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SUMMARY 

This publication discusses 

l0 The problem of  inverse linear mapping 

and 

2' The problem of  non-linear adjustment. 

A f te r  the introduction, which contains a motivation of our emphasis on geometric thinking, we 

commence in  chapter I1 wi th  the theory of inverse linear mapping. Amongst other things we show that  

every inverse B of a given linear map A can be uniquely characterized through the choice of three 

linear subspaces, denoted by S, C and V. 

Chapter U1 elaborates on the consequences o f  the inverse linear mapping problem for planar, 

ellipsoidal and three dimensional geodetic networks. For various situations we construct sets of base 

vectors fo r  the nullspace Nu(A) of the designmap. The chapter is concluded w i th  a discussion on the 

problem of  connecting geodetic networks. We discuss, under fa i r ly  general assumptions concerning 

the admitted degrees of freedom of  the networks involved, three alternative methods of connection. 

Chapter IV treats the problem of non-linear adjustment. A f te r  a general problem statement and a 

br ief  introduction into Riemannian geometry, we discuss the local convergence behaviour o f  Gauss' 

i terat ion method (GM). A differential geometric approach is used throughout. 

For  both one dimensional and higher dimensional curved manifolds we show that the local behaviour 

of GM is asymptotically linear. Important conclusions are further that  the local convergence 

behaviour of GM, 1'. is predominantly determined by the least-squares residual vector and the 

corresponding extrinsic curvature o f  the manifold, 2'. is invariant against reparametrizations in  case 

o f  asymptotic linear convergence, 3'. is asymptotically quadratic in case either the least-squares 

residual vector or the normal f ie ld B vanishes, 4'. is determined by the Chr istof fe l  symbols of the 

second kind in  case of asymptotic quadratic convergence and 5'. w i l l  practical ly not  be af fected by 

l ine search strategies i f  both the least-squares residual vector and extrinsic curvature are small 

enough. 

Next  we discuss some conditions which assure global convergence of GM. 

Thereupon we show that fo r  a part icular class of manifolds, namely ruled surfaces, important 

simplifications of the non-linear least-squares adjustment problem can be obtained through 

dimensional reduction. Application o f  this idea made it possible t o  obtain an inversion-free solution o f  

a non-linear variant o f  the classical two dimensional Helmert  transformation. This non-linear variant 

has been called the Symmetric Helmert  transformation. We also give an inversion-free solution of the 

two dimensional Symmetric He lmer t  transformation when a non-trivial rotational invariant 

covariance structure is pre-supposed. A f t e r  this we generalize our results to  three dimensions. 

I n  the remaining sections o f  chapter IV we give some suggestions as to  how to  estimate the extr insic 

curvatures i n  practice; we estimate the curvature of some simple 2-dimensional geodetic networks 

and we br ief ly  discuss some of the consequences of non-linearity fo r  the statist ical treatment of an 

adjustment. Hereby it is also shown that  the bias of the least-squares residual vector is determined by 



the mean curvature of the manifold and that  the bias of the least-squares parameter estimator is 

determined by the trace o f  the Christoffelsymbols of the second kind. 

The chapter is concluded w i th  a br ief  discussion o f  some problems which are s t i l l  open for future 

research. 
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I. INTRODUCTION 

This publication has the intention to  give a contribution to  the theory of geodetic adjustment. The 

two main topics discussed are 

l0 The problem of  inverse linear mapping 

and 

2' The problem of non-linear adjustment 

I n  our discussion o f  these two problems there is a strong emphasis on geometric thinking as a means 

of visualizing and thereby improving our understanding o f  methods o f  adjustment. It is namely our 

bel ief that  a geometric approach to  adjustment renders a more general and simpler treatment of 

various aspects of adjustment theory possible. So is it possible to  carry through quite rigorous trains 

o f  reasoning in  geometrical terms without translating them into algebra. This gives a considerable 

economy both i n  thought and i n  communication of thought. Also does it enable us to  recognize and 

understand more easily the basic notions and essential concepts involved. And most important, 

perhaps, is the fac t  that  our geometrical imagery in  two and three dimensions suggests results for 

more dimensions and offers us a powerful tool o f  inductive and creative reasoning. A t  the same time, 

when precise mathematical reasoning is required it w i l l  be carried out i n  terms of the theory of f in i te 

dimensional vector spaces. This theory may be regarded as a precise mathematical framework 

underlying the heuristic patterns of geometric thought. 

I n  Geodesy it is very common t o  use geometric reasoning. I n  fact, geodesy benefited considerably 

f rom the development of the study of d i f ferent ia l  geometry which was begun very early i n  history. 

Pract ical  tasks in  cartography and geodesy caused and influenced the creation of the classical theory 

o f  surfaces (Gauss, 1827; Helmert, 1880). And differential geometry can now be said to  constitute an 

essential part  of the foundation of both mathematical and physical geodesy (Marussi, 1952; Hotine, 

1969; Grafarend, 1973). 

But  it was not  only i n  the development of geodetic models that  geometry played such a pivotal  r8le. 

Also in  geodetic adjustment theory, adjustment was soon considered as a geometrical problem. Very 

early (Tienstra, 1947; 1948; 1956) already advocated the use of the Ricci-calculus in  adjustment 

theory. It permits a consistent geometrization of the adjustment of correlated observations. H is  

approach was later  followed by (Baarda, 1967 a,b; 1969), (Kooimans, 1958) and many others. 

More recently we witness a renewed interest in  the geometrization of adjustment theory. See e.g. 

(Vanicek, 1979), (Eeg, 1982), (Meissl, 1982), (Blais, 1983) or (Blaha, 1984). The incentive to  this re- 

newed interest is probably due to the introduction into geodesy of the modern theory of Hi lbert  

spaces w i th  kernel functions (Krarup, 1969). As (Moritz, 1979) has put  it rather plainly, this theory 

can be seen as an inf in i te ly dimensional generalization of Tienstra's theory of correlated observations 

in  i t s  geometrical interpretation. 

Probably the best motivation fo r  taking a geometric standpoint in  discussing adjustment problems in  

linear models is given by the fol lowing discussion which emphasizes the geometric interplay between 



best linear unbiased estimation and least-squares estimation: 

L e t  y be a random vector i n  the m-dimensional Euclidean space M w i th  metr ic  tensor (. , .)M . We 

assume that y has an expected value y E M , i.e., 

where E { . ) is the mathematical expectation operator, and that y has a covariance map 

- 1 
Q : M* + M, defined by Q yl = (Y1, .)M Vylc M . 

Y Y 

The linear vector space M* denotes the dual space o f  M and is defined as the set o f  a l l  real-valued * 
(homogeneous) linear functions defined on M . Thus each y E !l* is a linear function * * 
y : M + IR . Instead o f  wr i t ing y ( y  ) we w i l l  use a more symmetric formulation, by 

* 1 
considering y ( y  ) as a bilinear function i n  the two variables y* and yl. This bilinear function is 

l *  * * * * 
denotedby (.,.I: M X M + I R  and i sde f i nedby  ( y  ,Y1)=Y (yl) V y E M ,Y1c M . 
The function ( . , . ) is called the duality pairing of M* and M intolR. 

We define a linear model as 

where is a linear manifold i n  M. A linear manifold can best be viewed as a translated subspace. We 

w i l l  assume that  i = { y } + U , where yl is a f ixed vector of M and U is an n-dimensional proper 
1 

subspace o f  M. 

The problem of linear estimation can now be formulated as: given an observation ys on the random 

vector y, i t s  covariance map Q and the linear manifold i ,  estimate the position o f  y i n  f i  C M . 
Y 

I f  we restr ic t  ourselves to  Best Linear Unbiased Estimation (BLUE), then the problem of  linear 

estimation can be formulated dually as: given an y" E M * ,  f ind 2 E IR and i* E M* such that 
X * - 

the inhomogeneous linear function h ( y )  = 6 + ( y , y )  is a BLUE'S estimator o f  ( y S ,  y )  . The 

function h(y) is said to  be a BLUE'S estimator of ( y* ,  y ) i f ,  
S 

l0 h(y) is a linear unbiased estimator of ( y* , y )  , i.e., 
S 

i f  E )  = y , ,  V y E R ,  
and 

2' h(y) is best, i.e., 

Variance { h ( y ) } 5 Variance { g ( y ) } for  a l l  l inear unbiased 
X * - 

estimators g ( y )  = a + ( y  , y ) ,  a E I R ,  y *  E M*,  o f  ( y s ,  y ) .  

From (1.4.1') follows that 



* I* X ..X 
= y - y y forsome y E N and (ys- y , U ) = 0, 

S 1 
(1.5) 

since i = { y } + U.  
* 1 * 

The set o f  y E M* fo r  which ( y , U) = 0, forms a subspace of M*. It is called the annihilator 
0 0 

of U c M and is denoted by U c M*, i.e. ( U ,U) = 0. This gives fo r  (l.5), 

* If X.  .. X 0 
6 = (ys- y ,yl) for  some y E N ,  and y - y E U . 

1 S 
(1.6) 

0 
From (1.4.2') follows wi th  (1.6) that  y X  E { y:} + U must satisfy 

X * (F*, Q F*) 5 ( Y * , Q ~ Y  , V Y* E { yS} + u0 . (1.7) 
Y 

I f  we now define the dual met r ic  o f  M* by pulling the metr ic  of M back by Qy, i.e., 

0 
it follows that  F* E { y:} + U must satisfy 

- * 0 
Geometrically this problem can be seen as the problem of finding that  point y i n  { y:} + U 

- X  . 
which has least distance t o  the origin o f  E,{*. And it w i l l  be intu i t ively clear that  y IS found by * 0 l 
orthogonally projecting y onto the orthogonal complement ( U ) o f  U' (see f igure 1). 

S 

figure 1 

Now, before we characterize the map which maps y* into i*, l e t  us f i rs t  present some generalities 
S 

on linear maps. 



L e t  N and M be  t w o  l inear  vec to r spaces  of dimensions n and m respect ively ,  and l e t  A: N + M be  a 

l i nea r  m a p  b e t w e e n  them.  Then w e  de f ine  t h e  image of U c N under A a s  

A U  = { y  E M I y = A X f o r s o m e  X E U  ) . 

The  inverse image of V c M under A is def ined a s  

In t h e  spec ia l  ca se  t h a t  U = N , t h e  image  of U under A is ca l led  t h e  range space R(A)  of A. And 

t h e  inverse  image  of { O} E M under A is  ca l led  t h e  nullspace Nu(A) of A. I t  is easily verified 
- 1 

t h a t  if V and U a r e  l i nea r  subspaces  of M and N respect ively ,  s o  a r e  AU and  A ( V ) .  

A l inea r  m a p  A: N + M is  injective o r  one-to-one if f o r  eve ry  X l, x2  E N , x1 f x2 implies 

t h a t  A xl f A x2 .  T h e  m a p  A is  surjective o r  o n t o  if A N = M . And A i s  ca l led  bijective o r  a 

b i jec t ion if A is  both  in jec t ive  and sur jec t ive .  

With t h e  l inear  m a p  A : N + M and t h e  dual v e c t o r  (or l - fo rm)  y* E M* i t  follows t h a t  t h e  
* * * 

composi t ion y o A is  a l inear  funct ion which maps  N in to lR,  i.e. y 0 A E N . Since t h e  m a p  
X * 

A ass igns  t h e  l - f o r m  y o A E N* t o  y E M* w e  s e e  t h a t  t h e  m a p  A induces  ano the r  l inear  

map ,  A* say,  which m a p s  M *  i n to  N*. This  m a p  A* is  ca l led  t h e  dual map t o  A and is defined a s  
X 

A * ~ *  = y o A. With t h e  dual i ty  pairing i t  is  easily ver i f ied  t h a t  

A n  impor t an t  consequence of th i s  b i l inear  ident i ty  is  t h a t  f o r  a non-empty inverse  image  of subspace  

V c M under  A, w e  h a v e  t h e  dual i ty  r e l a t ion  

N o t e  t h a t  h e r e  t h e  fou r  c o n c e p t s  of image,  inverse  image,  annihilation and duality c o m e  toge the r  in 

one  formula.  F o r  t h e  spec ia l  c a s e  t h a t  V = { O} t h e  r e l a t ion  r educes  t o  Nu(A) O = R ( A * )  . 

Maps t h a t  play a n  impor t an t  ro l e  in l i nea r  e s t ima t ion  a r e  t h e  so-called p ro jec to r  maps. Assume t h a t  

t h e  subspaces  U and V of N a r e  complemen ta ry ,  i.e. N = U ce V , with  "ce" denot ing t h e  d i r ec t  sum. 

Then f o r  X E N w e  have  t h e  unique decomposi t ion X = X + X wi th  X E U , X E V . We 
1 2 1 2 

c a n  now de f ine  a l inear  m a p  P: + N through 

wi th  X = X + X 
1 X E U ,  X E V  and N =  U a V  . 

2 '  1 2 

This  m a p  is ca l led  t h e  p ro jec to r  which p ro jec t s  o n t o  U and along V. I t  is  deno ted  by P (see  f igure  
U , V  

2). 



figure 2 

I f  P projects onto U and along V then I - P, w i th  I the identity map, projects onto V and along U. Thus 

I - P  = P (1.14) 
U, v v, U 

For their images and inverse images we have 

It is easily verif ied that  the dual P* of a projector P is again a projector operating on the dual space. 

For we have w i th  (1.12) and (1.15): 

0 0 X 0 
( 0 ) )  = V = P and (P- '  ( u ) ) ~  = N = ( 0 ) ;  P* U'. 

u,v U, v U, v 

Thus, 

= P and ( I - P  )* = P *  = P  u,v v,u uO, vO 

Final ly we mention that  one can check whether a linear map is a projector, by verifying whether the 

i terated operator coincides w i th  the operator i tself (Idempotence). 

Now l e t  us return to  the point.where we l e f t  our BLUE'S problem. We noted that  i* could be found by * 
orthogonally projecting y onto ( U')'. Hence, the projector map needed is the one which 

0 l S 

projects onto ( U ) and along U', i.e., 

F rom (1.6) and (1.17) follows then that the linear function h(y) is the unique BLLIE's estimator of  



h ( y )  = i + = ((I - P + ( P  Y * , Y ) ,  
( u O f  ,uO 

- 
where yl is an arbitrary element of  N.  

Application of  the definit ion of  the dual map gives 

And since 

we get 

in  which we recognize the least-squares estimate 

i = y1 + p 9 Y1 E N ,  

u,uL 

which solves the dual problem 

(see figure 3). 

figure 3 



Thus we have recovered the  existing duality between BLUE's estimation and least-squares estimation. 

We minimize a sum of squares (1.20) and emerge with an optimum est imator ,  namely one which 

minimizes another  sum of squares (1.81, the  variance. From the geometrical viewpoint this arises 

simply from the  duality between the  so-called observation space M and est imator  space M*, * 
established by the  duality pairing ( y , y ) . 
The above given result is of course t h e  well known Gauss-Markov theorem which probabilistically 

justifies least-squares est imation in case of linear models. 

Observe t h a t  t h e  above discussion shows another advantage of geometric reasoning, namely t h a t  the  

language of geometry embodies a n  element  of invariance. That  is, geometr ic  reasoning avoids 

unnecessary re fe rence  t o  particular s e t s  of coordinate axes. Concepts such a s  linear projections and 

linear manifolds for instance, may be visualized in a coordinate-free or invariant way. All results 

obtained by an invariant approach therefore necessarily apply t o  all  possible representations of t h e  

linear manifold G .  That  is, one could define by a linear map A from t h e  parameter  space N into 

the  observation space M (in Tienstrals terminology this would be "standard problem 11") or implicitly 

by a s e t  of linear constraints ("standard problem I"). Even a mixed representation is possible. 

Consequently, in general we have t h a t  if a coordinate representation is needed one can  take  t h e  one 

which seems t o  be the  most appropriate. Tha t  is, the  use of a convenient basis ra ther  than a basis 

fixed a t  t h e  outset  is a good illustration of t h e  f a c t  t h a t  coordinate-free does not mean freedom from 

coordinates so much a s  it means freedom t o  choose the  appropriate coordinates for the  task a t  hand. 

With respect  t o  our f i rs t  topic, note  t h a t  a direct  consequence of the  coordinate-free formulation is 

t h a t  the  difficulties a r e  evaded which might possibly occur when a non-injective linear map A is used 

to specify the linear model. This indicates t h a t  t h e  actual  problem of inverse linear mapping should 

not be considered t o  const i tute  an essential par t  of t h e  problem of adjustment. Tha t  is, in the  context  

of BLUE's estimation i t  is insignificant which pre-image of y under A is taken. This viewpoint seems, 

however, still  not generally agreed upon. The usually merely algebraic approach taken often makes 

one omit  t o  distinguish between t h e  actual  adjustment problem and t h e  actual  inverse mapping 

problem. As a consequence, published studies in the geodetic l i terature dealing with the  theory of 

inverse linear mapping surpass in our view often the  essential concepts involved. We have therefore 

tried to  present an al ternat ive approach; one t h a t  is based on the  idea t h a t  once the causes of t h e  

general inverse mapping problem a r e  classified, also t h e  problem of inverse linear mapping itself is 

solved. Our approach s t a r t s  from the identification of the  basic subspaces involved and next  shows 

t h a t  the  problem of inverse linear mapping can be reduced t o  a few essentials. 

As t o  our second topic, t h a t  of non-linear adjustment, note  tha t  t h e  Gauss-Markov theorem 

formulates a lot  of "ifs" before i t  s t a t e s  why least-squares should be used: if the  mean lies in a 

linear manifold N , if t h e  covariance map is known t o  be Q if we a r e  willing t o  confine ourselves t o  
Y' 

e s t imates  t h a t  a r e  unbiased in t h e  mean and if we a r e  willing t o  apply the  quality cr i ter ium of 

minimum variance, then t h e  best es t imate  is t o  be had by least-squares. These a r e  a lot  of "ifs" and it 

would be interesting t o  ask "and if not?". For  all  "ifs" this would become a complicated task indeed. 

But i t  will be clear  t h a t  the  first "if" which called for manifold N t o  be linear, already breaks down 

in case of non-linear models. Furthermore,  in non-linear models a restriction t o  linear est imators  

does not seem reasonable anymore, because any est imator  of y m u s t  be a mapping from M into 



i ,  which w i l l  be curved i n  general. Hence, st r ic t ly  speaking the Gauss-Markov Lheorem does not 

apply anymore i n  the non-linear case. And consequently one might question whether the excessive use 

of the theorem i n  the geodetic l i terature for  theoretical developments is justifiable in  a l l  cases. 

Since almost a l l  functional relations i n  our geodetic models are non-linear, one may be surprised to  

realize how l i t t l e  attention the complicated problem area of non-linear geodesic adjustment has 

received. One has used and is s t i l l  predominantly using the ideas, concepts and results f rom the 

theory of linear estimation. O f  course, one may argue that  probably most non-linear models are only 

moderately non-linear and thus permit  the use of a linear(ized) model. This is true. However, it does 

i n  no way release us f rom the obligation of real ly proving whether a linear(ized) model is suff icient as 

approximation. What we need therefore is knowledge of how non-linearity manifests i tself a t  the 

various stages of adjustment. Here we agree w i th  (Kubik, 1967), who points out that a general 

theoretical and practical investigation into the various aspects of non-linear adjustment is s t i l l  

lacking. 

I n  the geodetic l i terature we only know of a few publications in  which non-linear adjustment problems 

are discussed. I n  the papers by (Pope, 19721, (Stark and Mikhail, 19731, (Pope, 1974) and (Celmins, 

1981; 1982) some pi t fa l ls  to  be avoided when applying variable transformations or when updating and 

re-evaluating function values in  an i teration procedure, are discussed. And i n  (Kubik, 1967) and 

(Kelley and Thompson, 1978) a br ief  review is given of some iteration methods. An investigation into 

the various ef fects of non-linearity was started i n  (Baarda, 1967 a,b), (Alberda, 19691, (Grafarend, 

1970) and more recently i n  (Krarup, 1982a). (Alberda, 1969) discusses the e f fec t  of non-linearity on 

the misclosures o f  condition equations when a linear least-squares estimator is used and illustrates 

the things mentioned w i th  a quadrilateral. A similar discussion can be found in  (Baarda, 1967b), where 

also an expression is derived for  the bias i n  the estimators. (Grafarend, 1970) discusses a case where 

the circular normal distribution should replace the ordinary normal distribution. And f inal ly (Baarda, 

1967a) and (Krarup, 1982a) exemplify the e f fec t  of non-linearity w i th  the aid of a circular model. 

Although we accentuate some di f ferent  and new aspects of non-linear adjustment, our contribution to  

the problem of non-linear geodesic adjustment should be seen as a continuation o f  the work done by 

the above mentioned authors. We must admit  though that  unfortunately we do not  have a cu t  and 

dried answer to  a l l  questions. We do hope, however, that  our discussion of non-linear adjustment w i l l  

make one more susceptible t o  the intr insic dif f icult ies of non-linear adjustment and that  the problem 

w i l l  receive more attention than it has received hitherto. 

The plan of this publication is the following: 

I n  chapter I1 we consider the geometry of inverse linear mapping. We w i l l  show that  every inverse B 

of a linear map A can be uniquely characterized through the choice of three subspaces S ,  Cand D. 

Furthermore, each of these three subspaces has an interesting interpretation of i t s  own. I n  order t o  

faci l i tate reference the basic results are summarized i n  table 1. 

I n  chapter 111 we star t  by showing the consequences of the inverse mapping problem for 2 and 3- 

dimensional geodetic networks. This par t  is easy-going since the planar case has to  some extent 

already been treated elsewhere i n  the geodetic literature. The second part  of this chapter presents a 

discussion on the in  geodesy almost omnipresent problem of connecting geodetic networks. 

Finally, chapter I V  makes a star t  w i th  the problem of non-linear adjustment. A differential geometric 

approach is used throughout. We discuss Gauss' method i n  some detai l  and show how the extrinsic 



curvatures  of submanifold N af fec t s  i t s  local behaviour. And amongst other  things, we also show how 

in some cases t h e  geometry of the  problem suggests important simplifications. Typical examples a r e  

our generalizations of the  classical Helmert  transformation. 



IL GEOMETRY O F  INVERSE LINEAR MAPPING 

1. The principles 

Many problems i n  physical science involve the estimation or computation of a number of unknown 

parameters which bear a l inear (or linearized) relationship to  a set o f  experimental data. The data 

may be contaminated by (systematic or random) errors, insuff icient to  determine the unknowns, 

redundant, or a l l  o f  the above and consequently, questions as existence, uniqueness, stability, 

approximation and the physical description o f  the set o f  solutions are a l l  o f  interest. 

I n  econometrics fo r  instance (see e.g. Neeleman, 1973) the problem of insuff icient data is discussed 

under the heading o f  "multi-collinearity" and the consequent lack of determinability o f  the 

parameters f rom the observations is known there as the "identif ication problem". And i n  geophysics, 

where the physical interpretation o f  an anomalous gravitat ional f ie ld involves deduction of the mass 

distr ibution which produces the anomalous field, there is a fundamental non-uniqueness i n  potential 

f ie ld inversion, such that, for  instance, even complete, perfect data on the earth's surface cannot 

distinguish between two buried spherical density anomalies having the same anomalous mass but 

d i f ferent  radi i  (see e.g. Backus and Gilbert, 1968). 

Also i n  geodesy similar problems can be recognized. The fac t  that  the data are generally only 

measured a t  discrete points, leaves one i n  physical geodesy for  instance w i th  the problem of  

determining a continuous unknown function f rom a f in i te set of data (see e.g. Rummel and Teunissen, 

1982). Also the non-uniqueness i n  coordinate-system definitions makes itself f e l t  when identifying, 

interpreting, qualifying and comparing results f rom geodetic network adjustments (see e.g. Baarda, 

1973). The problem of  connecting geodetic networks, which w i l l  be studied i n  chapter three, is a 

prime example i n  this respect. 

A l l  the above mentioned problems are very similar and even formally equivalent, i f  they are 

described i n  terms of a possible inconsistent and under-determined linear system 

where A is a linear map f rom the n-dimensional parameter space bJ in to the m-dimensional 

observation space b.(. 

The f i rs t  question that  arises is whether a solution to  (1.1) exists a t  all, i.e. whether the given vector 

y is an element of the range space R(A), y E R(A). I f  this is the case we cal l  the system consistent. 

The system is certainly consistent i f  the rank of A, which is defined as rank A = dim. R(A) = r, equals 

the dimension o f  M. I n  this case namely the range space R(A) equals M and therefore y E M= R(A). I n  

a l l  other cases, r <dim. M , consistency is no longer guaranteed, since it would be a mere coincidence 

i f  the given vector y EA.( l ies i n  the smaller dimensioned subspace R(A)cM. Consistency is thus 

guaranteed i f  y E R(A) = NU (A*)'. 

Assuming consistency, the next question one might  ask is whether the solution of (1.1) is unique or 



not, i.e. whether the vector y contains enough information t o  determine the vector X. I f  not, the 

system is said t o  be under-determined. The solution is only unique i f  the rank of  A equals the 

dimension o f  i t s  domain space N , i.e. i f  r = dim. N .  To see this, assume xl and x2 f xl t o  be two  

solutions t o  (1.1). Then Axl = Ax2 or A(xl-x2) = 0 must hold. But  this means that  r < dim. N. 

From the above considerations follows that  it is the relat ion of  r = dim. R (A)  t o  

m = d im .  M and n = dim. N , which decides on the general character of  a linear system. I n  case 

r = m = n, we know that  a unique inverse map B o f  the bi jective map A exists, w i t h  the properties 

B A =  I and A B =  I .  (1.2) 

For non-bijective maps A, however, i n  general no map B can be found fo r  which (1.2) holds. For such 

maps therefore a more relaxed type of  inverse property is used. Guided by the idea that  an inverse- 

l ike map B should solve any consistent system ,that is, map B should furnish fo r  each y E R ( A ) ,  

some solution X = B y  such tha t  y = ABy, one obtains as defining property of  B 

Maps B: M + N , which satisfy this relaxed type of  inverse condition are now called generalized 

inverses o f  A. 

I n  the geodetic l i terature there is an overwhelming l is t  o f  papers which deal w i th  the theory o f  

generalized inverses (see e.g. Teunissen, 1984a and the references c i ted i n  it). It more or less started 

wi th the pioneering work o f  Bjerhammar (Bjerhammar, 1951) ,who defined a generalized inverse for  

rectangular matrices. And a f te r  the publication o f  Penrose (Penrose, 1955) the l i terature o f  

generalized inverses has prol i ferated rapidly ever since. 

Many o f  the published studies, however, follow a rather algebraic approach making use o f  anonymous 

inverses which merely produce a solution t o  the linear system under consideration. As a consequence 

of  this anonymity the essential concepts involved i n  the problem of  inverse linear mapping of ten stay 

concealed. Sometimes it even seems that  algebraic manipulations and the stacking of  theorems, 

lemma's, corollaries, and what have you, are preferred t o  a clear geometric interpretation o f  what 

real ly is involved i n  the problem o f  inverse linear mapping. 

I n  this chapter we therefore approach the problem o f  inverse mapping f rom a di f ferent  viewpoint. 

Our approach is based on the idea that  once the causes o f  the inverse mapping problem are classified, 

also the problem o f  inverse mapping i tsel f  is solved. The following reminder may be helpful. We know 

that  a map is uniquely determined once i ts  basis values are given. But  as the theorem o f  the next 

section shows, condition (1.3) does not ful ly specify a l l  the basis values o f  the map B. Hence i t s  non- 

uniqueness. This means, however, tha t  analogously t o  the case where a basis o f  a subspace can be 

extended i n  many ways t o  a basis which generates the whole space, various maps satisfying (1.3) can 

be found by specifying their fai l ing basis values. 

To give a pictor ia l  explanation o f  our procedure, observe that i n  the general case o f  rank A = r < 

min.(m,n), the nullspace EJu(A) c N and range space R(A) c M both are proper subspaces. That is, 



they do not coincide w i th  respectively N and M (see figure 4). 

d irn. Nu(A) 

= n-rank 

N : parameter space M : observation space 

dirn.R(A) = rank A 

Now, just l ike there are many ways i n  which a basis of a subspace can be extended to a basis which 

generates the whole space, there are many ways to extend the subspaces Nu(A) c N and 

R ( A )  c M to  f i l l  N and M respectively .(see figure 5). 

figure 5 

L e t  us choose two arbitrary subspaces, say S c N and  C O  c M ,  such that the direct sums 

S e Nu(A)  and R(A)  e C O  coincide w i th  N and h( (see figure 6). 

N : parameter space M : observation space 

d im. 

dim. 

R(A) = rank A 

0 
C = m r a n k  A 

N = S EI Nu(A) figure 6 M = R ( A )  s C O  



The complementarity of S and Nu ( A )  then implies t h a t  t h e  subspace S has a dimension which equals 

tha t  of  R(A)  , i.e. dim. S = dim. R ( A ) .  But this means t h a t  map A, when restr ic ted t o S ,  

A is bijective. There exist the re fore  linear maps B: M + N which, when restr ic ted t o  R(A), 
Is 

become t h e  inverse of A (see figure 7): 
Is 

A I  = I  and A = I .  
B ~ R ( A )  s IS '1 R(A) 

d im. 

figure 7 

The inverse-.like properties (1.4) a r e  thus t h e  ones which replace (1.2) in t h e  general case  of rank A = 

r < min.(m,n). The second equation of (1.4) can be rephrased a s  ABA = A, and therefore const i tutes  

t h e  classical definition of a generalized inverse of A. The f i rs t  equation of (1.4) s t a t e s  t h a t  

In t h e  next  sect ion we  will prove what  is already intuitively clear,  namely t h a t  equation (1.5) is 

equivalent t o  the  classical definition (1.3), and therefore (1.5) can  just a s  well be used a s  a definition 

of a generalized inverse. In fac t ,  (1.5) has t h e  advantage over (1.3) t h a t  i t  clearly shows why 

generalized inverses a r e  not  unique. The image of S under A is namely only a proper subspace of M .  

To find a particular map B which satisfies (1.5), we  therefore need t o  specify i t s  failing basis values. 

2. Arbitrary inverses uniquely character ized 

In this sect ion we  will follow our lead t h a t  a map is only uniquely determined once i t s  basis values a r e  

completely specified. 

As said, t h e  usual way t o  define generalized inverses B of A is by requiring 

This expression, however, is not a very illuminating one, since i t  does not te l l  us what  generalized 

inverses of A look like o r  how they can be computed. We will therefore rewr i te  expression (2.1) in 

such la  form t h a t  i t  becomes relatively easy t o  understand t h e  mapping character is t ics  of B. This is 

done by t h e  following theorem: 



Theorem 

l0 A B A = A - For some unique S c N , 
complementary t o  Nu(A), 

B Ax = X,  V X E S , holds. 

Proof of l0 

(+) From premult iplying ABA = A w i th  B follows BABA = BA. The map BA is thus idempotent 

and therefore a projector f rom N in to N. 

From ABA = A also follows that  Nu(BA) = Nu(A). 

To see this, consider X E Nu(BA). Then BAx = 0 or ABAx = Ax = 0, which means that X E 

Nu(A). Thus Nu(BA) c Nu(A). Conversely, i f  X E Nu(A), then Ax = 0 or BAx = 0, which 

means X E Flu(BA). Thus we also have ?JU(A) c pu(BA). Hence Nu(f3A) = Nu(A). 

Now le t  us denote the subspace R(BA) by S, i.e. R(BA) = S . The projector property 

o f  BA then implies that BAx = X, V X E S .  And i t  also implies that 

N = R (BA) c Nu(BA) .With R(f3A) = S and Nu(BA) = Nu(A) we therefore 

have that N = S c Nu (A) . Hence the complementarity o f  S and Nu(A). 

(C) From N = S c Nu(A) follows the complementarity of  S and Nu(A). We can therefore 

construct the projector PS, = I - PNu(A),S. With this projector we can now replace 

B A x  = X,  V X  E S , 
by 

B A Nu(A) 
X = P 

S, NU(A)', vx  E N .  

And since A PS, N ~ ( ~ )  = A( I - PNu(A) ,S ) = A, we get 

or finally, a f te r  premult ipl ication w i th  A ,  

A B A x  = Ax, Vx € N .  

Proof of z0 

We omi t  the proof since it is straightforward. 



The above theorem thus makes precise what already was made intuit ively clear i n  section one. 

There are now two important points which are put forward by the theorem. F i rs t  o f  all, it states that  

every linear map B: M + N which satisfies 

w i th  N = S e Nu(A), is a generalized inverse o f  A. And since 

R ( A )  = A N  = I y  E M I y = A x  f o r  some X E N 1 
= {y E M I y = A x  f o r  some x = x  + X  X E S  , X  E NU(A) )  

1 2 '  i 2 
= {y E M  I y = AX f o r  some X ESI  
= A S ,  

this implies that  a generalized inverse B of A maps the subspace R ( A )  c M onto a subspace S c N 

complementary t o  Nu(A). Map B therefore determines a one-to-one relat ion between R(A) and S, and 

is injective when restr ic ted t o  the subspace R(A). 

A second point that  should be noted about the theorem is that  it gives a way o f  constructing arbitrary 

generalized inverses of A. To see this, consider expression (2.2). Since R(A) = A N  = A S, expression 

(2.2) only specifies how B maps a subspace, namely R(A), o f  M.  Condition (2.2) is therefore not 

suff icient for  determining map B uniquely. Thus i n  order t o  be able t o  compute a part icular 

generalized inverse o f  A one also needs t o  specify how B maps a basis o f  a subspace complementary 

t o  R (A). L e t  us denote such a subspace by C O  c M , i.e. M = R ( A )  e C O  Then i f  ei, i= l ,  ...,m, 

and e", %l, . . . , n , are bases o f  M and N , and Cp li e , p = l  , . . . , (m- r ) , ') forms a basis o f  

CO, a part icular generalized inverse B of  A is uniquely characterized by specifying i n  addition t o  (2.2) 

how it maps CO, say: 

I i a 
B C  e = D  e l , .  . . m ;  l , .  . . n ;  p , .  . . , m -  (2.3) 

P i P a '  
(Einstein's summation convention). 

a 
Thus i f  V denotes the subspace spanned by D e , we have, 

P " 
0 

B C O  = V  c N ,  w i th  M =  R(A)  e C . (2.4) 

Although the choice for V c N is completely free, we wi l l  show that  one can impose an extra 

condition, namely V c Nu(A) ,  without affecting generality. Note that  point 2' o f  the theorem 

says that  A B  is a projector, projecting onto the rangespace R(A) and along a space, say to , 
complementary to  R(A). With (2.4) we therefore get that  

l i 
S) The kernel le t te r  "$lv expresses the fac t  that  C 6. .C' = 0 ,  i,j = l,...,m; p=l, ...,(m- r); 

I t  P 1 1  9 
q = l, ..., r, or i n  matr ix  notation tha t  ( C ) C = 0 

pxm mx(m-p )  p x ( m - p )  



But this means that  i f  B is characterized by mapping CO onto D, there exists another subspace of  M  

complementary t o  R(A) which is mapped by B to  a subspace of  Nu(A). We can therefore just as wel l  

s tar t  characterizing a part icular generalized inverse B of  A by (2.2) and (2.41, but  now wi th the 

additional condition that D c Nu(A) . 
Summarizing, we have for the images o f  the two complementary subspaces R(A)  = A S  and CO 

under B: 

A few things are depicted i n  figure 8. 

B A S = S  and  B C O  = D , 
wi th  

= S m Nu (A) ,  M =  R ( A )  m C O  

and 

D c Nu(A) 

N : parameter space M : observation space 

(2.5) 

dim. S = rank A dim. R(A) = rank A 

0 
dim. C = m-rank A 

D C= Nu(A) 
figure 8 

Our objective o f  finding a unique representation o f  an arbitrary generalized inverse B o f  A can now 

be reached i n  a very simple way indeed. The only thing we have to  do is t o  combine (2.2) and (2.3). I f  

we take the coordinate expressions o f  B and A t o  be 

a i 
and A e  = A e  , 

i B = B i e a  a a i 

where e . , i = l, . . . ,m , and e , a =  l, . . . , n are bases o f  M and N, and i f  we take as bases of  
I a 

S, CO and D, 
a l i a 

S e , C e .  and D e , p = l ,  ..., ( m - r ) ;  q = l ,  ..., r ,  
q a  P 1 P a 



then (2.2) and (2.3) can be expressed as 

and 

which gives i n  matr ix  notation 

I 
B ( A  S 

n x m m x n  n x r  .mxym- r ) )  = ( n 8 r  : n x y m - r ) )  

I 
Now, since the subspaces R(A) = A S  and CO are complementary, the mxm matr ix  (AS : C ) has 

fu l l  rank and is thus invertible. The unique representation o f  a part icular generalized inverse B o f  A 

therefore becomes 

- 1 
B = ( S  : D ) ( A S  C' ) 

n xm n x r  n x ( m - r )  m x r  m x ( m - r )  

A more symmetric representation is obtained if we substitute the easily 

verif ied mat r ix  identity 

I I 
wi th  U' = R(A)' = NU(A'), in to (2.7) (recall that  C and U are matr ix  representations o f  respectively 

the subspaces CO and f): 

With (2.7) or (2.8) we thus have found one expression which covers all the generalized inverses of A. 

Furthermore we have the important result that each particular generalized inverse o f  A ,defined 

through (2.2) and (2.3), is uniquely characterized by the choices made for  the subspaces S, 

complementary t o  Nu(A), C O  complementary t o  R(A) and D, a subspace of Nu(A). 



I n  the next two sections we w i l l  give the interpretation associated w i th  the three subspaces S, CO 

and D. Also the re lat ion w i th  the problem of solving an arbitrary system of  linear equations w i l l  

become clear then. 

3. Injective and surjective maps 

From the theorem of  the previous section we learnt that  the inverse-like properties 

hold for any arbitrary generalized inverse B of  A. That is, the maps BA and AB behave l i ke  identity 

maps on respectively the subspaces S c N and R(A) c M . Thus in the special case that rank A = r 

= n, the generalized inverses of A become left-inverses, since then BA = I. And similarly they become 

right-inverses i f  rank A = r = m, because then AB = I holds. 

I n  order to  give an interpretation o f  the subspace S c N , le t  us now f i rs t  concentrate on the special 

case that  rank A = r = m. 

I f  rank A = r = m then R(A) = M , which implies that the subspaces complementary to  R(A) reduce to  

CO = { 0 )  . With (2.5) we then also have that  D = { 0) (see figure 9). The general expression o f  

right-inverses therefore readily follows f rom (2.8) as 

dirn. S 

d im. Nu (A) 

= S ( A S ) - '  , w i t h  N =  S a b!u(A) ~ 
nxm mxm 

N : parameter space M : observation space 

d im. R (A) 

N = S e Nu(A) M = R(A) 
figure 9 



Thus the  only subspaces which play a role in t h e  inverses of sur ject ive maps a r e  t h e  subspaces S 

complementary to  Nu(A). 

In order  t o  find ou t  how (3.2) is r e la ted  to  the  problem of solving a system of linear equations 

y = A  X ,  
m x l  mxn n x l  

(3.3) 

for which matr ix  A has  full row rank m, f i rs t  observe t h a t  t h e  system is consistent for all 
m mx n 

y E R . With a par t icular  generalized inverse (right-inverse), say B , of A , and 
n xm mx n 

Y 6 l =  Nu(A) , t h e  solution s e t  of (3.3), which actually represents  a linear manifold m N, can  

the re fore  be wr i t t en  a s  

{ x } = { x I  X = B y +  V' 
n x l  a 1 .  n x l  n x l  n x l  n x ( n - r ) f n - r ) x l  

By choosing a , say  a :  = a l  , we get  thus a s  a par t icular  solution x l  E { X )  : 

I 
X = B y + V a  
1 1 ' 

n x l  n x l  n x l  

where al so to  say contr ibutes  the  e x t r a  information, which is lacking in y, t o  determine xl. Since 

R(B) = S , i t  follows from (3.4) t h a t  

I t  I c a l  l (silt X1 = ( ( S  ) v 1 al - - C 
1 

(3.5) 
( n - r ) x n  n x l  ( n - r ) x ( n - r )  ( n - r ) x l  ( n - r ) x l  

But this means tha t ,  s ince a l  o r  c l  contr ibutes  t h e  ex t ra  information which is lacking in y to  

de te rmine  xl, equation (3.5) and (3.3) together  suff ice  t o  determine xl uniquely. O r  in o ther  words, 

t h e  solution of t h e  uniquely solvable system 

[ :l] = [ ( Z Y ]  

( m + n - r ) x l  ( m + n - r ) x n  n x l  

is precisely xl: 

I t I - l  

1 = [ ( : I ) J 1  1 1 = ( s ( ~ s ) - l  : vL"s 1 v 1 )[:l] , 

n x l  n x ( m + n - r )  ( m + n - r )  n x ( n - r )  ( m + n - r ) x l  

0 
with V = Nu(A) . 

Thus w e  have recovered t h e  rule, t h a t  in order  to  find a par t icular  solution t o  (3.3), say  xl, w e  merely 



need t o  extend t h e  sys tem of linear equations from (3.3) t o  (3.6) by introducing t h e  additional 
I t  

equations c = ( S  ) X ,  so  t h a t  t h e  extended matr ix  
1 

becomes square and regular. Fu thermore  t h e  corresponding right-inverse of A is obtainable f rom t h e  

inverse of this extended matrix. 

L e t  us now consider t h e  case  rank A = r = n. Then all generalized inverses of A become left-inverses. 

Because of t h e  injectivity of A we have t h a t  i t s  nullspace reduces t o  Nu(A)  = { o }  . But this 

implies t h a t  S = N  and V = { o }  , since V c Nu ( A )  . (see figure 10). 

N : paramete r  space  M : observation space 

d im. S 

R(A) = rank A 

= r = n  

cO = m-n 

N = S  M =  R(A) e CO 

figure 1 0  

X X X 
For  t h e  dual map  A : M  + we therefore  have a s i tuat ion which is comparable  t o  the  one 

sketched in figure 9 (see figure 11). Now, taking advantage of our result  (3.2), w e  find the  general  

matrix-representation of a n  arbi t rary generalized inverse B* of A* t o  be 

t t -1 
B = C ( A C )  . 

mxn mxn n x n  

M* : es t imator  space  N* : co-parameter  space 

d irn. C = 

rank A = 

* 
d irn. Nu(A ) = 

X 
dim.S = rank A 

= r = n  

X 
M = C NU(A*) N* , S 

figure 11 



The general expression of  left-inverses therefore readily follows as  

B = ( C  A )  C w i t h  M =  R(A) a C c 
Thus dual to  our result (3.2), we find t h a t  the  only subspaces which play a r8le in the  inverses of 

injective maps, a r e  the  subspaces CO complementary t o  R(A). 

With the  established duality relations i t  now also becomes easy to see  how (3.8) is re lated t o  t h e  

problem of solving a generally inconsistent but otherwise uniquely determined system of linear 

equations 

y = A X , w i t h  r a n k  A = r = n.  
m x l  rnxn n x l  

The dual of (3.6) modified to  our present situation gives namely 

And dual t o  (3.7), the unique solution of (3.10) is given by: 

We therefore have recovered the  dual rule t h a t  in order t o  find a particular solution t o  (3.9), we need 

t o  extend t h e  system of linear equations from (3.9) t o  (3.10) by introducing additional unknowns such 

tha t  the  extended matr ix 

X . I -1 
= ( A . C )  y =  

( A :  C' ) 
rnxn m x ( r n - r )  

( C  A )  C 

I t l - l  

becomes square and regular. Furthermore t h e  corresponding left-inverse of A is obtainable from t h e  

inverse of this extended matrix. 

( n + m - r ) x l  ( n + r n - r ) x m  m x l  ' ( n + r n - r  ) xrn mx l 

0 % 
w i t h  U = Nu(A ) . 



4. Arbi t rary systems o f  l inear equations and arbitrary inverses 

I n  the previous section we showed that  a part icular solution of  an underdetermined but otherwise 

consistent system of  linear equations could be obtained by extending the matr ix  A rowwise. And 
mx n 

especially the principal role played by the subspace S c N complementary t o  Nu(A) in  removing 

the underdeterminability was demonstrated. Similarly we saw how consistency o f  an inconsistent, but 

otherwise uniquely determined system o f  linear equations was restored by extending the mat r ix  

A columnwise. And here the subspace c O c  M complementary t o  R(A) played the decisive 
mx n 
role. We also observed a complete duality between these results; for  the dual of  an injective map is 

surjective and vice versa. 

These results are, however, s t i l l  not general enough. I n  part icular we note that  the subspace 

D c Nu(A) was annihilated as a consequence of the assumed in ject iv i ty  and surjectivity. The 

reason for  this w i l l  become clear i f  we consider the interpretation associated w i th  the subspace D .  

Since S n D = { o }  it follows f rom expression (2.8) that R(B)  = S s D . With dim.S= dim R(A) 

= rank A we therefore have that  rank B 2 rank A, w i th  equality i f  and only i f  D = { o }  . But this 

shows why the subspace D gets annihilated in  case of  injective and surjective maps. The l e f t  (right) 

inverses have namely the same rank as the injective (surjective) maps. From the above i t  also 

becomes clear that  the rank o f  B is completely determined by the choice made for  D. I n  part icular B 

w i l l  have minimum rank i f  D is chosen to  be D = { o }  , and maximum rank, rank B = min.(m,n), i f  

one can choose D such that dim. D = min.(m,n)-r. Now to see how the subspace D C Nu(A) gets 

incorporated i n  the general case, we consider a system of  linear equations 

y A X , wi th  rank A = r < min.(m,n), (4.1) 
m x l  mxn n x l  

i.e. a system which is possibly inconsistent and underdetermined a t  the same time. From the rank- 

deficiency of  A in (4.1) follows that  the unknowns X cannot be determined uniquely, even i f  

y E R(A)  . Thus the information contained in  y is not suff icient t o  determine X uniquely. Following 

the same approach as before, we can a t  once remove this underdeterminability by extending (4.1) t o  

But although the extended matr ix  o f  (4.2) has fu l l  column rank, the system can s t i l l  be inconsistent. 

To remove possible inconsistency we therefore have to  extend the matr ix  of  (4.2) columnwise so that  

the resulting matr ix  becomes square and regular. Now since M = R(A)  e, C O  , the fol lowing 

extension is a feasible one: 

0 , w i t h  M = R ( A )  @ C . 
0 l ; l  

( m + n - r ) x l  ( m + n - r ) x ( m + n - r )  ( m + n - r ) x l  



But the most general extension would be 

w i th  N = S s Nu(A),  M = R (A)  s C O  and X being arbitrary. The unique 
( n - r ) x ( m - r )  

solution o f  (4.3) is then given by: 

w i t h  N = S e Nu(A) , M = R(A) e C O ,  v0 = Nu(A) and  U' = NU(A*) . 
I I t I - 1  1 t 

I n  this expression we recognize, i f  we put -V (S  ) V ) X = D or X = - ( S  ) D ,  our 

general mat r ix  representation (2.8) of an arbitrary generalized inverse B o f  A. Thus as a 

generalization o f  (3.7) and (3.11) we have: 

w i th  V' = Nu(A) and  U' = NU(A") . 

This result then completes the circle. I n  section one namely, we started by describing the geometric 

principles behind inverse linear mapping. I n  section two these principles were made precise by the 

stated theorem. This theorem enabled us to  f ind a unique representation concerning a l l  gene raked  

inverses B of a linear map A. I n  section three we then specialized to injective and surjective maps, 

showing the relat ion between the corresponding inverses and the solutions o f  the corresponding 

systems o f  linear equations. And f inal ly this section generalized these results to arbitrary systems of 

linear equations whereby our general expression of generalized inverses was again obtained. 



5. Some common type of inverses and their relation 

tothe subspaces S ,  C and D 

With our interpretation of the three subspaces S , C and D ,  and an expression l ike (2.8) it now 

becomes very simple indeed to derive most of the standard results which one can f ind i n  the many 

textbooks available. See e.g. (Rao and Mitra, 1971). As a means of exemplif ication we show what r8 le 

is played by the three subspaces S ,  C and D in  the more common type of inverses used: 

- least-squares inverses - 

L e t  M be Euclidean wi th  met r ic  tensor (. , .)M and l e t  Q : M * + M be the covariance map 
- 1 Y 

definedby Q y = ( Y , . ) ~ .  
v 

We know fro; chapter one that for 

t o  be a least-squares solution o f  m i  n . ( y - A  X ,  y - A  x ) ~  , 
X 

A B = P  I, wi th  U = R ( A ) ,  

u,u 
must hold. From (2.8) follows, however, that  i n  general 

Namely, expression (2.8) shows that  

t -1 t 
A B  = A S ( C A S )  C .  
mxm mxm 

And since 

-1 t 
A S ( C ~ A S )  C .  C' = 0 p 

mxm mx (m- r ) mx (m- r ) 

and 

t -1 t 
A S ( C A S )  C . A S  = A S  , 

mxm m x r  m x r  

it follows that  (5.3) is the matr ix  representation of the projector P From comparing (5.1) and 
U C O '  

(5.2) we thus conclude that  least-squares inverses are obtained by chodsing 



while S and D may s t i l l  be chosen arbitrarily. I n  matrices condition (5.4) reads 

C' = Q U ' 
Y 

m x ( m - r )  mxm m x ( m - r )  

-- minimum norm inverses - 

r 
L e t  N be Euclidean wi th  metr ic  tensor (. , .) and l e t  Q : N + N be the covariance map 

- 1 N X 
definedby Q X = ( X , . )  . 

X 
F or N 

t o  be the minimum norm solution of m i  n .  ( X ,  X ) subject to  y = A X,  ; must be the 
X N 

orthogonal projection of the origin onto the linear manifold specified by y = A X.  Hence, 

must hold. With the same reasoning as above we then f ind that the minimum norm inverses are 

obtained by choosing 

while C O  and D may s t i l l  be chosen arbitrarily. In  matrices condition (5.7) reads 

S =  Q V .  
X 

n x r  n x n  n x r  
o r l 

Note that  since (5.7) implies that  S = R ( A  ) , (5.4) and (5.7) are dually related. 

- maximum- and minimum rank inverses - 

I n  the previous section we already indicated that  by varying the choices for  D C N u  ( A )  one could 

manipulate the rank o f  the corresponding generalized inverse. Inverses w i th  maximum rank min.(m,n) 

were obtained i f  one could choose D such that d im. D = m i  n. (m, n )  - r , and minimum rank 

inverses were characterized by the choice D = { U } .  

As we w i l l  see in  the next section the minimum rank inverses are by far  the most important fo r  

stat ist ical applications. 

There is an interesting transformation property involved i n  the class of minimum rank inverses, which 

enables one to transform from an arbitrary inverse to a prespecified minimum rank inverse. To see 

this, recal l  that  a minimum rank inverse, B1 say, of A, which is uniquely characterized by the choices 

S C O  and D = { U } ,  satisfies the conditions 
1' 1 1 



And it can be represented as 

B A x  = X ,  B c O = { O 1  , 
1 

V x E S 1 ;  1 1  

with 
0 0 

Nq  S o V 0  = BIR(A) o V , h ! =  U .  C = A S 1  o N U ( B ~ )  
1 1 

and 

U =  R ( A ) ,  V 0  = N u ( A )  . 

But the linear map A i tsel f  also satisfies similar conditions. For an arbitrary generalized inverse, B 

say, o f  A we have namely 

(5.9) 

A B y  = y ,  V y E U ;  A V 0 =  { o ) ,  

wi th 
0 0 M =  U o C = A R ( B )  o C O ,  N = S  o V = B U  c N u ( A )  

and 

u = R ( A ) ,  V '  = N U ( A )  . 

Upon comparing (5.11) w i th  (5.9) we therefore conclude that the linear map A is representable i n  a 

way similar to  that  o f  B1 i n  (5.10), i.e. 

w i t h  U = R ( A ) ,  V = Nu (A) '  and where B may be any arbitrary inverse of A. Now, 

substitution of (5.12) in to  (5.10) gives 

t -1 t t -1 t 
B 1 

= ( S  ( V  S1) V 1. B . (u(c lu )  cl 1. 
n xm 

1 
n x n  n xm mxm 

I n  this last expression we recognize the matr ix  representations of the projectors P and 
S1, Nu(A)  

P o. Thus we have found the transformation rule 
R ( A )  ,C 

I I  

which shows how t o  obtain a prespecified minimum rank inverse f rom any arbitrary generalized 

inverse of A. Because of the reciprocal character o f  minimum rank inverses - A is namely again an 

inverse o f  i t s  minimum rank inverses - they are often called ref lex ive inverses. 



- minimum norm least-squares inverses -- 

The minimum norm least-squares solution 

o f  an inconsistent and underdetermined system o f  linear equations 

y 1 A X ,  w i th rank A = r < m i n . ( m , n ) ,  

is defined as the solution for  which IL is the minimum norm solution of  

and y is the least-squares solution o f  (5.15). 

Since the minimum norm solution of  (5.16) is given by 

where the inverse 6 of A is characterized by (5.7), and the least-squares solution o f  (5.15) is given 

by 

i = P 1~~ with U = R (A) ,  (5.18) 
u,u 

it follows f rom the combination of  (5.17) and (5.18) together w i th  the transformation rule (5.13), that 

the minimum norm least-squares inverse of  A is uniquely characterized by 

Note that  since no freedom is l e f t  i n  choosing the three subspaces, the minimum norm least-squares 

inverse must be unique. 

I n  the special case that both N and M are endowed wi th  the ordinary canonical metric, the minimum 

norm least-squares inverse is commonly known as the pseudo-inverse. 

- constrained inverses - 

0 
So far we have been careful  i n  stating the complementarity conditions for S c N and C c M . I n  

the method o f  prolonging a mat r ix  this was reached by adding the minimum number o f  

equations needed to  the system A X so that  determinability of  X was restored, and the 
m X l  mxn  n x l  

minimum number o f  unknowns so that the prolonged matr ix  became square and regular, i.e. so that 

consistency was restored. 



Sometimes, however, one can come across the situation where the system of  linear equations . L 

A A X is appended wi th  the restrictions (TL) L x  = c q > n - r .  That is, w i th  the 
m l mxn n x l  q x n  n x l  q x l '  

restrictions that  X should l i e  i n  a linear manifold parallel t o  a subspace T which is a proper subspace 

of an S, complementary t o  Nu(A) . I n  this case T thus fails t o  be complementary t o  Nu(A) . 
Although this situation di f fers f rom the ones we considered so far, it can be handled just as easy. By 

the method o f  prolongation we get namely 

0 
w i th  T c S , N = S m Nu(A), M = A T  m C . 
The solution o f  (5.20) then follows as 

t -1 t 
where mat r ix  T ( C  A T )  C is known as a constrained inverse of A (see e.g. Rao and Mitra, 1971). 

n xm 
Other types o f  constrained inverses can be obtained i n  a similar way. 

To conclude this section we have summarized, i n  order t o  faci l i tate reference, the basic results i n  

table 1. 



z m n  
,I I, 3 

- U ,  4 :  
n . -  
',L 0 :  

5 B-; 

"I., - ,  

v -. m 
"b. 
U 

0 

3 
U +. 



6. C- and S -transformations 

Now that  we have found a geometric characterization of the inverse linear mapping problem, l e t  us 

return to  the linear estimation problem which was considered in  chapter I. 

Consider the linear model 

As we know (see (1.1.6)) the necessary and sufficiency conditions for the linear function 
..X 

h ( y )  = 6 + ( y , y )  to  be a linear unbiased estimator (LUE) of ( y* ,  9 )  , are: 
S 

f - *  i = ( y s -  y ,yl) forsome y r 
1 

and 

- X  0 .  
That is, y needs to  be a point on the linear manifold { yX) + U In M * (see figure 12). 

S 

figure 12 

- f 
I t  w i l l  be clear that  every point y on this linear manifold can be obtained by choosing an 

X * 
appropriate subspace C c M complementary to  U' and then projecting the l - f o r m  y s  along the 

0 
linear manifold { y*) + U onto C .  Hence, 

S 

o r i f  U =  A N ,  



X - 
With (6.2) then follows that the class of linear unbiased estimable functions of ( y , y )  is given by: 

S 

X X 
where = { y } + A N and C c M is arbitrary provided that  M = C e, NU(A'). Every 

1 
such linear function is thus uniquely characterized by the choice made for  C .  And by varying the 

choices for C one varies the type of unbiased estimator. Since the projector P always 

projects along the nullspace o f  A* (see figure 13), we have that C, N ~ ( A ' )  

figure 13 

The transformation between the corresponding l - fo rms is therefore given by 

and i n  accordance w i th  the current terminology one could cal l  such transformations, C -  

transformations 

A typical example i n  which a part icular choice for C is made can be found in  the method of averages 

due to  T. Mayer (Whittaker and Robinson, 1944, p. 258). In  this method, which is sometimes used for  

polynomial approximations (see e.g. Morduchow and Levin, 1959), C is chosen such that the equations 

of a linear system y = A X are separated into n groups and af ter  that groupwise summed. 
1 Although more o f  e%hpye% can be given, the most common applied estimator is of course the 

BLUE'S estimator which is, as we know, characterized by the choice C = N U  It is 

interesting to  note though, that  since every (oblique) projector can be interpreted as an orthogonal 

projector w i th  respect to  an appropriate met r ic  tensor, every unbiased estimator can be interpreted 

as a BLUE's estimator w i th  respect t o  an appropriate covariance map, a fac t  which was already 



pointed out by (Baarda, 1967b, p. 34). To see this, assume that 

u ( c t u ) - l c t  , w i t h  U =  R(A) a n d  M =  R(A) e CO,  

is a mat r ix  representation o f  the oblique projector P R(A), CO' 

With the symmetric and positive-definite mat r ix  

follows then that 

Thus the problem of  comparing di f ferent  unbiased estimators can i n  principle be restr icted t o  the 

problem of analyzing the e f fec t  of assumptions on the metr ic  tensor. See e.g. (Krarup, 1972). 

- )i ( c )  
Now l e t  us assume that  we have picked one part icular l - form, y say. I t  follows then f rom (6.4) 

that  the corresponding unbiased estimate o f  E N c M is given by: 

* ( c )  )i 
Y = Y1 + P (ys-yl) 9 

or C, N ~ ( A * )  
- ( c )  - 
Y - y 1  

+ P (ys-y , ) ,  wi th  y E M . 
R(A) , CO 

1 

And since the problem of removing inconsistency is i n  the above context of linear estimation 

essentially the problem of  finding the estimate 9") , one could say that one has concluded the 

actual adjustment problem once is computed. I n  practice, however, one often requires a 
- ( c ?  

parameter representation o f  y E N. And here is thus where the actual inverse mapping 

problem enters. That is, i n  order to  f ind a parameter representation o f  one needs a particular 

pre- or inverse image of 9 ( C ) - y  E A N  under A. By means o f  a generalized inverse, B say, o f  A 
1 

such an inverse image is obtained as 

- ( c )  
From the transformation ru le (5.13) and (6.7) follows then that  every inverse image of Y - Y 1  
under A can be wr i t ten  as 



wi th  N = S  m Nu(A) and M* = C m N U ( A * ) ,  and where 6 is allowed t o  be any arbitrary 

inverse o f  A. The estimate 1' ''I is thus uniquely characterized by the choices made for  C and S .  

To understand what X A ( * ') actually estimates, consider the following equivalencies: 

* * ( c )  

( y S 9 y 1 )  + ( Y  ,Y-Y, )  is a LUE of 

* -  - * 
( Y , * Y ) ,  Y , Y l  E P = { Y ~ }  + AN , V  Is E M *  i g 

* f 
( y S s y 1 )  + ( p  y,, y - y l )  is a LUE o f  

C ,  N ~ ( A * )  

( P  
-*  f . B  x s , y - y l )  i s a L U E o f  

C ,  N ~ ( A * )  
* 

( X ,  X )  , V  X :  E R ( A * )  , arbitrary inverses B* of A* ; 2 

( P  .B*. P 
f 

X , y - y  ) i s a L U E o f  
C ,  N ~ ( A * )  R ( A * )  ,so S 

1 

f - 
( x s , p  . B . P  ( y - y l ) )  i s a L U E o f  

S ,  Nu(A) R ( A ) ,  CO 
* 

( X ~ 9 P ~ ,  N U ( A )  X ) ,  v X : E N *  . 

I n  other words X 
( S )  - 

A ( is an unbiased estimate o f  X - 
' S ,  Nu(A) 

X ,  but not of  X itself. This 

subtle difference as to  what X A ( s " )  actually estimates has sometimes been a source o f  confusion. 

See e.g. (Jackson, 1982). 

Since the projector P  
S,  Nu(A) 

always projects along the nullspace o f  A  (see figure 14) we have that  



figure 14  

The transformation between the various inverse images of y - y under A is therefore given by 

Such transformations a r e  now known a s  S-transformations. They were f i rs t  introduced by Baarda in 

t he  context  of f ree  networks and used t o  obtain an invariant precision description of geodetic 

networks (see e.g. Baarda, 1973; Molenaar, 1981; Van Mierlo, 1979; or  Teunissen, 1984a). Baarda has 

used the  te rm "S-transformation", since the  projector PS  nu(^) is in case of geodetic networks 
9 

derivable from the differential Similarity transformation. In the above general context, however, i t  

would perhaps be more appropriate t o  call transformation (6.10) a Singularity transformation. This a s  

opposed t o  the Consistency transformation (6.6). 

Note the  grea t  resemblance between (6.6) and (6.10). From this comparison also follows t he  duality 
% 

result t ha t  the C-transformations of A a r e  the S-transformations of A , or, the  projector 
3f 

C ) 
is the  S-transformation of A and the  projector P is t he  C-transformation 

S, Nu(A) 
of h . 

In this section we have seen how the inverse linear mapping theory applies t o  the  problem of linear 

estimation. We have seen that  the  actual  problem of adjustment and t he  actual  problem of inverse 

mapping, although dually related, a r e  essentially two problems of a different kind. Were we only 

interested in adjustment, i.e. in removing inconsistency, then we would only be concerned with the  

subspace C C M*. But if one, in addition t o  removing inconsistency, is also interested in f ind inga  

particular pre- or inverse image of 9") E R(*) under A, then t he  choice of S c N comes t o  

t he  fore. We would like t o  stress here the  importance of the definite ordering: first adjustment and 

then inverse mapping, since i t  shows tha t  in an estimation context no grea t  value should be at tached 
- ( s , c )  of t o  the subspace D .  In f a c t  the  only inverses of A which map ys into the pre-image X 

$ ( c ) ,  a r e  the  minimum rank inverses ( D = ( 0) ) . And in particular one should be aware tha t  
- ( S )  one can not ge t  an arbitrary pre-image X E N of the  least-squares es t imate  

9 = P  
1)'s , by mapping y E M with an arbitrary least-squares inverse of A into N. 

R ( A ) ,  R(A) 
S 



1. Introduction 

In the  preceding chapter  we have seen how t o  character ize an arbi t rary inverse of a linear map 

A: N + M uniquely. In particular we saw how by choosing CO complementary t o  R(A) one could 

make an inconsistent system of linear equations consistent, and how S complementary t o  Nu(A) gave 

a way of restoring determinability. We also noted tha t  although inconsistency and 

underdeterminability generally occur  simultaneously if rank A = r  < min.(m,n), the  actual  problem of 

adjustment, i.e. the  problem of removing inconsistency, and t h e  actual  problem of inverse mapping 

a r e  essentially two problems of  a different kind. They can therefore be deal t  with separately. 

In this chapter  we will concentrate  on the  actual  inverse mapping problem of geodetic networks. As 

an exemplification of t h e  theory of S -transformations we discuss the  non-uniqueness in coordinate 

system definitions and construct  s e t s  of base vectors for  Nu(A). We also discuss the  related problem 

of connecting geodetic networks. 

Section two is devoted t o  the  inverse mapping problem and section th ree  t o  the  problem of 

connecting networks. In section two we discuss successively the  planar, ellipsoidal- and th ree  

dimensional case. Although we recognize t h a t  the  inverse mapping problem of two dimensional planar 

geodetic networks has already been discussed a t  length in the  geodetic l i terature (see e.g. Teunissen, 

1984a, and t h e  references listed therein), we have rei terated some of the  theory since i t  indicates 

very well the  principles involved. Generalization t o  the ellipsoidal- and th ree  dimensional case  

becomes then ra ther  straightforward. 

For  pract ical  ellipsoidal networks an interesting fea ture  turns out  t o  be t h e  numerical ill-conditioning 

of the  inverse map. One will find namely t h a t  even a f t e r  the  admit ted degree of f reedom of the  

ellipsoidal model is taken c a r e  of,  the est imated geodetic coordinates of practical ellipsoidal 

networks still  lack precision. As a consequence t h e  estimation problem of t h e  ellipsoidal model turns 

out  t o  be  not too different  from t h a t  of t h e  planar model. 

In our discussion of th ree  dimensional networks we make a distinction between local surveys and 

networks covering a large area. For  local surveys (e.g. for  the  purpose of construction works), i t  is 

likely t h a t  one is only interested in describing t h e  point configuration of the  network. Therefore, for  

such networks S -transformations t h a t  only transform coordinates (and their  CO-variances) will do. As 

an example we have given an analytic expression of the  th ree  dimensional S-transformation 

advocated by (Baarda, 1979). For  large networks however, i t  will not be sufficient t o  consider only 

the  coordinate transforming S-transformations. In these cases  one is a lmost  surely also interested in 

a description of t h e  fundamental directions like local verticals and t h e  average terrestr ia l  pole. Tha t  

is, besides t h e  network's point configuration also the  configuration of t h e  fundamental directions 

becomes of interest  then. Hence, we also need S-transformations t h a t  transform both coordinates 

and orientation parameters. 

Having given t h e  various representations of Nu(A) which a r e  needed t o  derive t h e  appropriate S -  



transformations, we turn our attention i n  section three to  the problem of  connecting geodetic 

networks. Without exaggeration one can consider this problem of  comparing and connecting 

overlapping pointfields t o  be almost omnipresent in  geodesy. In  cartography fo r  instance, the problem 

occurs when digit ized map mater ia l  needs t o  be transformed t o  a wel l  established known coordinate 

system such as a national system. And i n  photogrammetry when photogrammetric blocks need t o  be 

connected w i th  terrestr ial coordinate systems or in  case of  stripwise block adjustment when the 

various strips need to be connected (Molenaar, 1981b). Also i n  surveying practice where densification 

networks need to be t ied  to  existing (often higher order) networks the connection problem appears 

repeatedly (Brouwer et.al., 1982). And on a more global scale when connecting satel l i te networks t o  

national networks (Adam et.al., 1982). Even in  case of  gravity surveys one sometimes needs t o  

connect networks, e.g. relat ive gravity networks to existing wel l  established absolute gravity 

systems. And f inal ly similar problems are encountered in deformation analysis (Van Mierlo, 1978). 

There networks measured a t  two or possibly more epochs need to  be compared in  order t o  a f f i rm  

projected geophysical hypotheses. 

I n  a l l  the above cases the same principles for  connecting networks can be applied although o f  course 

the elaboration can d i f fe r  f rom application to  application, depending e.g. on the information available 

and the purposes one needs to  serve. That  is, although di f ferent  solution strategies exist, a l l  methods 

re ly on the self-evident principle that  the only information suited for  comparing networks, is the 

information which is common t o  both networks. 

I n  our presentation we w i l l  discuss three methods for  connecting geodetic networks. Although a l l  

three alternatives are considered to  some extent i n  the geodetic literature, the t reatment below 

accentuates some aspects which are not discussed elsewhere. 

2. Geodetic networks and their degrees of freedom 

2.1. Planar networks 

L e t  us commence, in  order to f i x  our minds, w i th  the simple example o f  a two dimensional planar 

triangulation network i n  which only angles are measured (see e.g. f igure 15). 

figure 15 

A f te r  adjusting the network (using e.g. a f i rs t  standard 

problem formulation) we obtain a consistent set o f  

adjusted angles which determines the shape o f  the 

network. I n  order t o  describe this shape we have many 

possiblities a t  hand. Each set of  mutually independent 

adjusted angles for  instance, w i l l  do. I n  practice, 

however, one usually wants the result o f  an adjustment 

t o  be presented by means of  coordinates, since they 

are more manageable than individual angles. The 

advantage of  working w i th  coordinates is namely that, 

once they are introduced, they a l l  have one and the 



same reference in  common. The benefit  being that  w i t h  coordinates the relat ive position o f  any two 

points in  a network is easily obtained without need to  bother about the way i n  which these two 

network points are connected by the measured elements. Consequently, coordinates are very 

tractable for  drawing maps or making profiles of the whole or parts o f  the network. 

With this motivation in  mind we are thus looking for  a way t o  present our results of adjustment by 

means of (cartesian) coordinates. 

However, i n  order t o  compute coordinates we f i rs t  need t o  f i x  some reference, i.e. in  the case of a 

planar triangulation network we need t o  f i x  the position, orientation and scale of the network. One 

way t o  accomplish this is o f  course by f ixing two points of the network,i.e. by assigning arbitrary and 

non-stochastic coordinates to  two points o f  the network. For instance, we can star t  by f ixing the 

points P1 and P2 and then compute, w i t h  the aid o f  the adjusted angles, the coordinates of the points 

P3, P4, P5 and P6. Or, we can f i x  the points P3 and P1, and then compute the points P4, P5, P6 and 

P2. L e t  us fo r  the moment leave i n  the middle which two points we fix. Let's just cal l  them Pr and PS. 

We then can wr i te  (see figure 16) 

y =  y r  + I c o s A  + I c o s  (A  + n  + a  1 
I r S r S S i r S r s  i 

figure 16 

Linearization o f  (2.1) gives (the upperindices "on indicate the approximate values): 

0 0 0 0 0 
Ax  = A x  + X  A l n l  AA + X  A l n l  AA +y  Aa 

i r r s  r s + ' r s  r s  s i  s i + ' s i  r s  s i  r s i  

0 0 0 0 0 
A y i  = Ay  + y  A l n l  - X  AA +y  A l n l  - X  AA - X  Aa 

r r s  r s  r s  r s  s i  s i  s i  r s  s i  r s i  

which we can wr i te  as 

o 
X 
r i  

0 

' r i  

A x  
r 

A y  

A A ~  
r S 

A l n l  
r s  ' 



Since a l l  the angular type of information is collected i n  the f i rs t  te rm on the right-hand side of (2.3) 

we see that, i n  order to  be able to  introduce coordinates, we need to  assign B pr ior i  values to  the 

second term. One way is of course to  take points P, and PS as reference- or base points by assigning 
0 0 

to  them the non-stochastic approximate coordinates X O y: and x , y , i.e. by assuming that 
r ' 

A x  r 
= Ayr = Mrs = A l n l r s  = 0 or 

The coordinates o f  any other point Pi of the network are then computed as 

where the upperindices (r,s) indicate that  these coordinates are computed w i th  respect t o  the 

basepoints P, and PS. 

Although the choice of f ixing the two points P, and PS i n  (2.3) is an obvious one, there are also other 

ways o f  introducing coordinates. One could for  instance take two other points of the network as base 

points, or f i x  linear combinations o f  the coordinate increments of network points. Essential is, 

irrespective the choice made, that  the positional-, orientational- and scale degrees o f  freedom of the 

network are taken care of. This is best seen by observing that (2.3) combined wi th  (2.5) essentially 

constitutes the two dimensional d i f ferent ia l  similari ty transformation: 

which follows f rom linearizing 

under the assumptions that  2 = 1 ,  @O=0 and t: = t O = 0. 
Y 

Since there are many different ways of introducing coordinates, it is important that one recognizes 

that i n  general 



Hence, i f  one wants to  compare two sets of coordinates, where the two sets are computed f rom two 

different and independent observational campaigns - for instance for  the purpose of a deformation 

analysis - it is essential that these coordinates are a l l  defined w i th  respect to  the same reference. 

Now i n  order to  get a l l  coordinates i n  the same reference system one needs to  be able to  transform 

from one system to  another. 

For the above defined (r,s)-system this transformation is easily obtained. 

From substituting 

into (2.3) follows namely w i th  (2.5) the transformation rule 

(2.9) 

which shows how to  transform from an arbitrary coordinate system to  the prespecified (r,s)-system. 

To f ind the general procedure for  deriving such transformations, note that  the definit ion of the (r,s)- 

system and the derivation of (2.9) followed f rom the decomposition formula (2.3). With (2.5) and (2.8) 

this decomposition formula reads i n  matr ix  notation as 

where 
t 

X = (Ax ,Ayr,Axs,Ay Ax. ,Ay .. .) , 
r I i 

X 

and 



Decomposition (2.10) is however, just one o f  the many possible decompositions of  X. An  alternative 

decomposition follows i f  we premult iply (2.10) by 

I 
where R(Si) is arbitrary but  complementary t o  R(V ) . We then get 

or 
t 1 t S 1 I t l - l  I t  

X = SCV S.) v X +v ( ( 5 . )  V ) (Si) X . 
L 1 I 

(2.11) 

And this expression decomposes X just l ike (2.10) into a f i rs t  part, which contains a l l  the angular type 

of  information and a second part  for which additional a pr ior i  information is needed. Now, just l ike 

decomposition (2.10) suggested to  choose the restrictions (2.4), (2.11) suggests that  we take 

The coordinates of  the network points are then computed as 

where the upperindex (si) refers t o  the choice (2.12). And analogously to (2.10) we f ind f rom 

substituting (2.13) into (2.11) that 

Hence the transformation to  the (si)-system is given by 



This is the general expression one can use for deriving transformations l ike (2.9). We thus see that  in  
I 

order to  derive such a transformation we only need to  know R(V ) and to  choose an (S: ) such 
I 

that  R(S ) is complementary to  R(V ) . 4 X ,!I 

So far we discussed planar networks o f  the angular type. But  formula (2.14) is o f  course val id for 
I 

other types o f  networks too. The only difference is that we need to  modify R(V ) accordingly. For 

a network i n  which azimuths and distances are measured for instance, we f ind f rom 

that  

i.e. the appropriate (differential) s imi lar i ty  transformation is in  this case the one i n  which scale and 

rotat ion is excluded. 

To l ink up w i th  the theory of the previous chapter note that  it follows f rom 

that  i n  case of, for instance, an angular type o f  network a l l  linear(ized) functions o f  the angular 

observables are invariant to the di f ferent ia l  similari ty transformation (2.6). Thus i f  the adjustment of 

the planar triangulation network o f  e.g. figure 15 is formulated as 

then 

Hence we recognize transformation (2.14) as an example o f  an S-transformation, i.e. 

Fol lowing (Baarda, 1973) we w i l l  therefore cal l  the coordinate systems corresponding w i th  choices 

l ike (2.121, S-systems. 

A t  this point of our discussion i t  is perhaps f i t t ing  t o  make the following 



I 
remark concerning the choice of S = R( S ) complementary to R( V ) 

Some authors, when dealing wi th free network adjustments, prefer t o  take the coordinate system 

definit ion corresponding t o  the choice 

This is of  course a legit imate choice, since it is just one of  the many possible. However, we cannot 

endorse their claim that  one always should choose (2.20) because it gives the "best" coordinate system 

definit ion possible. 

They mot ivate their claim by pointing out that the covariance map o f  the pre-image o f  the BLUE'S 

estimate 9 of 7 = Ax corresponding w i th  the choice (2.201, has minimum trace, i.e. that  

t r a c 4  (I-?( (V') 'vI) -'(V') (I-V'( (V') 'V') - l ( v L )  t ) } <  - t r a c e  Q 
* ( S )  

fo r  a l l  pre-images o f  under A. 

This i n  i tsel f  is true o f  course. I n  case o f  free networks however, i t is unfortunately without any 

meaning. A l l  the essential information available is namely contained i n  whereby is nothing 

but  a convenient way o f  representing this information. A theoretical basis for  prefering (2.20) does 

therefore not exist i n  f ree network adjustments. A t  the most one can decide to  choose (2.20) on the 

basis o f  computational convenience which might  i n  some cases be due to  the symmetry o f  

I -v'( (V') tv') - l ( v L )  t .  

One could also rephrase the above as follows: Since every (oblique) projector can be interpreted as an 

orthogonal projector wi th respect t o  an appropriate chosen metric, the difference between the w i th  

choice (2.20) corresponding S-system and another arbitrary S-system can be interpreted as the 

difference i n  choosing a parameter-space norm, w i th  (2.20) corresponding t o  the canonical 

parameter-space norm. And since there is no reason to  prefer one part icular norm above another, we 

do not have, as i n  physical geodesy, a norm choice problem i n  f ree network adjustments. 

2.2 Ellipsoidal networks 

So far  we discussed the inverse linear mapping problem of  planar geodetic networks. But  l e t  us now 

assume that  we have t o  compute a geodetic network, the points o f  which are forced to  l ie  on a given 

ellipsoid of  revolution, defined by 

where a and b are respectively the ellipsoid's major and minor axes. 

I n  view o f  the foregoing discussion the three main questions we are interested i n  are then: (i) how 

does the theory of  S-transformations apply t o  the ellipsoidal model, (ii) how does i t  compare to  the 



results we already obtained for  the planar case and ( i i i )  what are the consequences for  practical 

network computations. 

On an intu i t ive basis it is not too d i f f i cu l t  to  answer these three questions provisionally. From the 

rotational symmetry o f  the ellipsoid o f  revolution follows namely that the ellipsoidal model w i l l  a t  

most admit one degree o f  freedom. And since this degree of freedom is o f  the longitudinal type it 

follows that  the ellipsoidal counterpart of transformation (2.6) w i l l  read as 

where AAi is the geodetic longitude increment of point Pi and AeZ the di f ferent ia l  rotat ion angle. 

Hence, transformation (2.22) can be used to  derive the appropriate S-transformations for  the 

ellipsoidal model. 

As to  the second question, i f  one wants to understand i n  what way and to what extent the ellipsoidal 

model dif fers f rom the planar model, we need a way of comparing both models. One can achieve this 

by considering the planar model as a special degenerate case of the ellipsoidal model. Assume 

therefore that  we are given a geodetic triangle (i.e. a triangle bounded by geodesics) on the ellipsoid 
2 2 2  2 of revolution (2.21). By let t ing e =(a -b )/a , the f i rs t  numerical eccentricity squared, approach zero 

we get for  the l i m i t  e 2 +  0 that  the ellipsoid of revolution becomes a sphere w i th  radius R:=a=b. 

Consequently, the given ellipsoidal triangle w i l l  become a spherical triangle for  which then spherical 

geometry applies. Now, i f  we further proceed by le t t ing  the spherical curvature approach zero then 

for  the l i m i t  R + the sphere becomes identifiable w i th  i ts  own tangent planes. Hence, for  

increasing values o f  R the spherical triangle w i l l  ult imately reduce to  an ordinary planar triangle. 

Summarizing one could therefore say that the difference between ellipsoidal geometry and planar 

Euclidean geometry is pr imar i ly  made up by the two factors e2 and R. And one can thus expect that  

i f  both the ellipsoidal eccentricity factor e2 and the spherical curvature 1/R are small enough, no 

significant differences w i l l  be recognizable between ellipsoidal geometry and planar Euclidean 

geometry. 

But  what about the admitted degrees o f  freedom? We note namely a drastic change in  the maximal 

number of admitted degrees of freedom when the two l im i ts  e2  + 0 and R + W are taken: the 

ellipsoidal model only admits the longitudinal degree o f  freedom, whereas the planar model admits a 

maximum of four degrees of freedom. Stil l, despite this difference i n  admitted degrees o f  freedom it 

seems reasonable to  expect that the actual estimation problem of the ellipsoidal model w i l l  not  be 
2 too di f ferent  f rom that of the planar model i f  e and 1/R both are small enough. Consequently, it can 

be questioned whether i n  this case transformation (2.22) suffices to  characterize the degrees o f  

freedom admitted by the ellipsoidal model. Theoretically it does of course. But  for practical 

applications it becomes questionable whether the rotational degree o f  freedom as described by (2.22) 
2 is the only degree of freedom the ellipsoidal model admits i f  both e and 1/R are small. 

This then brings us to  the th i rd question concerning the consequences for practical network 

computations. Namely, the smaller e2 and 1/R get the worse the conditioning of the ellipsoidal 

networks' design mat r ix  A can expected to  be. That is, although theoretically the maximum defect o f  



A equals one, it can be expected that  for small enough values of e2 and 1/R more than one of the 

columns of the design mat r ix  A w i l l  show near linear dependencies. As a consequence one can 

therefore expect that  the il l-conditioning of A w i l l  a f fec t  the estimation of the explanatory variables 

X i n  the linear model = A X .  Intu i t ively one can understand this by real izing that  the almost 

collinear variables do not provide information that is very dif ferent f r om that  already inherent i n  

others. I t  becomes d i f f i cu l t  therefore t o  infer  the separate influence of such explanatory variables on 

the response 7.  Consequently, the potential harm due to  the il l-conditioning o f  the design matr ix  

arises f rom the fact  that  a near collinear relat ion can readily result i n  a situation i n  which some of 

the observed systematic influences of the explanatory variables X on the response is swamped by the 

model's random error term. And it w i l l  be clear that  under these circumstances, estimation can be 

hindered. 

To f ind out whether fo r  pract ical  ellipsoidal networks the estimation o f  geodetic coordinates is 

indeed hindered by the expected il l-conditioning of A, one can fol low different but  related routes. 

One way is t o  investigate numerically to  what extent the shape o f  an ellipsoidal network as measured 

by i t s  angles, can considered to  be invariant to  a change of i t s  position, orientation and scale. 

Another way is to  compute the non-zero singular values o f  A or the non-zero eigenvalues of the 
t normal mat r ix  A A. Eigenvalues small relat ive t o  the largest eigenvalue of the normal matr ix  w i l l  

then ref lect  the poor conditioning o f  A. And f inal ly one could t r y  t o  show analytically that  the 

estimated geodetic coordinates lack precision i f  only the longitudinal degree of freedom is taken care 

of. 

The f i rs t  approach, which is based on the idea that fo r  planar geodetic networks of the angular type 

the invariance to  position, orientation and scale changes is complete, has been followed by (Nibbelke, 

1984). And he found that  fo r  pract ical  ellipsoidal triangulation networks one can indeed consider the 

network's position, orientation and scale as non-estimable. That is, one is, just as i n  the planar case, 

forced to  f i x  four linear independent functions of the geodetic coordinate increments. The theoretical 

deformations of the network's shape, which possibly fol low f rom these restrictions, are then 

negligible. The same conclusion was also reached by (Kube and Schnkldelbach, 1975), who used the 

second approach. The reported eigenvalue computations which were performed for  the European 

network show that  in  case of, fo r  instance, an ellipsoidal triangulation network, four eigenvalues of 

the normal mat r ix  w i l l  be so small that  a sensible estimation of the network's position, orientation 

and scale is not  attainable. This conclusion is also in  agreement w i th  the result found by (Krarup, 

1982a), who indicated that  the position of a tr i lateration network on an ellipsoid of revolution is 

practical ly non-estimable. 

As an example and also to  support the above mentioned findings we w i l l  now show analytically that  

the estimation o f  geodetic coordinates indeed lacks precision i f  only the longitudinal degree of 

freedom is taken care of. For  this purpose assume that  we have a fu l l  rank linear model 

- 
y = A x  

m x l  mxn n x l '  

t 
i n  which x2 of X = (x l  x i )  has been identif ied as the parameter which is degraded by the ill- 

conditioning o f  A. 

- L '  

m x l  m x ( n - l )  r n x l  n x l  



follows then that  the column vector A2 depends almost linearly on the columns o f  Al. Using the 

reparametrization 

we can wr i te (2.23) as 

or as 

w i th  

t -1 t t -1 t F =  A ( X  + ( A A )  A A  X ) + ( I - Q  ( A A  ) A ) A 2 x 2  
1 1  1 1  1 2 2  1 1 1  1 

- - 
y = A x  + A x  (2.24) 

1 1  2 2 '  

t -1 t A = ( I - A  ( A A )  A ) A .  (2.25) 
2 1 1 1  1 2  

From the fac t  that  A2  depends almost linearly on the columns of A1 now follows that  one can 

reasonably expect A to  be a rather short column vector. Geometrically this is seen as follows. 
t - I  t Since I -A1 (AIA1 ) A1 is an orthogonal projector, we have that  (see figure 17) 

t t -1 t t 2 A ~ A  = A ( 1 - A  (A  A ) A ) A  = A A s i n  0, 
2 2 2 1 1 1  1 2  2 2 

where 0 denotes the angle between A2 and i t s  orthogonal projection on the subspace spanned by the 

columns of Al. 

f igure 17 

From the near linear dependency o f  A1 and A 2  thus follows that the angle 0 w i l l  be small. Hence, 

the length o f  A can be expected to  be small i f  the length of A is not too large. 
2 

Y 
3 

Now i f  we assume the covariance map of y to  be Q = a I, it follows f rom (2.24) and the 
2 

orthogonality of Al and A that  the variance ox of x2 is given by 
2 2 

= ---- - --------- - ..................... - 
X - t -  t 2 t t -1 t 

2 A A A A s i n  0 A ( I - A  ( A  A ) A1)A2 
2 2 2 2 2 1 1 1  

Hence, the estimation of x2 lacks precision i f  the length of A is too small. Thus i n  order to  f ind out 
2 

to what extent the diagnosed ill-conditioning of A affects the estimation o f  x2 we need t o  have a 

reasonable estimate of (2.27). 

Since we know that  the possible lack o f  precision of the estimated parameter x2 is a consequence o f  



the near linear dependency between A1 and A2, it follows that there must exist a vector, z say, for  

which 

A z = v  l 

is small enough. From wr i t ing (2.28) as 

we get 

Hence, expression (2.27) can also be wr i t ten  as 

t t -1 t t 
With v ( I -A1 (AIA1 ) A1 )v  ( v v , we then get the lower bound 

Thus i f  we are able to  f ind a vector z such that the length o f  A z = v is small enough, we can use 

the lower bound of (2.30) to  prove that the estimation of x2 indeed lacks precision. 

Now, to  apply the above to  our case of ellipsoidal networks, recall  that  we made it plausible that  the 

difference between ellipsoidal, spherical and planar Euclidean geometry can considered to  be 
2 insignificant i f  both the factors e and 1/R are small enough. One can therefore expect that  for  small 

enough values of e2 and 1/R, the eigenvectors of spherical- and planar networks' design matrices 

belonging to  zero eigenvalues are the proper candidates for the z-vector of (2.28). For  this purpose 

we thus f i rs t  need to f ind the spherical analogon of (2.3) (or (2.15)). 

We w i l l  s tar t  f rom the three dimensional d i f ferent ia l  similari ty transformation 

( A t  '1 

With 



where  @ i  , A. and hi a r e  respect ively  t h e  geode t i c  l a t i t ude ,  longitude and g e o m e t r i c  height  above  
I 

t h e  ell ipsoid of point  Pi ,  and Ni, Mi a r e  t h e  eas t -wes t  and north-south radi i  of cu rva tu re ,  o n e  c a n  

r e w r i t e  (2.31) in geode t i c  coord ina te s  a s  

0 0 0 0 0 . .  

0 0 .  0 0 .  0 .  0 2 2 0  0 0 .  
- s i n Q . c o s A  . - s i n @ .  s i n k  . c o s + .  . - ( N .  ( 1 - e  s i n  Q. ) + h .  ) s i n 1  . 

I i .  1 i .  I .  I 1 1 i .  
0 0 .  0 0 .  0 .  2 0 0 0 0 

c o s Q . c o s  A . .  c o s  @ ,  s i n k .  . s i n @ ,  . - e  N . c o s Q , s i n @ . s i n A .  

2 
( ~ ~ ( 1 - e  1 

0 2 
( N .  ( 1 - e  s 

l 
2 0 0 

e N . c o s  Q 
1 i 

0 0 
Q,  c o s  A 0 

I i 

i J  . 1 I 1 I i ,  

c o s  @ . c o s  A .  - s i n @ . c o s A  - s i n X .  
I I I i 1 
0 0 0 0 0 

c o s @ ,  s i n 1  i n  i n  c 
1 i 1 i i 

0 0 
s i n @ .  c o s  @. o 

A 
I 

A y  
I 

AZ 

Ah . 
l 

( ~ ' + h ( l ) ~ @ ~  
i I 

0 N O C O S  $. A A  

0 0 
c o s Q . s i n @  

1 i 
2 2 0  

. - e  s i n  @. ) 
I 

= 9 

(2.32) 

Since  t h e  network points  a r e  fo rced  t o  l ie  on t h e  ellipsoid of revolution, w e  mus t  have  t h a t  

0 
h = 0 and h i  = 0 V i  = 1, ... 

i 

Hence ,  i t  fo l lows f r o m  (2.32) t h a t  

0 0 0 0 0 2 0 0 0 0 
0 = c o s Q . c o s A . A t  + c o s Q . s i n A . A t  + s i n Q . A t  - e  N . c o s Q . s i n @ . s i n A . A ~  + 

I I X I 1 Y l Z l l l l X 

2 0 2 2 0  + e N . c o s Q O s i n Q O c o s  I 1 1 A ~ A E  + N Y ( ~ - e  s i n  $ i )  AK , 
Y 

V i = 1, ... 



But this means t h a t  for a regular network (i.e. a network which excludes cases like X i  = constant,  

V i = 1,  . . . ) si tuated on an ellipsoid of revolution we have tha t  

which confirms our ear l ier  s ta tement  t h a t  the  ellipsoidal model only admits  the  longitudinal degree of 

freedom. 

In an analogous way we can  find the type of degrees of freedom admit ted by the  spherical model. In 

spherical coordinates Ri, $i  and A .  transformation (2.32) will namely read a s  
1 ' 

0 0 0 0 .  0 0 0 .  . C O S A  . 0 . R . s i n $ . c o s ) , .  . R . s i n $ . s i n ~  .- 
i . I I I .  I I i .  

+ 
0 0 

- s i n $ . c o s A  
I i 
0 0 

c o s  0. c o s  A 

(2.36) 

And by set t ing 

0 

0 

RO 

i ,  I i 

0 
R i  = R and ARi = 0 Vi = 1, ..., (2.37) 

' A t '  

~t~ 

~t 
z 

A E X  

A E  
Y 

A E  
z 

, A K  , 

we ge t  t h a t  

f rom which follows with (2.36) t h a t  t h e  spherical counterpart  of (2.6) is given by 

(2.39) 

To find t h e  expression which corresponds t o  (2.3) (or (2.15)), we first need t o  know the relation 
t 

between ( A E ~ , A E  and ( A $ ,  , A A r  , A A r s )  t .  This is given by 
Y 



Substitution of (2.40) into (2.39) then gives 

0 .  
c o s h  . 1 

' i .  o o 0 .  o o o o o 
----- . s i n @ . s i n ( A . - A  ) . R s i n @ . c o s @  c o s ( A  - A  ) - R c o s @ . s i n @  I 0 .  1 l r .  1 r i r 1 O r I 

The spherical analogon of (2.3) (or (2.15)) then finally follows from substituting 

I 
i r 

- s i n  --- s i n  A = s i n  ( + a - @  )sine(.-A ) 
R i r r 1 r 

= c o s @  s i n ( A . - A  
r I r 

and 

1 
i r 

s i n  --- c o s ( 2 n - A  ) = s i n ( + n - $ . ) c o s ( i n - @  1 - c o s ( ~ n - & ) ~ i n ( + n - @ ~ ) c o s ( ~  - A  ) 
R i r 1 r I i r 

into (2.41): 

0 
s i n  A 

i 

+ 

(2.42.a) and (2.42.b) follow from applying t h e  sin-rule sin a/sin A = sin b/sin B and the  so-called five- 

elements'  rule sin c cos a - cos c sin a cos B = cos A cos b (see figure 18) of spherical geometry. 

c o s  @ . 
r .  

0 0 
1 

i r 
0 . c o s ( A  - A  ) . R s i n  --- 

i r R 
\ 



Expression (2.43) shows that  not surprisingly the 

spherical model admits a maximal number o f  three 

degrees of freedom, a l l  o f  which are of the rotational 

type. Hence, we f ind that theoretically speaking the 

scale o f  a spherical network is estimable. Even i f  only 

angles are measured. Those who are famil iar w i th  

global aspects o f  dif ferential geometry know this of 

course already f rom the Gauss-Bonnet formula. When 

applied to  the sphere, this formula says that  for a 

triangular region bounded by three geodesics the sum 

of  the spherical triangle's interior angles minus a 

figure 18 equals the ra t io  o f  the area enclosed by the triangle 

and the radius o f  the sphere (see e.g. Stoker, 1969). We 

are here thus confronted w i th  a situation where angles alone suff ice to  determine scale. But  stil l, 

although scale is theoretical ly estimable, one can expect, as was made clear in  the foregoing 

introductory discussion, that  i f  the spherical curvature is small enough scale w i l l  only be very poorly 

estimable. And indeed it turns out that  for  practical spherical networks, scale can be considered as 

non-estimable. See for instance (Molenaar, 1980a,p.20) or the earlier c i ted references. 

I n  the same manner it is concluded in  these publications that the scale, orientation and position o f  

practical ellipsoidal networks, can considered to  be non-estimable. To support these findings we wi l l  

now show analytically, that  the geodetic coordinates lack precision i f  only the longitudinal degree o f  

freedom of  the ellipsoidal model is taken care of. For this purpose consider expression (2.43). The 

three columns o f  the mat r ix  on the right-hand side o f  (2.43) span the nullspace o f  the design matr ix  o f  

a spherical triangulation network, whereas the f i rs t  column vector provides a basis o f  the nullspace o f  

an ellipsoidal network's design matrix. Thus, i f  the eccentricity factor e2 is small enough one can 

expect that  both the second and th i rd column vector o f  (2.43) get almost annihilated by the ellipsoidal 

network's design matrix. Hence, we can use one of these vectors, say 

to  obtain an estimate o f  the lowerbound (2.30) via (2.28). 

L e t  us consider as an example an ellipsoidal t r i la terat ion network. According t o  (Helmert, 1880, p. 

282) the ellipsoidal distance observation equation reads as: 

(2.45) - 
where A .  denotes the ellipsoidal geodesic azimuth f rom Pi t o  P.. We wi l l  abbreviate (2.45) as 

1 j J 



- 0 - 0 - 0 - 0 t 
where a = (... - s i n A  , - c o s A  , - s i n A  - c o s A  , ...I 

k i j  i j j i ,  j i 

is the kth rowvector of the ellipsoidal network's design matrix and 

Using (2.44) we get  

t - 0 0 0 0 - 0 0 0 
V = a z = - s i n A  s i n @ . s i n ( X . - X  ) - c o s A  c o s ( X  - X  ) 

k k i j I I r i j i r 

- 0 0 0 0 - 0 0 0 
- s i n A  s i n @ . s i n ( X  - X  ) - c o s A  c o s ( ) ,  - X  ) . 

j i J j r j i j r 

I t  will be c lea r  tha t  if t h e  network is s i tuated on a sphere, then V k = O .  L e t  us therefore identify 

geodesic coordinates with spherical coordinates. With 

1 I 

where A.. denotes the  spherical azimuth between the  points P i  and P which a r e  obtained from 
11 j ' 

identifying geodesic coordinates with spherical coordinates, and linear approximations like 

s i n  A = s i n  A + c o s  A AA , 
i j i j i j  i j  

we can rewri te  (2.47) a s  

0 0 0 0 0 0 0 
V = ( s i n  A c o s ( X  - X  ) - c o s  A s i n @ , s i n ( X . - X  ) ) A A  + 

k i j i r i j I I r i j 

(2.48) 
0 0 0 0 0 0 0 

+ [ s i n  A c o s ( X . - X  ) - c o s  A s i n @ , s i n ( X  - X  ) ) A A  . 
j i J l- j i J j r j i 

Repeated application of t h e  sine-rule and five-elements' rule of spherical geometry and 

1 2  
1 A A  . 1 1 A A  . 1 e (see Helmert,  1880, p. 2891, 

1 J J 1 

then finally gives 

From this es t imate  and (2.30) thus indeed follows t h a t  in case  of pract ical  ellipsoidal networks (1.. = 
1J 

64 km, R =  6400km,  o = f l ~ - ~ . l  i j '  e = 1 / 3 0 0  ) geodetic coordinates will lack precision if 

only the  longitudinal degree of freedom is taken c a r e  of. 



2.3. Three dimensional networks 

Now t h a t  we have considered the  inverse mapping problem in two dimensions i t  is not too difficult t o  

generalize t o  th ree  dimensions. 

We will f i rs t  assume t h a t  only angles and distance rat ios  a r e  measured in the  th ree  dimensional 

geodetic network. The generalization of (2.1) to  th ree  dimensions becomes then rather  

straightforward. To s e e  this, observe tha t  we can wri te  (2.1) a s  

(2.50) 

where t h e  action of the  matr ix 

equals t h e  act ion of 

' 0 l O ] ' I ~ ~ S ~ ~ A ~ ~ '  I r s s i n A r s '  

with "X" denoting t h e  vector- or cross product. 

With (2.51), expression (2.50) therefore suggests the  following generalization t o  three dimensions: 

l r s c o s A  - --- c o s  a 1 - --- 
I s i  l r s s i n A r s X  ' s i  

X i 
y 
z 

, i ,  

where Zrs denotes  t h e  vertical angle of t h e  line PrPs (see figure 19.a) and n = (nln2n3It is t h e  unit 

normal of t h e  plane through t h e  points P,, PS and P i  (see figure 19.b) defined a s  

r s  

I s  i - --- 
I s r  s i n  a r S  

-1 0 0 r s i  ' r s C o S A r s  ' s r  
l r s ~ ~ s A  

r S 

= 

l r s s i n  Z r s s i n  A r s Y  

n 2  X l r s s i n  Z r s c o s  A r s  

s i n a  r s  i ' s r 
\ 

l r s s i n  Z r s s i n  A r s  ' 

1 s i n  Z r s c o s  A r S r S 

- ' r s C o s  ' r s  

, 

, 0 0 0  0 

I s i  
l r s s i n  Z s i n  A r s  r S 

- --- 
l r s  

r S 

X r 

y r  
z 
. r ,  

' n l ]  [ \ n 3  l r sCOS Z r S I 

0 

+ 



figure 19 

We thus see that  one way of introducing coordinates for  three dimensional networks of the angular 

type is by start ing to  f i x  the two points P, and PS. This would then take care of six degrees o f  

freedom. Namely, three translational degrees of freedom, two rotational degrees of freedom and one 

freedom of scale. The remaining rotational degree o f  freedom, namely rotat ion of the network around 

the l ine PrPs, is then taken care of by f ixing the direction o f  the uni t  normal n i n  the plane 

perpendicular to  the l ine PrPs. The so defined coordinate system thus corresponds to  f ixing two points 

P, and PS, and the plane through these two points and a th i rd point, P t  say. Following (Baarda, 1979) 

we w i l l  denote this S-system as the (r,s;t)-system. The ( S  
I t 

) - matr ix  by which the (r,s;t)- 
( r , s ;  t )  

system is defined then follows f rom the restrictions 

0 o o o t  
where n = ( n  n n ) can be computed f rom (2.53) for i = t using approximate values. With 1 2 3  

which follows f rom the three dimensional dif ferential similari ty transformation (2.311, 

straightforward application of (2.14) then gives 



Expression (2.56) can be considered as the natural generalization o f  (2.9). Namely, i f  we restr ic t  our 

attention i n  (2.56) t o  the Ax,  Ay-  parts o f  the points Pi, P, and PS and take 
0 0 z. = 0 V i  = l, ..., andalso n o  - 1 - n 2  = 0 ,  n; = - 1, we obtain (2.9) again. 
1 

' 0  

I n  deriving the three dimensional S-transformation (2.56) we assumed that only angles and distance 

ratios were observed. But  this assumption is generally only valid in  local  three dimensional surveys 

(e.g. construction works). I n  large three dimensional networks, one w i l l  usually have besides the 

angles and distance ratios also direction measurements l ike astronomical azimuth, lat i tude and 

longitude a t  ones disposal. It is l ikely then that one is not only interested in  the (cartesian) 

coordinates describing the network's configuration but also i n  the orientation (and possibly scale) 

parameters describing fundamental directions l ike local verticals and the earth's average rotat ion 

axis. It seems therefore that  for  large three dimensional networks transformations l ike (2.56), which 

only transform coordinates (and their CO-variances) do not real ly suffice. And this becomes even more 

apparent i f  one thinks o f  connecting such networks. For  large networks we therefore need S- 

transformations that also transform orientation (and scale) parameters. 

Now before deriving such S-transformations l e t  us f i rs t  draw a parallel w i t h  the two dimensional 

planar case. Since i n  practice the observation equations are usually wr i t ten  down in  terms o f  

directions r.. and pseudo-distances I.. instead of  i n  terms of angles and distance ratios, the parameter 
11 11 

vector X o f  the linear model = Ax  w i l l  contain besides the coordinate increments also orientation- 

and scale unknowns. Hence, the linear model of  two dimensional planar networks w i l l  i n  practice be 

of  the same form as that of  large three dimensional networks: 

with, xl: coordinate unknowns; x2: orientation- and/or scale unknowns. 

Thus also i n  case of  two dimensional networks one can in  principle decide to  involve the orientation- 

and scale unknowns i n  the many S-systems possible. O f  course i n  practice one w i l l  not do so, since i n  

two dimensional planar networks these unknowns are generally of  no part icular interest. But  stil l, l e t  

us, fo r  the sake of  comparison between the two- and three dimensional case, pursue the idea o f  

t ,  
, O '  

involving these unknowns i n  the many S-systems possible. 

Consider for this purpose a two dimensional planar network w i th  direction- and pseudo-distance 

measurements r.. and I... I n  figure 20 a part of such a network is drawn. The theodolite frames i n  
11 11 

points P, and Pi are shown by dashed lines and the directions P P -  , P .  P: are the directions o f  
r r 1 1  

1 X 1 
+ ------------- 0 

+ ----------W-- 

r s  r t  r s t  

' 
, O '  

zero reading. 

' 0  
X 

0 t r  

Ybr 
z t r  , 

0 
"1 

"2 

X 

0 
r i  

' Y s i  

z i ,  

A X S  ' 
A y  s 

."3, IAzs, 



figure 20 

Analogous t o  (2.1) we can then wri te  

And linearization gives 

t t t 
Hence, if the  unknowns in t h e  linear model (2.57) a r e  ordered like X = ( x l  x 2  ) = 

( . . . AX Ay . . . . A e i  , AI n l c i .  . . ) , i ts  nullspace would read as  

A legi t imate  choice fo r  defining an  S-system would therefore  be 

Tha t  is, instead of fixing coordinates like we did in (2.4) we may just a s  well fix one network point, 

one direction of zero-reading and one scale  parameter.  The corresponding S-transformation then 

follows from (2.59) a s  



w h e r e  t h e  upperindex (r)  i nd ica t e s  t h a t  t hese  p a r a m e t e r s  a r e  def ined through t h e  r e s t r i c t ions  (2.61). 

N o t e  by t h e  way t h a t  o n c e  one  includes  or ienta t ion-  and s c a l e  pa ramete r s ,  one  ac tua l ly  e x t e n d s  t h e  

not ion of ne twork  conf igurat ion t o  cove r  both  t h e  point-configuration and a t t i t u d e s  of t h e  theodo l i t e  

f rames.  And in f a c t  t h e  d i rec t ion-  and pseudo-distance observables  r . .  and  1.. a r e  then  in t e rp re t ab le  
11 11 

a s  angles  and  d i s t ance  ra t ios .  They b e c o m e  t h e  invar iants  of t r ans fo rma t ion  (2.62). 

Now l e t  us r e t u r n  t o  t h e  t h r e e  dimensional c a s e  and gene ra l i ze  t h e  foregoing t o  t h r e e  dimensions. We 

will s t a r t  by assuming t h a t  only hor izonta l -  and ve r t i ca l  d i r ec t ion  m e a s u r e m e n t s  r.. and Z.. and 
11 '1' 

pseudo-distance m e a s u r e m e n t s  I.. a r e  available.  We consider  t h e  following t w o  types  of r ighthanded 
11 

o r thonormal  t r i ads  ( see  f igu re  21). 

l0 T h e  r e f e r e n c e  f r a m e  E I  , I = 1 , 2 , 3 ;  

I t  is  t o  th is  r e f e r e n c e  f r a m e  t>at t h e  coord ina te s  xi, yi, z i  r e fe r ,  i.e. t h e  posit ion v e c t o r  of point 

P i ,  deno ted  by X ( P i  ) = X'  ( P i  ) E I  , has  wi th  r e s p e c t  t o  t h e  f r a m e  E t h e  componen t s  
=l '2 '3 I 

( P i )  = X .  
l 

( P . )  = y i ,  ( P .  = 2 . .  
l l l 

2' T h e  theodo l i t e  f r a m e  T I  ( P i  ) , I = 1 , 2 , 3 ,  in point Pi;  

T points  upwards  in t h e  d i rec t ion of t h e  theodol i te ' s  f i r s t  axis, 
I = 3  

T I  ,2 points in t h e  d i rec t ion of z e r o  reading, and 

T I  c o m p l e t e s  t h e  right-handed sys tem.  

f igure  2 1  
( a )  

T h e  r e l a t ion  b e t w e e n  t h e  t w o  f r a m e s  E and  T I  ( P .  ) is given by 
I I 



where 

and 
- s i n e  c o s 0  0 

2 ,  i 2 ,  i 

c o s 0  - s i n e  0 
3 ,  i 3 ,  i 

s i n e  c o s 0  
3 ,  i 3 ,  i 

0 

0 0 1 

- S  i n 0  c o s 8  - s i n e  s i n 0  c o s 0  
1, i 2 ,  i l ,  i 2 ,  i l ,  i 

, 

case case case 
l ,  i s i n e 2 ,  i 

s i n e  
1, i 2 ,  i l ,  i 

Furthermore, we have for the difference vector X(P P ,  ) = X(P.  ) - X(P ) between the two 
r I I r 

points Pi and Pr that, 

where K is a scale factor. 
r I I 

From (2.631, (2.64) and X ( P r P  ) = X ( P i  ) E I  - X ( P  ) E  follows then that 
r I 

X(P P . )  = ( K  1 . s i n  Z s i n  r . , K  1 . s i n  Z c o s  r 1 . c o s Z  
r I r r l  r i r l  r r l  r i r i V K r  r l  r i  

T ( P )  
I = 2  r 

T ( P  I = 3  r 

which shows that one can start  computing coordinates once the seven parameters 

X r ~ Y r ~ Z r 9 e l , r ' e 2 , r 9 e 3 , r  and K,. are fixed. Hence, a legitimate choice for defining an S- 

system would be 

Ax = Ayr = Az = A0 = A0 = A8 = Aln K = 0 . 
r r l , r  2 , r  3 , r  r 

(2.66) 

Since (2.65) generalizes the first two equations of (2.50), linearization of (2.65) would give us the 

three dimensional analogue of the first two equations in (2.59). But this is of course only half of the 

story. We also need to know how the last two equations of (2.59) read in three dimensions. For scale 

this is trivial: 

A n  K .  = A n  l . - A n  l .  + Aln K . 
I r I I r r 

(2.67) 

, (2.65) 

To find the corresponding transformation for the orientational parameters though, we need to know 

how the orientational parameters 
e l , i 9 e 2 , i 9 e 3 , i  

in point Pi  are affected by differential 

changes in the seven parameters x r  , y r ,  z 
r 9 e l , r 9 e ~ , r y e 3 , r  

and K . Since we can rule out 
r 

differential changes in the scale- and translational parameters, this leaves us with the problem of 

L i ,  - r J  l , r  l , r  ' .  r r l  r l  

finding a differential relation which expresses the h e l ,  d e 2 ,  J e 3 ,  in terms of the 

observables and the parameters A B  
1 , ! 9 A e 2 , r 9 A e 3 , r .  

Let us assume that the non-linear relat~on reads 

-sine -s ine   COS^ cos0  COS^ 
2 , r  l , r  2 , r  l , r  2 , r  

CO& -sine s ine   COS^ sine 
2 , r  l , r  2 , r  l , r  2 , r  

0 cos0 S i ne 

+ 

"K 1 .s inZ s in (8  + r  . )  
r r~ r i  3 , r  r~ 

K 1 . sinZ .cos(8 + . 
r r l  r l  3 , r  r~ 

K 1 .cosZ . 

X 
r 

yr 
z 

X 
I 

y i  
z 

= 



where matrix K only contains functions of the  observables. 

With (2.631, i t  then follows from (2.68) t h a t  

Linearization gives, 

(2.69) 

Since the f i rs t  t e rm on the  right-hand side of (2.69) only contains observables, i t  is the  second te rm 

we a r e  really interested in. In components (2.69) reads then 

t t 
( A 0 1 , i , A 0 2 , i , A 9 3 , i )  

= ( o b s e r v a b l e s  ) + 

0 

6 
a n  e1 

0 ' 
' O S  g 

1, 

O 1 - ' 2 , r  
0 

c o s  g 
i 1 

0 
c 0 s ( e 2  

r 

(2.70) 

We a r e  now in t h e  position to  collect our results. From (2.701, (2.67) and the  linearized expression of 

(2.65) follows t h e  th ree  dimensional analogue of (2.59) a s  

. . 
0 0 0 0 0 0 0 0 . O  

0 : -2 cos0 ( - z  cosg s i n g  +y s i n g  ) . X  
r i  2 , r  i r i  1 , r  2 , r  r i  1 , r  . r i  
0 0 0 0 0 0 0 0 . O  

0: -z  s i n g  X ( z  cos0 cosg - X  s i n g  
r i  r i  2 , r  2 , r  r i  l , r  I y r i  

0 0 0 0 0 0 0 0 0 . O  
l : ( y  . s i n e  +X cos0 ) 0 (-y cos0 cos0 +X cosg s i n g  ) . z  . r l  2 , r  r i  2 , r  r i  1 , r  2 , r  r i  1 , r  2 , r  . r i  . . . . . . . . . . . . . . . . 

0 0 0 0 0 
0: c o s ( g  -g ) 0 -cos0 s i n ( g  -g ) .O 

2 , i  2 , r  1, r 2 , i  2 , r  
0 0 0 0. 0 .  0 0 0 

0:tang s i n ( g  g ) l ( - s i n g  + tang  cosg cos(g  g ) ) : o  . l , i  2 , i  2 , r  l , r  l , i  1 , r  2 , i  2 , r  . . -1 0 0 0 -1 0 0 0 0 
O.cos g s i n ( g  g ) O  c o s  cos9 cos(g  -9 ) .O 

l , i 2 , i  2 , r  '1 , i  1 , r  2 , i  2 , r  



Thus i f  the unknowns i n  the linear model of the three-dimensional network are ordered l ike 

( . . . Ax .Ay  A z . . . A0 A , A , A l n . . . . ) , the linear model's nullspace would be 
I 1, i I 

spanned by the seven columns of the mat r ix  on the right-hand side of (2.71). F rom this the w i th  

choice (2.66) corresponding S-transformation easily follows. 

Note that  so far  we made no reference to the gravity field, i.e. the theodolite frames are allowed to  

assume any arbitrary ati t tude in  space. O f  course it is l ikely then, l ike it was in  the two-dimensional 

case, that  one has no special interest in  computing the orientation- and scale unknowns. I n  such cases 

one would probably reduce these unknowns f rom the model, which would leave one wi th  only 

coordinates. And then transformations l ike (2.56) w i l l  do. 

L e t  us now assume that  in  addition to  the horizontal- and vert ical direction measurements r.. and Z.. 
I J  IJ'  

and pseudo-distance measurements 1.. we also have the disposal of astronomical lat i tude @ , 
IJ' 

longitude A and azimuth A .  . . We then need to introduce two new orthonormal triads: 
I J  

f 
3' The earth-fixed frame EI, 1=1,2 ,3 ;  

X 

€1 =3 points towards the average terrestr ial pole (CIO), 
f 

E I=l 
points towards the l ine of intersection of the plane of the average terrestr ial 

f 
equator and the plane containing the Greenwich vert ical and parallel t o  E 

I = 3 '  

'E I = 2  completes the righthanded system. 

f 
4' The local astronomical frame T (P .  1, I = 1 ,2 ,3 ,  in  point Pi; 

f 
I I 

TI ,3 
points towards the local astronomical zenith, 

f 
T points towards north, 

I = 2  

T I =l 
points towards east. 

I f  we assume that  the theodolite frames are levelled, then the following relations between the four 
f 

triads E 
I ' EI,  T I ( P i )  and * T ~ ( P ~ )  hold: 

where , and a, B and y are small rotat ion angles. 



From (2.72) follows tha t  

t t 
P ; ( ~ , B , ~ )  = R ( a r , h r ) R  ( A r i -  r r i ) R ( 8  ) R ( 8 1 , r , 8  . 

3 ,  r 2 ,  r 

0 0 0 
Linearization, under the assumption tha t  a = B = y = 0 ,  gives 

0 0 0 
Since aO = = y0 = 0 we can replace '1, i and '2, i in (2.71) by @ P  and A i  . With 

(2.74) we then find tha t  for  large th ree  dimensional networks in which also astronomical latitude, 

longitude and azimuth a r e  measured, (2.71) generalizes to  

. . 
0 0 0 0 0 0 

( - z  c o s @  s i n A  + y  s i n @  ) . X 
r i r r r i  r . r i  

Aa 

A B  

A Y  

0 0 0 0 0 0 
( z c o s @  c o s h  - X  s i n @  ) 

r i r r r i  r : ' r i  

= 

-1 0 0 0 
O O O : c o s   s sin(^.-^ ) O 

I I r 

'8' 
S 
e 
r 

i 
e S ,  

-1 0 0 0 0 
c o s  @ c o s @  c o s ( A  - A  ) 0 

+ 

0 0 
- c o s @  s i n A  

r r 

. (2.74) 

0 0 0 "  
s i n  A 0 - c o s  @ c o s  A 

r r r 
o o o 

- c o s  A 0 - c o s  @ s i n A  
r r r 

0 
0 

1 - s i n  Q r  

A 8 
l , r  

A 8 
2 , r  

A 8 
\ 3 , r ,  



where we have denoted the f i rs t  column vector on the right-hand side o f  (2.71) i n  which it says 

"observables", by 

When viewing (2.75) one may wonder why there are s t i l l  seven degrees of freedom. Aren't the 

@ , hi and A.. supposed to  take care of the rotational degrees of freedom? The reason for  this 
IJ 

apparent discrepancy is of course that the network's point configuration and fundamental directions 

are described wi th  coordinates referr ing t o  the frame E*, which is essentially an arbitrary one. We 

have chosen for  this approach because it enables us to  describe the most general situation, i.e. i t 

allows us t o  introduce any reference system we like. That is, we do not restr ic t  ourselves beforehand 

to  those reference systems which might be the obvious ones to  choose because of the available 

@ S ,  A l S and A.. But, would one aspire af ter  this more conventional S-system definition, then 
IJ' 

decomposition formula (2.75) is easily modified. To see this, l e t  us consider the two dimensional 

situation. Assume that  azimuths A.., horizontal directions r.. and distances 1.. are observed. By taking 
11 11 IJ 

the general case of describing the network i n  an arbitrary system (see figure 22) we get f rom 

linearizing 

that  

y i  = y r  + ~1 c o s  ( A r i -  a )  
r i 

i 
= A . - r  + n - a  

r I i r 
I nK = I nK 

where the upper indices (r,//) indicate that  these coordinates are computed i n  the S-system which is 

defined through f ixing the point Pr (A x r  = A y r  = 0 )  , the scale parameter (A l n ~ = O )  and 

the orientation paral lel ( i f  a O=0 ) to  the north direction ( ~ a  =O ) . 
From decomposing (2.77) l ike 

9 



/ r-  0 0 .  
A x .  % ' A x  X 

1 i ' r i  r i  
0 0 

A Y .  A Y .  X 
I I r i  ' r i  ' ~ a  

= A0 + -1 0 

A l l x  A l l x = O  0 1 
A l l x  

A a Aa = O  

follows t h a t  the  reference systems one usually considers when azimuths and distances a r e  observed, 

a r e  of the  (//)-type. They a r e  defined through Aa = 0 ,  A l nc =O. Thus, although i t  is usually not 

explicitly s tated,  the  conventional S-system chosen when azimuths and distances a r e  measured, is: 

figure 22 

In th ree  dimensions (2.79) generalizes t o  

and it  will now be c lea r  t h a t  t h e  usual phrase "astronomical latitude, longitude and azimuth take  c a r e  

of the  rotational degrees of freedom" essentially means t h a t  one has fixed the  orientation of t h e  

reference system through Aa = A B  = Ay = 0 .  

From (2.75) follows t h a t  t h e  with S-system (2.80) corresponding decomposition is given by: 



The corresponding S-transformation is then easily found from bringing t h e  second t e r m  on t h e  right- 

hand side of (2.81) t o  t h e  left-hand side (see also Teunissen, 1984a). Note  t h a t  since 

A a 
( r s l l )  A B  ( r , l l )  = Ay ( )  = 0 ,  one can  replace A B  r l l  and A B 2 ,  ( r , / / )  in 

( r , l l )  l ,  i 
(2.81) by respectively A @  ( )  and A A  i 
Instead of (2.80) one could of course also consider stil l  o ther  types of S-system definitions. One could 

fo r  instance t a k e  t h e  rest r ic t ions given by (2.54). The orientation of t h e  earth-fixed f r a m e  

t h e  directions of t h e  local verticals a r e  then given by respectively 

A a ( r , s ; t )  , A B ( r , s ; t )  ( r , s ; t )  and A 8 1 , i  ( r , s ; t )  ( 
S ; ) . And if one replaces  9 A Y  " 2 , i  

t h e  car tes ian coordinates  in e.g. (2.75) by geodet ic  coordinates and t h e  direction unknowns 

A0 l ,  , A8 2 ,  by t h e  def lect ion of t h e  vertical components 5 , q  through using 

S i  = A 8 1 , i  - A +  q i  = (A0 - A A . )  L c o s  @ i ' 
0 

2 ,  i 

one can  show t h a t  also t h e  following s e t s  of restrictions a r e  legi t imate  choices for defining a n  S- 

system: 

(a) c r = q r = A A r s = 0 ,  A + r  = A A r  = Ahr  = 0 ,  A l n ~  = 0 1 

(c) A a  = A B  = AA = 0 ,  A Q r  = A A  = Ah = 0 ,  A l n ~  = 0 1 
r S r r 

(G: A8 = A8 = AArs = 0 ,  A + r  = A A  = A h  = 0 ,  A I ~ K  = 0 )  
l , r  2 , r  r r 

(b) Aa = A B  = Ay = 0 ,  6 = q = Ah = 0 ,  AlnK = 0 
r r r 

(see also Strang v. Hees, 1977; Yeremeyev and Yurkina, 1969). And in this way many more  s e t s  of 

(2.82) 



necessary and suff icient restr ict ions can be found. Note that  also the geodetic coordinates should be 

given an upperindex referr ing to  the S-system through which they are defined. 

I n  principle of course there is no need fo r  introducing deflection of the vert ical  components. For  

computing three dimensional networks one can just as well  do without them. Due, however, to  the 

fac t  that  many existing large networks lack the necessary zenithdistances one has preferred i n  the 

past the classical method of reductions to  a reference ellipsoid and computation by means of 

ellipsoidal quantities to  the more theoretically at t ract ive spatial triangulations of Bruns and Hotine 

(see e.g. Hotine, 1969; Torge and Wenzel, 1978; Engler e t  al. 1982). Instead of solving the height 

problem by using zenith distances one resorts to  the astrogeodetic (or gravimetric) method. The 

problem of the network computation is then spl i t  in to two nearly independent problems, namely the 

(a) 41 , X - problem, and the (b) 5 ,n , h  - problem . 

The procedure followed is i n  short the following (see also Heiskanen and Moritz, 1967). One starts by 

defining a three dimensional S-system (geodetic datum). Usually one takes the datum given by (2.82.b) 

or (2.82.~). Using the approximate information available on { ( P ,  X;, h p ,  @ g ,  A: } one then reduces 

the observed angles and distances t o  the ellipsoid and computes on it the geodetic coordinate 

increments A @  . Af te r  having solved fo r  (a), one enters the solution of (b) where new heights 

and new deflections of the vert ical  need to  be determined based on the new ellipsoidal values of '$ 

and X With these new values the whole procedure is repeated. One can consider this i terat ion i '  
procedure as a block Gauss-Seidel type of i teration where a linear system 

is solved i terat ively as 

A practical point o f  concern is, however, the reduction procedure. I n  many cases the necessary 

gravity f ield information, needed to  perform a proper reduction of the observational data, is lacking 

(see e.g. Meissl, 1973; Teunissen, 1982, 1983). But  i f  the necessary gravity f ie ld information is 

available, the classical method of reduction to  the ellipsoid can be seen t o  be formally equivalent to  

the t ru ly three dimensional method and both methods, i f  applied correctly, w i l l  give the same results 

(Wolf, 1963a; Levallois, 1960). Hence, the f inal i terated solution of the classical method fo r  the 

network's shape w i l l  be free fo rm any deterministic effects of the arbitrari ly introduced datum. The 

intermediate solutions of the i terat ion procedure, however, do theoretically depend on the choice of 

datum. It is grati fying t o  know therefore, as has been shown i n  subsection 2.2, that  these ef fects are 

practical ly negligible. 



3. (Free)networks and their connection 

3.1. Types of networks considered 

Now that we have given representations of  Nu(A) in various situations we can start discussing the 

problem o f  connecting geodetic networks. 

I n  principle this problem is not too diff icult.  Essential is t o  know the type of  information the two 

networks have in  common. Based on this information one can then formulate the appropriate model 

and perform the adjustment. 

As to  the methods of  connecting geodetic networks one can distinguish between three solution 

strategies. Two of  them need the parameters, describing the two separate adjusted networks, while 

the th i rd  method starts f rom the assumption that  the original observation equations (or rather the 

reduced normal equations) are s t i l l  available. 

I n  the f i rs t  method (method I )  use is made o f  condition equations. The idea is t o  eliminate f i rs t  a l l  

non-common information f rom the two sets o f  parameters describing the two separate adjusted 

networks. This can be done by means o f  an appropriate S-transformation. The so transformed 

parameters are then f inal ly used on an equal footing in  the method of condition equations. 

It is curious tha t  this method has found so l i t t l e  attention in  the literature. We only know of  a few 

areas where it is applied (see e.g. Baarda, 1973; or Van Mierlo, 1978). An explanation could perhaps be 

the general aversion one has fo r  the method of  condition equations since it is known to  be 

cumbersome i n  computation. However, for  our present application of connecting networks this 

argument does not hold. On the contrary, the method can i n  many cases be very tractable indeed. 

The second method (method 11) is essentially the counterpart of  the above mentioned method. In  this 

method one starts by determining the transformation parameters. This is done by means o f  a least- 

squares adjustment. A f te r  the adjustment one then applies the transformation parameters to obtain 

the f inal  estimates of  the parameters describing the two connected networks. 

Method I1 seems to  be very popular w i th  those working on the problem o f  connecting satel l i te 

networks w i th  terrestr ia l  networks (see e.g. Peterson, 1974). A serious shortcoming of  most 

discussions on this method is, however, that  often the start ing assumptions are not  explici t ly 

formulated. As we w i l l  see this may avenge i tsel f  on the general applicability of  the method and also 

may a f fec t  the interpretabil i ty of  the transformation parameters. 

Final ly the th i rd  method (method 111) makes use of the so-called Helmert  blocking procedure. I t  is 

therefore essentially a phased type of adjustment, applied t o  the original models of  the two 

overlapping networks (e.g. Wolf, 1978). 

Usually when one applies this method one starts f rom the principle that  both the reduced normals are 

regular, thereby suggesting that the two overlapping networks have no degrees of  freedom a t  all. For  

a general application of  the method, this is of  course a too restr ict ive assumption to  star t  with. We 

w i l l  therefore have to show how the method applies in  the general case. 

From the above few remarks it w i l l  be clear that we feel that  a t ru ly general discussion of  the 

problem of  connecting geodetic networks has not yet been given in  the literature. Ei ther the 



assumptions are too restr ic t ive to  render a general application of  the methods possible or they are 

not too precisely formulated. 

For a proper course of  things l e t  us therefore star t  by stating our basic 

Assumptions 

Fi rs t  consider the original models. We assume that the f i rs t  network is described by the linear(ized) 

model 

A. = ( A : A ) [ ::.l), Q , wi th  dim. Nu(A, :A2)  = q ,  
1 2 Y 

mx l mxn mxn  ( n + n  ) x l  
2 2 

and the second by 

- A; 
A; = ( i : i3 ) Q- ,  wi thdim. Nu( i l : i3)  = i 2 q. 

1 
Y 

mx l - - 
mxn  mxn ( n + n  ) x l  

3 3 

We further assume that  the second network, apart f rom some additional degrees of  freedom, has the 

same type o f  degrees of  freedom as the f i rs t  network. This means that we assume the nullspace of  

(3.1.l.a)'~ normal reduced for Ax2 to  be a proper subspace of  the nullspace of  (3.1.l.b)'~ normal 

reduced for  A X , i.e. 

-1 t -1 
= I -A ( A ~ Q - ~ A ~ )  A Q 

t -1- - l - t  -1 
with the projectors P 

2 
and P = I - A  ( A  Q- A ) A Q- . 

2 2 Y  2 Y 3 3 3 y  3 3 y  
And f inal ly we assume that 

AP 9 

r x l  

w i t h  r > - and  

Since some of  the derivations and formulae i n  the next section become quite elaborate, we w i l l  use 

f rom t ime to  t ime the following 

Example 

as reference to exemplify our results: 

The f i rs t  network can be thought of  as being a planar network determined f rom distance -, 



astronomical azimuth - and angle measurements. And the second network can considered to  be planar 

wi th magnetic compass readings and angle observations only. 

I f  the parameters (A x1 ,A x 2  ) and ( A ; ~ ,  A; ) are assumed to  contain cartesian coordinate 3 

The second network has namely apart f rom the two translational degrees o f  freedom also an 

additional freedom of  scale. 

Furthermore, transformation (3.1.1.d) would then be characterized by 

increments only, then 

w i th  r = 4 

NU(A :A = R (  
1 2  

and the nullspaces of the reduced normals by 

Finally, using the decomposition 

. . . . 
1 0  

0 1 

. . . . 

wi th  

) ,  w i th  q =  2 and N ~ ( A  . .A - ) = R (  
1 3  

t 
we can ident i fy  the A pl parameter o f  A p = (A p1 A pi ) as a rotat ion angle and the A p 2  

parameters as respectively two translational and one scale parameter. 

I I I I 
R(V ) = R ( ( V  ) 1 CJ R( (V1)2 )  = R ( ( v ~ ) ~ )  CJ Nu(F3Al), 

1 1 1  

. . . . . . 
0 

1 0 X .  

0 )  I 
O l Y  

i . . .  . . .  

, w i t h q = 3 .  

I 
R ( ( V  ) ) = R(  

1 1  

S . .  . . .  
0 

1 0  X 
i 
0 

0 1 Y i  

. . . . . .  

1, 

> 

0 

'i 
o 

- X  
i 

I 
) and R ( ( V  ) ) = R( 

1 2  



3.2. Three alternatives 

Since the above mentioned f i rs t  two methods are closely related we w i l l  discuss them together. 

Method I and I1 

Both methods are applicable i f  the parameters, describing the two separate adjusted networks and 

their covariances are available. Thus we assume given (see figure 23): 

w i th  (3.2.1) 

S = R(S)  complementary to  Nu(A1 :A2 )  and 5: = ~ ( 5 )  complementary to  NU(A :A ) . 
1 3  

f i rs t  network second network 

figure 23 

Our goal is now, to  solve for the transformation parameters A and the increments 

, A i 2 ( s )  , A i 3 ( S ) )  . Here we impl ic i t ly  assume that  we wish our results to  be 

expressed i n  the same coordinate system as that  of the f i rs t  network. For  our example i n  subsection 

3.1 this means that  we wish our results to take the scale and orientation of the f i rs t  network. This is 

a sensible choice since the f i rs t  network contains by assumption more information than the second 

[ Nu(P2Al) c N U ( P ~ A ~ ) I  . But i f  one so desires one could also proceed otherwise, viz. by 

adopting the orientation of the second network. 

We believe, that for  explanatory purposes method I best shows the principles involved i n  connecting 

networks. L e t  us therefore first, before we proceed wi th  the actual solution strategies of the two 

methods, consider the following simple but  general enough situation. We assume to have measured 

two overlapping planar networks. And furthermore we assume that  for  both networks we have the 

disposal of distance -, azimuth and angle observations. When adjusting the two networks separately 

we thus need to  take care of the i n  both cases existing translational degrees of freedom. But as we 

know from the previous section this can be done in  very many ways. The simplest way being to f i x  

just one network point. Having done this we thus f inal ly end up w i th  two sets of coordinates each 



describing one o f  the two separate adjusted networks. How are we now to  compare these two 

coordinate sets? No t  by bl i thely comparing the coordinates of  corresponding networkpoints for  these 

were introduced i n  a rather arbitrary way. I n  general namely, the two f ixed networkpoints w i l l  be 

different ones. I n  fact, even i f  one would have f ixed the same networkpoint i n  both networks, one s t i l l  

should exercise great care. This is because the numerical values assigned to  the f ixed point need not 

be identical fo r  both networks. Now i f  we disregard this possibility fo r  the moment and assume that 

the same set o f  approximate coordinates are used for  linearizing the observation equations of  both 

networks, we would have the inequality 

That is, the two sets o f  adjusted A X - parameters cannot be compared directly. But  we know 1 
already f rom the previous section that one can easily take care o f  this discrepancy by applying the 

appropriate S-transformation. This S-transformation should enable us then t o  compare corresponding 

coordinate differences. 

Now l e t  us change the situation slightly and assume that the azimuth measurements o f  the f i rs t  

network are o f  the astronomical type and those of  the second network fol low f rom magnetic compass 

readings. Then we would have 

even if - 
S =  S. 

The reason being of  course that  the f i rs t  network is orientated w i th  respect t o  astronomical north and 

the second wi th respect t o  magnetic north. Thus the only information the two networks have i n  

common is o f  the distance- and angular type. But again we can take care o f  this discrepancy by using 

the appropriate S-transformation, namely one that eliminates the azimuthal information f rom both 

networks. 

Final ly we complicate the situation a b i t  fur ther by assuming that  the second network lacks distance 

measurements, i.e. lacks scale. I n  this case we are i n  the situation as described by the example of  the 

previous subsection 3.1., because both networks then s t i l l  have their translational degrees of  freedom 

but now the second network also has an additional freedom of  scale. I n  this case we thus certainly 

w i l l  have the inequality 

irrespective the choices made for 

S and 3 .  

But as w i l l  be clear now, one can again overcome this discrepancy by using the appropriate S- 



transformation, namely one which reduces both networks to ones of the angular type. 

Summarizing, we can conclude f rom the above discussion that although the causes for  the - 
incompatibi l i ty of and A 8 i 5 )  may be different, one can always f ind the appropriate S- 

transformation to  el iminate this discrepancy. And i n  view of our general assumptions (3.1.1) it follows 

that  an appropriate S-transformation would be: 

This would give us then 

or equivalently 

I f  the situation as sketched i n  the example of subsection 3.1 applies, (3.2.3) reads i n  cartesian 

coordinates as 

The equivalent formulation (3.2.4) represents then an independent set o f  n-4 angular condition 

equations 

or a set of n-4 linear equations which is i n  one-to-one correspondence t o  such a set of n-4 angular 

condition equations. 

Some authors have expressed their hesitation towards the above described procedure for  using S- 

transformations. They argue that by using an S-transformation which eliminates e.g. the available 

azimuthal and scale information, one eliminates information which is important i n  i t s  own right. This, 

however, is i n  our opinion a missappreciation of the concept o f  S-transformations. The S -  

transformation is i n  the f i rs t  instance only applied to  obtain the equality (3.2.3) or (3.2.4), on which 

then the adjustment for  connecting both networks is based. After the adjustment one can then 

always, i f  so desired, transform the adjusted coordinates back t o  one of the original coordinate- 

systems. I n  the above example for  instance one can always transform back t o  the system of  the f i rs t  

network, the one that contains scale- and orientation information. 

Now l e t  us consider the actual solution strategies of the two methods I and 11. We wi l l  start w i th  

method I. 

Although it is customary i n  the l i terature to  star t  f rom modelformulation (3.2.3), we, fo r  reasons yet 

to  be explained, w i l l  s tar t  f rom modelformulation (3.2.4). Straightforward application o f  the least- 



squares algoritm for  t h e  method of condition equations gives then 

This formulation of t h e  least-squares solution of method I is however not yet  in concurrence with t h e  

formulation one usually finds in t h e  l i t e ra tu re  (see e.g. Baarda,1973,p.125 or  Van Mierlo,1978,p.9-26). 

We there fore  have t o  rewr i te  (3.2.5) a bit. For  this purpose t a k e  t h e  following abbreviation 

Since R ( A )  = R( 5 )  i t  follows, if B denotes an  arbi t rary inverse of A, t h a t  AB is a projector which 
- 

projects  onto R(S ) and along a complementary subspace. 

Hence 

t From premultiplying this expression with v l ( V 1  ( Q  1 t  
+ Q r  )v1) - V1 follows then 

Hence, if we use t h e  customary notation 

-(:l 
- 

( S )  
d := P 

l (Aa,  - 
1 

and R ( ? ) , R ( v , )  

we can  rewr i te  (3.2.5) a s  



v -  To f inal ly transform the adjusted parameters (A::') ) to the coordinate system of  the 

f i rs t  network, we need to determine the transformation parameters A;. From (3 .1 .1 .d)  follows that  

l. 
with R ( S )  complementary t o  R ( V 1 ) .  Hence the transformation parameters are easily found 

through 

Summarizing, we can thus wr i te  the solution of method I as: 

- 
- c  S 1 
d , wi th  

d 

an arbitrary inverse of 



This is also the  solut ion one can f ind i n  (Baarda, 1973) although there the resul t  is derived under the 
I 

more res t r i c t i ve  assumptions t ha t  Nu(P2A1) = N U ( P ~ A ~ )  = R(V1). 

When comparing (3.2.10.a) w i t h  (3.2.5) one may wonder which formulat ion is the more a t t rac t i ve  

computationwise. Formulat ion (3.2.10.a) suggests the customary pract ice o f  f i r s t  appying an S -  

transformation, namely (3.2.2), and then computing the  inverse Q:(;). A more d i rect  way is 

however suggested by (3.2.7) and the method o f  prolongation discussed i n  sections 4 and 5 o f  chapter 

11. 
I 

Note, t ha t  i n  the  special case o f  Nu(P A ) = N U ( P ~ A ~ )  = R(V1) , n 2 =  n 3 =  0 and S = 3 , 2 1 
v ~ ( v : (  Ql is) + Q ;  E)  ) v ~ ) - ~ v :  is a symmetr ic  m in imum rank inverse i 

of  Ql(s) + Q; E )  . Wi th  our expression (4.5) o f  chapter I1 fol lows then t ha t  (3.2.7) can be 
1 

computed f r o m  
i 

(3.2.11) 
I 

I n  the general case t ha t  Nu(P2A1 ) c Nu(P3A1 ) C R(V1 , (3.2.7) w i l l  cease t o  be a min imum 

rank inverse o f  Q S )  + Q; E )  . Instead it becomes a constrained inverse o f  

i 
i 

4 
i 

Q S ) + Q; S ) . Wi th  (5.21) o f  chapter I1 fol lows then 

I 
Thus, since a representat ion o f  R(V1) i s  usually readi ly available, we see tha t  instead o f  (3.2.10.a) one 

can also use formulat ion (3.2.5) w i t h  (3.2.7) computed v ia (3.2.11') (or (3.2.11)). 

Now  l e t  us consider method 11. I t s  model formulat ion is the  parametr ic counterpart o f  (3.2.4) and 

reads as - 
I 

= VIAp . (3.2.12) 

Usual ly th is  model w i l l  const i tu te the d i f fe ren t ia l  s im i la r i t y  t ransformat ion 



e.g. when combining doppler networks with terrestr ia l  networks (Peterson, 1974). However, s ince the  

common unknowns of the two overlapping networks need not be rest r ic ted t o  coordinates, relation 

(3.2.12) could be a kind of modified differential similarity transformation such a s  for  instance (2.81). 

In fac t ,  relation (3.2.12) need not be res t r i c ted  to  t h e  differential similarity t ransformation a t  all. I t  

could for  instance also include additional "transformation" parameters  which describe projected 

geophysical hypotheses in a deformation analysis. O r  i t  could include, say, a refract ion model. 

When we solve for  (3.2.12) we immediately not ice  a difficulty which is of ten overlooked in t h e  

l i terature .  Namely, t h a t  t h e  covariance sum Q R1 ( S ) + Q i l  ( ; ) can turn out  t o  be singular. Assume 

for  instance t h a t  S = R (  S ) is complementary to  Nu(P2A1) , 3 = R (  3 )  is complementary t o  

Nu(P3Al ) and t h a t  3 c S .  Then Nu(Qpl ( + Q: (; ) ) 6 { 0} and no ordinary inverse of 
X 1 

Q+] + 
will exist. One could of course ask oneselves then whether  i t  is possible t o  

t a k e  a generalized inverse of Q R ( S ) + Q i l  ( ) . In some cases  this  is possible. We will refrain 

however f rom fur ther  elaboration on this  point, s ince if one really insists on using (3.2.12), one can 

e i the r  t ransform one of the  covariance mat r ices  by means of an appropriate S-transformation so t h a t  

t h e  sum Q* ( S )  + Q: ( 5 )  becomes regular again, or, what is more practical,  add t h e  matr ix  
I I 1 1 

( v ~ ) ( v ~ ) ~  t o  Q * i s )  + Q; f 5 )  . The solution of (3.2.12) follows then from straightforward 

application of t h e  least-squares algorithm. To show t h e  close relationship with solution (3.2.10) we 

will make use of a slight detour. 

F i r s t  consider the  t ransformation parameters.  With the  aid of (3.2.5) we can wr i t e  (3.2.9) a s  

(3.2.13) 

And since we have t h e  projector identity 

- v v L  = I - ( Q  ( S )  + Q , ( ; ) ) v l [ v ; ( ~  X Q:(s)  
X 

1 
R1 1 R 1 1 

it  follows from (3.2.13) t h a t  

In a similar way one can prove t h a t  



Summariz ing,  w e  c a n  thus  w r i t e  t h e  solut ion of me thod  I1 as: 

F o r  t h e  spec ia l  c a s e  t h a t  Q 2  ( S  ) + Q: ( E )  i tself  is  regular ,  (3.2.15) without  t h e  addi t ional  t e r m  
1 1 (v~xv:)' is  t h e  solut ion one  usually finds c i t e d  in t h e  l i t e r a t u r e  (e.g. Adam e t  al., 1982). However ,  t h e  

necessary  r e l a t ion  wi th  Nu (P A ) and N ~ ( P  A ) i s  usually n o t  made. 
2 1 3 11 

N o t e  by t h e  way t h a t  [ Qp ( s ) + Q; ( i ) + (V1  ) (V:) t ,  i s  a s y m m e t r i c  maximum rank inverse  

of (3.2.7). 
1 1 

F o r  those  who a r e  used t o  thinking in t e r m s  of S-sys tems,  i t  m a y  c o m e  a s  a surpr ise  t h a t  one  is 

a l lowed t o  s imply add t h e  cova r i ance  maps  Qpl( and Q: ( 1  of coord ina te s  def ined in 

different S-systems. T h e  reason i s  t h a t  t h e  t r ans fo rma t ion  p a r t A e t e r s  A p in model  fo rmula t ion  

(3.2.12) a l r eady  t a k e  c a r e  of t h e  possible d iscrepancy be tween  t h e  t w o  S-systems. 



This brings us to  another important point, namely that  of  the interpretabil i ty of  the transformation 

parameters AF.  A shallow study of  (3.2.15) might convince us that a l l  transformation parameters 

are estimable and tha t  one is allowed, in  the context of  testing alternative hypotheses, t o  test 

whether some or a l l  of  the transformation parameters are significant or not. Here, however, one 

should exercise great care. I n  part icular one should be aware that  one can not test whether an 

arbitrary linear function of  the transformation parameters, c Ap say, is zero or not, i.e.: 
l x r  r x l  

? ( S )  I 
- ( S )  - Ax t 

H : Aft1 
1 = VIAp, 

c Ap = 0 ,  
0 

against 
I = VIAP, - ( S )  - Ax t HA: AR1 1 c Ap f 0. 

The reason is that, i n  the general case we are considering here, one cannot t reat  a l l  transformation 

parameters on an equal footing. I n  case of  our example of  subsection 3.1, for  instance, only the 

orientational parameter Ap is eligible for a test l ike above. 
1 

Finally we l ike t o  point out the great resemblance between (3.2.10) and (3.2.15). The two methods 

only d i f fer  i n  their p rder  o f A  computing the transformation parameters and increments 

( A ~ I  S ) , A ~ $ S  ) , A;!' ) , A 2 f ' ) ) . Hence, i n  principle no preference can be given to  either 

method, unless one chooses on the basis of  computational convenience. One can argue namely that  

method I is to be preferred since it only needs the inverse of  the covariance matr ix  of the difference 

vector ; ( ' )o r  (3.2.7), whereas method I1 needs the inverse of  
I t  I I t - 1  I both Q 2 ( s )  + Q t ( 3 )  + (v:)(v:)~ and  (V1) ( ~ ~ ( s )  + Q; ( i )+  (V1)(V1) ) (V1).  

1 
L e t  us now consider 

1 1 1 

method III 

The Helmert-blocking method is essentially a phased type of adjustment applied to  a second standard 

problem formulation. Instead of  performing the adjustment in  one step, the original set of  observation 

equations is divided into two groups, each describing one o f  the two overlapping networks. A f te r  

having formed the corresponding normalsystems one then reduces to  obtain the reduced normals 

pertaining to  the common unknowns of  the two networks. Through inversion o f  the sum of these 

reduced normals one solves for  the f inal  adjusted values o f  the common unknowns. The remaining 

unknowns are found by means of  back-substitution (e.g. Wolf, 1978). 

I f  we reduce for  the Ax2  -parameters, (3.1.l.a)'~ normalsystem becomes 

Hence as a solution o f  (3.1.1.a) we have 



t -1 z 0  ~ 1 : ~ )  = ( A  Q A ~ ) - ~ A ~ Q " ( A ~  - A l A 2 j S ) ) ,  w i t h  
2 Y 2 Y 

t -1 -1 t -1 
P 2  = I - A ( A  Q A 2 )  A2Qy , and 

2 2 Y  
S = R ( S )  complementary t o  Nu(P2A1) 

I n  a similar way we f ind for (3.1.1.b) the solution 

- - 
t -1- - l - t  -1 

= ( Q- A ) A Q- ( A y  - A wi th  2' Ax 
3 3 Y  3 3 Y  1 1  

t -1- - l - t  -1 P, = I - A (A  Q- A,) A3Qy- ,  and 
3 3 Y  

S = R ( S )  complementary t o  NU(P A 
3 1 

'Thus the reduced normals of (3.1.1.a) and (3.1.1.b) pertaininq to  the common unknowns are - 
t -1 t 

respectively N = (P2A1) Q (P2A1) and i1 = (P3A1) Q-  (P3A1). However, i n  view of 1 Y Y 
our assumptions (3.1.1) we cannot simply add them together yet. What we need is a slight 

modif ication of one of the two reduced normals N1 and P? , such that  relat ion (3.1.1.d) is taken care 
1 

of. That is, i f  

and 

I I 
we either need to  modify N1 wi th  the aid of R( ( V  ) to  an N; wi th  NU(N') = R(Vl) , or i1 

I 1 3  I 1 
wi th  the aid of R( (v1) to  an G1 wi th  hlu(ml) = R (V1) . 
For our example of subsection 3.1 such a modif ication of N1 would mean that  we el iminate the scale- 

and orientational information of the f i rs t  network. And likewise, elimination o f  the orientational 

information of the second network would correspond t o  modifying il t o  an w i th  
I 1 

Nu(fil) = R(V1).  

Since by assumption the f i rs t  network contains more information than the second, we w i l l  opt for  

modifying . For  our example this means that  we eliminate the orientation o f  the second network 
1 

i n  favour of the astronomical orientation o f  the f i rs t  network. 

The modif ied reduced normal f i  we are looking for  w i l l  thus be the reduced normal of the relaxed 
1 

model 

6 x 1  i x n  i x n  
3 

m x ( r - q )  ( n + n  + r - q ) x l  
3 



And since the solution of  this relaxed model reads as 

- t  - l =  - l = t  -1 
= I  - A ( A  Q- A 3 )  A Q- , and - 3 3 3 Y  3 Y, I 

3 = R ( : )  complementary t o  NU(P A = R ( V ~  2 N U ( P ~ A ~  
3 1 

t -1 = 
the reduced normal we are looking for  is given by fi = (P3A1) Q- (p3A1).  Note that since 

1 Y 
(3.2.18) is merely obtained f rom relaxing (3.1.lb) t o  (3.2.17) the two solutions (3.2.16.b) and (3.2.18) 

w i l l  be related by an appropriate S-transformation. We have for  instance 

- 
Now that we have the appropriate reduced norrnals N1 and we can proceed w i th  the Helmert-  

1 
blocking method and add the two reduced normals t o  solve for the common unknowns. The remaining 

unknowns are then found through back-substitution. 

A l l  in  a l l  the f inal solutions reads as: 

t -1 -1 t -1 - ( S ) ) ,  A ( A  Q A 2 )  A Q ( A y  - A A; 
2 2 Y 2 Y 1 1  

- l - t  -1 
A ( = ( A ~ Q ~ ~ A ~ )  A Q- (A ; - A 8 '  ) ) , which can be decomposed by means of  

3 Y 3 Y 1 1  

t t t  I 
A V  = ( A x  Ap ) and A = (A3: -  A (V') - A ( V  ) ) into 

2 1 3 1 1 1  3 3 1  

t - 1 - -  I -1 I t -  t -1 - 
A ; ~  

= - ( ( v ' ) ~ ( P  A ) Q- ( P ~ A ~ ) ( v ~ ) ~ )  ( v ~ ) ~ ( P ~ A ~ )  Q- ( A Y  - A l ~ : i s ) ) ,  
1 1  3 1  y Y 

- t  -1- - l - t  -1 
A t ( s ) =  3 ( A  Q- A 3 )  A Q- [ I  - (Al(v;)l+~3(v;)l). 

3 Y 3 Y 
I t - -  t - l  -1 I t t -  . ( ( V  ) ( P  A ) Q- ( P  A ( v ~ ) ~ ( P ~ A ~ )  Q; l) (A; - A ~ A : ~ ( ' ) )  
1 1  3 1  y 3 1  

w i th  S= R(S) complementary t o  Nu(P2A1 ) . 

Thus i f  we take the customary abbreviations 



t -1 t -1 - - t -1 = - 
N = ( p  A ) Q (P A ) = (P A ) Q- (P3Al), R, = (B3Al) Q; (p3A1),  

1 2 1  y 2 1  1 3 1  Y 

and (3.2.20) 

we can summarize the general procedure of method 111 as: 

a) Reduce the normal systems of the two original models (3.1.1.a) and (3.1.1.b) t o  the 

common unknowns: NIA X = An and ilA; = A "  
1 1 1 1' I 

b) Relax the reduced normal system of the second network wi th the aid of (Vl ) l : 

c) Add the reduced normal system of the f i rs t  network: 

d) By means o f  further reduction one gets 

1 w i th  the solution: 

1 e) 
The remaining unknowns are found through: 



In  the aaove approach t o  the Helmert  blocking procedure we have seen that, as a consequence of our 

general assumptions (3.1.1), the reduced normals N1 and are singular. Hence, in  general one can 
1 

not start f rom the principle that  both reduced normals are regular, unless l0 there are no degrees of 

freedom involved, which is highly unlikely, or 2' one assumes that  the degrees of freedom are already 

been taken care of before applying the Helmert  blocking procedure. The reduced normals w i l l  namely 

be regular i f  for instance the S-systems of both networks are defined a pr ior i  i n  their non-overlapping 

parts. 

The question that  remains to  be answered is then, whether one can s t i l l  apply the procedure as 

outlined in  (3.2.21). With some slight modifications we wi l l  see that the answer is in  the aff irmative. 

The important difference wi th  (3.2.31) is however that  we shall need additional transformation 

parameters to  take care o f  the a pr ior i  S-system definition. 

L e t  us star t  w i th  the two solutions one gets when the S-systems are defined in  the two non- 

overlapping parts o f  the two networks. 

For the f i rs t  network one would get instead of (3.2.16.a), the solution 

( s 2  - 1 
l0 A X  t -1 t -1 

1 = ( ( p r p l )  (P;A~)) (P;A~) Q Y A Y  , 
( - 1 

t t -1 t t -1 ( s 2 )  
2" A; s 2 ) =  S ( S  A Q A S ) S A Q ( A y  - AIAG1 ) ,  w i th  

2 2 2 2 y  2 2  2 2 y  
(3.2.22.a) 

t t -1 -1 t t -1 
P; = I - A S (S  A Q A 2 S 2 )  S A Q , and 

2 2  2 2 y  2 2 Y  t -1 -1 t -1 

S 2 
= R (S2  ) complementary t o  Nu(P A ) = R ( ( 1 -A ( A  Q A1 ) A Q ) A 2  ) 

1 2  1 l Y  1 Y 

and for  the second network, 

(: -,,- t -1 -,,- ^ '  3 
- 1 

l0 A X  t -1 - 
1 = ( ( P ~ A ~ )  Q; ( P ~ A ~ ) )  ( P p l )  Q-  Y A Y ,  - 

.. ( - 1 - t - t  -1 - " ( S 3 )  t - t  -1- - 
2' A; B ( 5  A Q- A S ) S A Q- ( A y  - A 1 ~ i l  ) ,  w i th  

3 
(3.2.22.b) 

3 3 3 y  3 3  3 3 y  

- r, - t - t  -1- - - 1 
- t - t  -1 

P3 
= I  - A S ( S A Q - A S )  S A Q -  , a n d  

3 3  3 3 y  3 3  - 3 - 3 y  - t  -1- - l - t  -1 
= R (  S complementary to  Nu(P A = R( ( 1 -A ( A  Q- All A Q- ) A 3  

3 1 3  1 l Y  1 Y 

These two solutions are easily verif ied by transforming w i th  the appropriate S-transformations the 

two solutions (3.2.16.a) and (3.2.16.b). 

For  the Helmert  blocking procedure we have in  the above case the disposal of the reduced normal 

systems 

wi th  

and 

- ,, - - ,, 
N-'AX = An" and 

1 1  1 1 1  1 ' N Ax = An 

t -1 t -1 -- -  
N" = (P"A ) Q ( p ; ~ ~ ) ,  i'' = ( P " i  ) Q- (P3Al), 

1 2 1  Y 1 3 1  Y 

t -1 t -1 - 
An" = (P2A1) Q Ay , A;'' = (p;Al) Q- Ay. 

1 Y 1 Y 



But as before we cannot simply add the two reduced normals N; and m; to  solve fo r  the common 

unknowns. What we need is a modif ication of m;. F i rs t  to  get r i d  of the a pr ior i  S 3 -  system 
I - 

definition. This w i l l  give us m1 back. And secondly to incorporate (V1) to get Therefore 
1' 

instead of (3.2.21.b), the relaxed normal system needed, reads 

Note  that, contrary t o  (3.2.211, additional transformation parameters Ap- are needed to  take care 

o f  the a pr ior i  3 - system definition. 

By adding NsrAx = An" t o  (3.2.23.b) we get 
1 1  1 

- .' 
1 - V 

I t - -  I I t - -  
-(V,) N1 (V1) N1(V1) 

and a f te r  some reduction steps we obtain 

I ,  

- ,, 
An 1 

- (V1)  ~t An -- 1 

I n  a similar way as i n  (3.2.21) we then f ind the f inal solution as 

' 

A x '  1 

Ap 

- - 



(3.2.23.e) 

We thus see that also i n  case the S-systems o f  both networks are defined a priori, one can apply the 

procedure as outlined i n  (3.2.21). The important difference is however, that  in  the above case 

additional transformation parameters Ap2 are needed which, contrary t o  A p , w i l l  not be 

invariant to the choice of  S-systems. This emphasizes once more our earlier remark about the 

interpretabil i ty of  the transformation parameters. 

Note that solution (3.2 23.e) is es ent'ally t h  sa e as solution (3.2.19) or (3.2.21). One can verify this 
S S 2es21" 

by showing that  (Axl A , Ax3 ) transforms wi th an appropriate S-transformation 
: ( S )  - 

t o  ( A X ~  , b i b s ) ,  A i i s ) ) .  

I n  this section we have seen how the three customary methods for connecting geodetic networks 

generalize i f  one starts f rom the general assumptions (3.1.1). 

As t o  the f i rs t  two methods, it is interesting t o  remark that in  the geodetic l i terature one usually 

assumes either one of  the following two attitudes when discussing the problem o f  connecting geodetic 

networks: Either one places the whole discussion in  the context o f  free networks, thereby suggesting 

that  free networks are real ly something special and that they should not  be confused, l e t  alone be 

compared wi th  "ordinary" networks. Or, one assumes the att i tude that  the coordinates of  the two 

overlapping networks merely d i f fe r  by a similari ty transformation, which is easily taken care of  by 

estimating the transformation parameters i n  a least-squares sense. Both attitudes are however 

needlessly too restrictive. Although i n  the f i rs t  approach one is normally very careful in  stat ing what 

type o f  networks are involved, one usually starts f rom the too restr ic t ive assumptions tha t  
I 

Nu(P A ) = NU(P A ) = R(V1 ) . In  the second case, however, one of ten neglects t o  state the 
2 1 3 1 

basic start ing assumptions. It is namely not enough to  say that  the two coordinate sets d i f fer  by a 

similari ty transformation. Important is, t o  know what type of  networks are involved. Only then w i l l  

one be able t o  identify which of  the transformation parameters are estimable. 

When reviewing the relevant geodetic literature, it is also interesting to  note that those who assume 

the above mentioned f i rs t  att i tude usually end up wi th the method of  condition equations as solution 

strategy, whereas those who assume the second att i tude usually f ind themselves formulating the 

problem in  such a fo rm that  f i rs t  the transformation parameters need estimation. But  both methods 

are o f  course equally applicable in  principle. I n  fact, the aversion which is generally fe l t  towards the 

method of  condition equations, does not apply i n  case of  connecting networks, since one can argue 



that method I is more tractable computationwise than method 11. I n  some cases a t  least. 

As to the th i rd method, we showed how one should go about when the S-systems are defined either 

before or af ter  the merging o f  the two reduced normals. Here also the fac t  that i n  general not a l l  

transformation parameters can be treated on an equal footing, became apparant. 

Some authors have proposed i n  the context of method I11 to  give weights to  some of the 

transformation parameters. They argue that i n  case o f  for instance two networks which both are 

known t o  contain orientational information, this is a way o f  deciding how much of the orientational 

information of both networks is carried over to the f inal solution. This i n  i tself is true o f  course, but  

we do not  think that  i n  general this is an advisable way to  go about, since it has an element of 

arbitrariness i n  it. So far  namely, no objective cr i ter ium has been proposed on the basis of which t o  

decide to  follow such a procedure. I t  seems therefore more advisable t o  decide on the basis of 

stat ist ical tests whether or not the two networks significantly d i f fer  i n  their orientation. 

As a f inal remark we mention that  i n  this chapter we have adopted the customary assumption that  

the coordinate systems i n  which the two networks are described di f fer  only differentially. I f  this is 

not the case then one has t o  recourse to  either a preliminary transformation which make the two 

networks coincide approximately or to an iteration. I n  the next chapter we w i l l  see that  i n  some cases 

one can do without an i teration and formulate an exact non-linear solution. 



IV. GEOMETRY OF NON-LINEAR ADJUSTMENT 

1. General problem statement 

I n  the previous chapters we were primari ly concerned w i th  the linear model 

As a general solution of the linear unbiased estimation problem we found that  the actual adjustment 

problem was solved by 

and the actual inverse linear mapping problem by 

where B: M -+ N is allowed to be any arbitrary inverse of  the linear map A: N -+ M . 
I n  this chapter we take up the study of  non-linear adjustment. A problem which heretofore has almost 

been avoided i n  the geodetic literature. To this end we replace the linear map A by a non-linear map 

y: N  -+ M . Instead of  the l inear model (1.1) we then have the non-linear model 

It seems natural now to  extend our results of  the linear theory t o  the companion problem of  non- 

linear operators. But  unfortunately one can very seldom extend the elegant formulations and solution 

techniques f rom linear t o  non-linear situations. 

I n  correspondence w i th  the linear theory the problem of  non-linear adjustment can roughly be .divided 

into (a) the problem of  finding the estimates 9 and ;, and (b) the problem of  finding the statist ical 

properties of the estimators involved. I n  order to keep our non-linear adjustment problem 

surmountable we w i l l  restr ic t  ourselves t o  least-squares estimation and also we assume for the 

moment that map y is injective. Our non-linear least-squares adjustment problem reads then 

m i n . 2  E ( x )  = m i n .  ( Y ~ - Y , Y ~ - Y ) ~ ,  = ( Y ~ - ~ , Y ~ - ? ) ~  (1.3) 
XE N yEN=y (N I  

(the factor  2 is merely inserted for convenience). 
- 1 

I n  order t o  solve fo r  and ; we need non-linear maps P: M -+ N and y : hi + N such that 



and 
- 1 - 1 

2' ; =  y ( y ) ,  wi th  y o y = i d e n t i t y .  

Due, however, t o  the non-linearity of map y it is very seldom that  one can f ind closed expressions for  

the maps P and y-l (there are exceptions!). I n  practice one wi l l  therefore have to  recourse t o  methods 

which are i terat ive i n  nature. One starts w i th  a given point X E , the in i t ia l  guess, and proceeds 
0 

to generate a sequence xo ,  xl, x2.  . . which hopefully converges to  the point i .  Most methods 

which are discussed i n  the l i terature (see e.g. Ortega and Rheinboldt, 1970) adhere to  the following 

scheme: 

X 
B B = xB + t A X , B = l, . . . , n ; no summation over q, 

q + l  q 9 q 

(i) Set q=O. An in i t ia l  guess is provided externally, 

(ii) Determine an increment vector Axn i n  the direction of the proposed step, 

( i i i )  Determine a scalar t such t h i t  I I ys-y(xq+!) l  iM 5 I I Ys -Y (x  ) I  IM , 
9 9 

i.e., such that  the qth step may considered to  be an ~mprovement over the (q-1)th 

step. The way in  which t is chosen is known as a l ine search strategy. 
9 

(iv) Test whether the termination cr i ter ion is met. I f  so, accept X as the value of ;. I f  
q + l  

not, increase q by one and return to  (ii). 

Generally one can say that  the individual methods fal l ing under (1.4) d i f fer  i n  their choice of the 

increment vector Ax  and the scalar t The iterative techniques fa l l  roughly into two classes: 
9 cl' 

direct search methods and gradient methods. D i rec t  search methods are those which do not require 

the explicit  evaluation of any part ia l  derivatives of the function E, but instead re ly solely on values 

of the objective function E, plus information gained f rom the earlier iterations. Gradient methods on 

the other hand are those which select the direction Ax using values of the part ia l  derivatives of 
9 

the objective function E wi th  respect to the independent variables, as wel l  as values of E itself, 

together w i th  information gained f rom earlier iterations. The required derivatives, which for  some 

methods are of order higher than the first, can be obtained either analytically or numerically using 

some f in i te  difference scheme. This la t te r  approach necessitates extra function evaluations close to 

the current point X and ef fect ively reduces a gradient method to  one of direct search. 
9' 

We w i l l  not at tempt to give an exhaustive l is t  of i teration methods which could possibly solve our 

adjustment problem (1.3). For  a comprehensive survey of the various methods we refer  the reader to  

the encyclopaedic work of (Ortega and Rheinboldt, 1970). Instead, we restr ic t  ourselves t o  that  

gradient method which seems to  be preeminently suited for  our least-squares adjustment problem, 

namely Gauss' iteration method. This method can be considered as the natural generalization o f  the 

linear case and it is the only method which ful ly exploits the sum of squares structure of the 

objective function E. 

As t o  the second problem, namely that of finding the statist ical properties of the estimators involved 

we w i l l  not present a complete treatment of the statist ical theory dealing w i th  non-linear 

adjustment. We cannot expect a wel l  working theory for the non-linear model as we know it for  the 



l inear one. The probability distribution o f  the non-linear estimator for  7 for  instance, depends on both 

the non-linear map P and on the distribution o f  the data. Hence, it depends on the "true" values o f  X 

which are generally unknown. Therefore, even when we can derive a precise formula for  the 

distribution o f  the estimator, we can evaluate i n  general only the approximation obtained by 

substituting the estimated parameter values for  the "true" ones. 

The plan fo r  this chapter i s  the following: 

As said we w i l l  discuss Gauss' i teration method i n  some detail. We have chosen to  make use o f  

dif ferential geometry as a tool for  studying Gauss' method. We strongly believe namely that  geometry 

and in  part icular d i f ferent ia l  geometry provides us w i th  a better and richer understanding o f  the 

complicated problem of non-linear adjustment. Many of the geometric concepts developed in  

d i f ferent ia l  geometry turn out to  be important indicators, qualitatively as wel l  as quantitatively, o f  

how non-linearity manifests i tself i n  the local behaviour of Gauss' method and i n  the statist ical 

properties of the estimators. We therefore commence in  section 2 w i th  a brief introduction into 

Riemannian geometry. 

I n  section 3 we consider the problem of univariate non-linear least-squares. That is, we consider the 

problem of orthogonal projection onto a parametrized space curve. For  this purpose we f i rs t  study the 

local geometry of a space curve w i th  the aid of the so-called Frenet frame and Frenet formulae. The 

geometrical impact o f  the Frenet formulae is that i f  T and N are respectively the unit tangent vector 

and unit normal to  a plane curve and S i t s  arclength parameter, than to  an accuracy o f  the order of 

the second power of small quantities A S ,  we have 

T + AT = c o s  ( k ~ s )  T + s i n  ( k ~ s )  N 
N + A N  = - s i n  ( k ~ s )  T + c o s  ( k ~ s )  N, 

i.e., the Frenet formulae embody the fac t  that the Frenet frame (T ,N)  undergoes a rotat ion 

depending on the curvature k o f  the plane curve as one moves f rom the point on the curve 

corresponding to  S t o  the nearby point corresponding to  S + A S .  I t  is this observation on which 

most of our further developments are based. 

A f te r  having studied the local geometry o f  a space curve, we show how curvature affects the local 

behaviour o f  Gauss' method. The section is closed wi th  some examples and preliminary conclusions. 

I n  section 4 we consider the case of mult ivariate non-linear least-squares adjustment. That is, we 

consider the problem o f  orthogonal projection onto a parametrized submanifold. I n  order t o  

generalize the results o f  section 3 we have to  f ind an appropriate generalization t o  the Frenet 

formulae. This we f ind i n  the so-called Gauss' equation. With the aid of the normal f ie ld B, which can 

be considered as the mul t ivar iate generalization o f  the second fundamental tensor b known f rom 

classical surface theory (see e.g. Stoker, 1969), we then show how the extrinsic curvatures of the 

submanifold af fect  the local behaviour o f  the mult ivariate Gauss' i teration method. A t  the end o f  

subsection 4.4 we summarize the more important conclusions. The section is ended wi th  a subsection 



i n  which we show how Gauss' method can be made into a globally convergent i terat ion method. 

I n  section 5 we star t  by considering the classical two dimensional Helmert  transformation as a typical 

example o f  a tota l ly  geodesic submanifold, i.e. a manifold for  which a l l  extrinsic curvatures are 

identical ly zero. Next  we show that  for  a particular class o f  manifolds, namely ruled surfaces, 

important simplifications o f  the non-linear least-squares adjustment problem can be obtained through 

dimensional reduction. Based on this idea we then present a non-linear generalization o f  the classical 

two dimensional Helmert  transformation, which we cal l  the two dimensional Symmetric Helmert 

transformation. We also give the solution o f  the two dimensional Symmetric Helmert  transformation 

when a non-tr ivial rotational invariant covariance structure is pre-supposed. A f te r  this we generalize 

our results t o  three dimensions. Final ly we give some suggestions as to  how to  estimate the extrinsic 

curvatures in  practice and we estimate the curvature o f  some simple 2-dimensional geodetic 

networks. 

In  the last but  one section we br ief ly  discuss some o f  the consequences o f  non-linearity for  the 

statist ical treatment of an adjustment. We also show how the f i rs t  moments o f  the estimators are 

af fected by curvature. 

2. A brief introduction into Riemannian geometry 

We cannot expect t o  convey here much of the theory o f  Riernannian geometry. For  a comprehensive 

treatment o f  the theory we refer  the reader to  the relevant mathematical l i terature (see e.g. Spivak, 

1975). 

Riernannian geometry is a generalization o f  metr ic  dif ferential geometry o f  surfaces. Instead o f  

surfaces one considers n-dimensional Riernannian manifolds. These are obtained f rom differential 

manifolds by introducing a Riernannian metric, that is, a metr ic  defined by a quadratic d i f ferent ia l  

fo rm whose coeff icients are the components o f  a two times covariant positive definite symmetric 

tensor field. The corresponding geometry is called Riernannian geometry. 

Surfaces, w i th  their usual metr ic  inherited or induced f rom the ambient 3-dimensional Euclidean 

space, are 2-dimensional Riemannian manifolds, and part  of our considerations w i l l  be a 

generalization o f  ideas f rom the theory of surfaces and curves. However, for  n = l  or 2 there are many 

simplifications that have no counterpart when n > 2. Consequently, a number o f  new facts and 

concepts w i l l  have to  be introduced i n  the following sections. 

In  this section we only present br ief ly  some o f  the basic notions o f  Riernannian geometry. We f i rs t  

consider manifolds. An n-dimensional dif ferentiable or smooth manifold can roughly be described as a 

set of points t ied together continuously and differentiably, so that  the points i n  any suff iciently small 

region can be put into a one-to-one correspondence w i th  an open set of points in  IR". That 

correspondence furnishes then a coordinate system for  the neighbourhood. Moreover the passage f rom 

one coordinate system t o  another is assumed t o  be smooth i n  the overlapping region. 

The manifold concepts generalizes and includes the special cases of the real  line, plane, linear vector 



space and surfaces which are studied in  the classical theory. The mathematician (see e.g. Hirsch, 

1976) usually begins his development of  dif ferential topology by introducing some pr imi t ive concepts, 

such as sets and topology of  sets, then builds an elaborate framework out of  them and uses that  

framework to  define the concept o f  a dif ferential manifold. For our present application, however, we 

can ignore most of  the topological aspects. They are either very natural, such as continuity and 

connectedness or highly technical. Moreover, our analysis in  subsequent sections w i l l  mainly be of  a 

local nature, i.e. d i f ferent ia l  geometry in  the small. For dif ferential geometry i n  the small one can do 

without the global considerations in  most cases since one assumes that  a single coordinate system 

without singularities covers the port ion o f  the manifold studied. 

We have chosen to define manifolds as subsets o f  some big, ambient space(Rk. This has the advantage 

that  manifolds appear as objects already famil iar t o  those who studied the classical theory of  

surfaces and it also enables us to  surpass many of the topological concepts. Suppose that  N is a subset 

of some big, ambient space lRk. Then N is an n-dimensional manifo1.d i f  it is local ly diffeomorphic t o  

IRn; this means that each point X of N possesses a neighbourhood V = V ' n N , for some open set V' 
n 

of  lRk, which is diffeomorphic t o  an open set U of  /Rn. The two sets U c IR and V C N are said 

t o  be diffeomorphic i f  there exists a map h: U + V which is one-to-one, onto and smooth in  both 

directions. This diffeomorphism is called a parametrization of  the neighbourhood V. I t s  inverse 

h - l :  V -+ U is called a coordinate system on V. When the map h-' is wr i t ten  in  coordinates, 
1 n a 

h-' = ( X  , . . . , X  ) , the n functions X , a = l ,  . . . , n ,  are called coordinate functions. 

As a simple geodetic example of  a manifold, l e t  N be the set of  a l l  planar geodetic networks having, 

say, f n number of  points. Each planar geodetic network represents then a point X of  N. The most - 1 
obvious way t o  give N a manifold structure is then by taking the diffeomorphism h : N + lRn as 

the identity map. The coordinate functions are then the standard cartesian coordinates. However, one 

could of  course also take polar coordinates, cyl indrical coordinates, spherical coordinates or any of  

the other customary curvilinear coordinates provided they are suitable restr icted so as to  be one-to- 

one and have non-zero Jacobian determinant. 

I f  two sets O and N both are manifolds and O c N , then 0 is said to be a submanifold of  N. I n  

particular, any open set of N is a submanifold o f  N. Assume for instance that O is the set o f  a l l  planar 

geodetic networks having $ n  number of  points, w i th  the additional restrictions that, say, some 

distances between some network points are taken to  be constant. Then O can be shown to  be a 

submanifold of  the above defined N. 

L e t  us consider the linear approximation o f  a manifold N, i.e. i ts  tangent space. The vectors in  it are 

the tangent vectors t o  N. L e t  c be a point on the manifold N and l e t  c trace out a curve c (  t ). I n  
a a 

local coordinates the curve is given by c ( t ) = X ( c (  t ) ) , a = l, . . . , n . The velocity vector 
a 

to this curve is given by dc  / d t .  It is now established practice in  dif ferential geometry t o  

generalize the classical definit ion of  tangent vector, and to  consider a d i f ferent ia l  operator as 

tangent vector. To do this we take a real-valued function E(x) defined on N and consider i t s  ra te  of  

change along the curve c (  t ) .The ra te  o f  change of  E(x) in  the direction of  c ( t ) is dE/dt. I n  local 
a a 

coordinates this becomes a E dc  / d t  (here we have abbreviated aE/a  X by aaE) .  I n  other 
a a 

words dE/dt is obtained by applying the di f ferent ia l  operator T = d c  / d t  a t o  E. I t  is T which 
a 

we now define as the tangent t o  N a t  c i n  the directions given by the curve c(t). I f  we apply T to  the 



a 
local  coord ina te  func t ions  X w e  ob ta in  t h e  t r ad i t iona l  veloci ty  vec to r ,  i.e. 

B a T ( ?  ) = d c  / d  t a ? = d c  / d  t .  SO, a t a n g e n t  v e c t o r  T is now a d i f f e ren t i a l  o p e r a t o r  of t h e  
B 

f o r m  T = P am . T h e  s p a c e  of a l l  possible t a n g e n t s  a t  a point  c is ca l l ed  t h e  t a n g e n t  s p a c e  of - 
N a t  c and  is w r i t t e n  a s  TcN . In t e r m s  of local  coord ina te s  t h e  d i f f e ren t i a l  o p e r a t o r s  

a, , a 1 . . . , n ,  f o r m  a basis of T N .  If t h e  componen t s  f a r e  s m o o t h  funct ions ,  t hen  
C 

T = f ( x )L is ca l l ed  a v e c t o r  f ie ld  on N.  

In addi t ion t o  pa r t i a l  d i f f e ren t i a t ion ,  a second d i f f e ren t i a l  o p e r a t o r  i s  commonly in t roduced on a 

manifold. This  is  t h e  o p e r a t o r  of c o v a r i a n t  d i f f e r e n t i a t i o n  I t  is  c losely  r e l a t e d  t o  t h e  c o n c e p t  of 

connections.  T h e  sub jec t  begins by observing t h a t  t h e  t angen t  s p a c e s  T N ,  T , N  a t  t w o  
X X 

neighbouring points  X and  X' change  a s  one  moves  f r o m  X t o  X'. A connect ion is essent ia l ly  a s t r u c t u r e  

which endows one  wi th  t h e  abi l i ty  t o  c o m p a r e  t w o  such  t angen t  s p a c e s  a t  a pai r  of inifinitesirnally 

s e p a r a t e d  points. T h e  connec t ion  i s  g iven by defining w h a t  i s  ca l led  para l le l  t r anspor t  o r  para l le l  

t r ans l a t ion  in N .  Consider  T N and T , N  and any curve ,  c say,  joining X t o  X'. L e t  T be  a t a n g e n t  
X X 

t o  t h e  c u r v e  c a t  X, t h e n  T is sa id  t o  b e  para l le ly  t r anspor t ed  along t h e  cu rve  c if T i s  pushed f r o m  X 

t o  X' in such  a way t o  a lways  r ema in  para l le l  t o  i tself .  If t is  t h e  p a r a m e t e r  of t h e  cu rve  t h e n  t h e  

cova r i an t  de r iva t ive  of T is t h e  r a t e  of change  of T wi th  r e s p e c t  t o  t. This  cova r i an t  de r iva t ive  will 

d i f f e r  f rom t h e  ordinary  pa r t i a l  der ivat ive ,  t h e  quan t i ty  t h a t  measures  th i s  d i f f e rence  i s  t h e  

connection. 

L e t  X and Y b e  v e c t o r  f ie lds  on N .  T h e  cova r i an t  de r iva t ive  of Y wi th  r e s p e c t  t o  X i s  t h e n  deno ted  by 

VXY and i t  is  a v e c t o r  field on N .  T h e  appl ica t ion of t h e  ope ra to r  V is def ined t o  be  l inear  in bo th  i t s  

a r g u m e n t s  and m u s t  s a t i s fy  t h e  cha in  ru l e  V ( f Y )  = X (  f ) Y  + f VXY, where  f is  any  real -  
X 

valued s m o o t h  funct ion on N .  With t h e  loca l  coord ina te  express ions  X = 2 a Y = '?aa w e  
a '  

t h e r e f o r e  g e t  

which shows t h a t  V Y is t o t a l ly  speci f ied  once  V a is given. I t  is  cus tomary  t o  expres s  t h e s e  
X 

v e c t o r s  f ie lds  in t h e  coord ina te  f ie lds  3 a s  aa B 
Y 

v a =  rY a a 6  a y  
a ,B ,y = l , .  . . , n .  (2.2) 

3 T h e  n rea l -valued s m o o t h  funct ions  rY  d e t e r m i n e  t h e  connect ion and a r e  ca l led  t h e  connect ion 
a B 

coeff ic ients .  

L e t  c (  t ) b e  a c u r v e  in N .  A v e c t o r  field X on N is  t h e n  sa id  t o  b e  a para l le l  vec to r  field a long t h e  
a 

c u r v e  c ( t )  , if i t s  cova r i an t  de r iva t ive  wi th  r e s p e c t  t o  t h e  d i r ec t ion  T = d c  / d t  a i s  
a 

ident ica l ly  ze ro ,  i.e., 

T h e r e  a r e  specia l  t ypes  of c u r v e s  c ( t  ) which a r e  so-called self  parallel. T h a t  is, para l le l  t r anspor t  

f r o m  t t o  t' t a k e s  t h e  veloci ty  v e c t o r  a t  c (  t ) i n to  t h e  veloci ty  vec to r  a t  c (  t ' ) . T h e s e  c u r v e s  

a r e  ca l l ed  geodesics.  S ince  t h e  cova r i an t  de r iva t ive  VTT measures  t h e  r a t e  of change  of T in t h e  



direction T under parallel transport, an equation describing the above definit ion o f  a geodesic is 

simply 

VTT = 0 ,  (2.4) 

where T is the velocity vector o f  c (  t ) . With T = d c a / d t  a , (2.1) and (2.2), (2.4) becomes i n  
a 

local coordinates 

So far  we have equipped the manifold N only w i th  a connection given by the defining equation (2.2). 

We w i l l  now give it some additional structure. Assume given a smooth real-valued, symmetric and 

positive-definite bi-linear map ( . , . ) : Tx  N X TxN + IR. A manifold equipped wi th  such a 

bi-linear map is called a Riemannian manifold. The bi-linear map ( . , . ) xN 
is called the met r ic  

tensor and in  local coordinates it is given by the smooth functions g ( X )  = ( aa ,a ) . 
aB B xN  

There is a unique symmetric connection on a Riemannian manifold such that  parallel translation 

preserves the Riemannian metric. I t  is called the Levi-Civita or Riemannian connection. I t  is that  

unique connection satisfying 

for any vector fields X,Y and Z on N. A connection satisfying (2.5.a) is said to  be symmetric or 

torsionfree, and a connection satisfying (2.5.b) is said to  be metric. 

Up  till now we have considered only one manifold N. L e t  us now consider two manifolds N and M, and 

a smooth injective map y between them, i.e. y: N + M . Then the image N = y ( N ) c  M defines 

a submanifold of M. 

The map y provides a way of mapping vectors on N into vectors on M. The image of T N under y is a 
X 

tangent space of N a t  y(x), and is denoted by T N .  This map between tangent spaces induced 
y ( x )  

by y is wr i t ten  y : 
TxN + T y ( x )  

and is called the push forward of y. The precise action on a 
3i 

vector X E T--N is such that given a function f on M, so that f(y(x)) is a function on N, then 
a 

y Y ( X )  E T is defined by ( y X )  f = X f  ( y ( X )  1. With X = X a this would give i n  y ( x )  Y X a 
local coordinates 

where yl, i= l ,  ..., m, are the local coordinate functions o f  M , ai , i =l, . . ,m, the corresponding 
i a 

coordinate vector fields and y ( X  ) the coordinization o f  the map y:  -+ M . 
Although it is possible to  suppress explicit  reference to  the map y, to  identify N wi th  the subset 



y (N) of  M and each T N w i th  the subspace y (T N) of T M, we w i l l  not do so. Recal l  
X X X Y 

namely that  also i n  the case of  linear maps we are not used to  identify the range space w i th  the 

domain space, although both spaces are isomorphic. 

As a closing of  this section we define the observation- and parameter space of  our adjustment. I n  our 

least-squares adjustment context the observation space M is taken to  be Euclidean w i th  Euclidean 

met r ic  ( . , . ) . The coeff icients of  the metr ic  are given by the real-valued constants 

g .  . = (a i ,  a.) . The connection compatible w i th  the Euclidean metr ic  of  M w i l l  be denoted by ' I J M 
D. And since D a. Tj  = 0 ,  i , j = 1, . . . ,m, we have for  any two vector fields V and W on I,4 that  

i 
D W = V a (h ) a , i.e. the covariant derivative reduces to  the ordinary vector derivative. The v j 
directional derivative of  a function f on M i n  a direction V w i l l  sometimes be denoted by D f . v 
Manifold N w i l l  play the role of  the parameter space and the non-linear map y replaces the linear 

map A which has been used hitherto. Manifold N w i l l  be endowed wi th  a Riemannian metr ic  by pulling 

the met r ic  of  M back by y. That is, given the metr ic  of  M we define the metr ic  of  N by 

( x ,Y)~  = ( Y ~ ,  ) for any X,Y E T ~ N .  

3. Orthogonal projection onto a parametrized space curve 

3.1. Gauss' i terat ion method 

It seems reasonable that  we should begin our discussion of non-linear least-squares adjustment w i th  

the simplest class of  problems, namely those i n  which manifold N is one dimensional. I n  case of  our 

least-squares problem 

m i n .  ( Y s - Y , Y s - Y  )M = ( Y , - ~ Y ~ - $  )M , 
Y E N = y ( N )  

this means tha t  we need to  consider the problem o f  orthogonally projecting the observation-point 

y, E M onto a space curve. 

Since we l i ke  t o  denote the space curve by c (  t ) , we replace the map y: N + M i n  this section by 

the map 

c:  t E I R  = N + M .  

Our univariate least-squares adjustment problem reads then 

m i n .  = ( y s - & y s - L .  )M 
c E N = c ( N )  



From geometric reasoning it w i l l  be clear that  a necessary condition for  6 to be the least-squares 

solution o f  (3.31, is that  

d .  
must hold, where -- IS a basis o f  T IR = T N . 

d t  t t 
I n  the linear case it was necessary and also suff icient for  the residual vector to  be orthogonal to  the 

linear submanifold f i  = A N  . I n  the non-linear case however, i t is necessary but not  sufficient. 

Since the residual vector y s - 6  needs to  be orthogonal to  the linear tangent space 

T . ( c ( N )  ) = T .N of  the non-linear manifold fi = c ( N) a t  6, we need to  know ~~i . But due to  
C C 

the assumed non-linearity of the mapping c :  N = IR + M , the tangent space T A  ( c (  N) ) is 
C 

generally unknown a priori. Hence our minimization problem cannot be solved directly. Expression 

(3.4) does however suggest a way o f  solving our adjustment problem. Instead o f  orthogonally 

projecting y onto the tangent space T ~ N  , one can take as a f i rs t  approximation the orthogonal 
S 

projection o f  y onto a nearby tangent space, T fi say. O f  course then, 
S C 

9 

But by pulling the non-orthogonality as measured by (3.5) back to  the Riemannian manifold N, we get 

d 
= (c (--l, Y ~ - C ) ~  , M  , w i t h  At E T IR = T N , 

I; d t  t (3.6) 

9 t 9  9 

which suggests i n  local coordinates the fol lowing i teration procedure: 

where g(t) is the induced metr ic  of N = IR. 

This is Gauss' iteration method and i t  consists o f  successively solving a linear least-distance 

adjustment problem unt i l  condition (3.4) is met. 

Before we now proceed w i th  studying the local behaviour o f  Gauss' i teration method (3.7), we w i l l  

f i rs t  derive some local geometric properties of the space curve c itself. An appropriate approach fo r  

studying the local geometry of curve c is by using 

3.2. The Frenet frame 

With the tangent f ie ld (or velocity f ie ld i f  one considers t E IR to  be a t ime parameter) 



of curve c(t), we obtain for  non-zero velocities the unit tangent f ield T as 

And since ( l T (  I = l for a l l  admissible t E IR, we have 
M 

which shows that  DTT is orthogonal to  the unit tangent f ield T. We define the first curvature kl as 

and when kl > 0 the first normal N1 by 

Geometrically the f i rs t  curvature kl can be seen to  determine the ra te  of change o f  the direction of 

the tangent to  the curve w i th  respect to  i t s  arclength, where arclength is defined as 

The curvature kl is a property of the curve c and it is invariant t o  a reparametrization. 

F rom the orthogonality of N1 and T follows that  

which shows that  T is orthogonal to  DTNl + klT .Similarly it follows f rom I I N1( I = 1 that 
M 

Thus DTNl + klT is orthogonal to both N1 and T. We now define the second curvature k2 as 

and when k 2  > 0 the second normal NZ by 

We can proceed i n  this way to  define k3, N3 etc. The vectors T, N1, NZ, ... are called the Frenet 

vectors and the equations that  express the DrT, DTNi i n  terms of the Frenetvectors are called the 

Frenet equations. For  the case m=3 they read as 



I n  order t o  f ind the relat ive position of  the curve c wi th respect t o  i t s  Frenetframe a t  some regular 

point, we can study the projections of  the curve onto the planes of  the Frenetframe. For  convenience 

we assume that the curve c has been parametrized wi th the arclength parameter S . Now l e t  our 

point, P say, correspond t o  the value S = 0 o f  the arclength parameter. The curve c(s) can then be 

wr i t ten i n  the fo rm 

The subscript "o" denotes that  the value is  taken a t  the point corresponding to  S = 0. And Landau's o(.) 
3 

symbol means that  o ( S  ) / S  + 0 i f  S + 0. 

Since 

D T =  k N  
T 1 1' 

it follows that  

2 dkl 
D T = D ( k N  = T ( k  ) N  + k D N  = - - -  

T T 1 1  1 1  1 T 1  ds 1 l 2 2 
N + k (-klT + k N 1. 

dkl 
Substituting the above two  expressions into (3.14) gives then wi th k l - --- 

l - d s  ' 

Choose now a special coordinate system i n  M such that  the point P under consideration is the origin 

and the vectors To, Nl,o and are the uni t  vectors of  the f i rs t  three coordinate axes. I n  this 

coordinate system the curve c(s) can be represented by the equations 

These equations are called the canonical representation of  curve c(s) a t  S = 0, and the leading terms 

i n  it conveniently describe the behaviour of  4s)  near the point corresponding t o  S = 0. 
3 It w i l l  be clear tha t  many curves exist which have up t o  o(s ) the same canonical representation as 

4s). That is, for  S small enough these curves behave alike and are thus indistinguishable. 

We w i l l  now give a characterization of  such "kissing" curves and one of them, namely 



3.3. The "kissing" c i rc le 

w i l l  be used for a further analysis of  Gauss' i terat ion scheme (3.7). 

Consider two curves cl(sl) and c2(s2) w i th  a common point cl(o) = c2(o). s1 and s2 are taken as their 

natural arclength parameter. L e t  cl(sl=h) and c2(s2=h) be two points on respective cl(sl) and c2(s2). 

We say that  the two curves have a contact  o f  order n i f  

but 

From this follows that  two curves cl(sl) and c2(s2) have a contact of  order n a t  a regular point 

corresponding to  sl = s2 = 0 i f  and only i f  

i = l, ...,m, 

where the coordinates o f  the two curves are given w i th  respect t o  a f ixed frame of  M .  With (3.15) 

follows then that  two curves have a contact of  order a t  least two a t  a common point P i f  and only i f  

they have a t  P a common tangent vector To, a common normal N and moreover, the same 
l,o 

curvature kl(0). A l l  such curves w i l l  thus have the same canonical representation 

And i n  the above sense of  contact such curves can be considered each others best approximation. 

Now, i f  we recal l  our i teration scheme (3.7) we observe that only f i rs t  order derivative information is 

used. Hence, for  a small enough port ion o f  the curve c(s) about the least-squares solution 

6 = c ( o  ) , we can replace the space curve c(s) by 

I n  fact, w i t h  the same approximation we can replace the space curve c(s) by the c i rc le 

This follows f rom 

and 



Thus we can use the c i rc le C(s) t o  replace the curve c(s) i n  a neighborhood of  P. The c i rc le C(s) is 

known as the osculating (="kissingw) c i rc le of  c(s) a t  6 = c(o) or the c i rc le of curvature. 

Note that by replacing c(s) by C(s) we achieve a drastic simpli f ication of  our original non-linear least- 

squares adjustment problem. F i rs t  of  a l l  we achieve a dramatic decrease i n  dimensionality: 

c ( s  ) E M , whereas C(s) lies i n  a two-dimensional plane of M spanned by To and Nl,o. And 

secondly we can now exploit the simple geometry of the osculating c i rc le C(s) i n  order t o  understand 

the local behaviour of  Gauss' i terat ion method (3.7). 

Consider therefore the situation as sketched i n  figure 24. 

C(s 

figure 24 

- 
y s  is the orthogonal projection of  the observation point y E M onto the plane spanned by To and 

S 
Nl,o, and C(sl) is the in i t ia l  guess to  star t  the i terat ion procedure. 

Since the orthogonal projection of  y, onto the tangent of  C(s) a t  C(sl) gives the same increment - 
A S as the orthogonal projection o f  y , we have for our f i rs t  i terat ion step 

1 S 

As, = - I  I is - C(sl) l  lM s i n ( a - @ l )  . 

From the figure also follows that  i n  a suff iciently small neighbourhood of  6, 

I I Ys -~ (s l ) l  Ill  s i n  a 
4, = tan 4 - --------------M---------------------- - 

-1 - A 

kl(0)  - I  I Y ~ - C I  lI + I I iS-c(sl)l I M c o s  a '  

-1 - . 
4,(k,(D) - 1  1 c 1 1 - S  1 ( s i n  a - @  1 c o s  a )  

= I I y s - ~ ( s l ) l  lM s in (a -4 , )  . 



With 4 = k l ( 0 ) s l , combination o f  (3.18) and (3.19) gives 

And wi th  s = s + A s this f inal ly gives the relat ion 
2 1 1 ' 

From this expression we can now formulate several important conclusions concerning the local 

behaviour o f  Gauss' i terat ion method as applied t o  the curve c(s): F i rs t  of a l l  expression (3.20) tel ls us 

that  i n  case k ( 0 )  f 0 ,  the local convergence behaviour of Gauss' i terat ion method as applied to  
1 

the space curve c(s), is linear. That is, the computed arclength o f  the curve c(s) f rom 6 to  c(s 
q + l  

depends l inearly on the computed arclength f rom 6 to  the point c(s ) o f  the preceding step. 
'4 

Secondly, a necessary condition for  convergence of Gauss' i teration method is that  

And thirdly, expression (3.20) shows that  the local linear convergence behaviour is determined by two 

terms, namely the f i rs t  curvature kl o f  the curve c(s) a t  6 and the projection (N ~ ~ Y , - ~ ) B , M  Of 

the residual vector y - 6  onto the f i rs t  normal N1 a t  6. Thus the smaller the curvature and the 
S 

smaller the component of y, - 6 i n  the direction of N1, the faster Gauss' i terat ion method as applied 

t o  the space curve c(s) converges. 

So far  we assumed for  convenience that  the curve c:IR= N + M was parametrized w i th  i t s  arclength 

parameter S. But i n  general one would o f  course have an arbitrary parametrization c ( t ) ,  w i t h  

t f S .  The question that  remains is then whether the above given conclusions s t i l l  hold when t f S. 

To study this more general case, it seems appropriate to  look for  the direct analogon o f  the Frenet 

equations (3.13). These are given by the so-called 

3.4 One dimensional Gauss- and Weingarten equations 

From the definit ion o f  the arclength parameter S ,  

follows that  



We therefore have that  

And w i th  (3.22) and D T = k N follows that  
T 1 1  

- 1 2 
D V = ( S ' )  ( s l ' ) V  + ( S ' )  klN1. v 

I n  a similar way we f ind that 

D N = ( s l ) D  N and D? = (s1)D,-N2. 
V 1 T 1 2 

With these last three equations we can now replace (3.13) by 

For  m = 3, these equations can be considered as the one-dimensional analogons of the Gauss- and 

Weingarten equations. 

3.5 Local convergence behaviour of Gauss' iteration method 

Now l e t  us return to  our adjustment problem and see how the equations (3.23) come t o  our use fo r  

describing the local properties of i teration scheme (3.7). 

F i rs t  observe tha t  (3.7) can also be wr i t ten  as 

Expanding the right-hand side into a Taylor series about the least-squares solution t gives then w i th  

j E ( i )  = 0: 

And w i th  



DVV = ( s ' ) - ~ ( s ~ ~ ) v  + and 

the above expression (3.25) reduces t o  

But  this is exactly the result we obtained i n  (3.20) for the special case t = S, t = 0. Hence, we 

have as a fourth conclusion that  the local linear convergence behaviour of Gauss' i teration method as 

applied t o  the space curve c(t), is invariant t o  any admissible non-linear parameter transformation. It 

is thus idle hope to  think that one can improve the convergence behaviour by changing t o  a d i f ferent  

coordinate system. 

Now l e t  us assume that  the f i rs t  curvature kl of the space curve c(t) is identically zero. 

Then 

D T = O  , 
T  

which means that  the unit tangent vector T  is parallel along the whole curve c(t). And since 4.1 is 

Euclidean by assumption, this means that  the curve c(t) is a straight line. F rom (3.25) follows then 

that 

And w i th  

g(;) = ( S I ( ; ) ) ~  , and 

for  kl = 0, follows then that  



Hence, for the case the curve c(t) is a straight l ine (kl 0 )  , Gauss' i terat ion scheme (3.7) w i l l  

have a local quadratic convergence behaviour. But  how is this possible? Doesn't orthogonal projection 

onto a straight line correspond to  the case of  linear least-squares adjustment. And i f  so, wouldn't that  

mean tha t  i terations are superfluous? The answer is part ly i n  the af f i rmat ive and part ly  i n  the 

negative. It essentially boils down to  our earlier remarks made in  the previous chapters, namely tha t  

adjustment in  the general sense should be thought of  as being composed of  the problem of  adjustment 

in  the narrow sense, i.e. the problem of  finding an estimate 9 such that  

m i n .  ( y S - y ,  y s -  Y ) ~  = y s -  - )  , and the problem of  inverse mapping, i.e. the 
Y EN 

problem o f  finding the pre-image 2 of 9 under the map y:  N  + M . Thus the actual adjustment 

part, namely that  of  finding the point 9 i n  the submanifold of  M which has smallest distance t o  

YS 
E hi , is essentially an observation space oriented problem. I n  this l ight  we must therefore be 

more precise as t o  what we mean by "linear least-squares adjustment". Usually one means by "linear 
i a 

least-squares adjustment1' that  the coordinate functions y ( X ) , i = l, . . . ,m, a = l, . . . , n 

of  the map y are linear. We will, however, cal l  a least-squares adjustment problem linear, i f  the 

submanifold fi of  the Euclidean observation space M defined by the map y :  N  + M , is linear or 

flat. For our problem o f  orthogonal projection onto the curve c this means that  the adjustment 

problem is termed linear i f  kl = 0. But  it also means that linear least-squares problems may admit 

non-linear functions cl(t), i = l, ..., m. The non-linearity i n  cl(t) is then only caused by the choice o f  the 

parameter t. That is, by choosing another parameter it is possible t o  eliminate the non-linearity i n  

cl(t). I n  part icular i f  one takes the arclength parameter S or a linear function thereof as parameter, 

the functions ci(t) w i l l  become linear. As a consequence we see that  the local quadratic convergence 

factor of  (3.29) is not  a property of  the curve c(t) itself, but  instead depends on i ts  parametrization. 

I n  the special case namely of  t = S, we would have (S')-ls" = 0, i.e. no i terat ion would be necessary 

then. Thus we see that  w i t h  (3.29) we are actually solving for  the inverse mapping problem, instead o f  

the actual adjustment problem. 

To put the argument geometrically, consider an arbitrary parametrization of  the straight l ine c such 

tha t  the parameter t is not a linear function o f  the arclength S. The length 1 I V ( t  ) l = S ' ( t  ) 

o f  the curve's tangent vector V changes then when moving along the curve f rom point t o  point. 
d d 

Hence, the coordinate expression of  the induced metr ic  o f  N  , g (  t ) = ( C  (--), c (--)h4 , 
w d t  w d t  

w i l l  be a function of  the parameter t. But  this means that  when one applies formula (3.7) o f  Gauss' 

i terat ion method one is i n  fac t  using two different "yardsticks". One yardstick given by the pulled 

back metr ic  of  the tangent space of  the curve c a t  point c(t ), namely g(t ), and a second yardstick, 
q q 

namely g(t), the induced metr ic  of  the parameter space N itself. And it w i l l  be clear that  the induced 

metr ic  g(t ) o f  the linear tangent space T N  wi l l  be constant for  the whole space, whereas the 
q t 

induced met r ic  g(t) of  N  i tsel f  changes fromqpoint t o  point. Thus when one computes the tangent 
d 

vector A t  = A t  -- E T N  through 
q d t  t 

q 

and adds i t s  coordinate A t  t o  t , to  obtain 
q q 



one is in  fac t  neglecting that  T N and N are endowed wi th  two different met r ic  tensors (see figure 
t 

25). 9 

M dt,)  Ay c 
1 1 m e t r i c :  g . .  1 I = ( ai,a.) 1 M 

0x1 2 3 4 d d 
't: 1 U U V l 5 8 ? me t r i c :  g(tl) = (- -) 

l Atl dt'dt tl,N 

d d 
m t r i c :  g ( t )  = (- -) 

d t ' d t  
t , N 

figure 25 

And because o f  this neglectance one is, despite the flatness of G, s t i l l  forced to  recourse to  an 

i terat ion to  f ind t. Note, however, that  i f  one is not interested i n  E, but instead is satisfied w i th  6  no 

i terat ion is necessary. F rom the l inearity o f  the submanifold = c ( N )  follows namely that  

is independent o f  the choice for  t 
9' 

Since (3.28) also holds for  the case kl f 0 but y - 6  = 0 , it follows that we also have the local 
S 

quadratic convergence rule (3.29) for zero residual vector adjustment problems. This is i n  fac t  not 

very surprising since for  both the cases kl = 0 and y - 6  = 0 , we do not  need an i terat ion t o  
S  

solve the actual adjustment problem. I n  case o f  kl = 0 the actual adjustment problem is namely linear 

and i n  case of y  - 6  = 0 the actual adjustment problem is indeed already solved a priori, since 
S  

ys=  6 . Thus for  both the cases kl = 0 and y - 6  = 0 , the iteration is only needed for  the 
S 

inverse mapping problem and not for  the actual adjustment problem. 

To i l lustrate the theory developed so far and to  demonstrate the various ef fects mentioned we w i l l  

now give some examples. 



3.6 Examples 

Example 1: Orthogonal projection onto the curve O(2). 

I n  this f i rs t  example we take as non-linear model the two dimensional Helmert transformation only 

admitt ing a rotation. The non-linear model reads 

where: - i = l, ..., n = number of network points, 

- the t i lde " - "s ign  stands for  the mathematical expectation, 

- xi,yi are cartesian coordinates of the networkpoints, 
- - 

- X , y are the f ixed given coordinates, 

- X , y , . . . , X ) is the observation vector, and 
n t Y n  S 

- 8 is the rotat ion angle to  be estimated. 

Fo r  the observation space M = we take the standard metric, i.e. 

w i th  a i = 1, . . . .2n the standard basis. 
i ' 

It w i l l  be clear that the above model (3.30) determines a curve c(8 ) in  the observation-space M. To 

solve for  (3.30) we therefore need t o  project the observation vector ( X l, y l, . . . , X It 
n t Y n  S 

orthogonally onto c (8 ) . 
For  i l lustrat ive purposes we w i l l  f i rs t  derive expressions fo r  the induced metric, the f i rs t  curvature 

kl o f  c(8 ) and the convergence factor cf. of Gauss' i teration method as applied t o  (3.30). A f te r  

this, we give the exact non-linear solution to  (3.30). And f inal ly we w i l l  give an alternative 

interpretation of model (3.30) by using the manifold structure of the group O(2) o f  orthogonal 

matrices of order 2. 

Note that  we can wr i te  model (3.30) in  the form of 

- t 
where: Y = (xl,Y1,---,X n t Y n )  9 



wi th  (e19e2)M = 0 ,  (el,el)M = (e2,e2)M = 1 . 

Hence our non-linear model (3.30) describes a circle which lies i n  the two-dimensional plane spanned 

by the orthonormal vectors el and e2 (see figure 26). 

"Helmert transformation only admitt ing a rotationtt 

figure 26 

The radius o f  this c i rc le is given by the square root  of I. 

Thus we have immediately that  

We also see a t  once that  the arclength parameter S of c (  0 ) is given by 

f rom which follows that  the induced metr ic  is constant along c ( 0 ) .  

Hence, i f  by any chance the least-squares residual vector y - 6 is identical to  zero, Gausst i terat ion 
S 

method as applied to  (3.30) w i l l  have a th i rd order convergence behaviour. 

To compute the local linear convergence factor 

o f  Gausst i terat ion method as applied t o  (3.30), we need the length of the residual vector y - &  
S 

projected onto N1, the f i rs t  normal of c ( @ ) .  Thus we need the length of the pseudo residual vector - .. 
y s - c ,  where is the vector obtained by projecting ys orthogonally onto the plane spanned by el 

S 
and e2 (see f igure 26). Hence, 



with = 1 -  i i + i ~ i  ( e 2 , ~ s ) M  ' l i Z l  

There fo re  

With (3.33) follows t h e n  t h a t  

c f .  = I l - A  l ,  

wi th  

9 

N o t e  t h a t  (3.35') i s  precise ly  t h e  e s t i m a t e  of t h e  s c a l e  p a r a m e t e r  which one  ob ta ins  when solving fo r  

t h e  t w o  dimensional H e l m e r t  t r ans fo rma t ion  

X .  = i A c o s  8 + i A s i n  8 
1 - i i 

y .  = - x  A s i n  8 + ; A c o s  8 ,  
L i i 

admi t t ing  a r o t a t i o n  and s c a l e  ( see  a lso  (5.12)). 

Of cour se  t h e  above  discussion is only m e a n t  a s  i l lustration. In p r a c t i c e  one  will no t  solve  model  

(3.30) by using a n  i t e r a t ion  method,  s ince  a n  e x a c t  non-linear solut ion is readi ly  available.  F r o m  

f igu re  26 fol lows namely t h a t  

Hence ,  



It w i l l  also be clear f rom the figure that  solution (3.36) is a global minimum of the minimization 

problem 

Except for the case I l y I I = 0. Then namely the solution is indefinite. 
S M 

We w i l l  now give an alternative interpretation of the non-linear model (3.30). For the moment this 

alternative interpretation is only o f  theoretical interest. Observe that  we can wr i te model (3.30) in  

the form of 

I c o s  8 - 
s i n  8 

. s i n  8 
c o s  8 I 

which we abbreviate as 

Thus stands for  the nx2 mat r ix  on the l e f t  hand side of (3.381, A for  the nx2 mat r ix  on the r igh t  

hand side and X for  the 2x2 rotat ion matrix. 

We w i l l  denote the linear vector space of nx2 real  matrices by M(nx21, and the space o f  2x2 

orthogonal matrices by O(2): 
n ( n - l )  It can be shown that  O(n) is an ------ - dimensional manifold. Thus, w i th  the usual abbreviations 

2 
M = M(nx2), N = 0(2), and f i  = A0 ( 2 )C M , we have that  

d im.  M = 2n,  d im .  N = dim. fi = 1, 

and that  A O(2) describes a curve i n  M. 

To make our new formulation (3.39) compatible w i th  (3.30) and the metr ic  (3.311, we take for the 

metr ic  tensor o f  M = M(nx2) the following definition: 

d e f .  t 
= t r a c e [ ( . )  ( . ) )  . 

It is easily verif ied that  ( . , 
)M 

as given by (3.41) fu l f i ls  the necessary conditions o f  

symmetry, bi- l inearity and non-degeneracy. 

With (3.39) and (3.41) we are now in  the position of rephrasing our original least-squares problem 

(3.37) as 

m i n .  ( y s - A  x , y s - A  x ) ~  = m i n .  t r a c e [ ( y  - A  X )  t ( y s - A  X ) ) .  
S 

x e N = 0 ( 2 )  x ~ N = 0 ( 2 )  

And this is the formulation which we w i l l  use in  our discussion of the three dimensional Helmert  

transformation (see subsection 5.5). 



In the remaining four examples of this section we give some numerical results of some simple models 

to demonstrate the various effects  mentioned of Gauss' iteration method. In all these examples we 

take the metric of M to be the standard metric. 

Example 2: Orthogonal projection onto a unit circle 

i =l  i = 2  
Ourmodel readsas :  c ( t )  = c o s ( t ) ,  c ( t )  = s i n ( t ) ,  

i =l  i = 2  
The observation point given is: y = 0 . 5 ,  y = 0 . 0 ,  and 

our initial guess reads: t S (rad.) 
0 = ZR 

The numerical results are: 

table 1 

iteration step q 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

1 3  

14 

15  

i = l  
Since the unitcircle has curvature kl = 1, we have with the observation point y = 0 . 5 ,  

i = 2  S 

Y s  
~ 0 . 0  that  ( k l ~ l ,  ys -C)  B , M  = 0 . 5 .  And this local convergence factor  is indeed 

clearly recognizable from the  above given numerical results. 

Example 3: Orthogonal projection onto a unitcircle 

.i=l (tq) 

0.90822 

0.97534 

0.99371 

0.99842 

0.99960 

0.99990 

0.99997 

0.99999 

0.99999 

0.99999 

0.99999 

1.00000 

1.00000 

1.00000 

1.00000 

Again our model reads: ci"(t) = cos(t), ciZ2(t) = sin(t), 
i = l  i = 2  

but this time we have as observation point: y = 1 . 5 ,  y = 0 . 0 ,  
1 S 

our initial guess reads: t = - R (rad.). 
0 4 

ciZ2(tq) 

0.41849 

0.22070 

0.11195 

0.05618 

0.02812 

0.01406 

0.00703 

0.00352 

0.00176 

0.00088 

0.00044 

0.00022 

0.00011 

0.00005 

0.00003 

tq 

0.43178 

0.22254 

0.11218 

0.05621 

0.02812 

0.01406 

0.00703 

0.00352 

0.00176 

0.00088 

0.00044 

0.00022 

0.00011 

0.00005 

0.00003 



The numerical results are: 

I l I 

i terat ion step q 

1 

2 

3 

4 

5 

6 

table 2 

Again we have here a curvature kl=l. I n  contrast w i t h  example 2, however, we have tha t  

( klNI, y -C ) S ,  M = - 0.5, which follows from the fact that  the residual vector 

ys-  c has a direction opposite t o  that  of  N1. Thus, when compared t o  example 2, this th i rd  

example reveals another feature, namely that  when the observation point ys and the centre of  

curvature are on opposite sides of  the curve, the convergence factor w i l l  be negative. As a 

consequence the steplength of  each iterationstep w i l l  be too long, resulting in  an overshoot. Hence, 

the oscillatory behaviour o f  the above iteration. 

I n  the previous example the obervation point ys and centre of  curvature were on the same side o f  the 

curve. And i n  that  case the steplength w i l l  be too short (see figure 27). This e f fec t  is indeed clearly .. 
recognized f rom table 1 where the points in  the sequence tl, t2 ... approach t f rom one side. 

figure 27 C(s) 

Example 4: Orthogonal projection onto a straight line 

Our model reads as: ci=l(t) = .lot, ciz2(t) = ,lot, 
i = l  i =2 

the observation point is given by: y = 0,  y = 2e, and 
S 

the in i t ia l  guess reads: to = 0. 



The numerical results are: 

table 3 

i terat ion step q 

1 

2 

3 

4 

5 

Since the curve onto which the observation point is projected has no curvature, the local convergence 

behaviour o f  Gauss' i terat ion method as applied t o  the above model must be quadratic. I n  fact, w i t h  

( S l ( ) ) S ( ) = 5 for  the above model, the local convergence rule o f  (3.29) is easily 

verif ied f rom table 3. 

When viewing the last column o f  table 3 we also notice another interesting feature. We see that  a l l  

i terates t except the in i t ia l  guess to stay on the same side o f  the solution t .The explanation is that  
9 

the induced met r ic  function, which for  the above model reads g(t) = 200 e20t, is monotonic and 

increasing. With a monotonic and increasing met r ic  function one w i l l  namely have an overshoot. I n  

the above iteration this has the following effect. Since t o  < t , we see that  w i th  the graph o f  g(t) 

we are going uphill. Hence, in  the f i rs t  i teration step we w i l l  have an overshoot. Thus t l > t. 

But  for  the next step this means that  w i t h  the graph o f  g(t) we are going downhill. Hence, for  the 

second and succeeding steps we w i l l  have an undershoot, which explains why tl, t2... a l l  approach t 

f rom the same side. 

Example 5: Orthogonal projection onto a unitcircle with zero residualvector 

.id (tq) 

5.57494 

3.33967 

2.77267 

2.71881 

2.71828 

Our model reads: ci"(t) = cos(t), ciz2(t) = sin(t), 
i = l  i = l  

the observation point is given by: y = 1.0, y s  = 0.0, and 
1 

the in i t ia l  guess reads: t = I I  (rad.). 
0 4 

The numerical results are: 

.i=2 (tq) 

5.57494 

3.33967 

2.77267 

2.71881 

2.71828 

Although the unitcircle has a curvature of kl = 1, the observation point l ies on the circle. Hence, we 

expect a local quadratic convergence behaviour governed by rule (3.29). However, a closer look a t  the 

above results reveals a th i rd  order behaviour instead o f  second order. The explanation is given by the 
1 fact  that  t equals the natural arclength parameter S o f  the unit circle. Thus f (sl(t))- s1I(t) = 0. 

t 
9 

0.17183 

0.12059 

0.10198 

0.10002 

0.10000 

iteration step q 

1 

2 

3 

ci='(tq) 

0.99694 

1.00000 

1.00000 

ci='(tq) 

0.07821 

0.00008 

0.00000 

t 
9 

0.07821 

0.00008 

0.00000 



3.7. Conclusions 

In this section we have considered the  univariate minimization problem of orthogonally projecting a 

given observation point ys onto a smooth curve c in M .  As a natural generalization of t h e  linear least- 

squares problem we obtained Gauss' i teration method (3.7) which consists of successively solving a 

linear least-distance adjustment problem until t h e  necessary condition of orthogonality, 

is fulfilled. A t  each i terat ion s t e p  q + l  t h e  observation point ys is orthogonally projected onto a new 

tangent  space Tc  ( ) ( C ( N) ) , which will be close t o  t h e  previous one, Tc ( q)  ( c ( N )  ) . 
~ ' 1  

Hence, t h e  r a t e  in W ~ c h  t h e  tangential par t  of y - c ( t  )decreases will depend on the  r a t e  of 
S 9 

change of tangent  spaces. And since curvature is defined as  t h e  measure of t h e  r a t e  of change of 

tangents, one can  expect  t h e  local behaviour of Gauss' i teration method t o  depend on t h e  curvature of 

curve c. Through geometr ic  reasoning we  found t h a t  the  local behaviour of Gauss1 method is properly 

described by 

Hence, a necessary condition for  convergence is 

and t h e  r a t e  of convergence is linear. 

Moreover, it will be c lea r  from t h e  pictorial presentations given ear l ier  t h a t  6 is a s t r i c t  local 

minimum if 

We also found t h a t  t h e  local convergence behaviour of Gauss' method is invariant t o  any non-linear 

admissible parameter  transformation. 

The decisive fac tors  which determine the  local convergence r a t e  a r e  given by kl and y -6. If 
S 

ei ther  of them or both a r e  equal t o  zero, then Gauss' method will have a local quadrat ic  convergence 

behaviour: 

Instead of solving t h e  actual  adjustment problem, one is then solving for  the  inverse mapping 

problem: given 6 find t h e  pre-image t under map c: t c N = IR -+ M . 
Consequently, t h e  local quadratic convergence behaviour will not be invariant t o  a reparametrization. 

In t h e  next  section we extend our results t o  the  multivariate case. Can we expect  the  generalizations 



t o  be simple and straightforward? I n  most cases yes, although there are two points which are worth 

mentioning. First ly, when we consider manifolds other than curves, we must i n  some way take care o f  

the increase i n  dimensions. And secondly, we must recognize that a surface i n  a three dimensional 

space is the simplest object having i t s  own internal or intr insic geometry. I n  our investigation of  the 

space curve c(t) we were lead to  the invariants of  curvature. But these are invariants rather of the 

way the curve is situated in  space, than internal to the curve. That is, they are extrinsic invariants. A 

curve has no intr insic invariants, since essentially the only candidate for this status is the natural 

parameter of  arclength S. But  S is by i tsel f  inadequate for  distinguishing the curve from, for instance, 

a straight line, i.e. we can coordinatize a straight l ine wi th the same parameter s in  such a way that  

distances along both curve and straight line are measured in  the same way. For  surfaces and 

manifolds in  general the situation is different. I t  is impossible, for  instance, to coordinatize the 

sphere so that the formula for distance on the sphere in  terms of  these coordinates, is the same as 

the usual distance formula in  the ambient space. A consequence is that  where i n  the univariate case 

the possible local quadratic convergence behaviour of  Gauss' method could be reduced to  a th i rd  order 

behaviour by taking the arclength S as parameter, this w i l l  not be possible in  the mult ivariate case. 

4. Orthogonal projection onto a parametrized submanifold 

4.1. Gauss' method 

I n  this section we w i l l  consider Gauss' method for the mult ivariate case of  non-linear least-squares 

adjustment. Thus we assume dim. N = n 2 1. Furthermore we assume that the imbedding of  the 

n-dimensional manifold N into the m-dimensional space M is established by the injective nonlinear 

map y, i.e. y :  N + M . 
When we speak of  the metr ic  of  N we mean as before the induced metric, i.e. the metr ic  obtained by 

pulling the met r ic  o f  M back to N : 

( x , Y ) ~  = ( y, (X)  , y, (Y))M for  any vector fields X,Y on N. 

Now, consider again the least-squares minimization problem 

Fo r  y t o  be a solution to  (4.1) we have as necessary condition that the residual vector y - i  must 
S 

be orthogonal to the tangent space T,R o f  N a t  i, i.e. we have that  
Y 

must hold a t  i E N .  
Due, however, t o  the assumed nonlinearity of  map y, the tangent space T is generally unknown a i 



priori. Hence, our adjustment problem cannot be solved directly i n  general. But  as in  the previous 

section, (4.2) suggests that we take as a f i rs t  approximation the orthogonal projection of y, onto a 

chosen nearby tangent space T N of  N a t  y = y ( x  ). Of  course then 
Y 

9 
9 9 

But  by pulling the non-orthogonality as measured by (4.3) back to  the Riemannian manifold N, we get 

( a a , ~ x q ) x q N  = ( Y , ( ~ ~ ) ~ Y ~ ~ ~ ) ~  M , wi th  AX E T x  N . (4.4) 

9 
9 

q 

And i n  local coordinates this expression suggests Gauss' i terat ion method: 

This scheme is thus the mult ivariate generalization o f  (3.7), and it consists of successively solving a 

linear least-distance adjustment problem unt i l  condition (4.2) is met. 

I n  order t o  understand the local behaviour of Gauss' method we shall now proceed in  a way similar to 

that  of the previous section. One of the problems, however, we have to  deal w i t h  is the increase i n  

dimensions. Nevertheless, the l inear i ty  of the local rate of convergence of Gauss' method (4.5) is 

easily shown. F rom Taylorizing 

about the least-squares solution follows namely 

And since 

we get 



which proves our s tatement .  Thus, fo r  points close enough t o  the solution the coordinate-differences 

of t h e  cur ren t  point X and the  solution jc depend linearly on t h e  coordinate differences of the 
wl 

previous point X and 2. 
9 

Upon comparing (4.6) with our univariate result (3.26) we see  t h a t  we still  lack a proper geometr ic  

interpretation of the  convergence fac tor  of Gauss' method (4.5) although we can  expect  t h a t  in some 

way t h e  curvature behaviour of the  submanifold a t  $ will be involved. To make this s ta tement  

precise i t  seems  appropriate t h a t  we look for  the  multivariate analogon of 

42. The Gauss' equation 

as given in (3.23). 

To do so, we f i rs t  recall t h a t  the  connection D of M satisfies 

for  all smooth functions f , g :  M + IR and vector fields V,W on M ; tha t  i t  is torsionfree, i.e. 

for  all vector  fields V,W on M ; and that  i t  is metr ic ,  i.e. 

fo r  all vector  fiel.ds U,V,W on A ( .  

We say t h a t  a vector  fie1.d U on M is an extension of a vector field Z on N ,  if U restr ic ted t o  

equals the  pushforward of Z on , i.e. 

U ,N = Y * ( Z ) ,  

or in components 

Now, l e t  X,Y and Z be three vector  fields on N and l e t  V, W and U be their extensions. As in (3.23), 

we then decompose DVW restr ic ted t o  i ,  into a tangential and normal part: 

Dvw I i j  
= ~ a n g . ( ~ w  - )  + Norm. ( D W  - 1  

V I N  V I N  

With t h e  connection properties (4.7), (4.8) and (4.9) of D we can then derive the following properties 

fo r  V and t h e  normalfield B (see e.g. Spivak, 1975): 



(i) L e t  f and g be smooth functions on M and denote their pullbacks by i and g respectively, i.e. 
- - 
f = f o y ,  g = g o y. From (4.71, (4.10) and (4.11) follows then that  

or 

Hence, 

V- i y  = i x ( i )y  + igvXy and ~ ( i x , ; ~ )  = i g  B(x,Y). 
f X  

(4.12) 

Since addit ivi ty is t r i v ia l  t o  prove, these two  equations show that  V defines an af f ine connection on 

N and that B is bilinear in  i t s  arguments. 

(ii) From (4.8) follows that 

i j 
( D  W-D V)  - = ( V W - W )  

V W I N  I N  = 
( v i a  iw j  - W a v a j l  hi . 

And w i th  (4.10) this gives 

= y*(XY-YX) . 
Hence, w i th  (4.11) we have 

Y*(VXY) + B(X,Y) - y*(V?) - B(Y,X)  = y f ( m - Y X )  , 
or 

VXY - V? = XY - YX and B(X,Y) = B(Y,X) . (4.13) 

But  this shows that  the torsionfreeness of  D implies tha t  V is torsionfree and that B is symmetric in  

i t s  arguments. 

(iii) From (4.9), (4.10) and (4.11) follows that  

And since 



it follows tha t  also V is metric, i.e. 

Concluding, (4.12), (4.13) and (4.14) taken together show that  V is an affine, torsionfree and metr ic  

connection of  N and tha t  the normalf ield B is bilinear and symmetric in  i t s  arguments. Hence, V is 

the unique Riemannian connection (also known as the induced or Levi-Civ i ta connection) of  N which 

is completely described by the induced metr ic  ( . , . . X 
Those fami l iar  w i th  Gaussian surface theory w i l l  probably recognize the connection V more easily i f  

we show how the connection coeff icients rY defined by 
aB' 

can be computed f rom the coeff icients of  the induced met r ic  tensor ( . , . . Since we assume 

that part ia l  derivatives commute, it follows f rom (4.13) fo r  X = a Y = a that 
a '  B '  

With X = a Y = aB, Z = a and (4.15), we can wr i te  (4.14) as 
a '  Y 

Cyclical ly permuting the indices gives then three equations which, w i th  (4.16) show that  

This is Christoffel's second identity well  known f rom surface theory. 

The decomposition formula 

which brought the above derived properties of  V and B about is known as Gauss' equat ion  

I t s  complementary counterpart, i.e. Weingarten's equation, is obtained f rom applying DV t o  a 

normalfield, N say, on f i ,  followed by an orthogonal decomposition: 

And wi th a similar derivation as used above one can show that  KN(X) is bilinear i n  N a n d  X, and that  



I I - 
D is a metr ic  connection for  the normalbundle T N o f  fi i n  h4 (see e.g. Spivak, 1975). 

We shall now show how equation (4.18) for  V = y (a 1, W = yr(ag ), i.e. 
r a 

d  
specializes t o  the f i rs t  equation of (3.23) i f  we assume n=l ,  and replace y by c and a a b y  dt. 
With these assumptions, (4.20) becomes 

(We have given BC the subindex "c" t o  emphasize that  the normalf ield BC belongs to  the spacecurve c 

viewed as a one dimensional manifold). 

With (4.16) and (4.17) it follows that the f i rs t  te rm of (4.21) can be wr i t ten as 

For  the second te rm o f  (4.21) it follows f rom 

d  
and (4.19), (4.21) and V = that 

d  d  1 
Hence, i f  we put B - , -  = B t ) ,  N = ry where ry is a unitnormal, and 

d  d  c d t  d t  C 

= kl( t )  - we get for  the second te rm of (4.21) that  
d t  

Thus, w i th  (4.22) and (4.23), (4.21) can be wr i t ten as 

d  1 - 1  dg d  
C (-1 = c (- g ( t )  - ( t )  Z) + g(t)kl(t)N1 

d  r d t  r 2 d t  
c (-1 
r d t  

d  
since g(t) = (sl(t))' and V = c (-) .And (4.24) is indeed the equation which we already derived i n  

r d t  
(3.23). 

Note f rom comparing (4.20) and (4.24) that  



and 

- 1 d 
( S '  ( t ) )  s l ' ( t )  - generalizes to  

d t  r:B ayp 

2 
( S '  ( t  1) kl( t INl generalizes to  B( aa, aB). 

Hence, we can expect that  the curvature behaviour of submanifold fi is contained in  the normalf ield 

B. L e t  us therefore study 

4.3. The normalf ield B 

in  more detail. 

According t o  (4.23), the f i rs t  curvature kl(t) o f  a curve CAR + Ed can be obtained f rom the 

normalf ield BC through 

Now in  order t o  f ind the proper mult ivariate generalization o f  this expression, one of the problems we 

have t o  deal w i t h  is the increase i n  dimensions. We can, however, get round this d i f f icul ty  i f  we 

consider two curves, one i n  N, which we denote by cl: IR + N ,  and one in  BC M, which we 

denote by c2: IR + Q C  M. And furthermore we assume that c = y o c Thus we have the 
2 1' 

following situation 

C 
2 

With the connections D and V of M and N respectively, we can then apply the univariate Gauss' 

decomposition formula twice. Namely t o  curve cl and to  curve cg. With 

d d 
V  = c (-) and X = c (-) 

2% d t  1% d t  

this gives 
d 2 

D V  = c ( ( s ' ( t ) ) - ' s " ( t )  it) + ( ~ ' ( t ) )  k2,1(t)%,1, (4.26.a) 
V  2% 

and 

where k2,1 and N are the f i rs t  curvature and f i rs t  normaI o f  curve c2 in  M,  and kl,l and NlS1 are 
2,l 

the f i rs t  curvature and f i rs t  normal of curve cl i n  N. 

Note  that  the arclength parameter S is equal for both curves since c2 = y o cl. Hence 

V  = y (X). Application o f  the mult ivariate Gauss' decomposition formula gives then 
% 



And substitution o f  (4.26.b) gives 

From comparing (4.27) w i th  (4.26.a) follows then that  

Hence, fo r  curve c2  which lies entirely i n  c M , the normalf ield B equals the orthogonal component 
2 I- 

of ( S '  ( L ) )  k2,1(t)N2,1. Thus for  an arbitrary unit normal N E T N we have 
Y 

2 
since ( s l ( t ) )  =(x,x). 

We cal l  ( k  (t)N2,1,NX( the extr insic curvature o f  curve c2  w i th  respect t o  the unitnormal N and 
2 , l  

denote it by kN(t) (the f i rs t  curvature k (t) of curve cl i n  N is sometimes called the intr insic or 
1,l 

geodesic curvature). We can now wr i te  (4.28) as 

and this expression can considered to  be the proper generalization o f  (4.25). As a consequence o f  the 

increase i n  dimensions we thus see that  t o  every combination of a tangent vector X and a 

normalvector N, there belongs an extrinsic curvature kW 

Tangent directions for  which the extrinsic curvature kN attains extreme values are called principal 

directions w i th  respect to  the unitnormal N. And the corresponding extrinsic curvatures are called 

principal curvatures w i th  respect to  N. Thus i n  order to f ind the principal directions- and curvatures 

fo r  a chosen unit normal N, we need the extreme values of the ra t io  

Recall  f rom linear algebra that  this problem reduces to  the eigenvalue problem 

The eigenvectors X determine then the mutually orthogonal principal directions and the 

corresponding eigenvalues the principal curvatures. 
r 

We w i l l  denote the n principal curvatures fo r  the normal directions N by h, r = l ,  ... ,n, and 

assume that  



The corresponding mutually orthogonal principal directions are denoted by X r=l , .  . . ,n. 
J ' 

For  later  reference we define the mean curvature o f  submanifold N = y(N) for the normal 

direction N as the average trace o f  B: 

and the unique mean curvature normal o f  as 

1- 
where Np, p=l, ..., (m-n) is an orthonormal basis of  T N. 

Y 

Now that  we have found the geometric interpretation associated w i th  the normalf ield B, l e t  us return 

to our nonlinear least-squares adjustment problem and apply our results t o  obtain a geometric 

interpretation of  

4.4. The local  ra te  o f  convergence 

of  Gauss' i terat ion method. 

Recall  f r om (4.6) that  

But Gauss' decomposition formula states that 

Hence, 

1- 
since y -; E T.N. 

S Y 
Thus we see that indeed the extrinsic curvatures of  submanifold N a t  wi th respect t o  the normal 

direction y -i govern the local convergence factor  of  Gauss' method. We can rewr i te  (4.34) i n  a 
S 

fo rm which bet ter  resembles our univariate result (3.25) if we make use of  the eigenvalue problem 

(4.30). Assume therefore that  X,, r = l, ..., n, forms an orthonormal basis of  principal directions i n  

T N. Then 
X 

( ~ ( a  ,a ) ,N)$~ < = g (no summation over r). 
a B a0 r 



With 

and 

expression (4.34) can then be wr i t ten  as 

Hence, we have 

r r S 

U = (G uq + 0(ut6 U ) r=l,...,n (no summation over r). 
q + l  q t s  q 

Compare this w i th  our univariate result (3.26). 

With (4.35) we are now able to generalize some of our conclusions of section three: 

(i) I f  

and 

xo is suff iciently close to  21, 

then the sequence { x d  generated by Gauss' method converges t o  21. 

( i i )  The local convergence behaviour of Gauss' method is determined by the combined ef fect  of 

the curvature behaviour of submanifold a t  i ,  and the residual vector y -i. 
S 

( i i i )  Since the extrinsic curvatures are a property of the submanifold N itself, the local 

convergence behaviour of Gauss' method is invariant t o  any admissible parameter 

transformation. Hence, we cannot expect t o  speed up convergence i n  general by choosing a 

part icular parametrization. 

(iv) Gauss' method has a local linear ra te  of convergence. From (4.35) follows that  

Hence, the local convergence factor  (Icf.) of Gauss' method reads 

1 n 
I c f .  = m'.{ I I., I l l l l 9 I I., l I I l l 



Note that since (B( aa, ag) ,N)~ need not  be positive definite, the extrinsic curvatures can 

either be positive, zero or negative. But they are always real, since B is symmetric i n  i t s  

arguments. 

(v) From the geometry o f  our non-linear least-squares problem follows that  the solution $ is a 
1 

st r ic t  local minimum i f  l - 1 1 -  1 1 0 The fac t  that  9 is a s t r i c t  local minimum 

does however not ensure local convergence of Gauss' method. See (4.36). 

(vi) I f  < 0, then the observation point ys and the w i th  G corresponding centre of 

curvature l ie  on opposite sides o f  the submanifold D. Consequently, one w i l l  overshoot the 

target i along the principal direction X, i n  each iteration step i f  < 0. Hence, the 

i terat ion w i l l  then show an oscillatory behaviour along the direction X,. 

Similarly, one w i l l  have an undershoot along the direction X, i f  > 0 (see also example 3 

o f  the previous section). 

An interesting point o f  the above conclusion (vi) is that it indicates the possibility o f  adjusting the 

steplength i n  each i terat ion step w i th  the aid of the curvature behaviour o f  D, so as to  improve the 

convergence behaviour (4.35) of Gauss' method. L e t  us therefore pursue this argument a b i t  further. 

Instead of (4.5) we take 

where AX is provided by Gauss' method and t is a positive scalar, chosen so as t o  adjust the 
q 9 

steplength. Instead o f  (4.35) one would then get 

r = l, ..., n; no summation over r. 

As could be expected, it follows f rom (4.39) that  the scalar t should be chosen less than one i f  a l l  
9 

extrinsic curvatures are negative, and greater than one i f  a l l  extrinsic curvatures are positive. Now 

l e t  us investigate what the optimal choice o f  t would be. Since the i n  absolute value largest 
r 9 

coeff icient of U r= l , .  . . ,n, i n  (4.39) is given by 
9' 

it follows that  the optimal choice o f  t is given by the solution of 
9 

1 
m i n . [ m x . { I ( l - t  ) + ($,,N,Y~-Y)$~ tq l , l ( l - t  ) + ( $ N , Y ~ - Y ) $ ~  tq l } ) .  
t >O 9 9 
9 

From figure 28 follows then, that  i f  $ is a s t r i c t  local minimum, the optimal choice for  tq is: 



figure 28 

Substitution of (4.40) into (4.39) gives then 

And f rom this follows that  the smallest attainable linear convergence factor (Icf.) for  Gauss' method 

wi th  a l ine search strategy is given by: 

1 n 
( ( ~ ~ , , , ) N , Y ~ - Y ) ~ ~  

I c f .  = 

Note  that although now local conver ence is guaranteed i f  i is a s t r ic t  local minimum, convergence 

can s t i l l  be very slow; namely when ?-G >> 0 for  instance. 

The above discussed Gauss' method wi th  the optimal choice (4.40) is of course not practical 

executable as such, since we generally lack the curvature information needed. Nevertheless, the 

above results are o f  some importance since w i th  (4.42) we have obtained a lower bound on the linear 

convergence factor attainable for  Gauss' method wi th  a l ine search strategy. This means that when 

one decides to  use a l ine search strategy i n  practice, one should choose a strategy which gives a ra te  

of convergence close t o  (4.42). 

Apart f r om the minimization ru le which w i l l  be used i n  the next section t o  establish global 

convergence, we shall not discuss i n  the sequel any o f  the existing l ine search strategies. For details 

the reader is therefore referred to the relevant l i terature (see e.g. Ortega & Rheinboldt, 1970). Our 

decision of not including a discussion on various l ine search strategies is mainly based on the 



following important conclusion: 

1 n 
(vii) I f  ( ( w k ) ~ , y ~ - y ) ~ ~  is small, then t = l  is a good choice for  a l ine search strategy (see 

9 
(4.40)). Hence, fo r  small residual adjustment problems and moderately curved submanifolds 

fi , Gauss' method without a line search strategy has a close to  optimal ra te  o f  convergence. 

I n  fact, i f  either B 0 or ys = y, one must choose t = 1 i n  order to  assure a local quadratic 
'4 

convergence behaviour. 

(viii) F rom (4.35) follows that  Gauss' method has a local quadratic convergence behaviour i f  either 

the normalf ield B vanishes identical ly on fi, i.e. B %  0, or y E N, i.e. ys = G. Submanifolds 
S 

fo r  which B G 0 are called to ta l l y  geodesic. This as a generalization o f  the concept of a 

geodesic ("straight line") for  which the f i rs t  curvature vanishes identically. 

The local quadratic convergence behaviour is described by 

O f  course, we s t i l l  have t o  prove (4.43). But  i t  is reasonable to  expect that  (4.43) holds, since we know 

from the previous section that  fo r  geodesics Gauss' method has a local quadratic convergence 

behaviour w i th  convergence factor  -$ ( S '  (;))-'S''(;). And we also know that  ( S '  ( t ) ) - l s t ' ( t )  

generalizes to  the Chr istof fe l  symbols of the second kind rY 
aB' 

I f  B-0, then T N = N which means that our actual adjustment problem is linear. Hence, i f  B C 0  then 
Y 

f rom which follows that  

This already shows that indeed the convergence behaviour w i l l  be the same i f  either B c 0 or ys = 

holds. Remember that  i n  both cases we are actually solving the inverse mapping problem: given 

i = y  + P  TM,Tlil(ys-yl) f o r  sure y l ~  hi , f ind the pre-image k under map y. To prove the 

quadratic convergence behaviour (4.43), we Taylorize the right-hand side of 

about the least-squares solution i. With (4.45) and 2 = xB + AxB this gives 
q + l  q '4 

But  according to  Gauss' decomposition formula we have 



And since 

this gives 

Hence, w i th  (4.46) the quadratic convergence ru le (4.43) follows. 

(ix) As another generalization o f  the univariate case we have that  the local quadratic 

convergence ru le (4.43) is not invariant t o  nonlinear reparametrization. This follows f rom the 

fac t  that  the Chr istof fe l  symbols are not the components of a tensor. 

a a 
With the reparametrization X ( X  ), their transformation law reads namely as 

- - a B 
Y a x  a x  F Y  = {  r + -  I - .  

Note that  this is the generalization of the easily verifiable tranformation rule 

With respect to  the univariate case there is however one big difference. I n  the univariate case we 

could always f ind a parametrization for  which (sf(t))-'sl1(t) would vanish identically. I n  the 

mult ivariate case however this is only possible i f  B GO. The explanation is that  i n  the univariate case 

T N and N are identif iable irrespective the curvature o f  the space curve c, whereas i n  the 
t 

rnult ivariate case T N and N are only identif iable i f  B E 0. Namely, only i f  B E 0 can one f ind a 
X 

parametrization fo r  which ( . , . )N reduces to  the standard met r ic  globally. 
Y 

Nevertheless there do exist parametrizations for  which the Christoffel symbols raB vanish locally. 

Coordinates for  which the Chr istof fe l  symbols vanish a t  a point, X, say, are geodesic polar 

coordinates. 

The procedure of finding geodesic polar coordinates is the following: 

According t o  the theory of ordinary differential equations a geodesic c(s)  through a point X, i s  
d 

locally uniquely characterized by the coordinates o f  X = c(o) and the tangent vector c (-) a t  
o d x ds 

X,. Hence a point X = c(s)  E N on this geodesic can be identif ied by c (-) a t  X, and S. Or i n  
a a x ds 

coordinates: the point X E N w i th  coordinates X = c ( S )  can be identif ied locally w i th  the point 

X E Tx N having coordinates 
0 



d Thus, since the geodesic c (s )  is locally uniquely characterized by xo = c(o) and a t  xo, 

there exists locally a diffeomorphism f rom N into Tx N.  L e t  us denote this map i n  coordinates by 
0 

From the Taylor expansion of  c(s) ,  

follows then wi th  

that  

Or wi th (4.481, 

The inverse of  this relat ion gives then 

as the desired expression for  (4.49). 

We can now view (4.50) as a nonlinear parametertransformation. It is admissible since the Jacobian 

determinant equals 1 a t  xo. The new coordinates 2 are known as geodesic polar coordinates. 

I n  these new coordinates the geodesic c(s) is found as the solution of  

where the new Chr istof fe l  symbols F a fol low from (4.47) using (4.50). But  as is easily verif ied the 
BY 

coeff icients P a vanish a t  X,. Hence in  a neighbourhood of  xo the geodesic c(s)  is given i n  
BY 

geodesic polar coordinates as 

a 
From the above discussion follows that  i f  the coordinates X i n  (4.46) are geodesic polar coordinates 

a t  2 by chance, and B f 0 but ys = y, then Gauss' method has a local t h i rd  order convergence 

behaviour. Note by the way that  since the geodesic polar coordinates 2 are linear in  S we are 

indeed dealing here w i th  the proper mult ivariate generalization of  the case considered in  the previous 



section where the univariate parameter t was chosen as linear function of  s so as to  eliminate the 

necessity o f  i terat ion for  solving the inverse mapping problem. 

4.5. Global convergence 

the above local  analysis of  Gauss' method we have seen that both the in i t ia l  guess xo had to be 
r 

f f ic ient ly  close to  the solution ic and I (& N,y g-y)9M I 1 had to  hold for  a l l  r = l,..,n i n  order 

assure convergence. For most practical problems we indeed believe that these conditions are 

satisfied. Nevertheless, it would be dissatisfactory not t o  have an i terat ion method which guarantees 

convergence almost independently of  the chosen in i t ia l  guess and curvature behaviour o f  the 

submanifold i .  In  the fol lowing we w i l l  discuss therefore the necessary conditions which assure 

global convergence. Note that  the adjective "global" does not re fer  t o  2, but t o  the almost 

independency of  the in i t ia l  guess xo, i.e. usually one w i l l  have global convergence to  a local  minimum. 

The method we w i l l  discuss is essentially the above discussed Gauss' method, but now wi th  the so- 

called minimization rule as l ine search strategy. I n  formulating the method we have chosen to  star t  

f rom some general principles so as to get a better understanding o f  how the various assumptions 

contribute t o  the overall proof o f  global convergence. 

As a start we assume 

that  we are given a sequence { X  } for  which E (x  ) 2 E(x  ) ,  
9 q + l  9 

for  a l l  q = 0,1, ... 

This seems a natural conditon to  star t  w i t h  since we are looking fo r  an i teration method which can 

locate a local minimum of  E. F rom (4.52) follows that the sequence { ~ ( x  )} converges to  a l imi t ,  
9 

since the sum of  squares function E is bounded f rom below ( 0  2 E(x),  VX) and the sequence 

{ ~ ( x ~ ) }  is non-increasing. 

NOW, i n  order t o  f ind an appropriate i terat ion method which generates a sequence { x d  satisfying 

the conditions of  (4.52), we f i rs t  need to  know, given an in i t ia l  guess, in  which direction t o  proceed. I n  

ordinary vector analysis the gradient o f  a scalar f ie ld E is defined as the vector f ie ld 

aaE, a d , .  . . ,n. And i t  is wel l  known that  -3 E points in  the direction i n  which the function E 
a 

decreases most rapidly locally. I n  view o f  (4.52) it seems therefore appropriate t o  proceed i n  the 

direction of  -3 E. However, this ordinary definit ion of  gradient is not invariant under a change o f  
a 

coordinates. With our geometric exposition o f  the preceding sections in  mind we can therefore expect 

that  the simplicity of the ordinary vector analytic definition of  the gradient almost inevitably forces 

diff icult ies and awkwardness when problems involving change of  coordinates are encountered. A way 

out of this dilemma is offered i f  we bring the requirements of  invariance under change o f  coordinates 

to  the foreground. Therefore, given a function E: N +  IR we define the gradient field, denoted by grad 

E, invariantly by 



( grad  E,X ) = X(E) fo r  a l l  vector fields X on N. 
N 

I n  local coordinates this expression reads as 

(grad + = +a E. 
aB B 

And this gives 

aB (grad E ) ~  = g ag. 

Since the direction for  which 

is minimized as function o f  Ax $ 0 ,  is given by 

X = Ax(x) = -grad E(x)  c TxN , (4.55) 

it follows that  Ax(x) points i n  the direction of  maximal local decrease of  E. Note that since 

i . . 
~,E(x) = -say (x)g.  1 J .(y;-yJ(x)), 

the vector 

equals the incremental step as produced by Gauss' method (4.5). Hence, both the geometry o f  our non- 

linear least-squares problem as wel l  as the fact  tha t  -gradE points in  the direction of  maximal local  

decrease o f  E, suggest tha t  the vector Ax(x) as given by (4.55) is an appropriate choice for  the 

direction o f  search. However, although Ax(x) points i n  the direction o f  maximal local decrease of  E, 

this does not necessarily imply that  the function value of  E(x) decreases by taking Ax(x) as 

incremental step. I n  fac t  we already saw in  the previous section that the descent property only holds 

i f  N is moderately curved and X suff iciently close t o  ;. So, we s t i l l  need a rule according t o  which we 

can compute an appropriate X f rom X Nevertheless, the above discussion is not without meaning 
q+l q' 

since by agreeing upon taking Ax(x ) as the direction of  search we have reduced the dimensions o f  
q 

our problem essentially from n t o  1. That is, by choosing a curve c . t c [R + N , wi th  
q' 

d 
c (t=O) = X and c (-1 = Ax = Ax(x ) = -grad E (x  ), 
9 q qrt d t  X q 9 q 

q 

we can define X = c ( t  ), where t is an appropriate scalar so that  
q+l by Xq+l  q q 9 



holds. That such a scalar exists is seen as follows. Since 

a 
E ( c  ( t ) ) - E ( c  (0) )  dc 

l im 'l q d 
t 'l = a E ( ~ ) - ( O ) = ( g r a d E , ~ ~ ( ~ ) ) ~ ~  , 

t 4  
a q d t  

'l 
d 

it follows wi th  c (-) = Ax(x ) = - grad E ( X  ) ,  that if Ax(x ) f 0, 
qr d t  X 

'l 
'l 'l 'l 

E(cq( t ) )  - E(c (0) )  
l im ‘l = - (grad E, g rad E ) x  < 0. 

t 
t 4  'l 

Hence, i f  &(X ) f 0, there exists a 6 > 0 so that  E (c  ( t ) )  < E (c  (0))  fo r  a l l  t E (0,6). 
'l 'l 'l 

Thus i f  X is not a c r i t i ca l  point of E it is always possible to  choose a positive scalar t so that 
'l q 

It seems appropriate to choose t so that  the maximal possible decrease i n  E is obtained. This is the 
'4 

case when t is chosen so as t o  minimize E along the curve c (t). That is, when t is computed as 
q 'l '4 

the scalar satisfying the minimization rule 

E (c  ( t  ) )  = min. E(cq( t ) ) .  
tx 

(4.58) 
'l q 

So far  we did not specify the type o f  curve c ( t )  chosen. The simplest way computationwise would 
'l 

be to  choose the curve c ( t )  so that i t s  coordinate functions are given by 
'l 

But other choices are also possible. And since the particular type of curve chosen is not important fo r  

our convergence analysis, we just assume that a rule is given which smoothly assigns a unique curve 

c : t ~ l R +  N to  every point X so that  the in i t ia l  conditions (4.56) hold. That is, we assume that  the 
q a q 

coordinate functions c , *l, ... ,n, of the curve c are smooth functions o f  not only the 
'4 'l 

parameter t but also of the in i t ia l  conditions. Instead o f  c ( t )  we may therefore wr i te 
'l 

c ( t , x  ,Ax(x ) )  and by Taylor's formula we have 
'l 'l 

where the smooth functions $a depend on the ru le given. 

Summarizing, we have come up wi th  the following i teration method: 



(i) Choose an  initial guess X, and s e t  q = 0. Choose a rule  which smoothly 

assigns a unique curve c : t E IR + N t o  every point X with 
9 9 

t h e  prescribed initial conditions 

d 
c ( 0 )  = X and c (-1 = Ax(x ) f 0. 
9 9 qr d t  X 

9 
9 

(ii) Compute Ax(x ) = - grad E ( x  ). If Ax(x ) = 0 then stop. 
9 9 9 

(iii) Compute  t h e  scalar  t satisfying E ( c  ( t  ) )  = min. E ( c q ( t ) ) .  
q 

t > O  

(iv) Compute  X = c ( t  ) and set q = q+l. Re turn  t o  (ii). 
q + l  9 q 

The  sequence { X  ) generated by (4.60) is e i the r  f ini te  or  infinite. If i t  i s  f ini te  then clearly i t s  l imit 
a 

is a cr i t ical  (or s ta t ionary)  point of E by vir tue of t h e  s top command in (4.60). But if i t  is infinite then 

t h e  only thing we know for  sure  is t h a t  t h e  sequence {E(X ) )  has a limit. I t  is important  t o  realize, 
a 

however, t h a t  this by itself implies nothing about t h e  val;dity of t h e  final convergence s t a t e m e n t  

which we s e t  out  t o  prove, namely t h a t  $g)- X = i, with i being a cr i t ical  point of E. This is best 
9 x  

seen  by means of an  example: Take  E ( x )  = m.e , where m is a real-valued constant,  and X = 2-9, 
9 

Then l im. E ( x  ) = m and l im. X = 0, but X = 0 is clearly not a cr i t ical  point of E. 
S+" 9 P'O 9 

In fac t ,  t h e  convergence of t h e  sequence { ~ ( x - ) )  does in general not even imply t h e  convergence of 
II 

t h e  sequence { X  ). Therefore ,  in order  t o  assure  t h a t  the  sequence { X  ) a s  generated by (4.60) 
9 9 

converges to  a cr i t ical  point of E, we assume in addition t o  (4.52), 

t h a t  t h e  initial guess X, is chosen such tha t  t h e  level set 

L ( x  )= { X  I E ( x )  5 ~ ( x ~ ) }  is bounded, and t h a t  t h e  function 
0 

values of E a t  cr i t ical  points in L(xo) a r e  distinct. 

With (4.61) w e  a r e  now in t h e  position t o  prove t h a t  t h e  sequence { X  ) converges t o  a cr i t ical  point 
9 

of E. We will assume t h a t  t h e  sequence { X  } is infinite. 
9 

According t o  (4.52) w e  have E ( x  ) 5 E ( x  ) fo r  all  q=0,1,2 ... . Hence, X E L(xo) fo r  all  
q + l  9 9 

q=0,1,2 ... . And since t h e  level  set L(xo) is bounded by assumption, i t  follows t h a t  { X  ) has a t  l eas t  
q h 

one convergent subsequence, say { X  ) , where q .  > q . ,  and with l imit  ! im. X = X. 
9 - 1+1 I l+- q i  

We shall  now proof by contradict ion \hat  is a cr i t ical  point of E. Assume there fore  t h a t  2 is not a 

cr i t ical  point of E. 

We denote  t h e  unique curve assigned t o  i by c ( t , & , ~ x ( i ) ) ,  and t h e  positive sca la r  t satisfying 
h h 

~ ( c ( t  ,X,AX(;))) = min. ~ ( c ( t  ,;,Ax(;))) by i = t(;). Similarly, we denote  t h e  unique curve 
t > O  

assigned to  an  arbi t rary point X by c ( t , x , A x ( x ) ) ;  and t h e  scalar  t' satisfying 

E ( c ( t f  ,x ,Ax(x) ) )  = rpj~. E ( c ( t  ,x ,Ax(x) ) )  by tl=t(x). 

Now we def ine a function F(x) a s  



Since F(x) is continuous by inspection and im. x = X, i t follows that 
1-cm q i  

F rom the definit ion o f  the l i m i t  of a convergent sequence (see e.g. W. Flemming, 1977) follows then 

that  for  every E > 0 there exists a positive integer r such that  

IF(X ) - ~ ( i )  I 5 E for every i 2 r. 
i 

Since we assumed t o  be a non-critical point, we have 

Hence, we can take E > 0 i n  (4.63) to  be E = IF(;) I .  This gives us then 

F ( ~  - )  5 $ F(X) < 0 for every i 2 r 
q l  

From 

E(c( t (x ) ,x ,  x (x ) ) )  5 E(c(t,x, x (x ) ) )  

or 

E(c( t (x ) ,x ,  x (x ) ) )  - E(x)  5 F(x) ,  

follows then that  

1 - 
~ ( c ( t ( x  ),xqi, x(xqi))) - E(x  .) < F ( x  .) 5 7 F ( x )  < 0 every 2 r 9  

q i  q~ - q1 
or 

E ( ~ ~ ~ + ~ )  < E(x  .) + 4 F(;), w i th  F(;) 5 0, for  every i 2 r. - 91 

With E(x  ) 5 E(x  ) follows that 
'i+l qi+ l  

E(xq ) 5 E(x  -)-f I F(;) I w i t h  I F(;) I 0, for  every i > r. 
i +l q I - 

Hence, 

l im. E(x  ) = -a . (4.65) 
j -cm qi 

Thus i f  ; is not a c r i t i ca l  point then (4.65) must hold. But  this contradicts the fact  that { ~ ( x  - ) )  
q l 

converges t o  E(x). Hence, jc must be a c r i t i ca l  point of E. 

To prove that  the sequence { X  ) i tself converges t o  a c r i t i ca l  point of E, suppose that ; and are 
q 

dist inct l im i ts  of two convergent subsequences of { X  ). We know then that  and ; must be c r i t i ca l  
q 

points of E. And since {E(X ) )  converges, we must have E(;) = E(;). But  this contradicts w i th  
9 

our assumption that the c r i t ~ c a l  values of E are distinct. Hence we must have that  ; = ;( which 

means that  the sequence { X  ) i tsel f  converges to  a c r i t i ca l  point. 
q 



This concludes the proof of  the following global convergence theorem (Ortega & Rheinhold, 1970): 

L e t  an in i t ia l  guess xo be chosen such that the level set L ( x  )= {X  I E(x)  5 E ( x  ) }  
0 0 

is bounded, and l e t  the function values of  E be distinct a t  cr i t ical  points i n  

L(xo). Then the sequence { X  } defined by (4.60) is either f in i te and terminates 
q 

a t  a c r i t i ca l  point o f  E, or it is inf in i te and converges to  a c r i t i ca l  point, i.e. 

l im xq = X w i th  grad E(x)  = 0. 
c!- 

To conclude this section we w i l l  prove the following result on the ra te  of  convergence o f  the globally 

convergent i terat ion method (4.60): 

I f  

then 
2 2 1 n 2  2 

1 ~ Y ~ - Y ( ~ ~ ~ )  1 lM - 1 lys-91 lM ($,,-$,,l 1 lys-$1 lM 
l im. < -  

2 - 2' 

Recal l  f rom (4.60) tha t  in  order t o  generate the sequence { X  ) one should f i rs t  decide upon a descent 
q 

curve c ( t  ,X ,&(X )). Fortunately a l l  methods for selecting such a curve are asymptotically 
q 9 

equivalent in  the sense that  the curves are a l l  tangent a t  the start ing point X That is, as the 
q' 

stepsize goes to  zero the methods a l l  move approximately along the same curve, which implies that  

the asymptotic properties o f  the sequence { X  } are independent of  the type o f  curve chosen provided 
q 

that  the in i t ia l  conditions (4.56) hold. Hence, for  the determination of  the local ra te  of  convergence 

we are f ree in  choosing the type of  curve c (t). For  convenience we w i l l  assume therefore that  the 
q 

descent curve c ( t)  is a geodesic. 
q 

Now, before we prove (4.67) we w i l l  f i rs t  prove that  the linear map H: T N + T N defined by 
X X 

H X = V grad E f o r  a1 l X E TxN, 
X 

satisfies 

(H X,Y) = (x,Y)~ - (B(x,Y),N)~ f o r  a1 l X,Y E T N, 
N X 

where 

F rom (4.70) and the definit ion o f  the pushforward of  grad E , 

follows that 

And w i th  D ( y  -y) = -y*(X), this gives 
y*(X) S 



-y, (X) = -D y (grad E) + D 
Y*(X) * y* 

Hence, 

(x,Y), = (Y*(x) ,Y*(Y))~ = (Dy*(x)~*(grad E) Y*(Y))~ - (Dy (x)N, Y * Q ) ~ *  (4.71) 
* 

Since, 

O = D  
Y*(X) ( N, y*(Y) )M = (Dy (x)N, y*(Y) )M + ( N,D 

we can wr i te (4.71) also as 

Two times application o f  Gauss' decomposition formula (4.18) gives then 

which proves (4.69). 

With (4.29), i t  follows f rom (4.69) that  

But  for X = grad E ( x  ), this is precisely t o  a f i rs t  order approximation the inverse of the scalar t 
'l 9 

satisfying the minimization ru le E ( c  ( t  )) = m i n  E(cq(t ) ) .  To see this, take a plane section of the 
'l q DO 

submanifold through the points Y(X  1, Ys and y(x  ) - y*(grad E (x  )), and approximate the 
'l 'l 'l 

resulting plane curve by i t s  circle o f  curvature (see figure 29). 

y (cq( t ) )  

figure 29 



I n  a neighbourhood o f  y(x ) this c i rc le o f  curvature can then be considered as a suff icient 
q 

approximation o f  the curve y (c  ( t  1). Since the curve c ( t )  is a geodesic by assumption it follows 
q q 

that  

is constant along the curve. Hence, S, the parameter of  arclength, is proportional t o  t. Since 

it follows therefore that 

S = ( 1  g rad  E ( x  ) ( 1  t = l l y * ( g r a d  E ( x  1) I lMt  
q N q 

Furthermore we know that the scalar t satisfies the minimization rule. Therefore 
9 

must hold. From figure 29 fol lows then tha t  

where N1 is the f i r s t  normal o f  y (c ( t  1) . 
q 

With (4.73) follows then 

Compare w i th  (4.72). 

To make relat ion (4.75) precise we recal l  that geodesics are characterized by 

d 
V V = O ,  w i t h  V = c  (-1. v V d t  

From the fact  tha t  t satisfies the minimization ru le follows then 
9 

d 
And w i th  (4.68) and VC (o) = c ( -  = - grad E ( x  ) this gives 

qr d t  X 
q q 

q 



( w a d  E, g rad N 

t =  9 + 0 (  I I g r a d  E l l x  1. 
(H grad E, g rad E ) ~  q 

q 

Compare w i th  (4.75). 

Now, t o  continue our proof o f  (4.67), we substitute (4.76) into 

1 2 
E(c  ( t  ) )  - E (c  (0))  = (grad E, V )  

3 
t + - (vVgrad E, v ) ~  (o) tq + O ( t  

q q q c (0) q 2 
q q 

9 

= - (grad E, grad 
(o) tq + 

q 
1 2 3 + -(H grad E, grad (o) tq + O ( t  ) , 2 

9 
9 

and f ind 

(grad E, grad E ) ' ~  hi 
1 

E(x ) - E(x  ) = - - 3 
+ 0 ( I I g r a d E l I X  ). (4.77) 

-1 q (H grad E, grad q 

q 

By assuming that  X and x are connected by a geodesic c (s )  w i th  c(o) = X and c(9) = X, we 
'4 '4 

can wr i te 

1 2 
E(c(9))  - E(c(o))  = (grad E, 9 + ?(Hw, 9 + 0 (s3) (4.78) 

'4 '4 
d 

where V,# = 0 and W = c (-1. 
X ds 

Since grad E(x)  = 0, we have fo r  an arbitrary parallel f ie ld U (i.e. V# = 0) along c(s) ,  

0 = ( g r a d E ,  U)- X = ( g r a d E , U )  X +(Hw,u) X 9 + 0 ( s L ) .  

Hence, q '4 
-1 2 wx = - H  grad E (x  ) + O ( I l g r a d  E l l x  N ) .  

'4 
q 

'4 

Substitution in to  (4.78) gives then 

E(;) - ~ ( x )  = - + ( ~ ' g r a d  E, grad E), N +  o(I l g rad  E l  ). '4 q 

And subtracting this f r om (4.77) gives 

2 
(g rad E, grad E ) ~  

1 - '4 I 3 
(E(X )-E(~)*o(  l l g rad  E l  l x  ) l ,  

(H grad E, g rad E) (H-lgrad E, grad q 
X 

q 
'4 q 



with Ax(x ) = - grad E(x ). 
9 9 

By assuming that jc is a strict local minimum of 

we can now apply Kantorovich' inequality to (4.80). Kantorovich' inequality (see Rao, 1973, p. 74) 

states namely that if a linear map 

is positive definite and selfadjoint with eigenvalues 

for all normalized Ax E T N,i.e. (bx,bx) = 1. 
X N 

Since the eigenvalues of the linear map H read 

r 
X = 1 - < 1 [ y ~ - y 1 1 ~ ,  r = l ,  ..., n, 

application of (4.81) to (4.80) finally gives the desired result (4.67). 

5. Supplements and examples 

In this section we will consider some examples to illustrate the theory developed in the previous 

sections. Apart from the examples, we also present new results on the Helmert transformation and 

give some suggestions as to how to estimate the extrinsic curvatures. 

5.1. The two dimensional Helmert transformation 

In subsection 3.6 we have seen that the solution of the Helmert transformation only admitting a 



rotation could be found by orthogonally projecting the observation point onto a c i rc le w i th  radius 

equalling the square root  of the moment of inert ia of the network involved. We w i l l  now generalize 

this result and consider the fu l l  Helmert  transformation. That is, we w i l l  assume the scale- and 

translation parameters to be included as well. 

Of  couse, the solution to the two dimensional Helmert  transformation is wel l  known (see e.g. Kijchle, 

1982). I t  is therefore not  so much our purpose to present the solution, but to  emphasize the geometry 

involved. And the method chosen for  deriving the solution prepares us for the case considered i n  our 

next example. 

The model of the Helmert  transformation reads 

x i  = 
u . A  c o s  9 + v iA s i n  9 + t + e 

l X X i 
y i  = - u . A  s i n  9 + v iA  c o s  9 + t + e 9 

l Y Y i  

where: - i = l, ..., n = number of points, 

- x i  , y are the cartesian coordinates of the network points in  the f i rs t  coordinate 

system, and 

- u , v are the coordinates i n  the second coordinate system, 

- A ,  9 ,  t x  and t are respectively the scale, orientation and translation 
Y 

parameters, which need to  be estimated, and 

- e x i 9  e y i  are the errors to be minimized i n  the 2-norm. 

I f  we wr i te model (5.1) as 

where: 

our least-squares problem becomes 

m i n .  E(A,9 ,  t x ,  t y )  = m i n .  I l ys-  Acos9 X - A s i n 9  X - t X - t X I I '. 
1 2 X 3  y 4  M 

A 9 9 9 t x , t y  A , 9 , t  t 
X '  Y 

(5.3) 

We shall solve (5.3) by proceeding i n  two steps. F i rs t  we assume A and 9 f ixed and solve the 

subproblem 

m i n .  E ( A , 9 , t x , t y ) .  
t t 

X '  Y 



L e t  t ( h ,  B ) , t ( h ,  B ) denote the solution to  (5.4) and formulate the second problem as 
Y 

m i n .  E ( X , 8 , t x ( X , B ) , t  ( A , B ) ) .  

1 9 8  
Y 

,. .. 
L e t  X ,  8 denote the solution of  (5.5). The overall solution of  our original least-squares problem (5.3) 

is then 

By taking this two-step procedure we have separated our original four-dimensional least-squares 

problem (5.3) into two two-dimensional least-squares problems (5.4) and (5.5). 

With the abbreviation 

y s ( X , 8 )  = y s  - X c o s  B X - X s i n  8 X 
1 2' 

(5.7) 

the f i rs t  subproblem (5.4) becomes 

m i n .  E ( k , B , t x , t y )  = m i n .  l l y s ( X , 8 )  - t x x 3  - t X I I'. 
Y 4  M 

(5.8) 
t t 

X '  Y 
t , t  

X Y 

And geometrically this problem can of course be seen as the problem o f  finding the point i n  the plane 

spanned by the orthogonal vectors x3 and X (as before we assume that the observation space is 4 
endowed wi th the standard metric) which is nearest t o  y ( X ,  8 ) .  (see figure 30). 

S 

figure 30 

1 1 
Since the two vectors - X and x 4  

6 3 
are orthonormal, i t follows that the point i n  the plane 

spanned by x3 and x4 closest t o  y ( X,  8 ) is 
S 



Hence, 
1 1 

( I )  = ( X ~ Y ~ A , ) )  M t y ( A , 8 )  = i; ( ~ ~ , y ~ ( A , 8 ) ) ~  , 

or w i th  (5.7) 
1 

t x ( A 9 9 )  = ; ( x 3 , y S  - A c o s  8 X 1 - A s i n  8 x2) , 
M 

1 
(5.9) 

t ( ~ , 8 )  = ; ( x 4 , y S  - A c o s  8 X - A s i n  8 X 
Y 1 

This concludes the f i rs t  step. 

To solve (5.5), we substitute (5.9) in to  (5.3) and f ind 

C C 2 
m i n .  E ( A , 8 , t x ( A , 8 ) , t  ( A , 8 ) )  = m i n . 1 1 ~  - A c o s  8 X - A s i n  8 xC11 , (5.10) 

Y S 1 
A,9 1, 8 M 

where: 
C - 1 - 1 - 

YS - YS n ( X ) . Y ~ ) ~  - n (x4.ys)M 

C 1 1 
X = X  
1 l - ; - ; ( x ~ ~ x ~ ~  x4 t 

C 1 1 
X 2 = - ; ( x3*x2 )M - ;(x49x2)N X4 

The geometry o f  problem (5.10) is i l lustrated i n  figure 31. 

l c c  
-(X 'Y ) R 2 S M  

figure 31 

1 c 1 c C C 
Since the two vectors - X and  - X w i th  R = I I xl ( I = 1 I X *  1 1 ,are orthonormal, 

R 1 R 2,  C C C 

it follows that  the point i n  the plane spanned by X and X closest t o  y is 
1 2 S 



i c o s  6 = $ (x!,y;) =W, i s i n  6 = $ ( x q , y ~ )  = ( x $ , Y ~ ) M  
R M ('1.~1)~ R M ('$,'$)M 

With (5.10') and  (5.2') t h i s  can  b e  w r i t t e n  a s  

2 2 1 
n c c  c c  C C  C C  n c c  c c  
C " . X  - U i Y i  u . x  + V.Y.) + ( .C v .x  - UiYi)  -1 i = l  I i i = l  I i 1 1 1=1 I i 

8 = t a n  9 X =  9 
n c c  c c  
C u . x . +  v y 

i = l  I I i i 
n n n n 
C X .  1 Y .  C U .  C v 

C j = l j  c j = l j  c j = l j  c j = l  j 
where:  X = X - - Y . = Y - -  U = U - -  , v = v . - - .  

i i n  l i n  i i n  i I n 

T o  find t h e  leas t -squares  solut ion f o r  t h e  t rans la t ion p a r a m e t e r s  w e  subs t i tu t e  (5.11) in to  (5.9) and 

find 

With (5.10') and (5.2') t h i s  g ives  



(5.12) together w i th  (5.13) constitute the wel l  known solution o f  the two dimensional Helmert  

transformation (see e.g. Kochle, 1982). 

Note tha t  although the functions occurring i n  model (5.1) are non-linear, the actual adjustment 

problem is linear. That is, the submanifold N as described by model (5.1) is a typical example of  a 

tota l ly  geodesic manifold. The non-linearity present i n  (5.1) effects therefore only the inverse 

mapping problem. 'This follows f rom (5.11) i f  one solves for  the parameters A and 8 .  

Also note that  we are by no means restr icted t o  the particular two-step procedure chosen i n  (5.4) and 

(5.5). Instead of  taking the above two-step procedure, we could for instance have decided to  only f i x  

8 first. I n  the f i rs t  step we would then have to solve for  A ( 8  ) , t ( 8  ) and t ( 8  ) . And this is 
Y 

s t i l l  a linear adjustment problem. But  when solving for 8 i n  the second step, we would get a non- 

linear adjustment problem namely that  of  orthogonally projecting onto a circle. Hence we see that  

where we started w i th  an essentially linear adjustment problem we end up w i th  two subproblems of  

which the second is non-linear. What has happened is o f  course that  by f ixing 8 we have chosen t o  

project onto a non-linear curve ly ing i n  an otherwise f la t  manifold. Thus generally speaking such a 

step procedure would not be very recommendable since i t  produces a non-linear problem out of  a 

linear one. A n  interesting point is, however, that i f  we reverse the argument one should be able i n  

some cases t o  get a linear subproblem out of  an essentially non-linear problem by applying the 

appropriate step procedure. Think for instance of  parametrized curved submanifolds which have 

linear, i.e. straight, coordinate lines. I n  the following we w i l l  consider a typical class of  such 

manifolds. 

5.2. Orthogonal projection onto a ruled surface 

A ruled surface is a surface which has the property that through every point of  the surface there 

passes a straight l ine which lies entirely i n  the surface. Thus the surface is covered by straight lines, 

called rulings which fo rm a fami ly depending on one parameter. 

I n  order t o  f ind a parametrization of  a ruled surface choose on the surface a curve transversal t o  the 

rulings. L e t  this curve be given by c ( t  l). A t  any point of  this curve take a vector T of  the rul ing 

which passes through this point. This vector obviously depends on tl. Thus we have T (  t l ) . 
Now we can wr i te  the equation of  the surface as 

The parameter tl indicates the rul ing on the surface, and the parameter t2 shows the position on the 

ruling. 

I f  i n  an adjustment context the submanifold fl turns out t o  be a ruled surface, one can expect t o  

take advantage of the special properties of  n .  fl w i l l  namely be f l a t  i n  the directions o f  the 

rulings, whilst curved i n  the directions transversal t o  it. Hence, it might turn out t o  be advantageous 

to  perform the adjustment i n  two steps. I n  the f i rs t  step one would then solve for  a linear least- 

squares adjustment problem, and in  the second step for  a non-linear adjustment problem of  a reduced 

dimension. For the ruled surface (5.14) for  instance, we would choose a point on the curve 



0 0 
C (  t l ) , C ( t ) say. To this point there corresponds a ruling w i th  direction T (  t ) . The linear 

1 1 
least-squares adjustment step consists then of  orthogonally projecting the observation point ys onto 

the rul ing given by 

As solution we get an adjusted point on the surface which depends on the choice of  ruling, i.e. on the 

choice t 
1 : 

The second step consists then of orthogonally projecting ys onto the curve given by (5.16). This 

problem is of  course in  general s t i l l  non-linear, but it has the advantage of  being o f  a smaller 

dimension than the original adjustment problem. 

As an example one could think of  a cylinder (this is in  fact  a very special ruled surface, since it is 

developable). Then we have (see figure 32): 

i = l  i =2 i =3 
C ( t  ) = R c o s  ( t  1, c ( t  ) = R s i n  ( t l ) ,  C ( t l )  = 0,  

1 1 1 1 

0 
I n  the f i rs t  step we would choose t This would give us then 

1' 

; ( t y )  = c ( t y )  + y k ' 3 ~  . 

For  the second step we would then need to  minimize 

i =3 o i = 3  
m i n .  ( y S - y S  T - c ( t l ) ,  y s -  y S  T - c ( t O ) )  . 
t o  1 $4 
1 

Ys 

figure 32 

It w i l l  be clear that  the above described procedure also holds for  ruled-type of  manifolds. 



5.3. The two  dimensional Symmetric He lmer t  transformation 

As a nice application of the idea described i n  the previous example we have what we shall cal l  the 

two dimensional Symmetric Helmert  transformation. 

Recall  the model of the two dimensional Helmert  transformation (see (5.1)) and note that the model 

i n  i t s  classical formulation favours one point f ie ld above the other. This can also be seen f rom the 

rather asymmetric solution o f  the scale parameter (see (5.12)). 

It has bothered the present author for some t ime that  one was satisfied w i th  the classical formulation 

(5.1). A bet ter  formulation would namely be: 

- 
X .  = u .X c o s  8 + v.X s i n  8 + t 

l l l X - 
y i  = - u .X s i n  8 + v.X c o s  8 + t - l l Y - 

where: - i = l, ..., n = number of points, 

- the t i lde l'-! sign stands for the mathematical expectation, 
- - xi,yi and x i ,  are the "observed" cartesian coordinates of the network points i n  

the two coordinate systems, 

- X ,  8 ,  t x  and t are the transformation parameters which need t o  be estimated, 
Y 

and 

- ui, vi are the cartesian coordinates which need to  be estimated. 

O f  course, the submanifold as described by the classical Helmert  transformation is tota l ly  geodesic. 

Hence, one could fear in  the f i rs t  instance that (5.17) can only be solved iteratively, i.e. through the 

process of linearization. However, in  this example we w i l l  show that  i f  one views model (5.17) as a 

ruled-type o f  manifold, one can in  fac t  f ind i ts  least-squares solution also analytically. 

Note  that  i f  we f i x  ui, vi, i= l ,  ..., n, i n  (5.17) we are back a t  the classical Helmert  transformation, 

which was linear. Hence, manifold as described by (5.17) is f la t  in  directions transversal t o  the 

ui,vi-coordinate lines. But i f  we f i x  X and 8 ,  we see that  it is also f la t  in  the directions transversal 

to  the X ,  8 - coordinate lines. Thus in  the f i rs t  adjustment step we can either f i x  the ui,vi, i= l ,  ..., n, 

or X and 8. It turns out that the choice of f ixing X and 8 is the most advantageous one. 

Skipping the tedious but t r i v ia l  adjustment derivation we f ind for  f ixed X and 8 the solution of the 

f i rs t  adjustment step as: 

- 1 
C i ( X , 8 )  = C c  + ( 1  + x ~ )  (X: + X ~ X  C O S  e - y y  X s i n  8 1 ,  

t i ( h , 8 )  = y c  + ( 1  + + X T X  s i n  8 + y y  X c o s  8 1 ,  

i X ( X , 8 )  = C, - %,X c o s  8 - y c X  s i n  8 ,  
,. 

(5.18) 

t y ( X , 8 )  = y c  + C, X s i n  8 - y c  X c o s  8 ,  

where: 



- 1 - 1 ; = F ,  = n F . ,  X = n F X . ,  y C  
C ~ = 1  J j = l  j c j = 1  J j = 1  j 

- - ( 5 . 1 ~ )  
- C  - - C  - C C 
X = X  - X  , ,  Y i  = Y i  - Y c 9  X = X  - X  

i c ,  Y i  = Y i  - i i i 

Hence,  fo r  t h e  second adjustment  s t e p  we g e t  

- 1 
2 2 c + i C  

X = X  + ( l + A )  ( A x .  A c o s  8 + y C  A s i n  8 )  + e 
i C I i i X '  

i 1 

- 2 - C  C C 
- 1 t (5.19) 

X = X  - + ( 1  + A  ) ( X + X .  A c o s  8 - y .  A s i n e )  + e -  
i C i 1 I x '  

i 

where e a r e  t h e  residuals. 

The sum of t h e  squared residuals reads then: 

' c o s  0 s i n  s J ( l j"  
- S  i n  8 c o s  8 

1 

And this  function needs t o  be minimized in order t o  find t h e  least-squares es t imates  A and 8 . T h e  

function is of course s t i l l  non-linear (and non-quadratic) in A and 8 .However, observe t h a t  if w e  fix 

A = 1 , t h e  model underlying the  function of (5.20) equals, a p a r t  f rom t h e  f a c t  t h a t  we a r e  

dealing here  with coordinates  referr ing t o  t h e  cen t res  of gravity, t h e  Helmer t  t ransformation (3.30) 

admit t ing only a rotation. Hence,  fo r  an  arbitrarily fixed value of A t h e  minimum 8 (A ) of (5.20) 

follows readily f rom (3.36) a s  

9 



Note that not  too surprisingly the estimated rotat ion angle is invariant to  scale changes. 

From substituting (5.21) into (5.20) we f ind 

t 

which needs to be minimized i n  order to  f ind A .  

With the reparametrization 

- A 
C 

'i, . , 

2 

we can wr i te  (5.22) also as 

(5.22) 

, c -  

f ( 4 )  = ( c o s  4 e + s i n  4 e c o s  4 e + s i n 4  e2) , 
1 2 '  1 

where: M 

L 
Observe that  the function f ( 4 )  describes the distance f rom the origin to  an ellipse lying i n  the 

plane spanned by the vectors el and ep. Hence, to  minimize f ( 4 )  we need to  f ind that  point on the 

ellipse 

y ( 4 )  = c o s  4 e + s i n  4 e 
1 2 '  

-1 n X .  1 ' cos i s i n  ;'l!!" 

which is closest to the origin. 'This minimization problem results then i n  the fol lowing eigenvalue 

f ( A ) = ( l + A )  I 
i = l  

problem 

s i n  4 

c 
y 

And the minimum of f ( 4 )  equals the smallest eigenvalue p of (5.25). The eigenvalues o f  (5.25) 
m i n .  

fol low f rom 

. i, I ,, 
y 

- A  
- s i n  0 cos 0 



Hence, 

Substitution of p = p into (5.25) gives mi  n 

2 '  
( (e29e2)-(e19e1)1 - V( (elvel)+ (e2,e2)12 - 4((e1,e1) (e2,e2)- ( (el,e2)) ) 

t a n  @ = 
2(e 1' e 2) 9 

or with (5.23) and (el, e2) = s g n  ( (el, e2)) I (el, e2) 1 

With (5.24'), (5.21) and (5.18) the least-squares solution of the  two dimensional Symmetr ic  Helmert  

transformation (5.17) finally becomes: 

i x  = xc - n c  i c o s  6 - y c  i s i n  6 ,  

t y  = yc  + gc  X s i n  8 - y c  X c o s  8 ,  

- 1 
j i  = gc  + (1 + i2) (:f + xf i C O S  6 - yf  i s i n  6) , 



Note that  the reciprocal scale parameter reads as 

- c  2 c 2 E i 2  + Y - E ( ( x i )  + (y;)2) 
,-l i = 1  1 = 1  - -------------------------U-------------------- - 

2 j / ( .E x i c  + Y 2  + I I 
c - c  2 '  

1=1 l l 
2 ( y C i C  - x . y . 1 )  

l l 

- c  2 - c  2 c 2 c 2 2' £' ( ( x i )  + ( y i )  1 - i e l ( ( x i )  + ( y i )  1 
....................................... +v1 + 'i-, C - C C - C c - c  2 9 E ( y C i C  - X . Y . 1 )  2 ( i [ l ( x i x i  + Y iY i )12  + l l 1 1  

which demonstrates the symmetry in  our least-squares solution of  the scale parameter. This i n  

contrast t o  solution (5.12) of  the classical Helmert  transformation. 

5.4. The two dimensional Symmetric Helmert transformation with 

a rotational invariant covariance structure 

U p  til now we assumed the simplest structure possible for the covariance matrices of  the observed 

cartesian coordinates. I n  many practical applications this assumption w i l l  do, but it w i l l  not be 

suff icient for  a l l  applications. Unfortunately one can not expect t o  f ind a solution l ike (5.27) i f  the 

observed coordinates are allowed to  have an arbitrary covariance matrix. One of  the reasons that  the 

derivation of (5.27) went so smoothly is namely that the covariance matrices used for  the two sets o f  

coordinates are scaled versions of  each other and are invariant to rotations. This indicates, however, 
t 

that  i f  we assume the covariance matrices Q and 6 of the two coordinate sets ( . . . X  , y . , . . . ) - - t i I 
and . . X , y , . . . ) to  be of  such a structure that 

i 

2 
k Q = Q for  some k E /R+, 

and 
t 

R Q R = Q ,  

where R is a 2n X 2n block diagonal mat r ix  wi th equal 2 X 2 blocks 

! c o s  8 s i n  8 

- s i n 8  c o s 8  

one should be able t o  generalize (5.27) accordingly. 

Note, that it follows f rom (5.28) and (5.29) that  G - ~  consists of  2 X 2 diagonal blocks of  the type 

Hence, the Baarda-Alberda cr i ter ium matr ix  (see e.g. Baarda, 1973 or Teunissen, 1984b) is a proper 



cand ida te  f o r  6. 
T o  solve  f o r  t h e  S y m m e t r i c  H e l m e r t  t r ans fo rma t ion  wi th  t h e  new covar i ance  s t r u c t u r e  (5.281, (5.29) 

w e  apply t h e  s a m e  two-s tep  procedure  a s  used before.  

F o r  f ixed X and 8 w e  g e t  t h e n  a s  solut ion of t h e  f i r s t  s tep:  

2 - l  - c  2 C 2 C 
u . ( x , ~ )  = ; + ( 1  + ( k X )  ) ( x i  + k X C O S  0 X - k X s i n  0 y i )  9 

I C i 
2 - l  - c  2 C 2 C 

V ,  = + l + X ) ( y i  + k X s i n  0 x + k X c o s  0 y i )  , 
I i  

t x ( ~ , 8 )  = X - X c o s  ; - 1 s i n  0 y 
C C c '  

- 
t ( x , e )  = y + X s i n  e x - X c o s  8 y c ,  

Y C C 

where: 

F r o m  this  fo l lows t h a t  w e  g e t  f o r  t h e  second ad jus tmen t  step: 

2 
-1 

i 
' " X  1 

'i 

] =  ( l +  (LA) 

where  e a r e  t h e  residuals. 

Hence ,  t h e  weighted s u m  of t h e  squa red  res iduals  r e a d s  t h e n  

e - 
2 

c o s  0 c o s  0 
= - k X ( 1  + (kX) 

C 
- s i n e  c o s 0  

-C 
X 

i 
-C 

' 

, . 'i ,, 

d i - l ,  i 
0 
l ,  . ' 

:i i . . , i - 1  
0 0 

d ~ ,  i + l  
0 

i - l  
0 

d i  i 
0 

d i , i + l  
d i + l ,  i 

: i + l , i  ' . . 
0 

C 
X 

i 
C 

- X 
c o s 0  s i n e  

c 
i 

X 

c 
y i  

-C 
X 

i 
-C 

. y i  
- s i n e  c o s 8  

- 
-c 

i 
X 

YP 

r \  y i  I 



A A 

and this  function needs t o  be  minimized in order  t o  find A and 8. 

With t h e  reparamet r i za t ion  

1 
k A =  t a n  @, 0 < @ < -  T 

2 
(5.34) 

we c a n  rewr i t e  (5.33) a s  

where  we  have used Einstein's summation convention. 

The  least-squares problem (5.35) resul ts  in t h e  following eigenvalue problem: 

t ,  
- c  i j - c  - c  i j - c  - c i j c  - c i j c "  

(x .d  X .  + y . d  y . )  0 - k ( x i d  X .  + y . d  y . )  
1 1 1 1  1 1 1  

0 
-c  i j - c  - c  i j - c  -c i j  c - c  i j  c 

( x i d  X .  + y .d  y . )  - k ( y i d  x j  - x i d  Y . )  
1 1 1  J 

- c i j c  - c i j c  - c  i j  c - c  i j  c 2 c i j  c c i j  c 
c o s @  - k ( x . d  X .  + y i d  y j )  - k ( y i d  x j  - x i d  y . )  k ( x i d  X .  + y i d  Y . )  

1  J J J I , ,  

And t h e  minimum of (5.35) equals t h e  smal les t  eigenvalue pmi of (5.36). 

The  smal les t  eigenvalue reads: 

s i n @  c o s 8  

s i n @  s i n 0  

COS( 

1 - c  i j - c  -c i j - c  2 c i j  c c i j  c kin. = 7 { ( x i d  X + y . d  y . )  + k ( x . d  x j  + y i d  y . )  - 
j l ~  1  J 

s i n @  c o s 0  

s i n @  s i n 0  

- c  i j - c  - c  i j - c  
0 

- c i j c  - c i j c 3 '  
( x . d  X .  + y . d  Y . )  - k ( x i d  X .  + y i d  y . )  

1 1 1 1  J J 

0 
-c  i j - c  - c  i j - c  - c  i j  c - c  i j  c 

( x . d  X .  + y . d  y . )  -k (y .d  X .  - x i d  y j )  
1 1 1 1  1  J 

- c  i j  c - c  i j  c - c  i j  c - c  i j  c 2 c i j  c c i j  c 

-c i j - c  - c  i j - c  2 c i j  c c i j  c 2 2 - c  i j  c -c i j  c 2 - c  i j  c -C  i j  c 2  I 
$xid  x . + y . d  y .1-k ( x i d  x . + y i d  y . ) )  + 4 k ( ( x . d  x .+y.d y . ) + ( y i d  X . - x i d  Y. ) )  1 

J l  J J 1 1 1 1  J J J 

F r o m  t h e  f i r s t  two equat ions  of (5.36) we  find t h a t  

- k ( x i d  X .  + y . d  y . )  - k ( y i d  x j  - x i d  y . )  k ( x i d  x . + y . d  y . )  
1 1 1  J J 1  

s i n @  c o s 0  

s i n @  s i n e  

and f rom t h e  third equat ion we g e t  

= p 

cos@ c o s @  
J 



2 c i j  c c i j  c 
'min. 

- k ( x . d  X .  + y i d  Y . )  
1 J 1 k), = t a n  ,$ = -------T------------------------------------------------- 

- c ~ j c  - c i j c  - c i j c  - c i j c  
- k ( ( x i d  X .  + y i d  y . )  c o s  6 + ( y . d  X - x i d  y . )  s i n  6 )  

J J 1 j J 

Together with (5.37) and (5.38) this  finally gives 

2 c i j  c c i j  c - c  i j - c  - c  i j - c  
k ( x i d  X .  + y i d  y . )  - ( x i d  X + y i d  Y j )  

j kX =---------1---------L---------------------------- 
- c i j c  - c i j c  

2 - c i j c  - c i j c 2 '  

x i d  x + y . d  y . )  + ( y i d  X - x i d  y . )  
j I J j I 

The adjusted coordinates and translation paramete rs  can  be found by substituting (5.38) and (5.39) 

into (5.31). 

(5.39) 

* 2  c i j c  c i j c  - c  i j - c  - c  i j - c  - 2  1 

5.5. The three dimensional Helmert transformation and its symmetrical generalization 

k ( x i d  X + y . d  
j I J I j I 

Y . )  - ( x . d  x + y i d  y.) 
+ ----------------------------------------------F 

- c i j c  - c i j c  
2 

- c i j c  - c i j c  
21 

Now t h a t  we have found t h e  solution t o  t h e  two  dimensional He lmer t  transformation and i t s  non- 

linear generalization, i t  is natural  t o  t ry  t o  generalize these results t o  th ree  dimensions. 

We will first  consider t h e  classical th ree  dimensional He lmer t  transformation. The model for  t h e  

t h r e e  dimensional Helmert  t ransformation reads: 

' 

where: - i = l, ..., n = number of network points, 

- xi,yi,zi a r e  t h e  'lobserved" coordinates  of t h e  network points in t h e  f i rs t  coordinate 

system, 

- ui,vi,wi a r e  t h e  fixed given coordinates in t h e  second coordinate system, 

- X , ( a ,  B , y ) and ( t  , t  ,t ) a r e  respectively t h e  scale ,  orientation and t ranslat ion 
X Y Z  

parameters ,  

- e x i  p e y  i ) e z i  a r e  t h e  errors ,  and 

x i d  X + y . d  L y j )  + ( y i d  X - x i d  y j )  , 
j j 



1 0  r c o s g  0 - s i n g  c o s y  s i n y  0 
o c o s a  s i n a  , R 2 ( g ) =  0 1  0 
0 -sine: c o s a  s i n g  0  c o s g  

I n  contrast t o  the two dimensional case, the submanifold of  the three dimensional HeImert 

transformation is curved. This compIicates matters considerably. However, a number o f  

simplifications can be obtained i f  we again apply the appropriate two-step procedure. I n  the f i rs t  step 

we therefore assume the orientation parameters a,B and  y t o  be fixed, and solve fo r  the scale 

~ ( a , g , ~ )  and translation parameters t X ( a , g , y ) , t y ( a , B , y ) , t z ( a , & y ) .  Since the f i rs t  step 

consists of  a linear adjustment problem, it is relat ively easy to  solve. The second adjustment step, 

where we have to  solve for  the orientation parameters, is however s t i l l  non-linear. We w i l l  solve this 

second adjustment step by making use of  the alternative formulation as discussed i n  example 1 of 

section 3.6 . 
To apply the alternative formulation which makes use of  the trace operator, we take the 

abbreviations 

and wr i te  (5.40) as 

H = 
n x l  

The f i rs t  step o f  our adjustment problem reads then 

t t t  t t 
m i n .  f ( X , t )  = m i n .  t r a c e  [ ( X - X  U R -Ht ) (X-X U R -Ht 1 ) .  (5.43) 

X , t  X , t  

To f ind the c r i t i ca l  point of the function f (X ,  t ) the following results on matr ix  dif ferentiat ion w i l l  

be used: 
i j 

~f a / a  L = a / a  L , then 

t 

(b) ---------------- a t r a c e  [L  K L M) - = 2 K L M, whenK a n d M  symmetric 
a  L 

1 

: 
: 
1 

t a  t r a c e  (L M L K) (C) ---------------- - = 2 K L M, when K and M symmetric 
a  L 

t x  
t 

Y 
t 

z 
I 

, t = , R = R ( y ) R 2 ( ~ ) R 1 ( a )  , 
3 



The proofs of these relations are straightforward, and we i l lustrate the method by proving (5.44.a): 

L e t  
j k t r a c e  (K L M) = K . . L  M 

1 1  k i  ' 

where Einstein's summation convention is understood. 

'Then 
a t r a c e  (K L M) = K M - t t 

a i m  n i - KmiMin  

or 
a t r a c e  (K L M] = KtMt --------------- 

a L 

With the aid of  (5.44) it follows f rom (5.43) that 

t t a f  - - 2  ( X - X  U R H + 2 n t  = o (a) -- - 
a t  

t t t 
2 i  t r a c e  (utu) - 2 t r a c e  ( ( X - ~ t  ) ( U R  ) )  = 0 (b) -- - a x  - 

From (5.45.a) follows tha t  

t = - (X-X U R  ) H p y  
Substitution of  (5.46) into (5.45.b) gives 

t t t 1 t t 
1 t r a c e  (U ( I  - I H  H )U) - t r a c e  (X  ( I  - ;H H ) U  R ) = 0. 

n 
(5.47) 

1 
Note that I - H H t .  1 t 1 t 1s a projector, i.e. ( I  - - H H ) ( I - H H ) = 

1 t 
n 

( I - H H ) . With the abbreviations 

1 t C 1 t uC = ( I  - - H H ) U  and X = ( I  - - H H ) X  
n n 

(5.48) 
n x 3  n X n n X 3 n X 3 n X n n x 3  

it therefore fol lows f rom (5.47) that  

I t r a c e  ( ( X ~ ) ~ ( U ~ ) R ~ ]  I x = ------------------- 
t r a c e  ( ( u ~ ) ~ ( u ~ ) )  l 

Formula (5.46) together w i th  (5.49) constitute the solution of  the f i rs t  step. To formulate the second 

adjustment step, we substitute (5.46) and (5.49) into 

t t t t t 
t r a c e  ( ( X - X  U R - Ht ) ( X - X  U R - Ht ) )  . 



This gives for  the second adjustment step: 

t r a c e 2 (  ( x c ) '  ( u c ) ~ ' )  
m i n .  t r a c e  ( ) )  - ------------------- l ,  

~ , B , Y  t r a c e  ( ( u ~ ) ~ ( u ~ ) )  

subject to R = R ( y ) R  (B)Rl(a) . 
3 2 

Since we know that the scale parameter h must be positive and that  t r a c e (  (UC ) (UC)  ) is 
t 

positive, it follows f rom (5.49) that  t r a c e (  ( X C )  (u')R ) must be positive. We can therefore 

rephrase our second adjustment step as 

max. t r a c e ( ( ~ ~ ) ~ ( U ~ ) ~ ~ )  s u b j e c t  t o R = R 3 ( y ) R 2 ( B ) R l ( a ) .  
a ,B ,y  

To f ind the solution R to  (5.51) we apply the singular value decomposition theorem (see e.g. 

Teunissen, 1984a) to  the mat r ix  ( X C )  ( U C ) .  This theorem says that the mat r ix  ( X C )  ( U C )  may 

be factorized i n  the fo rm 

where V1 and V2 are orthogonal matrices of order 3x3 respectively, and D is a diagonal mat r ix  o f  the 

form 

where di, i=1,2,3, are the singular values of (XC ) (UC ) , which may be ordered so that 

dl) d 2 )  d 3 )  0. 

2 t  
From (5.52) follows that (UC ) ' (XC ) (XC ) (UC ) = V2D V2. Hence, the columns of V2 give an 

c t  c t  c 2 
orthonormal set of eigenvectors of the symmetric matr ix  ( U  ) ( X C )  ( X  ) ( U  ) and the d i  

are the corresponding eigenvalues. 

Substitution of (5.52) into (5.51) gives 

t t 
max. t r a c e  ( V  DV R ) s u b j e c t  t o  R = R3(y )R2(~ )R l (a )  . 

1 2  
(5.53) 

a ,B ,Y 

Since fo r  arbitrary matrices A and B, t r a c e  ( A  B) = t r a c e  ( B A) , we can rewr i te  (5.53) as 

t t 
max. t r a c e  ( V  R V D) s u b j e c t  t o  R = R (y  ) R 2 ( ~  )R1(") . 

2 1 3 
(5.54) 

a ,B ,Y 

t t 
I f  we denote the diagonal elements of the matr ix  V2R V1 by a , i = l ,  2,3, it follows that  



L e t  us now f i rs t  assume that a l l  three singular values are non-zero. Then, since the singular values di 
t t 

are positive and the matrices in  the t r ip le product V2R V1 are orthogonal, i t follows that (5.55) is 

maximal i f  ai = 1, i = 1,2,3. This implies then that  (5.55) is maximal i f  and only i f  

Hence, our solution becomes 

or w i th  (5.52) 

Thus i n  case of  non-zero singular values di, i=1,2,3, the orthogonal matr ix  R can be found f rom the 

eigenvectors and corresponding eigenvalues of  the symmetric matr ix  

( U C )  (XC ) (XC ) (UC ) . Since this matr ix  is of order 3x3 i t s  characteristic equation is a cubic, 

Substitution of  

gives 

where 
1 2  2 3  1 

p = b - - a  a n d q = c + - - a  - -  
3 2 7 3 

ab. 

According t o  the Cardanian formula (see e.g. Grif f i ths, 1947) the three roots of  (5.58) are: 

2 2 2 
where w = c o s  - a + i s i n  - a a n d i  = - l .  

3 3 
Thus w i th  (5.59) and (5.57) one can compute the eigenvalues of  the symmetric mat r ix  

( U C )  ( X C )  (XC ) ( U C ) .  Once the eigenvalues are known it becomes straightforward t o  compute 

the corresponding eigenvectors. 



Although the case of zero singular values w i l l  not  occur very of ten i n  practice, l e t  us now assume 

that  one of the singular values, say d equals zero. It follows then again that  (5.55) is maximal i f  and 
t j 

only i f  R = V1V2. With (5.52) we can therefore wr i te  

where D+  is the pseudo-inverse of D, and Vlj and V2j are the j - th column vectors o f  V1 and V2 

respectively. 

Final ly we consider the case of mult iple zero singular values. The case dl = d2 = d3 = 0 is tr ivial,  

since then the orthogonal mat r ix  R is indeterminate and may take any arbitrary form. In  case only 

two of the singular values, say d2 and d3, equal zero, we f ind that (5.55) is maximized i f  R takes the 

f orm 

O 
c o s +  + s i n +  1 V: , where + is arbitrary. 

o - s i n $  + c o s +  

Thus in  case the two singular values d. and dk equal zero we f ind w i th  (5.52) that  the orthogonal 
J 

matr ix  R takes the form 

where + is arbitrary. 

In  the geodetic l i terature a number of authors have studied the three dimensional Helmert  

transformation. The two most recent papers on the subject are (Sansb, 1973) and (KBchle, 1982). 

References t o  earlier papers can be found in  (Schwidefsky and Ackermann, 1976). 

Using the factorization of Cayley, (Kochle, 1982) arrives a t  an i terat ive solution for  the orthogonal 

matr ix  R. (Sansb, 1973) on the other hand, formulates the solution for  R through the use o f  

quaternion algebra in  terms of an eigenvalue problem of a symmetric 4x4 matrix. H is  result is 

therefore to  some extent comparable w i th  our solution. Note, however, that  our derivation is more 

general than Sansb's, since it does not require any restrictions on the number of columns in  the 

matrices X and U in  (5.42). 

Now that  we have found the solution of the three dimensional Helmert  transformation (5.42), we wi l l  

consider the three dimensional generalization of the Symmetric Helmert  transformation (5.17). Using 

our alternative formulation the model can be wr i t ten  as 

As i n  section 5.4 we assume that  the covariance matrices Q and 6 of the two coordinate 
t - - - - 1 sets ( . . . X , y , L , . . . ) and ( . . . X , y , z . . . ) are of such a structure that  d 

consists of 3x3 diagonal blocks of the type 



and 
2 k Q = Q fo r  some k E /R+. 

Our adjustment problem becomes then 

m i  n i m i  ze  f ( u i , v i , w i , A , t  t t t z 9 a 9 8 , ~ ) ,  
X '  Y 

U , V . , W  , A , t  , t  , t  , ~ , B , Y  
i I i X Y Z  

w i t h  

. . 
and where the element o f  the nxn symmetric matr ix  G on place i j  is given by d'l. 

To solve (5.63) we w i l l  proceed in  three steps. Fi rst  we w i l l  f i x  the scale A and orientation 

parameters a ,  8 ,  y : 

min  imize 9(ui,vi,w ,t ,t , t  = 
i x y z  

U ,V. ,W. , t  t ,t 
i I I x ' y  z 

2 t t t  t t 
min imize  { k  t r a c e [ ( x - A U R - H t  ) G ( X - A U R - H t  ) ) +  trace[(%-u)~G(R-U))}. 

U . , V  I i ,Wi , tX , t  , t 
Y Z  

(5.64) 

With the aid of  the matr ix  d i f ferent iat ion rules o f  (5.44) we f ind that the c r i t i ca l  point o f  g should 

satisfy: 

2 t 
(a) = 2 ( k 2 A 2 + 1 ) ~  U - 2A k G ( X - H t  ) R  - 2 G 2 = 0 au 

2 t t 2 t  
(b) f f =  - 2  k ( X - A U R ) G H + 2  k t H G H = O  

From (5.65.b) we f ind that  

Substitution of  (5.66) into (5.65.a) gives 

Premult ipl ication w i th  H(HtGH)-lHtG shows that 



Hence, we can wr i te  (5.67) also as 

With the abbreviations 

t -1 t t -1 t 
XC = ( I  - H ( H  G H )  H G ) X  and %C = ( I  - H ( H  G H )  H G)>;: , 

we thus f ind that 

When we substitute (5.68) into (5.66) we f ind the translation vector as 

(5.68) and (5.69) constitute the solution o f  our f i rs t  adjustment step. Compare (5.68) and (5.69) w i th  

(5.31). 

To commence w i th  our second adjustment step we substitute (5.68) and (5.69) into (5.63') and f ind 

I n  a similar way as (5.56) was derived, we f ind that  for  fixed scale the conditional minimum o f  (5.70) 

is obtained by 

where the diagonal matr ix  D contains the singular values o f  ( X C )  t ~ ( 8 C )  and the column vectors 

o f  the orthogonal matr ix  V2 are provided by the eigenvectors o f  the 3x3 mat r ix  

(8') t ~ ( ~ C )  (X') t ~ ( 8 C ) .  

To f ind the least-squares estimate o f  X ,  we substitute (5.71) into (5.70) and use the 

reparametrization 

1 
k X  = t a n  +, 0 < + < - 8. 2 

This gives 



The minimization o f  (5.73) leads then to  the following eigenvalue problem 

Since the minimum o f  (5.73) equals the smallest eigenvalue p of  (5.74) i t  follows that 
m i  n 

From (5.74) follows tha t  

-c  t 
= 1 { k2 t race(  (XC) t ~ ( ~ C ) )  +trace( (X ) G(RC))] 

'min. 2 

-c  t 2 c t - c - t  - 1 2 $k2trace((~C)t~(~C))-trace((X ) G(%')))' + 4k2t race ( ( X  ) G(X )R ) . 

Substitution of  (5.76) in to  (5.75) then finally gives 

The least-squares estimates t and U are found f rom substituting (5.71) and (5.77) into (5.69) and 

(5.68) respectively. 

5.6. The extrinsic curvatures estimated 

I n  general, the problem of  finding the curvature behaviour of  submanifold N can only be solved 

through actual computation of  the extrinsic curvatures kN f rom the normal f ie ld B for  a chosen 

tangent direction X and normal direction N. But, as w i l l  be clear f rom (4.30) the computation of  the 

principal curvatures entails some extra expenses. It is therefore o f  some importance to  have ways o f  



finding realistic estimates for  the extrinsic curvatures o f  i .  As we see it, there are three 

possibilities: 

(i) Try t o  compute the extrinsic curvatures analytically. Those cases where this is possible wil l ,  

however, be rare. 

L-et us take as an example the Symmetric Helmert  transformation (5.17). For convenience we 

reparametrize (5.17) as 

- 
y .  I = - b u .  1 + a v .  I + t 

Y '  

where a = Xcose and b = X s i n e .  
1 a 

We assume that the observation equations y ( X ) , I = 1, . . . ,4n ,  and the parameters 
a 

X , a = 1, . . . ,2n+4 ,  of  model (5.78) are ordered such that  the design mat r ix  a y 
I 

a 
reads i n  part i t ioned fo rm as 

where: 

matr ix  A is 2n X 2n block-diagonal w i th  equal 2 X 2 blocks 

We also assume that  the observation space has the standard metric, i.e. g 
= 6 I J. I J  

It 

follows then tha t  the induced metr ic  g reads in  part i t ioned fo rm as 
aB 

with: 

, C = I  and D =  0 .  
2 n 

2 n x 4  2 n x 4  
B = 

2 n x 4  

U 
1  

v 1 0 ' 
v 
1 

- U  l 0  
1  

1 

1 0  U v 
n n 

v - U  
n n 

0  1 



I a 
Furthermore it  follows from (5.78) tha t  the  non-zero second derivatives of y ( X  ) a r e  given 

by: 

fo r  i = l, ..., n. 
Hence for  an arbi t rary unit normal vector  N, i.e. 

the  matr ix (B( a,, ag ) , N ) ~  reads in partitioned form as 

where: 



I n  order to determine the wi th the normal direction N corresponding principal curvatures, we 

need to solve the general eigenvalue problem 

I ( B c % 9 a B ) , N ) M - k N  gaB I = 0. 

With (5.80) and (5.82) this gives 

Now assume that  kN f 0 . Then we can apply the following well-known result: 

I f  U is a regular square matrix, then 

This applied to (5.83) gives 

Since N is a normal vector it follows f rom (5.79) and (5.81) that 

2 i 2 i f (NZi-'ui + N v . )  = 0 ,  f (NZ; - 'v .  - N u . )  = 0 ,  
i = l  I i = l  I I 

f 2 i 
= 0 and .E N = 0.  

i = l  1 = l  

t t t 2 
Hence F A B = 0. With A A = X I this gives for  (5.85) 

2n  ' 



We c a n  now apply t h e  following var iant  of (5.84): 

This  g ives  fo r  (5.86) 

2 I 2  2 2 2 2 2 2 
I ( ( N  - kN i r l ( u i + v i ) )  I 2  + n k  ( U  + V  I 2  1 = 0 , I = l  N c c  

2 2 2 2 2 2 2 f  ( N I ) '  = k ( . f  ( u . +  v . )  - n u  - v 1 = k f  ( ( u c ) 2 + ( v g ) 2 )  . 
I = l N 1 = 1  I I C C N i = l  I 

Thus  t h e  t w o  non-zero pr incipal  cu rva tu res  of model  (5.78) r ead  

(ii) T ry  t o  e s t i m a t e  t h e  ex t r in s i c  cu rva tu res  wi th  t h e  help  of t h e  informat ion which c o m e s  

avai lable  during t h e  i tera t ion.  Reca l l  f rom sec t ion  3.6 t h a t  t h e  numerical  examples  c lear ly  

b e t r a y  t h e  cu rva tu re  involved. 

In o r d e r  t o  e s t i m a t e  t h e  cu rva tu re  during t h e  i t e r a t ion  w e  need a manageab le  formula.  

Fo rmula  (4.37a) does  t h e r e f o r e  no t  apply,  s ince  i t  needs  X in advance. The  following 

formula ,  however ,  c a n  b e  used: 

(5.88) 

T h e  proof of (5.88) goes  s imi lar  t o  t h a t  of (4.37.a). 

(iii) Try  t o  ob ta in  r igorous  bounds on t h e  ex t r in s i c  curvatures .  F r o m  Gauss'  decomposi t ion fo rmula  

(4.18) follows t h a t  



L e t  k denote the i n  absolute value largest principal curvature for  the normal direction 

N = / 1 1 6 1 w i t h  6 = y - 9 .  According to the eigenvalue problem (4.30) we 
M '  S 

have then 

where the mat r ix  norm I I . I 1 is the spectral norm. 

With (5.89) and the Cauchy-Schwarz inequality we obtain the following upperbound: 

a 8  
w i t h  g Y Y ( R )  = t r a c e  ( g  ( R ) ) .  

2 i 
To estimate the spectral radius of aaB y one can make use of the various exclusion 

theorems known from the literature. For  instance, one of the simplest exclusion theorems is: 

For a l l  eigenvalues p of a mat r ix  AaB one has 

where I I . I I is a chosen vector norm. 
B B 

For  the max-norm l l X I l = max l X l this becomes then 
B 

I I 5 mgx I I AaB I , i.e. the largest row of A . 
B a B 

For a diagonal dominant mat r ix  one could take Gershgorin's theorem, which says that  the 

union of a l l  discs 

D = E 1 P - Am 12 I I AaB I } ,  (no s u m s t i o n  over a ) ,  (5.94) 
B =l 
B b  

contains a l l  eigenvalues of the n X n matr ix  A . 
a 8 

Instead of using exclusion theorems one coul.d also t ry  to  compute the spectral radius o f  
2 i 

aaB y 
directly. This can turn out t o  be feasible especially when per observation equation 

only a few parameters are involved. 

As an alternative to  (5.91) we could make use of condition equations i f  they are available. 

L e t  Y  E T N and R E ~'i . Then ( Y * ( Y )  ,h )  = 0. Hence, 
X X U 



o = D (Y* (Y) ,R)  = ( D ~  (x)Y,(Y) ,R) + (Y,(Y) ,Dy (X)R)II 9 
Y *  (X) M a nr S 

and w i th  Gauss' decomposition formula (4.18) this gives 

(B(x,Y),R) M = - (D R , y * ( ~ ) ) M  . 
Y *  (X)  

Now assume that 

P 
With the condition equations U ( y ) = 0,  P = l, . . . , (m- n )  ,we can wr i te then 

- -c 1 m =  ( g  j k  p a U e ) a., j , k , l = l , . . .  m; p , ~ = l ,  ... , ( m - n ) ,  
a k u  g p ~  1 J 

where 

And wi th  X = a Y = a B 
this gives for  (5.95), 

a ' 

Hence, 

Expression (5.96) s t i l l  looks horribly complicated. But  we can simpli fy it somewhat by 
a i 

recall ing the wel l  known result that  for two arbitrary mat rbes A i ,  Bap 
i B 

i = l , .  . . ,m, a = l , .  . . ,n their products A?B' and B A .  have the same non-zero 
I a a I 

eigenvalues w i th  the same multiplicities. Application of  this result t o  (5.96) gives 



since t h e  eigenvalues of a projector equal one or  zero. 

5.7. Some two dimensional networks 

(i) Recal l  t h a t  Gauss' method (4.5) has a local quadrat ic  convergence behaviour in case  

submanifold is total ly  geodesic. A typical example of a type  of geodet ic  network for  which 

this  holds is a planar geodet ic  triangulation chain if t h e  parameters  a r e  car tes ian coordinates  

(see figure 33). 

figure 33 

(ii) In t h e  previous subsection we observed t h a t  i t  may be worthwhile t o  t ry  t o  compute t h e  
2 i 

spectral  radii  of t h e  mat r ices  a y , i =l ,  . . . ,m, directly if every observation equation 
a B 

only contains  a f e w  parameters.  Fortunately,  this is precisely t h e  case  in geodet ic  network 

theory. In case  of a two  dimensional t r i la terat ion network for  instance only four  pa ramete rs  

a r e  involved in each  observation. 

By expanding t h e  dis tance funct ion 1 connecting t h e  network points P and P we g e t  
P9 P q 



And it is not too d i f f i cu l t  t o  ver i fy  that  the maximum eigenvalue o f  i t s  4x4 Hessian is given 

by 

Since i n  practice the observations are usually assumed t o  be uncorrelated w i th  equal 

variance, we can wr i te  

- 2 
g . .  = d i a g  (... o ... ) 

I J  Y (5.99) 

Now i f  we also assume that  a l l  distances i n  the network are about the same, i.e. 1 = I , 
P 4 

and that  the variances o f  the estimated parameters do not d i f fe r  too much, we get w i th  

(5.98) and (5.99) for  (5.91): 

( i i i )  As an example of  how t o  apply (5.97) we take a two dimensional closed polygon i n  which 

every two neighbouring points are connected by one measured distance I and one measured 

azimuth A. The two condition equations read then: 

!? 1 .  c o s  A .  = 0 ,  and f! I.  sin^ = 0 . 
i = l  1 I i = l  I i 

I f  we assume that the observations are uncorrelated and the variances satisfy 

then 

and 

where the odd numbered residuals refer  t o  the distance residuals and the even numbered 

residuals refer  t o  the azimuth residuals. 

Furthermore it follows that  the following two 2n X 2n matrices 



I m  2 g = l  I m  2 p =2  
g 

and g a U are block-diagonal w i t h  blocks of  respectively 
mn 

0 a C O S  A .  
1 .  

l 

U c o s  A .  - a  sin^ 

, Ai 
I i, (5.105) 

o - a 2  s i n  A 
1.  i 

l 

- a 2  s i n  A - a 2  I c o s  A 
A i 

i A .  i i 
l 

From (5.102), (5.1031, (5.104) and (5.105) follows then that, the 2n X 2n mat r ix  

and 

is block-diagonal w i th  blocks 

The eigenvalues X . of  matr ix  (5.106) read 
l 

2 2 - (a cos A. + b s i n A . )  4(a +b ) - 3(a  cos A. + b s i n A . )  
2 '  

1 l 

And f rom this follows that  

Hence, w i th  (5.104) we f ind fo r  (5.77): 

2 - 
where l is the distance fo r  which U / l , i 1 . . . , n ,  is the greatest. 

l i 



6. Some statistical considerations 

I n  the previous sections we dealt w i th  the problem of  finding the least-squares solution 9 to 

But  it is o f  course not  enough t o  compute a vector y E fi and state that  this is the estimated 

value o f  the unknown y E fi. The step following the actual adjustment process is equally 

important. That is, one also needs to  f ind the statist ical properties of the estimators involved and 

formulate ways of testing statist ical hypotheses. Unfortunately we are not able yet to  present a 

complete treatment of the statist ical theory dealing w i th  non-linear geodesic estimation, although i t  

w i l l  be clear that  i n  considering non-linear models one cannot expect a well  working theory as we 

know i t  for linear models. I n  the fol lowing we wi l l  restr ic t  ourselves therefore to  a few general 

remarks. 

As we have seen, Gauss' method enabled us, given the observation point y E A4 , t o  compute the 
S 

least-squares estimate i( of  X. And wi th  the map y:  N + M this gives the least-squares estimate - 
= y(;)  of y E N c M . I n  this way the least-squares estimation method defines, a t  least 

implicit ly, two non-linear maps P:  M+ a and  y - l o  P:  M + N such that 

- 1 5 = P ( y s )  and i = y 0 P ( y S ) ,  (6.2) 

where y-l is a leftinverse of y:  N + M . 
I f  the observation process which yielded our data were to  be repeated, WE would obtain d i f ferent  

- 1 
values for  ys. And application of the maps P and y o P to  the new data would yield dif ferent 

values o f  G and G respectively. Thus the and j? are themselves samples drawn f rom certain 

probability distributions which depend both on the nature of the maps involved and on the assumed 

normal distribution o f  the observations. For  making statist ical inferences it is therefore important to  

know the statist ical properties of the estimators involved. 
i 

I n  case the coordinate functions y ( xa ) of the map y are linear, i t is not d i f f i cu l t  to  derive the 

precise distribution of the least-squares estimators. The following distributional properties are wel l  

known: 

However, these results do not carry over to  the non-linear case. Only i n  the exceptional case that one 

is dealing w i th  a total ly geodesic submanifold N wi l l  the last three distributional properties of (6.3) 

s t i l l  hold. Of  course, a similar complete theory as we know i t  for linear models can hardly be 

expected. Essential properties which are used repeatedly i n  the development of the linear theory 

break down completely i n  the non-linear case. Take for instance the mathematical expectation 



operator E{ .) . I f  z is a random variable and g is a non-linear map, then 

i.e., the mean of the image differs generally f rom the image o f  the mean. Hence, we can hardly 

expect our least-squares estimators to  be unbiased i n  the non-linear case. Consequently, one cannot 

justi fy least-squares estimation anymore by referr ing to the Gauss-Markov theorem. O f  course this by 

no means implies that one should do away w i th  the least-squares estimators. Under the usual 

assumption o f  normality the least-squares estimators are namely s t i l l  maximum likelihood estimators. 

Besides, when one overemphasizes the importance o f  exactly unbiased estimators, one can f ind 

oneselves i n  an impossible situation. Very of ten namely we have a natural estimator which is, 

however, slightly biased. Fo r  example, i f  z is a good unbiased estimator o f  2 ,  and i f  i t is required 

to  estimate g(;), then it seems natural to  estimate C J ( ~  by g ( = ) ,  although this estimator w i l l  

nearly always be biased. 

Another property that  fails to  carry over to  the non-linear case, is the property o f  estimability. - 
Recall  that  w i t h  respect to a linear model y E = A N c M  , a linear function * * 
( X  , X ) ,  X E N* ,  X E N , is usually defined to  be an estimable function i f  it admits an 

unbiased linear estimator. However, this definit ion cannot be used fo r  a non-linear model. F i rs t  of a l l  

since a restr ic t ion to  linear estimators is not reasonable anymore, and secondly since non-linear 

estimators are almost always biased. Thus what we need is a more general definit ion o f  estimability, 

one which fo r  linear models reduces to the above given one. The answer is given by the dual re lat ion 

This dual relat ion implies namely that  either 

* * *  * * % 
X = A y  forsome Y E  M or A x  = 0 and ( X  , X )  f 0, 

* 
but not both hold. Hence, asking fo r  an unbiased linear function ( X  , X )  is equivalent t o  asking for * 
a linear function ( X  , X )  which is invariant to  solutions of A X  = 0 (see e.g. Grafarend and 

Schaffrin, 1974). Therefore in  general i t would seem more appropriate to  couple the definit ion o f  

estimability t o  the property of invariance. 

Since it is impossible in  general to  derive precise formulae fo r  the distributional properties of the 

non-linear estimators, the best we can do seems to be to find approximations. Three approaches 

suggest themselves: 

When one has a non-linear model it is natural to  hope that  i t  is only moderately non-linear so that  

application of the linear theory is justified. In  practical applications the f i rs t  step taken should 

therefore be to  prove whether a linear(ized) model is suff icient as approximation, because then the 

statist ical treatment is much more simple. And since the origin of a l l  complications in  non-linear 

adjustment lies i n  the presence o f  curvatures, it seems reasonable to  take the mean curvature as a 

measure o f  non-linearity. L e t  us therefore Taylorize the expressions in  (6.2) about the true values 

F = Y ( x ) .  With e = y -y this gives: 
S 



k k i k i j  5 = ( ~ ( y ~ ) ) ~  = yk + a i ( p ( ? ) )  e + a 2  ( P ( ? ) )  e e + ... , 
2 i j  

and 

4 
By taking the expectation we f ind to  an approximation of  the order a : 

k -k 1 2 2  k i j  - Y 1 = ? a  a . . ( ~ ( ? ) )  g 
' I  

and 
- 1 a i j  

E{P'- xQ} = 1 a 2 a 2  ( Y  0 ~ ( y ) )  g . 
2 i j 

And wi th the definitions o f  the unique mean curvature normal 6l (see (4.33)) and the Chr istof fe l  
a I- 

symbols o f  the second kind T (see (4.17)), and by using the fac t  that y s -  P ( y s )  E T ,N, one 
B Y  Y 

w i l l  f ind that one can rewr i te  (6.6) as 

1 1 2 -  
(a) E{?-?}  = - a 2 n  N = - U n N , 

2 
"P 

2 
and 

Q a 1 2 B Y  , 
(b) € { P  - X  } = - 5 0  g 

B Y  

where N p ,  . . . , (m- n ) , is an orthonormal basis of  T% 
P '  Y 

and  a,B,y = l ,..., n. 

(see also Teunissen, 1984~).  

Thus the f i rs t  moments o f  the parameters depend on the connection coefficients of  N, whereas the 

f i rs t  moment of  the residual vector depends on the mean curvature of  submanifold y (N) .  

Hence, the f i rs t  moments of  the parameters can be manipulated by a change of  parameter-choice, 

whereas the f i rs t  moment of  the residual vector is invariant t o  such a change of parameters. 

As an example, l e t  us apply (6.7) t o  the two dimensional Symmetric Helmert  transformation (5.17). 

We assume that  the observation space has the standard metric. 

According to (5.87) the non-zero principal curvatures of  model (5.17) for  an arbitrary normal 

direction N read 

Hence, the corresponding mean curvature reads cN = D .  With (6.7.a) fol lows then that  the adjusted 
a A a a - - 

coordinates X , y and x i  , y , i = l ,  . . . , n, are unbiased. 

The bias in  the parameters follows i f  one applies (6.7.b.) For  the Symmetric Helmert  transformation 

one w i l l  then f ind that  



Similar estimates as given by (6.7) can also be derived for the higher order moments of the non-linear 

estimators. 

Fortunately our rather pessimistic estimates i n  section 5 indicate that the application o f  the theory 

of linear stat ist ical inference is generally justi f ied i n  geodetic network adjustments. But, we must 

admit that  it is not  clear t o  us yet  what t o  do when the model is significantly non-linear and 

therefore much more research needs to  be done in  this area. Such being the case one may be surprised 

to  real ize how l i t t l e  developed is the statist ical theory o f  non-linear estimation for pract ical  

applications. See for  instance the survey papers (Cox, 1977), (Bunke, 1980); the book (Goldfeld and 

Quandt, 1972) and the very recent book (Humak, 1984). 

An alternative way to  estimate the properties o f  the distribution of the estimators involved, would be 

to  use computer simulation. One could repl icate the series of experiments as many t imes as one 

pleases, each t ime wi th  a new sample o f  errors drawn f rom the prescribed normal distribution and so 

obtain the relevant distributional properties by averaging over a l l  replications. Although this 

approach could give us valuable insight into the e f fec t  of non-linearity, it must be carried out on a 

system whose parameters are known in  advance, and such a system may not  always be realistic. But  

then again, since the distributions o f  the estimators involved depend on the actual distribution of the 

observational data which on i t s  turn depends on the "true" values X which are generally unknown, one 

is almost always faced wi th  the problem that  even when one can derive exact formulae fo r  the 

distributions one can evaluate only the approximation obtained by substituting the estimated 

parameters for  the true ones. 

Final ly we mention the possibility t o  re ly on results f rom asymptotic theory. The central idea o f  

asymptotic theory is that  when the number m of observations is large and errors of estimation 

corresponding small, simplications become available that  are not available in  general. The rigorous 

mathematical development involves l im i t ing  distributional results holding as m + and is closely 

related to the classical l i rn i t  theorems o f  probability theory. I n  recent years many researchers have 

concentrated on developing an asymptotically theory for  non-linear least-squares estimation. I n  

(Jennrich, 1969) a f i rs t  complete account was given of the asymptotic properties o f  non-linear least- 

squares estimators. And in  (Schmidt, 1982) i t  was shown how the asymptotic theory can be ut i l ized to  

formulate asymptotic exact test statistics. See also the very recent book (Bierens, 1984). Roughly 

speaking one can say that  under suitable conditions one gets the same asymptotic results for the non- 

linear model as for the linear one. Unfortunately, we doubt whether the results obtained up t o  now 

can satisfy the requirements of applications i n  practice. I n  particular, the theory s t i l l  seems t o  lack 

statements concerning the accuracy of the approximations by l i m i t  distributions. 



7. Epilogue 

I n  this chapter we have t r ied to  show how contemporary differential geometry can be used to  improve 

our understanding of non-linear adjustment. We have seen that  unfortunately one can very seldom 

extend the elegant formulations and solution techniques f rom linear to  non-linear situations. For most 

non-linear problems one wi l l  therefore have to  recourse, i n  practice, to  methods which are i terat ive 

in  nature. As our analysis showed, the Gauss1 method is pre-eminently suited for small extrinsic 

curvature non-linear adjustment problems. On the whole, one could say that  solutions to  linear 

problems are prefabricated, while exact solutions to  non-linear problems are custom made. An 

important example is our inversion-free solution to  the Symmetric Helmert  transformation. 

Although we have treated a number of new aspects o f  non-linear adjustment, we must recognize that  

we are only on the brink of understanding the complex of problems o f  non-linear adjustment. Many 

problems and topics were l e f t  untouched or were not further elaborated upon. 

For instance, in  our proof o f  the global convergence theorem (4.66) we made use o f  the l ine search 

strategy known as the minimization rule. However, i t s  practical application is l im i ted  by the fac t  

that the line search must be exact, i.e., it requires that the exact minimum point o f  the function 

E ( c  ( t  ) ) be found in  order to  determine X Therefore i n  practice the exact minimization is 
9 q+l' 

replaced by an inexact l ine search, in  part icular by a f in i te search process (see e.g. Ortega and 

Rheinboldt, 1970). 

In  our discussion o f  Gauss' method, we assumed the non-linear map y to  be injective. However, i n  
I 

many pract ical  applications the matr ix  of f i rs t  derivatives a y becomes o f  non-maximum rank 
a 

(see e.g. chapter 111) and the required inverses cannot be calculated. A way out o f  this dilemma is 

suggested by the theory of inverse linear mapping. Instead o f  an ordinary inverse o f  g one then 
- Ba B - Ba aB ' B 

takes a generalized inverse, g say, of gaB. TO show that Ax = - g  a E = - ( g r  ad  E )  is 
a 

s t i l l  in  a descent direction, note that  

Hence, i f  Ax 4 0 then - ( g r a d  E,  Ax > 0, which shows that A x  has a positive 

component along the negative gradient and so is downhill. 

As to  the local rate o f  convergence o f  Gauss' method, recall  that the extrinsic curvatures are a 

property of the submanifold y. Therefore, the local convergence results obtained fo r  Gauss' method 
I 

wi l l  remain unchanged i f  a y has non-maximum but local constant rank. 
a 

O f  the many i terat ion methods available, we only discussed Gauss' method. We did not mention any o f  

the possible alternative i teration methods such as, fo r  instance, Newton's method, Levenberg- 

Marquardtls compromise or the method o f  conjugate-gradients (see e.g. Ortega and Rheinboldt, 1970). 

Although more intr icate, these methods can become quite at t ract ive in  case of large curvature 

problems since they take care, in  one way or the other, o f  the curvature behaviour o f  i .  



Also did we not discuss the interesting point of  view which is provided i f  one interprets the i terat ion 

process as a dynamical system. Consider namely Gauss' method 

B B a i j j ( a )  A X  = g ( X  )a Y ( X  ) g i  j ( ~ s - ~  ( X  l ) ,  
q q a q q 

B B x B + t A x  , ( b )  xqrl= 
q q 

and assume that  the positive scalar t is taken inf initesimally small i n  each i terat ion step. We obtain 
q 

then the autonomous dynamical system 

I t s  solution is a curve c ( t  ) which passes through the in i t ia l  value xo at  t ime t=O and which has i t s  

velocity given by the value of  the vector f ield - grad E. Although the uniqueness theorem for systems 

of  d i f ferent ia l  equations implies that c (  t ) is never a c r i t i ca l  point o f  E, this should not  bother us 

too much since one can show that under suitable conditions hjg c ( t )  = ;( wi th  

g r a d . ~ ( ; )  = 0 .  This is l ike the pendulum paradox, which says that the pendulum once it is i n  

motion can never come t o  a state of  rest, but only approximate one arbitrary closely. Thus, g' lven an 

in i t ia l  guess xo which is not  a c r i t i ca l  point o f  E, one can t ry  t o  solve our non-linear adjustment 

problem by solving the system of  d i f ferent ia l  equations (7.1), using one o f  the many numerical 

integration methods available. 

I n  connection wi th the above dynamical interpretation we also mention the potential value which a 

study of  the quali tat ive theory o f  the global behaviour of  dynamical systems and of  Morse theory, can 

have for a betterment of  our understanding of  non-linear adjustment. This quali tat ive theory is 

namely concerned wi th  the existence of  equilibrium behaviour of  a dynamical system, together w i th  

questions of  local and global stabi l i ty (see e.g. Chillingworth, 1976; Hirsch and Smale, 1974). And 

Morse theory studies, amongst other things, the equilibrium configuration o f  a gradient system. The 

Morse inequalities, for instance, place restr ict ions on the number of  c r i t i ca l  points that  a function E 

can have due to the topology of  the manifold on which it is defined (see e.g. Hirsch, 1976). 

Final ly we note that we omit ted the important case o f  an impl ic i t ly  defined submanifold G. This 

would correspond to a non-linearly constrained adjustment problem. Although the geometry of  the 

problem is not  too di f ferent  f rom the one discussed in  this chapter, the various methods for actually 

solving a constrained problem can become quite involved (see e.g. Hestenes, 1975). The usual way to  

go about is, t o  prolong the original constrained problem wi th  the aid of  the Langrange mul t ip l ier  ru le 

to one which is unconstrained. I t  is interesting to  point out that although the Lagrange mult ipl iers are 

of ten thought o f  as being merely dummy variables, which are just needed to prolong the constrained 

problem into an unconstrained one, they actually have an important interpretation of  their own. I n  

fact, there is a very r ich  duality theory connected w i th  the Lagrangian formulation (see e.g. 

Rockafellar, 1969). It goes back to  the Legendre transformation o f  classical mechanics. The 

Lagrangian formulation has namely the physical significance that it replaces the given (kinematical) 

constraints by forces which maintain those constraints. As a result the mult ipl iers equal the forces o f  



reaction (see e.g. Krarup, 1982b). The mult ipl iers can therefore be used as test statistics. For  linear 

models one can show that  the standardized Lagrangian mult ipl ier equals Baarda's W-test stat ist ic (see 

Teunissen, 1984b). 

That many more problems and topics related to  non-linear adjustment can be brought forward is 

indisputable. Many questions are s t i l l  open for  future research and it w i l l  probably take some t ime 

before we understand non-linear geodesic adjustment as wel l  as we understand linear adjustment. We 

therefore conclude by expressing the wish that the rather unsurveyed area o f  non-linear adjustment 

and statist ical inference w i l l  receive more serious attention than it has received hitherto. 
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