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Chapter 0.

INTRODUCTION.

In this study a functional model for the adjustment of spatial geodetic net=~
works is described. The model can be used both for terrestrial first order
networks including astronomical observation variates and for engineering
surveys, e.g. for the measurement of deformations, or for setting out high
structures.

0.1 Starting points.

In this study, the use of quaternion algebra for the formulation of spatial
functional relations and difference equations is of vital importance [14] .
This choice is based on the historical background of the theory, and, in
particular, on the way in which it could be linked with the methodological
starting points formulated by W. Baarda within the scope of his two-dimen-
sional polygon theory in the complex plane [2].

These starting points are used in the preceding theory and may be shortly

summarized as follows :

=-An exclusive use is made of operationally defined coordinate systems, or,
in W. Baarda's terminology : S-coordinate systems [3].

-Observation variates are put together in so-called "form quantities",
because the definition of a coordinate system has to be based on variables
that are invariant in similarity-transformations. This means the use of
distance-ratios, which requires an algebraic system in which division
is defined.

-The model may not contain assumptions or artificial structures (e.g. an
ellipsoid) necessitating "model-corrections" of observation variates.

-The adjustment model is set up primarily according to the method of
condition equations, i.e. the "standard problem I" in J.M. Tienstra's
terminology. It is true that the method of observation equations (standard
problem II) is much more usual in international literature, but it is
considered to be less satisfactory for the present theoretical investi-
gation, because of the sometimes vague definition of unknown variates, the
unsystematic way of introducing approximate values, and the greater risk of
singularities slipping in [4].

In view of these starting points, quaternion algebra proves to be a magni-

ficent and efficacious and indispensable tool. For vectors whose dimension

is more than two, it is the only associative algebra in which division is

defined and in which there are no zero-divisors (contrary to vector calculus).

It is true that the use of quaternion algebra for our purpose gives rise to
some problems, but these are limited to the practical elaboration of the
system of formulae :
-Because of the absence of the commutative property of multiplication,
the formulae generally contain one extra factor (the relations themselves)
or one extra term (the difference equations) in comparison with analogue
formulae in the two-dimensional theory; for example, consider the trans-
formation of system i to system r :



(o) ) -t
Q=2 P9 Pr

(49] () = (r) (r) -1 W)y -4

PN = .

q q A&)n-f— (ap.p )rlc’ -9 (ap-F )ri+>\rf— Pre 29 P

~The vectors described are three~dimensional, the spatial rotation has three
independent parameters, however, quaternions have four components (with
basis-units 1, i, jJ, k). This means that the first component of a quater-
nion is equal to zero, if the quaternion represents a vector :

Au=0+1x, +jy, +k z, (vector)

Chapter 3 shows that in dimensionless difference quantities (in which all
four components 320 !) there is, both for observation variates and coordi-
nate quantities a linear dependence between the components of the relative
difference~variate :

<°|-A°| )‘Lk
For the rotation-quaternion :
Pri = d.+la, +] 6. +ke.

in which all four components =0, the situation is even slightly more com-
plicated. This is discussed in Chapter 1.

-In quaternion algebra, there is no complete "function theory", as is the
case with complex numbers. Quaternion functions cannot be integrated, though
they can be differentiated. This is sufficient for the purpose of this
study.

In addition to the theoretical considerations concerning the choice of
quaternion algebra, it is of great importance that here we have an elegant
methodical structure for geodetic methods in all three dimensions : one-
dimensional levelling, two-dimensional "plane surveying" and three-~dimen-

sional first order networks and networks for the construction of high buildings.

In [3] it has already been shown that a one-dimensional network is a "special
case" of a two-dimensional network, as far as the structure of the adjust-
ment model, and especially the description of the precision, are concerned.

In the present study (see Chapter 4) it is shown that the two-dimensional
structure is, in turn, a special case of the three-dimensional one. This
uniformity of structure means that the overall system developed by the

"Delft school" for the description of stochastic aspects is universally
applicable to three-dimensional problems {internal and external reliability ;
S-transformations and criterion matrices; the X-theory [5] , [6] , [3] , [7].

0.2 Historical background of the theory.

As early as 1960, hence a considerable time before the finalisation of the
theory pertaining to the "polygon theory in the complex plane", Baarda con-
cluded that quaternion algebra would be the most appropriate tool for the



function model of three-dimensional polygon networks . Furthermore, he made

an initial exploration of the practical elaboration [8] ; in these manus-

cripts some cardinal pcints of the system of formulae are solved, such as

the use of isomorphy between quaternions and matrices, the definition of a

spatial analogue for the two-dimensional 1T -quantity, and, closely connected

with it, the three-~dimensional coordinate condition and its difference
equation. Rotations are also briefly described: this aspect was worked out
by E.Vermaat some years later [23] . In his graduation paper the present
author worked out these studies to a provisional termination [18] . The
model described there displays a number of "grey" spots: for example, the
linear dependences within the condition model have not been cbtained

from algebraic analysis, but from computer-aided determination of the rank of

matrices. Furthermore, the interpretation of a number of concepts and

auxiliary quantities is "geometric" rather than "algebraic" in nature.

The gravest shortcoming was the total absence of the transfer to S-coordi-

nates. In the period elapsed since then, the theory has been completed and

perfected. The main points studied were :

-the transfer to S~coordinates after adjustment by the method of condition
equations, and the links between the transformation designed for this pur-
pose and the general three-dimensional S-transformation, developed in the
same period by W. Baarda and later by M. Molenaar [j?] .

-the analysis of the linear dependen&es in the condition model.

~the analysis of the special position accorded to the first azimuth (see
section 4.2).

As time went by, the progress of the investigation was slowed down more and

more by the exigencies of the author's daily work, where he was, at first,

mainly occupied with the implementation of the two-dimensional polygon
theory, as developed by Baarda, in cartographic measurements and in engi-
neering survey networks. Nevertheless, this practical environment and the
study in the three-dimensional theory have had positive effects on each
other. For example, there turned out to be a strong similarity between, on
the one hand, the way in which horizontal orientation unknowns €; in networks
with non-parallel first axes are transferred via observation variates from
one side of the network to the next :

& =A,-r,

6, = 9(9,,"”_,‘5,1,4’1 7%11"”1)""-24
6, = 9(91. > 230 32 ,@11%73, (PS)—rM. :

etc. (see 3.30 and 3.40).

On the other hand, the way in which the initial arguments (; of interlinked
alignment elements (i) of a track depends upon the initial argument (p and
the angles ( of alignment elements : A

&, = (PA
@2 = CP1 + ¢ (-“- F:') )
fs = @t O (o pir )
etc.j
(Pi : parameters of the alignment element i, etc;
® = 0 for straight element)



The recognition of this agreement led, in 1974, to the development of an
original practical algorithm for the automated solution of alignment
equations from conditions, such as the constraint condition [19] .

In addition, a profound study in the years 1977-1978, leading to a geo-
detic system for the control of automatic track maintenance machines,
clearly showed that particularly the theory of the S-transformations is
indispensable in the formulation of purpose dependent standards for
practical geodetic activities [20] .

This example refers to the complex plane; as soon as a three-dimensional
measuring process 1s used in the case of setting out, or deformation-measure-
ments of high civil engineering structures the same applies there, and a
good functional model is indispensable.

0.3 Practical applications.

The model described here is the missing link in an operational theory for
terrestrial-geodetic networks. Here, we must make a distinction between two
fields of application, each with its own theoretical and practical problems:
the first order geodetic networks (slightly inclined "plane" networks of
which the points are more than 10 km spaced apart, and with astronomical
orientation of local systems) and the networks for the determination of
deformation and for setting out of high buildings and bridges (small net-
works with great differences in height; the direction of the local gravity
and thus the first axis of the theodolite are considered to be parallel).
The problems involved in the conventional procedures in the first order
networks are clearly outlined in some papers by W. Baarda [9] : the necessary
corrections of observation variates; the regional adaptation of ellipsoids;
the units of length, which cannot be equal to the instrumental units of
length; the problems encountered during the connection of these networks;
the vague determination of the third dimension and the inaccurate definition
of the so-called Laplace equation.

It would seem possible to solve part of these problems by the addition of
zenith angles and the determination of longitude and latitude in all (or
most of the) stations, and also by the measurement of distances; in accor-
dance with this procedure some test networks have been measured since
1965, particularly in mountainous areas in Germany and Switzerland [22],
[21], Da2].

However, with regard to these test networks, it becomes apparent from
publications that the procedure chosen does not comply with the starting
points formulated in this introduction: the adjustment is not done in a
"S-system",only the method of observation equations is used, and the use of
distance ratios is left out of consideration altogether.

Regarding the second field of application, that of small networks for civil
engineering problems, only a small number of publications is available. This
may well be caused by the fact that in practical geodesy, confronted with
"spatial objects", no three-dimensional measurement procedure is chosen, (one
might choose spatial radius vectors, possibly supplemented by measurement of
some height-differences per floor or storey), but the problem is split up
into a two-dimensional procedure for the planimetry and a one-dimensional
procedure for the differences in height. This may lead to very complicated
problems in the implementation of the measurements, the horizontal position



of the higher storeys being defined very poorly. An example illustrating
this is described in [11] .

0.4 Suggestions for further research.

This study only covers the description of a functional model for three-
dimensional terrestrial networks, in which optional astronomigal obser-
vation variates are admitted.

Further studies, focused on practical applications are required on, inter
alia, the following problems :

0.4.1.

After the model has been programmed, it will be possible, with the aid of
other computer programs of the Department of Geodesy of the Delft University
of Technology, designated by the collective name SCAN, to study the optimal
construction of networks for the two fields of application.

0.4.2.

The interaction between zenith angles and the astronomical observation
variates and also the effects of all these observation variates on precision
and on the internal and external reliability.

0.4.3.

What is the relation between vertical refraction and the so-called Z-condi-
tions in the sides of the network, arising from the direct and reverse
measurement of zenith angles ?

(see also [13], [10], [1] for the problems encountered in measuring zenith
angles).

0.4.4,

In chapter 2.3 is suggested, to choose a measuring procedure in which astro-
nomical longitudes (and possibly latitudes) are measured simultaneously in
each pair of stations, in order to eliminate the influence of star coordi-
nates and polar motion, and to reduce the influence of time. This has to be
elaborated further, both practically and theoretically.

0.4.5,

In "engineering survey networks", the direction of the vertical (the first
axis of the theodolite) is not determined by astronomical observations.

In which cases it is to be preferred to introduce two unknowns for the
direction of the vertical in every networkpoint; in which cases is it
possible to start from the assumption that these are all parallel to each
other ? How should the network be designed in these various situations ?

In all these problems, the purpose of the network, and especially the ques-
tion whether the "vertical component" (perpendicular to the earth surface)
is by itself significant or only serves to improve the "horizontal com-
ponent", play an important role.

0.5 Guide lines for the reader.

In Chapter 1 the algebraic apparatus is described : arithmetic procedures;
the geometrical interpretation; rotations, difference equations and iso-
morphic matrices.

In Chapter 2 the introduction of terrestrial and geodetic-astronomical



observation variates is described.

In Chapter 3 the fundamental quantities described in Chapter 2, are linked
to more complex structures: successive rotations, vector rotations.
Subsequently, the first linear dependency is derived and inverse functions
are established (differences of observation variates, expressed in differen-
ces of coordinate quantities). Finally the transfer of orientation unknowns
©; 1is discussed, and, simultaneously, that of the length factors.

Chapter 4 deals with three important differences between the three-dimen-
sional and the two-dimensional model; these differences are caused by the
fact that the quaternion quotient :

-
Fic = 9 94

is not fully invariant in similarity transformations, contrary to the
analogue quantity :

_ Aoz

ZLJ'

in the two-dimensional model. The differences referred to concern :

-The role of the orientation unknowns and the first azimuth.

-The fact that the relations must be established in one of the local systems,
and the effects thereof on estimators and weight coefficients of obser-
vation variates.

-The introduction of S-coordinates by the inclusion of the stochastic "basis
transformation" pg, ; Ar,

When using the adjustment method of condition equations, this transformation
if ?ntered in the formula by which, aftfr adjustment, coordinate quantities
are computed from the estimators X~ of observation variates :

aTtr

—_Jji

R) - r -~
q = bﬂrrﬂr i _E'Rr

with @
i(k) "S- coordinates”
ﬂ(")=q(. X, )
pe = N (oo Xion)
Pae = Pr. (0 Xi0)-

When using the method of observation equations, the basis transformation,
in the form of four unknowns, is entered in the correction equations.

Regarding this chapter, the method of observation equations seems to be

less sensible for these complications, so it may be once more concluded that
this method is theoretically weaker than the method of condition equations,
because it may be applied on the basis of a much more superficial analysis,
thus involving the risk that the model is incomplete or incorrect.

This chapter also considers the numbers of quantities and condition equations
in the adjustment model for a closed polygon.

Finally in Chapter 5 the condition model is given, starting from W. Baarda's
theory for the complex plane and building on the conclusions in the Chapters
3 and 4. It becomes apparent that the structure remains strongly affiliated



with that in the complex plane, be it that there are more types of obser-
vation variates and more types of conditions in it and that the relations
between the conditions are considerably more complicated. Finally, the

correction equations for the adjustment model of observation equations are
established.



Chapter 1

QUATERNION ALGEBRA.

1.1 Units and definitions.

Quaternion algebra was formulated about 1843 by W.R.Hamiltonljh]_
It is a hypercomplex algebra with four base elements

1,4, 4, k.

As in algebra with complex numbers, the following applies :

(1.1)

The scalar unit 1 is an inactive operand in multiplications by the
three others :

1L=11=1

i

(1.2)
1J'=j1 =j

1k = ki =k

The three "imaginary" units generate each other in accordance with cyclic
multiplication rules :

L=k

(1.3%)

jk =L
ki ]

They are non-commutative :
ji=-k
kj -t (1.3%)
itk =-j

A quaternion(k has four base components, e.g. Ww, x, Yy and z :
(;7=W+Lx+j\d+kz (1.4)



We introduce the following terms and notations :

-the scalar part of Q : Sc{Q}=w
-the vector part of Q : Vc {Q{ = ix+jy+kz
-the i-component of Q : Vi {Qj =X (1.5)
-the j-component of Q : Vj{Qj =¥
-the k-component of Q : Vk {Q}{ = 22 5 2 >
-the norm of Q : N {Q} = wa+x"+y +2 —> (1.6)
Hence :
&= Se (@] +Vei&] =
= Se {@} +iVi{&}+j Vj{&] +k Vki®]. (1.7)

1.2 Addition, subtraction, multiplication and division.

We consider two quaternions :
CY|=W|+£x,+jl31+k z,
@, = Wo+Lx,+jYy, +k z,
The sum and the difference of (¢, and qu are then defined as :
Ga+ Gy = wy+w, + L[e+x,]+] [oetue] + k (20+2,] -
(8, -Gy = wimwy + E -] + ] [94-4] + K [20-2.] -
Multiplication by a scalar a gives :
al, = aw +lax,+jay, +kaz,.

Applying the rules of multiplication (1.1), (1.2) and (1.3), the product of
(3, and (p, becomes :

@1&1 = WW, -3, -4y, - 2,2, +
+L[ W, +x,w, + %«17_-2“31_] +
+j [ Wi Yo+ YWy + 2 xL_y,z,L] +
+|.<[w,z7_+z1w1+y,tj1_«3,7¢z] (1.8)

Now it becomes directly apparent that the product is non-commutative :

@.Q, + G, &, .



However, the following still applies :
SC—{QZQZH = Sc{&, @1 (1.9)

The product is commutative, if the vector components of 571 and @2 are
"parallel", or if :
(with a and b being scalars)

a Ve{Gl+6Vel@,| =0 than: & & =6 G, (1.10)
We define the "conjugate" of 6 as :

&7 Sc{&y - Ve (&) (1.11)
therefore :

&) =& (1.12)
It also follows from (1.8) 3

(@.%,) = &T &7 (1.13)

Further, see (1.5) and (1.6)

b GT = &G =[Se{Gy+Ve|GY][Se(&]-Ve(&]] =
= sG] - Vet (&) =

2 7 2
= Wi+ x"+4y +2 =

- Ni&} . (1.14)

This means :

G&" _ GG
NGl N &Y

= 1.

so, by definition, the inverse of { reads :

G- C L, & &,

N{%)
(1.15)
or :
-9 1 . .
G = g LY o k]
Remark :

Because of (1.6), it follows from N {{f} = O that [Q = 0; therefore the inverse
of (7 is always defined, except when (& = 0.
Consequently, in quaternion algebra there occur no zero divisors.

10



Because furthermore, with (1.15) :

[ |
@1 &26?7—&1 =1
the following applies by definition :
-1 - -1
5, G =[66&]" (1.16)
This can be extended to products with more than two factors ; suppose :
R=48.&,
then, with (1.16) :
= |
R = {la&]g] =
- &' [5%]" -
-G, @' & (1.17)

1.3 A geometrical interpretation of quaternions.

The imaginary units i, j and k may be regarded as unit vectors in R3, com-
posing together a right-handed trirectangular trihedral (see fig.1)

Then a quaternion q with scalar part :
Sefqal=-c

becomes a vector in R3 :
o’=0+i)¢.+\j£{j+kz‘

From (1.6) it follows that :

\/N{q] =V x*eytazt =
=4y : Tlength” of q (1.18)

1.3.1
The geometrical significance of the quaternion quotient.

We consider two quaternions q1 and q2 whose scalar parts vanish
g, =0+ ix, +jy +kz,
q2=o+ixz+j5,‘_+kz,_

Then, according to (1.8) the product of q, and a, is :
9,9, = — ¥ -89, ~22, + 1[0z, -2,9,] +

+‘j[2‘x1—-k|22] + [y, - Y, ] =

1



[
= -X¥, ~Y,4,-2Z,2, +| % Y, Z, (1.19)
X, Yq Zgy

Because we consider x,, y., and z.,, respectively x_, Yo and z, as components
of two vectors in a rectangular cartesian coordinage system 1n R,, %the laws

of "vector analysis" can be applied to (1.19), so : 3’

"scalar product" :

x4)¢7_+3‘b7.+z’z7- = C’1.q2=‘€"€7- COS;(

"vector product" :
(1.20)

X, Y Z =q1xq1=§£,»&_ A A

Here &X is the angle between two vectors and e is the unit normal vector on
the plane through the two vectors, which, because the x-, y-, z-system is
a right-handed trihedral system, fits in with the sense of rotation of

a, to q,-

There are two possibilities : (see fig.2)

a : reversed sense of rotation q,~>9, *
e = e “upwards”
¥ =%

b : clock wise sense of rotation q=>q,
e=e "downwards” (et e®)

o =B(E= ZTI'_Gfa

fig.2

In view of (1.19) and (1.20), the product of q, and Q, is

qqqq_ = —/0,17_ Coa;fa+ ea,&»e,_ ME(“:
4,8, conit 4+ b U, s wE (1.21)

N{e“}=Nie£]= {.

12



According to (1.15) and (1.11) :

q-4= q;r = _q'Z
“ 7 N9l 44,

1

If, in (1.21) a, is replaced by q2- y (1.21) passes consequently into :

9 c]—1=_£‘_ Oc'oa(a_eaé_/&bk'éf“ (1.22)
4 A
/éq_ 'eq_

Here the length-ratio

V=£L
A

comes into play, consequently :
v =l b, b d,

We now follow the pattern of Baarda's "Polygon theory in the complex plane"
[2] and define the angle o in the horizontal plane as the difference of two
directions r :

0(:: f‘1—l"z

The angle X (in the plane of q, and q2) that fits with this choice is :

& = &%

Since the graduations of the horizontal circle of a theodolite are numbered
clockwise (seen from above), a positive rotation on this circle is right-
handed and fits in with e®. Replacing in (1.22)e? by e® one obtains :

9,9, =V o+ vk (1.23)
WI‘th V=%. 75(’.-‘6 r"-r;_.
2

The approximate equality for & in (1.23) is only valid when q1 and q, are
near-horizontal.

From (1.23) it becomes apparent that the four components of the quaternion
quotient q1q‘1 determine the shape of a triangle and also describe the
spatial position of the plane of that triangle;

Suppose :

-1
9,9, =D+iA+jB+kC

. - kX 2
€ = o+ln+jn,+kn, ; nirni+nd -

13



consequently :

A v
B X } the "shape" of the triangle
govern
C n,
D n3 } two out of the three components of the unitnormalvector

The computation rules for v, &, n, en n3 are :

2
v'==v/nz+-A1+-E34-CF

Cor & =2
v
If q, and q., lie approximately in the i-, j- plane of
the system of coordinates and e "points downwards"
(i.e. the theodolite is not upside down) the following
applies : (see fig. 4)

h3z+‘|

then « must be chosen such that :

k J
sign {4 & | = sign {C]
fig. &
"1 = A — > hl = B 3 1’1} = c
v 4. o VA VAo

1.3.2
Decomposition into orthogonal components.

We consider the quaternions :

q 95 Sefaj=o; Niqj=4,
.Q@ € ; Sci{ej=o0; Nie|=1
e
g According to (1.23) we obtain : (see fig. 5)
f -
fig.S eq 1=-%f-[c4=a'+ ﬁ,AL“E;] :

q
Here, f is the unit normal vector on the plane through e and q, so :

Nifj =15 Seiff=o ; > £'=-Ff
therefore :
[ea']”

eleq™]”

l% [condd _-P/¢a~a] >

e,,, [ecant - e{?/»&uaj =

=,&1[e &n&-fE{iL;ua] .

14



According to (1.23) :
1[’" ™ LT
€ =CrL +94al =
=%.

Here g is the unit normal vector on the plane through e and f, so g lies in
the plane of e and q (see fig. 6);

Consequently :
efeq'] = L[e cnm +g.4inu]

or :

eqe”=pé[ecna+94w3]

is the "mirror image” of q (1.24)
in relation to e

Remark : eqe-1—_= e-1qe
This means : (see fig. 7)

‘/7_,:0' _e_lq e]; is the component of q

j - ' 'perpendiaular- to e (1.25)
q = l/z[q + e‘qe]: 18 the COMPOhehb O'F q

Farallel to e
Remark :

Instead of the unit normal vector e used here,
a vector d with N{d} s 1 can also be used in
(1.24) and (1.25).

1.3.3

Rotations.

We wish to rotate a quaternion (vector) q with Sq {q} = 0 over an angle e
about an axis (vector) e ; 8 is a right-handed rotation with respect to e.

20 Assume : (see fig.8)

qr is the vector after rotation
q' is the component of q 1 e
q" is the component of q"l e

From (1.25) it follows that :

q'=h[q-eqe] (1.26)
f‘ 8 ! r - r
'9 q':‘/g_[q_e/'q e:[ (1.27)

1 ] "
According to (1.23) and because N {q }: N{q}, so v=1, it applies that :

15



i -1
q cf = Co> 8 + € .din e

v

al” =[Co:>9 + e//uluejq'

We substitute (1.26) in the right-hand member and (1.27) in the left-hand
member of this equation :

'/,_[c,"-e"q"e] =[we+eMe]'/7_[o,-ef’a’ e:} I

The components of q and qr parallel to e are equal to each other; therefore,
see(1.25) :

Wla +€'ae] =y [q+eqe] T
The addition of the equations I and II now leads to :
q =[crue+edinye] g [onye-esinye] I

Now assume that the "rotation quaternion" p is defined as :

P =cmje + e s j6 (1.28)

then III becomes the general rotation formula of quaternion algebra :

q9=P9p (1.29)

Two important properties apply here :
N{q™} =N{qj.
Sc{o!"} =Sc{c’l.

In (1.29) the norm of a rotation quaternion need not equal unity. To show
this, let h be a scalar, let N {p} = 1 and define :

(1.30)

.‘I¢1 1
P 17;P
9" =FqF =
=FaF

(1.31)

From the derivation of the rotation quaternion it follows that the four
components comply with the following "form-rule" :

16



p=A[d+isa +jsE+k.sc]
with : al+ 824 2y, I (1.32)
dz+AZ=1 g

This will prove important for the differentiation of rotation quaternions,
because also

P+ ap

must of course comply with (1.32).

The expression (1.29) can also be used for the description of a rotation
of the coordinate system over an angle & about an axis e :

[Li) Ji, ki:J —:—)[;Z,Jz, kl:l

A rotation of the coordinate system over an angle © about an axis e is, in
fact, equivalent to the rotation of the vectors over -0 about e, so, with
the following rotation quaternion :

p=co Yo —e 4in Y 6 (13?)
Let the vector q be described on two different
systems (1) and (2) : (see fig. 9)

‘1(1):‘ W‘-i- L‘ ! 4‘_5":)‘ + k' 2!

q(z)_-_ wla %k 4+ j7_57_ + k* z?%

fig.9

Then, introducing the notation p=p,,; for the rotation quaternion transfor-
ming q*’ intos q‘* , the rotation formula is :

(2) o -
9 = Py a,‘ Py (1.33)

with: p, = col & —~eAin Y B

The coordinate system rotates about e; therefore :

eW_e®

which means that the rotation quaternion p 1 itself is invariant relative
to the rotation of system (1) to system (2?. This also becomes apparent from :

O (2)
P’“P'l‘l Por =Py =

= Pay (1.34)

And, since from the definition of the rotation quaternion it directly
follows that

-1 -1
Pia = Poy 3 Pq_1=P°1q_ (1.35)

17



it also applies that :

-1

(2) -1 (2) -4
Pm_ Pza Pin = Pza Foi Py =

= Pl =
= Pyr . (1.36)
We can combine (1.34) and (1.36) to :
bar = For
P = o (1.37)

This implies that the components of a rotation quaternion apply to both
systems, whose rotation relative to each other is described by that quater-
nion,

1.3.4
Successive rotations.

On what system should the rotation quaternion be described in the case of
successive rotations of the system ?
We first consider two successive vector rotations of the vector q : (see

fig. 10)
g, 4 &> a-E>a

9,
The vectors 9, q and q, and the rotations p
and p are all deséribed gelative to the system:

q3 [L‘,J')k‘] )

Accordihg to (1.28) and (1.29) the rotation formulae are :

fig.10

First step : q:)_-_ 3 c,f” P }

- - = . - (1.38)
with: p=Ca 6 + & 4inl 6.

(1) =1

9a P
i o ) (1.39)
with: p=Coy 6 + &.4iny B :
Subsequently, we consider the two opposite rotations of the system :

[ ] [ 55w [ 5% k]

Now the following must apply :

Second step : ()
. =

-1

@) (1.40)

(3) (1)
9 =9, =19,

18



According to (1.33) the rotation formula for the first step reads :

(2) () -t
9, = P2 9y Py

- —~ W orz) - (1.41)
with b,y = cnlye_e A Y8 =
—
=P
Hence :
() -
94 =P 9, P (1.42)

Subsequently, for the second step :
(3) 2 -
9y = P32 94 Paa

In this formula, P13 is, however, according to (1.37), described on system

(2) or system (3):

(2) or (3)

Pio = Ps =
@)

= Poy Piy Pa

In this expression p32(1)

represents the opposite rotation of ;, 80 :

(4} = =
P., = Cn 8 -~ & 4in o =

=p - (1.43)
Therefore :
-1

..1___‘__ 2) _ _
' =F F P 9. F FF

~— e ————
From (1.42) it follows :
- () _- ()
Pq1P =q4

Hence :

@ o () =

99 =F P 9. PP (1.44)

To verify this result, we apply (1.42) to 9, instead of qq ¢
1 -t _

y -
9. =P 92 P 5
—-t_ -
by(1.38) : =p P94 P P =
_ )
=9 (1.45%)
and, subsequently (1.44) to 9 instead of q, :
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) -‘=-| (1) = _

C13 = F P C1$ P P 5
by (1.39) : =F " F =

by (1.38) : = 9, . (1.45°)

n

by (1.45%) and (1.45°), (1.40) has been verified.

Finally, we convert (1.44) to the form with system rotations instead of
vector rotations :

| (1) or(2)
(ut) s F o= pyy
- -t (2) or(3y
(tu2): p = Py, =
-1 (1)
= Py, ng_ Py

Substitution in (1.44) leads to :

-1 (z)-f

(3) 4 ) -
Qe = Pay Poy Py Paz Poy 91 Pay Pay Pag Roy =

@

() )y -1
= Pu P'u O,L P-u P:u_

In view of (1.37) this may be read as:

@) G @e®) M) mew” @ee
9 = Paa 24 i 24 32 ’

It being agreed that rotation quaternions are always described on one of
their own systems, the top-indices may be omitted; thus the general rotation
formula for system rotations becomes :

(3) wy -t {(1.46)
q; = Paz Poy T Pay By,
or, in view of (1.35) :
&) _ <) (1.47)

Q. = Pzz Pz« A Pra st

1.4 Differentiation of quaternions.
1.4.1
The difference quantities of quaternion functions,
We consider the quaternion & :

(p= wrix+rjy+kz (1.48)
Suppose the components w, x, y and z are functions of (scalar) quantities
a, @

i
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Y=y (o an ) (1.49)
z =2(--sa ).
so that :
=W(oa,, ) +ix(nag, )+ jylsan)+kz(oa, ). (1.50)

The introduction of the difference quantities A a, then leads to the
difference quantity A(?of‘ the quaternion, accord}ng to :

@+A@ = w(,ai+aa;, )+ L (o, a+da; ,) + ete .

Expanding the four functions w, X, y and z in Taylor's series, and neglec-
ting terms of the second and higher orders, we obtain :

G+olg=w(ra,, )+L g:’ aa; +
. A ®
+L[>¢(-,al, )+£L 0_’; Aot.:]"f'
+j[5(..,aL,--.)+Z& Aazl-t-
+k[2(..,a“~.)+£®z Aa]

In view of (1.50) we thus obtain :

alp = Z’DW sa, +12 2 paa. +jL 25 aa, +292 Aa, (1.51)
?a, i Da, t 24, i pap

Subsequently, we consider the quaternion function R of several quaternions
p; :
R 3 R('..)@"’)-.-,)‘

The introduction of quaternion differences zﬁ@’, see (1.51), then leads to
the difference AR of a quaternion function :

R+aR =R (..., & +a&, ,..). (1.52)
In this formula, too, the right-hand member can be expanded in Taylor's

series. But, because of the non-commutativity of multiplication, it is
essential to take acount of the sequence of the factors.

R =£?1@7_
ReR = [+ a4,] [+ 06.] =
= 6{1@1"' LYA(?Z“' NG &G, o+
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The difference quantity of the inverse quaternion :

Let :
R =&
and :
R+ aR = [[?+A@7:|-’
so, multiplied by o+4& :

[R+aR][G+8F] =1.
hence :R& + R alp + aR & = 1.

-1

and, since R@=1 :
AR G = ~R ol = -G alp.

hence :
R = -6"56 &
or : 3 N )
A[G]) = -6 Ak & . (1.53)
1.4.2.

The difference quantity of rotation quaternions

We consider the rotation quaternion p for the system rotation; see (1.33) :
p = ceo %e -e Ll e
According to (1.52) :
Pt+ap = co Yy [6+2a6] - [e+ae] wivy, [0+26] (1.54)
Ifp= p12, the following applies in this expression :
e - e(i) or (1)
Of course this does not apply to the difference quantity A e; suppose :

Ae = ae (1.55)

is defined only on the (1)-system; then :

(2) @) - )
ae =p  ae Ry F o€

We will now consider the meaning of this for p + Ap ;3 p +ADp must comply
with the "form-rule" (1.32). This means :
I N{e+¢e} = 1.

I Co%2‘/,_[e+ae] +/M'«7"/L[9+Ae] =1

II has been complied with.
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e+Ae

Ae
I means, since N {e }: 1 fig 1
a
either : pe = 0 (1.567)
: de L N N (1.56°)
or : sele (N{se]« N{ey)

(1.56%) is complied with, if the axis of rotation is, for example , defined
as one of the three unit vectors of the system :

e =L or e=j or € =k

From section 2.3 it will become apparent that this situation applies to the
five steps into which an "astronomical' rotation is split up.

(1.56b) is complied with, if Sc {e Ae}—_— 0.

When : ez0O+ia+jb+kc,
this is the case if :

oan + B abh+cac =0
This is the case if ¢ is defined as a function of a and b :

Vi-at-g*

iAa—_’é_A‘g‘
[} c

c

n €

AC

This means that in a rotation quaternion, a maximum number of three inde-
pendent variables can occur :

the angle of rotation 6 and two out of three components of the axis of
rotation e. This is in agreement with the function of the rotation quaternion.
Further elaboration of (1.54), using :

co ) A6 = 1.
Adn Y 06 = Y ne
results in :
p+ap =Cn}®& ~Y LinYe ae —[e+se][rinyo+Ycoalo AG:’
Premultiplication by :
-1

P —_-m‘/le+e,<u'ml/7_e

then results in :

P_1AP =-, e se - LinY€cnle se - e ae Aty e . (1.57)

From this it becomes apparent that, if (1.56) has been fulfilled :

Sc[p”Ap}:—le/le .Sc{eAeg = 0 (1.58)
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This also applies to a rotation composed of several steps, for example :

|Qr-c = Pra Pa-@ P,ge

Then we obtain, according to (1.52), etc. :

APre= APy Pag Pae ¥ Pra ®Pag Pgc * Pra Pag 2P
Pre = Fae Pog Fro
Hence :
(For),e = Fgu Frg (F90), Pag ba + By (999, Pa+ (FR),
In this expression we find, according to (1.58) :
Sc{(Fap), .} = Se{(Fap),o} = Se{(Fap), ] = ©-

therefore, in view of (1.30b), it also applies that :

Se{(r'ap) .} =©- (1.59)

The structure of the quantity (p-1A.p) is discussed in greater detail in
section 2.3 ,

The coordinate system in which (p-1£sp) is defined.

In (1.55) it was already found that A e and therefore also Ap, in contrast
with p,1 are defined on one of the two systems; therefore this also applies
to {(p~'Aap) :

(r) or(a) (a)
-+

(P—’AP)"“ = co> ) [o+ae] +[e 7 ].—AM [o+ Ae:{m.—_
NG
=(F2p) N\, (1.60)

Now, by definition :

BEENG, . (@
(F4P)a = Pra (F2P) s Pra

hence :

- (r) WINGY
(F'ap),, = (ap ¥')

ra

(1.61)

ro

If p is of the type (1.56%), i.e. Ae =0 :
Velp] = -e ain Y6,
Velapl = - & Yol e se.

so : (a is a scalar)

Vc{lo] =a\/c{ap] if ae=o0
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In view of (1.10) Ap and p are now indeed commutative 3
this means :

() (a) -1
AFT& = Pra APV‘(A P"ﬂ =
(a) —1
= APra Iora Prn\ ’
hence :
Apm = Ap(“) if sae =0
ra ra .

therefore also :

(P_'AP):: =(|oJAp)::) if ae =0 {1.62)

This formula too, will turn out to be important in section 2.3, where astro-
nomical rotations, for which Ae=0, are discussed.

1.5 Isomorphism with matrices.

In the manuscript [8] W. Baarda has already developed the basic thoughts

used in this section.

The partial isomorphism between quaternions and matrices of the order 4

discussed here is very important in two respects :

-It constitutes the basis for the application of the present theory by
means of computer programmes,

-The notation of quaternion equations, especially difference equations, in
isomorphic matrices is easier interpreted than the notation in quaternions;
this may be an advantage in the study of theory and in the analysis of
linear dependencies.

A matrix which is isomorphic with quaternions with respect to the quater-

nion-product, may be derived in a "natural way", i.e. directly from the

rules of multiplication (1.8).

We consider the quaternion product :

& =q,9, (1.63)

Q4 =w,+Llx, +jy +kz,.

qQy = w, +LX,+ J Yy, +kz,

G=W+iX+jY+kZ
The components W,X,Y,Z of the quaternion product & are composed according to
{1.8). On the basis of Baarda's idea, we now arrange these terms according to
the components of Q, and Q3 SO :

\A/:_- W, Wh =Xy %, ~Y 9, —-2,2, = Wy W = Xy —~ Y, Y, -2,2y-

X m X, W AW, Xy = Zy oY 2y = KWy o+ Wy %y +2, 9,9, 2)

Y

Yy Wy + 2, %, +W, 4,-3%,2, =Y, W, —2Z, %, + W, Yy + X, 2,

i

Z = 2y Wy m Yy X, XY, v W Z) = 2, W Y, X Yy +Wezy o
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This can be represented by matrices in the following two ways :

W /W4 =X, =Yy =2 W.z‘ Wo —=%g -Y%2 -Z, w,

X X, o wy =2 Yy X, X, W, 22 =Y |x,
Yy, 2z, W,  =x||Y ) Y, -2, Wo o, (|9 (1.64)

L Z \Zy Yy Xk, W, %2 Z, Yo X Wa “

To denote these matrices we choose :

_->
( ) for the column matrices

( ) for the square matrix, showing the original sequence (q1, q2)
( ) for the square matrix, showing the inverted sequence (qz, q1)

As basic letter we take, of course, the letter used as symbol for the
quaternions in (1.63); thus (1.64) will become :

(&) = (9,) (@) = (9) () ’ (1.65)

This can be extended to products of square matrices ;
from (1.64) it follows directly that :

(%) =(9)(q,) . aj. (1.66)
(@) =(§Q(€j' ©

Furthermore, it becomes directly apparent that both the matrix in (1. 662)
{(normal sequence) and that in (1. 66 ® ) (inverted sequence) can be applied for
the sum and the difference of quaternions.

Because of (1,15) the inverse of q, is :
-1

=.1 —-L —-. —
T " N [y =ixa=do, TZZ’J
The isomorphic matrix for q- can thus be obtained by inverting in (1.64)
the signs of the components x, y and z,and by leaving those of w unchanged.
In doing so, the transposed matrix is obtained !
Hence : (* transpose of matrix)

(a7")
97

=Nm (9)" 2 (1.67)
)
N{ } (9)" I

Furthermore, it now becomes apparent that :
4 0o O o

(o )(q (1.68)

1
o 0
[

O -~ 0O

2]
o
1

8]
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Through post-multiplication of (1.68) by the inverse matrix (q)-1, we obtain:

(q-l) =<q)_’ (1.69)

There are consequently two types of isomorphic matrices for quaternions,
viz. one for the normal sequence and one for the inverted sequence of the
factors of a quaternion product. This will prove to be very important,
because owing to this, the awkward non-commutativity can be avoided ; in
the column version (see 1.65}) of the matrix product the two types can, in
fact, be used in mixed form.

Let :
& =9,9.9;
then, according to (1.65) :
— -
(C?)":(q«)(olzJ("ls) =~ 3
but also : (notation : (q1q2) = (q1) (q2), etc.)
=> — —>
(&) = (@) (e,)(a) % > (1.70)
and also, see also (1.66b) :
> — - -— — —
(&) = (4295) () = (93 )(a)(ar) - ° y

Each of the factors of a quaternion product can therefore be entered as

last factor in the isomorphic matrix product. With reference to difference
equations, this affords the possibility of placing the difference quaternion
at the end.

Rotations.

The general rotation formula (1.33) :

() 1 -1
4°= o 9 Pl

therefore reads in isomorphic matrices : (see 1.66a)

(‘1(1)) = ( Pq.i) (OIU)) ( Py )*
Nip, j=1

Here, too, the sequence may be changed, by passing to the "column" version
(1.65); we place the factor q‘” at the end of the right hand member :

= — =
(q(z)) =(I°1.)*(I°2,)(°|“))- (1.71)
If here :

p=d+ia+jf+ke

al(')=w+tx+j5+l<z_

A =W+iX+jY +kZ
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this becomes, in accordance with (1.64) :

2} [¢]

w 1 o)
X A a®- 8L & —d ¥4 ”
_ o + < 2[-de+ad] 2[db+ace] ||, (1.72)
Y o 2[dc+ab] aAt-at+ 42 2[-da+bc] | |2
2z
Z

o 2 [-d@+ac] 9_[da +Qc,j| dz-al—/gi-f-ch
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Chapter 2

THE INTRODUCTION OF GEODETIC AND ASTRONOMICAL OBSERVATION VARIATES.

2.1 Introduction

In this section we shall consider how the geodetic and geodetic-astronomical
observation variates can be linked with the set of concepts developed in
Chapter 1.

The basic considerations are given in the present section ; it deals, in
particular, with the introduction of length units.

Starting from the formulation by Baarda [8], this is worked out, in
greater detail, in section 2.2 for the three types of "terrestrial" obser-
vation variates, which are combined for each side of a network Pipk in

the quaternion :

9k

and in section 2.3 for the astronomical
observation variates, with which, for
each couple of local systems (m) and
{n) a rotation quaternion :

(m) . Pum— (n) J
Prn K im ks n

is established.

The relation between the astronomical quantities "longitude™ A and "latitude" ¢
on the one hand and the zenith angle on the other is established by the
k-vectors of the local systems, to be defined as the direction of local
gravity, i.e. as "zero direction" for longitude, latitude and zenith angle.

The astronomical orientation unknowns (azimuth) and the terrestrial direc-
tions r are then defined in the plane of the i~ and j-vectors.

Rotations.

Let an orthogonal trihedral of unit vectors be defined in each station Pm :
i jm, kK, ¢ (m) -system (2.1)

These "local systems" can pass into each other through a rotation (simila-

rity transformation without translation and scale). We consider the ro-

tation of the (m)-system to the (n)-system, in the first place as vector
rotation of the unit vectors according to (1.28) and (1.29) :

(m)

Ln =p '.’:“) P_' (2.2)
- (m) CYRE

Jn =P J. Pk

k (m) _ k (G P——’
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with the rotation quaternion :
p—_-c«n'/zem+eh"{u'4. %enm (2.2')

Furtheron we shall use the system rotation according to (1.33); so :

« (m -1

n)
C[ = Pom q Prm (2.3)

with: p,,, = Co - enm/&'m % ©nm

Units of length

From (2.2) it follows that the "lengths" of the unit vectors of all systems
are equal to each other :

. {(m)
L
n

N{LT =N =1 ;5 ete.

L
m

"algebraic unit of length"

The way of introducing geometry thus means that the "algebraic" unit of
length (= 1length of the unit vectors) acts as unit of length of the com-
putation system. The question of its "magnitude" is, in principle, not im-
portant; on this subject, one could imagine the metre, or any other artifi-
cial unit. From section 4.2 it will appear that, for reasons connected with
computation, it will be wise to choose this unit such that the lengths of the
sides of the network in the computation system are of the order of magnitude
1. (For example, it is possible to choose a multiple of the metre, viz.

500 or 1.000 or 10.000 m.)

In addition, we must define an instrumental unit of length for each local
system. Though it will appear from section 2.2 that the computation model
may be established, using quotients of these instrumental units of length,
we shall explicitely define the relation between the instrumental units and
the algebraic unit by the quantities X, :

Amis the length(magnitude)of the instrumental unit of length of
the (m)-system, expressed in the algebraic unit (=length of the
unit vectors)

in im
H“;:/:j’Pmiii;jZE fig 12 (2.4)
S

e Am—>

From section 3.4 it will appear that the instrumental units of length must

be considered as derived variates. In section 4.4 they are linked, as a group,
to the length of one of the sides of the network P P , which, for this pur-
pose, is considered as non-stochastic and thus acts, in fact, as the
"absolute” unit of length for the network; this is an aspect of the theory

of the "S-transformations®" (Dutch : Schrankingstransformaties).

Summarizing, we may thus recognize three "types"™ of length units :
(see fig. 13)
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» n

—1

1. the "algebraic™ unit of length ; o

w-Y

an aid for computation, its magni- ' meter
tude being approximately equal to ; p— (14
the average lengths of the sides : r———iu————1
f metre. pi‘% —
L A . ]
Y !
2. The group of instrumental length J
units; stochastic realisations of p —z_k—!
the metre, therefore : ke
N o~
.éi aad /P pr
3. The "unit of the S-system";the "‘vﬁﬂﬁﬁ?;_§s
non-stochastic length of the fig 13 s P
) v .

side Prps

All notations of vectors, units of length and length factors used in the
following chapters are summarized in next scheme : (stochastic variates
are underlined)

Vectors 9 qu ] Units of length Length
—_ —
?‘Pi—opk o > all ;.,j 'k ’paohors
(i) s 7\ ' ( )
i i s e (2 im) _

Jdik 2k A T . =£=.§£ 5
o > X TR, T e
Qi 2 Sik A, =~ .%. r Y

- — — -
q'k )‘O.Z‘r: S °= i
— L #
=) -0
q ik [xrt+§'][§il(+ C]
(R) - o _
. AXNIX +£ S, +E&E = Sy
£ | 3Rliedd
(r) S. 1 T » N
‘i"‘ §r,-:§ T ?"\r.- [§rs+5 =3 «—  S-transformation

€ :adjustment corrections .

2.2 The terrestrial-geodetic observation variates.

Remark : In the following sections, the observation variables will always

be considered as stochastic variates and will therefore be underlined.

Definitions.

From station Pi’ the distances Sk to stations Pk are measured :

is the length of side Pipk expressed in the

34k

instrumental length unit Xi( Xi is approximately (2.5)
1 metre)
"distance measure”.
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By means of a theodolite established in P;, the two "polar coordinates"
of the spatial vector P; P, can be measured
the zenith angle'}‘ik and the direction_gik

ik 1s the angle between the vector P; P, and
e upward direction of the first axis of the (2.6)
theodolite set up in Pi 3

r;x is the angle between the zero direction of
the horizontal circle and the projection of the (2.7)
vector Pipk on the plane of that circle.

Since the first axis of the theodolite is perpendicular to the horizontal
circle, the local system (orthogonal trihedral i, j, k) can be defined by
linking it up as follows with the theodolite : (see fig. 14)

-the i-vector lies in the plane of the 3
horizontal circle, in the "zero direction” <:::::
-the k-vector lies in the part of the first ;
axis "pointing downwards"
_ kVﬂgﬂh
-the j-vector completes a right-handed
system i, j, k. .f (2.8)

By (1.18), the spatial vector P; P, can now be expressed as quaternion qik
with a scalar part = 0, by conversion of the rectangular coordinate
differences x, y, Z to polar coordinates s, r,gy

«) . . . . 5
Qe = O+ L 3 err, A" 3u+) §1km—cikm;§.;k— kélk i

=< ' (2.9)
VN{‘j(LL\:} =S

We can pass to the "algebraic" unit of length through multiplication by

3:1 ¢ (=approx. 1/f)

— () - 3 O —
Ak = >t 9 5 V’Y{ﬂikl = > Su (2.10)

The rotation to another local system (r) is made, using the rotation
quaternion P.; 3 See (2.3):

(o] — )y
Pri i P (2.11)

1-Q!
=
*

n

On the analogy of (2.10), we now pass to :

G = X, 9 (2.12)
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The substitution of (2.10) and (2.12) in (2.11) then gives the transfor-
mation between the two local systems (i) and (r) :

— 1

< ) ]
M Qi = O I P (2.12")

In order to obtain a more logical arrangement of the observation variates
on the one hand and the transformation variates on the other, we elaborate
this as follows :

"% @ -t
Qi = o Pri Fik fra

Finally, the introduction of the "length factor"

b

X o= (2.13)
n A

leads to the general transformation formula for local instrumental systems :

" < @) R

Tk =2 Pri Jue P (2.14)
is the vector P; i, described relative to the unit vectors
and the unit of length of the (r)-system

Remark : The algebraic unit of length is no longer involved here.

Subsequently, we consider, similar to Baarda, [8] the left-~division of two
vectors measured from Pi’ viz. P,P, and P,P,; see fig. 15 :

ik i3
@.ﬁj =q% g (2.15)
In view of (1.23) this is :
{?J(‘: = Vi [“"E"j;k + &5 M"‘Bﬂk]
with : v, =Sik (2.16)

Therefore, also the unit of length of the local (i)-system does not occur
in (2.15).

The variate Q;ix is therefore dimensionless, covering all the terrestrial
observation variates of station P; ; it describes the form of a triangle
P; P; B, and also the position of the spatial plane of that triangle relative
to the (i)-system.

The properties of Qjik thus agree, to a high extent, with those of the
TT-quantity in Baarda's polygon theory in the complex plane.

Difference quantities.

By means of (1.50 etc.), (2.9) can be differentiated to the three obser-

vation variates :
(i) . - . .
Aq_k =O+L[Cd>r/uxk'_sd__§—$/14mk‘/hﬁ~jé['+ S CanrcenT A'S] +
Y 'Y — ik

(2.17)

+j[Ainr AT 85 +S Cmr sn S AL + S AT g:lut-»

tk[-cn3 a5 + 5 sinx A_;]Lk
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Premultiplication by :

-1 ) . .. N
Yk = 0+-1s—[_t°‘”r%5“JA"’*"A"‘*3 +km3]ik

then gives the dimensionless variate :

(<)
(q_'iﬁ)“‘ _—___‘S_ AS +'L|:—c¢nrm-5¢c>j Ar — Adur A_:_S]Lk-l"

(2.18)
+ ][ -Adnrsingeny ar + Cor 9_3]“:—;—
+ k[ —ains é“r]Lk

In view of (1.64), the quantity (q-'tkq) can be represented as an isomorphic
. column matrix, by splitting up the right-hand member into a coefficient
matrix and a column matrix of differences

seqeaafl] (L o :
. 45k
U) \/L{ } 0 =—COrAmT ey ~Anr
(429) 4. - | aru
( ) \/)§ . } 0  —AIMF MRS T Cosr (2.19)
A3k
73 J o -l o
or, introducing aln sik and sinS éiz-ik as difference quantities :
NG
Scf(aq)ul (1 o o
adus,,
Vi f 0 —Cer T —aiar
J_ e ar (2.20)
Vi { . ] o0 —-Arcos  Ccoor
A3
Vki } 0 —AnT o

Subsequently, (2.15) is differentiated; applying the rules established in
{1.50) etc.:

«)

=
A@ka = 49 qij - Ll< O'L) c’b) c‘L)

Through premultiplication by q: k and post multiplication by q 57 this passes
into :

-1 _ ~
A 250 9y = (¢ ’iﬂ)u( - (4 13‘1)'9' (2.21)

This formula bears a strong resemblance to a formula known from Baarda's
polygon theory in the complex plane, (2.2.13) in [2] :

8T = oy - a Ay, (2.22)
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In the latter formula, moreover :
sl = Aé‘_sak +Larg,
The symbol i is now the imaginafy unit of the complex numbers,
Furthermore, applying the properties of a network in the complex plane :
a) : 3:“/,_ : all the points lie in one horizontal plane
- () .

(O\ iﬁo‘)ik = A'BI« Sk _k_A__r":k-f-l:—L/iA‘/kr +j Cmr] A3

b} :A3=0 : the zenith angles are not observation variates.
)
(ﬂ{éﬂ)gk = AléLELk -k oar, (2.23)

Compare (2.22)

2.3 The geodetic-astronomical observation variates.

2.301
Definitions

In section 2.2, the local systems of the stations Pm are defined as follows :
(2.8)

-the unit vector k,, points in the direction of the "first axis" of the
theodolite established in P, ; this is an instrumental realisation of the
vertical ;

-the unit vector i, is situated in the plane perpendicular to k, ,parallel
to the zero direction of the horizontal circle.

~the unit vector j,, completes a right handed system of orthogonal unit
vectors im’ Jm’ km.

The unit vectors k of various stations can be interrelated by describing the
spatial direction of each k-vector by means of two polar coordinates ; for
this, we choose the system of the astronomical longitude A and latitude @ ,
measurable through astronomical observations ; see fig. 16 :

The angle in the plane of the horizon between i,

axis of and the astronomical north of P, :

earth’s _roi'ufion

e !

y Om (2.24)
.®?§> is the "astronomical orientation" of the (m)-
v system.

We shall now describe the rotation of the (m)-
system to another local system, the (n)-system,as
a rotation in steps, according to (1.46).
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For this, we define two ancillary systems by (m) :

~the (m')-system :

the k-vector of the (m')-system is parallel to Ky, 2

the i-vector of (m') lies in the direction of the (2.25)
astronomical north in P .

the j-vector completes a right-handed system im' ’Jm' ) Ko

-the (m")-system :

the j-vector of the (m")-system is parallel to j, (2.26)
the k-vector of (m") lies in the polar direction of the
p> X -system

the i-vector completes a right handed system im“ ’Jm" ’km"'

The rotation from (m) to (n) can now be described in five successive steps
with, consecutively, _gm,ggm, XN, _Cpn and gn as angle of rotation :

— mn
i p,.=Cnye, +k sinye,
2 P = O[T ]+ A [T B ]
S R A S R R A RS W > e
o gy = em [ ]~ e g[8
5 Eh,h:mvlen—k/mvleh» /
Remarks :

~-the choice of the sign in p,, . and p, . means that © turns clockwise
(as seen from above) ;
-the sign in p,» .+ and Py, Means that (p is positive on the northern

hemisphere ;
-the sign in P,y means that_Z:is counted positive towards the east.

The five steps of (2.27) are all described relative to their "own" systems,

and, according to (1.46), they can all be directly multiplied to :
i -1

S Y B
fmm = fn n' _Pn' n' fh"m"fm"m' _’.orn’ m _Fn‘n _Pn”n' _}Qm"n” _l.om' hn"lom’m (2.28)
(127).
This leads, introducing i‘nm=_>fh~—i" to :

Pom = 62 b2, 0% (S 9) o [0 8] + AN, A [k 4] An ) [e,- 9]+
+i [y, ainy [ g a0 (B 8] 4 AR, o [4,+ 4] ol [B1 8] ]+
] [ e L[4 R R ot 8] = A 2 G [+ 0, ] U [ 8]+
ko), enl [ gl [6,-8] — Al M sin [ 6] oot [e-8] | 229

In (2.29), the astronomical longitudes_b;only occur as difference quantities,
contrary to the latitudes § and the orientation variates © . It would be
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possible to choose a corresponding measuring procedure, i.e. (approximately)
simultaneous measurement of the longitudes at both ends of each network
side ; beside the fact that time would play a less decisive role, also the
influence of polar motion and the definition of "star-coordinates™ would be
deminished.

In addition, it will appear from the difference quantities (2.34) that in
networks covering a limited part of the surface of the earth (which means
that the k-vectors are all approximately parallel and the differences in
longitude and latitude are small), also with respect to the astronomical
latitudes ¢ chiefly the differences are important.

2.3.2.
Difference quantities

In section 1.4 rules have been deduced for the differentiation of rotation
quaternions; within the scope of these "form rules", see (1.56), they can
be differentiated in two ways :

a) according to (1.56%) : Ae = 0
The five steps of (2.27) comply with this, because here the unit vectors
act as axis of rotation e :

(2.27/1 and 3 and 5) : e
(2.27/2 and 4) : e

o X

b) according to (1.56b) : Sc { eAe } = 0

Method b :
If (2.29) is differentiated directly to all astronomical variates, and sub-
sequently multiplied on the left by p;;1 , it becomes apparent that :

Se{(pap)] =0
In view of (1.57), it follows from this that :
SC{(&JAE)} =0

We now use method a) by differentiating the five steps of (2.27) :

A (m) or (m)

1:(PAP)M, = o+ Llo+jo + k lfase,
- m

L myer(e) ) )
2 (F—AP)m"ml =0 + ‘/O-) Z.Q(Pm + L< ©

" or(n" , X

3, (F'f}o)f:"i" ):_ o+ Lo+ jo —kyar, L (2.30)
4 (PJAF’)(T‘) or (n") = o+ ilo+] yap + ko

=1 e
s. (flop)n" " = owiowjo —k yae,

nn'
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The difference equation of (2.28) is :

(m) -1 -1
(P_.’ép)nm = FMW (P P)hn mn! h‘lh”( P)f nl! +

(m')

+Ph,mn(|°—_éf°)hum,, P; (P ap) s ;m, + (F. AP) (2.31)
The substitution of (2.30) in (2.31) then gives :

(Flap) = 0+|:L[an 0 (P5inf, o~ CooN,, Gl G| 2ia, B, o [+
] PR, (31n G, o — CN,, L, ARG, ) ~Cn, S, Loty [+
wkfeor, cog, tatg,-sing 40, ] | hae, +
+|: L[con,, At 6, — Ainx A, o6, ] +
+] [ 2, On 8, + Ade 3, Ain g, Sie 6, | +
K sin,,, oG, | Y 8,
+[ Lengcme, - jnp,ring, ~kting ]y ad,
(2.32)

+["Z’M9m—jmemj ‘/,_é_(Pm + k ‘/7_ A—em

or, expressed in an isomorphic column matrix, with symbolic indication of
the coefficients in the first and second columns of the coefficient matrix :

Se{Ga)) (o o o 0 o (522 )
1 A n
VL{ } Ty v Colp, O — A1 6 ) &9
n . 'ae,, @(Pn ™ l/ A)\
= I ax,
R oVi V[  _ctmg,4inE, — 6, O " (2.33)
©On Py Ve &9m
Vi{ ] ——2\: gx‘: -Nin,, 0 1 ) |y 0,
2.3.3

Networks with parallel k-unit-~vectors

In a network with parallel k~vectors, we obtain :

q’m =(Fh ahd b :x

Then, the coefficientsin (2.33) become :
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() o o o) o o /1 vae,

Se{(F2p),. )
Vil . }| |0 e, g e, sie, o |R%
= l/7- A_k.nm (2-34)
Vit e J] o mem cteguiine, —toe, ol o
Vk{ L -1 o ~Ai(g,, o 1)\ ae,

From the coefficients in the first matrix of the right-hand member it
appears that in a network with parallel k-vectors also the astronomical
latitudes ¢ and the orientation variates © only act as difference quanti-
ties (for the longitudes A this is always the case).
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Chapter 3.

IMPORTANT DIFFERENCE EQUATIONS.

3.1 Chains of astronomical rotations.

In section 2.3, the internal structure of the astronomical rotation quater-
nion has been analysed as a rotation in five consecutive steps (2.27). What
happens, if we connect several astrcnomical rotations ?

We consider four local systems (r), (a), (b), and (i), of which three
mutual rotations are known :

Pra » Paw > Ppe (r) %(b)ﬂ >x(i)
The rotation from (i) to (r) is then :

see (1.46) fig17

(r) or (L)
Prt = Pr-a. Po\b Pbi (3.1)

3.1.1
The relative difference quantity

The difference equation of (3.1) reads :

(Fa p)n —Pm(r PM**PLb(F m Lb+(PAP) (3.2)

By means of (2.27), each of the three rotations in (3.1) can be split up
into five component factors :

/?\
'orr F --a“ }ca"a' Pro Pa ,o " "5" Fb " Pb b bb’ Pb’b" Pb" b PL" v Foe - (3.3)

a o aa
_Pra

In view of (1.46), all factors are described in this formula relative to
their "own" systems.
Now, the following applies :

(z.27/1) + P, =Cn 6, +k Ay e,

(7,.27/5]: FAQI:%‘AGA—kM'/LQA4
hence :
Poio Pact =15 Ppy Py =

Likewise, with (2.27/2) and (2.27/4) :

=1

PA“&\' Pa'a'l =1 5 }ob" bl Pb, LII

With this (3.3) passes into the simple form :

Prl, = Pr,-' el F ol T Fb‘ " FLII o P'Lli.
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or, as a function of astronomical quantities :

P = b i =k (e @ x50 -8) (3.4")
The terms with ¢, ,6,, ®2, and 9,3\;111 therefore also disappear from the
difference formula (3.2) ; we substitute (2.31) in (3.2), with successively

(n>r ; m>a ) ;(h>a ; m>b) and (n—>b ; m>i ) :

()

(F2P),, = Pral Par (F2P),. b+ b (P P+ E (r»ara)... M,,
F Pt (F 28, o + (PAP)v] bt
+ pou [ P (F5R),,, by + Py (FoP) ol B (FOP) 2+
+ Py (F2R) Bl + (FoP),, | oL +
oy (Fop), oy P (FBE) e+ Py (F3P) b +
+pop (Fop)y b + (Fap)y; - (3.5)
In this formula, the terms containing A© are :
Pia (F2P) 0, P{L + Py Py (F2P), P'; B, =
= Pio (F2p)y, Pry * Pia P (PAP) N me m =
= pio [ (Fap)y, + (Fap)) ] P

Here, according to (2.30/1) the following applies

(P_'AP)AIO = 0+ k ‘/era

The rotation Paar is of the type Ae=0 (1.56a), therefore (1.62) applies
to

(a")

(Fap), | =

=0 -k Yae,

- (a
(P ,A P)aa)

therefore, in (3.5), the two terms with 46,eliminate each other.
It can be demonstrated in a similar way that the terms with 8¢ g and
A@gdisappear ; thus (3.5) passes into :

i _ - _
(P—]A P>:i) = ‘OLGI:PaLr' (P(AP)FF' Par * Par"(P!AP)r'r"Pm—" +
— - _ . A
+ P “ (P-'AP) L Pa;”J lo(',; + IOLB Pbb” (FAP),,L"UI Pbb" 'DLE -+

A
+ oy (F8P) P PH (F2P).,, Pio (Fap)y, (3.6)
By placing the factors pg,» .. pa » of the third, fourth and fifth
terms outside brackets, they become :
- - .|
Faoi' [(P |A‘(’)'_lyau a L" (P P) llbu "b" + P " o (P P) lv nP "(," Faa" (3.6' )

41



these are the terms containing AN, . , AX_ L , AN}, .
According to 2.30/3, the following applies in this formula :

(P"’AP)HI““ = 0O - k ‘/?.Akra

1]

(P_’Ap>aubn o - L( l/7_A>\Ab
(F—f‘ﬁp)b";," =o -k A AAbL

and, according to (2.27/3) :

Pargr = €0 Xy = K A g0y,

Fa","‘l = Pa"b” Pb"i" = Pa"b"’ [ml/,_)bi -k M‘/LABLJ

therefore, the term (3.6') becomes :
- ke F;L [‘/LA)M+ Lax,+ % A)«bL]

-
In (3.6) this is pre- and post multiplied by p;,-----P ; therefore,

the coefficients of the differences of longitudes bec&gz s

“Pia Pt K P:d"%a

Pi“b" // k .i —_>
Proan 4 k

k - -1 - - _
- P:.L’ ’OL’LH PL“b" Pb"a” Pb"o\" Pi"b" ’Qi'[" P‘:L" =

i

it

-1 -~
— P Pt < Pum by =
=0 + L Con g Conlp; — | Aim O, Lntp; — b Diaclp;

Thus (3.5) finally becomes :

(1) _ - _ —
(F'Ap>ri = PLr' (P’AP)H" Pir', + P'“'" (P’Ap)r'r" Pi"" +

A
- Pf.a”k Pi,a” l/z [Akra"_ A>q|>+ A)\bl:l +

‘+Pn’(FkPh%fPu: + (F'ap) (3.7)
with : (glap) , = -k yae,.
(Flap)y = ] % a6,
(P-'AP)'L"(' = -] % ab;
(Flap)y, = k kae

3.1.2
The coefficlients of the astronomical variates

From (3.7) some conclusions may be directly drawn concerning the coeffi-
clents of the differences of astronomical variates :
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1.

3.

In the coefficients of 86, 44, yA%; and A9, the longitudes and latitudes of
the "intermediate” systems (a) and (b) do not occur. This means that these
coefficients are independent of the "route" chosen, from the (i)- to the
(r)-system.

The coefficients of all longitude differences AMX are equal to each other.
Here, only the quantities 8; and ¢; occur.

If the systems (r) and (i) lie on a small part of the earth's surface
(i.e. ki is approximately parallel to k, ), the coefficients of a¢; and
AQ, are approximately equal to each other (with opposite signs). The

same applies to A6;and a6,.

2 The vector transformation

3.

2.1

The difference equation for the vector transformation

We consider (2.14) :

v (@) - .
Jae = 2w Pre Qe Py (3.8)

The difference equation of this formula is

(r) (r) r) _ -1
gy = q “*L =+ (Fap),. F., S = Y B (F2P) L F

LC) = (309)
Premultiplication by : + 30 b 490 Py
NG R a4 4w
e =3 Pro T P (3.10)
then results in :
a0y ) J . NG R
(a Aﬂ) = 663+ gy (Fap),; du =(F2p); + Pu (qgaq), P (3.11)

If the transformation quantities %. .and Pri consist of a number of factors,
as described for p,; in section 3.1, the quantities in the right-hand
member of (3.11) are functions of the following differences :

(2.13): abX - is the sum of a3 _ ... alaX ; (length factors)

(3.7) : (P_'Ap)r-i : 8B, , B, X ., B , 8O

(astronomical observation variates).

RG
(2.20) : (9 Aq);k : Az\su‘ > 8P s 831k (geodetic observation varistes) .

Subsequently, we consider a variant of (3.11), by placing the factors
F?; . P outside brackets :

- (v} - <U"_ (i) (i) -
(9 59 )y = Pr-»[‘*‘“rﬁ Y (FoP),, e - (Fop), + (4729, | P (3.12)
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By means of (1.65) - (1.71), this equation can be put in isomorphic matrices

((qZ)Lk)=(Pr,)(PrL)|EA )"{Nm ;(qu)( ik 5)](»%} °|A°l :IP“

Suppose :
all‘._t =o+1x+J5+kz 5 N{qﬁj',:ka ;
New (3.13) becomes :
Se{(qoqly]l [t o o o|[[(eh3,
I _______ =
vi{ » ] o 1 ! o
= : see : -+
Vil s 3 et gy ) e
!
|
vikf w3 e Lo e
RO
0o 0 o o) . Sc{(qaq)“tj
_2 (v 2? © .
o 2ZZ) Ixe B lvghe),) |Vl o]
2%y 2042 29z | Vi = }-+ Vi { l
° == s? sz J Juo»
oouge mp g (M ] fa )
In view of (2.33) here is :
© o
m
Vi f(g'ap); | 0
= terms with ae_, A, AN L, 086 -+ 56,
T :

Vk{

} Yo

so the coefficients of A@; in (3.14) are :

1
/1..Aei, -+
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In view of (2.19), the following applies in (3.14), conversing the polar
coordinates rik and'jik in rectangular coordinate differences x, y and z :

5]

Sc{@fkqhk] 1 o o
Vi N o xzZ =9
{ } = A'Z‘SM( + % ar + e 83
Vj . 4z X
J g ] 0 A )(:L-FU?'
\/k‘ ' } (0] =0+0Y) 0
SQ—
0
therefore, the coefficients of Arik .
in the part of (3.14) between =
braces are & ... ... ... ittt i e AF. + .-
Yz ik
Sz
_(XL_‘_,O'Z)
S’L
This means that the coefficients of A6; and Argy (3.15)
are equal to each other in all four components of Qq‘Aq) k :

Furthermore, it appears directly from (3.14) that :

ci(q'aq)} = A'Bh;ri + abn S - (3.16)

3.2.2
The difference equation of the vector transformation

We apply (3.11) to two vectors measured from P. 3

(aq)y, = 683, o+ i (Ko a - (Foap) + b (g b

)

(0\ AODLJ - A&‘>‘n+qv) (_I )()qL _'(P-IAP)n’) + Prl (q_ACDL; P;»

By subtracting these two equations from each other, the transformation
formula for the spatial ATT-quantity, defined in (2.21), is obtained :

(r) iG] r) r)

NG (r) € - 3.1
AT = 9, (P 8P) .. qix —0!;; (PAP)r;O\q + k. ATrJi\c Pre (3.17)

3.3 Polar coordinate functions.

We consider (3.11) : (in this section stochastic variates are underlined).

L Lo N ) () X Wy -
(a7 Aﬂ = Aﬂ“ ri T Ak (v='«_Ar°)ri Ay - (Pp), + Buld Aq)d‘ P
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In view of (2.20) here :

(<) 1
(7a9), = obes, + e, [snsar], +e) a3,
(3.18)

with: e‘ik=o—icnrca3_\ercm'5-kM3

9”;& =0~ L AulF + ) cor + O
Because :

)
Qe = o+c$w>r/w..-5 +) 8 Aarpuy - -k s oy

applies :

|
o

Sciey, ai i =

Sciel. 9] =o.

Sc}‘er eﬁki °.

]

The vectors q; , l,kand etk thus constitute a rectangular trihedral ;
e"; lies in the plane J_k

Furthermore, according to (1.25) :
011 (Fap),; Ay, — (Fap),, = ~2[the component of (5'ap) ; L q;.]
Summarizing, the following therefore applies :
{(qaq ]=A&> +A»@«sk.

Ve { (o'aq),, } 1 9

- {r
The vector part of (¢11Aq)~k can therefore be decomposed
: e (3.19)
into any pair of vectors, perpendicular to qik'

Now assume that :

r r
rjx and 3y,

are the polar coordinates of the vector P;P,,
relative to the unit vectors of the (r)-system :

(r) - r . . e o
Yipe = OFL s carains +js duriany’ ~k scag”
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Assume further, in analogy with (3.18) :

! . v . .o .
erslk=o—u Coor odsjr_er c‘njr— k%jr

" - . -~

€riik =0 -t Anr +jenr”

then the following applies agaih :
Sefeu A =o-

Sc{ el qul=o-. (3.20)

Scie ;. e . J=o0.

ryike rjike
: ! ! t
Remark : in general : e, + e, and e, =+ e
because : e, i lies in the plane L k.

e’ lies in the plane L k;

Therefore, the vectors el and e". ;| constitute together with qjj
a rectangular trihedral. In view of (3.19) this means that Vc{ (q"A q)

ik}
can be decomposed into :

(r) 1

Ve {(ea)y} = & R +el (3.21)

Here R and Z are scalar functions

of the difference quantities,

occ?ring in the vector part of
(7.4 q);k 3 in order to obtain

an expression analogous to (3.18),

. : < . | ‘

we use the following designations : [ Lo, \\\_é Vel Bty
V' fig23

—ik "polar coordinate
} D (3.22)

functions".

so that :

r

0 r) — 1 (7) .or.r w(r) r (3.23)
(q_A_ﬂ)Lk = A——-Ie"‘)ri"'A—& Sie ew,ik MS&A—'—& + er;lk A.;Sur ’

This quaternion equation gives the relationships between the four components
of (q“A»g)fz on the one hand, and the three "polar coordinate functions"
(aln s + aln ) ,; being the third) on the other.

Using isomorphic matrices this becomes :

[Sefdeai}| [+ o 0 _
obes, +ob3,
vi{ . 1 o —carcaz’  —sdar”
= Al 3 AF] (3.24)
Vj { " } 0 —/M}v..rhwj" cos r’
A3k
Wvig w1 Lo cangm o
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From this, the definitions of the three polar coordinate functions can be
derived :

aln3, +A£MS\<_ Se {(q 2q) ‘(E)}
)

[Mjﬁjik = Cc>3 VL{(ol Aq)uk} -3 \/ {(q Ao’)t‘r }

83T = ke Vi) | + eV f(eaa)

=

I

(3.24")

I

It also follows from (3.24) that there is a linear dependency between
the three vector components of (q~ ‘a q)() :

ik
cnrainy” Vi + siaraics” Vi - vy Vk =o0.
or, after conversion of r,(and 3. kinto rectangular coordinate differences
Xk, kaand ZLk'

(3.25)

r . r) r : __ r r . r
Xie Vijrba)y }+ Vi Vi{Gan ) + Zo Vi j@bay, | = 0

Remark : (3.25) can also be written as :

{ ul< ( —)(,‘f‘& = 0
or:SC{A_o](Zi} =0.

which results directly from the definition of Q-

3.4 Units of length and orientations.

3.4.1
The computation of Xy and 8

We consider the side P; Pk of a network ; suppose the following observation
variates are measured :

"terrestrial" : sik’ Pik’ :5ik’ ski’ Pki’ tski
3 ” -
"astronomical" : (., )\ik’ 2

Also assume that the transformation
quantities :

%1 : unit of length of the i-system

©. : horizontal orientation of the
i-system

are somehow known.
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From (2.12') it follows immediately :

T K - ¢y 4

Me dite = X Ry Qe Py (3.26)
with : kai=}°(9k=°,¢k > Mk > @, )

it =9 (Sik > M » Site) -

The vector in the opposite direction is :

- (K o (k)

Mt =2k Pre A Pk (3.27)
with, see (2.27") 3 Pek = k 4in 46,
therefore :

< Wy < . . - ]

N c’(k» =Xy Skl[" e L B A e L L R c"’?&,d] (3.27')

In (3.26) and (3.27) the left-hand members only differ in sign ; therefore
the quaternion equation can be established by means of the right-hand mem-
bers :

-— (L) -1 ~ (k') -1 .
» Pri ik Pei =~ Pk qka Pk (3.28)

the rank of which in view of (3.25), is three.

From (3.28) we deduce two scalar equations, in order to determine, from this,
the unknown quantities ekandfik_(whilst underlining the stochastic quanti-
ties)

a) \/Nf left hand member] = \/N fright hand member}

hence : N Sik = >‘k -§ki.

or: X, = S}, (3.29)

b) : arctan Vitlefty — arctan Vilright"
Vil'lert") Viprignt]

= .+86, (it Vi >o0).

—ki

= F,;te +1W (if Vi <o).

therefore :

Vi{PL:di) b
8, = arctan L{—kli—""—okl"} -r, . [+TT if Vi <0J
- vt . ) TR

(3.30)
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The units of length and the orientations of the local systems can be

successively computed from (3.29) and (3.30), provided that a sufficient
number of observation quantities have been measured. For this purpose,

one unit of length,7:°, and one orientation must be known (the

nature of these quantities is discussed in greater detail in section 4.2).

3.6.2
Difference quantities of X\ and ©,.

The expressions (3.29) and (3.30) for zk and Qk respectively can be

differentiated in two ways :

a) direct differentiation of (3.29) and (3.30) ; from this follows

Aﬂhik = A»&X. + abus, -abs,

q
86, = A[arcéan J{ L“ }] ar .

b) first differentiating (3.28); from the difference equation, the
difference quantities A@,and Aln )\ can then be solved.

(3.31)

(3.32)

We now apply method b) and start on the left-hand members of (3.26) and

(3.27) ; they are equal to each other with opposite signs :

- (k) < (k")
)\qu =-X ﬂk;_

The difference equation deduced from this reads, after division by'B:k:

k") (k")
A9 = -89

and this passes, after premultiplication by qik and qk

into :
)y = (q47aq);
The left-hand member is, according to (3. 23) :
(9aq), (k) = 2b>, + sbusy + ek o ) [aies Ar] + e;l(: A‘_')i
With, according to the definition (2.13) :
ated, = abX, s,
The right-hand member of (3.34) is, see also (3.11) :
(olaq)] = Pk-k[qk. (P_P)k..‘ OIH - (Plep), + (q"Aq)(:.)] Fus
According to (2.30 ) here :

(pAp)kk k % se . s (A&_u—\kvkso)~
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80, also taking into consideration (3.14) and (3.15) this becomes :
= Pk'k[(q-jAQ)(:‘-_) in which ar_ is replaced by z_:_rki+é_e|;’ ij

In accordance with (3.18), this may be written as :
= P [otes,; + e'k(:)/ukjk [ori+8] + e, "¢ )ASHJ P;,L :

1 n(k)
i M]k [ar,+2e, |+ e a3,

Since the k-vectors of the systems (k) and
(k') are equal to each other, the following
applies according to the definitions (3.20) :

=A£\Sk+e

U

e'k';u( (in3.35) = e, = e;d (in 3.36).
eh i (in3.s) = e = -e, (in336). ;
1
and also : |
i/

k fig. 25

ok , ,
A3 (in 3.35) =M3tt =/<1M~3': (in 3.26)

With this (3.36), which is the right-hand member of (3.34), can be converted
into :

(-i

By now substracting the left~hand member of (3.34), see (3.35), and the
right-hand member of (3.34), see (3.37), from each other, we obtain a
zero-mean variate :

(k') ¢ (K n (k)

=odus, +e M} o [Ar +ae - e, a5, (3.37)

(¥) (k' -
(d429) |‘_(chy Y o= a X, -ab3 +obs; -ades,
+ e'kff‘?k /M«-;:‘ [‘-5—"':; -an. - A_ek] + (3.38)

The next difference quantity follows from the scalar component of
(3.38) :

A&Xk = M&_Xi + A‘eﬁik_é.&ﬁki

More important than the units of length are the "length factors" defined
in (2.13) (quotients) ; the length factor of (i)- and (k)-systems is :

abeX = AB_«_S_H - Aﬁak (3.39)

Because e', , ., ~and e" ,. . ~are both3 0 and not parallel to each other,
’ ] .
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two independent scalar equations can be deduced from the vector component
of (3.38) :

’

1: A_l”ik —A_rk;,“A_@k=

from this it follows :

AB, = g.i_a_rki (3.40)

with, see (3.24') :

o ) y k (x)
art —J[=tor V ag). | —[Bwr
— ik Aaswﬂ] Hlaaah '} /sx«sons]a 820y, |

=-R (A_r,.ik’e-_sl-k’é—e'- )A—(Pi 'Qik’%k)’

The complete elaboration of (3.32) gives the same result.

1

2: A3, +4T,, =0 (3.41)

with, see again (3.24%) :

k' ] Ko\ N () K' o

a3y =~y Vij(qlaq), |+ e rac Vif(dlag),,]
3.4.3 . .
The rank of (g”.89q),, — (g7 A4) . e — @i
A network side P;P) can thus be used _ 4 &y“*’ :
for the computation of length factors ) ;| f““'g‘a:\‘\
and/or orientations ©) ; one then ¥ S
starts from an initial unit of s ¥
length Xo and an initial orien- i
tation ©° (these need not be defined , - "°:::£ 8‘3*2)’
in the same local system ; "”“’“g;zf '

see fig. 26)

The zero-mean variate (3.38) assumes, depending on the use of side Pipk ’
one of the four following forms :

I Side P; Py is neither used for the computation of )\Lknor' for the com-
putatlon of‘e from ek , or reverse. Then, the following is obtained :

(T2 - (Tad); = ab3, - 043, +ades, - abes, +

f(r)

k ik
u(r)
ke L83+ 83 -

k k[ 3k k] (3'421)

Aah.;k [Ark_m— -28, ] +
rank =3
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II Side P;Py is used for the computation of the length factorzﬁik ; than
(3.39) is substituted in (3.38), which means :

—| (r) -1 (r) NG N K W
(429),, - (429),. = € ik Mjik[e_ﬁk —ar, - A_Qk] +
u(r—)
rank =2 . A% + 4
o (o3 23] (3.4211)

III Side P;P is used for the computation of ek from 8 ; than (3.40) is sub-
stituted in (3.38) :

(q Aq) __(o] Aq) ——Aﬂu)\ _A‘a«% +A‘Qh5k —A‘&S

er)
rank = 2 + ek';ik .A__Sik + A_}k.l] .

(3.42111)

IV Side P-1 Pk is used both for the computation of Xikand Qk; now we obtain :

r u (r)
(9" ﬂ)d< (929),; = [A3Lk+ 534 -

r'ank =1
(3.421V)

From Chapter 5 it will appear that (3.621v) will occur as a condition
equation in each side of a completely measured network.

3.4.4
Networks with parallel k-vectors.

As a special case, we now consider a network, in which the k-vectors of all
the local systems are parallel to each-other. In (2.34) it has been demon-
strated that in such a network, the orientations occur as difference
quantities in the "astronomical rotation quaternions" (p~ A p).
This is therefore also the case in the zero-mean variate (3.38). In view of
(3.15), the coefficients of A@; and Ar;; in (q __q)f'l:) are equal to each
other; therefore, see (3. 40)":

__ﬁ( _[Ar + A6; J+ ... other terms

Thus, in a network with parallel k-vectors, (3.40) passes into the simple
form :

A—ek= 0. 4 '_‘l<+ ....... —A_f_‘, . (3-43)
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Chapter 4

SIMILARITIES AND DIFFERENCES BETWEEN THE TWO-DIMENSIONAL AND THE THREE-
DIMENSIONAL MODEL.

4.1 Introduction.

In the Polygon Theory in the Complex Plane [2] , the TT-quantity :
quw&éﬁ ;o aT = aduzy - adezy

—_ji

plays a fundamental role in the relation between the measuring procedure
and the function model for the adjustment. This Tl-quantity is fully in-
variant with respect to similarity transformations in R,, owing to which
orientations and length factors: of the instrumental (local) systems do not
occur in the conditions of the adjustment model, if they are composed from
TT-quantities.

In the polygon theory for three-dimensional space, the Q-quantity :

(3]

?jik = ik ﬂ:; > th =(q Aq)ck - (" a’)u -1

is used for the construction of conditions. It is, however, not invariant
relative to rotations :

(r) W . )
@ik =fl"£ @J‘k Prl_ &}Lk
and, see (3.17) :
- -
k =Pr [A o +‘1tk (P_ ) Qi ~ 9ij (FaPR),,; Chj] Pri
The "three dimensional" stTjik-quantity is therefore indeed invariant, if :
-1 1 -t =
Qe (P2P),; Fise = Ay (P2P) Gy = ©
so, if : either a) : 0{;) // Aik ("Si:ref:cked"a'ual:ernion @)
or b) : (Fap), L q; and (Flap) Lqy ,
or: (Kbp),, // ek

Situation b) is encountered, if the network lies entirely in one plane W ,
and the following applies to all rotation quaternions :

( suppose : p=cnye +lasuyo+jbaiyetrkcainye)

Vefpy L w

Ad = ab = Ac = ©

(only the angle of rotation is stochastic, the axis is not).
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Then

G =venk + vang [ia+jb+ke]

(P',g_pjr: =[la+] b+f<c] Y a6,

The fact that the All—quantities (4.1) €jik=ia+jb+ke
are not generally invariant, leads to

three important structural differences

between the systems of condition equations in the two-dimensional model on
the one hand and in the three-dimensional model on the other, to which we
shall briefly refer in this introduction and analyse subsequently in
sections 4.2, 4.3 and 4.4.

a)
In R4 orientations of local systems do occur in condition equations. The

orientations can be computed as functions of observation variates according
to (3.30). If in a network not only terrestrial but also "astronomical" ob-

servation variates occur, it will be necessary for at least one azimuth

to be measured; otherwise it will not be possible to connect the other
astronomical quantities (longitudes and latitudes) with the terrestrial ones,
because the rotation quaternions p would not be fully defined then : see
(2.27). But in section 4.2 it will be demonstrated that this initial
azimuth does not furnish a contribution to the rank of the system of con-
dition equations : in fact it creates a linear dependency between the hori-
zontal directions r at the station where this azimuth was measured.

It will also become apparent that, if the k-unit vectors of all local sys-
tems are parallel to each other, the coefficient of A A (the azimuth) will
become zero in all linearized condition equations. This corresponds to the
existance of a linear dependency between the orientations in the adjustment
model of the method of observation equations, so that the rank of the system
remains unchanged (since the rank is equal to the number of observation
variates minus the number of unknowns). From section 4.5 it will become
apparent that this is important in the "transition" of the R,~-model to the
R, -model.

b)

The EQjﬂ(-quantities must all be transformed from their "own" local system

(i) to one common system (r). Subsequently, conditions may be established

for the adjustment model of the method of condition equations. In section

4.3 it will be shown that the adjustment corrections obtained from this
-consequently, also estimators X! — and weight coefficients (G") of
observation variates (not yet of coordinate quantities) are independent of the
choice of the (r)-system, i.e. one of the (i)-systems.

XOTaxt o 69 oY

c)
In the complex plane S-coordinates
of observation variates by :

T o +---+TT.
[—rs. _-u.k] [z; —Z:J

z(r's)

can be computed from estimators Xi

zu =(1)e .2)
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after the choice of two, non-stochastic pairs of coordinates z and z:
(z - zs 5 0); backgrounds of this line of thought are to be found in
W. Baarda's theory of S-transformations [3].
In the analogous formula for the three dimensional model, the Q -quantities
have been defined in one of the local systems, the (r)-system {see b) and
they are not invariant (see a). The introduction of operationally defined
coordinates, an "S-system" (R) must therefore be made by means of a
(difference) similarity transformation }E PP :
R\- ___RT‘
(R) n = (r) = (-—)

A’ = 0" by, B 5.5

b By g (4.3)

(r)

-

with :

I-DA S
I
£

II

(oxi) )
R) -x _(,,) X' E\R' :+ estimators
- P PRr

{(4.4)
Notation : see page 31.

This is the "first basis equation™; it has three independent components.

By adding to this one component of, for example,the vector q.; , a system
of four "basis equations" is obtained. After differentiating -see section
4,4- A mn>\kr and the three independent components of A pp,. can be solved
from these (i.e. expressed in differences A)(‘of estimators of observation
variates in the vectors . and q.4 ).

Owing to this (4.4) becomes :
‘= [ai-ar] =4
and 4.3 becomes :
A = P G G5 B B [a0-a0] - (4.5)
Compare (4.2) !
When applying the adjustment method of observation equations, the trans-

formation >ﬁhj PRris represented in the observation equations by four un-
knowns Y

'&“—;‘RrEI1 5 Vi{fgrﬁg\_(_zi V“_PRrSEI35 Vk{erﬁ r‘ :

In section 4.5 it will be shown that the functional model for the adjust-
ment of a two-dimensional network of closed polygons, despite the dis-
cussed structural differences a) and c) (sections 4.2 and 4.4) is a
"special case" of the "three-dimensional”™ model ; by removing the zenith
angles and Z-coordinates, the system of condition equations for R
automatically" becomes R, , well known from [2] . By “"automatic" is meant
here that the other differences between the R; -model and the R, -model
{numbers and types of quantities and condition equations) correspond direct-
ly to the algebraic properties of R, and R, : 3 and 2 components respec-
tively in the "coordinate condition"; 4 + 2, respectively 2 + 2 parameters
in a complete similarity transformation.

This is illustrated in the list (4.53) of observation variates, unknowns

and conditions
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4.2 The first unit of length and the first orientation

In section 3.4 it was shown how the units of length'ig and the orientations

©; of the local systems can be expressed as functions of observation variates
x! , by solution from a series of equations (3.28). o

For this, however, an initial unit of length X\° , resp. orientation © must be
known. Let us assume, for the time being, that these are stochastic quantities,
then : :

(3:29) » X; =N (x5 5,2 ). (4.62)

(3.30) - ©; =6, (..,;_3",..,9") . (4.6b)

|®

In section 3.4 it was already stated that SS and Ef)may be located in
different stations ; on this occasion, we shall see that they also have
quite different functions :

Sio is a non-stochastic factor which is only relevant for the computation
technique ; it is chosen such that the numerical values of the lengths of
the sides, v/ Ni{q} , are given the order of magnitude 1. (see also the scheme
on page 31.

By 8° the "astronomical" observation variates (longitudes and latitudes)
are connected with the "terrestrial" horizontal directions, zenith angles,
and distances. It should be determined from azimuth measurements in one of
the local systems,P,, and is then a stochastic variate.

4,2.1
The first unit of length X .

We consider (2.10) applied to the side PP :
zr Seu =V N{:q'_ru‘

1r AU is a vector of average length, one achieves by choosing :

C-F on page 3i : ?:S,u) (4.7)

VN{Elru}:‘ 1.

and the lengths of all other sides of the network:

VN{_q_;_kﬁ ~ 1.

4.2.2
The first orientation.

According to (2.24) the orientation of a local system is the angle in the
horizontal plane between astronomical north and the i-vector of the local
system. :
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The first orientation 6° can thus be deter-
mined by measuring an azimuth A in one of
the stations, P, . Then ©° is :

0° = 6, =A, -1y fig. 27

(4.8)

In appendix 1 it is proved, that in each condition equation of the types N,
V, Z and A (see chapter5) the coefficient of a6° (i.e.26,) equals the sum
of the coefficients of all horizontal directions in Py . Using Baarda's
notation [4] for a condition equation with m observation variates x! :

e_g,9=(u'§)(,3_>_ci) Lst....om

and assuming that there are three directions in P, :

arg, = ax

— z
é_raz E Ax
args = ax®

the conclusion of appendix 1 reads :

e e Puuf +ub o ax
+ular, +uf ar +fuf+uf+ufae, +ufar.

ayf = uf ar

J
(g=tioeem) (4.9)

Because A 8; is not an observation variate, we now substitute the difference
equation of (4.8) into (4.9) ; the azimuth be measured in side PPy

a8, = A—Aas - &g,

and (4.9) becomes :

P o ue P_uP Pauf 4 ul cufax).
Ay = X an, +uf ﬁra'z."'['us'uz] é—raﬁ"'[“i"'uz'*'“s]‘?-’-o‘ +oe- U Ax (4.10)

!

There arises a linear dependency between the directions in P;. The number
of observation variates can be reduced by one, by passing from n directions
to n-1 angles in P, :

AR ap = Al - &ra; (4.11)
then (4.10) becomes :

P P )
Ay = ub ady, +ul Ak, + [uh+uf+uf]aA 4 ufa (4.12)
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4,2.3
The position of the first orientation in a network with parallel k-unit-

vectors.

As a special case of spatial networks with astronomically measured rotations,
we now consider a network, in which all k-vectors ("first axes" of the local
systems) are parallel to each other. In section 2.3.3 it was shown that in
this situation the orientations ©; in the rotation quaternions p,;
exclusively occur as difference quantities. This is, therefore, also the case
in the zero-mean variates discussed in the appendix, from which the condition
equations are composed : (tik and u,, are quaternions)

ji

v("‘) -1 ] -] (r) t a
Mk =(929), -(4g é‘l)k; =+t [as, -26] (4.13%)
W= aql) = o wuy a0, —ae] . (closed polygon) b
(4.137)

Jastr North

/ n Fq
/

'Q%Qa

ia fig. 28

Moreover, the difference formula (3.40) for the orientation passes into the
simple form (3.43) :
46, = -ar. +4ae +ar, .

— — ki —

so that the differences of the orientations then read as follows :

49, 88, + o0, —ar,, \ /
\ -4
(-]
=086 + 46 -4ar, +4arn, ~-4r,, \\ _ /
o = 5 Py
L€, = 08" - + -~ D (©.13b)

This means that in the zero-mean variates (4.13%) and (4.13b) and therefore
also in the condition equations, now the coefficient of é5§°equals zZero.
In view of (4.9), the coefficient of A A in the condition equations then
also equals zero :

Dyl _ (4.14)
A =°

The azimuth must, therefore, be deleted in the condition model as observation
variate ; in doing so, the rank of the system of condition equations is b,

as in (4.11).
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Also in the observation equations (of ar;, ), the orientations now occur
as difference quantities ; since they act here as "unknowns", this would lead
to a linear dependence,
and result in singularity of the matrix of the normal equations.
In order to prevent this, we pass to the difference quantities t;; for example :

k= e, -8, 5 6, is deleted as unknown. (4.15)

Conclusion.

In a network with parallel "first axes", the observation variate

(azimuth) is deleted in both adjustment models, see (4.14) and in the method
of observation equations, moreover, one of the orientation unknowns

see (4.15),

Schematically :

T
If

H m 1 E‘—Ae]."!
: i T 7
e I A6
I 7 .
i (uf )0 @) e
----- }<—m—l—> E Ié
| S 77 v
= m-b-1——>=

fig. 29

4,3 Estimators and weight coefficients of observation variates are invariant.

In a spatial polygon network, the following types of observation variates
are measured :

Sik ¢ distance measures
r;. : horizontal directions
i ¢ 2zenith angles
Xix : astr. longitude differences
@; & astr. latitudes
From —sik’ !ik en 7§ ik the quaternion :
al(L‘l: = 0+ Sy, Con by Al 3ok +J Su Ada T AT -k s, o3,

= (4.16)

see (2.9) can be computed in the local system (i).

For carrying out transformations of local systems, the orientations ©; are
required.

Provided that a sufficient number of observaticn variates have been measured
in the network considered, they can be computed as functions of observation
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variates by (3.30) :

6. = 6; (...,E‘,..,g").

-t

In view of (4.8) here :

o
€ = .éab".taln

is also a function of observation variates x, so we can put
(4.17)

_Qi' = el (...,_)5;_, )
Then the rotations between the local systems can be expressed in the quater-

nions :
v o= P (€ (XY, R S 2A50 @05 6 (-.,5;’,-~)) =
P o= b (e JRP-Y (4.18)
= PJ‘<’)—C-L’) .

Furthermore, from the distance measures s, the"length factors " X\ can be
computed via network sides in which s are measured in both directions
(4.19)

(2.29),(213) : Zji = ‘2‘:‘: =;‘ji-("*22é"')
We now choose one of the local systems, the (r)-system and transform all
quaternions (4.16) to this system through a "chain" of rotations and length

factors :
E"i=frafa-”“f'kfki 7 N (k)
~ o o (a) /ﬁ ‘
Arp = 2ebdbor A Ay —A . @ (4.20)
'S
(r) —_ [ | b —~
Qi = 2riPri Qe Pri - ) o fig. 30 v
In view of (4.16), (4.18) and (4.19), this may be put as :
(r) r H
jﬁ=q&6w£w0‘ (4.21)
or, introducing means‘iiof observation variates :
Fir = o (%5 (4.211)

Furthermore :

é;ﬁz = friéangil =
" i
= G (0 X5) (4.22)
(4.22')

7= () ~
and : &jlk=@jik(">xtr"')'
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With the quantities (4.21') and (4.22'), being functions exclusively of
observation variates, we can deduce conditions. In the form of auaternion
equations reduced to zero, with means of zero-mean variates Y these
conditions are :

Y=Y (LB, ) = o (4.23)

By substitution of observations 5} (4.21) and (4.22), misclosures yP(” are
obtained : =

PO Y (L G a ) (4.24)

Differentiation leads to :

m
) P(m [1G)
gt o 28T iy LZ?V»_‘:_LA, .
—— L= 'D)d (4.25)

Z @VJH""’& o+ k s DVRIY)
l= i=t Dt

When choosing another local system, different from the (r)-system, e.g. the
(w)-system, the series of operations (4.20) - (4.25) leads to quaternion
condition equations :

2

(w)
e . Ab?(‘v}

Now, the following applies :

w y =i
gf’( )=_>-\wr-fwv" _‘C’_P()fwv— (4.26)
hence :
(W) » r -
88" = b [0 4T sk + (Fap), o 5" (B p),, ]
(r) p(r)

Because y =~ 0, the three products of difference quantities and y
therein may be neglected; hence :

ASP(W) = N Pur ‘E_E'PM P;,'.- (4.27)

This means that the system of condition equations Ay pw) is linearly
dependent on the system Ay PLr) , the same dependency prevailing between
the respective misclosures (4.26)

The result of adjustment by the method of condition equations is therefore
independent of the choice of an (r)-system, apart from effects of the
second order ;

Estimators : (X)=(x)" » (XM

(4.28)
Weight coefficients: (G4)'=(GY)" — (69)
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4.4 The introduction of S-coordinates.

According to section 4.3, "invariant" estimators E} and weight coefficients
GY are obtained from least-squares adjustment by the method of obser-

vation equations, The substitution of the estimators in the functions (4.16) =
(4.21) inclusive gives :

o0 = que (- (4.28")

for all the sides of the network.
The three vector components of these quaternions can be considered as coor-
dinate differences in the (r)-system, i.e. one of the local systems.
The transition to an "operationally defined" coordinate system (R)-—-an
"S-coordinate system in the terminology of [3] — is now effected using
the similarity transformation :

(R) = (1)

Qi = X Pre ik Pxe (4.29)
The transformation (4.29) has four parameters, viz. _)_\R,. and the three in-
dependent components of pp. ; this is the correct number for a similarity
transformation of coordinate differences in Rj.

The (R)-system, apart from the translation, can thus be operationally
defined by considering four coordinate differences, or functions thereof,
as non-stochastic quantities q° ; we adopt the choice made by Baarda in
several manuscripts, about 1970 :

(R) °

a) : irs = 9 (4.30)

i.e. : all three componentsof vector q,c, are non-stochastic. For q:s
three arbitrary numbers may be chosen, provided N{ q.} % 0.

R ol _(R) o - s o
b) : l’l-[q tsr ‘i.—g— ebif':l [qu ts" qu‘: e(:sr-_]

i.e. : of the vector q,., , the component perpendicular to the plane through
P. Pg; and Pt is non-stochastic.
Because : etrs.L qrt we have :

o-l ° o e p
e et = ~ U Cbrs t IJS
and the right-hand member of b) is zero. pj =
(|
Therefore b) becomes : ;
[
" ) o . (-]
'/1[6_]:) e, qi‘: ,m_] = o0. fig.31 ve’rrs (4.31)
Remark :

Only one component of vector q,¢ is used for the definition of the (R)-
system ; qrt does not explicitely occur in (4.31), therefore. It is,
however, possible to choose numbers for qrt , allowing e to be computed
as follows :

-1

o Nidnl ,° o°
e = e Aps Irt

Ers Niqars‘
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A clearer procedure consists in choosing e{ls itself :

e:rs = D+ a°+J' b+ k ¢°

Now it becomes obvious that, in accordance with the fact that (4.31) repre-
sents one component, only one number needs to be chosen, since between a) ,
b) and c) there are two relationships :

-first e . must be perpendicular to :

o . o - o o
qrs = 0+4+L X +JY+)(Z_
hence : &’X°+b°Y° 4+ 2% 2 6.

-] . .
-secondly, e is a unit vector, so :

trs

o2

A 2
+ b 4+ ¢

a" =1.

We now substitute (4.29), applied to the vectors s and g, , which are
measured sides of the network, in the left-hand members of (4.30) and
(4.31) respectively :

=(r) -} ‘

‘Rr_P'Rr 3rs _PRr = q:s

>l

(4.32)

I

=) - + o" = (r) - eo -0
e[ P B+ € Br e B, ] =

These quaternion equations constitute, on condition that qQ.g is not //qrt’
four independent equations in scalars, the so-called "basis equations".

From these the four parameters of the (stochastic) transformation { Xg.3 BR‘,}
can be solved, i.e. expressed in components of :

= (r) ’ ¢ =(r) i
q (- ...) and ﬂrt (,)_()

} §L are observation variates in g _ and q (4.33)

When using the adjustment method of observation equations, the transformation
{_}.R,.;_]:gr} is applied in the computation of S-coordinates }_r , from obser-
vation variates X' , according to (4.5) of (4.29).

In (4.29) the following applies :

= (r) r

A =9 (,g<_") see (u.28') .

Zkr =X (ooxho). see (4.33)

ERr = PR-— ("‘)5“»"-): see (4.33) .
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Let :
(R} . ] . Lre

T = = A LS (4.34)

i re r3
notation : X =§r VY =X, zpn =X

then (4.29) becomes :

Qe (X5 ) = Ag, (oXE0) Py (o) @G (b ) [ Ry (oxt] ™ (4.35)

Via a difference equation of (4.35), the weight coefficients for the S-coor-
dinates X can then be computed : see (4.43)
- (4,36)

(87)" = (TI)(6”)(T3) /lﬂwém}

In the method of condition equations, the transformation/ is directly
entered in the observation equations in the form of four "unknowns" Y
From (4.29) follows directly :

") ; -1 (R}

F =3 P i P (4.37)

Re — -

Here again,see (4.28'")
= (r) r ¢

Foe = que (X5 )

with: X'= s.+€ , Fy+g , Su+e

Il(
The S-coordinates q(R)

are now unknowns Y% 3 let :

g = o+ i YT YTk Y (4.38)

Assume also :

1>

1
Re = e

BRr'—_'\ﬂ_I;r—J:r_E:r +LIRF+J_JRr+‘<l—<Rr (4’39)

with : lw.-=-Y-t 5 :IR'-=I3 5 _‘SR,'—'I"

it will then be possible to deduce observation equations for Sjy , rj, and
Jijx from the difference equation of (4.36), after some manipulations

(see section 5.6)

The adjustment results in least-squares corrections and weight-coefficients :

&Y 5 (&)
The solution of Alnjﬁ and & p_
The four numerical values for qrs and etré (or : q:t ) may be arbitrarily

chosen, provided N{qo,} 0
However, we make a deliberate choice, using the observations x

from the basis equations

ﬁ::":;\nqrs(""x;"') > X =S s 3

Y e e T

__Q
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Hence :

and we can choose the following approximate values for Z‘Rr and PRr :

= (r) — = . =(F) —z°
qrg = 9, > c’,—k ~qrt
S o

Aap = 1

-] . .
Pnr=4+L°+J°"'k°

We differentiate the basis equations (4.32) :

sl + ap,, qrs) -

(R)
Trs
A[q(k) A&-)\ B i

(R) (R)

Here Ap. is, see (4.39) :

ap. =0+ al

Premultiplication by q r1s(R)

indices : (q( =q =q)

< -1
A—&XRI'—F qrs e_P'Rr qrs - APR,.

qrt - qrt APRr+ Aq

« ]

Rr+j AJ +k Aer

-1(R)
resp. q.,

® ap + 28 = 0
qr-s _PR,- —q.—, - ’

+Zesr[ J

gives, whilst deleting the upper

NG
+(q25),, =o

% [043x, + 97, 2Pg, 9 - 8P, + (7a8) ] - 4

Let :
Qe = O+ iX+jY+k2Z 3

0 +Ulx +ju+kz 5

o+ia+jb+ke

5

0
ehr

then the equations (4.40) in
matrix notation will read :

Al
— Rr
0
+
o
)
o o o o ab
paatap’®
0 b4 -ab _.ac o
+
0 —-ab a%c* -be 0
0 -ac -be a+H|\o

_
[ ()= E)e)]

X2+Yz+ 2% - SZ

i3
xleyleztz st

a4 bl o .
o ©
o -Y:Z*
2_
2
STo XY
4 XZ
o 0
0 -yt
2
2
ST 1o xy
0 xz
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e[+ Jeu

15) o i o o
(%)
xz =Y
z 0
Xy X oI, X Vo Ry Ais
+
-XZ—ZI YZ ﬂlr ] Y% >: Al
S x5Y: ay
2 2 o
yz XYY \VM Ao ‘X—S“;—( 0
) 0 1 o 0
o
¥z -9 Lo
Xy xz A—I‘Rr o g o Aes
K2t yz ATg * o Y% X ane
el " T G
Ak 2 X*‘jz A_-Srl!
t 2 VTR ek
yz -x'-y 0 — 0

(4.40)

(4.40°)



Between the three vector components of (4.40a), there is the linear depen-
dency (3.25) :

b ¢ VL{(H.‘-‘O“)} +Y \(j{(u.'wa)s + 2 Vk ‘(l-..qoa)} =

The system (4.40%) thus has the rank : 3.

From the scalar component of (4. aob ) it becomes apparent that Alns S, does
not occur in the transformation. Between the three vector components of
(4.407° ) there are two linear dependencies :

a W[(q_l‘ob)s + b Vj{(&.aol’)i-n- c VkK“""’b)’x =

x Vif(aao®)] + 4 Vif(aso®)] + 2 Vk{ruuo®)) = o

(the first resulting from the first matrix ; the second is analogous to the
‘dependency (3.25)

The system (4.40b) thus has the rank : 1.

From (4.40%) it follows immediately :

abr, = - abs (4.41)

rs

The three components cf‘Arh_may be solved from two components of (4.40a)
and the one independent component of (4.40 ).
Via manipulations, such as :

Ss s K = -Yz+2Zy _ -2x+Xz _ =Xu+Yx

=5 b c ;

Sscnx = Xx+Yy +Zz

this results in :

e_PRr = O+i’ 9—Ian*‘J ﬁjﬁr—‘-ke—kkr .

(ay-bx) X eXcos e 4 YA & csX
ol = T At - PR A Y ey S

2 Aan KXY 2 Ao +Ig

AJ _ (ag—bx')Y_ l:g'_é'_;' _ cthnBi_XAu'o'( A3, + cesY
—Rr 2S¢ 4 ‘?.AAuo(;;Xl-pYz 2 aia of S Vx5 —"*
sk =-foar (ay-bx)Z [M_ 'M‘i] __cZenw A3, + ——SZ ____ a3,
— R —rs 2 S Aind 2 A KYRGYE 24X Sty T

(4.42)

The expressions (4.41) and (4.42) for AlnX x and L pg,can now be substituted
in the difference equation of (4.35) : -

A_q;(:) = AZ,(L + Qi Ag“_;ar + 8P, Jie = Vi AP, (4.43)

from which the weight coefficients (4.36) are computed.
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The S-coordinates, when using the method of condition equations, read :

= () r 0 r

A = A (X)) A (xi ) (4.44")

From the method of observation equations, the coordinate quantities are
directly obtained ; see (4.38) :

q(R) — o + i Y=(1+J \_{oiz_'_ e Yo(_\ ; ﬂ(Rs) (4.442)

ik - - _r
Amongst these the qgordlnate quantities in the computational base, q( )
one component of qrt are non-stochastic. They will therefore, not have
ad justment corrections, so :

and

(R)

q. =3, =9, (-x

The coordinate quantities (4.441) and (4.442) constitute conformal systems;
they are mutually transformed according to (4.29), (4.35). The numerical
values f‘or/\ r and Pg, follow from the basis equations, in which we now
substitute the coordinate quantities (4.44') and (4.44%) :

Ry =7 i

— - . _f
= >\Rr PR,- qrs ( x’) Fﬂr

From this it becomes apparent that numerical values f‘or)\Rr and p“r follow
from the least-squares corrections e of observation variates in the basis
equations :

,eb\; - —Q[SNJ
ke Sre (4.45)

P o=t + b al (€ ) +]af (6. ) +kak (& )

Relationship with the general S-transformation.

In [17] ™. Molenaar gives a formula for the general S-transformation for
three-dimensional coordinate systems :

aq i(rs;E) - A_ﬁfd)— —;[@s,; éﬂ(: + Q_Q:)@;‘] .
“+ I:és"i "@s:‘} [@:ré - @s:e:l " { & r(:)_ "(@sﬂ A_q(:)+ A_q“[?;»)]
-+ [@s.—b srt] { } [@srl— @srt]

symb. notation: o )
(a
=aq, +M, (a9, a9:% )

(4.46)

Molenaar, as in this study, has started from the basis equations (4,32);
Molenaar's (4.46) is therefore essentially the same transformation as
(4.43), with :

(RY = (rs;t) (r) = (&)
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The right-hand member of (4.46) is, however, composed of differences of
orthogonal coordinates, the right-hand member of (4.43) of differences of
observation variates, i.e. of polar coordinates, in the basis vectors q,
and q,; . In order to make the formulae comparable, we pass in (4.43), i.e.
(4.41) and (4.42) from polar coordinates to orthogonal coordinates as

follows :

r -Y X
s X+YT e ° 2 ° ) oX
A3 -ZX -2Y x4 Y? 0 0 aY
= STxhyYt Syt Shx4y? ° rs
é_r'_e = o) o fo -9 X p) . A_Zrc
,z_“’z x‘l+‘31

e ¢ ax .
Ajrt o o o -2X -29 x+49
— <t /xl-‘_‘j‘l <t Fl_¢+,3; g'&!*ﬂl Abrt
s X Z .
G ARG 2 T

We substitute this in (4.41) and (4.42) and obtain :

Al = =Xacm& ,x , ZémR-XbonRk v Yain™ + Xccndk o2
Pty — &x e - -+
Rr 2G4k i 2SStk 2S%%w

Xa Xb Xe
$ 22 e 4 Xb Ay, 4 Xe Az

2 Ss .48 rt 2Ss A — ' 2Ss Al rt
Ya cnt — Z Ain &K = K — &

AIR,-: == ——x - YBZCG':'K_ 4 X Ak K cho( ez +
- 2 S*4in& rs 2 S%inx —Fs 2 St ailg e
+—Ya _ ax 4+ _Yb 2y, +-—Ye Az, .

2 S's A% 2Ss. ot —" 2S8sauy T
A_kR'_‘: YAA&O’\ - Zaccoo( Ax'_s _ sz.‘. mea ,AY _ 4 2%;( AZ +

2 S au % - 2 S st —rs 28%s —
2 a 2Zb Ze
L2 ax , 4 %D 4 + % Az
2z Ss.2in® rt 2 Ss4ind 2t 2Ss. Al e
and :
a3 = =X ax X aY _Z a2 .
—_ Rr S’L —rs SZ —_—rs S’L —_—rs

After, assuming as third basis equation, in accordance with Molenaar :

we can substitute these expressions for Aln-im_ and APy
in (4.43) : -

(R) (R) = (R) - - _ —
89, = ,A_ﬁrl =49, + 9, A—&>Rr + e_PR,. ﬂri_ i I é._PRr'

Then, it becomes apparent that :

(4.47)

M" (é—qi—:’ > .A_ﬂ::)) = :1-0'1'- A@Rr + A_,PR,. Qri - Z’ri e_PR,-
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An important difference between (4.43) and p,¢
Molenaar's (4.46) is that in (4.43) the t
basis vectors q,., and q,4 must be
measured sides of the network; in q,.¢ must
be measured : distance measure, direction
and zenith angle; in q,4 : direction and
zenith angle.
Contrary to this, q,.g and q,p in (4.46) pf
may be arbitrary connections between
points of the network., - basisvectors (4.46)
= basisvectors(4.43)

4,5 Observation variates, conditions and unknowns.

Starting from a specified vector of observation variates 5} this section
will present a provisional consideration of the numbers of conditions and
unknowns in the function model of a closed polygon with astronomically
measured rotations between the "local systems". The relationship between

the function model of a spatial network and that of a network in the complex
plane will be described via two intermediate forms.

We specify the vector of m observation variates as follows :
{(one closed polygon)

2n directions r
2n distance measures s
2n zenith angles 33
n astr. differences of longitude A
n astr. latitudes g
1 azimuth A
mz= 8 n+ 1 fig34 k1 k

A preliminary determination of the rank of the condition model

We consider the fully measured closed polygon of n points P, P, ...Pn

and choose the local system of P, as (r)-system.

Now the following series of computations, following the sides of the polygon,
can be carried out :

) 1 1k 1k 1%
9, =9 (gm ,_v_'h,ém) e X Y 2
(<} 1 [ 1 1
Yt =0 (S, FasSgg) oo Yo Ky 5 B0 0 2y
o @)

e =8 =A4z—rl‘l\ _D)_iz

Pq_'q =P(D,£Pz,—_kn,£f’4,9') 1

1’
8, = e "—rzl("'"-)

F = 4 (F s A CP ’2 )

12 P (_1 > T 2 e 2 @ 1 4 1
_(1) }.—> 113 .......... 2!_1’,_13,52;

iﬂ.S = qz(ézs'rzs’éu) ] 3"
)

ts’l = P (o, Ga> =200 %.0 5%



fhu = P(ff > Qt ’[>-‘n+"'+bn_c,n]’gn' _h)} W -
im = qh ( §n| ? rm’;’m)

Now, six conditions have come into being :

' 1 1
Xg £ Xy +orn 2, =0
1 1 i ” N ey e »
Yy * Ypg + -+ Y, =0 coordinate condition
1 (4.49)
1
Z,,+Zpy+--+2,, =0
X 1
Xin = %
5* =-4 "polygon condition”
tn ny
(4.50)
* 4
Zin == 2y

This notation has been adapted from Baarda's [2] , and it anticipates
Chapter 5. "The coordinate condition" cannot be linearly dependent on the
"polygon condition", because there are more observation variates in the
polygon condition than in the coordinate condition : viz. 51n,-£1n and t51n’

There remain n observation variates, which have not yet been used in this
computation :

n - 1 zenith angles (34, >332 "Sn.pet) -
1 difference of longitude (},,).

These n variates may be expressed in the form of n condition equations

as a function of the m-n other observation variates (this is discussed in
greater detail in Chapter 5). Consequently, now n + 6 conditions have: been
found by the procedure of computation alongside the polygon ; if, by way of
precaution, we assume that, possibly, conditions may have been overlooked,
this number is a lower limit for the rank b of the condition model :

By analysing linear dependencies in a set of n + 12 conditions, an upper
limit, which also equals n + 6, shall be determined in section 5.4.

Unknowns

In case directions and distance measures are used as observation variates,
the following "unknowns" are frequently chosen in the function model in the
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complex plane for adjustment according to the method of observation
equations :

2 n ~—4 coordinates

n orientations e _
n length factors Xjj
4 n -4

The number of non-stochastic coordinates (four) equal the number of parameters
of a similarity transformation in Rg ; this is connected with the "operational
definition" of coordinate quantities. ("S-coordinates"j. In analogy there

are in a spatial network of n points : 3 n - 7 stochastic coordinate un-
knowns (the (R)-system ; see section 4.4).

In Ry, the relation between the S-coordinate system (R) and the n local
systems is established by n pairs of quantities :

©r; ¢ orientations

lgjgki : logarithm of length-factors

In section 4.4 we have seen that in Rz, the relationship between the S-coor-
dinate system (R) and the first local system (r) is established by the four
variates of the "basis transformation'; see (4.39)

@Rr 5 ER"; _.J.:Rr 5 E‘Rr
As in Ry, the other n - 1 length factors éﬂi can now be defined as unknowns ;
with regard to the orientation unknowns there arises, however, a difference
between R, and R3 ; so as to enable all local systems to be rotated astrono-
mically, n orientations ©; are required ; moreover, n astronomic latitudes
and n astronomical longitudes or n - 1 astronomical longitude differences.
Summarizing, in a fully measured spatial network of n points, the following
unknowns occur :

3 n - 7 S-coordinates
1 "first" length-factor
3 parameters of the basis transformation
n - 1 other length-factors
n orientations
n astronomical latitudes
n - 1 astronomical longitude differences
7n-5 (4.52)
This number agrees with the number of observation variates m = 8 n + 1
{4.48) and the provisionally determined number of conditions b = n + 6

(4.51), since :
8n+1-(n+6)=7n-5

The transition from R 3 to R 2

We shall now describe the relationship between the three-dimensional function
model and the two-dimensional model through a transition via two intermediate
forms :
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1. A spatial network with parallel k-unit vectors ("first axes" of local
systems), as described in section 4.2

2. The same spatial network as above, where no astronomical quantities
(latitudes @; and longitude differences X\jj ) occur, i.e. networks as
used for e.g. trigonometric levelling.

In (4.53) the numbers of observation variates, unknowns and conditions
are stated in columns for the general Ri model, the two intermediate forms
and the Rq model; regarding the types of conditions, we must anticipate

Chapter 5 here.

. - R R
varintes o I without ?
‘ general | k= // ¢p and A
directions 2n 2n 2n 2n
distance measures 2n 2n 2n 2n
zenith angles 2n 2n 2n a
differences of longitude n n
latitudes n n
azimuth 1 % -
8n + 1 8n én 4n
Unknowns : c
I
S-coordinates 3n - 7 3n - 7 3n - 7 d 2n -4
first rotation 3 3 3 e 1
first length factor 1 1 1 1
other orientations n * n - n-1 n-1
other length factors n-1 n -1 n -1 n-1
differences of longitude n -1 n-1
latitudes n n
Tn -5 | Tn -6 5n - 5 tn - 4
Conditions :
Coordinate condition 3 3 f 2
Polygon condition - 2 2 | 2
Z-conditions n n b
Sum of longitude diff. 1
n+6é6 n+5 4

(4.53)

The differences * between the "general" R model and the model of "parallel
k-vectors" are analysed in section 4.2; the azimuth obtains coefficients = 0
see (4.14), between the orientations there arises a dependency, see (4.15).

The differences between the second and the third model are trivial

all

"astronomical" observation variates and unknowns disappear and so does the
condition "sum of longitude differences".

The differences between the third and fourth (the R, model) are either

trivial :
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a - zenith angles are not entered in R, as observation variates in the

function model.

b - the Z-conditions arise in the Rz model through the measurement of
zenith angles in both directions, therefore they do not occur in the
H2 model.

or they follow directly from the algebraic properties of R3 and R2 :

¢ - three, resp. two coordinates per point.

d - seven, resp. four parameters in a similarity transformation.

e - a rotation has three parameters, resp. one.

f - the network or coordinate condition has three, resp. two components.

This shows that the R, model is a "special case" of the Rj model.
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Chapter 5.

THE ADJUSTMENT MODEL

5.1 Introduction.

In this Chapter, the theory described will be applied for the construction
of a system of functional relations (conditions) of observation variates,
with a View to the application of the adjustment theory, as standardized by
Baarda [4] .

These functional relations apply to means of stochastic quantities.

(4] (a.4) = (YP) = (YP(.., R ) = (o). (5.1)
"ad justment model of condition equations"
[«1 (9.2) : (XY =(x'(..¥%)) = (o) . (5.2)

"adjustment model of observation equations”

Here :
Xi : observation variates, i = 1 ..... m
Y? : zero-mean variates P = 1 .....b
Y* : unknowns d = 1 ..... m-b

. . . . . i .
The introduction of the stochastic observation variates x~ furnishes
"misclosures" :

(¥f) = (YPC.ux ) (5.3)

The estimators to be obtained, g} and 15 , should comply with (5.1) and
(5.2)

(0) = (YT(-»xE..)) (5.4%)
(X)) = (xH(... Y%.)) (5.4)
In view of the linearization of the functional relat%Pns {(5.1)and
(5.2), a complete set of approximate values X; s Y, must be chosen,
also complying with (5.1).
Hence :
(YPC s xE, ) = (0) =(Y9) (5.5%)
(x5) = (X (Y30 (5.5°)

Now (5.3) can be linearized by expansion in a Tailor series of

(4°-Y5) = (uf)(='-%7)
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or, whilst neglecting terms of the second and higher orders :

(ayf) = (%) (ax') (5.6)
with : (uq)=(g%24xi
See also (17.21) in [4] ., b
It also follows from (5.4 ) with (5.5°)
(X'-x0) = (ak) (Y5 Y3)
or :
(ax') = (a&)(aY®) (5.7)

with . (a%) = (%)xiﬂf

See also (17.23) in [4] .

Relation with the Polygon theory in the complex plane.

In a manuscript by Baarda [8] , dating back as far as 1962-64, an elegant
structural agreement was found between the quaternion relations elaborated
there, and the relations in complex numbers, as they are known from the
two-dimensional polygon theory [2] . Accordingly, the choice and the
notation of the quaternion relations in section 5.2 are adapted from them.
The Tl-quantity plays a central part in the structural relation between
the two- and three-dimensional polygon theories :

-two-dimensional : . . .. .......... AT = alA, _aA

-} itk = =='ij

complex number, see 2.
(comp ’ (2] (2.2.17) with . Re{allu ] = A&’ﬁ“

. ) - W) 0 i)
~three-dimensional : . ... . ....... &l = ﬁweﬂ)&-01éﬂ)q

(quaternion, see (2.21) with: 54£F;2}= AlkVE&

From section 5.4 it will become apparent that not only the quaternion con-
ditions and the 4;II-quantities, but also the dependencies between the
conditions roughly present the same structure as those in the two-dimensional
theory.

In the three-dimensional theory it will, however, be necessary to introduce
more types of conditions, owing to which the overall system of dependencies
becomes more complicated.

In order not to obscure the subject matter unnecessarily, the sections 5.2,
5.3 and 5.4 will be restricted to the discussion of a network, consisting
of one closed polygon, PpPyececcPy with complete measurement according
to (4.48).
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Orientations ©; andlength factors )—‘ik are computed
according to (3.29/30), via the sides Py, P4 5---
«»..Pp and via PaPay ..... .Py. This means that

only on the side B P, the quantity :

(q789),,, - (daq),,

assumes the form of (3.42)I. On all other sides,
it assumes the form (3.42 , 1.2, :

") (r) u (r)

CH 4‘1) — (4 29) i = € [A3 + AS\«.] : (5.8)

In section 5.5 an example of a case, differing from this pattern, will be
discussed.

Remark on the notation.

In the following sections, one starts tacitly (i.e. by omitting the indices
(r) and © ) from the assumption that in all (quaternion) difference
equations, the coefficients are computed according to (5.5) in one of the
local (instrumental) systems, i.e. the (r)-system : thus, for example :

-0 (F) - 0 o(i)

Qi =% = *i Pre ik Pr.

5.2 Conditions.

We now again apply the procedure indicated in [8] , viz. subsequent com-
putation of the sides in a closed polygon with n points, starting in side
PP, :

n 1

Aps >

qz=—@4 Tny -

dps = NG, 9, (5.9)

Tnet,n = (")h-’@h-l @n-z' -GG, TIns

By the summation of these equations, a zero vector is obtained in the left-
hand member :

Dnn =9 = [’—&’ +@1@1 -+ (";-t@na @n-z"c?l @qu ’ (5.103)

Through postmultiplication by q_ 1 (£ 0)
this becomes :

oy b
e =[’—@4+@’@4—"'+('” @nJQ-z."@S@z@IJ (5.107)
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The series (5.9) may be continued by :
q'” = (")" @n@"_q ot C?z@f qh!

or, after reducing to zero :

0= "a|m+('”"@hc?h-4"'@z@q An4 (5.113)
or, through postmultiplication by qgl
6ot w (B, . G G (5.11°)

Thus, we see the conditions known from [2] , viz, "coordinate condition" and
"polygon condition" come into being, both in a form with dimension length_ :
(5.102) and (5.112) resp. and in a dimensionless form (5.10°) and ( 5.11° )
resp.

How to choose from these ?

The dimensionless forms would seem to deserve preference, because they were
composed from exclusively dimensionless observation variates (length ratios
and angles). In the difference equations of (5.10%) and (5.11%), however,
the non-dimensionless factor A q,, obtains zero coefficients. This means
that in the difference equation there are only dimensionless observation
variates. The choice may thus be based on other reasons.

From section 5.3 it will become agparent that for the coordinate condition,
the non-dimensionless shape (5.10°) deserves preference.
Therefore :

o = [1 -@7, +@;£§7, —@34’1@, e+ (—1)"@,,_.@,._,"@1_691] A s (5.12)

"Coordinate condlition” N See: [2]: (4-2.2) -

M)At nt ?

As far as the polygon condition is concerned, it will become apparent, see
(5.25), that in the dimensionless form {5.11%P), the distance ratios occur
in the scalar component and all other observation variates occur in the
vector components of the difference equations. Owing to this elegant nature,
we consequently choose the dimensionless form for the polygon condition ;
therefore :

0 =14+ (")h@n @n-l@n-z' @z@l .

"'Polygon condition” V ; See [27]: (4-3.4).

1,2,---n

(5.13)

Nther conditions.

From the preliminary consideration of section 4.5 it becomes apparent that,
contrary to the plane polygon theory, the number of linearly independent
conditions is also dependent on the number of sides of the network (this
is caused by the zenith angles).

Therefore, for each fully measured side, an extra condition must be esta-
blished ; in principle, each of the three vector components of
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Q) )
=qu + 94

may be used for this purpose. If, however, the
network is of limited size (in comparison with
the circumference of the earth), the k-unit
vectors of the local systems are approximately
parallel to each other and to those of the
(r)-system,

The zenith angles then have small coefficients :
in fig. 36 k
, ™ " . * G
Vifaqu +aq ) and Vifaqy + aq]

Therefore, we choose as condition on each side with two zenith angles :

RN
0= Vk{qu +9u ] (5.14)

”Zik — condition”

Between the astronomical rotations py, , which are composed from difference
quantities (longitude differences)ﬁk) and also the latitudes ¢;, there
exists a "condition of rotation" :

0= -1+ Pi, i Pm,in"' Pi-c,i- (5.15)

YCondition of rotation’ : R. i

t-

In section 4.1 it was shown that, in a spatial network with astronomical
rotations, one azimuth must be measured so as to connect the astronomical
observation variates with the "terrestrial" ones. The coefficients of this
first azimuth are small in all condition equations and equal to zero, if
the k~unit vectora are parallel to each other ; see (4.14),.

The addition to the network of each next

azimuth results in the creation of a |N N»
condition, in which both azimuths have a } \
large coefficient (i.e. approx. =1). : \
If the first azimuth is measured on side A2
P3P, and a second on side P; Py , this con- tA1 . pk
dition can be adapted from the quaternion M- P ﬁ
equation :(see fig. 37) P By J
fig. 37
Qik;A = ("‘)L@i %j : "@b QabsA
humber of (3 -quantities (5.16)
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Here, in the quaternions d;k;A and dab: A the azimuth takes the place of
the direction, thus : ! ’

() - O |
Qik; A = Que;a = i Pre ae P
with : Pri! = Pri (9,_,(?'_,)\'___“;_ » @ 6:0)
ah
‘hL = 9 (s A » 3u)-
Now :
|
m <
olab = %ra Pro' 9 (Sab’[rab+ ea] 4 Jalb) Pra
According to (4.9), ©, in the condition model is, however, replaced by
Ay, - rap , therefore :

o -
qib) = >\ro\ Py—a’ q(sab, Aak > Sab) Pral = an;A : (5016")

=1
Through premultiplication by A3 » reduction to zero and substitution of
(5.16"), (5.16) passes into :

-
0= 1+ qun BB G,y A (5.17)

" Azimuth condition” : A

el

Relations between coordinate and polygon conditions.

In section 5.4 it will be shown that of the Z-, R- and A-conditions, only
one component is independent. Regarding the N- and V-conditions the situ-
ation is different. Also in order to establish links with the polygon
theory in the complex plane, in which the N- and V-conditions take a cen-
tral place, we now first consider the relations (dependencies) between
the N- and V-conditions.

The coordinate condition (5.12) contains n-1 of the n & — quantities.

As in the two-dimensional theory there are, consequently, in a fully
measured closed polygon of n points n different coordinate conditions.
Because quaternion algebra is non-commutative relative to multiplication,
here —contrary to the two-dimensional theory--also the n polygon relations
(obtainable from cyclic changing of the factors) are different !

We now introduce zero-mean variates, see (5.1) ; we use the characters
N and V :

Yo Ny =[1- %+ &G~ s ) GG, GG ]y,

=Np=[1-&+GG -t (T GG, & &]q, (5.18)
w =N = [ - G4 Gy () R G, .. G &4,

V=N BG,G&,
W=V = A B, B, GG, } (5.19)
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Now (5.19) directly supplies a relation between two "consecutive" polygon
conditions :

-
Vz...1 = @1 \/1.\ @4
Likewise, if the polygon conditions do not directly succeed each other :
A4 4
vi...c'.-a = @i_q @i—z“'@l \/," @4 @z Q{_,z @‘-_, (5.20)

This means that of the n polygon conditions, only one is independent.
From (5.18) follow the relations :

N('z.)-N(i) = ‘121 - (—‘)n@f@n"‘@.x @z qu . (5.218)
Ny - New = qm'("\h &8, %.Ga,, (5.21b)

Therefore also :
@1 [N(”_N("I)J = qqz - (-')" @4 @h @z 6'17. =

- [Nm - N(c)J :

In consequence, there exists the following relation between each three
coordinate conditions :

(s.21%):

(5.22)
th)" N(z-n = - (?L-« [N(i-‘)" N(i-z)_] '

This means, that of the n coordinate conditions, only two are independent.
From (5.21 ) follows :

] n
[N(‘)- N(")J G'"‘ =1- ('1) @h@h_l T @z @1 =
(S.l‘j) H = _.v'."h

In consequence, there exists the following relation between two coordinate
conditions and one polygon condition :

_ (5.23)
N(i)—N(L-ﬂ = v,:...L-l qi-(,l

Conclusion :

The relations (5.20), (5.22) and (5.23) lead to the conclusion that two
independent coordinate and polygon conditions can be established in a fully
measured closed polygon, viz.

either : two network conditions

or : one network condition and one polygon condition
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5.3 Linearization of conditions.

After the introduction of approximate values, complying with (5.5), the
conditions N, V, Z, R and A are linearized by expansion in a Taylor series ;
if the approximate values are good enough, the terms of the zero and flrst
order will suffice.

In all the difference equations, the terms A@ will be replaced by ATT R
according to :

-
(z21) ¢ A > gy AT, 9y

By substitution of stochastic observation variates, the conditions men-
tioned in the previous chapters are now transformed into "condltion
equations".

The coordinate condition equation.

We differentiate the equations (5.9) :

-1
BO L = e ................=0|m(ng)m
89, = - 2&, q,, - & 29, =
X -1 -l
= -9 A—Tr1 qin qni - ﬂﬂ- alin A—qm = 9 eIL + 9. ("] eﬂ)m
89,4 = - likewise — oy 8T, +9,, ATy + 9,4 (q"_A_q)M.
.A_ﬂn-(,n = c’n-q,n A—Tl-b'l-i + o -+ qn-i n -——7-+qh—i nA—Tr‘ + qﬂ-|h(q q)VH

As after (5.9) we add these equations and thus obtain the difference equation
of (5.10 ) / (5.12) As in (5.18/19) we use N, as zero-mean
variate in the left hand member ; introducing observatlon54sx in the right

hand member, N, . becomes the "misclosure":
—(n) (5.24)

Q—N(h)_qn-i,h A_Trn_‘ e + 9qp A—Tr’l-'.'q“,elr
or :
n-
ANy = ?; Qin &7 ik

W”:"\ H A_T_rjlk = Tfjak (-.-, AX‘,...) .

The difference equation of the quaternion coordinate condition is thus iden-
tical to that of the two-dimensional coordinate condition equation, see
(17.1.5) in [2] .

The polygon condition equation.

Differentiation of (5.13), after the introduction of the misclosure QQQ.“n
as AYP—quantity, gives :
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" -
’-_‘.\_’ n>= (=1 I ny é_Trh Do, net @h—l @h--g"'@vf +

4...

+ (‘1)" (?n An-tin ﬂTh_‘ q-:m,u-'z. @n-z @’1 +

+(‘.‘)" @n@n-l "'@3@2 "lu A—Tr1 QIL =

=(_4)h qm [(_4)"-‘A_T_Th + (_1)"-'91'_\'"_‘ + e+ (_1).‘-"911'1] q::‘.

therefore :

_A_\/i.”“ = q'ﬂ [élr‘ -+ A_-Ez e + ﬁ_TI'h_‘ + Alrn] q:: (5-25)
Because : Sc{am;} = abv,
VT n
Seiav, .} =7, aky, (5.25")

Here, too, the strong resemblance with the polygon condition equation in the
complex plane is striking; see (17.2.2) in[2].

The Z~-condition equation

The difference equation of (5.14) reads :

_A_Z_‘._k =Vk{9-°hl<+.°flka} (5.26)

We expand this by the other components to :
L‘}lﬂk +J aYue + k 8Z;, =29, + 29y =
=Nk [(ﬂtliﬂ);k— (ﬂ-"i"\ )k-,'] i
According to (5.8) this expression becomes on all sides except PnP1 :
= Jik e:,ck [A_:)il.(k"'ﬂkﬂ =
= —\/ﬁ?ggﬁ eh;m.[é)Jl*‘ﬁJu] =
=4, [o+ia +J'b+l<c_] [A_j:k +?_5|ci._] .

Consequently :

e
axy = daoa [a3n +a3,] -

Remark :
A_Yik =I£L|¢ b [ “ :l . (a,byc) L AL -
a0y byo; cx-1

62 =l I
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To all sides, except PnP1’ the following therefore applies :
A9k + 29, =[o+ i% +3%+ k] aZ; -

i.e, the i- and the j-component depend on the k-component, which is the
Z-condition.

-1
By premultiplication by Qg 9 the left-hand member of (5.8) is obtained
again :

(q-_'dj)u"“‘ (q—’iq)ki = [O +i ‘P‘-k-l- J- 6Lk+ k hi. ] A__zi,lc

::eap“t h;fhwér'fsue‘ fuc= gz [-vitaud + 2 Viiaud] (5.27)
Fie = [ Vifau] - & Viefaug) -
by =7£1;—L [-& Vifqui+2 VH"IM]
The R-condition equation.
The difference equation of (5.15) reads :
see also (3.7)
ﬁa.......i= Fi,LH (P—'_AP)i,m P—a‘,m + Pi,iﬂ (P-—'A-P>a+.,i+z Pa-,(m'" """ + (P-—"-Lp)a-w;
After rotation to the (r)-system :
élQi(-r-)-i = Pr,ieq (P-lﬁP)z,m P:jm + Py, i+7.(|°—1—AP)c+1,:n P;’, ¥ P (P-'ép)i-«,a P:‘L >-271)
The A-condition equation.
The difference equation of (5.17) reads :
AA, = (D7) "I—a‘k 89,4 i &L - By Qup +
+(-')M‘1_-LL0|;|t AL ‘I:j' BBy Aup A+
) qu By Gy 29, =
= (—4)z"+’(q"_eq)lk.,A 4 (07AT 4 e 0 (),
therefore :
LA (q—"l"')ck;A + ol 4+ o7 4 oeeee + AT, + (q'aa),, (5.28)

5.4 Dependencies/Selection of condition equations.

In this section we shall analyse the linear dependencies between the condi-
tion equations described in section 5.3, or between components of these
condition equations.
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As a continuation of (5.23), we start with the dependency between two coor-
dinate condition equations and a polygon condition equation.

5.4.1
The dependency between network and polygon conditions

From (5.24) follow :

aN =C|1"9Ir1 + 9., _AlT’)_"' s+ Qpgyn all’

—(n — n-y
A—NU) = Aoy _Aﬂ-'z_ oo g0 ~A—T—rh_| + 9, —Alrn

therefore :

éﬁ(,)"A_N(n) = 9 [é_'ﬂ_, + ol + ..o +elr"] = (5.29)

(s.25) = Q/L__n A

Note : This result is also obtained from the direct differentiation of
(5.23)

aNy—2aNey = &Y, L 9, + Vil 84,
in which V = 0

(compare [2] : (17.3.2)

5.4.2
Dependencies within the R-condition

According to the general difference formula (3.7) for an open chain of astro-
nomical rotations with longitude differences, (5.27') can be reduced to :
)

- - - -1
i o= P [Pu' (P_'_A.P):_‘J P;L‘ + P, L"(P'_AP)U';_M Pz T

(4

oR;..
k b0 L Fax aX + ISV

- PCL" F‘ll“ z [-—L,Lﬂ F A et 2 ]

} _ ~ -1
+ Pt (P_l’:“P)-L";' PLL’ + (P_"}P]a'a] Pri

Here the terms with orientations and latitudes of the "intermediate" sys-
tems have been deleted. (see figure 19)

Because we are faced here with a closed chain, (i, i + 1, .... i - 1), also
the terms with A©; and A(p; cancel each other in pairs :

since :
(2.30%) P (P_LAF),;-,: P:: = - Pk Pa-:' T 28 =
=-k 120
(b /& 1)
(2.30') (Fap),, = k Lo8;
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) -1 -1
(likewise the terms withA@;, i.e. (p _Aply; and (p_A4 p) cancel each
other)

Therefore, in the R-conditions equation only the terms of the differences of

longitude remain :

i"il

8, o= Pk bl L[4 v 22y, ]
If : Ppin = d + ia + jb + kc, this is :
SR i = -p[owin(dbrac)+)aldashe)+k(dabtd)][Z o, ] (5.30)

Because Sc{ Ri"“i} = 0, this means that the scalar component of the R-condi-
tion equation has been fulfilled identically :

ScfiaR; ;}=o0

and also that there are two dependencies between the three vector com-
ponents :

Vif{aR;. .} = 2ldbrad) faR; i

Lo bt

(5.31)

Vi { aR: .| = 2ldat+be) i iR, .

1 8Fu] = AR Voo ] |
Out of the four components of the R-condition, only one is non-identical
and non-dependent. In a network, in which the k-vectors of the local sys-—2
tems are approximately parallel, a and b are approximately = 0 and d% + c=1.
This means that the difference quantities AX only have large coeffieients in
the k-component of the R-condition equation (5.30)

5.4.3
The dependencies between the components of the A~.and the Z-condition
equations.

We split up the ATl —quantities according to (2.21) into h;:ng)-quantities ;

Aa..... i 1s now used as misclosure of the A-condition equation :
= all; =W _=ally
A ) ;- o\ y N
aA, == @ 29)uga + (89)u - (d29); + (d29); - -- - (F29), +(q29),,
L _J | -
(s.8) (s.8) |
If all sides of the trajectory P,B, ...F; P; R,
comply with (5.8), this can be rewritten by ?//ﬁ”raf’—
substitution of (5.27) as : E. !
\ I
p Satand
a F%
fig.39
-1 = . .
8A, i = = a)a+ (T84, + 2, [+ 3tk hy] 22, - (5.32)
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Applying (3.23) this becomes with (i;) instead of (r)
(qaq) = ol +abesy + P el i, o (ary+ a8) + € X o 83y Ry + - terms with ap ...
and, with (5.16) :
(q-lﬁ‘ﬂzk«,[\ = A'a‘_;*ﬂ +abesy + Py [el;l(:’)/‘j“sau ah, + é';(:)ﬂu‘] P:i + . terms with 8p, ...
In these formulée, the terms with Ap,, are equal.
Remark : Contrary to (3.38), the (q-‘Aci)-quantities in (5.32) are pointing
in the same direction ; therefore, the terms with A}: are annulled

in the difference,

Thus, (5.32) passes into .

aA . I(P)ijtk[AA T Ori) +Ae]+Z[ (f +jg..+kh, ]AZ (5.33)

= a..d

|
The second azimuth therefore only occurs, through the quantity (q _ggi)ik;A
in the A-condition equation. From (5.33) it becomes clear that the scalar
component of the A-condition equation has been fulfilled identically :

Se fA—Aa..ﬂ = 0.
(ry
If e'ilt== 0 + iA + jB + kC, the three vector components of the A-condition

equation are :
VilaA, ] =A sy [-ah, +ar +ae] +,,,£,,, .. a2
Vi {aBa.i] = B Al [-8A, +on 4 s8] + & 9, 42, -
Vk{aha i} =C tgiesu[-04, + ary +20:] + g h,.. aZ,., .

Between these equations there are two dependencies :
(Aand B =0 ; C= -1)

Vif{oha. i} = A ViieA, J+& [f-&h.]azZ, - } (5.34)
vj ié—A—a..ig = % Vk{A—Aa-nl} +,,,Z'“ [3",,‘-% hhn] e—zhn .

Only one of the three components of the A-condition equation is, therefore,
independent : the azimuthSonly have large coefficients in the k-component.
If the network is approximately plane, then :

88; = AAy + A + oo+ 8K - Ary

and the h —are==0 ; Vk{ e'}= -1 ; therefore :

Vk{aA, ] = -28, + oA, & aty + -+ 4F; +adk; (5.35)

—_—at

5.4.4
The scalar component of the coordinate conditions.

We now consider the network condition N(n)’ see (5.24) ; after splitting up
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the ATT—quantities, this becomes :
—_— (h) =9 ["' (‘\ Aq nt (q-leq )111 * A [- (q-lA—q)u + (q-,iq 37-3 +oe

--+quE4{éﬂMﬂ4+@ﬂngJ-

In using q
obtained :

ns qZI + q1n’ etc., the following arrangement of the terms

n-2. . r
NGy = =89, =09, —mad,, o9, w2 q, [@eg), - @e), ] (5.36)

Of the "a-terms", the scalar component equals zero :
a: Sciaq;y}=0
Of the "b-terms" the scalar part is :
Sc i, [(@2q); ;- @89 ):0,. ] = © 1L T =2 VUL T} =5, VL 7] - 2 VK{[ 3} -

Because side EhP1 is absent from the b-terms, (5.27) applies in all the
b-terms, thus :

b : Sc{q [61—‘1); it (a‘ c’ +1, L] [ x"‘ 'Fl,ui 3"« a‘\‘ e mht i é—zl,l‘AJ:

= W

nyt, 41 A—Z'i.,i-t-l .
Suppose

The scalar component of the coordinate condition equation is consequently
dependent on n - 2 of the Z— condition equations :

(5.37)
SC , AN(V\)Y = wnn 9—211 + Unu. A_—zzs Sl S wh,n-z,nq eZ»-z,n--q )

In the same way, the coordinate condition equation N‘j) can be rewritten as :

n-f
- -
aNy, = -89, — 49, - ""ﬁ‘f.,....*.A_‘?..,.‘*'é_'ﬂu[@ﬁ‘ugiu'(q 89)e) - (5.38)
\____ﬂ-———/ -
Also here, side P,P, is absent from
the "b-terms"™ : thus (5.27) can be phJ Pn-2
used again, and (5.38) becomes : R]
[\
\
J
p10 4
P, fig. 41
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Se [Ny ] = Wipg 82, + Wigy 8L+ H Wy, 82, (5.39)

5.4.5
The k-component of the coordinate condition

Subsequently, we subtract (5.38) from (5.36) :

h-2

- -
e-h((h)_ ‘i\lm =- éfl,,. + -A-ﬂn..q,n+ . Qi [(a'léq)i,iﬂ_ (q 'Aj]iﬂ.i] +

i=f

—[-A—q n A—ﬂn,..-q] '":Z:_ Qs [(“\-?ﬁ)i';“— (q-é‘i)i_”_] ‘ (5.40)

, L
g

"a.-terms” "b_terms "
(the other a-terms cancel each other).

The k~components of the "b-terms" are : see (5.27)
Vi {qun [(4709); im @20)i T} = [0 Fiien = Yin Fiiie] 220000 =

Suppese : _:/ h, i, i+ A___Z‘.'“_'
Vk{‘lu[(ﬂ-'ﬁ").‘.m— (q-’ﬁquH,'J} = Vg, {, i+t A_Z_ i
Thus, the k-component of (5.40) becomes :

Vk{A——N(N) - '?LN(.)‘ =- 9—2'-1 + A—Z'n-l,n + Vi A-le +o Tt Ve na eZ,,_,,,,_;+

- - =V .
\/ll.‘ A—Zgg 1,n-t, A——ZP'I—I,'I

therefore :

Vi {-A—N(n)_ e—N(l)i =- A—Zm + Vo ‘-A—Zm. + [ Vaes 'vlu] A—le +oeee (5.41)

' -V aZ
st [Vn,n-1,n—l—\/1,n-z,n-l A—Zhaz,n.y +E tnhn ) — nt,n

There is, consequently, a dependency between the k-components of the two
coordinate condition equations and all Z-condition equations.

5.4.6
The NN and the NV-modeljrank of the system.

Formula (5.29) signifies, as alred; concluded in (5.23), that in a fully
measured closed polygon, there are either two independent coordinate
conditions or one coordinate and one polygon condition. Consequently we
can specify two condition models :

(5.42)
NN-model number of NV-model number of
components components
2 network conditions 8 1 network condition 4
n Z-conditions n 1 polygon condition 4
1 R-condition 4 n Z-condition n
1 R-condition 4
n+ 12 n+ 12
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In this table the azimuth conditions, if any, have been left out of conside—
ration : in fact, the added azimuths occur, according to (5.33), exclusively
in the azimuth conditions. These are therefore, at any rate, independent of
the other conditions, and therefore do not play a part in an analysis of
dependencies between conditions.

In the precgﬁing sections, the following six dependencies have been found :

(5.31) : Sc{aR}= 0 1
(5.31) : Vi{a R} and Vk{a R} 2
(5.31) : Vj{sR} and Vk{aR]} 3y (5.43)
(5.37) = SC{ELN(H)} and n-2 AZ's 4
(5.39) : Sc[gLy(1)} and n-2 AZ's 5

6

(5.41) Vk{é_y(n)} and VK{aN ,} and aZ,,

Note : the latter only applies in the NN-model, owing to the existence
of two coordinate conditions.

If, in this case too, we assume, by way of caution, that dependencies have
been overlooked, this implies an upper limit of the rank of the NN-model :

b g n+rn -6
(5.u2) (s5.:3).

Because, however, in (4.51), a lower limit was found :
b > n+é

we now arrive at the conclusion :

b =‘V1+é

Specification of observations : (u.48).

(5.44)

The NV-model

The NV-model too, must contain six dependencies. The dependencies (5.43/1,
2, 3, 4) apply to both the NN and to the NV-model. The remaining two depen-
dencies can be derived from those of the NN-model with the aid of (5.29).
We write the dependencies (5.43/5 and 6) of the NN-model, as equations with
the misclosures as variables, in the form of a matrix :

(s.3¥) >0 [0 6 0 0o 1 0 0 0 0 Wyg---- W,y Wi nd,n o o o o 0)
(9‘13‘)—) o 0 o o0 -1 o o o 1 Vv, E’hu'vﬂg”'[Vn,n-z,n—«“\{,v»z,nj D_V"""-".] - e © o9
N
(Se Vi ¥ Vk Sc Vi Vj VkaZ oz .- 42, 82, 4z, Se¢ VY Vk)
\_ﬂ 7/ ~ v Vi
A_N(n) A_’ju) A—V1""‘
To this we add (5.29), also in the form of a matrix :
- (5.45)
let : q,q = 0 +ix + Jjy + kz
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(s21') >/ o0 4 o o o | o o o O innnn o o =X “Yp ~Zp,

(sut)y—>|o o 1 o o o - o © 0 .--e-. o x o0 -2 Yy,
(s.21®)> ] o o o A1 o o o 4 o o ... °© Yy Zy O _x,,
(s2)—>\o0 o 0o o 1 ©6 o o -1 o ..... ©  z, Yy X, O©
‘3
(Se Vo Vi ¥k S Vi V vk 8Z...8Z Se Vi Vj Vk )
Y'— s, N v \ ~— /
aN A_N A_v1...n

—(n) )

From the system of six equations thus obtained, the four components of A.N()
can be eliminated ; this leads to the two equations (dependencies) sought
between the conditions of the NV-model :

(s.a3¥)_(s.21') >

= - SC{AN(M H.‘s -Az'zz+ \“’1,»4,:. A—Zn-l,n -+ XM Vl fA—V-ln] +

"'5..4\‘6 &V, 1 + =, Vk{AV "}. (5.46)
(s’.ks‘) + (s21") >

0= Vo Aziz +[uu u:J e_zq_s +- +[nn—zn.¢ fon-z,n-1 A—-—Z-h-z,n-c +

+ [ Ymtn] 22 = 820 + 2 Sl ] -0y, Vifay, T, VifaY ] (5.47)

The overall system of dependencies within the NV-model thus consists of
(5.43/1, 2, 3, 4) and (5.46), (5.47). Here, the i, j and k-components of
the coordinate condition do not occur, whereas all four components of the
polygon condition are present. This implies that the coordinate condition
rather takes a position of its own. This substantiates for spatial networks
Baarda's conclusion (see section 4.5 of [2] ) that the coordinate con-
dition "is the most fundamental condition".

5.4.7
Selection of conditions.

From the condition models NN and NV, six conditions must be eliminated. As
a general criterion for this choice it applies that the matrix of weight
coefficients of the remaining misclosures, (8P ) in the terminology of

[4] , must be as orthogonal as possible. From this requirement follows

that those misclosures that have the largest coefficients in the dependency
equations (5.31, 5.37, 5.39, 5.41 and 5.47) are those to be considered

above all for elimination, because otherwise, the diagonal elements of (&Pt )
would become very small.

As far as the R-condition is concerned, these are :
Vi{aR: ]

Vi{aRi . .4]
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Moreover Sc { A R, is deleted.

—1..1}
The Z-conditions have been introduced on account of the reciprocal measure-
ment of zenith angles on the network sides ; the number of Z-conditions is
therefore equal to the number of sides and it also re-occurs in the rank of
the overall condition model. In principle, the elimination of one (or more)
of the Z-conditions is possible, but this would lead to a less balanced
structure of the condition model. Consequently, we can also eliminate from
the NN-model :

see (5.37) : Sc {QLE(n)}
see (5.39) : Sc {AN(”}
see (5.41) : Vk { )} or Vk { (1)}

Thus, the specification of the NN-model becomes :

S€viovy vk svn vy K ¢ 3 30 Nk ZogeeeiniiZ
(Ve A\ v v \, v— o~

N N R, . bz=n+6
(n) (1) i,....ia (5.48)

In addition to three components of AR, in principle Sc { & Ny} and each
of the four components of AV can be eliminated from the NV condition model.
However, Sc {aV} and Vk {ALV} have small coefficients in (5.47) and

(5.46) respectively and are thus less suitable for being eliminated.
Therefore, we eliminate : Sc{ é;y(n)} , Vi {QLY} and Vj{ A V]

s€ vi Vi Ve sc 5 vk 5€ 0 ¥ vk zZo,.....7
\ —~ \ — \——‘f_—‘

Nin) Vi...n R, .. .i-1 bz=n+6

(5.49)

This leads to complete agreement with the NV-model of the two-dimensional
polygon theory :

- the coordinate condition there,'is composed of two, and here of three
"vector" components,
- the polygon condition in the two-dimensional model reads :

RefaVi = i A.&ink
Imfav] =t Z" [ary -ar;]

and, in the three-dimensional model :

n

Sc{aV] =Z A‘Z‘_"_,Vjik

e — @, &I + terms with small coefficients .. ]

1__
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(the R~ and Z-conditions do not occur in the two-dimensional theory).

5.5 Modification of the starting points.

5.5.1
Deviation from (5.8)

In the preceeding sections, we have started from the fact that (5.27)
applies, viz. that one side P,P, is not used for the computation of
orientations and length factors and that, moreover, those ctoordinate
conditions are chosen, in which the (p -~quantities (or:aAlT-quantities) of
P, and P4 are absent. What are the consequences for the system dependen-
cies, if we depart from this ? The number of possibilities amounts to
n3(n - 1), i.e. even in a triangle there are as many as 54 !

location of N(a) :n
location of N(b) st n -1
location of €° : n
. -o R
location of X0 : n 20 ¥

fig. 42
We should, therefore, restrict ourselves to the discussion of one single
example :

Assume : the side P,P, is used for the computation of the orientations.
This means that one of the other sides, P, B, , does not comply with

(3.42Y% |, but with (3.42)™
(429 - (429),p = 8l v obes, - ob3 _obes p + €y, [434u+ 85mr] -

However, now :

AE\.Y =Aﬁ§h+[A‘&_~_SMN{—A&S "‘:l + ...+[AEL§A“I_A@~_S!'L‘] .

) a4y,

So :

(d29), ~(7aq) 4 = Sc{aV]+ el , [a3; +a3,] =

= Sc{aV] + [o+if, +jg, +k h‘P..J aZ,

-1 -
The vector components of [ (q aq), -(q 'qu"d] thus remain unmodified, but
the scalar component was =0 and now becomes : Sc {QLY} . With this, the
dependency relations can now be adapted .

In the NN model :
(5.37) and (5.39) remain unchanged, since there only the vector
components of (q~'a q)ik - (q"Aq)ki occur ; however, (5.41) changes now :

VK {9g, [(aq), - (@29),, ]} = 24, SV +Vagm 8Z,,

Vk { 9g, [(‘\.{_Aﬂ)‘g”— (q—L‘qumP] ]

4

" Scl{aV] + v,

m

A—Z"&u !
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Consequently (5.41) becomes :

Vk{aN,,, - aN = [zl__zl,‘] Scfa_\/} + { the terms as stated in (s.l-n)} . (5.50)

(l)}

Here we must replace Sc [A\l}, which does not occur in the NN-model, by means
of (5.29) by :

-1
Sc{f‘-v....hI = c, [éy(n)“a—N(ﬂ] a]m } =

"‘ \/lcfAN -aN

= 2t Vi {aN, -aNy ] - %’- Vi {2Nmy- 2Ny, | -

ni

(1)} .

in the NV-model: because (5.41) passes into (5.50), (5.47) passes into :

0 = {the terms staked In (s H7)} +[Z = 2-21] SC{ _A_V’___h}

5.5.2
Other types of observation variates

- Pseudo distances.

From (5.25') it becomes apparent that, as in the polygon theory in the complex
plane, the scalar component of the V-condition has been fulfilled identically;
SO :

Pseudo distances — Sc {aVv]=o0

- Astronomical longitudes.

From (5.30) it becomes apparent that the same applies to the R-condition if,
instead of astronomical differences of longitude, longitudes are measured.:

astronomical longitudes —» AR = 0

Astronomical differences of latitude

When differences of latitude QQk are measured this does not lead to the
creation of an additional condition, as already shown by (5.30). A condition
of differences of "latitude"

Z:fﬁk =0
would only arise, if all the differences of longitude xik’= 0

5.3.3
More loops,

We apply the specification of observation variates (4.48) to a network, com-
posed from more than one loop, which have all been fully measured.

So as to determine the number of observation variates, m, the number of
sides z must be introduced in addition to the number of points n.

(4.48) then passes into :
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2 z directions
2z distance measures
2z zenith angles

‘z astronomical differences
of longitude

n astronomical latitudes

azimuth

m=72z+n+ 1
(5.51)

According to (4.52), the number of unknowns, m - b only remains dependent
on the number of points n .
In polygon networks there is a relation between the numbers of :

points : n
sides : 2z

loops : k
since, by extending a network by one fig. 43
loop, with p new points, the number '
of sides is increased by p 41 : n points
Z stdes
k loops

} - (z-n) ={(z-n) +I
2y = Zyt P k1 k

(5.53)

In a network consisting of one loop, the number of sides is equal to the
number of points, therefore : (z-n), = 0, therefore, with (5.53):

(z-n)7_= t 5 (z-n), =2 ; etc.

or:
(Z-h)k = k-~i
(5.54)

or : n =2z -KkK+ 1

Herewith (5.51) becomes :
m=28z_k +2
(5.s2):

m-b=72-7k+z >b=m_gz47k-2 ;

3

b=z+ék

hence : :
(this agrees with (5.44) for one loop : k =1, z-n).

The condition models NN and NV comprise z pieces of Z-conditions.

(they occur per side and not per point !) In view of (5.54) each loop contains
6 pieces of the other types of conditions, also in a polygon network con-
sisting of more than one loop.
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5.6 The adjustment model of observation equations.

5.6.1
Unknowns

In (5.44) was demonstrated that the rank of the condition model is :
b=n+26

in a closed polygon with n points, when there are 8n+ 1 observation
variates according to (4.48).

This means that there are 7n « 5 unknowns‘Yd. :

A
Y7, d&=1..... In-s (5.58)

“unknewns” , see (u.s2).

The coordinates are 3n-7 S-coordinates in the (R)-system, in accordance
with (4.35). They may be introduced in observation equations by means of
the quaternions :
~(R) . ~ ~ YR ™~ ~ ~
Que = o+ i [XEXT] +j[V-V] + L [Z2-Z7]

~ R ~ R ~R » . »
X oYy 20 ¢ 3n-7 S-coordinates”  (means) .

(5.59)

The astronomical latitudes ¢; and differences in longitude \jx are both
observation variate and unknown. Together with the observation unknowns ©; ,
they constitute rotation quaternions Ppi °

P.-;_ = P.—;_ (gr- ’?Er 7‘;.-...{ > @i 3; )
n orientation unknowns
n latitude unknowns 3n - 1 (5.60)
n - 1 longitude unknowns

The relation with the (R)-system is established by the basis transformation
Ppr 3 See (4.39) :

~

PRP = SRP +L IR&' +JJRV +k le—'

According to (1.32), here one component depends on the three others ; let :

FR.-: I_Y;r_j‘:r_'k/;r + LTRr- +jj;ir +kT€Rr' (5.61)

4 unknowns (means)

96



The length factorslzikare quotients of the instrumental length units,
see (2.13) :

T = Sl: - |en5‘th unit in F
=ik 2 length unit in P; (5.62)
fi’ik : hn-1 unknowns.(means)

According to {5.59), (5.60), (5.61) and (5.62) there is therefore a total
number of :

(5.5) 3n - 7
(5.60) 3n - 1
(5.61) 4
(5.62) n -1

Tn = 5 unknowns

5.6.2
Observation equations.

Distance measures, directions and zenith angles occur jointly per measured
side of a network in the vector quaternion :

~(i.) . o~ ~ . A .~ . o~ .~ ~ ~
= 0+1S oF, s, +] S AuT ATy —k S, T, - (5.63)

Qe = L

For each network side we can now establish an equation in which the obser-
vation variates X' and the unknowns Xf‘ occur together :

= o~ ~) ~ -
= XRr Xri PRr Py qik Pri pRr
Y S R { 4 4

A

Xt <

or, bringing all factors with i?d-quantities in the right-hand member :

" ) _ -
@) g~ !} ~(R)~ ~ (5.64)

Fik =—fafr; Pri P Fik Py Pri

The i, j and k-components of the left-hand member are functions of the three
observation variates s ,ry. » 33k ;5 3ee (5.63). In order to obtain obser-
vation equations for these observation variates, we solve these as follows :

Asy = Vi Vi +VjVj + VkVk

r. =WVJ +nT n.—.olVi)o:, n=1|Vico (5.65)
tk Vi
=Vk
3. = Qreert — = .
tk Vi i +V)V;

According to (5.5) approximate values )(3 can now be computed from approxi-
mate values Y via (5.64) and (5.65).
Observation equations (5.7) are obtained by differentiating (5.64) and (5.65).
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(5.65) gives, after substitution of polar coordinates in the coeff1c1ents

and whilst adding Sc { é_glk} = 0 : (in the left hand member s. i Sik
o

A'g_‘_s_ik 0 CAraml Ardwl -] Viqum]
Ak
0o _ _ 1 o —sAr cor o 1 v faal
(A_){ )i.k = é_'..;k Sy A A VJIAqu}
. . V*iéﬁi}

A3k 0 corcmy Asurcony Ay

ik
The difference equation of (5.64) reads :

‘ﬂ(i: = ‘OIZL)[A‘Q“—IRr““Az—‘er_I ‘[P:: (FaP)y, Py + (ke ] a"“ +
(i)
+q|.|c » ] +

( )

+)\R'_ P“ PRr = Ll< PRr Pr‘t )

In isomorphic matrices this reads :

(2% = (- “’)[Am +ob3 ] +[(@)- “’][(Pn) (pap) + (e Se) T+

- -
rise (Ra) () (s9). \
Here :

(o]

=S CooTy A J e

()=

—Su‘/MA'”;‘ij.k

Sikk ¢ ik

(

o o o o}

e o0 . Z @ Fik 2 ey A T

(i) - @) = sic

0 -2 coYy 0 -2 Cnr, AT

o -2 Mr.‘k/yu.:s.‘k ZCQFH‘MJU‘ (o]

(5.61) furnishes :

0 (o) (o]
.A__:.[Rr
2 2
_? SRr+I‘Rr Sﬁrkﬁr+IRrI‘Rr —SRr]Rr+IRr er
(PEP)RI‘ = Sz 2 Z A_J.R'-
Re | =Sp ket IoThe Sy + ke SeeLar *+Jie Kzr
A_‘S Rr
z 14
SRr]ﬁr + IRr er -SRrIﬂr+JRr kﬁr SRr + KRr
~

Suppose = (TRP‘) .
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The substitution of (5.67), add (5.68) in the right-hand member of (5.66)
now gives the observation equations :

sbns,, A@_Rr + A&X'_L o o 0 0 \ Al
- =% -'*) @)
, ~COTLDS aim _ _
AT = ° + 2 ° Tl r%)l L (Prv) (-rRr) ﬂkr +( AP)I"L +
A3k ° 0 -Ainr Cor ym K.
. . 0
0 cCorsginy slhrsuny -l < .
-1 SUN S Ry
{ o —Abar car o (P. ) (p )
Xge Mt Sike A3 A3 re ke A_Y: - .A_:{'f
0 cmroey  Mhremy AT aZ} - aZf
2
(5.69)

This is the most general form of observation equations for distanc2 measures,
directions and zenith angles.

Furthermore : ZR,,ZH S;x1s the length of the side P.P, in the R-system,
. = ik
to be designated by :
(5.70)

jk=*m§ﬂ5w

13

We shall now work out (5.69) for the case in which the unit vectorsof the
(R)-system are parallel to those of the (r)-system, thus for approximate

values :

S, =1. iRy iR
0 o’ ° ~ jR//‘jR
I'Rr = JRr = er =0 kR// kR
X;r =1 — length unit (R) = length unit (r).
Then (5.68) becomes :
/] o o] (o]
A—IRr
_|) 1 (o] o é—IRr
(P-_,A_P) = AJ-R,. =
M olo 1 o - AT, (5.71)
ke,
0 o 1 A__‘SRr
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1 o o o
o 1 o o
(Pg.) (5.71)
o o 1 o
o o o o
Assume further :
t{ o o o \
¥ o A B ¢ Symbolic notation for (1.72) ;
(PH) = A.B,C,D,E,F, 6,H,I constitute (5.72)
(2] D E F an orthogonal matrix

o 6 H I

According to (3.7), the terms with (p A p) can be expressed in diffe-

rences 46, A¢,. s Alnk,..;,2¢; and A6
Substltutlon of (5.70), (5 71), (5.72) and {3.7) in (5.69) now gives the

observation equations :

A'Qﬁik = - A‘e‘iwr - AZ_‘_IN: +

+1L;: [C“r;kMJLkA +Ahar, A3 D~ em gy, :, 8% (5.73)
.._z'; r . B " E . H]aY, +
+t[ " C " I vy I_] A_.Zik
ar, = 2[-@;'—-6«:3 A_Aoresy n G AI +
= A )
R
+2[ e cC - » -F—lj A-E‘Rr+

+[ cn A 223 o3 (/_w.q:r Cnp, — Cndr,; Cntp, Aunlp; )+AM.A s 23 i) e+

+omd Cag, Cnp; .t tin g | so +

+EMA&F£}. X + c«;A&_c‘f_i_ Al n, Ae +/M:~)~'_:C43LPJ ap, +

+[ wAd‘C_"%a:qv +-Au~(p]d)« i +MA"‘Z¢T a9; — 20, +
Rl -MrA Cor D) AX.. + 1. _,&ur-ﬁ +Cm|" Ela +
+I [AAM‘S A«Aj ik 4?1: Al :] ke
_Mrc_’_c@r'}: Azik‘
th M-S A -
(5.74)
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a3;, = z[../w.r A +ctar _DJ A—IR-+ zl}/»&.rB +cor EJ ﬂm—+ 2[-4&.»—(3 +coor -FJA_kRP
+[_Ai4-. Ay (g, cngy —can Cd:(f,_Aiaqi) — LA AN qu ae_ +
+[c«>A;l‘ Cood, +ainAgy MN.LM@{] AG, +
— Ay oGy AN G Ay Al +
+/é_ [Co:r&v_\jA + Adnr cn D + Ak G] aXi +
ik
+'£‘“‘[ " B+ " E " H:IA_;J( +

+:PLJ:J: " c " F " I] Z_&_Z;k .

(5.75)

Observation equations for astronomical observation variates

Astronomical latitudes oeccur both as observation variateand as unknown.
The observation equations are :

A__QDL%--@_:A_C_P?( (5.76)

Of all astronomical longitudes (unknowns) one may be chosen, A because
longitudes only occur as difference quantities,
The observation equations are :

AN FE= Ahy ~ 2k
or: = aX, (i8>, =>;). (5.77)
or: =-_A_>‘i (IF X,:)\k).
An observation equation for the azimuth is obtained from (4.8) :
e—p-‘ab = e-rab + A—ea
We now substitute the observation equation for ar, s see (5.74)
A—rab = i ienan _A__Qa I TR
hence :
(5.78)

e—,-Aab = [l‘he observation equation of ar the term -a8_ excludeal_]

5.603
Networks with parallel k-vectors.

Subsequehtly we work out (5.69) for a network with parallel k-unit vectors,
as described in section 4.2.3. This means :
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Pri = oy [e;-6,] + k sy [o;-0.] .

then :
1 0 o 0
4 0 c»[6;-6,] si[e;-8] ©
(Pri) =
0 —si[e;-6] [e.;-e] o

0 o o)
Thus in the formulae (5.72) etc.
A:m]_’ei_erj 5 E =A
B =4in]e,~6,] 5 D=-B
C-’-T:G:H =0

L=1.

Furthermore ; see fig 44 :

coor A - Ar B cao[rik+9‘._e,_]=

cnl A~ ] =

(871): 6g=6, - ...

e [A - 8] = catyy,

and : cor B _swrA = Al .

in which ¥;y is the "argument" relative to the i-unit vector of the (R)-

system.
With this, the observation equations become :

A‘@‘_szk = -sb3o —od¥, +M—.—:“‘ ety 8X) +——“/"/;:X"k i Y+
_Ca3ik AZ . (5.79)
Lo
AR, = -2 E23ik oy, AT _ 2523k sy, a]. —2 ak. 4+
=ik /-M'A-Su‘ 31rc|¢ 2 ®r Ai“‘}{k lﬁk ;IR, = LAF
+00, - 80; + HhAy 23k o —ag] 4+
AT - -
e 23k Canp. + Ay, | AN
+[ Allt MX‘L q’c + Lrl] —_— ..t +
/&(:L M o
— 2tk ax, 4 2k A, (5.80)

Lok ATk Dy AinTine
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A = -2 Aty alo + Ly, fjkr— +

meo Ay [ - 84, ] - A Ay Cag BN, +

- A (5.81)
+ }f:;‘ﬁifkc‘”hk aXik +;: o Ty Ay, Y * 203 82, -

Remark :
In these observation equations all k-vectors are parallel !
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Appendix

1. Coefficients of A@aand Arg.. in orientations 4e; .

The first orientation is : / N
[
€ = 84 [%
Other orientations are computed via the sides
of the network, as a function of observation Ta

variates ; see (3.30) :
Vi {Pie b P}
8, = arctoe = JiPia Job Pl _ ¥ (aw).
{Ph' qtlb Pba}
See (3.40)

—Cosr

A__Ob = ] Vt I<q Aq) b] - A“.scﬂj] \/‘J qdﬂ) ] - A_rba

30y
in which, see (3.11) :
() ECO SN C R (O BT IN ) 4@
ViGd), ] = qu (Fop), 9o - (E2P + Py, (qfﬂ)ab Pea

\ /-equal RN o

—ea " coefficients T =ab

In (3.15) it is shown, that in this formula the coefficients of A@;and Arbb
are equal. This means, that also in A6, these difference quantities have
equal coefficients ; suppose :

t ' ax Y f
49 ={—ba[A_ea+_A_raL.] + 1, 2% F e 200 T ba—b + 5o.|> _—La

b

Via the next networkside, P, P , we obtain in a similar way :

b ¢
|
86, = ed, [A_Gb +érbc-_| -+ t—cL Q_Q’b e other terms - -- - ..
=t 1, [ae, +ar T+t or + - otherterms ...
and via P P, :
ad
A6, = tdafﬁea + AJML] + ....other terms .....

(r)
2. Coefficients of 483 and Ara. in zero-mean variate Vik .

We consider the zero-mean variate :

) (r) (r)
_sz = v"{ (q_'ﬁq )‘1‘ - (q_éq)ki }
m

There will occur three orientations in_\{ik :

se. ., o6, ., 89,



Suppose : (symbolic notation)
Gl ‘“‘] A&)\ . +A£—‘—Szk + V;,L -A—-er‘ + ViLk ap, + V:k Y. S

+ Vi 8 + Vv [a6 +ar ] +v, a3, -

There has to be made a distinction between several different situations :

R

I P. is not P_ and P, is not P_ ;
: i a k a
. and ©, via r
E)r ’ 6%. Kk ab Fﬁ
r

Now VF ) becomes :

—-ik

P
v ' * a6,
R =vikA_9,+v(. ab +V‘LA_9'_+VkLé_9k+A..0U\ert2m5--—.=

1 +V::£:[ t, bt [26, ...Ark:l + VL twtrktba[é_ea‘*'i';b] +

. P.
II Idem, but : ek via P, P, .
(r) P
Now V becomes : T
ac
Pk
(ﬂ
tk ‘[( L*" tuty, “‘Vig tirtrl:tbaj [2e,+ EQL] + P Py
+Vk tk& dct“[A_B“-f-A_r‘ac] + .. .other terms ...
III P, =P ;P =P “/E/.\/Pr
P,| fab \\\b
Now V(r) V(P) becomes :
—ab

Q)] l

< 1 s
Vab = Vau 88, + Y, [a6, +or,] + vy, A8, +V 88, + . =

—[(Vb+v t {: +VB+V§ tb J[AG +Al“ ]+ . other terms ..

a k= "¢
r r
Now Vf )55 V( ) becomes :
—ik —ac
Q)]
{ s .. =
M=.v(“é_¢9,,-o-v [AQ +AI‘J+V 46, + v AG +

s s
= [V +vca:| tPB ba [Aea + A—raL] + vac +v£¢x tCa.:] [-‘A_e“ +'A—r°‘°:l oo



Conclusion :

In all different positions of the zero-mean variate _\!i(r) with respect to P
and P_, the coefficient of 485is equal to the sum of the coefficients 2

of all directions in Pa’ occurring in 1{;):
_\_/z(;)= Uy &r . + 0 8F 4+ OAF _+ Uy 86 + - -... cther terms ...
or :
= U, o, +u an +o0ar [u+u 146 + -....cther terms. ...
or .
= U, ar +u, A + U, _A_';e+[ub+“c+“e] a8, + ---. other terms ... .

3. The coefficients of ABa and Al;., in a closed polygon.

We now consider the closed polygon P1 P2 P3 Pq Pn , With the zero-mean
variate :

W ()

P

) (r) r) " r)
- A—qlz + e_ﬁZ’s + A_qSH + A_GL"‘ + ﬁm

Introduction of a symbolic notation for Aq_,(L;) :

G " e g 1 2 3
89, = o [oh3 +Ag_‘_scd + W A8, + Wy A4 W A, 4

u s 6
FWy o + wy [a8 +ar, Taw a5,

In the network shown in figure, with Pr-E P

the coefficients of A8, and
élraT ’ 4L5a4 become :

3’

N R S 7 [Wis 1o+

— . 4z 34 ha

1 -3
+ Wzs tS‘« t‘m + W'l-! t—zs t&kt‘la +

{ [ 4
+ W bretin + W B tua +
[ae.+sr, ]+ [a8,+0r ]+ oonnn

1 3
+ wlvn tsqtt‘n. +Wl-m-t'-w\ +

1 I3
+ wm tJ‘t tku _J +WM tm tia

For this zero-mean variate the same conclusion may be drawn :

r)
Wi =48, +u, 8, +[u+u]ag, + ... otherterms . ...

4, The condition equations.

We will now prove, that all condition equations mentioned in chapter 5

are composed from zero-mean variates _\{gc) and w1"') n ¢



Polygon condition :

From (5.25) it becomes apparent that, by splitting up the All-quantities,
the polygon condition reads :
(n X (r) Q]
= 2 [(qaa), - (4 aq)_ J =
r)

=qniz-\'/iL '

Network condition :

From (5.36) it becomes apparent that this also applies to the so-called
"b-terms" of the coordinate condition ; in the "a-terms”, however, the

terms Agy.y,n Must be replaced by Aqh n-y in order to reach simi-

larity between the a-terms and !1 n

the a-terms of (5.36) : ce

- _qﬂ - Aqh—1 na qh; w =

- %‘Aqk+Aqnln+—qhni—
(r) !

= - Wi *+a.[d8a),, - @aq),, ] =
(r) r)

= —W + Qpirn Zh-t,n

therefore also the a-terms of the coordinate condition are composed of
zero quantities of the types V and W.

Z-condition :

(5.26) :

r)
AZ. ! = Vk { Aq(‘\:*— Aqk" } =

= Vie[a [ (qaa)i - (@ba)s, ]} =

r)
=Vk{%qu}'

A-condition :

From (5.39) it becomes apparent that the dlfference3439 4&;81 do occur
in the A-condition via :

1~ the z_s_Zik-—- quantities ; these are of the type 11;.

2- the orientation A, ; the latter is :

se;, =t [@a +_A_ra-] 4 .....cther terms . ....

R-condition :

In the R-condition neither directions in P a’ nor A€9 occur, because
{5.27') fulfills 3.1.2.1.



Conclusion :

All types of condition equations are composed of zero-mean variates of the
types Vix and W;..... n ; therefore the coefficient of A€5 equals the sum of
the coefficients of all directions in Pa , occurring in that condition .
equation :

- uf P 4 Puf e
6y = ufar wuf ar, 4+ wul o+ Wl sl ] a0 -

+ ...all other terms .

Remark : u‘;...ug can be =0, but at least one of them 0 in every

condition equation N, V, Z and A,
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