ~ ~ ) ~ ~ l  = 
b t h e r e f o r e ,  ' i n  view o f  ( 1.30 ) , it a l s o  a p p l i e s  t h a t  r 

The s t r u c t u r e  o f  t h e  q u a n t i t y  p p is d i s c u s s e d  i n  greater d e t a i l  i n  
s e c t i o n  2 .3  . 
The c o o r d i n a t e  sys tem i n  which ( p - ' ~  p )  is d e f i n e d .  

I n  (1 .55)  it  was a l r e a d y  found t h a t  A e  and t h e r e f o r e  a l s o  h p ,  i n  c o n t r a s t  
w i t h  p,  are d e f i n e d  on one  o f  t h e  two systems:  t h e r e f o r e  t h i s  a l s o  a p p l i e s  
t o  ( p ' ' ~  p )  : 

= m $[e+neJ + re ") " "' AT]ra& [ G  + ra = 

1 
= (P- bp)_ 

Now, by d e f i n i t i o n  : 

hence : 

If p is o f  t h e  t y p e  ( 1 . 5 6 ~ 1 ,  i.e. A e  = 0 : 

V C { ~ ]  = - e  & X e .  

V C { A ~ \  = - e ll,ml/,e a e .  

s o  : (a is a scalar) 

V q p ]  = a V C { A ~ ]  if ae,o 



I n  view o f  (1.10) A p  and p are now indeed commutative t 
t h i s  means : 

(p)  (a1 - j  - 
AP,,  = P,, OP,, P P &  - 

hence : 

t h e r e f o r e  a l s o  : 

Thi s  formula t oo ,  w i l l  t u r n  o u t  t o  be impor tan t  i n  s e c t i o n  2.3, where a s t r o -  
nomical r o t a t i o n s ,  f o r  which Ae=O, are d iscussed .  

1.5 I somor~h i sm w i t h  ma t r i ce s .  

I n  t h e  manuscr ip t  [8] W. Baarda h a s  a l r e a d y  developed t h e  b a s i c  thoughts  
used i n  t h i s  s e c t i o n .  
The p a r t i a l  isomorphism between qua t e rn ions  and matrices o f  t h e  o r d e r  4 
d i s cus sed  he re  is very  impor tan t  i n  two r e s p e c t s  : 
-It c o n s t i t u t e s  t h e  b a s i s  f o r  t h e  a p p l i c a t i o n  o f  t h e  p r e s e n t  t heo ry  by 
means o f  computer programmes, 

-The n o t a t i o n  o f  qua t e rn ion  equa t i ons ,  e s p e c i a l l y  d i f f e r e n c e  equa t i ons ,  i n  
isomorphic matrices is easier i n t e r p r e t e d  than  t h e  n o t a t i o n  i n  qua t e rn ions ;  
t h i s  may be a n  advantage i n  t h e  s t u d y  o f  t heo ry  and i n  t h e  a n a l y s i s  o f  
l i n e a r  dependencies.  

A matr ix  which is isomorphic w i th  qua t e rn ions  wi th  r e s p e c t  t o  t h e  qua t e r -  
nion-product,  may be de r ived  i n  a "na tu ra l  wayn, i.e. d i r e c t l y  from t h e  
r u l e s  o f  m u l t i p l i c a t i o n  (1.8).  
We c o n s i d e r  t h e  qua t e rn ion  product  : 

The components W,X,Y,Z o f  t h e  qua t e rn ion  p r o d u c t 4  are composed acco rd ing  t o  
(1 .8) .  On t h e  b a s i s  o f  Baarda 's  i d e a ,  we now a r r a n g e  t h e s e  terms acco rd ing  t o  
t h e  components o f  q2 and q l ;  s o  : 



T h i s  c a n  be r e p r e s e n t e d  by matrices i n  t h e  f o l l o w i n g  two ways : 

To d e n o t e  t h e s e  matrices we choose : 
+ 

( ) for t h e  column matrices 

( ) for t h e  s q u a r e  m a t r i x ,  showing t h e  o r i g i n a l  sequence ( q l ,  q2)  

( )  f o r  t h e  s q u a r e  m a t r i x ,  showing t h e  i n v e r t e d  sequence (q2,  q l )  

A s  b a s i c  letter w e  t a k e ,  of c o u r s e ,  t h e  letter used as symbol f o r  t h e  
q u a t e r n i o n s  i n  (1 .63) ;  t h u s  (1 .64)  w i l l  become : 

T h i s  can  be extended t o  p r o d u c t s  of s q u a r e  matrices ; 
from (1.64) i t  f o l l o w s  d i r e c t l y  t h a t  : 

Furthermore, it becomes directly apparent that both the matrix in ( 1.66a) 
(normal sequence) and that in ( 1.66 ) [ inverted sequence) can be applied for 
the sum and the difference of quaternions. 

Because of (1 .15)  t h e  i n v e r s e  of q1 is : 
-4 

q ,  = L [ w ,  - ; X , - j 5 , - k z  
N { q r l  11 

The i somorph ic  m a t r i x  for q-' can  t h u s  be  o b t a i n e d  by i n v e r t i n g  i n  (1.64) 
t h e  s i g n s  of t h e  componsn6s X,  y and z,and by l e a v i n g  t h o s e  of W unchanged. 
I n  d o i n g  so, t h e  t r a n s p o s e d  m a t r i x  is o b t a i n e d  ! 
Hence : ( *  t r a n s p o s e  of m a t r i x )  

Fur thermore,  i t  now becomes a p p a r e n t  t h a t  : 
(4 0 0 0 1  



Through p o s t - m u l t i p l i c a t i o n  o f  ( 1.68) by t h e  i n v e r s e  m a t r i x  ( ) - l ,  we o b t a i n  : 

There  are c o n s e q u e n t l y  two t y p e s  o f  i somorphic  matrices f o r  q u a t e r n i o n s ,  
v i z .  one f o r  t h e  normal sequence and one  f o r  t h e  i n v e r t e d  sequence o f  t h e  
f a c t o r s  o f  a q u a t e r n i o n  product .  T h i s  w i l l  prove t o  be v e r y  i m p o r t a n t ,  
because  owing t o  t h i s ,  t h e  awkward non-commutativdty can be avo ided  ; i n  
t h e  column v e r s i o n  (see 1.65) of t h e  m a t r i x  p roduc t  t h e  two t y p e s  can,  i n  
fact,  be used i n  mixed form. 
L e t  : 

t h e n ,  a c c o r d i n g  t o  (1.65) : 

but  a l s o  : ( n o t a t i o n  : (q1q2)  = ( 9 , )  ( q 2 ) ,  e tc.)  I 

b and a l s o ,  see a l s o  (1 .66 ) : I 
Each o f  t h e  f a c t o r s  o f  a q u a t e r n i o n  p r o d u c t  can  t h e r e f o r e  be e n t e r e d  as 
las t  f a c t o r  i n  t h e  i somorph ic  m a t r i x  p roduc t .  With r e f e r e n c e  t o  d i f f e r e n c e  
e q u a t i o n s ,  t h i s  a f f o r d s  t h e  p o s s i b i l i t y  of  p l a c i n g  t h e  d i f f e r e n c e  q u a t e r n i o n  
a t  t h e  end.  

Rota t ions .  

The g e n e r a l  r o t a t i o n  formula  (1 .33)  : 

t h e r e f o r e  r e a d s  i n  isomorphic  matrices : (see 1 .66a) 

Here, t o o ,  t h e  sequence  may be changed, by p a s s i n g  t o  t h e  mcolumnw v e r s i o n  
( 1.65) ; we p l a c e  t h e  f a c t o r  q(') a t  t h e  end o f  t h e  r i g h t  hand member : 

If h e r e  : 

p = di - ia+ j - l?+Lrc  



this becomes, i n  accordance with (1 .64)  : 



Chapte r  2  

THE INTRODUCTION OF GEODETIC AND ASTRONOMICAL OBSERVATION VARIATES. 

2.1 I n t r o d u c t i o n  

I n  t h i s  s e c t i o n  w e  s h a l l  c o n s i d e r  how t h e  g e o d e t i c  and geode t ic -as t ronomica l  
o b s e r v a t i o n  v a r i a t e s  can  be l i n k e d  w i t h  t h e  set  o f  c o n c e p t s  developed i n  
Chap te r  1. 
The b a s i c  c o n s i d e r a t i o n s  are g i v e n  i n  t h e  p r e s e n t  s e c t i o n  ; it d e a l s ,  i n  
p a r t i c u l a r ,  w i t h  t h e  i n t r o d u c t i o n  o f  l e n g t h  u n i t s .  

S t a r t i n g  from t h e  f o r m u l a t i o n  by Baarda C81, t h i s  is worked o u t ,  i n  
greater d e t a i l ,  i n  s e c t i o n  2.2 f o r  t h e  t h r e e  t y p e s  o f  "terrestrial" obser -  
v a t i o n  v a r i a t e s ,  which are combined f o r  each s i d e  o f  a network P P i n  
t h e  q u a t e r n i o n  : i k  

I 
q i k  

and i n  s e c t i o n  2 . 3  f o r  t h e  a s t r o n o m i c a l  
o b s e r v a t i o n  v a r i a t e s ,  w i t h  which, f o r  
each c o u p l e  o f  l o c a l  sys tems  ( m )  and 
( n )  a r o t a t i o n  q u a t e r n i o n  : 

'mn 

is  e s t a b l i s h e d .  

The r e l a t i o n  between t h e  a s t r o n o m i c a l  q u a n t i t i e s  " l o n g i t u d e n  X and " l a t i t u d e n c p  
on t h e  one  hand and t h e  z e n i t h  a n g l e  on t h e  o t h e r  is e s t a b l i s h e d  by t h e  
k -vec to rs  o f  t h e  l o c a l  sys tems ,  t o  be d e f i n e d  as t h e  d i r e c t i o n  o f  l o c a l  
g r a v i t y ,  i.e. as " z e r o  d i r e c t i o n w  f o r  l o n g i t u d e ,  l a t i t u d e  and z e n i t h  a n e l e .  
The a s t r o n o m i c a l  o r i e n t a t i o n  unknowns (az imuth)  and t h e  terrestrial  d i r e c -  
t i o n s  r are t h e n  d e f i n e d  i n  t h e  p l a n e  o f  t h e  i- and j -vec to rs .  

R o t a t i o n s .  

L e t  a n  o r t h o g o n a l  t r i h e d r a l  o f  u n i t  v e c t o r s  be d e f i n e d  i n  each s t a t i o n  P : m 

These " l o c a l  sys temsw can  p a s s  i n t o  each o t h e r  through a r o t a t i o n  (simila- 
r i t y  t r a n s f o r m a t i o n  w i t h o u t  t r a n s l a t i o n  and scale). We c o n s i d e r  t h e  ro -  
t a t i o n  o f  t h e  (m)-system t o  t h e  (n)-system,  i n  t h e  f i r s t  p l a c e  as v e c t o r  
r o t a t i o n  o f  t h e  u n i t  v e c t o r s  a c c o r d i n g  t o  (1 .28)  and (1 .29)  : 



with the rotation quaternion : 

p = -Le", + e h n h  ken,,, 

Furtheron we shall use the system rotation according to (1.33); so : 

Units of length 

From (2.2) it follows that the "lengthsw of the unit vectors of all systems 
are equal to each other : 

ttalgebraic unit of lengthn 

The way of introducing geometry thus means that the "algebraicw unit of 
length ( =  length of the unit vectors) acts as unit of length of the com- 
putation system. The question of its "magnitudew is, in principle, not im- 
portant; on this subject, one could imagine the metre, or any other artifi- 
cial unit. From section 4.2 it will appear that, for reasons connected with 
computation, it will be wise to choose this unit such that the lengths of the 
sides of the network in the computation system are of the order of magnitude 
1. (For example, it is possible to choose a multiple of the metre, viz. 
500 or 1.000 or 10.000 m.) 
In addition, we must define an instrumental unit of length for each local 
system. Though it will appear from section 2.2 that the computation model 
may be established, using quotients of these instrumental units of length, 
we shall explicitely define the relation between the instrumental units and 
the algebraic unit by the quantities X, : 

- 
h,is the length(magnitude) of the instrumental unit of length of 

the (m)-system, expressed in the algebraic unit (=length of the 
unit vectors) 

I l 

Pn f ig  12 ( 2 . 4 )  

From section 3.4 it will appear that the instrumental units of length must 
be considered as derived variates. In section 4.4 they are linked, as a group, 
to the length of one of the sides of the network PrPs, which, for this pur- 
pose, is considered as non-stochastic and thus acts, in fact, as the 
Mabsolutew unit of length for the network; this is an aspect of the theory 
of the wS-transformationsw (Dutch : Schrankingstransformaties). 

Summarizing, we may thus recognize three "typesw of length units : 
(see fig. 13) 



1. the "algebraicw unit of length ; 
an aid for computation, its magni- 
tude being approximately equal to 
the average lengths of the sides : 
f metre. 

2. The group of instrumental length 
units;stochastic realisations of 
the metre, therefore : 

3. The "unit of the S-systemm;the 
non-stochastic length of the 
side PrPS 

I meter I 

All notations of vectors, units of length and length factors used in the 
following chapters are summarized in next scheme : (stochastic variates 
are underlined) 

Vectors q 

B pk 

- - /  

AI - X rr = Sls + l' S-  transformation" 
Sr.+% f- l C 

Length 

fact'= 
Nbl 1 

- 
1 

.J - (S! h.) 
C 

- 
1 

-hr %T 

l I 
4 =l 

E :adjustment corrections . - 

Units or length 
- 1 -  
j k  

- - 
X - $ i - . S t j S j ~  - r i  3r S'rJ 

2.2 The terrestrial-neodetic observation variates. 

Remark : In the following sections, the observation variables will always 
be considered as stochastic variates and will therefore be underlined. 

Definitions. 

From station Pi, the distances - sik to stations Pk are measured : 
S is the length of side Pipk expressed in the -ik 
instrumental length unit Xi ( Xi is approximately 
1 metre) 
"distance measuren. 



By means of a theodolite established in Pi, the two I*polar coordinatesw 
of the spatial vector Pipk can be measured : 
the zenith anglelik and the direction rik : - - 

&ik is the angle between the vector P; Pk and 
e upward direction of the first axis of the 

theodolite set up in Pi ; 

z i k  is the angle between the zero direction of 
the horizontal circle and the projection of the 
vector Pipk on the plane of that circle. 

Since the first axis of the theodolite is perpendicular to the horizontal 
circle, the local system (orthogonal trihedral i, j, k) can be defined by 
linking it up as follows with the theodolite : (see fig. 14) 

-the i-vector lies in the plane of the 
horizontal circle, in the directionn 1 
-the k-vector lies in the part of the first 
axis "pointing downwardsw 

-the j-vector completes a right-handed 
system i, j, k. (2.8) 

By (1.181, the spatial vector Pipk can now be expressed as quaternion qik 
with a scalar part= 0, by conversion of the rectangular coordinate 
differences X, y, 2 to polar coordinates S, r , ~  : 

We can pass to the nalgebraict* unit of length through multiplication by 
: (=approx. 1if) 

The rotation to another local system (r) is made, using the rotation 
quaternion p ; see (2.3 ) : 

ri 

On the analogy of (2.101, we now pass to : 

- CV) - ('-1 
q;, = x r  = f ~ k  - - 



The substitution of (2.10) and (2.12) in (2.11) then gives the transfor- 
mation between the two local systems (i) and (r) : 

In order to obtain a more logical arrangement of the observation variates 
on the one hand and the transformation variates on the other, we elaborate 
this as follows : 

Finally, the introduction of the "length factorw 

- - 
X .  =-XI 

r~ - (2.13) 
A r 

leads to the general transformation formula for local instrumental systems : 

I is the vector Pi 4, , described relative to the unit vectors I 
L and the unit o f  l&th of the (r)-system 

Remark r The algebraic unit of length is no longer involved here. 

Subsequently, we consider, similar to Baarda, [ 8 ]  the left-division of two 
vectors measured from P viz. Pipk and P P ; see fig. 15 : i i S 

In view of (1.23) this is : 
L 

Qjik - = - vjik p+jLL + j,k - J  , I 
with : 

Therefore, also the unit of length of the local (i)-system does not occur 
in (2,151. 

The variate Qjik is therefore dimensionless, covering all the terrestrial 
observation variates of station P; ; it describes the form of a triangle 
PjPi& and also the position of the spatial plane of that triangle relative 
to the (i)-system. 
The properties of Qjik thus agree, to a high extent, with those of the 
n-quantity in Baarda's polygon theory in the complex plane, 

Difference quantities. 

By means of (1.50 etc.), (2.9) can be differentiated to the three obser- 
vation variates : 



Premultiplication by : 

then gives the dimensionless variate : 

In view of ( 1.64 ) , the quantity ( q-Aq 1 can be represented as an isomorphic 
column matrix, by splitting up the right-hand member into a coefficient 
matrix and a column matrix of differences : 

or, introducing aln s and sin] A r  as difference quantities : -ik - ik 

Subsequently, (2.15) is differentiated; applying the rules established in 
(1.50) etc. : 

Through premultiplication by and post multiplication by qi j, this passes 
into : 

This formula bears a strong resemblance to a formula known from Baarda's 
polygon theory in the complex plane, (2.2.13) in C23 : 



In the latter formula, moreover : 

The symbol i is now the imaginary unit of the complex numbers. 

Furthermore, applying the properties of a network in the complex plane : 

a) : 3 = " '  r all the points lie in one horizontal plane 
I ( L )  

( q - ~ q ) ; ~  = d&sLL -knr. - ~k +[-i&r+j -r] 3tL 

b) : A 3 = O  : the zenith angles are not observation variates. - 
C L )  

(q-'eq) Lk = A-!!?& - k !X& 

Compare (2.22) 

2.3 The neodetic-astronomical observation variates. 

2.3.1 
Definitions 

In section 2.2, the local systems of the stations Pm are defined as follows : 
(2.8) 

-the unit vector k,points in the direction of the "first axisn of the 
theodolite established in P, ; this is an instrumental realisation of the 
vertical ; 

-the unit vector i,is situated in the .plane perpendicular to km ,parallel 
to the zero direction of the horizontal circle. 

-the unit vector j,completes a right handed system of orthogonal unit 
vectors im, jm, km. 

The unit vectors k of various stations can be interrelated by describing the 
spatial direction of each k-vector by means of two polar coordinates ; for 
this, we choose the system of the astronomical longitude and latitude 2 , 
measurable through astronomical observations ; see fig. 16 : 

The angle in the plane of the horizon between i, 
axis of 

earth's rotation CA and the astronomical north of P,: 

(2.24) 
is the wastronomical orientationn of the (m)- 

We shall now describe the rotation of the (m)- 
system to another local system, the (n)-system,as 
a rotation in steps, according to (1.46). 



For this, we define two ancillary systems by (m) : 

-the (m')-system : 
the k-vector of the (m')-system is parallel to km: 
the i-vector of (m') lies in the direction of the 
astronomical north in P . 
the j-vector completes a right-handed system i,, , j , , m km * 

-the (mw)-system : 
the j-vector of the (mm)-system is parallel to j,, 
the k-vector of' (mw) lies in the polar direction of the 
cp, X -system 
the i-vector completes a right handed system iml,,jmrl ,km@,. 

The rotation from (m) to (n) can now be described in five successive steps 
with, consecutively, _ern, ym, mn, IP, and 2 as angle of rotation : 

Remarks r 
-the choice of the sign in p,,, and p,,~ means that2 turns clockwise 
(as seen from above) ; 

-the sign in prnllrnt and p,,,,, mean3 that is positive on the northern 
hemisphere ; 
-the sign in means that g is counted positive towards the east. 
The five steps of (2.27) are all described relative to their systems, 
and, according to (1 .461,  they can all be directly multiplied to : 

i - 1  - i  - r  -1  - 
P O  m = P, .I P,I.N ' P , .  ,,,l - ' . I I , I  , , l l n l l  , , l  - - - - (2.28) 

( % . ' ~ 7 )  

This leads, introducing X - X  -h,,to : 
,nm--h - 

In (2.29 , the astronomical longitudes h only occur as difference quantities, 
contrary to the latitudes @and the orientation variates 8. It would be - 



p o s s i b l e  t o  choose a cor responding  measuring procedure,  i.e. (approximate ly)  
s imultaneous measurement o f  t h e  l o n g i t u d e s  a t  bo th  ends o f  each  network 
s i d e  ; bes ide  t h e  fact t h a t  time would p l ay  a less d e c i s i v e  r o l e ,  a l s o  t h e  
i n f l u e n c e  o f  p o l a r  motion and t h e  d e f i n i t i o n  o f  "s ta r -coord ina tesw would be 
deminished. 
I n  a d d i t i o n ,  it w i l l  appear  from t h e  d i f f e r e n c e  q u a n t i t i e s  (2.34) t h a t  i n  
networks cove r ing  a l i m i t e d  p a r t  o f  t h e  s u r f a c e  o f  t h e  e a r t h  (which means 
t h a t  t h e  k-vectors  are a l l  approximately p a r a l l e l  and t h e  d i f f e r e n c e s  i n  
l ong i tude  and l a t i t u d e  are small), a l s o  wi th  r e s p e c t  t o  t h e  as t ronomica l  
l a t i t u d e s  47 c h i e f l y  t h e  d i f f e r e n c e s  are important .  

D i f f e r ence  q u a n t i t i e s  

I n  s e c t i o n  1.4 r u l e s  have been deduced f o r  t h e  d i f f e r e n t i a t i o n  o f  r o t a t i o n  
qua t e rn ions ;  w i t h i n  t h e  scope  o f  t h e s e  "form ru l e s " ,  see (1.561, t hey  can 
be d i f f e r e n t i a t e d  i n  two ways : 

a )  acco rd ing  t o  ( 1 . 5 6 ~ )  I A e  = 0 
The f i v e  s t e p s  o f  (2 .27)  comply w i th  t h i s ,  because h e r e  t h e  u n i t  v e c t o r s  
act as a x i s  o f  r o t a t i o n  e : 

(2.27/1 and 3 and 5 )  : e = k 
(2.27/2 and 4 )  r e = J  

b b )  a cco rd ing  t o  (1.56 ) : Sc { e A e  } = 0 

Method b : 
If (2.29 is d i f f e r e n t i a t e d  d i r e c t l y  t o  a l l  as t ronomica l  v a r i a t e s ,  and sub- 
s equen t ly  m u l t i p l i e d  on t h e  l e f t  by , it becomes appa ren t  t h a t  : 

I n  view o f  (1.57).  i t  fo l lows  from t h i s  t h a t  : 

We now u s e  method a )  by d i f f e r e n t i a t i n g  t h e  f i v e  s t e p s  o f  (2.27) : 

, (n'l or (h) 

1 : (P-&P)~~,,, = o + i o + j o  t k  kern 
l (m") o r ( k )  

2 :  ~ F A P ) ~ ~ , ~ ~  = o  + i o - j  j:g,+ k o  
(h") c P (nu) 

3 :  ( F ~ P ) ~ ~ ~ ~ , ,  = o + i o  + j o - k L&,,  
(h') o r  (n" ) 

= o + i o + j  -L k o  



The difference equation of (2.28) is : 

, (m1 I n '  - {  , (h") - I  
( p 2  p),m = kJ,.,,vl ( P m n 1  + Pmn1l ~ F A P J ~ I ~ I I  P,,, ,,U + 

I m '  - 1  1 (m') -1 
+ Pp,, ( FA F)~ . , ,  P,,, ,,l + km ( F & P ) ~ ~ , ~ ~  Pm m1 + (PAP) mlm 

The substitdtion of (2.30) in (2.31) then gives : 

or, expressed in an isomorphic column matrix, with symbolic indication of 
the coefficients in the first and second columns of the coefficient matrix : 

2.3.3' 
Networks with parallel k-unit-vectors 

o o o 0 \ 'YL*?~ 1 

In a network with parallel k-vectors, we obtain : 

T V ;  2Vi vq 1 ,  
-- - 

mQm-em -&ern 0 
- Qen DQ,, 

@ V j  @V[ -,cp,&ern - e,,, o 
.) i 

~ l / k  g& -kcp, 

ern = K and X,,, = X h  ( + x n m = o )  

Then, the coefficientsin (2.33) become : 

Y k  1, ,- eqn 
0 ' ) ,L@,,, , 

% &i l l  

YZ 4.bbm 

'/, g m  

( 2 . 3 3 )  



From the coefficients in the first matrix of the right-hand member it 
appears that in a network with parallel k-vectors also the astronomical 
latitudes p a n d  the orientation variates 9 only act as difference quanti- 
ties (for the longitudes X this is always the case 1.  



Chapter 3. 

IMPORTANT DIFFERENCE EQUATIONS. 

3.1 Chains of astronomical rotations. 

In section 2.3, the internal structure of the astronomical rotation quater- 
nion has been analysed as a rotation in five consecutive steps (2.27). What 
happens, if we connect several astrcnomical rotations ? 
We consider four local systems (r), (a), (b), and (i), of which three 
mutual rotations are known : 

Pra B P a b  Phi 
The rotation from (i) to (r) is then : 
see (1.46) fig.17 

(r) or(;) 

l= r ;  = Pt-a PCI~ P b i  (3.1) 

3.1.1 
The relative difference quantity 

The difference equation of (3.1) reads : 

By means of (2.271, each of the three rotations in (3.1) can be split up 
into five component factors : 

In view of (1.461, all factors are described in this formula relative to 
their "ownv systems. 
Now, the following applies : 

(2.27/.1) : P,,,= c a k e R +  k & % e a  

(2.27/s) : )3 , = CS, kea- k & X @ ,  . 
A A  

hence : 

P& Pad = ; Pblb Pbb3 = ' . 

Likewise, with (2.27/2) and (2.27/4) : 

pA"n8p,,a" = '  5 pb"b'pb'b''=i 

With this (3.3) passes into the simple form : fig.18 



o r ,  a s  a f u n c t i o n  o f  a s t r o n o m i c a l  q u a n t i t i e s  : 

The terms w i t h  e, , 0,, S P Q ,  and @&wil l  t h e r e f o r e  a l s o  d i s a p p e a r  from t h e  
d i f f e r e n c e  formula (3 .2 )  ; we s u b s t i t u t e  (2.31) i n  (3.21,  w i t h  s u c c e s s i v e l y  
( n + r  ; mea ; ( n + a  ; m+b) and ( n + b  ; m + i  : 

I n  t h i s  formula ,  t h e  terms c o n t a i n i n g  A8,are : 
- 1  l _ I  

pi, ( F'AP),,~ F La + pi pba! (b-Lp~aaf P b A i  b = 
- 1 -1  ( A  - 1  - 1  

- = R, ( F - ~ A P ) ~ ,  Pi ,  + Pia P,> ( P 'p)&,, Pi, 

Here, a c c o r d i n g  t o  (2.30E1) t h e  f o l l o w i n g  a p p l i e s  : 

l 
( p - d ~ ) , ~ ~  = 0 + k l/,&*, 

The r o t a t i o n  p is o f  t h e  t y p e  A e = 0 ( 1 . ~ 6 ~ ) ,  t h e r e f o r e  ( 1.62) a p p l i e s  
t o  aa ' 

t h e r e f o r e ,  i n  (3.51, t h e  two terms w i t h  ABJeliminate each  o t h e r .  
It can be demonstra ted i n  a similar way t h a t  t h e  terms withAQa,A(Pe and 
AQ&disappear  ; t h u s  (3.5) p a s s e s  i n t o  : 

- I  
+ F i r  ( ~ ' n p ) ~ ~ ,  p;i,, + piit  (F'P)~~;, + (F~P);~' 

- I (3 .6)  
By p l a c i n g  t h e  f a c t o r s  p,,t~ . . . . P a d '  o f  t h e  t h i r d ,  f o u r t h  and f i f t h  
terms o u t s i d e  b r a c k e t s ,  t h e y  become : 



these are the terms containing A A  ,a , A X,b , A h b i  . 
According to 2.30/3, the following applies i n  t h i s  formula : 

' )  = 0 - L %A*,, 

( P - ~ P ) ~ " ; ! '  = O - " X b i  

and, according to  (2.27/3) : 

therefore, the term (3.6') becomes : 

-i 
I n  (3.6) t h i s  is pre- and post multiplied by p;, - . . . . pia ; therefore, 
the coefficients of the differences of longitudes become : 

Thus (3.5) finally becomes : 

- - k 1 / , A 8 , .  w i t h  : ( F ' A ~ ) ~ , ~  - 

p )  = j % "'p; 

3.1.2 
The coefficients of the astronomical variates 

From (3.7) some conclusions may be directly drawn concerning the coeffi- 
cients of the differences of astronomical variates : 



1. I n  t h e  c o e f f i c i e n t s  o f  bec, ber , A q L  and A@; t h e  l o n g i t u d e s  and l a t i t u d e s  o f  
t h e  l l in te rmedia tem systems ( a )  and (b) do  n o t  occur .  T h i s  means t h a t  t h e s e  
c o e f f i c i e n t s  are independent  o f  t h e  " rou tew chosen, from t h e  (i)- t o  t h e  
( r ) -system.  

2. The c o e f f i c i e n t s  o f  a l l  l o n g i t u d e  d i f f e r e n c e s   hare e q u a l  t o  each o t h e r .  
Here, on ly  t h e  q u a n t i t i e s  8; and Q; occur .  

3. If t h e  systems ( r )  and ( i)  l i e  on a small p a r t  o f  t h e  e a r t h ' s  s u r f a c e  
(i .e. k ; i s  approx imate ly  p a r a l l e l  t o  k, 1 ,  t h e  c o e f f i c i e n t s  o f ~ q i a n d  
AQ,are  approx imate ly  e q u a l  t o  each o t h e r  (w i th  o p p o s i t e  s i g n s ) .  The 
same a p p l i e s  t o  A8; and A 8,. 

3.2 The vector transformation 

3.2.1 
The d i f f e r e n c e  e a u a t i o n  f o r  t h e  v e c t o r  t r an s fo rma t ion  

We c o n s i d e r  (2 .14)  : 

The d i f f e r e n c e  e q u a t i o n  o f  t h i s  formula is : 
( F )  (P) *IkL I (P) ( r )  l 

A q i k  = q i k  F + Pri (pap),; I;:; qiL - qL1. Pri 6; + - c 0  
P r e m u l t i p l i c a t i o n  by : + 'r' R; P-! l-L 

f , -I -1 Cc) - -  
q i k  - - X r i  Pti 9 ~ k  p r ~  

t h en  r e s u l t s  i n  : 

If t h e  t r an s fo rma t ion  q u a n t i t i e s  Xriand p , ;consis t  o f  a number o f  f a c t o r s ,  
as de sc r i bed  f o r p , ; i n  s e c t i o n  3.1, t h e  q u a n t i t i e s  i n  t h e  r ight-hand 
member o f  (3 .11)  are f u n c t i o n s  o f  t h e  fo l l owing  d i f f e r e n c e s  : 

(2.13) : A A ~  ,; . i s  the sum of AR\T r . .  . . . . .  akx , ,  ; ( length factors) 

( 3 . 7 )  : ( F ~ P ) ~ ;  : *gp, AT, p, ~ n * ,  . by . net 

( a s t r o n ~ m j ~ a l  observation variates) 

Subsequent ly ,  we c o n s i d e r  a v a r i a n t  o f  (3.111, by p l a c i n g  t h e  f a c t o r s  
pri . . . . . .p: o u t s i d e  b r a c k e t s  : 



By means of (1.65) - (1.711, this equation can be put in isomorphic matrices : 

Suppose : 

Ncw (3.13) becomes : 

In view of (2.33) here is : 

(L) / S ~ ( ( ~ L ~ ) ~ , ) \  /i o o 

v;[ , 3 

V j {  ,. 3 

so the coefficients 0fAe;in (3.14) are : 

/ o  \ l 0  \ 

- - 

1 ($'Ap):; J 

9 ] 

- - - - - -  
1 

0 I 

I see 

o I 
l (4.72) 1 
I 

Vk{ >. 0 I 
l 
I 

\Vk{  ,> }/ \ '/L ) 

= t e r m s  w i t h  A e r ,  AT, , AA r,..i , A@; .. .+ 

\ L - - - - - - 2  

0 

0 
be; 



In view of (2.19), the following applies in (3.141, conversing the polar 
coordinates rik andIik in rectangular coordinate differences X, y and z : 

This means that the coefficients of A8;and Artk 
are equal to each other in all four components of (q-'oq)Lk 
Furthermore, it appears directly from (3.14) that : 

drik + . . 

therefore, the coefficients of Arik 
in the part of (3.14) between 
braces are : . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . + 

The d i f f e r e n c e  e q u a t i o n  o f  t h e  v e c t o r  t - r a n s f o r m a t i o n  

I 

xz  
sz 

yz 
s2 

We apply (3.11) to two vectors measured from Pi : 

By subtracting these two equations from each other, the transformation 
formula for the spatial AU-quantity, defined in (2.21 1 ,  is obtained : 

3.3 Polar coordinate functions. 
- 

We consider (3.11) : (in this section stochastic variates are underlined). 



In view of (2.20) here : 

1 ( i )  

( q - ~ q ) ~ ~  = "hiL + ["3 g];L + ellk g i ~  

b i t h :  = o - i  ~ a ) t - ~ d ) ~  - j L r - 3  -k&3 

$lLk = o - l & r  + j  mr + o 

Because : 

(;I qik = O + ~ S ~ ~ F A L ~  + j s & r & j  - 

applies : 

S c ~ e ' ~ ~  q,,j = o .  

S ~ j e " ~  q l L j  , 0 .  

Sc { etL elk j = o . 

I The vectors qik  , eikand ellL thus constitute a rectangular trihedral ; 
eft lies in the plane I ki . ik 

Furthermore, according to (1.25) : 

Summarizing, the following therefore applies : 

(r) 
The vector part of ( q-9 can therefore be decomposed 
into any pair of vectors, perpendicular to qik. (3.19) 

Now assume that : 

are the polar coordinates of 
relative to the unit vectors 

the vector Pipk, 
of the (r)-system 

( p) = o+i S ~at-~--r,~+j s&rr&J'- k sccnJr ' kr  fig. 21 



Assume further, in analogy with (3.18) : 

k ll. \ kr  f ig. 22  

then the following applies again : 

S c  { e:j;k \ = D . 

Sc I el:;;, q,,) = 0 . 

SC I = 0 . 

Remark : in general : eljik =/ erLk and e:jik + elk 

because : er:jLL lies in t h e  plane I C,. 

elliL 
l ies in the plane I k; 

Therefore, the vectors e,!; and en,,ik constitute together with qik 
a rectangular trihedral. In view of (3.19) this means that VC { ( q - L q  Iik ) 
can be decomposed into : 

(r) 

Vc{(o-&);k\ = e:j,, + < j i k  (3.21 

Here R and L a r e  scalar functions 
of the difference quantities, 
occuring in the vector part of 
(q''~~ ; in order to obtain 
an expression analogous to (3.181, 
we use the following designations : 

3 = &S;, 1 " p o l a r  c o o r d i n a t e  

Z_ = AJ; - I f u n c t i o n s " .  

so that : 

This quaternion equation gives the relationships between the four components 
of (q .'h) fi on the one hand, and the three "polar coordinate functionsn 
( AILS il. -+ aln X,; being the third ) on the other. 
Using isomorphic matrices this becomes : 



From this, the definitions of the three polar coordinate functions can be 
derived : 

It also follows from (3.24) that there is a linear dependency between 
the three vector components of (q-' A q)  ';L : 

r 
or, after conversion of r;, and 3Linto rectangular coordinate differences 

r r r 
Xip YLtand Zik: 

(3.25) 

Remark : (3.25) can also be written as : 

(F) (r 
Sc( q,, (q-'e3)& \ = 0 

or: Sc { oq';; - = 0. 

which results directly from the definition of q ik' 

3.4 Units of length and orientations. 

3.4.1 
The computation of and 8k 

We consider the side P;Pk of a network ; suppose the following observation 
vaoiates are measured : 

Also assume that the transformation 
quantities : 
- 
Xi : unit of length of the i-system 

ei : horizontal orientation of the 
i-system 

are somehow known. 

4 fig. 24 



From (2.12') it follows immediately : 

The vector in the opposite direction is : 

1 
with, see (2.27' : F,!, = k h;, gek 

therefore : 

In (3.26) and (3.27) the left-hand members only differ in sign ; therefore 
the quaternion equation can be established by means of the right-hand mem- 
bers : 

the rank of which in view of (3.251, is three. 

From (3.28) we deduce two scalar equations, in order to determine, from this, 
the unknown quantities okand Xk (whilst underlining the stochastic quanti- 
ties 1 

a) : \/N[ l eek hand hemher] = \/N (right hand hehbrr  ] 

b) : arctan Vjr'le<t"l = Vj["righC") - - 
V; {"left"] Vi{"righC") 

= 1,; + 9, ( i f  V; > 0 ) .  

- r . + e k + r r  (it Vi <o). - -kc 

therefore : 



The units of length and the orientations of the local systems can be 
successively computed from (3.29) and (3.30), provided that a sufficient 
number of observation quantities have been measured. For this purpose, 
one unit of length ,Xo , and one orientation must be known (the 
nature of these quantities is discussed in greater detail in section 4.2). 

3.4.2 
Difference quantities of Xk and Bk. 

The expressions (3.29) and (3.30) for sL respectively can be 
differentiated in two ways : 

a) direct differentiation of (3.29) and (3.30) ; from this follows : 

b) first differentiating (3.28); from-the difference equation, the 
difference quantities A2kand A In hLcan then be solved. 

We now apply method b) and start on the left-hand members of (3.26) and 
(3.27) ; they are equal to each other with opposite signs : 

The difference equation deduced from this reads, after division by XL : 

- 1 and this passes, after premultiplication by p;: and -qki respectively, 
into : 

The left-hand member is, according to (3.23) : 

With, according to the definition (2.13) : 

The right-hand member of (3.34) is, see also (3.11) r 

I According to (2.30 1 here : 



s o ,  a l s o  t a k i n g  i n t o  c o n s i d e r a t i o n  (3 .14)  and (3 .15)  t h i s  becomes : 

I . = (q-&qIki In which hrki i s  replaced by &rki+~e -4 Fi!k 

I n  accordance  wi th  (3.181, t h i s  may be w r i t t e n  as : 

S i n c e  t h e  k -vec tors  o f  t h e  sys tems  ( k )  and 
( k f )  are equa l  t o  each o t h e r ,  t h e  f o l l owing  
a p p l i e s  a c c o r d i n g  t o  t h e  d e f i n i t i o n s  (3 .20)  : 

( i n 3 . 3 5 )  = elk = e ( i n  3 . 3 6 ) .  
Pk 

( i n  3.3s) = ellk = - e:; <in 3.36). 

I 
and also : 

L' k k 
A 3 L t  ( in3.35) =A%-J~, =&sLi (in3.36) 

With t h i s  (3.361, which is t h e  r ight-hand member o f  (3 .34) ,  c an  be conver ted  
i n t o  : 

- (k') , (L') L' 11 (L') 
(4 1 q l k i  = + ekliik b 3 , L  reki + ek] - e kIjik 3 k i  (3 .37)  

By now s u b s t r a c t i n g  t h e  l e f t - hand  member o f  (3.341, see (3.351, and t h e  
r ight-hand member o f  (3.341, see (3.371, from each o t h e r ,  w e  o b t a i n  a 
zero-mean v a r i a t e  : 

The n e x t  d i f f e r e n c e  q u a n t i t y  f o l l ows  from t h e  scalar component o f  
(3.38) : 

More impor t an t  t h a n  t h e  u n i t s  of l e n g t h  are t h e  " leng th  f a c t o r s w  de f ined  
i n  (2 .13)  ( q u o t i e n t s )  ; t h e  l e n g t h  f a c t o r  of (i)- and (k)-systems is : 

Because e f k I i i k  a"d e " k ~ i i k  are b o t h # O  and n o t  p a r a l l e l  t o  e ach  o t h e r ,  



two independen t  scalar e q u a t i o n s  c a n  be deduced from t h e  v e c t o r  component 
o f  (3.38) r 

k' 
1 : &tik - - = 0 

from t h i s  i t  f o l l o w s  : 

w i t h ,  see (3 .24 ' )  : 

The comple te  e l a b o r a t i o n  o f  (3.32) g i v e s  t h e  same r e s u l t ,  

w i t h ,  see a g a i n  (3.24')  : 

3.4 .3  
- I  The rank of (q-kqlil,- (q ~ q )  k i  

A network s i d e  PiPk can t h u s  be used - 
f o r  t h e  computa t ion  o f  l e n g t h  f a c t o r s  h ;k 
and /or  o r i e n t a t i o n s  _8k ; one t h e n  
starts from a n  i n i t i a l  u n i t  o f  
l e n g t h  X0 and a n  i n i t i a l  o r i e n -  
t a t i o n  e0 ( t h e s e  need n o t  be d e f i n e d  
i n  t h e  same l o c a l  sys tem ; 
see fig. 2 5 )  

S.*+.& 
- -> -- route 9 (3 .40)  

route A (3.39) ......... ........ 
f ~ g .  26 

The zero-mean v a r i a t e  (3.38) assumes,  depending on t h e  u s e  o f  s i d e  Pipk , 
one  o f  t h e  f o u r  f o l l o w i n g  forms : 

. I S i d e  Pi Pk is n e i t h e r  used f o r  t h e  computat ion o f  &;knor f o r  t h e  com- 
p u t a t i o n  o f g i  f r o m &  , o r  r e v e r s e ,  Then, t h e  f o l l o w i n g  is o b t a i n e d  : 



- 
I1 S i d e  Pipk is used f o r  t h e  computat ion o f  t h e  l e n g t h  f a c t o r A i k  ; t h a n  

(3 .39)  is s u b s t i t u t e d  i n  (3.381, which means : 

I (p) -1  (F) , (PI L' L' 

q i  ( A = ek;ik ~ 3 ; ~  - Lrki - ed + 

11 (p) L' 
rahk = 2. + 

;l. [ g i ~  + d~jci] 

I11 S i d e  P i P k i s  used f o r  t h e  computat ion o f  - ek from Si ; t h a n  ( 3 . 4 0 )  is sub- 
s t i t u t e d  i n  (3.38) : 

11 (P) L' rank , z 
+ e k l j i ~  [ 53 ik  + q k i ]  ' 

- 
I V  S i d e  Pi Pk is used b o t h  f o r  t h e  computat ion o f  h i t a n d  Gk ; now we o b t a i n  : 

, (F) I I  ('-1 C' 

- - 7 -  = ek#;, [._S& + 3.1 
rank = i 

I V  From Chapte r  5 it w i l l  a p p e a r  t h a t  (3.42 ) w i l l  o c c u r  as a c o n d i t i o n  
e q u a t i o n  i n  each  s i d e  of a comple te ly  measured network. 

3.4.4 
Networks w i t h  p a r a l l e l  k-vectors .  

A s  a s p e c i a l  case, we now c o n s i d e r  a network,  i n  which t h e  k -vec to rs  o f  a l l  
t h e  l o c a l  s y s t e m s  are p a r a l l e l  to  e a c h  o t h e r .  I n  (2.34) it  h a s  been demon- 
s t r a t e d  t h a t  i n  such  a network,  t h e  o r i e n t a t i o n s  o c c u r  as d i f f e r e n c e  
q u a n t i t i e s  i n  t h e  l t a s t ronomica l  r o t a t i o n  q u a t e r n i o n s w  ( p " ~  p) . 
T h i s  is t h e r e f o r e  a l s o  t h e  case i n  t h e  zero-mean v a r i a t e  (3.38). I n  view o f  
(3.15 1 ,  t h e  c o e f f i c i e n t s  o f  A 2 i  and A r i k  i n  (q-'q)iz' are e q u a l  t o  e a c h  
o t h e r ;  t h e r e f o r e ,  see (3.40) : 

k' 
&rik = [&rik+*; + . . . . .  other  t e r m s  l 

Thus, i n  a network w i t h  p a r a l l e l  k-vectors ,  (3.40) p a s s e s  i n t o  t h e  s i m p l e  
form : 



Chapter 4 

SIMILARITIES AND DIFFERENCES BETWEEN THE TWO-DIMENSIONAL AND THE THREE- 
DIMNSIONAL MODEL. 

4.1 Introduction. 

In the Polygon Theory in the Complex Plane [2] , the n-quantity : 

plays a fundamental role in the relation between the measuring procedure 
and the function model for the adjustment. This 'rr-quantity is fully in- 
variant with respect to similarity transformations in R2, owing to which 
orientations and length factorsof the instrumental (local) systems do not 
occur in the conditions of the adjustment model, if they are composed from 
--quantities. 
In the polygon theory for three-dimensional space, the Q-quantity : 

is used for the construction of conditions. It is, however, not invariant 
relative to rotations : 

and, see (3.17) : 

The "three dimensionalt1 A jit-quanti ty is therefore indeed invariant, if : 

- f  - 1  - -I 
qik I PAP),; q ;k - qij ( IDLP),; qij = O 

so, if : either a) : qij // qik  ( " ~ t r e f c h e d "  quaternron 4 ) 

Situation b) is encountered, if the network lies entirely in one plane W , 
and the following applies to all rotation quaternions : 

(only the angle of rotation is stochastic, the axis is not). 



The f a c t  t h a t  t h e  A I - q u a n t i t i e s  (4.1 ) e j ik=ia+jb+kc 
a r e  n o t  g e n e r a l l y  i n v a r i a n t ,  l e a d s  t o  
t h r e e  impor tan t  s t r u c t u r a l  d i f f e r e n c e s  
between t h e  systems o f  cond i t i on  equa t ions  i n  t h e  two-dimensional model on 
t h e  one hand and i n  t h e  three-dimensional model on t h e  o t h e r ,  t o  which w e  
s h a l l  b r i e f l y  refer i n  t h i s  i n t r o d u c t i o n  and ana lyse  subsequent ly  i n  
s e c t i o n s  4.2, 4.3 and 4.4. 

a 
I n  R 3  o r i e n t a t i o n s  o f  l o c a l  systems do occur  i n  cond i t i on  equa t ions .  The 
o r i e n t a t i o n s  can  be computed a s  f u n c t i o n s  o f  observa t ion  v a r i a t e s  acco rd ing  
t o  (3 .30) .  If i n  a network n o t  on ly  terrestrial bu t  a l s o  w a s t r o n o m i c a l ~  ob- 
s e r v a t i o n  v a r i a t e s  occur ,  i t  w i l l  be necessary f o r  a t  least one azimuth 
t o  be measured; o therwise  i t  w i l l  n o t  be p o s s i b l e  t o  connect  t h e  o t h e r  
as t ronomica l  q u a n t i t i e s  ( l o n g i t u d e s  and l a t i t u d e s )  w i th  t h e  terrestrial ones,  
because t h e  r o t a t i o n  qua t e rn ions  p would n o t  be  f u l l y  def ined  then  : see 
(2.27) .  But i n  s e c t i o n  4.2 i t  w i l l  be demonstrated t h a t  t h i s  i n i t i a l  
azimuth does no t  f u r n i s h  a c o n t r i b u t i o n  t o  t h e  rank o f  t h e  system o f  con- 
d i t i o n  equa t ions  : i n  f a c t  i t  creates a l i n e a r  dependency between t h e  ho r i -  
z o n t a l  d i r e c t i o n s  r a t  t h e  s t a t i o n  where t h i s  azimuth u a s  measured. 
It w i l l  a l s o  become appa ren t  t h a t ,  i f  t h e  k-unit  v e c t o r s  o f  a l l  l o c a l  sys-  
tems are p a r a l l e l  t o  each o t h e r ,  t h e  c o e f f i c i e n t  o f  A-A ( t h e  azimuth)  w i l l  
become z e r o  i n  a l l  l i n e a r i z e d  cond i t i on  equa t ions .  This  corresponds t o  t h e  
e x i s t a n c e  o f  a l i n e a r  dependency between t h e  o r i e n t a t i o n s  i n  t h e  adjustment  
model o f  t h e  method o f  observa t ion  equa t ions ,  s o  t h a t  t h e  rank o f  t h e  system 
remains unchanged ( s i n c e  t h e  rank is equa l  t o  t h e  number o f  obse rva t ion  
v a r i a t e s  minus t h e  number o f  unknowns). From s e c t i o n  4.5 it  w i l l  become 
appa ren t  t h a t  t h i s  is important  i n  t h e  " t r a n s i t i o n "  o f  t h e  Rz-model t o  t h e  
R -model. 

b 
The Q jik - q u a n t i t i e s  must a l l  be transformed from t h e i r  "ownm l o c a l  system 
( i)  t o  one common system ( r ) .  Subsequently,  c o n d i t i o n s  may be e s t a b l i s h e d  
f o r  t h e  adjustment  model o f  t h e  method o f  cond i t i on  equa t ions .  I n  s e c t i o n  
4.3 it  w i l l  be shown t h a t  t h e  adjustment  c o r r e c t i o n s  ob ta ined  from t h i s  
-consequently,  a l s o  e s t i m a t o r s  - and weight c o e f f i c i e n t s  (G'' o f  
obse rva t ion  v a r i a t e s  ( n o t  y e t  o f  coo rd ina t e  q u a n t i t i e s )  are independent o f  t h e  
cho ice  o f  t h e  ( r ) - sys tem,  i.e. one o f  t h e  ( i ) - sys tems .  

C 
I n  t h e  complex p lane  S-coordinates  i 

(") can be computed from e s t i m a t o r s  
o f  obse rva t ion  v a r i a t e s  by : 



0 
after the choice of two, non-stochastic pairs of coordinates z: and z, 
(z F - zi # 0 ; backgrounds of this line of thought are to be found in 
W. Baardavs theory of S-transformations 131 . c r) 
In the analogous formula for the three dimensional model, the Q -quantities 
have been defined in one of the local systems, the (r)-system (see b) and 
they are not invariant (see a). The introduction of operationally defined 
coordinates, an "S-systemw (R) must therefore be made by means of a 
(difference) similarity transformation X P R ~  - 

Notation : see page 31. 

This is the "first basis equationw; it has three independent components. 
By adding to this one component of, for example,the vector qYt , a system 
of four "basis equationsw is obtained. After differentiating -see section 
4.4- A &n and the three independent components of A pR, can be solved 
from these (i.e. expressed in differences AX' of estimators of observation 
variates in the vectors q,, and q,t 1 .  

Owing to this (4.4) becomes : 

and 4.3 becomes : 

Compare (4.2) 1 

When applying the adjustment method of observation equations, the trans- 
formation X is represented in the observation equations by four un- 
knowns Y * : RP - 

In section 4.5 it will be shown that the functional model for the adjust- 
ment of a two-dimensional network of closed polygons, despite the dis- 
cussed structural differences a) and c) (sections 4.2 and 4.4) is a 
"special casew of the "three-dimensionalw model ; by removing the zenith 
angles and Z-coordinates, the system of condition equations for R3  
automaticallyw becomes R p  , well known from [2] . By wautomatic" is meant 
here that the other differences between the R3 -model and the R 2  -model 
(numbers and types of quantities and condition equations) correspond direct- 
ly to the algebraic properties of R j  and R x  : 3 and 2 components respec- 
tively in the "coordinate conditionw; 4 + 2, respectively 2 + 2 parameters 
in a complete similarity transformation. 
This is illustrated in the list (4.53) of observation variates, unknowns 
and conditions 



4.2 The first unit of l@n~th and the first orientation 

In section 3.4 it was shown how the units of length xi and the orientations 
8; of the local systems can be expressed as functions of observation variates 
x_i , by solution from a series of equations (3.28). o 
For this, however, an initial Unit of length p , resp. orientation 8 must be 
known. Let us assume, for the time being, that these are stochastic quantities, 
then : 

0 
In section 3.4 it was already stated that and 8 may be located in 
different stations ; on this occasion, we shall see that they also have 
quite different functions : 

x0 is a non-stochastic factor which is only relevant for the computation 
technique ; it is chosen such that the numerical values of the lengths of 
the sides, d w )  , are given the order of magnitude 1. (see also the scheme 
on page 3 1 . 
By 8' the nastronomical~ observation variates ( longitudes and latitudes 
are connected with the "terrestrialw horizontal directions, zenith angles, 
and distances. It should be determined from azimuth measurements in one of 
the local systems,P,, and is then a stochastic variate. 

4.2.1 
The first unit of lennth xO. 
We consider (2.10) applied to the side P,P,: 

If qru is a vector of average length, one achieves by choosing : 

that : 

and the lengths of all other sides of the network: 

4.2.2 
The first orientation. 

According to (2.24) the orientation of a local system is the angle in the 
horizontal plane between astronomical north and the i-vector of the local 
system. 



The first o r i e n t a t i o n  0' can t h u s  be de t e r -  
mined by measuring an  azimuth & i n  one o f  
t h e  s t a t i o n s ,  Pa . Then e0 is : 

I n  appendix 1 it  is proved, t h a t  i n  each cond i t i on  equa t ion  o f  t h e  t ypes  N, 
V,  Z and A (see c h a p t e r s )  t h e  c o e f f i c i e n t  o f  A ~ O  (i.e. ea) e q u a l s  t h e  sum 
o f  t h e  c o e f f i c i e n t s  o f  a l l  h o r i z o n t a l  d i r e c t i o n s  i n  Pa . Using Baarda's 
n o t a t i o n  [ 4 1  f o r  a cond i t i on  equa t ion  wi th  m obse rva t ion  v a r i a t e s  xi : 

and assuming t h a t  t h e r e  a r e  t h r e e  d i r e c t i o n s  i n  P, : 

t h e  conc lus ion  o f  appendix 1 r e a d s  : 

Because QL,fs n o t  an  obse rva t ion  v a r i a t e ,  w e  now s u b s t i t u t e  t h e  d i f f e r e n c e  
equa t ion  o f  (4 .8)  i n t o  (4.9)  ; t h e  azimuth be measured i n  s i d e  Pap3 : 

A3, = AA .. - Lra, 

and (4.9)  becomes : 

There a r i s e s  a l i n e a r  dependency between t h e  d i r e c t i o n s  i n  P,. The number 
of obse rva t ion  v a r i a t e s  can be reduced by one, by pass ing  from n d i r e c t i o n s  
t o  n-l a n g l e s  i n  P, : 

4-djaL = &rat - ~r . ( 4 . 1 1 )  

then  (4.10) becomes : 

ayP= - U! gral + U :  s3a2 + [ ~ < + u : + u $ ] k A ~ ~ +  - - + u f ? n g i  . . . .  J - 



4.2.3 
The position of the first orientation in a network with parallel k-unit- 
vectors. 

As a special case of spatial networks with astronomically measured rotations, 
we now consider a network, in which all k-vectors ("first axestt of the local 
systems) are parallel to each other. In section 2.3.3 it was shown that in 
this situation the orientations g i i n  the rotation quaternions p,; 
exclusively occur as difference quantities. This is, therefore, also the case 
in the zero-mean variates discussed in the appendix, from which the condition 
equations are composed : (tik and u.. are quaternions) 

J1 

'asfr. North 
/ in Pa 

k i a  fig. 28 

Moreover, the difference formula (3.40) for the orientation passes into the 
simple form (3.43) : 

so that the differences of the orientations then read as follows : 

b This means that in the zero-mean variates (4.1 3a and (4.13 and therefore 
also in the condition equations, now the coefficient of AB' equals zero. 
In view of (4.91, the coefficient of D A in the conditionequations then 
also equals zero : 

The azimuth must, therefore, be deleted in the condition model as observation 
variate ; in doing so, the rank of the system of condition equations is b, 
as in (4.11). 



Also in the observation equations (of A,rik 1, the orientations now occur 
as difference quantities ; since they act here as nunknownsn, this would lead 
to a linear dependence, 

and result in singularity of the matrix of the normal equations. 
In order to prevent this, we pass to the difference quantities ti; for example : 

t; = 2; -  - ; 8, is deleted as u n k n o w n .  

Conclusion. 
In a network with parallel "first axesn, the observation variate 
(azimuth) is deleted in both adjustment models, see (4.14) and in the method 
of observation equations, moreover, one of the orientation unknowns 
see (4.15). 

Schematically : 

fig. 29 

4.3 Estimators and weight coefficients of observation variates are invariant. 

In a spatial polygon network, the following types of observation variates 
are measured : 

s i k  : distance measures 
horizontal directions T i k  ' 

jik : zenith angles 
bik : astr. longitude differences 
'Pi : astr. latitudes 

From - 8ik* Iik en 3ik the quaternion : 

see (2.9) can be computed in the local system (i). 
For carrying out transformations of local systems, the orientations B; are 
required. 
Provided that a sufficient number of observation variates have been measured 
in the network considered, they can be computed as functions of observation 



v a r i a t e s  by (3.30) : 

I n  view o f  (4 .8)  h e r e  : 

i is a l s o  a f u n c t i o n  o f  o b s e r v a t i o n  v a r i a t e s  E ,  s o  we can  p u t  : 

Then t h e  r o t a t i o n s  between t h e  l o c a l  sys tems  can be e x p r e s s e d  i n  t h e  q u a t e r -  
n i o n s  : 

- 
Furthermore,  from t h e  d i s t a n c e  measures  4, t h e t a l e n g t h  f a c t o r s  If Aik can  be 
computed v i a  network s i d e s  i n  which 2 are measured i n  b o t h  d i r e c t i o n s  : 

- S 'i - 
( 3 . ~ ~ ) , ( 2 . \ 3 )  : ij; =A = A  

-S tj j' (4.19) 

We now choose one  o f  t h e  local sys tems ,  t h e  ( r ) - s y s t e m  and t r a n s f o r m  a l l  
q u a t e r n i o n a  (4.16) t o  t h i s  sys tem through a ncha in t t  o f  r o t a t i o n s  and l e n g t h  
f a c t o r s  : 

(il 

fig. 30 

I n  view of (4.161, (4.18) and (4.191, t h i s  may be  p u t  as : 
F -  F- 

q = qLL (. . . ,yL, . . .) . - 

o r ,  i n t r o d u c i n g  means T i o f  o b s e r v a t i o n  v a r i a t e s  : - (r) r qik = q & ( . . . , X > . . . )  

Furthermore : 
= (r) - 

( 1 )  - 1  
= tri gjik kri = 

= ~ ~ : k  (...,X;, . . .) 
- 

and : 4;;: = @jk (. .,si,. , .) . 



With t h e  q u a n t i t i e s  (4 .21 ' )  and (4.22'1, being f u n c t i o n s  e x c l u s i v e l y  of 
obse rva t ion  v a r i a t e s ,  w e  can  deduce condi t ions .  I n  t h e  form ofp aua t e rn ion  
equa t ions  reduced t o  zero, w i t h  means o f  zero-mean v a r i a t e s  Y t h e s e  
c o n d i t i o n s  are : 

-P (v) - - (r) Y =YP(- . . ,Cp,& ,.., q &  , . )  = D .  (4.23) 

By s u b s t i t u t i o n  of obse rva t ions  - xi ( 4.21 and (4.22 1 ,  a i s c l o s u r e s  Y"" - are 
ob ta ined  : . 

D i f f e r e n t i a t i o n  l e a d s  to  : 

When choosing a n o t h e r  l o c a l  system, d i f f e r e n t  from t h e  (r)-system, e.g. t h e  
(W)-system, t h e  series of o p e r a t i o n s  (4.20) - (4.25) l e a d s  t o  qua te rn ion  
c o n d i t i o n  equa t ions  : 

Now, t h e  fo l l owing  a p p l i e s  : 

hence : 

P(w1 p(*] P(.) -I 

9 = pWr [%F(p'+ y P ' r 1 ~ 4 * * w r  + (P-LP)~~ Y - Y (PLPI~J pi: 
~ ( r )  PO-I Because y z 0 ,  t h e  t h r e e  products  of d i f f e r e n c e  q u a n t i t i e s  and y - 

t h e r e i n  may be  n e g l e c t e d ;  hence : 

Ay P'"' = * CJP(r) -1  

- i w r  Pwr pwr 

Thi s  means t h a t  t h e  system o f  c o n d i t i o n  equa t ions  a y  is l i n e a r l y  
dependent on t h e  system A yPCr) , t h e  same dependency p r e v a i l i n g  between 
t h e  r e s p e c t i v e  m i s c l o s u r e s (  4.26 
The r e s u l t  of adjustment  by t h e  method of cond i t i on  equa t ions  is t h e r e f o r e  
independent  of t h e  cho ice  of an  (r)-system, a p a r t  from effects of t h e  
second o r d e r  ; 

Es t ima to r s  : ( _ x ' ) ~ = ( ~ ; ) '  + [zi) 

Weight c o e f f i c i e n t s  : ( ~ ; j ) ~ =  ( G " ) ~  .+ (G") 



4.4 The introduction of S-coordinates. 

According to section 4.3, "invariantn estimators Xi and weight coefficients 
G'J are obtained from least-squares adjustment by the method of obser- 
vation equations, The substitution of the estimators in the functions (4.16) - 
(4.21) inclusive gives : 

for all the sides of the network. 
The three vector components of these quaternions can be considered as coor- 
dinate differences in the (r)-system, i.e. one of the local systems. 
The transition to an "operationally definedn coordinate system (R) -an 
"S-coordinate system in the terminology of C31 - is now effected using 
the similarity transformation : 

(U) - = ( L )  - f  
3 ; k  = ~r q i k  ~r (4.29) 

- 
The transformation (4.29 1 has four parameters, viz. AR, and the three in- 
dependent components of gR, ; this is the correct number for a similarity 
transformation of coordinate differences in R3. 
The (R)-system, apart from the translation, can thus be operationally 
defined by considering four coordinate differences, or functions thereof, 
as non-stochastic quantities q0 ; we adopt the choice made by Baarda in 
several manuscripts, about 1970 : 

0 
i.e. : all three componentsof vector q,, are non-stochastic. For q, 
three arbitrary numbers may be chosen, provided N { q, ] jt 0. 

i.e. : of the vector qVt , the component perpendicular to the plane through 
P, P, and Pt is non-stochastic. 

0 0 Because : et,, l q we have : 

-1 0 0 0 eOtrs q r t  = - 4 r t  e t r s  
4 

and the right-hand member of b) is zero. 

Therefore b) becomes : 

(U) -I (R) 0 

P + e",r grk e,sr] = O . 1  

Remark : 
Only one component of vector q,t is used for the definition of the (R)- 
system ; qFt does not explicitely occur in (4.31 ) ,  therefore. It is, 

0 0 
however, possible to choose numbers for qVt , allowing etrs to be computed 
as follows : 



0 
A clearer procedure consists in choosing e trs itself : 

Now it becomes obvious that, in accordance with the fact that (4.31) repre- 
sents one component, only one number needs to be chosen, since between a) , 
b) and c) there are two relationships : 
-first e&, must be perpendicular to : 

hence : aOXO+ bOYO+cOZO = o 

0 
-secondly, etrs is a unit vector, so : 

We now substitute (4.291, applied to the vectors qr, and q,t , which are 
measured sides of the network, in the left-hand members of (4.30) and 
(4.31) respectively : 

These quaternion equations constitute, on condition that qrs is not //qrt, 
four independent equations in scalars, the so-called vlbasis equationsw. 
From these the four parameters of the (stochastic) transformation { rR,; tRr} 
can be solved, i.e. expressed in components of : 

= 4'r' . and qrt (-,z i...,) - rs - 
Hence : 
- - 
- - X R r  = X R r (  ... 'X', ...) 

X' are observation variates i n  qr, and qd 
= p,,( ..., xi . . . . )  P i(r l - 

When - using the adjustment method of observation equations, the transformation 
I XKr; tRr\ is applied in the computation of S-coordinates 2' , from obser- 
vation variates , according to (4.5) of (4.29). 

In (4.29) the following applies : 



Let : 
(R) ri (R ) qiL = O +  il( + j zrZ+ k zr3 = (..,a:...) - 

hotation : _r ik  = zr' ; Y~~ = zrZ ; f i k  = X- 

then (4.29) becomes : 

Via a difference equation of (4.351, the weight coefficients for the S-coor- 
dinates X can then be computed : see (4.43) - 

In the method of condition equations, the transformation/ is directly 
entered in the observation equations in the form of four wunknownslt 2 
From (4.29) follows directly : 

Here again,see (4.28') : 
= (r) 
9. = c,.:* ( . .  X: . . . )  - LL 

with : zL = _SiL+z , I;L+C 3 ; ~ + t  

The S-coordinates q(R) are now unknowns Y" ; let : - 

Assume also : 
- 
X*, = Y' 

it will then be possible to deduce observation equations for s i k  , r i k  and 
'I)ik from the difference equation of (4.361, after some manip~lati0nS 
(see section 5.6) 
The adjustment results in least-squares corrections and weight-coefficients : 

- 
The solution of ~ l n A ~ ~  and A A r f r o m  the basis equations 

0 0 
The four numerical values for q L  and et, (or : q rr ) may be arbitrarily 
chosen, provided N { q 1 # 0 i 
However, we make a deliberate choice, using the observations - X : 



Hence : 

- 
and we can choose the following approximate values for -XRp and tRr : 

We differentiate the basis equations (4.32) : 
(R l (R) (R) = ( r )  

qn '&R. + tPRr  qrs - qrs &PRr +. &‘Irs = 0 .  

(RI - I  

[q:) + ?pRr 9 2' - yrt yRr + iq + 2 ehr [ 1 eksr = 0 

Here Ap is, see (4.39) : - R r  
!pRr = o + i &IRr+ j AJ~, + k &kRr . - 

Premultiplication by q r ,  - l R  resp. q -1  (R) 
rt gives, whilst deleting the upper 

indices : (q(R)=qo=q) 

Let : 
' - o + i x + j Y + k ~  ; X'+Y~+Z'=S~ 4 r s  - 

then the equations (4.40) in 
matrix notation will read : 



Between the three vector components of (4.40~ 1 ,  there is the linear depen- 
dency (3.25) : 

The system (4.40~) thus has the rank : 3. 

b 
From the scalar component of (4.40 ) it becomes apparent that A~YI srt does 
not occur in the transformation. Between the three vector components of 
(4.40 ) there are two linear dependencies r 

(the first resulting from the first matrix ; the second is analogous to the 
dependency (3.25) 

b The system (4.40 ) thus has the rank : 1. 

From (4.40~) it follows immediately : 

The three components cf &pRpmay be solved from two components of (4.40~ ) 
and the one independent component of (4.40 1. 
Via manipulations, such as : 

this results in : 

( q - b r )  X ex&a+YnccT 
+ 

C S %  dRr = z ~ s & %  5" z&2s@5* 
z k a J x \ y z  

- ( n 5 -  b x )  Y C Y - ~  - x&a + c s Y  
g R r  - ZS6&3 [ e r *  -ktJ - 2- . - ~ x p  'l" z - 3  S \l;i; ji3* 

(ay - br) Z cz-a csz 
p v s - k r r g  - E&am + 2-a 5 I V  t S s A a  

The expressions (4.4 1 ) and (4.42 1 for hln 5; and ap can now be substituted - ,Rr 
in the difference equation of (4.35) : 

from which the weight coefficients (4.36) are computed. 



The S-coordinates, when using the method of condition equations, read : 

From the method of observation equations, the coordinate quantities are 
directly obtained ; see (4.38) : 

Amongst these the ordinate quantities in the computational base, q\t) and &? one component of qTt are6non-stochastic. They will therefore, not have 
adjustment corrections, so : 

(R) - 0  

4,, = 9 , s  = qrL (. ., K', . ..) 

1 2 The coordinate quantities (4.44 and (4.44 ) constitute conformal systems; 
they are mutually transformed according to (4.291, (4.35). The numerical 
values forLRT and ER, follow from the basis equations, in which we now 
substitute the coordinate quantities (4.44' and (4.44* : 

- 
From this it becomes apparent that nperical values for&, and pRr follow 
from the least-squares corrections g' of observation variates in-the basis 
equations : 

Relationship with the general S-transformation. 

In [l71 H. Molenaar gives a formula for the general S-transformation for 
three-dimensional coordinate systems : 

Molenaar, as in this study, has started from the basis equations (4.32); 
Molenaar's (4.46) is therefore essentially the same transformation as 
(4.431, with : 

(R) = l ( r s ; t )  j (r)  = ( C * ) .  



The right-hand member of (4 .46)  is, however, composed of differences of 
orthogonal coordinates, the right-hand member of (4 .43)  of differences of 
observation variates, i.e. of polar coordinates, in the basis vectors q, 
and qrk . In order to make the formulas comparable, we pass in (4.431, i.e. 
(4.4 1 ) and ( 4.42 from polar coordinates to orthogonal coordinates as 
follows : 

We substitute this in (4 .41)  and (4 .42)  and obtain : 

+ Z b  zc 
A Y r &  + 2 rt + h-Zrt 

-2 Ss4L.3 zSsALa 
and : 

After, assuming as third basis equation, in accordance with Molenaar : 

we can substitute these expressions for ~ l n x ~ ,  and AJR, 
in (4 .43)  : 

Then, it becomes apparent that : 



An important difference between (4.43) and 
Molenaar's (4.46) is that in (4.43) the 
basis vectors q, and q,t must be 
measured sides of the network; in qv, must 
be measured : distance measure, direction 
and zenith angle; in qrt : direction and 
zenith angle. 
Contrary to this, q,, and q,t in (4.46) 
may be arbitrary connections between 
points of the network,. .......... basisvectors (4.46) - basisvectors (4.43) f ig ,33  

4.5 Observation variates, conditions and unknowns. 

Starting from a specified vector of observation variates I_i this section 
will present a provisional consideration of the numbers of conditions and 
unknowns in the function model of a closed polygon with astronomically 
measured rotations between the "local systemsn. The relationship between 
the function model of a spatial network and that of a network in the complex 
plane will be described via two intermediate forms. 

We specify the vector of m observation variates as follows : 
(one closed polygon) 

2 n directions r 
2 n distance measures S 
2 n zenith angles '3 

astr. differences of longitude A n 
n astr. latitudes p 
1 azimuth A 

m = 8 n + 1  

(4.48) 

A preliminary determination of the rank of the condition model 

We consider the fully measured closed polygon of n points P, P* ... P, 
and choose the local system of P, as (r)-system. 
Now the following series of computations, following the sides of the polygon, 
can be carried out : 



Now, six conditions have cone into being : 

Y q Z  +Y:,+ . . . .  +5:, = O  " c o o r d i n a t e  c o n d i t i o n "  

* 
9,. = -%h, 

' " 

polygon c o n d i t i o n "  

* 
Z," = - zll 

This notation has been adapted from Baardals [2] , and it anticipates 
Chapter 5 .  nThe coordinate conditiontt cannot be linearly dependent on the 
ttpolygon conditionn, because there are more observation variates in the 
polygon condition than in the coordinate condition : viz. S r and jln. -In, -In 

There remain n observation variates, which have not yet been used in this 
computation : 

n - 1 zenith angles (',, .3,,--.-.2, ,,-, . 
1 difference of longitude (h , , ) .  

) 

These n variates may be expressed in the f o m  of n condition equations 
as a function of the m-n other observation variates (this is discussed in 
greater detail in Chapter 5 ) .  Consequently, now n + 6 conditions have been 
found by the procedure of computation alongside the polygon ; if, by way of 
precaution, we assume that, possibly, conditions may have been overlooked, 
this number is a lower limit for the rank b of the condition model : 

By analysing linear dependencies in a set of n + 12 conditions, an upper 
limit, which also equals n + 6, shall be determined in section 5 . 4 .  

Unknowns 

In case directions and distance measures are used as observation variates, 
the following ~unknownsw are frequently chosen in the function model in the 



complex plane for adjustment according to the method of observation 
equations : 

2 n -- 4 coordinates 
n orientations e 

-1 - 
n length factors --Xik 

The number of non-stochastic coordinates (four) equal the number of parameters 
of a similarity transformation in R p  ; this is connected with the "operational 
definitionn of coordinate quantities. (mS-coordinatesnj. In analogy there 
are in a spatial network of n points : 3 n - 7 stochastic coordinate un- 
knowns (the (R)-system ; see section 4.4). 
In RO the relation between the S-coordinate system (R) and the n local 
systems is established by n pairs of quantities : 

- 
lnX~i : logarithm of length-factors 

fn section 4.4 we have seen that in Rg, the relationship between the S-coor- 
dinate system (R) and the first local system (r) is established by the four 
variates of the "basis transformation"; see (4.39) : 

As in R*, the other n - 1 length factors Sri can now be defined as unknowns ; 
with regard to the orientation unknowns there arises, however, a difference 
between R 2  and R 3  ; so as to enable all local systems to be rotated astrono- 
mically, n orientations _8i are required ; moreover, n astronomic latitudes 
and n astronomical longitudes or n - 1 astronomical longitude differences. 
Sunnnarizing, in a fully measured spatial network of n points, the following 
unknowns occur : 

3 n - 7 S-coordinates 
1 "firstm length-factor 
3 parameters of the basis transformation 

n - 1 other length-factors 
n orientations 
n astronomical latitudes 
n - 1 astronomical longitude differences 

This number agrees with the number of observation variates m = 8 n + 1 
(4.48) and the provisionally determined number of conditions b = n + 6 
(4.511, since : 

The transition from R 3 to R 2 

We shall now describe the relationship between the three-dimensional function 
model and the two-dimensional model through a transition via two intermediate 
forms : 



1. A s p a t i a l  network w i th  p a r a l l e l  k-uni t  v e c t o r s  ("first axesu  o f  l o c a l  
sy s t ems ) ,  as descr ibed  i n  s e c t i o n  4.2 

2. The same s p a t i a l  network a s  above, where no as t ronomica l  q u a n t i t i e s  
( l a t i t u d e s  (pi and l o n g i t u d e  d i f f e r e n c e s  hik occur ,  i.e. networks as 
used f o r  e.z. t r i gonome t r i c  l e v e l l i n g .  

I n  (4 .53)  t h e  numbers o f  obse rva t i on  v a r i a t e s ,  unknowns and c o n d i t i o n s  
are s t a t e d  i n  columns f o r  t h e  g e n e r a l  R3mode1, t h e  two i n t e r m e d i a t e  forms 
and t h e  Rz model; r ega rd ing  t h e  t y p e s  o f  cond i t i ons ,  w e  must a n t i c i p a t e  
Chapter  5 he re .  

Observat ion 
v a r i a t e s  : 

d i r e c t i o n s  
d i s t a n c e  measures 
z e n i t h  a n g l e s  
d i f f e r e n c e s  o f  l o n g i t u d e  
l a t i t u d e s  
azimuth 

S-coord ina tes  
first r o t a t i o n  
first l e n g t h  f a c t o r  
o t h e r  o r i e n t a t i o n s  
o t h e r  l e n g t h  f a c t o r s  
d i f f e r e n c e s  o f  l o n g i t u d e  
l a t i t u d e s  

Unknowns : I 

2n 
2n 

-- 
R3 

I 1 C I 

Condi t ions  : l l l I l 

without  
Q and X 

2n 
2n 

g e n e r a l  1 ki I /  
I 

2n I 2n 

311-7 
3 

Coordinate  c o n d i t i o n  
Polygon c o n d i t i o n .  
Z-condi t ions  
Sum o f  l o n g i t u d e  d i f f .  

2n 
2n 

n 

The d i f f e r e n c e s  * between t h e  Ifgeneralv1 R model and t h e  model o f  v l p a r a l l e l  
k-vectorsvv are ana lysed  i n  s e c t i o n  4.2; t h e  azimuth o b t a i n s  c o e f f i c i e n t s =  0 
see (4 .14) ,  between t h e  o r i e n t a t i o n s  t h e r e  arises a dependency, s e e  (4 .15 ) .  

2n 
2n 

n 
2n a 

3 n - 7  
3 

The d i f f e r e n c e s  between t h e  second and t h e  t h i r d  model are t r i v i a l  ; a l l  
uastronomicalvf  obse rva t i on  v a r i a t e s  and unknowns d i s appea r  and s o  does  t h e  
c o n d i t i o n  "sum o f  l o n g i t u d e  d i f f e r e n c e s v v .  

n n 
l *  - 

8n + 1 I 8n 6n 

3 n - 7  d 2 n - 4  
3 e 1 

The d i f f e r e n c e s  between t h e  t h i r d  and f o u r t h  ( t h e  R2 model) are e i t h e r  
t r i v i a l  : 

4 n 

1 1 
n * n - 1  
n -  l I n - l  

1 
n - l  
n - l  

5 n - 5  

n -  l 
n 

7 n - 5  

1 
n - l  
n - l  

4n - 4 

n - l  
n 

7 n - 6  



a - zenith angles are not entered in R2 as observation variates in the 
function model. 

b - the Z-conditions arise in the R3 model through the measurement of 
zenith angles in both directions, therefore they do not occur in the 
R2 model. 

or they follow directly from the algebraic properties of R3 and R2 : 

c - three, resp. two coordinates per point. 
d - seven, resp. four parameters in a similarity transformation. 
e - a rotation has three parameters, resp. one. 
f - the network or coordinate condition has three, resp. two components. 
This shows that the R 2  model is a "special case" of the R g  model. 



Chapter 5. 

THE ADJUSTMENT MODEL 

5.1 Introduction, 

In this Chapter, the theory described will be applied for the construction 
of a system of functional relations (conditions) of observation variates, 
with a View to the application of the adjustment theory, as standardized by 
Baarda [ 4 ]  . 
These functional relations apply to means of stochastic quantities. 

"adjustment model of condition equations" 

c47 (9.2) : (R') = (x i (  ..., yd...)) = ( 0 )  . (5.2) 

ffadjustment model of observation equations" 

Here : 

xi : observation variates, i = 1 . .... m 
yP : zero-mean variates P = 1 . . . . .b 
yd : unknowns d = 1 ..... m-b 

i The introduction of the stochastic observation variates - X furnishes 
llmisclosureslt : 

d 
The estimators to be obtained, Li and - Y , should comply with (5.1 and 
(5.2) : 

In view of the linearization of the functional, relat50ns (5.l)and 
(5.2 1 ,  a complete set of approximate values X 1, , Y , must be chosen, 
also complying with (5.1). 

Hence : 

(V'( ..., X;, ...)) = ( 0 )  = 0:) 

Now (5.3) can be linearized by expansion in a Tailor series of 



or, whilst neglecting terms of the second and higher orders : 

(Ay) = ) ( + I F L )  

w i t h  : (U$ ) =(ay' 

See also (17.21) in [4] .b b It also follows from (5.4 with (5.5 ) : 

(X'- x: ) = (a; ) [?.l v:, 

or : 

See also (17.23) in [4] . 
Relation with the Polygon theory in the complex plane. 

In a manuscript by Baarda 181 , dating back as far as 1962-64, an elegant 
structural agreement was found between the quaternion relations elaborated 
there, and the relations in complex numbers, as they are known from the 
two-dimensional polygon theory [2] . Accordingly, the choice and the 
notation of the quaternion relations in section 5.2 are adapted from them. 
The n-quantity plays a central part in the structural relation between 
the two- and three-dimensional polygon theories : 

(complex number, see C 21 (2.2.17 ) 
with : Re{ ujihj = &vjiL 

(quaternion, see (2.21) ( L )  
with: YcjTjik] = d L v j i L  

From section 5.4 it will become apparent that not only the quaternion con- 
ditions and the ~'rr-quantities, but also the dependencies between the 
conditions roughly present the same structure as those in the two-dimensional 
theory. 
In the three-dimensional theory it will, however, be necessary to introduce 
more types of conditions, owing to which the overall system of dependencies 
becomes more complicated. 

In order not to obscure the subject matter unnecessarily, the sections 5.2, 
5.3 and 5.4 will be restricted to the discussion of a network, consisting 
of one closed polygon, P, P2.....Pn , with complete measurement according 
to (4.48). 



- 
Orientations _8i andlength factors -Xik are computed 
according to (3.29/30), via the sides P,, P,, , .-. . . . .P, and via Pa . . . . . .P,. This means that 
only on the side PbP, the quantity : 

I (q-hliL - ( q - ~ q ) ~ ~  

assumes the form of (3.42)'. On all other sides, 
fig. 35 it assumes the form (3.42p , i.e. : 

In section 5.5 an example of a case, differing from this pattern, will be 
discussed. 

Remark on the notation. 

In the following sections, one starts tacitly (i.e. by omitting the indices 
I r )  and O from the assumption that in all (quaternion) difference 
equations, the coefficients are computed according to (5.5) in one of the 
local (instrumental) systems, i.e. the (r)-system : thus, for example : 

5.2 Conditions. 

We now again apply the procedure indicated in [8] , viz. subsequent com- 
putation of the sides in a closed polygon with n points, starting in side 

PnP1 : 

By the summation of these equations, a zero vector is obtained in the left- 
hand member : 

Through postmultiplication by qii (# 0) 
this becomes : 



The series (5.9) may be continued by : 

or, after reducing to zero : 

or, through postmultiplication by : 

Thus, we see the conditions known from [2] , viz. "coordinate conditionn and 
"polygon conditionn come into being, both in a form with dimension length 
(5.10~) and (5.11a ) esp. and in a dimensionless form (5.10~) and ( 5.11~') 
resp. 
How to choose from these ? 
The dimensionless forms would seem to deserve preference, because they were 
composed from exclusively dimensionless observation variates (length ratios 
and angles 1 .  In the difference equations of ( 5.1 oa ) and ( 5.1 la ) , however, 
the non-dimensionless factor A q,, obtains zero coefficients. This means 
that in the difference equation there are only dimensionless observation 
variates. The choice may thus be based on other reasons. 

From section 5.3 it will become a parent that for the coordinate condition, S the non-dimensionless shape (5.10 1 deserves preference. 
Therefore : 

0 = [l -4 ,  +G$?, -@zrp,rp, + . - . -  + ~4)"&~,4,--~,cs,] 4 h 4  

See:  [zJ : ( 4 . 2 . 2 )  . "Coordinate c o n d i t i o h  N(, , , , i  , 

As far as the polygon condition is concerned, it will become apparent, see 
(5.25 1 ,  that in the dimensionless form i 5.1 1 ) , the distance ratios occur 
in the scalar component and all other observation variates occur in the 
vector components of the difference equations. Owing to this elegant nature, 
we consequently choose the dimensionless form for the polygon condition ; 
therefore : 

0 = -4 + c-l)"G, Gh-4G"-,.-.4?z44 . 

See [z] : (4.3. i ) . ' ' T o ~ y ~ o h  c o n d i t i o h "  , 

Other conditions. 

From the preliminary consideration of section 4.5 it becomes apparent that, 
contrary to the plane polygon theory, the number of linearly independent 
conditions is also dependent on the number of sides of the network (this 
is caused by the zenith angles). 
Therefore, for each fully measured side, an extra condition must be esta- 
blished ; in principle, each of the three vector components of 



may be used  f o r  t h i s  pu rpose .  If, however, t h e  
network is  o f  l i m i t e d  s i z e  ( i n  compar ison w i t h  
t h e  c i r c u m f e r e n c e  o f  t h e  e a r t h ) ,  t h e  k - u n i t  
v e c t o r s  o f  t h e  l o c a l  s y s t e m s  are a p p r o x i m a t e l y  
p a r a l l e l  t o  e a c h  o t h e r  and  t o  t h o s e  o f  t h e  
( r ) - s y s t e m .  

The z e n i t h  a n g l e s  t h e n  h a v e  small c o e f f i c i e n t s  
i n  : 

I 

Pi 

fig. 36 

T h e r e f o r e ,  w e  choose  as c o n d i t i o n  on  e a c h  s i d e  w i t h  two z e n i t h  a n g l e s  : 

I "ZiL - condition " I 
Between t h e  a s t r o n o m i c a l  r o t a t i o n s  pik , which are composed from d i f f e r e n c e  
q u a n t i t i e s  ( l o n g i t u d e  d i f f e r e n c e s k i k )  and a l s o  t h e  l a t i t u d e s  Y i p  t h e r e  
e x i s t s  a " c o n d i t i o n  o f  r o t a t i o n n  : 

O = -' + P;, L+, Pi+,, ;, - . . Pc,,; 

I n  s e c t i o n  4.1 i t  was shown t h a t ,  i n  a s p a t i a l  ne twork  w i t h  a s t r o n o m i c a l  
r o t a t i o n s ,  o n e  a z i m u t h  mus t  b e  measured s o  as t o  c o n n e c t  t h e  a s t r o n o m i c a l  
o b s e r v a t i o n  v a r i a t e s  w i t h  t h e  "terrestrialm ones .  The c o e f f i c i e n t s  o f  t h i s  
first a z i m u t h  are small i n  a l l  c o n d i t i o n  e q u a t i o n s  and  e q u a l  t o  z e r o ,  i f  
t h e  k - u n i t  v e c t o r 8  are p a r a l l e l  t o  e a c h  o t h e r  ; see ( 4 . 1 4 ) .  
The a d d i t i o n  t o  t h e  ne twork  o f  e a c h  n e x t  
a z i m u t h  r e s u l t s  i n  t h e  c r e a t i o n  o f  a l 
c o n d i t i o n ,  i n  which  b o t h  a z i m u t h s  have  a I 

N 
I 

\\ 
\ 

large c o e f f i c i e n t  (i .e. approx.  = l ) .  I 
\ 

If t h e  first a z i m u t h  is measured on  s i d e  
Papb and a second  on s i d e  Pi Pk , t h i s  con- 
d i t i o n  c a n  b e  a d a p t e d  f rom t h e  q u a t e r n i o n  
e q u a t i o n  : (see fig. 37) 

&I-..; 

Pb 
Pj 9 

fig. 37 
q;c,n = ' " 4  4 %, q,,,~ L number o$' -quankik;es 



Here, in the quaternions qik;* and q a b , ~  the azimuth takes the place of 
the direction, thus : 

wi th  : P r i l  = pri (B,-, (Pr, Xr....i p Qi 9 ' ~ 0 )  

(L') 
9 ; ~  = q ; ~  (sir, >3i1c) .  

Now : 

According to (4.91, 0, in the condition model is, however, replaced by 
A,b - rab , therefore : 

- 1 
Through premultiplication by qik , reduction to zero and substitution of 
(5.16"), (5.16) passes into : 

O = - - 1  &ji.,i~G.~i . . ' & & b .  9.b 

A z i m u t h  cond; tion A&,..; 

Relations between coordinate and oolvaon conditions. 

In section 5.4 it will be shown that of the Z-, R- and A-conditions, only 
one component is independent. Regarding the N- and V-conditions the situ- 
ation is different. Also in order to establish links with the polygon 
theory in the complex plane, in which the N- and V-conditions take a cen- 
tral place, we now first consider the relations (dependencies) between 
the N- and V-conditions. 

The coordinate condition (5.12) contains n-l of the n G- quantities. 
As in the two-dimensional theory there are, consequently, in a fully 
measured closed polygon of n points n different coordinate conditions. 
Because quaternion algebra is non-commutative relative to multiplication, 
here-contrary to the two-dimensional theory-also the n polygon relations 
(obtainable from cyclic changing of the factors) are different ! 

We now introduce zero-mean variates, see (5.1) ; we use the characters 
N and V : 



Now (5.19)  d i r e c t l y  s u p p l i e s  a r e l a t i o n  between two nconsecu t ivew polygon 
c o n d i t i o n s  : 

V z . . - i  = Y...,, G,-' 
Likewise ,  i f  t h e  polygon c o n d i t i o n s  do n o t  d i r e c t l y  succeed each  o t h e r  : 

T h i s  means t h a t  o f  t h e  n polygon c o n d i t i o n s ,  o n l y  one is  independent .  
From (5.18)  f o l l o w  t h e  r e l a t i o n s  : 

T h e r e f o r e  a l s o  : \ 

I n  consequence,  t h e r e  e x i s t s  t h e  f o l l o w i n g  r e l a t i o n  between each t h r e e  
c o o r d i n a t e  c o n d i t i o n s  : 

This  means, t h a t  o f  t h e  n c o o r d i n a t e  c o n d i t i o n s ,  o n l y  two are icdependen t .  
From (5.21 f o l l o w s  : 

(S. 19 ) : = ,v 
r...n 

I n  consequence,  t h e r e  e x i s t s  t h e  f o l l o w i n g  r e l a t i o n  between two c o o r d i n a t e  
c o n d i t i o n s  and one polygon c o n d i t i o n  : 

Conclusion : 

The r e l a t i o n s  (5.201, (5.22) and (5 .23)  l e a d  t o  t h e  c o n c l u s i o n  t h a t  two 
independent  c o o r d i n a t e  and polygon c o n d i t i o n s  can be e s t a b l i s h e d  i n  a f u l l y  
measured c l o s e d  polygon, v i z .  : 

e i t h e r  : two network c o n d i t i o n s  

or : one network c o n d i t i o n  and one polygon c o n d i t i o n  



5.3 Linearization of conditions. 

After the introduction of approximate values, complying with (5.51, the 
conditions N, V, Z, R and A are linearized by expansion in a Taylor series ; 
if the approximate values are good enough, the terms of the zero and first 
order will suffice. 
In all the difference equations, the terms A @ ~  will be replaced by AX , 
according to : 

By substitution of stochastic observation variates, the conditions men- 
tioned in the previous chapters are now transformed into "condition 
equationstt. 

The coordinate condition eauation. 

We differentiate the equations (5.9) : 
- 

hey", - . . . . . . . . . . . . . . . . . . . . . .  -.. . . . . . . . . . . . . .  - - q., h-kq), 

- 
= - 541 4 n 9  - 4, - 

- - 1 -l - - 71, 7;: 9.f - 7,. ql. = ' 73% q!= (q kq)", 

A C C ~ ~  = . . l i kewise  -, q,, Cz +q2% G+ + q+3 1 ~ 1 '  

As after (5.9) we add these equations and thus obtain the difference equation 
of (5.10 1 / (5.12) As in (5.18/19) we usel!,) as zero-mean 

i variate in the left hand member ; introducing observations~_x in the right 
hand member, N becomes the wmisclosurell: 

-(n) (5.24) 
- a_!'(,) - qn4,h @"., + . . . . . . . . . . .  + qxm !CL  + q I n  g, 

or : 
n- I a qin \, Pk 
Z L N ( w ,  = q in g j L k  '=l 

with : cjLk = TTjLk (..., G',...). P, Pi 
fig.38 

The difference equation of the quaternion coordinate condition is thus iden- 
tical to that of the two-dimensional coordinate condition equation, see 
(17.1.5) in [2] . 
The ~olvnon condition eauation. 

Differentiation of (5.13 1, after the introduction of the misclosure ~y..., 
as - ~ Y ~ - ~ u a n t i t ~ ,  gives : 



- 1 
+(-;)I @.&h-4 -.. qI2 C, 7 1 n  = 

1-1 h-l -1 ' 
4 )  " [ + ( g -  + - - J 71. 

therefore : 

Because : Ss AT; l = : 
l 

Here, too, the strong resemblance with the polygon condition equation in the 
complex plane is striking; see (17.2.2) in [ 2 ]  . 
The 2-condition eauation 

The difference equation of (5.14) reads : 

We expand this by the other components to : 

According to (5.8) this expression becomes on all sides except P P : n l 

Consequently : 

Remark : 



To all sides, except PnP1, the following therefore applies : 

i.e. the i- and the j-component depend on the k-component, which is the 
Z-condition. 

- I  
By premultiplication by qik , the left-hand member of (5.8) is obtained 
again : 

hik = 1 
-elk [ -g Vilq~~l +S 9 /qLkf l  

The R-condition eauation. 

C 

The difference equation of (5.15) reads : 
see also (3.7) 

on all het work side^ 
exept  %Pi . 

After rotation to the (r)-system : 

f ~ k  ' & [ - " j ! ~ i L ]  + vklqiLl] . 

The A-condition eauation. 

i 
9 i k  =h[ -Pi L Wjqik j  - 4 fifSel] 

The difference equation of (5.17) reads : 

therefore : 

(5.28) -1  

AA . = - (q kq)Li,iA + +gj  + -.... ...+ + ( ( j ' ~ ~ ) . ~  - a-.. L 

5.4 Dependencies/Selection of condition equations. 

In this section we shall analyse the linear dependencies between the condi- 
tion equations described in section 5.3, or between components of these 
condition equations. 



As a continuation of (5.231, we start with the dependency between two coor- 
dinate condition equations and a polygon condition equation. 

The dependency between network and polygon conditions 

From (5.24) follow : 

= q,, !c, + q,, erz + . . . . + qn-,,h G,,-, 

therefore : 

Note : This result is also obtained from the direct differentiation of 
(5.23) : 

in which V = 0 

(compare [2] : (17.3.2) 

5.4.2 
Dependencies within the R-condition 

According to the general difference formula (3.7) for an open chain of astro- 
nomical rotations with longitude differences, (5.27') can be reduced to : 

Here the terms with orientations and latitudes of the *'intermediateM sys- 
tems have been deleted. (see figure 19) 
Because we are faced here with a closed chain, (i, i + 1, .... i - l ) ,  also 
the terms withgi and ~f~ cancel each other in pairs : 
since : 

S - 1  - i - 1 
(2.30 1 : p;;, (DLi' = - IDi i '  k )Dii' + be; = 



(likewise the terms with bCpi , i.e. (p-&p)ili and (p-Lp) i N i l  cancel each 
other) 
Therefore, in the R-conditions equation only the terms of the differences of 
longitude remain : 

If : prill = d + ia + jb + kc, this is : 

Because Sc ( R i....i 1 = 0, this means that the scalar component of the R-condi- 
tion equation has been fulfilled identically : 

and also that there are two dependencies between the three vector com- 
ponents : 

Out of the four components of the R-condition, only one is non-identical 
and non-dependent. In a network, in which the k-vectors of the local sys- 
tems are approximately parallel, a and b are approximately = 0 and d2 + c2= 1. 
This means that the difference quantitiesill only have large coeffieients in 
the k-component of the R-condition equation (5.30) 

The dependencies between the components of the A-.and the 2-condition 
. . 

equations. 

We split up the noquantities according to (2.21 ) into (q -hq )-quantities ; 
is now used as misclosure of the A-condition equation : La..-..& 

S A ~ ;  = mj m. 3ab 
1 7 " 

-1 I 
EL..-: = -  (q 9)ni* + ;q-&q~~~-(q-iq)~ + (i!+qlji- ----(q-Aq)bl+(i~q)ab - 

(5 .8 )  ( 5 . 8  
\ 

If all sides of the trajectory P, P, . . . Pj Pi \ 

comply with (5.81, this can be rewritten by 
\ 

substitution of (5.27) as : S 

. 
fig. 39 

- 1  
. . L  = - (q9 ) ; r i *+ (q -h ) ;L  +&n[ifk.+jghm+khmn] gbh - (5.32) 



Applying (3.23) t h i s  becomes wi th  ( i ' )  i n s t e a d  o f  ( r )  : 

(p) (i') II ( l ' )  - I  
- ( 9 -~ , )Lk  =. A&, +A&;, + hII[elLL AA (erik+*) + e;k %;L] P~;I + - - t e r m s  S * -  

and, wi th  (5.16) : 

-I , (2) it ((9 -1 , AQJ. . + + - J ~  AA, + e, nJLk] p,,, + . . .. kerms wikh - - . .  - ( 4 & d i L j A  - l-L - 

I n  t h e s e  formulae,  t h e  terms wi th  A P ~ ~  a r e  equal .  

Remark : Contrary t o  (3.381, t h e  (q-iq ) - q u a n t i t i e s  i n  (5.32) a r e  p o i n t i n g  
i n  t h e  same d i r e c t i o n  ; t h e r e f o r e ,  t h e  terms wi th  A p . a r e  annul led  
i n  t h e  d i f f e r e n c e .  - t-L 

Thus, (5.32) pas se s  i n t o  . 

The second azimuth t h e r e f o r e  on ly  occurs ,  through t h e  q u a n t i t y  (q  -Lq) ik ;A 
i n  t h e  A-condition equat ion.  From (5.33) it  becomes clear t h a t  t h e  s c a l a r  
component o f  t h e  A-condition equa t ion  has  been f u l f i l l e d  i d e n t i c a l l y  : 

(r) 
If e t  i k  = 0 + i A  + j B  + kC, t h e  t h r e e  v e c t o r  components o f  t h e  A-condition 
equa t ion  are : 

V k { @  ,... ; j  = C & S ; c [ - @ , + a _ r i k + g ; ]  +E h,, aJ,, 
m.n 

Between t h e s e  equa t ions  t h e r e  are two dependencies : 
( A and B = O  ; C=-1)  

Only one o f  t h e  t h r e e  components o f  t h e  A-condition equa t ion  is, t h e r e f o r e ,  
independent  : t h e  azimuthsonly have l a r g e  c o e f f i c i e n t s  i n  t h e  k-component. 
If t h e  network is approximately p lane ,  then  : 

and t h e  hmn a r e  = 0 ; Vk { e } r -1 ; t h e r e f o r e  : 

The s c a l a r  component o f  t h e  coo rd ina t e  condi t ions .  

We now cons ide r  t h e  network cond i t i on  N ( n ) '  
see (5.24) ; after  s p l i t t i n g  up 



the AT-quantities, - this becomes : 

In using qZ,, = q2, + qIn etc., the following arrangement of the terms 
obtained : 

n-a 
l 

= - ~ q l ~ - & 7 ~ ~ - . - * - k 7 ~ ~ , ~ - ~ +  ~ q n - , , ~  +G ~in&q-~7~;~~-(q-eq)i+l,L ] . (5.36) 
2 . 

Y Y 

a b 
L 4 

- / a- 
fig. 40 

Of the lla-terms", the scalar component equals zero : 

Of the llb-termstf the scalar part is : 

Because side PnPl is absent from the b-terms, (5.27) applies in all the 
b-terms, thus : 

b : SC{~~,,[({A~J~,~+,- (q-Lq )i+,,l] Ti,i+l - Y i m  q i , i + t  - z;mhi,i+t] Gi,i+t= 

= W,, i , i+( A& i, i+l . 
suppose  1 f 

The scalar component of the coordinate condition equation is consequently 
dependent on n - 2 of the 2-condition equations : 

In the same way, the coordinate condition equation N can be rewritten as : ( 1  1 

Also here, side PEP, is absent from 
the ~b-termsw : thus (5.27) can be 
used again, and (5.38) becomes : 



5 . 4 . 5  
The k-component of the coordinate condition 

Subsequently, we subtract 45.38)  from ( 5 . 3 6 )  : . . 
n - t  

I 
- = &qin + &qn-itn + 7;- [(T!EI);,~+~- Cfeqli+i.i] + 

n-i 

-L? - 9b,n-i J qif [(qkq)i,i+,- (qkq)i+i,tJ , i=e 
2 -- .- 

"a-  terms " " b-  terms " 
(the other a-terms cancel each other ) .  

The k-components of the "b-termsw are : see ( 5 . 2 7 )  : 

AZ . . ~k(~, , [ (sh)~~~+, -  (q&qk,,JJ = v,, i . ;+i  - ( c L + ,  . 

Thus, the k-component of ( 5 . 4 0 )  becomes : 

-V, A Z ~ ~  - . . . - V AZ . 
I , M - I , R  -n-1.n 

therefore : 

There is, consequently, a dependency between the k-components of the two 
coordinate condition equations and all Z-condition equations. 

5 .4 .6  
The NN and the NV-modelzrank of the system. 

d 
Formula (5 .29  signifies, as alrealy concluded in ( 5 . 2 3  1 ,  that in a fully 
measured closed polygon, there are either two independent coordinate 
conditions or one coordinate and one polygon condition. Consequently we 
can specify two condition models : 

NN-model number of 
components 

2 network conditions 8  
n Z-conditions n 
1 R-condition 4  

n + 12 

NV-model number of 
components 

1 network condition 4  
1 polygon condition 4  
n 2-condition n 
1 R-condition 4  

n + 12 



I n  t h i s  t a b l e  t h e  azimuth cond i t i ons ,  if any, have been l e f t  ou t  o f  conside-  
r a t i o n  : i n  f a c t ,  t h e  added azimuths occur ,  accord ing  t o  (5.331, e x c l u s i v e l y  
i n  t h e  azimuth cond i t i ons .  These a r e  t h e r e f o r e ,  a t  any r a t e ,  independent o f  
t h e  o t h e r  cond i t i ons ,  and t h e r e f o r e  d o  n o t  p l ay  a p a r t  i n  an a n a l y s i s  o f  
dependencies  between cond i t i ons .  

I n  t h e  prec&ing s e c t i o n s ,  t h e  fo l lowing  s i x  dependencies have been found : 

Note : t h e  l a t t e r  on ly  a p p l i e s  i n  t h e  NN-model, owing t o  t h e  e x i s t e n c e  
o f  two coo rd ina t e  cond i t i ons .  

(5 .31)  : SC{A-R)% 0 1 -l 

If,  i n  t h i s  c a s e  too ,  w e  assume, by way o f  cau t ion ,  t h a t  dependencies have 
been overlooked, t h i s  imp l i e s  an upper l i m i t  o f  t h e  rank o f  t h e  NN-model : 

(5.31 : ~i {a R )  and Vk {&R) 2 

(5 .31)  : V j  { A  - R }  and Vk (&R) 3 

(5.37)  : Sc(&N(,)) and n-2 G's 4 

(5.39)  : S C [ A N ( ~ ) }  and n-2 &Zts 5 

Because, however, i n  (4.511, a lower l i m i t  was found : 

? 

we now a r r i v e  a t  t h e  conc lus ion  : 

(5 .41)  : V ~ { O  - N( , )}  and Vk(a_NN(l ) J  and g,, 6 1 

Specif ication 04' o b s e r v a t i o n s  : (4.48). 

The NV-model 

The NV-model too ,  must c o n t a i n  s i x  dependencies. The dependencies (5.43/1, 
2 ,  3, 4 )  app ly  t o  both t h e  NN and t o  t h e  NV-model. The remaining two depen- 
denc i e s  can be de r ived  from those  o f  t h e  NN-model with t h e  a i d  o f  (5 .29) .  
We write t h e  dependencies (5.43/5 and 6 )  o f  t h e  NN-model, as equa t ions  w i th  
t h e  mi sc lo su re s  a s  v a r i a b l e s ,  i n  t h e  form o f  a ma t r ix  : 

To t h i s  w e  add (5 .29) ,  a l s o  i n  t h e  form o f  a ma t r ix  : 

le t  : 'n 1 
= O + i x +  j y + k z :  



From the system of six equations thus obtained, the four components of A-N(,) 
can be eliminated ; this leads to the two equations (dependencies) sought 
between the conditions of the NV-model : 

The overall system of dependencies within the NV-model thus consists of 
(5.43/1, 2, 3, 4) and (5.461, (5.47). Here, the i, j and k-components of 
the coordinate condition do not occur, whereas all four components of the 
polygon condition are present. This implies that the coordinate condition 
rather takes a position of its own. This substantiates for spatial networks 
Baardafs conclusion (see section 4.5 of C21 ) that the coordinate con- 
dition "is the most fundamental conditionw. 

5.4.7 
Selection of conditions. 

From the condition models NN and NV, six conditions must be eliminated. As 
a general criterion for this choice it applies that the matrix of weight 
coefficients of the remaining misclosures, (gPt in the terminology of 
C41 , must be as orthogonal as possible. From this requirement follows 
that those misclosures that have the largest coefficients in the dependency 
equations (5.31, 5.37, 5.39, 5.41 and 5.47) are those to be considered 
above all for elimination, because otherwise, the diagonal elements of (gPr ) 
would become very small. 

As far as the R-condition is concerned, these are : 



Moreover Sc { g R is deleted. -i. .i 

The Z-conditions have been introduced on account of the reciprocal measure- 
ment of zenith angles on the network sides ; the number of Z-conditions is 
therefore equal to the number of sides and it also re-occurs in the rank of 
the overall condition model. In principle, the elimination of one (or more) 
of the Z-conditions is possible, but this would lead to a less balanced 
structure of the condition model. Consequently, we can also eliminate from 
the NN-model : 

see (5.37) : Sc {A-N(~)} 

see (5.39) : sc (A-N(~)) 

see (5.41) : V A Or vk {A-N(~)) 

Thus, the specification of the NN-model becomes : 

In addition to three components of A R, in principle Sc  AN^,,{ and each 
of the four components of &V can beeliminated from the NV condition model. 
However, Sc [ A V )  and Vk { a V J  have small coefficients in (5.47) and 
(5.46) respect5ely and are thus less suitable for being eliminated. 
Therefore, we eliminate : Sc { A-N (, 

This leads to complete agreement with the NV-model of the two-dimensional 
polygon theory : 

- the coordinate condition there, is composed of two, and here of three 
llvector" compcments, 

- the polygon condition in the two-dimensional model reads : 

and, in the three-dimensional model : 



(the R- and Z-conditions do not occur in the two-dimensional theory). 

5.5 Modification of the starting points. 

5.5.1 
Deviation from (5.8) 

In the preceeding sections, we have started from the fact that (5.27) 
applies, viz. that one side PIP, is not used for the computation of 
orientations and length factors and that, moreover, those coordinate 
conditions are chosen, in which the @-quantities (or:~m-quantities) of 
P, and Pi are absent. What are the consequences for the system dependen- 
cies, if we depart from this ? The number of possibilities amounts to 
n (n - 1 1 ,  i . e. even in a triangle there are as many as 54 ! 

l 

location of N 
(a) : n 

location of N 
(b) 

: n - l  

location of 8' : n 

location of x0 : n 

We should, therefore, restrict ourselves to the discussion of one single 
example : 
Assume : the side PmP, is used for the computation of,the orientations. 
This means that one of the other sides, PIP, , does not comply with 
(3.42Im , but with (3.42Im : 

However, now : 

The vector components of I! (q-bq),, - (q -h q l , , , l ~  thus remain unmodified, but 
the scalar component was=0 and now becomes : Sc {A-V]. With this, the 
dependency relations can now be adapted . 
In the MN model : 
(5.37) and (5.39) remain unchanged, since there only the vector 
components of q q 1 ik - (q-&q ) ki occur ; however, (5.4 1 ) changes now : 

"k{qlh[(q-4~b-(9-' .q)k4]{ = zl" SsfnV I + vn& Gg 

Yk 1 q& [(4L4)pb- (q-Lqlhp-J ] = Z I ,  bV 1 + n_Z . 



Consequently (5.41) becomes : 

Here we must replace Sc (AV\ , which does not occur in the NN-model, by means 
of (5.29) by : 

-I 
S+V - q...h 1 = S~{[@(m)-@(l)] qh, 'j = 

in the NV-mode1:because (5.41) passes into (5.50), (5.47) passes into : 

0 = ( t h e  berms stated in (g. 97) 1 +[zJn - z ~ , ]  Sc( &,...h 

5.5.2 
Other types of observation variates 

- Pseudo distances. 
From (5.25') it becomes apparent that, as in the polygon theory in the complex 
plane, the scalar component of the V-condition has been fulfilled identically; 
SO : 

Pseudo distances 4 Sc ( L V  =- 0 

- Astronomical lon~itudes~ 
From (5.30) it becomes apparent that the same applies to the R-condition if, 
instead of astronomical differences of longitude, longitudes are measured.: 

astronomical longitudes + &R 5 0 

Astronomical differences of latitude 

When differences of latitude CQik are measured this does not lead to the 
creation of an additional conTition, as already shown by (5.30). A condition 
of differences of "latitudevv 

would only arise, if all the differences of longitude Xi,= 0 

More loops , 

We apply the specification of observation variates (4.48) to a network, com- 
posed from more than one loop, which have all been fully measured. , 

So as to determine the number of observation variates, m, the number of 
sides z must be introduced in addition to the number of points n. 
(4.48) then passes into : 



2 z d i r e c t i o n s  

2 z d i s t a n c e  measures 

2 z z e n i t h  a n g l e s  

z a s t r o n o m i c a l  d i f f e r e n c e s  
o f  l o n g i t u d e  

n a s t r o n o m i c a l  l a t i t u d e s  

+ 1 az imuth  

According t o  ( 4 . 5 2 ) ,  t h e  number o f  unknowns, m - b o n l y  remains  dependent  
on t h e  number o f  p o i n t s  n . 
I n  polygon networks  t h e r e  is  a r e l a t i o n  between t h e  numbers o f  : 

p o i n t s  : n 
s i d e s  : z 
l o o p s  : k 

s i n c e ,  by e x t e n d i n g  a network by one flg. 43 , 
loop ,  w i t h  p new p o i n t s ,  t h e  number 
o f  s i d e s  is i n c r e a s e d  by p +l : n po~nts  

z sides 
k loops 

(5 .53)  

I n  a network c o n s i s t i n g  o f  one  l o o p ,  t h e  number o f  s i d e s  is e q u a l  t o  t h e  
number o f  p o i n t s ,  t h e r e f o r e  : (2-n ), = 0 , t h e r e f o r e  ,, with (5.53) : 

(z-n),= 1 ; (2-n), = 2  ; etc. 

Herewith (5 .51)  becomes : 
h = . 8 z - k  + 2  

(S.SL) : 

m - b  = 7 2 - 7 k + z  + b = rn-7z+,k-2 ; 

hence : 
( t h i s  agrees w i t h  (5.44) f o r  one l o o p  : :k = - l ,  z + n ) .  

The c o n d i t i o n  models NN and NV comprise  z p i e c e s  o f  Z-condi t ions .  
( t h e y  o c c u r  p e r  side and n o t  p e r  p o i n t  ! )  I n  view o f  (5 .54)  each  l o o p  c o n t a i n s  
6 p i e c e s  of t h e  o t h e r  t y p e s  o f  c o n d i t i o n s ,  a l s o  i n  a polygon network con- 
s i s t i n g  o f  more t h a n  one loop. 



5.6 The adjustment model of observation equations. 

5.6.1 
Unknowns 

In (5.44) was demonstrated that the rank of the condition model is : 

in a closed polygon with n points, when there are 8n+ 1 observation 
variates according to (4.48). 

This means that there are 7n - 5 unknowns Y* : 

y"' ; d = 1 . ..-. 7" -5 

"unknowns" , see  ( ~ 1 . ~ 2 ) .  

The coordinates are 3n-7 S-coordinates in the (R)-system, in accordance 
with (4.35). They may be introduced in observation equations by means of 
the quaternions : 

- 4  - R  -R 
XI ,'fl , Z ;  : 3"-7 " S - c o o r d i n a t e s "  (means) 

The astronomical latitudes qi and differences in longitude A i k  are both 
observation variate and unknown. Together with the observation unknowns Bi , 
they constitute rotation quaternions p : r i 

CU - 5 -  

pri = PrL (er QP 7 'r ... i , Fi , ) 

n orientation unknowns , 
n latitude unknowns t 3 n - 1  (5.60) 

n - 1 longitude unknowns I 

The relation with the (R)-system is established by the basis transformation 
pRr ; see (4.391 : 

According to (1.321, here one component depends on the three others ; let : 

- 
XRr , 1 Rr , JRr , k : 4 u n k n o w n s  (means) 



- 
The length factors rik are quotients of the instrumental length units, 
see (2.13) : 

- - = & = length unit icl Pk 2 ik 
2 ;  length unit  in P; 

N 
Xik : h-I unknowns. (means) 

According to (5.591, (5.601, (5.61) and (5.62) there is therefore a total 
number of : 

(5.5) 3n - 7 
(5.60) 3n - 1 

(5.61 4 

(5.62) n - l  

7n - 5 unknowns 

5.6.2 
Observation equations. 

Distance measures, directions and zenith angles occur jointly per measured 
side of a network in the vector quaternion : 

For each network sjde we can now establish an equation in which the obser- 
vation variates - X and the unknowns yd - occur together : 

or, bringing all factors with yd-quantities in the right-hand member : 

(5.64) 

The i, j and k-components of the left-hand member are functions of the three 
observation variates sik ,r ik  , 3 i 4  ; see (5.63). In order to obtain obser- 
vation equations for these observation variates, we solve these as follows : 

According to (5.5) approximate values X i  can now be computed from approxi- 
mate valuesy: via (5.64) and (5.65). 
Observation equations (5.7) are obtained by differentiating (5.64) and (5.65). 



(5.65) gives, a f t e r  substitution of polar coordinates in the coefficients 
and w h i l s t  adding Sc { A q .  = 0 : ( i n  the l e f t  hand member ~ k = ~ i k + g  , e t c . )  - lk 

The difference equation of (5.64) reads : 

1 -1 -1 (R) +- 
Atrhri 'ri P*., kq i k  PR,. Pri . 

In isomorphic matrices t h i s  reads : 

Here : 

Suppose : = (Tkr) 

(5.61) furnishes : 

0 0 0 

2 
( ~ 1 ~ 1 ~ ~  = 1 

s2R, + 'Rr k*r  JRr -'Rr JRw + TRv 

-S*r L -I- I& Xr sZ, + J : ~  ' ~ r ' ~ r  +JRr kRr 

ar 
\ 'fiJRr +'Rr 'Rr -SRrlRr+hr 'ir + 



The substitution of (5.671, add (5.68) in the right-hand member of (5.66) 
now gives the observation equations : 

This is the most general form of observation equations for distancs measures, 
directions and zenith angles. 

I + - 
h?rJri sik 

Furthermore : sikis the length of the side Pipk in the R-system, 
to be designated by : 

o cnr&3 & r h 3  -hj 

o &&L tor 
A 3  &J 

,o ~ r - 3  &r-J &3 

We shall now work out (5.69) for the case in which the unit vectorsof the 
(R)-system are parallel to those of the (r)-system, thus for approximate 
values : 

so = l .  

l 
iR/ /  iR 

Rr , jR//jR 

I;, = J;, = k; = 0 . kR// kR 

XSfr = 1 -f lahgth unit (R) r l e n g t h  u n i t  ( P ) .  

Then (5.68) becomes : 



Assume further : 

S y m b o l i c  notatioh fo r  (1.72) ; 

A,o,c, D, €,F, G, H ,  I c o n s t i t u t e  

an o r t h o ~ o n a l  m a t r i x  

According t o  (3 .7  1,  the  terms with ( p - ' ~  - can be expressed i n  d i f f e -  
* - 

rences =,, AA, , ~b,...., Lcpi and A*i. 
Subst i tut ion  o f  (5 .701,  (5 .711,  ( 5 . 7 2 )  and ( 3 . 7 )  i n  (5 .69 )  now g i v e s  the 
observation equations : 

g., .. 2[--'--5 A - f i r - 3  D - G GXI + &S n;-3  l 
+( ,B B -  .. E - H] + 

2 .. C -  .. T - L ] A ~ , ~ +  

- & ' - A + S D  +$ L,, h 3  1 -3 



Observation equations for astronomical observation variates 

Astronomical latitudes occur both as observation variateand as unknown. 
The observation equations are : 

Of all astronomical longitudes (unknowns) one may be chosen, X,,because 
longitudes only occur as difference quantities. 
The observation equations are : 

o r :  =gk ( i ~ ~ ~ = h ; ) .  

or:  = -AA; (if AD =hk) .  

An observation equation for the azimuth is obtained from (4.8) : 

- 
d a b  - k r a b  + e a  

We now substitute the observation equation for ~r see (5.74) : -ab9 

A r a b  = . . . .. . . - ~e + . . . . . . - . . . . 
-a 

hence : 

A?~, = ,he observation y u s t i o n  of' &rab , t h e  term -ea exercludedj 

5.6.3 
Networks with ~arallel k-vectors. 

Subsequehtly we work out (5.69) for a network with parallel k-unit vectors, 
as described in section 4.2.3. This means : 



t h e n  : 

/ '  0 0 

Thus i n  t h e  fo rmulae  (5 .72)  etc. 

Fur thermore ; see f i g  44 : 

car C\ -&rB = ch[qk+ei-er]  = 

and : m r  B - & r A  = A y n ,  

i n  which tYikis t h e  Itargument" r e l a t i v e  t o  t h e  i - u n i t  v e c t o r  o f  t h e  ( R ) -  
sys tem.  
With t h i s ,  t h e  o b s e r v a t i o n  e q u a t i o n s  become : 



Remark : 
In these observation equations a l l  k-vectors are parallel ! 





Appendix -------- -------- 
1. Coefficients of Maand Lra.. in orientations A!+ . 
The first orientation is : l I l N 

Other orientations are computed via the sides \ ! 
of the network, as a function of observation 
variates ; see (3.30) : 

(b') - 4  

Ylpbh q a b  fb la j  - p j + r ) .  
[h'] - i  - 

V i { E b h  %k. pia 1 ";Yia La t, 
See (3.40) : \ 

in which, see (3.11) : I 

In (3.15) it is shown, that in this formula the coefficients of@,and 
are equal. This means, that also inA&these difference quantities have 
equal coefficients ; suppose : 

Via the next networkside, PbPc, we obtain in a similar way : 

- t,, [n_e,+4rbe] + t l L ~ q  + - - . - .  o k h e r t e r m ~ - - - - - -  - - b 

tcb fba [ga + htab] + tcb &rbc + . ... o t k e r  terms . .. . 

and via Papd : 

= tdp[Aea + za,] + . . . . o t h e r  t e r m s  . - - . . 

2. Coefficients O ~ A ~ ~  andhra. in zero-mean variate Yik . 
We consider the zero-mean variate : 

(rj There will occur three orientations in V -ik ' 



Suppose : (symbolic notation) 

There has to be made a distinction between several different situations : 

I P. is not P and Pk is not Pa ; 
1 a n 

er , ei and ek via rab 

NOW 1;;' becomes : U 

pc "k 
(F) 4 Vik = V. ae +v: a _ ~ ;  +v;: er + v l L  e, + . - - o k h e r t e n * s . - .  = - rk - r  

11 Idem, but : 0 via Pc, Pd . 

Now becomes : 

- becomes : NOW lik = Iab 

IV P i s  Pa ; Pk Pc 

(r) - 
Now Iik = V becomes : --ac 

(v) 1 f Pc 
vie = v:, + v,: [o_ea+a_rac] +VCOL er + v: &e + . . .. . = - C 



C o n c l u s i o n  : 

(r) I n  a l l  d i f f e r e n t  p o s i t i o n s  of  t h e  zero-mean v a r i a t e  V w i t h  r e s p e c t  to  Pa 
and P , t h e  c o e f f i c i e n t  of &,is e q u a l  t o  t h e  sum of-ik t h e  c o e f f i c i e n t s  
of a l l  d i r e c t i o n s  i n  Pa, o c c u r r i n g  i n  V lr' 

- ik 
(r 

= Ub crab + 0 bra= + O &Pae + icb + . - .  ..  &er terms . . . .  

or  : 
= u b  &cb + M, ~5~ + U e  &rae + [ u ~ + u ~ + u ~ J  eA + . - . .  othc* terms . . .  

i n  a c l o s e d  polygon.  - 
We now c o n s i d e r  t h e  c l o s e d  po lygon  P P P P P , w i t h  t h e  zero-mean 
v a r i a t e  : 1 2 3 4 n  

(r) 0-1 ('-1 ( V )  (r) (kl , 

?,-.-m = ~ ~ q l z  + 3 2 3  + y3+ + + y,, 
( r )  . I n t r o d u c t i o n  of a s y m b o l i c  n o t a t i o n  for Aqik . n - r 

('-1 f 2 9 ik = faAI  + A & ~ ~ J  + wil. er + wik gr + W; + 

I n  t h e  ne twork  shown i n  f i g u r e ,  w i t h  P,= P3, t h e  c o e f f i c i e n t s  o f A 8 , a n d  - 
&rat , A-ra4 become : 

F o r  t h i s  zero-mean v a r i a t e  t h e  same c o n c l u s i o n  may b e  drawn : 

('-1 
W ,.-, = C( I tra, + U~ &c4 + [U, +U,] ~2~ + . . . other t e r m s  . . .. . . - 

4. The c o n d i t i o n  e a u a t i o n s .  

We w i l l  now p r o v e ,  t h a t  a l l  c o n d i t i o n  e q u a t i o n s  men t ioned  i n  c h a p t e r  5 
are composed from zero-mean v a r i a t e s  and  wtr) : 

- i k  -l.. .n 



Polygon c o n d i t i o n  : 

From (5.25) it becomes a p p a r e n t  t h a t ,  by s p l i t t i n g  up t h e  A I - q u a n t i t i e s ,  
t h e  polygon c o n d i t i o n  r e a d s  : 

Network c o n d i t i o n  : 

From (5.36) it becomes a p p a r e n t  t h a t  t h i s  also a p p l i e s  t o  t h e  s o - c a l l e d  
llb-termsv1 of t h e  c o o r d i n a t e  c o n d i t i o n  ; i n  t h e  1ia-termst9, however, t h e  
terms &q ,,-, ,n must be  r e p l a c e d  by -Aq, ,,,, i n  o r d e r  t o  r e a c h  s i m i -  
l a r i t y  between t h e  a-terms and - W1 
t h e  a-terms of (5.36) : ... n 

t h e r e f o r e  also t h e  a-terzns of t h e  c o o r d i n a t e  c o n d i t i o n  are composed of 
zero q u a n t i t i e s  o f  t h e  t y p e s  - V and - W. 

From (5.39) it becomes a p p a r e n t  t h a t  t h e  d i f f e r e n c e s g a ,  &rai d o  o c c u r  
i n  t h e  A-condi t ion v i a  : 

r 
1- theA-Zik- q u a n t i t i e s  ; t h e s e  are o f  t h e  t y p e  xik. 
2- t h e  0 r i e n t a t i o n A 8 ~  - ; t h e  latter is : 

%g; = t i  [ P ]  + . . . . other terms . . . . . 

R-condi t ion : 

I n  t h e  R-condi t ion n e i t h e r  d i r e c t i o n s  i n  Pa, n o r  0_8, o c c u r ,  because  
(5.27' f u l f i l 1 5  3.1.2.1. 



Conclusion : 

All types of condition equations are composed of zero-mean variates of the 
types l i k  and #, ..,..n j therefore the coefficient of ~ 2 a  equals the sum of 
the coefficients of all directions in P , occurring in that condition, a 
equation : 

+ . . . all other k r m s  . 

Remark : U:. . .up can be = 0, but at least one of them # 0 in every n 
condition equation N, V, Z and A .  
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