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SUMMARY
This publication discusses

1° The problem of inverse linear mapping
and

2° The problem of non-linear adjustment.

After the introduction, which contains a motivation of our emphasis on geometric thinking, we
commence in chapter II with the theory of inverse linear mapping. Amongst other things we show that
every inverse B of a given linear map A can be uniquely characterized through the choice of three

linear subspaces, denoted by S, C and D.

Chapter III elaborates on the consequences of the inverse linear mapping problem for planar,
ellipsoidal and three dimensional geodetic networks. For various situations we construct sets of base
vectors for the nullspace Nu(A) of the designmap. The chapter is concluded with a discussion on the
problem of connecting geodetic networks. We discuss, under fairly general assumptions concerning

the admitted degrees of freedom of the networks involved, three alternative methods of connection.

Chapter IV treats the problem of non-linear adjustment. After a general problem statement and a
brief introduction into Riemannian geometry, we discuss the local convergence behaviour of Gauss'
iteration method (GM). A differential geometric approach is used throughout.

For both one dimensional and higher dimensional curved manifolds we show that the local behaviour
of GM is asymptotically linear. Important conclusions are further that the local convergence
behaviour of GM, 1°. is predominantly determined by the least-squares residual vector and the
corresponding extrinsic curvature of the manifold, 29, is invariant against reparametrizations in case
of asymptotic linear convergence, 30, is asymptotically quadratic in case either the least-squares
residual vector or the normal field B vanishes, 4°. is determined by the Christoffel symbols of the
second kind in case of asymptotic quadratic convergence and 59, will practically not be affected by
line search strategies if both the least-squares residual vector and extrinsic curvature are small
enough.

Next we discuss some conditions which assure global convergence of GM.

Thereupon we show that for a particular class of manifolds, namely ruled surfaces, important
simplifications of the non-linear least-squares adjustment problem can be obtained through
dimensional reduction. Application of this idea made it possible to obtain an inversion-free solution of
a non-linear variant of the classical two dimensional Helmert transformation. This non-linear variant
has been called the Symmetric Helmert transformation. We also give an inversion-free solution of the
two dimensional Symmetric Helmert transformation when a non-trivial rotational invariant
covariance structure is pre-supposed. After this we generalize our results to three dimensions.

In the remaining sections of chapter IV we give some suggestions as to how to estimate the extrinsic
curvatures in practice; we estimate the curvature of some simple 2-dimensional geodetic networks
and we briefly discuss some of the consequences of non-linearity for the statistical treatment of an

adjustment. Hereby it is also shown that the bias of the least-squares residual vector is determined by

iii



the mean curvature of the manifold and that the bias of the least-squares parameter estimator is
determined by the trace of the Christoffelsymbols of the second kind.
The chapter is concluded with a brief discussion of some problems which are still open for future

research.
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I. INTRODUCTION

This publication has the intention to give a contribution to the theory of geodetic adjustment. The

two main topics discussed are

1° The problem of inverse linear mapping
and

2° The problem of non-linear adjustment

In our discussion of these two problems there is a strong emphasis on geometric thinking as a means
of visualizing and thereby improving our understanding of methods of adjustment. It is namely our
belief that a geometric approach to adjustment renders a more general and simpler treatment of
various aspects of adjustment theory possible. So is it possible to carry through quite rigorous trains
of reasoning in geometrical terms without translating them into algebra, This gives a considerable
economy both in thought and in communication of thought. Also does it enable us to recognize and
understand more easily the basic notions and essential concepts involved. And most important,
perhaps, is the fact that our geometrical imagery in two and three dimensions suggests results for
more dimensions and offers-us a powerful tool of inductive and creative reasoning. At the same time,
when precise mathematical reasoning is required it will be carried out in terms of the theory of finite
dimensional vector spaces. This theory may be regarded as a precise mathematical framework

underlying the heuristic patterns of geometric thought,

In Geodesy it is very common to use geometric reasoning. In fact, geodesy benefited considerably
from the development of the study of differential geometry which was begun very early in history.
Practical tasks in cartography and geodesy caused and influenced the creation of the classical theory
of surfaces (Gauss, 1827; Helmert, 1880). And differential geometry can now be said to constitute an
essential part of the foundation of both mathematical and physical geodesy (Marussi, 1952; Hotine,
1969; Grafarend, 1973).

But it was not only in the development of geodetic models that geometry played such a pivotal rdle.
Also in geodetic adjustment theory, adjustment was soon considered as a geometrical problem. Very
early (Tienstra, 1947; 1948; 1956) already advocated the use of the Ricci-calculus in adjustment
theory. It permits a consistent geometrization of the adjustment of correlated observations. His
approach was later followed by (Baarda, 1967 a,b; 1969), (Kooimans, 1958) and many others.

More recently we witness a renewed interest in the geometrization of adjustment theory. See e.g.
(Vanicek, 1979), (Eeg, 1982), (Meissl, 1982), (Blais, 1983) or (Blaha, 1984). The incentive to this re-
newed interest is probably due to the introduction into geodesy of the modern theory of Hilbert
spaces with kernel functions (Krarup, 1969). As (Moritz, 1979) has put it rather plainly, this theory
can be seen as an infinitely dimensional generalization of Tienstra's theory of correlated observations

in its geometrical interpretation.

Probably the best motivation for taking a geometric standpoint in discussing adjustment problems in

linear models is given by the following discussion which emphasizes the geometric interplay between



best linear unbiased estimation and least-squares estimation:

Let y be a random vector in the m-dimensional Euclidean space M with metric tensor < , .> . We

assume that y has an expected value ¥y ¢ M, i.e., M
E{yl = ¥y eM, 1.1
where E{.} isthe mathematical expectation operator, and that y has a covariance map
x
Qy: M™ + M, defined by Q yl <yl, '>M Yy, € Mo (1.2)

The linear vector space M* denotes the dual space of M and is defined as the set of all real-valued
(homogeneous) linear functions defined on M. Thus each y* e M* is a linear function
y*: M -+IR . Instead of writing vy (yl) we will use a more symmetric formulation, by
considering y (yl) as a bilinear function in the two variables y* and VAL Thls blllnear function is
denoted by (.,.): M* x M » IR and is defined by (y ,y1)~y (yl) v )’ e M 1Yq€ M.
The function (.,.) is called the duality pairing of M* and M into|R.

We define a linear model as

y e Nc M, Qy, (1.3)
where N is a linear manifold in M. A linear manifold can best be viewed as a translated subspace. We
will assume that N = {yl} + U, where yy is a fixed vector of M and U is an n-dimensional proper
subspace of M,

The problem of linear estimation can now be formulated as: given an observation yg on the random
vector y, its covariance map Qy and the linear manifold N, estimate the position of y in Nc M .,
If we restrict ourselves to Best Linear Unbiased Estimation (BLUE), then the problem of linear
estimation can be formulated dually as: given an y s M* find a ¢ IR and 9* € M* such that
the inhomogeneous linear function h{(y) = a + (y ,¥) is a BLUE's estimator of (y ,Y). The
function h(y) is said to be a BLUE's estimator of (y ,y) if,

10 h(y) is a linear unblased estimator of (y YY), e,

if E{h(y)} = (y ¥), VyedN,
and (1.4)
29 n(y) is best, i.e.,
Variance {h(y)} < Variance {g(y)} for all linear unbiased
estimators g(y) = a + (y*,y), a elR, y* ¢ M*, of (y:, y).

From (1.4.1%) follows that

8+ NV = (), Ve,
or



aX ~ ~ -

5=(y:-y,y), VyeN,

or

R . - - %
a = (y:- y‘,yl) for some Yy, € N and (y:- y ,u) =0, (1.5)

since N = {yl} + U.
The set of y* e M* for which (yi, U) = 0, forms a subspace of M, It is called the annihilator
0. This gives for (1.5),

of Uc M andis denoted by u° c M*, i.e. (u°,u>

. X aX *x .x o
a = (ys- y ,yl) for some y, ¢ N, and YooY ¢ u. (1.6)

From (1.4.29) follows with (1.6) that ¥~ € | y:} + u°  must satisfy

(y", Gyi'*) < (y*,ny*) , VY e {y:} . ul . (1.7)

If we now define the dual metric of M* by pulling the metric of M back by Qy, i.€.y

X -x x . -x X -x x
= \4
<Y 'Y M* <ny )ny >M y ,y e M,
it follows that y* ¢ {y:} + U must satisfy
AKX X x x x 0
Y,y Jx < {y',y >M* Vy ¢ {ys} + U . (1.8)

- * o
Geometrically this problem can be seen as the problem of finding that point y* in {ys} + U
which has least distance to the origin of M*. And it will be intuitively clear that 9* is found by

ol
orthogonally projecting y: onto the orthogonal complement (U ) of U° (see figure 1).

X X )
ys {ys} + U

Wy

figure 1

Now, before we characterize the map which maps y: into )7*, let us first present some generalities

on linear maps.



Let N and M be two linear vectorspaces of dimensions n and m respectively, and let A: N + M bea

linear map between them. Then we define the image of U < N under A as

AU ={yeM | y=Ax forsome x e U } . (1.9)
The inverse image of V < M under A is defined as

A‘l(v)={xeN|Axev}. (1.10)

In the special case that U = N, the image of U under A is called the range space R(A) of A. And

the inverse image of {0} € M under A is called the nullspace Nu(A) of A. It is easily verified
-1

that if V and U are linear subspaces of M and N respectively, so are AU and A ~ (V).

A linear map A: N + M is injective or one-to-one if for every X 1%, € N, Xy # X, implies

that A x; + A X,. The map A is surjective or onto if AN = M. ind A is called bijective or a
bijection if A is both injective and surjective.

With the linear map A : N » M and the dual vector (or 1-form) y* € M* it follows that the
composition y* o A is a linear function which maps N into|R, i.e. y* o Ag Nx. Since the map
A assigns the 1-form y* o Ace N to y! € M* we see that the map A induces another linear
map, A¥ say, which maps M* into N*. This map A* is called the dual map to A and is defined as

A*y* = y’E o A. With the duality pairing it is easily verified that
(A*y %) = (Y5,A x). (1.11)

An important consequence of this bilinear identity is that for a non-empty inverse image of subspace

V < M under A, we have the duality relation
(A (0)° = AX(VO) | (1.12)

Note that here the four concepts of image, inverse image, annihilation and duality come together in
one formula. For the special case that V= {0} the relation reduces to Nu(A)°® = R(A¥),

Maps that play an important role in linear estimation are the so-called projector maps. Assume that
the subspaces U and V of N are complementary, i.e. N = U & V , with "e" denoting the direct sum.
Then for x € N we have the unique decomposition x = x_. + x_ with x. e U, x, ¢ V. We

1 2 1 2
can now define a linear map P: N + N through

W'“ X = X + X b ¢ [ “ X E anc N = “ ] .
! l 2 ! 1 ! 2 V V

This map is called the projector which projects onto U and along V, It is denoted by Pu v (see figure
?
2).



b
u,v

figure 2
If P projects onto U and along V then I - P, with I the identity map, projects onto V and along U. Thus

I - P =P . (1.14
u,Vv v,u )

For their images and inverse images we have

P, ,N=U, Pt (o) = v, Pl )y =
U,v

u,v u,v (1.15)

-1 -1
- N:V - = - =
(1 PU’V) , (I Pu’v) (0) = U, (1 Pu,v) (v) =N

It is easily verified that the dual P* of a projector P is again a projector operating on the dual space.
For we have with (1.12) and (1.15):

-1 o} o] * x -1 o] o] X o
— - P u = N7 = 0= P u .
(PU,U(U)) v Pyyh and ( u,v( )) {0} u,v
Thus,
¥ * %
P =P and (I-P, )* =P =P . (1.16)
u,v VO,UO u,v v,u UO,VO

Finally we mention that one can check whether a linear map is a projector, by verifying whether the

iterated operator coincides with the operator itself (Idempotence).

Now let us return to the point.where we left our BLUE's problem. We noted that 9" could be found by
ol
orthogonally projecting y* onto (U ) . Hence, the projector map needed is the one which

projects onto ( (°)" and along U°, i.e.,

* X

:P y
1

(LY, s

From (1.6) and (1.17) follows then that the linear function h(y) is the unique BLUE's estimator of

y . (.17

X ~ .
(ys,y) if



- ~¥ E 3 x
h{y) = a + (y ,y) = ((I - P(uo)l uo)ys,yl) + (P(u")l uoys,y),

or (1.18)

* x
hiy) = (ys,yl) + (P N OYS,)'-)’I),

o
(u)y ,u
where yj is an arbitrary element of N.

Application of the definition of the dual map gives

h(y) = (yi,y,) + (y., P (y-y.)).
s 71 s (UO)J',UO 1

And since

we get
{(y) = ( + P ( = ))
y yS’ y | y Y] ’

in which we recognize the least-squares estimate

y =y, + Pu ul(ys-yl) » Yy N, (1.19)
b

which solves the dual problem

(Y -¥ ys-y>M S Y YY) VY e (1.20)
(see figure 3).
yS
N=tfy}+u
y
-
o
figure 3



Thus we have recovered the existing duality between BLUE's estimation and least-squares estimation.
We minimize a sum of squares (1.20) and emerge with an optimum estimator, namely one which
minimizes another sum of squares (1.8), the variance. From the geometrical viewpoint this arises
simply from the duality between the so-called observation space M and estimator space u*,
established by the duality pairing (y! yY) .

The above given result is of course the well known Gauss-Markov theorem which probabilistically

justifies least-squares estimation in case of linear models.

Observe that the above discussion shows another advantage of geometric reasoning, namely that the
language of geometry embodies an element of invariance, That is, geometric reasoning avoids
unnecessary reference to particular sets of coordinate axes. Concepts such as linear projections and
linear manifolds for instance, may be visualized in a coordinate-free or invariant way. All results
obtained by an invariant approach therefore necessarily apply to all possible representations of the
linear manifold N. That is, one could define N by a linear map A from the parameter space N into
the observation space M (in Tienstra's terminology this would be "standard problem 1I") or implicitly
by a set of linear constraints ("standard problem I"). Even a mixed representation is possible.
Consequently, in general we have that if a coordinate representation is needed one can take the one
which seems to be the most appropriate. That is, the use of a convenient basis rather than a basis
fixed at the outset is a good illustration of the fact that coordinate-free does not mean freedom from
coordinates so much as it means freedom to choose the appropriate coordinates for the task at hand.

With respect to our first topic, note that a direct consequence of the coordinate-free formulation is
that the difficulties are evaded which might possibly occur when a non-injective linear map A is used
to specify the linear model. This indicates that the actual problem of inverse linear mapping should
not be considered to constitute an essential part of the problem of adjustment, That is, in the context
of BLUE's estimation it is insignificant which pre-image of y under A is taken. This viewpoint seems,
however, still not generally agreed upon. The usually merely algebraic approach taken often makes
one omit to distinguish between the actual adjustment problem and the actual inverse mapping
problem. As a consequence, published studies in the geodetic literature dealing with the theory of
inverse linear mapping surpass in our view often the essential concepts involved, We have therefore
tried to present an alternative approach; one that is based on the idea that once the causes of the
general inverse mapping problem are classified, also the problem of inverse linear mapping itself is
solved. Our approach starts from the identification of the basic subspaces involved and next shows

that the problem of inverse linear mapping can be reduced to a few essentials,

As to our second topic, that of non-linear adjustment, note that the Gauss-Markov theorem
formulates a lot of "ifs" before it states why least-squares should be used: if the mean y lies in a

linear manifold N , if the covariance map is known to be Q,,, if we are willing to confine ourselves to

?
estimates that are unbiased in the mean and if we are vyvilling to apply the quality criterium of
minimum variance, then the best estimate is to be had by least-squares. These are a lot of "ifs" and it
would be interesting to ask "and if not?". For all "ifs" this would become a complicated task indeed.
But it will be clear that the first "if" which called for manifold N to be linear, already breaks down
in case of non-linear models. Furthermore, in non-linear models a restriction to linear estimators

does not seem reasonable anymore, because any estimator of y must be a mapping from M into



Kl, which will be curved in general. Hence, strictly speaking the Gauss-Markov theorem does not
apply anymaore in the non-linear case. And consequently one might question whether the excessive use
of the theorem in the geodetic literature for theoretical developments is justifiable in all cases.

Since almost all functional relations in our geodetic models are non-linear, one may be surprised to
realize how little attention the complicated problem area of non-linear geodesic adjustment has
received. One has used and is still predominantly using the ideas, concepts and results from the
theory of linear estimation. Of course, one may argue that probably most non-linear models are only
moderately non-linear and thus permit the use of a linear(ized) model. This is true., However, it does
in no way release us from the aobligation of really proving whether a linear(ized) model is sufficient as
approximation. What we need therefore is knowledge of how non-linearity manifests itself at the
various stages of adjustment. Here we agree with (Kubik, 1967), who points out that a general
theoretical and practical investigation into the various aspects of non-linear adjustment is still
lacking.

In the geodetic literature we only know of a few publications in which non-linear adjustment problems
are discussed. In the papers by (Pope, 1972), (Stark and Mikhail, 1973), (Pope, 1974) and (Celmins,
1981; 1982) some pitfalls to be avoided when applying variable transformations or when updating and
re-evaluating function values in an iteration procedure, are discussed. And in (Kubik, 1967) and
(Kelley and Thompson, 1978) a brief review is given of some iteration methods. An investigation into
the various effects of non-linearity was started in (Baarda, 1967 a,b), (Alberda, 1969), (Grafarend,
1970) and more recently in (Krarup, 1982a). (Alberda, 1969) discusses the effect of non-linearity on
the misclosures of condition equations when a linear least-squares estimator is used and illustrates
the things mentioned with a quadrilateral. A similar discussion can be found in (Baarda, 1967b), where
also an expression is derived for the bias in the estimators. (Grafarend, 1970) discusses a case where
the circular normal distribution should replace the ordinary normal distribution. And finally (Baarda,
1967a) and (Krarup, 1982a) exemplify the effect of non-linearity with the aid of a circular model.
Although we accentuate some different and new aspects of non-linear adjustment, our contribution to
the problem of non-linear geodesic adjustment should be seen as a continuation of the work done by
the above mentioned authors. We must admit though that unfortunately we do not have a cut and
dried answer to all questions. We do hope, however, that our discussion of non-linear adjustment will
make one more susceptible to the intrinsic difficulties of non-linear adjustment and that the problem

will receive more attention than it has received hitherto.

The plan of this publication is the following:

In chapter II we consider the geometry of inverse linear mapping. We will show that every inverse B
of a linear map A can be uniquely characterized through the choice of three subspaces S, Cand D,
Furthermore, each of these three subspaces has an interesting interpretation of its own. In order to
facilitate reference the basic results are summarized in table 1.

In chapter III we start by showing the consequences of the inverse mapping problem for 2 and 3-
dimensional geodetic networks. This part is easy-going since the planar case has to some extent
already been treated elsewhere in the geodetic literature. The second part of this chapter presents a
discussion on the in geodesy almost omnipresent problem of connecting geodetic networks.

Finally, chapter IV makes a start with the problem of non-linear adjustment. A differential geometric

approach is used throughout. We discuss Gauss' method in some detail and show how the extrinsic



curvatures of submanifold N affects its local behaviour. And amongst other things, we also show how
in some cases the geometry of the problem suggests important simplifications. Typical examples are

our generalizations of the classical Helmert transformation.



II. GEOMETRY OF INVERSE LINEAR MAPPING

1. The principles

Many problems in physical science involve the estimation or computation of a number of unknown
parameters which bear a linear (or linearized) relationship to a set of experimental data, The data
may be contaminated by (systematic or random) errars, insufficient to determine the unknowns,
redundant, or all of the above and consequently, questions as existence, uniqueness, stability,

approximation and the physical description of the set of solutions are all of interest.

In econometrics for instance (see e.g. Neeleman, 1973) the problem of insufficient data is discussed
under the heading of "multi-collinearity" and the consequent lack of determinability of the
parameters from the observations is known there as the "identification problem". And in geophysics,
where the physical interpretation of an anomalous gravitational field involves deduction of the mass
distribution which produces the anomalous field, there is a fundamental non-uniqueness in potential
field inversion, such that, for instance, even complete, perfect data on the earth's surface cannot
distinguish between two buried spherical density anomalies having the same anomalous mass but
different radii (see e.g. Backus and Gilbert, 1968).

Also in geodesy similar problems can be recognized, The fact that the data are generally only
measured at discrete points, leaves one in physical geodesy for instance with the problem of
determining a continuous unknown function fram a finite set of data (see e.g. Rummel and Teunissen,
1982). Also the non-uniqueness in coordinate-system definitions makes itself felt when identifying,
interpreting, qualifying and comparing results from geodetic network adjustments (see e.g. Baarda,
1973). The problem of connecting geodetic networks, which will be studied in chapter three, is a

prime example in this respect.

All the above mentioned problems are very similar and even formally equivalent, if they are

described in terms of a possible inconsistent and under-determined linear system
y £ Ax , (1.1)

where A is a linear map from the n-dimensional parameter space N into the m-dimensional
observation space M,

The first question that arises is whether a solution to (1.1) exists at all, i.e. whether the given vector
y is an element of the range space R(A), y ¢ R(A). If this is the case we call the system consistent.
The system is certainly consistent if the rank of A, which is defined as rank A = dim. R(A) = r, equals
the dimension of M. In this case namely the range space R(A) equals M and therefore y e M= R(A). In
all other cases, r <dim. M, consistency is no longer guaranteed, since it would be a mere coincidence
if the given vector y eM lies in the smaller dimensioned subspace R(A)c M. Consistency is thus
guaranteed if y eR(A) = Nu (A¥)C,

Assuming consistency, the next question one might ask is whether the solution of (1.1) is unique or

10



not, i.e. whether the vector y contains enough information to determine the vector x. If not, the
system is said to be under-determined. The solution is only unique if the rank of A equals the
dimension of its domain space N, i.e. if r = dim.N. To see this, assume x,; and x, # x; to be two
solutions to (1.1). Then Ax; = Ax, or A(x;-x,) = 0 must hold. But this means that r < dim. N.

From the above considerations follows that it is the relation of r=dim. R(A) to
m = dim. M and n=dim.N, which decides on the general character of a linear system. In case

r = m = n, we know that a unique inverse map B of the bijective map A exists, with the properties
BA=1 and AB =1. (1.2)

For non-bijective maps A, however, in general no map B can be found for which (1.2) holds. For such
maps therefore a more relaxed type of inverse property is used. Guided by the idea that an inverse-
like map B should solve any consistent system ,that is, map B should furnish for each y € R(A),

some solution x = By such that y = ABy, one obtains as defining property of B
ABA:=A. (1.3)

Maps B: M + N, which satisfy this relaxed type of inverse condition are now called generalized

inverses of A.

In the geodetic literature there is an cverwhelming list of papers which deal with the theory of
generalized inverses (see e.q. Teunissen, 1984a and the references cited in it). It more or less started
with the pioneering work of Bjerhammar (Bjerhammar, 1951) ,who defined a generalized inverse for
rectangular matrices. And after the publication of Penrose (Penrose, 1955) the literature of
generalized inverses has proliferated rapidly ever since.

Many of the published studies, however, follow a rather algebraic approach making use of anonymous
inverses which merely produce a solution to the linear system under consideration. As a consequence
of this anonymity the essential concepts involved in the problem of inverse linear mapping often stay
concealed. Sometimes it even seems that algebraic manipulations and the stacking of theorems,
lemma's, corollaries, and what have you, are preferred to a clear geometric interpretation of what
really is involved in the problem of inverse linear mapping.

In this chapter we therefore approach the problem of inverse mapping from a different viewpoint.
Our approach is based on the idea that once the causes of the inverse mapping problem are classified,
also the problem of inverse mapping itself is solved. The following reminder may be helpful. We know
that a map is uniquely determined once its basis values are given, But as the theorem of the next
section shows, condition (1.3) does not fully specify all the basis values of the map B. Hence its non-
uniqueness. This means, however, that analogously to the case where a basis of a subspace can be
extended in many ways to a basis which generates the whole space, various maps satisfying (1.3) can

be found by specifying their failing basis values.

To give a pictorial explanation of our procedure, observe that in the general case of rank A=r <

min.(m,n), the nullspace Nu(A) ¢ N and range space R(A) — M both are proper subspaces. That is,

11



they do not coincide with respectively N and M (see figure 4).

N : parameter space M : observation space

/A\

dim.R(A) = rank A

dim. Nu(A)

= n-rank A
figure 4
Now, just like there are many ways in which a basis of a subspace can be extended to a basis which

generates the whole space, there are many ways to extend the subspaces Nu(A) c N and

R(A) c M to fill N and M respectively (see figure 5).

SZ\\ s]/ cz\\ C]// M
\ // /S \ / /Co
\ Ve \ Ve
\ / p / \ // p /s
\\ // 4 \\ / 4
\W d Nu (A) \& d R(A)
figure 5

Let us choose two arbitrary subspaces, say S — N and c®c M, such that the direct sums
S ® Nu(A) and R(A) e C° coincide with N and M (see figure 6).

N : parameter space M : observation space

dim. S = rank A dim. R(A) = rank A

dim. Nu(A)

= n-rank A dim. cO = m-rank A

\Bz?/

N =S BNLL(A) figureé M = R(A) [::] Co
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The complementarity of S and Nu(A) then implies that the subspace S has a dimension which equals
that of R(A), i.e. dim. S= dim. R(A). But this means that map A, when restricted to S,
Als , s bijective. There exist therefore linear maps B: M + N which, when restricted to R(A),
become the inverse of Als (see figure 7):

B A =1 and A B =1 . (1.4)
e s B

S R(A) )

R(A)

AT

dim. $ = rank A dim.R(A) = rank A

{0}

{0}
N~y —

ScN |KA) R(A) = M
figure 7

The inverse-like properties (1.4) are thus the ones which replace (1.2) in the general case of rank A =
r < min.(m,n). The second equation of (1.4) can be rephrased as ABA = A, and therefore constitutes

the classical definition of a generalized inverse of A. The first equation of (1.4) states that
BAXx-=x, VxeS. (1.5)

In the next section we will prove what is already intuitively clear, namely that equation (1.5) is
equivalent to the classical definition (1.3), and therefore (1.5) can just as well be used as a definition
of a generalized inverse, In fact, (1.5) has the advantage over (1.3) that it clearly shows why
generalized inverses are not unique. The image of S under A is namely only a proper subspace of M.

To find a particular map B which satisfies (1.5), we therefore need to specify its failing basis values.
2. Arbitrary inverses uniquely characterized

In this section we will follow our lead that a map is only uniquely determined once its basis values are
completely specified.

As said, the usual way to define generalized inverses B of A is by requiring

ABA = A. (2.1)
This expression, however, is not a very illuminating one, since it does not tell us what generalized
inverses of A look like or how they can be computed. We will therefore rewrite expression (2.1) in

suchra form that it becomes relatively easy to understand the mapping characteristics of B. This is

done by the following theaorem:
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Theaorem

Proof of 1°

(+)

(+)

Proof of 2°

14

ABA=A <« Forsomeunique S ¢ N ,
complementary to Nu(A),
BAx = x, V x ¢ S , holds,

ABA=A « ABy-=y, VyeR(A).

From premultiplying ABA = A with B follows BABA = BA. The map BA is thus idempotent

and therefore a projector from N into N.

From ABA = A also follows that Nu(BA) = Nu(A).

To see this, consider x € Nu(BA). Then BAx = 0 or ABAx = Ax = 0, which means that x €
Nu(A). Thus Nu(BA) c Nu(A). Conversely, if x ¢ Nu(A), then Ax = 0 or BAx = 0, which

means x € Nu(BA). Thus we also have Nu(A) ¢ Nu(BA). Hence Nu(BA) = Nu(A).

Now let us denote the subspace R{BA) by S, i.e. R(BA) = S. The projector property

of BA then implies that BAx = x, ¥V x € S. And it also implies that
N = R(BA) @ Nu(BA).With R(BA) = S and Nu(BA) = Nu(A) we therefore

have that N = S ® Nu(A). Hence the complementarity of S and Nu(A).

From N = S & Nu(A) follows the complementarity of S and Nu(A). We can therefore
t ject =I- . With thi ject 1
construct the projector PS. Nu(A) PNu(A),S i is projector we can now replace

B Ax = x, Vx ¢ §,
by

B A PS,Nu(A)x = PS,Nu(A)x’ Vx € N.

And since A P = A(I = A, we get

S, Nu(A) " Pru(a), s’

B x =B Ax = P

APg nu(A) s, Nu(A)Xr VX €N,

or finally, after premultiplication with A,

A B Ax = Ax, Vx e N.

We omit the proof since it is straightforward.



The above theorem thus makes precise what already was made intuitively clear in section one.
There are now two important points which are put forward by the theorem. First of all, it states that

every linear map B: M * N which satisfies
B Ax = x, Vx € S | (2.2)

with N= Se Nu(A), is a generalized inverse of A. And since

{y eu | Ax for some x €N}

R(A) = AN = y =
= {y eM | y = Ax for some x=x_+x yX_€S,x € Nu(A)}
= {y eM | y = Ax for some x € s} ' 2
- AS,

this implies that a generalized inverse B of A maps the subspace R(A) ¢ M onto a subspace S c N
complementary to Nu(A). Map B therefore determines a one-to-one relation between R(A) and S, and
is injective when restricted to the subspace R(A).

A second point that should be noted about the theorem is that it gives a way of constructing arbitrary
generalized inverses of A. To see this, consider expression (2.2). Since R(A) = AN = A S, expression
(2.2) only specifies how B maps a subspace, namely R(A), of M. Condition (2.2) is therefore not
sufficient for determining map B uniquely. Thus in order to be able to compute a particular
generalized inverse of A one also needs to specify how B maps a basis of a subspace complementary
to R(A). Let us denote such a subspace by c®c Mo, i‘.e. M= R(A) @ c® Then if €} i=1,000,m,
and ey, ©%=1,...,n, are bases of Mand N, andC;le.l y p=l,...,(m-1), x) forms a basis of
CO, a particular generalized inverse B of A is uniquely characterized by specifying in addition to (2.2)

how it maps c°, say:

BC e =D e , i=l,...,m; %=1,...,n; p=1,...,(m-1r) (2.3)

(Einstein's summation convention).

o
Thus if U denotes the subspace spanned by D e, 1 we have,
P

BC® =DcN, with M= R(A) e C° . (2.4)

Although the choice for U < N is completely free, we will show that one can impose an extra
condition, namely D < Nu(A), without affecting generality. Note that point 2° of the theorem
says that AB is a projector, projecting onto the rangespace R(A) and along a space, say 50 ’
complementary to R(A). With (2.4) we therefore get that

L1i :
x) The kernel letter "CJ'" expresses the fact that Cp 6i J.C‘Jq = 0, iyj = 1yeeeym; p=1,eeay(m-r);
q = 1,eeasT, OF in matrix notation that ( Cl) t e =0 .
pxm mx(m-p) px(m-p)
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o
PR(A),EOC = AD .

But this means that if B is characterized by mapping c® onto D, there exists another subspace of M
complementary to R(A) which is mapped by B to a subspace of Nu(A). We can therefore just as well
start characterizing a particular generalized inverse B of A by (2.2) and (2.4), but now with the
additional condition that 0 < Nu(A) .

Summarizing, we have for the images of the two complementary subspaces R(A) = AS and c°
under B:
\
BAS=S and Bc® =0,
with
N=3S8e Nu(A), M= R(A) & C° (2.5)
and
D < Nu(A)
L

A few things are depicted in figure 8,

N: parameter space M : observation space

dim. § = rank A dim. R(A) = rank A

dim. Nu(A)

= n-rank A dim. CD = m~rank A

N =S eNu(A) M=RA) ec°

D < Nu(A) f 8
igure

Our objective of finding a unique representation of an arbitrary generalized inverse B of A can now
be reached in a very simple way indeed. The only thing we have to do is to combine (2.2) and (2.3). If
we take the coordinate expressions of B and A to be
a i
Be =B.e and Ae =Ae ,

i ia a a i

where e , i=1l,...,m , and e , a=1,...,n arebases of M and N, and if we take as bases of
i

S, c%and D,

R R

a Li
Se,C e andDe, p=l,...,(m-r); g=1,...,r,
qa p i a

o
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then (2.2) and (2.3) can be expressed as

a a i a i B 8
BASe =5SBAe=5ABe =S5e
q o q o i qoiB q B
and
8 CJ.I CJ.i B DB
e = e = e
i p i B p B’
or as
i o, i B .
B(AS .C )e =(s .D)e,
i agq. B q . B
which gives in matrix notation
. 1 .
B (A S . % ) = (S . ? ) . (2.6)
nxm mxn nxr mx(m-r) nxr nx{m-r)

. L
Now, since the subspaces R(A) = ASand C® are complementary, the mxm matrix (AS . C") has
full rank and is thus invertible. The unique representation of a particular generalized inverse B of A

therefore becomes

B -(s . D (as . ct? @.7)
nxm nxr nx(m-r) mxr mx (m-r)

A more symmetric representation is obtained if we substitute the easily

verified matrix identity

Lt (ctAS)‘lct

(AS . C) = s
( (UJ.) tcl) -1 (U.L)t

4 1
with U° = R(A)® = Nu(A®), into (2.7) (recall that C~ and U™ are matrix representations of respectively
]

the subspaces C° and (©):

t -1t 1.t 1.-1 t
sccc A s) c +0 (cut)ycch wh (2.8)
nxm nxm nxm

wy)
n

With (2.7) or (2.8) we thus have found one expression which covers all the generalized inverses of A.
Furthermore we have the important result that each particular generalized inverse of A ,defined
through (2.2) and (2.3), is uniquely characterized by the choices made for the subspaces S,

complementary to Nu(A), c® complementary to R{A) and D, a subspace of Nu(A).
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In the next two sections we will give the interpretation associated with the three subspaces S, C°
and D. Also the relation with the problem of solving an arbitrary system of linear equations will

become clear then.

3. Injective and surjective maps

From the theorem of the previous section we learnt that the inverse-like properties

B A =1 ad A B = 1 (3.1)

|R(A) |S S "R(A)

hold for any arbitrary generalized inverse B of A. That is, the maps BA and AB behave like identity

maps on respectively the subspaces S < N and R(A) ¢ M . Thus in the special case that rank A =r

= n, the generalized inverses of A become left-inverses, since then BA = I. And similarly they become

right-inverses if rank A = r = m, because then AB =1 holds.

In order to give an interpretation of the subspace S < N , let us now first concentrate on the special

case that rank A=r =m,

If rank A =r = m then R(A) = M, which implies that the subspaces complementary to R(A) reduce to
¢® = {0} . With (2.5) we then also have that D = {0} (see figure 9). The general expression of

right-inverses therefore readily follows from (2.8) as

-1
B = S (AS)  ,with N= S & MNu(A) (3.2)
nxm nxm mxm

N: parameter space M : observation space

/A\

dimR(A) =r =m

dim.Nu(A) = n-r
AN B i

N =S e Nu(A) M = R(A)
figure 9
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Thus the only subspaces which play a role in the inverses of surjective maps are the subspaces S
complementary to Nu(A).

In order to find out how (3.2) is related to the problem of solving a system of linear equations

= A X (3.3
mil mxn nx1’ )

far which matrix A  has full row rank m, first observe that the system is consistent for all
m mxn
y € R . With a particular generalized inverse (right-inverse), say B , of A , and
my 1 . . S onxm mxn
V- = Nu(A) , the solution set of (3.3), which actually represents a linear manifold in N, can

therefore be written as

{ x}={ x|

X =B + \ a
nx1 nxl nxl nzl nx{n-r){n-r)xl

By choosing a,say a:= a,, we get thus as a particular solution x, € {x}

l’
1
xl = By + V al, (3.4)
nxl nxl nxl

where a; so to say contributes the extra information, which is lacking in y, to determine xy. Since
R(B) = S, it follows from (3.4) that

1.t 1t L call

(s ) X, = ((s) V') o« = ¢, - (3.5)

(n-r)xn nxl (n-r)x{(n-r) (n-r)xl1 (n-r)xl

But this means that, since a; orcy contributes the extra information which is lacking in y to
determine xy, equation (3.5) and (3.3) together suffice to determine x1 uniquely. Or in other words,

the solution of the uniquely solvable system

y AJ. t
= X
c (s) (3.6)
(m+n-r)xl (m+n-r)xn nxl
is precisely x¢
A TP 1 L 4. tl -1
_ y ~ -1 . -1y
x = Lt = (S(AS) :v((s)v) ) )
(s ) c c
nxl nx{(m+n-r) (m+n-r) nxm nx(n-r) (m+n-r)xl 3.7
with Vo = Nu(A) .

Thus we have recovered the rule, that in order to find a particular solution to (3.3), say x;, we merely
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need to extend the system of linear equations from (3.3) to (3.6) by introducing the additional

t
equations cl = (S ) x, sothat the extended matrix
A
1.t
(s™)
(m+n-1)xn

becomes square and reqular. Futhermore the corresponding right-inverse of A is obtainable from the

inverse of this extended matrix.

Let us now consider the case rank A = r = n. Then all generalized inverses of A become left-inverses.
Because of the injectivity of A we have that its nullspace reduces to Nu (A) = {0} . But this
implies that S=N and 0= {0} ,since D < Nu(A) . (see figure 10).

N : parameter space M : observation space

dim.R(A) = rank A

dim.S = n

dim.Cp = m-n

N=g M= RA) o C°
figure 10

x % x
For the dual map A :M » N we therefore have a situation which is comparable to the one
sketched in figure 9 (see figure 11). Now, taking advantage of our result (3.2), we find the general

matrix-representation of an arbitrary generalized inverse B* of A¥ to be

t t -1
B =C (AC) .
mxn  mMxn nxn

X ) N-)(
M” : estimator space ¢t co-parameter space

dim. C
rank A

\

n
-
1

dim. S

I
-
o
=
=
>

X o
dim. Nu(A®) = m-r Nu(A") = R(A)

M = Ce NuA¥) N* o S

figure 11
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The general expression of left-inverses therefore readily follows as

t -1t 0
B = (CA) C , with M= R(A) @ C (3.8)
nxm nxn nxm

Thus dual to our result (3.2), we find that the only subspaces which play a role in the inverses of
injective maps, are the subspaces c® complementary to R(A).

With the established duality relations it now also becomes easy to see how (3.8) is related to the
problem of solving a generally inconsistent but otherwise uniquely determined system of linear

equations

y = A x_, withrank A=r = n. (3.9)
mx 1 mxn nxl

The dual of (3.6) modified to our present situation gives namely

. 1 X
y =(A.C ) . (3.10)
mx 1 mxn mx{(m-r) A
(men-r)xl

And dual to (3.7), the unique solution of (3.10) is given by:

t -1t
X (C A C
(A .CJ_)-l
= . y = y y
1t 1 -1 1t
A (U C) s
(3.11)
(n+m-r)x1 (n+m-r )xm mx1l (n+m-r )} xm mx 1

o x
with U = Nu(A) .

We therefore have recovered the dual rule that in order to find a particular solution to (3.9), we need
to extend the system of linear equations from (3.9) to (3.10) by introducing additional unknowns such
that the extended matrix
. 1
(A. C ) (3.12)
mxn  mx (m-r)
becomes square and regular. Furthermare the carresponding left-inverse of A is obtainable from the

inverse of this extended matrix.
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4, Arbitrary systems of linear equations and arbitrary inverses

In the previous section we showed that a particular solution of an underdetermined but otherwise
consistent system of linear equations could be obtained by extending the matrix A rowwise. And
especially the principal r6le played by the subspace S < N complementary tor?lﬁ?A) in removing
the underdeterminability was demonstrated. Similarly we saw how consistency of an inconsistent, but
otherwise uniquely determined system of linear equations was restored by extending the matrix
mﬁn columnwise. And here the subspace cc complementary to R{A) played the decisive
role. We also observed a complete duality between these results; for the dual of an injective map is

surjective and vice versa.

These results are, however, still not general enough. In particular we note that the subspace

D c Nu(A) was annihilated as a consequence of the assumed injectivity and surjectivity. The
reason for this will become clear if we consider the interpretation associated with the subspace D,
Since S N D= {0} it follows from expression (2.8) that R(B) = S @ D . With dim.S=dim R(A)
= rank A we therefore have that rank B > rank A, with equality if and only if D = {0} . But this
shows why the subspace D gets annihilated in case of injective and surjective maps. The left (right)
inverses have namely the same rank as the injective (surjective) maps. From the above it also
becomes clear that the rank of B is completely determined by the choice made for D. In particular B
will have minimum rank if D is chosen to be 7 = {0} , and maximum rank, rank B = min.(m,n), if
one can choose D such that dim.D = min.(m,n)-r. Now to see haow the subspace D c Nu(A) gets

incorporated in the general case, we consider a system of linear equations

y = A X_ , with rank A =t < min.(m,n), (4.1)
mx1l mxn nx1

i.e. a system which is possibly inconsistent and underdetermined at the same time. From the rank-

deficiency of A in (4.1) follows that the unknowns x cannot be determined uniquely, even if

y € R{A) . Thus the information contained in y is not sufficient to determine x uniquely. Following

the same approach as before, we can at once remove this underdeterminability by extending (4.1) to

y . A
[ ] = 1 t) x ,with N= S & Nu(A) . (4.2)
c (s™)
(m+n-r)xl (m+n-r)xn nxl

But although the extended matrix of (4.2) has full column rank, the system can still be inconsistent.
To remove possible inconsistency we therefore have to extend the matrix of (4.2) columnwise so that
the resulting matrix becomes square and regular. Now since M = R(A) e c® , the following

extension is a feasible one:

1
Y At c X ith M= R(A) @ C°
= wil = [::] .
c (st 0 A ’
(m+n-r)x1 (m+n-r)x(m+n-r) (m+n-r)xl
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But the most general extension would be

Ay c N (4.3)
(sh) X A ’ '
(m+n-~-r)x1 (m+n-r)x(m+n-r) (m+n-r)xl
with N = S ® Nu(A), M= R(A) @ ¢° and ( )X( ) being arbitrary. The unique
n-r)x(m-r
solution of (4.3) is then given by:
-1
X ¢ CJ' y
Y Tlesht x c| °
t -1t 1 1.t 1y-1 t -1 1.t . 1.t 1y-1
sccias) eh-vt (s i oh e Tttt vt st ) | e
B TR S T P
(wh'eh) ™ wh : 0 c

with N= S e Nu(A), M= R(A) @ C°, v° = Nu(A) and U® = Nu(A®).
- 1
] lX =D or X = -(5 )tD, our

general matrix representation (2.8) of an arbitrary generalized inverse B of A. Thus as a

. . . . J.( 1.t,.,1
In this expression we recognize, if we put -V L(S7)"V

generalization of (3.7) and (3.11) we have:

-1
x| [ A ct y| sctas) et (h e Tttt vt R T
MolesHt csh| el | Cahteh Tt : 0 c
with V% = Nu(A) and U°® = Nu(A¥) .

4.5)

This result then completes the circle. In section one namely, we started by describing the geometric
principles behind inverse linear mapping. In section two these principles were made precise by the
stated theorem. This theorem enabled us to find a unique representation concerning all generalized
inverses B of a linear map A. In section three we then specialized to injective and surjective maps,
showing the relation between the corresponding inverses and the solutions of the corresponding
systems of linear equations. And finally this section generalized these results to arbitrary systems of

linear equations whereby our general expression of generalized inverses was again obtained.
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5. Some common type of inverses and their relation

to the subspaces S, C and U

With our interpretation of the three subspaces S, C and D, and an expression like (2.8) it now

becomes very simple indeed to derive most of the standard results which one can find in the many

textbooks available. See e.g. (Rao and Mitra, 1971). As a means of exemplification we show what réle

is played by the three subspaces S, C and D in the more common type of inverses used:

— least-squares inverses —

LLet M be Euclidean with metric tensor < , .>M and let Qy

. -1
defined by Qy y = (y, '>M .
We know from chapter one that for

x - B y
to be a least-squares solution of m,i(n . ( y-A x,y-A X>M ,

AB =P |, with U=R(A),

uu

must hold. From (2.8) follows, however, that in general

AB=P , withl =R(A).
u, C

Namely, expression (2.8) shows that

AB = A scta s) Ict.
mxm mxm
And since
Asctas)ylet., ¢t - o
mxm mx (m-r) mx (m-r)
and
t -
A S(C'A S) lCt.AS =AS ,

mxm mxr mxr

t M

XM be the covariance map

(5.1)

(5.2)

(5.3)

it follows that (5.3) is the matrix representation of the projector P o+ From comparing (5.1) and

(5.2) we thus conclude that least-squares inverses are obtained by chodsing

1
® = utsreA) ,
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while S and D may still be chosen arbitrarily. In matrices condition (5.4) reads
ct - Q, ut . (5.5)

mx (m-r) mxm mx(m-r)

-- minimum norm inverses —

Let N be Euclidean with metric tensor < ’ > and let Qx: N* + N be the covariance map
-1

defined by Glx x = (x,.) . N

For N
x = B y

to be the minimum norm solution of m’i‘n. < Xy X >N subject to y = A x, x must be the

orthogonal projection of the origin onto the linear manifold specifiedby y = A x. Hence,

BA=P , with ° = Nu(A), (5.6)
ol 0
(v ),V
must hold. With the same reasoning as above we then find that the minimum norm inverses are

obtained by choosing

s = ¢t s eyt , (5.7)

while €° and D may still be chosen arbitrarily. In matrices condition (5.7) reads

S = @X vV . (5.8)
nxXr nxn nxr

1
Note that since (5.7) implies that s% = R(AM) » (5.4) and (5.7) are dually related.
— maximum- and minimum rank inverses —

In the previous section we already indicated that by varying the choices for 0 < Nu (A) one could
manipulate the rank of the corresponding generalized inverse. Inverses with maximum rank min.(m,n)
were obtained if one could choose D such that dim. D = min.{(m,n)-r, and minimum rank
inverses were characterized by the choice D = {[]} .

As we will see in the next section the minimum rank inverses are by far the most important for
statistical applications.

There is an interesting transformation property involved in the class of minimum rank inverses, which
enables one to transform from an arbitrary inverse to a prespecified minimum rank inverse. To see
this, recall that a minimum rank inverse, By say, of A, which is uniquely characterized by the choices

Sl’ Ci and Dl = {0}, satisfies the conditions
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BAx=1x, Vxe¢s; Bc={o},

1 1 171
with
0 0 0
V- o= v M= Us C_ = .
N=S o BlR(A) 8 ) ®C  =AS @ Nu(Bl) (5.9)
and
U= R(A), Vv° = Nu(A) .
And it can be represented as
t -1t
= S cC.. 5.
B, 51(C1A l) 1 (5.10)

But the linear map A itself also satisfies similar conditions. For an arbitrary generalized inverse, B

say, of A we have namely

ABy=y, vyeu; Av®={ol,
with

M=UeC’ =ARMB) aC°, N=S oV =BuU @ Nu(A) (51D
and

u=R(A), V° - Nu(A) .

Upon comparing (5.11) with (5.9) we therefore conclude that the linear map A is representable in a

way similar to that of By in (5.10), i.e.

A = uvis vy iyt (5.12)
mxn mxn

with U=R(A), V= Nu(A)0 and where B may be any arbitrary inverse of A. Now,
substitution of (5.12) into (5.10) gives

t t -1t -1t
= U
Bl Sl(C,lU(V BU) "V Sl) Cl
or nxm nxm
- (s vis )W) B L (uctwyTict).
B, sl(v l) v ( 1 ) N
nxm nxn nxm mxm
In this last expression we recognize the matrix representations of the projectors PS Nu(A) and
P o. Thus we have found the transformation rule 1’
R(A),CO
Bl = Psl,Nu(A)'B'pR(A),CclJ ’ (5.13)

which shows how ta abtain a prespecified minimum rank inverse from any arbitrary generalized
inverse of A. Because of the reciprocal character of minimum rank inverses - A is namely again an

inverse of its minimum rank inverses - they are often called reflexive inverses.
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— minimum norm least-squares inverses —
The minimum norm least-squares solution
x =By (5.14)
of an inconsistent and underdetermined system of linear equations
y = A x, withrank A = r < min.(m,n), (5.15)
is defined as the solution for which & is the minimum norm sclution of

y=Ax, (5.16)

and y is the least-squares solution of (5.15).

Since the minimum norm solution of {5.16) is given by
x =By, (5.17)

where the inverse B of A is characterized by (5.7), and the least-squares solution of (5.15) is given
by

y="P RZ with U= R(A), (5.18)
U,

it follows from the combination of (5.17) and (5.18) together with the transformation rule (5.13), that

the minimum norm least-squares inverse of A is uniquely characterized by

s= vt o oAy, ¢® =t = RAY and D= {0} (5.19)

Note that since no freedom is left in choosing the three subspaces, the minimum norm least-squares
inverse must be unigue,
In the special case that both N and M are endowed with the ordinary canonical metric, the minimum

norm least-squares inverse is commonly known as the pseudo-inverse.
-~ constrained inverses —

So far we have been careful in stating the complementarity conditions for S € N and Coc M. In

the method of prolonging a matrix an this was reached by adding the minimum number of

equations needed to the system m%l = so that determinability of x was restored, and the

A X
mxn nX1
minimum number of unknowns so that the prolonged matrix became square and regular, i.e. so that

consistency was restored.
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Sometimes, however, one can come across the situation where the system of linear equations

: t

i = > n-r. That is, with th
m¥ 1 rnﬁn nx1 nX1 q§1’ q n-r hat is, wi e
restrictions that x should lie in a linear manifold parallel to a subspace T which is a proper subspace

is appended with the restrictions (')l(":)

of an S, complementary to Nu(A). In this case T thus fails to be complementary to Nu(A).
Although this situation differs from the ones we considered so far, it can be handled just as easy. By

the method of prolongation we get namely

y A C'L X
. = (TJ_)t 0 \ , (5.20)
(m+g)x1l (m+g) x (m+q) (m+g)xl
with TcS, N= S e Nu(A), M= ATe C° .
The solution of (5.20) then follows as
t 1.t t 1.t t -1
X T(C'a T) C D(1-T(ctA T) etA T Tyt y
A e b YT mh - canh ey ia it ta THiah e

(5.21)

where matrix T(Ctﬁxr-rrw) B lCt is known as a constrained inverse of A (see e.g. Rao and Mitra, 1971).

Other types of constrained inverses can be obtained in a similar way.

To conclude this section we have summarized, in order to facilitate reference, the basic results in
table 1.
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30_._.3_”: INVERSES INVERSEL IKE PROPERTIES SOLUTIONS OF LINEAR SYSTEMS OF EGUATIONS
k A=
ronk Bor?
B
inverse
=n=r = B-al AB =1, BA=1 = Ax =AYy -8
m=n=r =Ty = =15 =1 y = x = y = By
right-inverse o1 h
- A . L )
mer mrg B - sas)! AB -1,BA=P L B [ x u.>.km Yo et vttt ||
N = SeNu(A) m S, K (A) le| [esht] sH el | c
v
left-inverse
t,,-1.t sty [x x .ol -1 B
n=r_=r B = (CA)C AB = P o, BA = I y = (A . C = A.C Y=l e e | Y
A B W= RCA) » ° R(AY, € n ! > : cwh et oyt
general ized inverse N L -1 N Ltl -1
. A . C . . r
ry < min.(m,n) B = sicta s)7lct AB = Pyay 00 BA=Po L Yo, IREERER x * |2 .>..rm T mhn. Y . .F.H.pm., R VoDV [y
Lt L-1 1t ’ ’ s -sHo|r s t-¢sho U 17t :
] i orwh et . c (s™) (s™ A (s™) (s c rs)ycs1 " wH e} c
< .
A * B ’ N =S eNu(A),M=R(A)eC ,DcNu(A)
constreined inverse -1
A L . L . toon-l b 1 _gitog -1
- A . C A . C B LLI-T(CTAT C AlT T T1
rpsmin. (m,n) B = 1(ctar) It AB-P  ,BA=P «u..hm... x xu.Hm... «u...Hmp.~.wmm.mpmvp;...ﬂh.ﬂwh..m.;«
T,C T c T .o A ™). o (AT ) ctrganh " rcanhH e (a LytrisT
dim. T =n-q N = SeNu(A),H-ATec® AT, ,(ATC) c (T j X () c ((AT)™) AT ((AT) ™) ((AT)™) AT- (T-) T-1] c
_.mn_..-nﬁ.> TcS
Nt parameter space M : observation space
) " ™
least-squares inverse : %=yt { ct 1= Q C._. ) dim. s = rank A dim. R(A) = rank A
mx {m-r) mk (m-1) u -no.cuz:;*vo
1
minimum norm inverse : S :=V° (S := Dx<v
nxr nxr
reflexive inverse i D o= {0} X .0
\R(A )= =1°
dim. Nu{A) = n-rank A { Nu(A)=V dim no = m~rank A
1
minimum norm least-squares : s S = ve , D= (0}
/ 8 \
N =S eNu(A) M= R(A) e c®
U < Nu(A)

TABLE 1




6. C- and S-transformations

Now that we have found a geometric characterization of the inverse linear mapping problem, let us
return to the linear estimation problem which was considered in chapter 1.
Consider the linear model

YyeNcM, Qy. (6.1)

As we know (see (I.1.6)) the necessary and sufficiency conditions for the linear function

h(y) = & + (9" ,¥) tobe a linear unbiased estimator (LUE) of (y: ,Y), are:

~ -

a = (y:— y*,yl) for some y, € N

and (6.2)
AX * (o]
y ¢ {ys} + U .

*

That is, 9* needs to be a point on the linear manifold { y:} + u° in M (see figure 12).

* * s uo
y )
]
C ~*(C) 0
y u
figure 12
It will be clear that every point ;* on this linear manifold can be obtained by choosing an

x x
appropriate subspace C c M complementary to u° and then projecting the 1-form ys along the
linear manifold { y:} + u° onto C . Hence,

~i(C) *
y =P oYs
c,u
orif U= AN,
Ai(c) *
y =P Vs * 6.3)
C, Nu(A™)
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With (6.2) then follows that the class of linear unbiased estimable functions of (y: ,Y) is given by:

h(y) = (y - P yi,y,) + (P yo,y) =
C, Nu(A®) ® ! ¢, Nu(A¥) ® (6.4)
= (yh,y,) + (P Yoay-y.)
so°1 ¢, Nu(A®) 1

where N = {yl} + AN and C c M¥ is arbitrary provided that M¥ = ¢ e Nu(A®). Every
such linear function is thus uniquely characterized by the choice made for C. And by varying the
choices for C one varies the type of unbiased estimator. Since the projector P N always
projects along the nullspace of A¥ (see figure 13), we have that C, Nu(A™)
P . P =P . (6.5)
* * *
(c.)
X ] *
y =P * C.
\‘CJ.:NU.(A s i
— —> y
. v
c) ¢, Mu(A)s
Nu(A")

figure 13

The transformation between the corresponding 1-forms is therefore given by

y =P <7 , (6.6)
Cj , Nu(A™)

and in accordance with the current terminology one could call such transformations, C -
transformations.

A typical example in which a particular choice far C is made can be found in the method of averages
due to T. Mayer (Whittaker and Robinson, 1944, p. 258). In this method, which is sometimes used for
polynomial approximations (see e.g. Marduchow and Levin, 1959), C is chasen such that the equations
of a linear system y = A x are separated into n groups and after that groupwise summed.
Although more of smu)é% &’épnpiie@lcan be given, the most common applied estimator is of course the
BLUE's estimator which is, as we know, characterized by the choice C = Nu(A* )l . It is
interesting to note though, that since every (oblique) projector can be interpreted as an orthogonal
projector with respect to an appropriate metric tensor, every unbiased estimator can be interpreted

as a BLUE's estimator with respect to an appropriate covariance map, a fact which was already
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pointed out by (Baarda, 1967b, p. 34). To see this, assume that
uctu) et , with u= R(A) and M= R(A) & C°,

is a matrix representation of the oblique projector PR(A) O
’

With the symmetric and positive-definite matrix

a - ctrawhteytawhtawheh vl leht .
+ y(ctu) ~Iete(utey ot
ar
al - cictoylet 4 utrwhtuhytuht

follows then that

ucctuy et - ytatuytutel.
Thus the problem of comparing different unbiased estimators can in principle be restricted to the
problem of analyzing the effect of assumptions on the metric tensor. See e.g. (Krarup, 1972).
(c)
Now let us assume that we have picked one particular 1-form, Yy say. [t follows then from (6.4)

that the corresponding unbiased estimate of y ¢ Nc M is given by:

~(e) X
y = yl + P (y ‘y );
x 1
or C, Nu(A™)
AL y, + P Sy my)), with y € i . ©.7)
R(A), C

And since the problem of removing inconsistency is in the above context of linear estimation
essentially the problem of finding the estimate y ¢ , one could say that one has concluded the
actual adjustment problem once %(c) is computed. In practice, however, one often requires a
parameter representation of 9 € e N. And here is thus where the actual inverse mapping
problem enters. That is, in order to find a parameter representation of )7 € one needs a particular
pre- or inverse image of 9 ¢ -y1 € AN under A. By means of a generalized inverse, B say, of A

such an inverse image is obtained as

X = B(Q(c)-y ).

1
From the transformation rule (5.13) and (6.7) follows then that every inverse image of 9(c)_y1
under A can be written as
;((s’c) =P .B.P 0(ys-yl) , (6.8)
S, Nu(A) R(A), C
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with N= S @ Nu(A) and M - Cc e Nu(A*), and where B is allowed to be any arbitrary

inverse of A. The estimate x s,c) is thus uniquely characterized by the choices made forC and S.
To understand what f((s »c) actually estimates, consider the following equivalencies:
x x (e)
(ygoyy) + (y Y-¥;) is a LUE of
* o~ ~ = * * A
(Ys,)'), Y,)'l e N = {yl} + AN , V¥ Ys eM 5 =
x * .
(ygoy ) + (P y Ygr¥Yy) isalUEof
C, Nu(A™)

i

* x ~ ~ - * *
(ys,yl) + (YS’Y‘yl), Y,Yl e N = {Yl} + AN , V Yse M3

(y:.yl) + (P . y:,y-yl) is a LUE of
C’ NU.(A )
*

* * X ~ * -
(Ys,)'l) + (A ys,X)v Y-Yl =AXx, V Ys €M H =

(P . " I-B*x:,y-yl) is a LUE of
C, Nu(A™)
- % *

(x:,x), % x: € R(A*), arbitrary inverses B~ of A 3

1>

(P . BX. p . Ox:,y-yl) is a LUE of
C, Nu(A™) R(A™),S
(P N ox:,x), v x: e N¥ ; 2
R(A™),S
(x:,P .B.P oY) isalUE of
S, NU-'(A) R(A),C
% x x
(xs,Ps,Nu(A)x), Vx eN
In other words ;(s,c) is an unbiased estimate of x(s) = PS Nu(A)x’ but not of x itself. This
)

~(s
subtle difference as to what x( €

See e.g. (Jackson, 1982),

Since the projector P

actually estimates has sometimes been a source of confusion,

always projects along the nullspace of A (see figure 14) we have that
S, Nu(A)

P P . (6.9

S, s Nu(A)” st, nuca) = s, nuca)
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—® X
i
Sj - PSi ,Nu(A)x
Nu(A)
figure 14
The transformation between the various inverse images of ;'(C)—yl under A is therefore given by
|
(s.,c) (s.,c)
x ' =P x ! . (6.10)
Si , Nu(A) ‘

Such transformations are now known as S-transformations. They were first introduced by Baarda in
the context of free networks and used to obtain an invariant precision description of geodetic
networks (see e.g. Baarda, 1973; Molenaar, 1981; Van Mierlo, 1979; or Teunissen, 1984a). Baarda has
used the term "S-transformation", since the projector PS, Nu(A) is in case of geodetic networks
derivable from the differential Similarity transformation. In the above general context, however, it
would perhaps be more appropriate to call transformation (6.10) a Singularity transformation. This as
opposed to the Consistency transformation (6.6).

Note the great resemblance between (6.6) and (6.10). From this comparison also follows the duality
result that the C-transformations of A are the S-transformations of A*, or, the projector
or SR

* . .
is the S-transformation of A” and the projector P is the C-transformation

S, Nu(A)

In this section we have seen how the inverse linear mapping theory applies to the problem of linear
estimation. We have seen that the actual problem of adjustment and the actual problem of inverse
mapping, although dually related, are essentially two problems of a different kind. Were we only
interested in adjustment, i.e. in removing inconsistency, then we would only be concerned with the
subspace C C M;'E . But if one, in addition to removing inconsistency, is also interested in findingla
particular pre- or inverse image of 9(C) e R(A) under A, then the choice of S © N comes éo
the fore. We would like to stress here the importance of the definite ordering: first adjustment and
then inverse mapping, since it shows that in an estimation context no great value should be attached

to the subspace P. In fact the only inverses of A which map yg into the pre-image i(s,c) of

~

, are the minimum rank inverses (2 D = [0 ). And in particular one should be aware that
. . ~ s -
one can not get an arbitrary pre-image x ¢ N of the least-squares estimate

y =P RA by mapping Yg € M with an arbitrary least-squares inverse of A into N.
R(A), R(A)
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M. GEODETIC INVERSE MAPPING

1. Introduction

In the preceding chapter we have seen how to characterize an arbitrary inverse of a linear map
A: N + M uniquely. In particular we saw how by choosing C° complementary to R(A) one could
make an inconsistent system of linear equations consistent, and how S complementary to Nu(A) gave
a way of restoring determinability. We also noted that although inconsistency and
underdeterminability generally occur simultaneously if rank A =r < min.,(m,n), the actual problem of
adjustment, i.e. the problem of removing inconsistency, and the actual problem of inverse mapping

are essentially two problems of a different kind, They can therefore be dealt with separately.

In this chapter we will concentrate on the actual inverse mapping problem of geodetic networks. As
an exemplification of the theory of S -transformations we discuss the non-uniqueness in coordinate
system definitions and construct sets of base vectors for Nu(A). We also discuss the related problem
of connecting geodetic networks.

Section two is devoted to the inverse mapping problem and section three to the problem of
connecting networks. In section two we discuss successively the planar, ellipsoidal- and three
dimensional case. Although we recognize that the inverse mapping problem of two dimensional planar
geodetic networks has already been discussed at length in the geodetic literature (see e.g. Teunissen,
1984a, and the references listed therein), we have reiterated some of the theory since it indicates
very well the principles involved. Generalization to the ellipsoidal- and three dimensional case
becomes then rather straightforward.

For practical ellipsoidal networks an interesting feature turns out to be the numerical ill-conditioning
of the inverse map. One will find namely that even after the admitted degree of freedom of the
ellipsoidal model is taken care of, the estimated geodetic coordinates of practical ellipsoidal
networks still lack precision. As a conseguence the estimation problem of the ellipsoidal model turns
out to be not too different from that of the planar model.

In our discussion of three dimensional networks we make a distinction between local surveys and
networks covering a large area. For local surveys (e.g. for the purpose of construction works), it is
likely that one is only interested in describing the point configuration of the network. Therefore, for
such networks S -transformations that only transform coordinates (and their co-variances) will do. As
an example we have given an analytic expression of the three dimensional S -transformation
advocated by (Baarda, 1979). For large networks however, it will not be sufficient to consider only
the coordinate transforming S-transformations. In these cases one is almost surely also interested in
a description of the fundamental directions like local verticals and the average terrestrial pole. That
is, besides the network's point configuration also the configuration of the fundamental directions
becomes of interest then. Hence, we also need S-transformations that transform both coordinates

and orientation parameters.

Having given the various representations of Nu(A) which are needed to derive the appropriate S-
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transformations, we turn our attention in section three to the problem of connecting geodetic
networks. Without exaggeration one can consider this problem of comparing and connecting
overlapping pointfields to be almost omnipresent in geodesy. In cartography for instance, the problem
occurs when digitized map material needs to be transformed to a well established known coordinate
system such as a national system. And in photogrammetry when photogrammetric blocks need to be
connected with terrestrial coordinate systems or in case of stripwise block adjustment when the
various strips need to be connected (Molenaar, 1981b). Also in surveying practice where densification
networks need to be tied to existing (often higher order) networks the connection problem appears
repeatedly (Brouwer et.al., 1982). And on a more global scale when connecting satellite networks to
national networks (Adam et.al., 1982). Even in case of gravity surveys one sometimes needs to
connect networks, e.g. relative gravity networks to existing well established absclute gravity
systems. And finally similar problems are encountered in deformation analysis (Van Mierlo, 1978).
There networks measured at two or possibly more epochs need to be compared in order to affirm
projected geaphysical hypotheses.

In all the above cases the same principles for connecting networks can be applied although of course
the elaboration can differ from application to application, depending e.g. on the information available
and the purposes one needs to serve. That is, although different solution strategies exist, all methods
rely on the self-evident principle that the anly information suited for comparing networks, is the
information which is common to both networks.

In our presentation we will discuss three methods for connecting geodetic networks. Although all
three alternatives are considered to some extent in the geodetic literature, the treatment below

accentuates some aspects which are not discussed elsewhere,

2. Geodetic networks and their degrees of freedom

2.1. Planar networks

Let us commence, in order to fix our minds, with the simple example of a twa dimensional planar
triangulation network in which only angles are measured (see e.g. figure 15).

After adjusting the network (using e.g. a first standard

problem formulation) we obtain a consistent set of

5 adjusted angles which determines the shape of the

network. In order to describe this shape we have many

6 4 possiblities at hand, Each set of mutually independent

adjusted angles for instance, will do. In practice,

however, one usually wants the result of an adjustment

3 to be presented by means of coordinates, since they

are more manageable than individual angles. The

advantage of working with coordinates is namely that,

figure 15 once they are introduced, they all have one and the
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same reference in common, The benefit being that with coordinates the relative position of any two
points in a network is easily obtained without need to bother about the way in which these two
network points are connected by the measured elements. Consequently, coordinates are very
tractable for drawing maps or making profiles of the whole or parts of the network.

With this motivation in mind we are thus looking for a way to present our results of adjustment by
means of (cartesian) coordinates.

However, in order to compute coordinates we first need to fix some reference, i.e. in the case of a
planar triangulation network we need to fix the position, orientation and scale of the network. One
way to accomplish this is of course by fixing two points of the network,i.e. by assigning arbitrary and
non-stochastic coordinates to two points of the network. For instance, we can start by fixing the
points P; and P, and then compute, with the aid of the adjusted angles, the coordinates of the points
P3, P4, P5 and P6. Or, we can fix the points P3 and P, and then compute the points P4, P5, P6 and
Po. Let us for the moment leave in the middle which two points we fix. Let's just call them P and P.

We then can write (see figure 16)

x, = x + 1 sin A + 1 _ sin (A + T +a )
i r rs rs si rs rsi (2.1)
y =y + 1 cos A + 1 cos (A +1 +a )
i r rs rs si rs rsi
y A

Y

figure 16

Linearization of (2.1) gives (the upperindices "o" indicate the approximate values):

o 0 o o o
Ax = Ax +x Alnl +y AA +x Alnl +y AA +y Ao
i I Ts rs rs rs si si "si rs “si rsi
(2.2)
0 0 o o o
Ay =4y +y Alnl -x AA +y Alnl -x AA -x bdo
i r 'rs rs rs rs si si si rs si rsi
which we can write as
o o Ao f o] o Ax
Ax y . x| rsi 1 0 y . x| r
i sl sl ri ri Ay
= 1 + r .
o o si o o] AA (2.3)
Ay -x Yy |{Aln—— 0 1 -x y rs
i si si 1 ri ri Alnl
ST rs
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Since all the angular type of information is collected in the first term on the right-hand side of (2.3)
we see that, in order to be able to introduce coordinates, we need to assign & priori values to the
second term. One way is of course to take points Pr and Ps as reference- or base points by assigning
to them the non-stochastic approximate coordinates xg, yg and x:,y:, i.e. by assuming that
Axr = Ayr = AArs = Alnlrs = 0 or

Ax | = Ayr = Mx = Ay =0 . (2.4)

The coordinates of any other point Pi of the network are then computed as

(r,s) 0 0
A ’ y . X ba
i si si rsi
= 1 , (2.5)
) ) si
Ay -X y Alp—-—
i si s i
ST

where the upperindices (r,s) indicate that these coordinates are computed with respect to the
basepoints Pr and P.

Although the choice of fixing the two points P and P in (2.3) is an obvious one, there are also other
ways of introducing coordinates. One could for instance take two other points of the network as base
points, or fix linear combinations of the coordinate increments of network points. Essential is,
irrespective the choice made, that the positional-, orientational- and scale degrees of freedom of the
network are taken care of. This is best seen by observing that (2.3) combined with (2.5) essentially

constitutes the two dimensional differential similarity transformation:

(r,s) o o At
Ax Ax 1 0 vy, x. X
i i i i At
= + y , (2.6)
o o Ao
Ay | |Ay. 0 1 -x_ vy
i ¢ i i i Ax

which follows from linearizing

(r,s)
X | cos¢ sing X, ’ t
i i X
= K . +
y. -sing cos¢ ||y, t (2.7)
i 1 y
under the assumptions that °=1, ¢°=0 and tg = t% = 0.

Since there are many different ways of introducing coordinates, it is important that one recognizes

that in general

Ax (r,s) Ax. (p,q)
1 1

Ay, Ay .
1 1
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Hence, if one wants to compare two sets of coordinates, where the two sets are computed from two

different and independent observational campaigns - for instance for the purpose of a deformation

analysis - it is essential that these coordinates are all defined with respect to the same reference.

Now in order to get all coordinates in the same reference system one needs to be able to transform

from one system to another.

For the above defined (r,s)-system this transformation is easily obtained.

From substituting

) )
AA 1 y X A x
rs rs rs rs
= ——— o )
Alnl o 2 |=-X y Ay
rs (1 ) rs rs rs

into (2.3) follows namely with (2.5) the transformation rule

(r,s) (r,s).t t
(ax T Ay T TT) = (ax. Ay ) -
i i i i
0o o o o o o 0o o o o o o o o 0o o
X X +y X -x . X X o+ Y -y x
1 ri rs ‘“ri‘rs ri'rs rs'ri ri rs ‘ri'rs ri‘rs ‘ri rs
2 o] o 2
(1 ) (r ) (r (r )
rs rs rs rs
o o o o o o 0o o o o o o o o o o
X -X X X +y |y X - X X +y
ri‘rs rs'ri ri rs ‘ri'rs ri'rs ‘ri rs ri rs “ri'rs
o 2 o 2 2 o 2
(1 ) (1 ) (1 ) (1 )
rs rs rs rs

(2.8)

(2.9)

which shows how to transform from an arbitrary coordinate system to the prespecified (r,s)-system.

To find the general procedure for deriving such transformations, note that the definition of the (r,s)-
system and the derivation of (2.9) followed from the decomposition formula (2.3). With (2.5) and (2.8)

this decomposition formula reads in matrix notation as

Y O e R R T

= S
(r,s) (r,s)

where ;

X = (AX JAY JAX Ay «oohAX LAy .ud)

r 'r s 's i

(r,s) (r,s) , (r,s r,s

x = (ax) T Ay, ),Axi ’ ),Ayir’s)...
and

{58y (9Dt

(2.10)
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e . e 1
0 o 1
L 1 0 y, x 1 1
vV = i, S = |0000 {.
o o0 (rys) .« v e
nx4 0 1-x_ vy o 4 e s
ii . e

Decomposition (2.10) is however, just one of the many possible decompositions of x. An alternative

decomposition follows if we premultiply (2.10) by

s, (vis ) TVE L vV LDt -,

1
where R(S;) is arbitrary but complementary to R(V™) . We then get

lt(rs)_L_Lt_LlLt(r,s)_L_L t o1.-1 1 t
s(vs) V x v((s )v) ) (x +v[(s<r’s) v7) (s(r’s))x)

or
=5 (v 5.) L)y [(5 SR 0N l(sl)tx . (2.11)

And this expression decomposes x just like (2.10) into a first part, which contains all the angular type
of information and a second part for which additional a priori information is needed. Now, just like
decompaosition (2.10) suggested to choose the restrictions (2.4), (2.11) suggests that we take

(sj)tx -0 . (2.12)

The coordinates of the network points are then computed as

(s.) (r,s)
x =S, (vt s, )y~ Lyt , (2.13)

where the upperindex (Si) refers to the choice (2.12). And analogously to (2.10) we find from
substituting (2.13) into (2.11) that

(s.)
x = x 1y vl[<sf)t )" l(s ) tx.

Hence the transformation to the (si)—system is given by

)
x Vo (1-v [(s vty 1(5 )4 )x (2.14)
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This is the general expression one can use for deriving transformations like (2.9). We thus see that in
1 1
order to derive such a transformation we only need to know R(V™ ) and to choose an (S, )t such
1
that R(S i ) is complementary to R(V™ ). a4xn

So far we discussed planar networks of the angular type. But formula (2.14) is of course valid for
1
other types of networks too. The only difference is that we need to modify R(V™ ) accordingly. For

a netwoark in which azimuths and distances are measured for instance, we find from

e] o
Ax y . X . AA 1 o0 A x
i ri ri ri r
= 0 0 + ’ (2.15)
Ay -X Yy . Alnl | 0 1 Ay
i ri “ri ri r
that
1 1 0
R(VT) = R( 0 1 )y (2.16)

i.e. the appropriate (differential) similarity transformation is in this case the one in which scale and

rotation is excluded.
To link up with the theory of the previous chapter note that it follows from
0 = (1-vi( (sli)tvl] ‘1(sli)t)vl
that in case of, for instance, an angular type of network all linear(ized) functions of the angular

observables are invariant to the differential similarity transformation (2.6). Thus if the adjustment of

the planar triangulation network of e.g. figure 15 is formulated as

y = A x (2.17)
then

(=X
~

; 0
Nuw(A) = R( c‘)
1

0

i
) . (2.18)

0 1 -x© ‘l’

Hence we recognize transformation (2.14) as an example of an S-transformation, i.e.

(si)
X = Psi’ Nu(AYX (2.19)

Following (Baarda, 1973) we will therefore call the coordinate systems corresponding with choices
like (2.12), S-systems.

At this point of our discussion it is perhaps fitting to make the following
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4
remark concerning the choice of S = R(S) complementary to R(V™)

Some authors, when dealing with free network adjustments, prefer to take the coordinate system
definition corresponding to the choice

st .o vt X (2.20)

This is of course a legitimate choice, since it is just one of the many possible. However, we cannot
endorse their claim that one always should choose (2.20) because it gives the "best" coordinate system
definition passible.

They motivate their claim by pointing out that the covariance map of the pre-image of the BLUE's
estimate § of y = Ax corresponding with the choice (2.20), has minimum trace, i.e. that

trace{ (1-v (vHV) TLevhha v b V) v h b trace @

2( R(S)

for all pre-images X of § under A.

This in itself is true of course. In case of free networks however, it is unfartunately without any
meaning. All the essential information available is namely contained in §y whereby ;((s) is nothing
but a convenient way of representing this information. A theoretical basis for prefering (2.20) does
therefore not exist in free network adjustments. At the most one can decide to choose (2.20) on the
basis of computational convenience which might in some cases be due to the symmetry of
r-vi (vhHtvh ovht,

One could also rephrase the above as follows: Since every (oblique) projector can be interpreted as an
orthogonal projector with respect to an appropriate chosen metric, the difference between the with
choice (2.20) corresponding S-system and another arbitrary S-system can be interpreted as the
difference in choosing a parameter-space norm, with (2.20) corresponding to the canonical
parameter-space norm. And since there is no reason to prefer one particular norm above another, we

do not have, as in physical geodesy, a norm choice problem in free network adjustments.
2.2 Ellipsoidal networks

So far we discussed the inverse linear mapping problem of planar geodetic networks. But let us now
assume that we have to compute a geodetic network, the points of which are forced to lie on a given
ellipsoid of revolution, defined by

2 2

2
Ao Yoy ii -1, (2.21)
a a

where a and b are respectively the ellipsoid's major and minor axes.
In view of the foregoing discussion the three main questions we are interested in are then: (i) how

does the theory of S-transformations apply to the ellipsoidal model, (ii) how does it compare to the
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results we already obtained for the planar case and (iii) what are the consequences for practical
network computations.

On an intuitive basis it is not too difficult to answer these three questions provisionally. From the
rotational symmetry of the ellipsoid of revolution follows namely that the ellipsoidal model will at
most admit one degree of freedom. And since this degree of freedom is of the longitudinal type it

follows that the ellipsoidal counterpart of transformation (2.6) will read as

. (1)  x2) .
AX =|an| +| 1 |ae), (2.22)
1 1 . z

where M‘i is the geodetic longitude increment of point P; and Aez the differential rotation angle.
Hence, transformation (2.22) can be used to derive the appropriate S-transformations for the
ellipsoidal madel.

As to the second question, if one wants to understand in what way and to what extent the ellipsoidal
model differs from the planar model, we need a way of comparing both models. One can achieve this
by considering the planar model as a special degenerate case of the ellipsoidal model. Assume
therefore that we are given a geodetic triangle (i.e. a triangle bounded by geodesics) on the ellipsoid
of revolution (2.21). By letting eZ:(aZ-bz)/az, the first numerical eccentricity squared, approach zero
we get for the limit ez* 0 that the ellipsoid of revolution becomes a sphere with radius R:=a=b.
Consequently, the given ellipsoidal triangle will become a spherical triangle for which then spherical
geometry applies. Now, if we further proceed by letting the spherical curvature approach zero then
for the limit R + <« the sphere becomes identifiable with its own tangent planes. Hence, for
increasing values of R the spherical triangle will ultimately reduce to an ordinary planar triangle.
Summarizing one could therefore say that the difference between ellipsoidal geometry and planar
Euclidean geometry is primarily made up by the two factors e and R. And one can thus expect that
if both the ellipsaidal eccentricity factor e? and the spherical curvature 1/R are small enough, no
significant differences will be recognizable between ellipsoidal geometry and planar Euclidean
geometry.

But what about the admitted degrees of freedom? We note namely a drastic change in the maximal
number of admitted degrees of freedom when the two limits e2 + 0 and R + o are taken: the
ellipsoidal model only admits the longitudinal degree of freedom, whereas the planar model admits a
maximum of four degrees of freedom, Still, despite this difference in admitted degrees of freedom it
seems reasonable to expect that the actual estimation problem of the ellipsoidal model will not be
too different from that of the planar model if e? and 1/R both are small enough. Consequently, it can
be questioned whether in this case transformation (2.22) suffices to characterize the degrees of
freedom admitted by the ellipsoidal model. Theoretically it does of course. But for practical
applications it becomes questionable whether the rotational degree of freedom as described by (2.22)
is the only degree of freedam the ellipsoidal model admits if both e? and 1/R are small.

This then brings us to the third question concerning the consequences for practical network
computations. Namely, the smaller e? and 1/R get the woarse the conditioning of the ellipsoidal

networks' design matrix A can expected to be. That is, although theoretically the maximum defect of
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2 and 1/R more than one of the

A equals one, it can be expected that for small enough values of e
columns of the design matrix A will show near linear dependencies. As a consequence one can
therefore expect that the ill-conditioning of A will affect the estimation of the explanatory variables
x in the linear model ;7 = A x. Intuitively one can understand this by realizing that the almost
collinear variables do not provide information that is very different from that already inherent in
others. It becomes difficult therefore to infer the separate influence of such explanatory variables on
the response Y. Consequently, the potential harm due to the ill-conditioning of the design matrix
arises from the fact that a near collinear relation can readily result in a situation in which some of
the observed systematic influences of the explanatory variables x on the response is swamped by the
model's random error term. And it will be clear that undyer these circumstances, estimation can be
hindered.
To find out whether for practical ellipsoidal networks the estimation of geodetic coordinates is
indeed hindered by the expected ill-conditioning of A, one can follow different but related routes.
One way is to investigate numerically to what extent the shape of an ellipscidal network as measured
by its angles, can considered to be invariant to a change of its position, orientation and scale.
Ancther way is to compute the non-zerc singular values of A or the non-zero eigenvalues of the
normal matrix AtA. Eigenvalues small relative to the largest eigenvalue of the normal matrix will
then reflect the poor conditioning of A. And finally one could try to show analytically that the
estimated geodetic coordinates lack precision if only the longitudinal degree of freedom is taken care
of.
The first approach, which is based on the idea that for planar geodetic networks of the angular type
the invariance to position, orientation and scale changes is complete, has been followed by (Nibbelke,
1984). And he found that for practical ellipsoidal triangulation networks one can indeed consider the
network's position, orientation and scale as non-estimable. That is, one is, just as in the planar case,
forced to fix four linear independent functions of the geodetic coordinate increments. The theoretical
deformations of the network's shape, which possibly follow from these restrictions, are then
negligible. The same conclusion was also reached by (Kube and Schn#delbach, 1975), who used the
second approach. The reported eigenvalue computations which were performed for the European
network show that in case of, for instance, an ellipsoidal triangulation network, four eigenvalues of
the normal matrix will be so small that a sensible estimation of the network's position, orientation
and scale is not attainable. This conclusion is also in agreement with the result found by (Krarup,
1982a), who indicated that the position of a trilateration network on an ellipsoid of revolution is
practically non-estimable.
As an example and also to support the above mentioned findings we will now show analytically that
the estimation of geodetic coordinates indeed lacks precision if only the longitudinal degree of
freedom is taken care of. For this purpose assume that we have a full rank linear model

mil ) mﬁn le’
in which x, of x = (xi x;) t has been identified as the parameter which is degraded by the ill-

conditioning of A.

1 2

mxl mx(n-1) mxl nxl

From the partitioning
~ X
y = (A A ) [ 1J, (2.23)
X
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follows then that the column vector A, depends almost linearly on the columns of Al' Using the

reparametrization

- t -1t
x 1= x_ + (AA) AAXx; X 1= X,
1 1 11 1 2 2 2 2

we can write (2.23) as

t -1t t -1t
A(x +(AA) AAXx ) + (I-A (AA) A A x
1 1 11 1 2 2 1 11 1 22

vV =
or as
7 = A x A (2.24
Y 151 7 TNy )
with
A (1-A (AtA )'lAt) A (2.25)
2 111 17 727 :

From the fact that A,y depends almost linearly on the columns of Al now follows that one can
reasonably expect A_ to be a rather short column vector. Geometrically this is seen as follows.
Since 1 -Al (All:Al ) A'l: is an orthogonal projector, we have that (see figure 17)
AA - at(1-a ata ) 'aha - atA sinle (2.26)
= - = sin .
22 2 111 172 22 ’
where © denotes the angle between A and its orthogonal projection on the subspace spanned by the

columns of Al'

&

R(Al)

figure 17

From the near linear dependency of A, and A, thus follows that the angle 6 will be small. Hence,
the length of A_ can be expected to be small if the length of A, is not too large.
Now if we assume the covariance map of y to be Qy = o1, it follows from (2.24) and the

orthogonality of A; and /-\2 that the variance 0)2( of x, is given by
2

2 2 2
[of ¢
= = . (2.27)

t 2 t t -1t
A A sin © A (I-A (A A ) AA
2 2 2 1 11 1 2

o
t-
2 2
Hence, the estimation of x, lacks precision if the length of [\2 is too small. Thus in order to find out
to what extent the diagnosed ill-conditioning of A affects the estimation of X5 we need to have a

reasonable estimate of (2.27).

Since we know that the possible lack of precision of the estimated parameter x, is a consequence of
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the near linear dependency between A; and AZ’ it follows that there must exist a vector, z say, for

which

is small enough. From writing (2.28) as

z
AEE

(Al Az)

we get

Hence, expression (2.27) can also be written as

o2 . o?
X - vt _ t -1,t Y
2 (1 Al(AlAl) Al)
With Vt(I-Al(A;Al)-lA;)V < VtV, we then get the lower bound
2
o2 5 9%
X2 " vl

(2.28)

(2.29)

(2.30)

Thus if we are able to find a vector z such that the length of A z = V is small enough, we can use

the lower bound of (2.30) to prove that the estimation of X9 indeed lacks precision.

Now, to apply the above to our case of ellipsoidal networks, recall that we made it plausible that the

difference between ellipsoidal, spherical and planar Euclidean geometry can considered to be

insignificant if both the factors e? and 1/R are small enough. One can therefore expect that for small

enough values of e? and 1/R, the eigenvectors of spherical- and planar networks' design matrices

belonging to zero eigenvalues are the proper candidates for the z-vector of (2.28). For this purpose

we thus first need to find the spherical analogon of (2.3) (or (2.15)).

We will start from the three dimensional differential similarity transformation

(1) (2) 6 o o

Ax Ax 100 0 -z, y. x

i i i i

0 0o o©

Ay = |dy. + 010 z, 0 -x_y.

i i i i i

o 0

Az iy 0601 -y x 0 z

i i i i

With
X (N_+h_)cos$ cosr_
i i i i i
y.|=|(N +h )cosd sinA, ,

i I i i
z. (N (1-e )+h _ )sind
i i i i
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Ay

Atx
Aty
ae?
Ae”
AeY

AKZ

(2.31)



and

) ) o o o
Ax cos ¢ cosA, -sin¢ cosA  -sinX, Ah

i i i i i i i

0 o 0 ] 0o o

Ay |=|cos¢ sini -sind sinX, cosi [ |{(M +h )A¢, ,

i i i i i i i i i

ol o o o

Az sindg, cos ¢, 0 N cos¢ A,

i i i i i

where ¢i ’ )\i and h; are respectively the geodetic latitude, longitude and geometric height above

the ellipsoid of point P;, and Ni’ Mi are the east-west and north-south radii of curvature, one can

rewrite (2.31) in geodetic coordinates as

(1) (2)
o o o o o 0
(N +h )Jcos¢ AX, (N +h )cos ¢ AX,
i i i i
o o 0 o
(M_+h ) A4, =| (M +h_ )A¢, +
i i i i
th Ah
i i
0 . 0 .

o 2 o o o
-sinAX . COSA, . 0 (N (l-e )+h )sin¢ cos X
i . i . i i i i

. c. . o 0. o. o 2 20 o .0
-sin$ cosA .-sind sinX .cos¢ .-(N (l-e sin ¢ )+h Jsink,
i . i i. i. i i i i

o o. o 0. 0. 20 c o o
cos$ cosX . cosd sink .sind .~-e N cos¢ sind sink,
i i i i i i

. 1. 1.

At
At
At Y

. o.
o 2 o o o. .2 o o z
(N (l-e sin ¢ )+h )cosi . ] .-e N cos¢ sin¢, Ae |,
i i i i. . i i

o 2 o o o o o
(N (1-e )+h )sin¢ sink .-(N +h )cos¢ 0
i i i i i

1

Ae

A:—:y
y4

Ak

2 0 0 0 o 0 2 20 o
e N cos¢ sind cosA, 0 (N (l-e sin ¢ )+h )
i i i i i i i

(2.32)
Since the network points are forced to lie on the ellipsoid of revolution, we must have that
)
h = 0 and Ahi =0 Vi =1,... (2.33)
i
Hence, it follows from (2.32) that
0 = cos ¢9cos A At _+cos ¢93in WAt +sin ¢9 At -ezN(.jcos ¢9s in ¢(?sin 2 Ae +
i i x i iy iz i i i i~ 7% (2.34)

+ ezN?cos ¢?sin ¢?cos X?A€y+N?(l-ezsin2 ¢?) Ak ,
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But this means that for a regular network (i.e. a network which excludes cases like A; = constant,

Vi = 1,...) situated on an ellipsoid of revolution we have that

At = At = At = Ae = Ae = Ak = 0, (2.35)
X y z X y
which confirms our earlier statement that the ellipsoidal model only admits the longitudinal degree of
freedom.
In an analogous way we can find the type of degrees of freedom admitted by the spherical model. In

spherical coordinates R;, ¢; and A;» transformation (2.32) will namely read as

(1) (2)
o 0o o o
R cos¢ AX. R cos¢ A,
i i i i i
o 0
R.4¢. =| R a¢. +
i i i i
R, R
i i
o . o . . 0O ] 0. 0 o o. o o.
-sin), . COS), . 0 R sin¢g cos) .R sing sin) .-R cos¢y . O
i . i . oo i i. i i ie i i.
o o. o 0. 0. . 0 . .
+|-sin¢g cos) .-sin¢ sin) .cos¢ .-R siny, R cos) . 0 . 0O
i i. i i. i. i i . i . .
o 0. 0. o. . . . o
cos¢ CcOSX . cos¢ sinx .sing . 0 . 0 . 0 . R,
i i. i i. i. . . . i
(2.36)
And by setting
R = R and 4R; = 0 Vi=1,..., (2.37)
we get that
0 = cos¢%cosa¥Aat_+cos¢?sinaat +sineSat_+R Ak, Vi = l,..., (2.38)
i i® x i iy i z
from which follows with (2.36) that the spherical counterpart of (2.6) is given by
(1) (2)
o ) . o 0. _ o 0. 0 Ae
Rcos¢ AX. Rcosq)_Ax_] Rsin¢g sin) .Rsing sin) .-Rcos¢, X
1 1 1 1 1 1. 1 1. 1 Ae
= + (o] . 0o . .
Ra¢ . RAd . J -Rsing, . Rcos)x . . 0 Ae
i i i . i . z
(2.39)

To find the expression which corresponds to (2.3) (or (2.15)), we first need to know the relation

t t e .
between (Aex,Aey,Aez) and (A¢r,Axr,AArs) . This is given by
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Ax
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0 0 0
Ae -sin) 0 cos ¢ cosA Ad
X r r r r
0 o . 0
Ae |=] cosaA 0 cos¢ sin) AX . (2.40)
y r r r r
0
Ae 0 -1 sing M
z r rs
Substitution of (2.40) into (2.39) then gives
(1) (1) (2) (2)

o] t o]
(Rcos¢ Ax, , RA¢. ) = (Rcos¢ Ax, , RAG, ) +
1 1 1 1 1 1

coscpo: . (8]
i. o 0o o0 . 0 o o o o o Rcos ¢ AX
————— .sin¢ sin(A -X ).Rsin¢ cos¢d cos(A -A )-Rcos¢ sin¢ r r
i i or. i r i r i r
cos ¢ . . RA¢ (2.41)
r. . r
. 0o o . ) 0o o
0 .cos(A -Xx) . -Rcos¢ sin(A -A ) M
. i r . r i r rs
The spherical analogon of (2.3) (or (2.15)) then finally follows from substituting
1
. lr .
-sin —— sin A_ = sin (}3m-¢ Jsin(x -Xx )
R ir r ior
(2.42.a)
= cos¢ sin(r - )
r i r
and
lo
ir
sin —— cos(2m-A_ ) = sin($n-¢ Jcos(dmn-¢ )-cos(imn-¢ )sin(im-¢ Jcos(r -1 )
R ir i r i r i r
= cos¢ sing - sind cosd cos(A - ) (2.42.b)
i r i r i r
into (2.41):
(1) (1) (2) (2)

t 0 t
] = [Rcosq>iA>‘i , Rag, ) +

8]
(Rcos ¢i Ax. , RAg. ,
1

1

o. . o
cos ¢_ . . 1, o
i. o o o._. . ir o Rcos ¢ AX
————— .sing sin(A -Xx ).-Rsin ——— cosA, r r
0. i i r . R ir
+| cos¢ . . o RA¢ . (2.43)
r. . 1. r
. o o . ir | o
0 . cos(x -x) . Rsin —— sin A M
. ior . R ir rs

(2.42.a) and (2.42.b) follow from applying the sin-rule sin a/sin A = sin b/sin B and the so-called five-

elements' rule sinc cos a - cos ¢ sin a cos B = cos A cos b (see figure 18) of spherical geometry.
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Expression (2.43) shows that not surprisingly the

spherical model admits a maximal number of three

- degrees of freedom, all of which are of the rotational
type. Hence, we find that theoretically speaking the

scale of a spherical network is estimable. Even if only

angles are measured. Those who are familiar with
global aspects of differential geometry know this of

course already from the Gauss-Bonnet formula. When

l\\\ | P applied to the sphere, this formula says that for a

\ e triangular region bounded by three geodesics the sum
of the spherical triangle's interior angles minus

figure 18 equals the ratio of the area enclosed by the triangle

and the radius of the sphere (see e.qg. Stoker, 1969). We
are here thus confronted with a situation where angles alone suffice to determine scale. But still,
although scale is theoretically estimable, one can expect, as was made clear in the foregoing
introductory discussion, that if the spherical curvature is small enough scale will only be very poorly
estimable. And indeed it turns out that for practical spherical networks, scale can be considered as
non-estimable. See for instance (Molenaar, 1980a,p.20) or the earlier cited references.
In the same manner it is concluded in these publications that the scale, orientation and position of
practical ellipsoidal networks, can considered to be non-estimable. To support these findings we will
now show analytically, that the geodetic coordinates lack precision if only the longitudinal degree of
freedom of the ellipsoidal model is taken care of. For this purpose consider expression (2.43). The
three columns of the matrix on the right-hand side of (2.43) span the nullspace of the design matrix of
a spherical triangulation network, whereas the first column vector provides a basis of the nullspace of
an ellipsoidal network's design matrix. Thus, if the eccentricity factor e2 is small enough one can
expect that both the second and third column vector of (2.43) get almost annihilated by the ellipsoidal
network's design matrix. Hence, we can use one of these vectors, say

o o] o]
sing sin(x -a )
1 1 Iy
z = , (2.44)
o] o]
cos(x -x )
1 Iy

to obtain an estimate of the lowerbound (2.30) via (2.28).
Let us consider as an example an ellipsoidal trilateration network. According to (Helmert, 1880, p.

282) the ellipsoidal distance observation equation reads as:

-0 0 0 -0 , 0 -0 , 0 ) -0 , 0
Al =-sinA (N cos¢ AX )-cosA (M A¢p )-sinA (N cos¢d AX )-cosA (M A¢. ),
ij ijoi i ijoii jid i i

(2.45)

o We will abbreviate (2.45) as

where Ai j denotes the ellipsoidal geodesic azimuth from P;toP
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t
Al = ax (2.46)

. =0 -0 . -0 -0 t
where a = (... =8inA_, -cosA_ , -sinA__  -cosA_ , ...)
k ij ] ji, ji
is the kth rowvector of the ellipsoidal network's design matrix and
o (o] (o] t
x = (...N cos¢ Ax , M A$ ,...) .
i i i
Using (2.44) we get
t -0 o] o o -0 o o
V =az = -sinA__sin¢g sin(A -x ) - cosA_ cos(x - )
k k i] i i r ij i r
(2.47)
- o o -0 o o
-sinA_ sing sin(x_-x ) - cosA_ cos{x -x ) .
J1 ] ] r J1 ) r

It will be clear that if the network is situated on a sphere, then Vk=0. Let us therefore identify

geodesic coordinates with spherical coordinates. With

A=A _+b8A _and A = A__ + A,
ij ij ij J1 31 J1

' 1
where Aij denotes the spherical azimuth between the points Py and Pj , which are obtained from

identifying geodesic coordinates with spherical coordinates, and linear approximations like

sin A = sin A+ cos A AA ,
1] 1J bjoij

we can rewrite (2.47) as

. 0 0o o o ) o .o
V = (sin A  cos(r -x ) - cos A__sinp_sin(A_-x ))JAA _ +
k ij i r ij i i r ij
(2.48)
] o o o ) 0o o
+ (sin A  cos{x -x ) - cos A sing sin(x -x ))AA _ .
31 r J1 J ) r )1
Repeated application of the sine-rule and five-elements' rule of spherical geometry and
1 2
[aA | = [aA | < P (see Helmert, 1880, p. 289),
ij ji
then finally gives
1 1. 9
i ir
v | < = S e . (2.49)
k — 2 R R

From this estimate and (2.30) thus indeed follows that in case of practical ellipsoidal networks (lij =
64 km, R = 6400 km, 0 = % 107°.1, . e? = 1/300) geodetic coordinates will lack precision if

only the longitudinal degree of freedom is taken care of.
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2.3. Three dimensional networks

Now that we have considered the inverse mapping problem in two dimensions it is not too difficult to
generalize to three dimensions.

We will first assume that only angles and distance ratios are measured in the three dimensional
geodetic network. The generalization of (2.1) to three dimensions becomes then rather

straightforward. To see this, observe that we can write (2.1) as

X . X 1 sinA I . 1 sinA 1 . 01 0|l _sinA

i r rs rs si rs rs si rs rs

y.|=|y. [+|]__cosA - =—cos &__ .|l _ _cosA - —=——sina__.|-1 0 0||]l_ _cosA

i r rs rs lsr rsi| rs rs lsr rsi rs rs

0 0 0 0 00O 0
(2.50)

where the action of the matrix

0 1
-1 0
0 O
equals the action of
a
0 (x, (2.51)
-1

with """ denoting the vector- or cross product.

With (2.51), expression (2.50) therefore suggests the following generalization to three dimensions:

X X Il sin Z_ sin A 1 sin Z2_ _sin A
i r rs rs rs lsi Ts rs Ts
y. [=|ly.|+|1l_ _.sin Z_ _cos A - —= cos a__.l1_ sin Z_ cos A
i r rs rs rs lrs rsi rs rs rs
z. z | cos Z 1l cos Z
i r rs rs rs rs
n 1 sin Z2_ _sin A
lsi 1 rs rs rs
- =——— sin Q . |n,{x ]l sin Z_ _cos A
1 rsi 2 rs rs rs|’ (2.52)
ST
n ]l cos Z
3 rs rs

where Z_. denotes the vertical angle of the line P P (see figure 19.a) and n = (nln2n3)t is the unit

normal of the plane through the points P, P and P; (see figure 19.b) defined as

n 1 X X
1_ sr si

2 - lsrls.sina si Ysr|*[Ysi (2.53)
3 ! r Zsr Zsi
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figure 19

We thus see that one way of introducing coordinates for three dimensional networks of the angular
type is by starting to fix the two points Pr and Ps’ This would then take care of six degrees of
freedom. Namely, three translational degrees of freedom, two rotational degrees of freedom and one
freedom of scale. The remaining rotational degree of freedom, namely rotation of the network around
the line P P, is then taken care of by fixing the direction of the unit normal n in the plane
perpendicular to the line P P . The so defined coordinate system thus corresponds to fixing two points
P and P, and the plane through these two points and a third point, P\ say. Following (Baarda, 1979)

1

we will denote this S-system as the (r,s;t)-system. The (S (r.sst) ) L. matrix by which the (r,s;t)-
H H

system is defined then follows from the restrictions

Axl‘ = Ayl‘ = AZI‘ = 0

Axs = Ays = AZs =0 y (2.54)

o) ) o

nlet + nszt + n3Azt =0

o o o o,t . . . .
where n~ = (nlnzn3 can be computed from (2.53) for i = t using approximate values. With
100 0 -29 y9 «°
1 ) ! 6 .6

R(V) = R(|01 0O zy 0 -xy oy, ), (2.55)

001 -y? x? 0 z?

which follows from the three dimensional differential similarity transformation (2.31),

straightforward application of (2.14) then gives

(r,sst) t t
o 0 o 0 o o
Ax, Ax g 1 M *ri n st *ri| s AXsp
Ay. =| Ay |+ —————3 {||n5 |x|y2 n, x|y syl |ye }ay
i ri 0 2 8 Bi 8 5 Bi s ST
Az Az “rs) n z n z z Az
i ri 3 ri 3 rs ri rs ST
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x° o n° Ax " 0 n® Ax
1 st ri 1 r 1 tr ri 1
° 1x yo no Ay |+ yo X y0 nd Ay
0 ;0 . 0 Yst 81 2 r o ,0 . .0 Sr Bi g s
rslrtsmatrs z° n? Az rslstsmarst z z n Az
st ri 3] U r tr ri 3 s
o] ( s} [s] t
1 ng Xgi nc1) Axt
o o _._ o |[Yes|*|Yri ol 1Ay (2.56)
lstlrtsmmstr z? 2°. n? Az
rs ri 3 t

Expression (2.56) can be considered as the natural generalization of (2.9). Namely, if we restrict our
attention in (2.56) to the Ax, Ay-parts of the points P;, P. and P, and take
0 ] o

22 =0 Vi=1,...,andalso n‘lJ = n, = 0, ny = -1, we obtain (2.9) again.

i 3

In deriving the three dimensional S-transformation (2.56) we assumed that only angles and distance
ratios were observed. But this assumption is generally only valid in local three dimensional surveys
(e.g. construction works). In large three dimensional networks, one will usually have besides the
angles and distance ratios also direction measurements like astronomical azimuth, latitude and
longitude at ones disposal. It is likely then that one is not only interested in the (cartesian)
coordinates describing the network's configuration but also in the orientation (and possibly scale)
parameters describing fundamental directions like local verticals and the earth's average rotation
axis. It seems therefore that for large three dimensional networks transformations like (2.56), which
only transform coordinates (and their co-variances) do not really suffice. And this becomes even mare
apparent if one thinks of connecting such networks. For large networks we therefore need S-
transformations that also transform orientation (and scale) parameters.

Now before deriving such S-transformations let us first draw a parallel with the twao dimensional
planar case. Since in practice the observation equations are usually written down in terms of
directions Ty and pseudo-distances lij instead of in terms of angles and distance ratios, the parameter
vector x of the linear model y = Ax will contain besides the coordinate increments also orientation-
and scale unknowns. Hence, the linear model of two dimensional planar networks will in practice be

of the same form as that of large three dimensional networks:

Xl} : (2.57)
X
2

with, X1i coordinate unknowns; Xt orientation- and/or scale unknowns.

Thus also in case of two dimensional networks one can in principle decide to involve the orientation-
and scale unknowns in the many S-systems possible. Of course in practice one will not do so, since in
two dimensional planar networks these unknawns are generally of no particular interest. But still, let
us, for the sake of comparison between the two- and three dimensional case, pursue the idea of
involving these unknowns in the many S-systems possible,

Consider for this purpose a two dimensional planar network with direction- and pseudo-distance
measurements rjj and 1ij‘ In figure 20 a part of such a network is drawn. The theodolite frames in
points Pr and Pi are shown by dashed lines and the directions Prpf' , PiPT are the directions of

zero reading.
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figure 20
Analogous to (2.1) we can then write
X, = X + ¢ 1 sin(g +r )
i r lr cos(9r+r”)
= +
Y yr “riri r ri (2.58)
6, = +r - T+
i r ri ir
Ing = Ing+ In 1 - In 1
i r ri ir
And linearization gives
o 0 o 0
hx . Bi xBi 0 © Arri 1 0 ygi xgi Ax
By ; X Yoy 00 Alnl 4 . 0 1 Xei Yril|| M (2.59)
AB; 1 0 -1 0 |ar;, 0 0 1 0 A6, ’ ’
Alnoci 0 1 0 -1 Alnlir 0 0 0 1 Al”Kr
Hence, if the unknowns in the linear model (2.57) are ordered like xt = (><l x;)z
("'AxiAyi""Aei’ Aani"') , its nullspace would read as
1 0 y? x?
L 01 "‘? y?
R(VT) = R(|l. . . A D (2.60)
0 0 1 0
0 0 0 1
A legitimate choice for defining an S-system would therefore be
Ax . = Ay = AB. = Alne =0 . (2.61)

That is, instead of fixing coordinates like we did in (2.4) we may just as well fix one network point,
one direction of zero-reading and one scale parameter. The corresponding S-transformation then

follows from (2.59) as
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Gr)

Ax. Ax. 1 0 . x° Ax
1 1 51 5[
Byp | By | |0 b Y| A0y (2.62)
A8 | 7| a8, () 0 A8 J
Alnl(i Aani 0 0 O 1 Alnk

where the upperindex (r) indicates that these parameters are defined through the restrictions (2.61).

Note by the way that once one includes orientation- and scale parameters, one actually extends the
notion of network configuration to cover both the point-caonfiguration and attitudes of the theodolite
frames. And in fact the direction~ and pseudo-distance observables rJ and l.; are then interpretable

ij
as angles and distance ratios. They become the invariants of transformation (2.62).

Now let us return to the three dimensional case and generalize the foregoing to three dimensions. We

will start by assuming that only horizontal- and vertical direction measurements rjj
are available. We consider the following two types of righthanded

and Zij’ and
pseudo-distance measurements 1lJ
orthonormal triads (see figure 21).

1°  The reference frame E y 1 = 1,2,3;
It is to this reference frame that the coordinates Xis Yir Z; refer, i.e. the position vector of point
Pis denoted by X(P ) = X (P )E has w1th respect to the frame E the components
(P):xi, =()=yi (P):zi.

2°  The theodolite frame TI (Pi ), I =1,2,3, inpoint P
TI _3 points upwards in the direction of the theodolite's first axis,
TI =7 points in the direction of zero reading, and

T, -1 completes the right-handed system.

3,i
*)
r
figure 21
(a) (b)
The relation between the two frames EI and TI(Pi) is given by
TI:l(Pi) I=1 EI:l
T P = R(9 E = R R E .63
I=2( i) ( 1,1’62,1’93,i) I1=2 (ez,i) (el,i’ez,i) =2 |’ (2.63)
TI=3(Pi) EI=3 EI=3
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where cos -sind
y 1 3,1
R (6. ) =|sine_ . cosd_ _ O ,
3 3,1 3,i 3,i
0
and
-si 0
smez,i Cosez’i
R(el,i,ez,i)= -smel’icosez,i -stnel’ismez’i cosel,i .
cosel’icosez,i cosel’ismez’i smel’i

Furthermare, we have for the difference vector X(Prpi) = X(Pi) - X(Pr) between the two
points P; and P, that,

TI:l(PP)
X(P P )=( !l ,sinZ sinr _,c 1 ,sinZ cosr ,,c 1 ,cos Z )T (P )
r i r ri ri ri r ri ri ri’~ r ri ri I=2" ' r
T P
I=3( r)
(2.64)
where « r is a scale factor.
I 1
From (2.63), (2.64) and X(Prpi) = X (Pi)EI - X (Pr)EIfollows then that
xi Xr -smez,r -smel,rcosez’r Cosel,rCOSGZ,r |<rl“s1anism(e3’r+rri
- -si i i 1 inZ .
Yil=lY, | cosez,r smel,rsmez,r cosel,rsmez’r Kr I‘ism ricos(e3,r+rri) , (2.65)
z, z o cosf sing K 1 _cosZ |
i r I,r I,r rri ri

which shows that one can start computing coordinates once the seven parameters
Xr ’ yr ’ Zr sy 0 1,r’ 0 2,10’ Y 3¢ and k r are fixed. Hence, a legitimate choice for defining an S-
system would be
A = A = = = = A = l = 0 . 2.66
X Y. Azr Ael,r Aez,r 63,r A Nk ( )
Since (2.65) generalizes the first two equations of (2.58), linearization of (2.65) would give us the
three dimensional analogue of the first two equations in (2.59). But this is of course only half of the
story. We also need to know how the last two equations of (2.59) read in three dimensians. Far scale
this is trivial:
Aln k., = Aln 1_. - Aln 1, + Aln « . (2.67)
i ri ir r

To find the corresponding transformation for the orientational pararmeters though, we need to know
how the orientational parameters 61 ; ,62
’ ’

]
changes in the seven parameters x z ,0 ] ] and k . Since we can rule out
9 P Y%V, 2,r’ 3,r r
differential changes in the scale- and translational parameters, this leaves us with the problem of

i’93 i in point P; are affected by differential

finding a differential relation which expresses the Ael’ i ,Aez, i ,A63’i in terms of the
observables and the parameters A© 1,r 200 2,1 200 3,0
Let us assume that the non-linear relation reads
TI:l(Pi) TI:l(PP)
TI:Z(Pi) = K TI:Z(Pr) ’ (2.68)
TI:B(Pi) TI=3(Pr)
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where matrix K only contains functions of the observables.
With (2.63), it then follows from (2.68) that

6

.,9 l) =K0R(el

,r’eZ,r’ 3,r

Linearization gives,

0
- . K- . AR
AR(el’i,ez, ,93’1) AK R(el,r,ez, ) 0 ,r) + A (91, ,ez,r,e3’r)
0 o o -1, o
=a<.R(8% ,6° ,0° H+R(8% ,0° ,6° RT(° ,0° ,6° J).aR(e L6 ,0)
l,r 2,r 3,r 1,i 2,1 3,i l,r 2,r 3,r l,r 2,r 3,r

(2.69)
Since the first term on the right-hand side of (2.69) only contains observables, it is the second term

we are really interested in. In components (2,69) reads then

t t
(Ael,l’Aez,i’Ae},i) = ( observables ) +
0 [s] PN (o] . [o] 0
cos(6, ;- 6, ) .0, -cos 8, sin(e, ;- 6, ) 46, .
tan 6° sin (e0 -eo Yil.(-sin eo +tan 96 cos eo cos(eo -eo )| ae
-1161 g,i 2,r°170 l,r Lyi %,r o 221 2,1 2,r|°
i - 0. )
cos 8 ;sin (8, ;-8, ).0. cos 9, ;cos g, cosCe, ;- 0, ) A65 o
(2.70)

We are now in the position to collect our results. From (2.70), (2.67) and the linearized expression of

(2.65) follows the three dimensional analogue of (2.59) as

t t
("'Axi’Ayi’Azi"”’Ael,i’Aez,i’AeLi’Aani"") = ( observables )" +

« oo . . . AX
. ) 0 0 0 o . o 0o . o . 0 r
100, -z _cosg -y . (-z cosp_ sing_ +y _sing_ ) oX
. ri 2,r ri ri 1,r 2,r ri l,r . Ti
. o . o ) 0 0 0 ) o . 0| Ay
01o0. -z sing x (z cosg_ cosg_ -x sing. ) Y. r
. ri 2,r ri ri 2,t 2,r ri 1l,r . Ti
., 0 0 0 0 ) 0 0 0 o . 0
00 1.(y sing_ +x cosg_ ) 0O (-y cosg cosg +x cosg.  sing ).z AZ
. ri 2,r ri 2,r ri 1,r 2,r ri 1l,r S I o | r
« o e . o . . A8
e s e . . . .o 1,r
. ) 0 o 0 o .
000. «cos(p. -6 ) 0 -cosg. sin(p -9 ) .0
. 2,i 2,r 1,r 2,i 2, . A8
. o] . o] 0 .o o] o] o] o] . 2,1
0 0 0O.tang_ _sin(e_ -5 ) 1 (-sing, +tang. _cosg. cos(g_ -g_ 1)) .0
. 1,i i 2,r 1,r 1,i 1,r 2,i "2,r .
000 -lo ‘(0 0)0 -lo 0 (0 0) "0 Ae}
.COS sin - cos cos cos - . r
R Tl S 01,1%9%0,,.5%%%0, 1705 : ’
00 o. 0 0 0 1| alne

(2.71)
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Thus if the unknowns in the linear model of the three-dimensional network are ordered like
("'AxiAyiAzi'“Ael, iAez’ iAGZ,
spanned by the seven columns of the matrix on the right-hand side of (2.71). From this the with

iA Inkc REE ), the linear model's nullspace would be
choice (2.66) corresponding S-transformatian easily follows.

Note that so far we made no reference to the gravity field, i.e. the theodolite frames are allowed to
assume any arbitrary atittude in space. Of course it is likely then, like it was in the two-dimensianal
case, that one has no special interest in computing the orientation- and scale unknowns. In such cases
one would probably reduce these unknowns from the model, which would leave one with only
coordinates. And then transformations like (2.56) will da.

Let us now assume that in addition to the horizontal- and vertical direction measurements Iy and Zij’
and pseudo-distance measurements Iij’ we also have the dispasal of astronomical latitude <I>i,
longitude Ai and azimuth Ai it We then need to introduce two new orthanormal triads:

3% The earth-fixed frame "E., 1=1,2,3;

I’

Ei_3 points towards the average terrestrial pole (CIO),
*Elzl points towards the line of intersection of the plane of the average t:rrestrial
equator and the plane containing the Greenwich vertical and parallel to EI _3
*EI -9 completes the righthanded system.

49  The local astronomical frame *TI (Pi ), 1=1,2,3, inpoint Pi;
x

TI =3 points towards the local astronomical zenith,
5 1=

TI -9 points towards north,
s 1=

TI -1 points towards east.

If we assume that the theodolite frames are levelled, then the following relations between the four

triads E_, *E TI(Pi) and *TI(Pi) hold:

I I’

* * x
TI:l(P ) TI:l(Pi) TI:l(P ) EI:l
* x x
R A P = R H = R
( ij) TI:Z( i) (rij) TI:Z(Pi) H TI:Z(Pi) ((bi,Ai) EI=2
x x x
TI:B(p ) TI:3(P1) TI:B(P ) EI::’»
(2.72)
T, (P.) E *E E
I=1 i =1 I=1 I=1
* -
T P = R R E H = R
1-2(F;) Cog (IRCey 98, ) [ B3 | Broy (asBy) | Ep_,
*
P
TI:B( i) EI:3 EI:3 EI=3
A 1 Y - B
where R(Q,B,Y) = |- vy 1 a |, and a, B and y are small rotation angles.
g - a 1
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From (2.72) follows that

= t t
= R - . 2.73
R(a;B’Y) R (¢I',AI‘) (AI‘i Fri)R(e},r)R(el,r,ez,r) ( )
. co ; ) 0 0 .
Linearization, under the assumptionthat & = 8 = y = 0, gives
Ao b sin A° 0 -cos ¢° cos A° | [as
g r r r l,r
AB | = v + -cos AO 0 -cas <I>O sin AO AB . (2.74)
? r r r 2,r
0 1 in ¢° A8
Ay g sin r 3,r
Since o = 8% = y° = 0 we can replace 6] . and 6, . in (2.71) by @] and A7. With
’ ’

(2.74) we then find that far large three dimensional networks in which also astronomical latitude,

longitude and azimuth are measured, (2.71) generalizes to

t
(“’Axi’Ayi’AZi""Ae,i’Aez,i’Ae i,Aani,..Aa,AB,Ay) =

1 3,

Coomx$ ™y 000 a2 0000l 068 068" ) atne ™) L aalT) ag () ay (7))
i i i 1,1 2,i 3,1 i
. o o o o o, 0o o , o . 0 Ax
1 00. -z _cosA -y . (-z _cosd sinAh +y _sind ) . X r
. ri r ri ri r r ‘ri r . Ti
. o . o a o 0 o o . © . ©
010 . -~z _sinj x . ( z cosp cosp -x _sing ) .y .
. ri r ri ri r r ri r . ri
., 0 _ o o ) o o o o o . 0o. o© Ay
001 .(y sinp+ x _cosp ) O (-y .cos¢ cosp +x _cosg sinph ). z r
. ri T ri r Ti r r ri r r . ri
v e e . . . . . Az
. o o o o o . r
00O0. cos(A -7 ) 0 -cosd sin(A -A ) . 0
. i r r i r .
. o . o o .o o 0 o o .
0o0O0. tand sin(A -A ) 1 (-sing +tand cos¢ cos(A -A )) . O
. i i r i r i r . A®
. -1 o | o o -1l o0 o o o . s T
0o0G0. cos ¢ sin(A -A) O cos ¢ cosd cos(A -A ) . 0
. i i r i r i r .
000. 0 0 0 <1
. . . . AB
. e . . . . .. 2,r
. ) o 0 .
000O0. sinA 0 -cosd cosAp . 0 A®
. r r r . , T
. 0 o . o .
000. -cosh 0 -cos® sinp . 0
. r r r .
. o .
000. 0 1 -sing . 0 Alnk
. r . r
(2.75)
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where we have denoted the first column vector on the right-hand side of (2.71) in which it says
"observables", by

(r) (r) (r) (r) (r) (r) (r) (r),t
Z. ’ Y ) .

y$t) A VY A6 L S Y S ARy Y AT

(r)
ees A A
( i %Yy i 1,i’"%2,i7%3,i

When viewing (2.75) one may wonder why there are still seven degrees of freedom. Aren't the
¢i s Ai and Aij supposed to take care of the rotational degrees of freedom? The reason for this
apparent discrepancy is of course that the network's point configuration and fundamental directions
are described with coordinates referring to the frame Ej, which is essentially an arbitrary one. We
have chosen for this approach because it enables us to describe the most general situation, i.e. it
allows us to introduce any reference system we like. That is, we do not restrict ourselves befarehand
to those reference systems which might be the obvious ones to choose because of the available
d>i 's, Ai 's and Aij' But, would one aspire after this more conventional S-system definition, then
decomposition formula (2.75) is easily modified. To see this, let us consider the two dimensional

situation. Assume that azimuths A:., horizontal directions r;. and distances 1.. are observed. By taking

ij’ ij ij
the general case of describing the network in an arbitrary system (see figure 22) we get from

linearizing
x. =x_ +«kl .sin (A .- a)
i r ri ri
= 1 A -
yi yr tK ricos ( ri a)
6. = . =T, + T - a Py (2.76)
i ri ir
Ilnk = Ink
a = o
that
Ax. Ax. r,//) 10 4% x°
i i 51 31 Axr
A A 0 1
Vi Vi i Yri Ay,
AD = AD | + |0 0 -1 0 ’ (2.77)
i i %}
Alnk Alnk=0 0 O 0 1
Alne
Ao Ao =0 0 O 1 0

where the upper indices (r,//) indicate that these coordinates are computed in the S-system which is
defined through fixing the point P. (a X, = by, = 0), the scale parameter {Alnk=0) and
the orientation parallel (if o ©=0) to the north direction (Aa=0).

From decomposing (2.77) like
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{//) o o

Ax, Ax ., -y . X .
1 1 gl (I:"l
A A
yi yi xl‘l ri|lAa
@] a0 = |ae. +] -1 o ,
! ! Alrk
Alng Al =0 0 1
Ao, Ao =0 1 0
(2.78)
ax, (/1) by, (ry//) e
A 1
Ayi yi 0 Axr
(b) A6 = A6 . +| 0o o ,
Alnc =0 Aln=0 o o |27
Aa=0 Aa =0 0 0

follows that the reference systems one usually considers when azimuths and distances are observed,
are of the (//)-type. They are defined through Aa=0, Alm=0. Thus, although it is usually not

explicitly stated, the conventional S-system chosen when azimuths and distances are measured, is:

Ax[‘ = Ay[‘ = Aan = Ao = 0 . (2.79)

figure 22
In three dimensions (2.79) generalizes to

Axr =A)’r :AZI‘ = Aa = AB = Ay = Alnk = 0, (2.80)
and it will now be clear that the usual phrase "astronomical latitude, longitude and azimuth take care
of the rotational degrees of freedom" essentially means that one has fixed the orientation of the
reference system through Aa = AR = Ay = 0.

From (2.75) follows that the with S-system (2.80) corresponding decomposition is given by:
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(I‘,//)

100 0 © © X°
Axl AXi Zri Yri ri Axr
0 ) )
- 8]
Ay, Ay 010 2. 0y
o 0 A
Az, Az 001 y°. -x°. o 22| Y
i i ri ri ) ri
: . Ay
AB AB 000 slrﬂo -cos A° 0 0 r
1,i 1,i i i
) o . ,0
AB =1 A® ] + 000 -tamd. cosA -tar® _sinh 1 0 Ao
2,i 2,1 i i i
l o -1 0 ., ,0
A A© . 000 -cos cos[\ -cos @ _sinh 0 0
3,1 3,1 i i AB
Al Alrg =0 00O 0 0 0 1 Ay
Ao Aa=0 000 1 0 0 0
AB AR =0 00O §] 1 0 0 Al
Ay Ay =0 000 0 0 1 0
(2.81)

The corresponding S-transformation is then easily found from bringing the second term on the right-

hand side of (2.81) to the left-hand side (see also Teunissen, 1984a). Note that since

Aa (r, /1) _ B(1‘ A1) AY(1‘,//) - 0, one can replace Ae(r 1) and Aegr;//) in
]

(2.81) by respectively A<I>(r //) and AA(F //)

Instead of (2.80) one could of course also consider still other types of S-system definitions. One could
for instance take the restrictions given by (2.54). The orientation of the earth-fixed frame’(EI and
the directions of the verticals then given by respectively
Aa (r, S't) (r S.t) Ay and Ae(’ls’t), Ae(" 83 t). And if one replaces
the cartesian coordinates in e.g. (2.75) by geodetlc coordmates and the direction unknowns
48, Ji? A6,

local
(r,s;t)

are

by the deflection of the vertical components £ o0 through using

,

0
= - ¢
n; (Aez,i Ali) cos @,

one can show that also the following sets of restrictions are legitimate choices for defining an S-

system:
= = = = = = A =

(a) g, =n, =AA =0, Ap Axr Ahr 0, Alnk = O

5 H = = = = = A = A =

( Ae)l,r Aez,r AArs 0, A¢r Axr hr 0, Alnk 0)
(b) Ao = AB = Ay = O, €. = n_=A4h =0, Aink = 0 (2.82)
(c) Ao = AB = AA_ = 0, Ad = AN = Ah =0, Alnk = 0

rs r r r

(see also Strang v. Hees, 1977; Yeremeyev and Yurkina, 1969). And in this way many mare sets of
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necessary and sufficient restrictions can be found. Note that also the geodetic coordinates should be
given an upperindex referring to the S-system through which they are defined.

In principle of course there is no need for introducing deflection of the vertical components. For
computing three dimensional networks one can just as well do without them. Due, however, to the
fact that many existing large networks lack the necessary zenithdistances one has preferred in the
past the classical method of reductions to a reference ellipsoid and computation by means of
ellipsoidal quantities to the more theoretically attractive spatial triangulations of Bruns and Hotine
(see e.g. Hotine, 1969; Torge and Wenzel, 1978; Engler et al. 1982). Instead of solving the height
problem by using zenith distances one resorts to the astrogeodetic (or gravimetric) method. The

problem of the network computation is then split into two nearly independent problems, namely the
(a) ¢ . A 0" problem, and the (b) £ . oM ; ,h - problem .

The procedure followed is in short the following (see also Heiskanen and Moritz, 1967), One starts by
defining a three dimensional S-system (geodetic datum)., Usually one takes the datum given by (2.82.b)
or (2.82.c). Using the approximate information available on {¢? , X? y h? ,‘P? ,A?} one then reduces
the observed angles and distances to the ellipsoid and computes on it the geodetic coordinate
increments M)i ,A)\i . After having solved for (a), one enters the solution of (b) where new heights
and new deflections of the vertical need to be determined based on the new ellipsoidal values of ¢.l

and A i With these new values the whole procedure is repeated. One can consider this iteration

procedure as a block Gauss-Seidel type of iteration where a linear system

Y1 Al P |1
Y) Al Mol %2

is solved iteratively as

(k+1) _ ,-1 (k)

X1 = Ap1lyg= Appxpt )
(k+1) _ ,-1 (k+1)

X3 = Aalyg- Aprxg )

A practical point of concern is, however, the reduction procedure. In many cases the necessary
gravity field information, needed to perform a proper reduction of the observational data, is lacking
(see e.g. Meissl, 1973; Teunissen, 1982, 1983). But if the necessary gravity field information is
available, the classical method of reduction to the ellipsoid can be seen to be formally equivalent to
the truly three dimensional method and both methods, if applied correctly, will give the same results
(Wolf, 1963a; Levallois, 1960). Hence, the final iterated solution of the classical method for the
network's shape will be free form any deterministic effects of the arbitrarily introduced datum. The
intermediate solutions of the iteration procedure, however, do theoretically depend on the choice of
datum. It is gratifying to know therefore, as has been shown in subsection 2.2, that these effects are
practically negligible.
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3. (Free)networks and their connection

3.1. Types of networks considered

Now that we have given representations of Nu(A) in various situations we can start discussing the
problem of connecting geodetic networks.

In principle this problem is not too difficult. Essential is to know the type of information the two
networks have in common. Based on this information one can then formulate the appropriate model
and perform the adjustment.

As to the methods of connecting geodetic networks one can distinguish between three solution
strategies. Two of them need the parameters, describing the two separate adjusted networks, while
the third method starts from the assumption that the original observation equations (or rather the
reduced normal equations) are still available.

In the first method (methad I) use is made of condition equations. The idea is to eliminate first all
non-common information from the two sets of parameters describing the two separate adjusted
networks. This can be done by means of an appropriate S-transformation. The so transformed
parameters are then finally used on an equal footing in the method of condition equations.

It is curious that this method has found so little attention in the literature. We only know of a few
areas where it is applied (see e.g. Baarda, 1973; or Van Mierlo, 1978). An explanation could perhaps be
the general aversion one has for the method of condition equations since it is known to be
cumbersome in computation. However, for our present application of connecting networks this
argument does not hold. On the contrary, the methad can in many cases be very tractable indeed.

The second method (methad II) is essentially the counterpart of the above mentioned methad. In this
method one starts'by determining the transformation parameters. This is done by means of a least-
squares adjustment. After the adjustment one then applies the transformation parameters to obtain
the final estimates of the parameters describing the two connected netwaorks,

Method II seems to be very popular with those working on the problem of connecting satellite
networks with terrestrial networks (see e.q. Peterson, 1974). A serious shortcoming of most
discussions on this method is, however, that often the starting assumptions are not explicitly
formulated. As we will see this may avenge itself on the general applicability of the method and also
may affect the interpretability of the transformation parameters.

Finally the third method (method III) makes use of the so-called Helmert blocking procedure. It is
therefore essentially a phased type of adjustment, applied to the original models of the two
overlapping networks (e.g. Wolf, 1978).

Usually when one applies this method one starts from the principle that both the reduced normals are
regular, thereby suggesting that the two overlapping networks have no degrees of freedom at all. For
a general application of the method, this is of course a too restrictive assumption to start with. We

will therefore have to show how the method applies in the general case.

From the above few remarks it will be clear that we feel that a truly general discussion of the

problem of connecting geodetic networks has not yet been given in the literature. Either the
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assumptions are too restrictive to render a general application of the methods possible or they are
not too precisely formulated.
For a proper course of things let us therefore start by stating our basic

Assumptions

First consider the original models. We assume that the first network is described by the linear(ized)

model
~ . Ax . .
Ay = (A . A ) 1, Q , withdim. Nu(A :A,) = q, (3.1.1.a)
1 2 sz y 1°72
mx 1 mxn mxn  (n+n )xl
2 2
and the second by
N A;l
Ay = ( Al A ) A)—(} » G, withdim, Nu(Al.AB) =q>q. (3.1.1.b)
mx 1 mxn r?;xn3 (n+n3)xl

We further assume that the second network, apart from some additional degrees of freedom, has the
same type of degrees of freedom as the first network. This means that we assume the nullspace of
(3.1.1.a)'s normal reduced for sz to be a proper subspace of the nullspace of (3.1.1.b)'s normal

reduced for Ax_, i.e.

3
Nu(PzAl) c Nu(PBAl), (3.1.1.c)
t -1 -1t -1 - - st -1- -1st -1
i j = - Q = [- Q- Q-".
with the projectors P2 I AZ(AZ y AZ) AzQy and F’3 I A}(A3 7 A}) A3 ;
And finally we assume that
- Vl
Axy Axy 1
- 1 -
sz = sz + V2 Ap, with r > q, and
_ n - (3.1.1.d)
ij Ax3 V3
(n+n2+n3)xl (n+n2+n3)xl (n+n2+n3)xr rxl
Nu(P.A ) c RIVD) (3.1.1.e)
ulP3A ) R Jd.le

Since some of the derivations and formulae in the next section become quite elaborate, we will use

from time to time the following

Example

as reference to exemplify our results:

The first network can be thought of as being a planar network determined from distance -,
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astronomical azimuth - and angle measurements. And the second network can considered to be planar
with magnetic compass readings and angle observations only.

If the parameters (Axl ) x2) and (A>_<l ,A>_<3) are assumed to contain cartesian coordinate
increments only, then

. 10 - .- i
Nu(A A ) = R( ), withg=2 and Nu(A .A = with g= 3.
73 1 2 01 ’ q U.( 1 3) R([] O) y q

The second network has namely apart from the two translational degrees of freedom also an
additional freedom of scale.

Furthermore, transformation (3.1.1.d) would thern be characterized by

1 . . . .

\ o o
1 y., 1 0 x,
1 i i

R(IV. D = R( o o|), withr=4

2 - X a 1 vy,
1 1 1

\' . . e .
3 . . e .

and the nullspaces of the reduced normals by

—
o
—
O e o
x

i
R( o).

- R > A
Nu(PZAl) ( 1 ), Nu.(P}Al)

Finally, ﬁsing the decomposition

1 1 1 1 [
R(Vl) = R((Vl)l) ] R((Vl)z) = R((Vl)l) 8 Nu(P}Al)’

with . « e .
o] [a]
Y. 10 x,
RV ) = v o) and RO(VY) ) = R o),
1'1 - 172 01y

i i

we can identify the Ap, parameter of Ap = (a p; Ap;)t as a rotation angle and the Ap,

parameters as respectively two translational and one scale parameter.
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3.2. Three alternatives

Since the above mentioned first two methods are closely related we will discuss them together.

Method I and II

Both methods are applicable if the parameters, describing the two separate adjusted networks and

their covariances are available. Thus we assume given (see figure 23):

p2()] [Ge(®) ROINE 233 (8308 G5(3) 5(9)

’ Q Q and A(s) | Qz(s) 2(s) Q=2(s)

Agés) gés),gis) Rés) Axés) ng)’xis X}s
with (3.2.1)

S = R(S) complementary to Nu(AlZAZ) and S = R(S) complementary to Nu(Al:AB)'

first network second network

figure 23

Our goal is now, to solve for the transformation parameters A;:J and the increments

(A§l(5) ,A§2(S) ,A§3(S)) . Here we implicitly assume that we wish our results to be
expressed in the same coordinate system as that of the first network. For our example in subsection
3.1 this means that we wish our results to take the scale and orientation of the first network. This is
a sensible choice since the first network contains by assumption more information than the second
( Nu(PZAl) c Nu(IE’BAl)] . But if one so desires one could also proceed otherwise, viz. by
adopting the orientation of the second network.

We believe, that for explanatory purposes method I best shows the principles involved in connecting
networks. Let us therefore first, before we proceed with the actual solution strategies of the two
methods, consider the following simple but general enough situation. We assume to have measured
two overlapping planar networks. And furthermore we assume that for both networks we have the
disposal of distance -, azimuth and angle observations. When adjusting the two networks separately
we thus need to take care of the in both cases existing translational degrees of freedom. But as we
know from the previous section this can be done in very many ways. The simplest way being to fix

just one network point. Having done this we thus finally end up with two sets of coordinates each
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describing one of the two separate adjusted networks. How are we now to compare these two
coordinate sets? Not by blithely comparing the coordinates of corresponding networkpoints for these
were introduced in a rather arbitrary way. In general namely, the two fixed networkpoints will be
different ones. In fact, even if one would have fixed the same networkpoint in both networks, one still
should exercise great care. This is because the numerical values assigned to the fixed point need not
be identical for bath networks. Now if we disregard this possibility for the moment and assume that
the same set of approximate coordinates are used for linearizing the observation equations of both

networks, we would have the inequality
if

That is, the two sets of adjusted A - parameters cannot be compared directly. But we know
already from the previous section that one can easily take care of this discrepancy by applying the
appropriate S-transformation. This S-transformation should enable us then to compare corresponding
coardinate differences.

Now let us change the situation slightly and assume that the azimuth measurements of the first
network are of the astronomical type and those of the second network follow from magnetic compass

readings. Then we would have

s(s) 2(s)
Aﬂl ,l.Axl ,
even if
s=38.

The reason being of course that the first network is orientated with respect to astronomical north and
the second with respect to magnetic north. Thus the only information the two networks have in
common is of the distance- and angular type. But again we can take care of this discrepancy by using
the appropriate S-transformation, namely one that eliminates the azimuthal information from both
networks.

Finally we complicate the situation a bit further by assuming that the second network lacks distance
measurements, i.e. lacks scale. In this case we are in the situation as described by the example of the
previous subsection 3.1., because both netwoarks then still have their translational degrees of freedom
but now the second network also has an additional freedom of scale. In this case we thus certainly

will have the inequality

irrespective the choices made for
Sand S.

But as will be clear now, one can again overcome this discrepancy by using the appropriate S-
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transformation, namely one which reduces both networks to ones of the angular type.

Summarizing, we can conclude f~r0m the above discussion that although the causes for the
incompatibility of A§§8) and A f(ig) may be different, one can always find the appropriate S-
transformation to eliminate this discrepancy. And in view of our general assumptions (3.1,1) it follows

that an appropriate S-transformation would be:

-1t 1, =1t t i =1L t

= t:
= = =1 -V S v S . 3.2.2
PR(S),R(Vj) s(vls) v, . l[( ) l) ( ) (3.2.2)
This would give us then
s(s)_ ?(5) _
R(S) R(VL)(M Ax, Yy =0 (3.2.3)
or equivalently
toag(s) 2(s)
ViR %Y - Ax7) =0 . (3.2.4)

If the situation as sketched in the example of subsection 3.1 applies, (3.2.3) reads in cartesian
coordinates as

( oA f),...)t=o , 0= 1,0..,4n. (3.2.3"

(
1i
The equivalent formulation (3.2.4) represents then an independent set of n-4 angular condition

equations
B jjic- Aéijk= 0, (3.2.4"

or a set of n-4 linear equations which is in one-to-one correspondence to such a set of n-4 angular

condition equations.

Some authors have expressed their hesitation towards the above described procedure for using S-
transformations, They argue that by using an S-transformation which eliminates e.g. the available
azimuthal and scale information, one eliminates information which is important in its own right. This,
however, is in our opinion a missappreciation of the concept of S-transformations. The S-
transformation is in the first instance only applied ta obtain the equality (3.2.3) or (3.2.4), on which
then the adjustment for connecting both networks is based. After the adjustment one can then
always, if so desired, transform the adjusted coordinates back to one of the original coordinate-
systems. In the above example for instance one can always transform back to the system of the first

network, the one that contains scale- and orientation information.

Now let us consider the actual solution strategies of the two methods I and II. We will start with
method 1.
Although it is customary in the literature to start from modelformulation (3.2.3), we, far reasons yet

to be explained, will start from modelformulation (3.2.4). Straightforward application of the least-
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squares algoritm for the method of condition equations gives then

A§(s) Asz(s) Gf((s)

ts) ol |ats)
As‘z%s Ag% sz% ,$<l . Lt (o)
270 N i - S ~(s

2 - 2 - |-Q2 - AR - A .
A s) AXlS) @Xls) vl(vl(ag(sf @:(S))vl] vl( ) X )
al- - RN X
A)—((S) A;(S) -G)—(;s),)-(is) 1 1

(3.2.5)
This formulation of the least-squares solution of method I is however not yet in concurrence with the
formulation one usually finds in the literature (see e.q. Baarda,1973,p.125 or Van Mierlo,1978,p.9-26).

We therefare have to rewrite (3.2.5) a bit. For this purpose take the following abbreviation

t

A =P (@ _ N
R(S), R(V))

_ N . (3.2.6)
R(S), R(Vl) &

(s)+ Q

;(5)
1 1

Since R(A) = R(Z) it follows, if B denotes an arbitrary inverse of A, that AB is a projector which
projects onto R(g) and along a complementary subspace.
Hence

AB.P

RGEY, ROV T TR, ROV

From premultiplying this expression with Vl(Vi(G (s) + @:(g)wl]'lv; follows then
| X1

t -1t t -1t
v.(v (a +Q, - IV ) TV .AB.P =v. (v.(a +Q, - )V ) TV .P
171 (s) =(s) "1 1 = 1 1' 1 (s) =2(s)" 1 = 1

N L R(S),R(Vl) &) X, R(S),R(Vl)

or

t t -1t

PR(E) R(Vl).B.PR(g) wh = vl(vl(ag(s) + G;(E))Vl] Vi - (3.2.7)

! 1 ! 1 1 1

Hence, if we use the customary notation

a®) i p ) . (Aﬁis) . A;ES))
and R(5), ROV])

Qa(g) := B,

we can rewrite (3.2.5) as
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(s (s Q_(s) (s)
ASZ( ) Ax ) & ),d
1 1 1
. (s) (s) Q@ (s) »(s)
AR AR K ,d =
2 ; 2 Q §ts) (3.2.8)
2s)| | f(s)| |@(s) (s A(s) ) -
Ax ) Ax ) X ),d ) d
1 1 1
2(s 2(s Q:(s) (s
Ax ) Ax( ) X ),d( )
3 3 3
To finally transform the adjusted parameters (A:ES) ,A)’(és)) to the coordinate system of the

first network, we need to determine the transformation parameters Ap. From (3.1.1.d) follows that

=Lt -1 =1t 5 -(s
sp = (GHWHLEN ax!o axls),
1 1 1
) = L . .
with R(S) complementary to R(Vl). Hence the transformation parameters are easily found
through
2 =4t L =Lt <
8f = (BHV])7 st (Asz(s>- Ax(s)). (3.2.9)

Summarizing, we can thus write the solution of method I as:

A§(s) AR(S) GQ(S)’&(S)
1 1 1
A§(S) AR(S) GR(S),&( ) )
(a) 2— = 2- - 2- = Q = é<s> with
sy | T | 2(s Q2(s) «(s) ~(s) ’
Ax A x X ,
1 1 1
A£(s> S Q;(s)’A(s)
3 3
A(s) (s) 2(s)
d = R(S) R(Vl)(m -Axl ), and
(3.2.10)
G;A(g) an arbitrary inverse of G&(g) .
(®) of = (EHYWDTTED el s,
A§(S) A>:< s) vt
1 1 1 A:
= a - + .
© . (s) O I I
AR Ax \Y
3 3 3
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This is also the solution one can find in (Baarda, 1973) although there the result is derived under the

_ . 1
more restrictive assumptions that Nu(PzAl) = Nu(PBAl) = R(Vl).

When comparing (3.2.10.a) with (3.2.5) one may wonder which formulation is the more attractive
computationwise. Formulation (3.2.10.a) suggests the customary practice of first appying an S-
transformation, namely (3.2.2), and then computing the inverse Qé(é). A more direct way is
however suggested by (3.2.7) and the method of prolongation discussed in sections 4 and 5 of chapter
I

Note, that in the special case of Nu(PzAl) = Nu(F-’BAl) = R(Vi‘), ny= Ny
Vl[Vi( Qq(s) + G;“(ié) )Vl]'lVE is a symmetric minimum rank inverse
of Q%S) + Gg(ié) . With our expression (4.5) of chapter II follows then that (3.2.7) can be

n,= Dand S= 3§,

computed from

-1
- 1 t - -1t 1 Lot 4o-1
Gg(s) + G)—((s) Vi vl(vl( Gg(s) + Q2 (s) )vl] vV, V) ((vl) vl]
1 1 B 1 1
1.t B 1ot 1.-1 1.t :
(v o [(vl) vl] vy) 0
(3.2.11)

_ 1
In the general case that Nu(F’zAl) c Nu(P3A1) c R(Vl) , (3.2.7) will cease to be a minimum
rank inverse of Qg(s) + Qg(s) .Instead it becomes a constrained inverse of
Gkis) + Qf(ié) . With (5.21) of chapter II follows then

-1

- 1 t - - t
Q,(s) + G:(3) V vvECa (s) + a2(3) W) TV x x x
R X 1 11 & X 1 1
1 1 = 1 1 . (3.2.11Y)
(Vi‘)t 0 X X X x % X

1
Thus, since a representation of R(Vy) is usually readily available, we see that instead of (3.2.10.a) one
can also use formulation (3.2.5) with (3.2.7) computed via (3.2.11") (or (3.2.11)).

Now let us consider method II. Its model formulation is the parametric counterpart of (3.2.4) and
reads as - N
a%{) o ails) o viap (3.2.12)

Usually this model will constitute the differential similarity transformation

. Xs) . Xs)(. . . . . . . At
. . . . . . . . . Atx
- 0 0 0
Ax A x 1 0 0 0 -z y X y
i i i i i At
- ] o o z
Ay | - |Ay |= 0 1 0 z. 0 -X Y. Ae |,
i i i i i A X
- 0 o o €
Az Az 0 0 1 -y. X 0 z y
i i i i i Ae
. . . . . . . . . Ax
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e.g. when combining doppler networks with terrestrial networks (Peterson, 1974). However, since the
common unknowns of the two overlapping networks need not be restricted to coordinates, relation
(3.2.12) could be a kind of modified differential similarity transformation such as for instance (2.81).
In fact, relation (3.2.12) need not be restricted to the differential similarity transformation at all. It
could for instance also include additional "transformation" parameters which describe projected
geophysical hypotheses in a defarmation analysis. Or it could include, say, a refraction model.

When we solve for (3.2.12) we immediately notice a difficulty which is often overlaoked in the
literature. Namely, that the covariance sum Qsz (s) + Qi ('s) can turn out to be singular. Assume
for instance that S = R(S) is complementary to Nu(PA1) , § = R(S) is complementary to
Nu(PsA1) and that S < S. Then NU'(QSZI(S) + Q)i(l(g)) # {0} andno ordinary inverse of
le(s) + Gil(g) will exist. One could of course ask oneselves then whether it is possible to
take a generalized inverse of le (s) + Q)ﬁ(l (s) . Insome cases this is possible. We will refrain
however from further elaboration on this point, since if one really insists on using (3.2.12), one can
either transform one of the covariance matrices by means of an appropriate S-transformation so that
the sum Gg(s) + G;—<(§) becomes reqular again, or, what is more practical, add the matrix
(VJl')(VJl')t to Qgis) + Q)‘-(i§) . The solution of (3.2.12) follows then from straightforward
application of the least-squares algorithm. To show the close relationship with solution (3.2.10) we
will make use of a slight detour.

First consider the transformation parameters, With the aid of (3.2.5) we can write (3.2.9) as

-1 -1
Ap =[(§l)tvi] (§l)t[1-(@ +Q,_ - )V [v;(@ +Q, - )vl] V;](Ai

(s) =(3)
(s)" % (5)"1 ()" () “Axp )
1

1 1

% &
1 X1 1

(3.2.13)

And since we have the projector identity

t
1-(@2(s)+ Q;(;))vl[vl(ag(s)+ @;(;))vl] vV, =
1 1 1 1

L, 1t Lo, 1. to-1.1. 7 1t Lo 1t -1
= vl[(vl) LQR(S)+Q;(§)+(V1)(V1) ) vl] (vl) [@sz +(vl)(vl) ],

x(5)
1 1 1 1

it follows from (3.2.13) that

-1 -
2 Lt Lo At -1 407 1t Lo, 4ty -1 (s)  2(s)
ap=( (V) (@ (s)+®:(5)+(vl)(vl) ) ovivp(a (s)+Q:(§)+(V1)(V1) ) ek -ax )
b3 X b X
1 1 1 1
(3.2.14.a)

In a similar way one can prove that
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2(s) (s) Q
AR ] ARl i(s)
1
A§;S) Aiés> (s) _(s)
2’71
.- - . ) 1 1.ty-1 (s)‘ ‘(s)_
PSRN I VSl B R [Qi(s> +Q§(s)+(vl>(vl) )75, 0%y v ap)
1 X 1
1
axls) A>:<;S> D5y = (5) (3.2.14.b)
3 0%
Summarizing, we can thus write the solution of method II as:
wh=(vhia .+ <vi)<vi>tflvlfl<vi>t[@ a (vi><vi>t)_l( g () 5080,
(@ap=L (V, () 2y V1YY 1 1 ()2 (s) V1YY A Axy
b4 X R X
1 1 1 1
2(s) (s) Q
N A%, szis)
A§;S) ;S) o) () SIS SOR
= - 2 71 |(a +(V)(V)](M -A X )
b)Y . N (s) 20s s) 1 1
A)-((S> A;((S) ‘Q:(;) l l
1 X
) ) 1
axlsY| ants) 2 (5) 2(5)
3 %
aztSh axlsd vi )
(c) = a,- + p
839 [axts) vi
3
(3.2.15)

For the special case that QQ(S) + Qg (s) itself is regular, (3.2.15) without the additional term
(Vl)(V )t is the solution one usually finds c1ted in the literature (e.g. Adam et al., 1982). However, the
necessary relation with Nu(P A ) and Nu(P Al) is usually not made.

Note by the way that | QR(S) + Qg (s) + (V )(V ) ] is a symmetric maximum rank inverse
of (3.2.7).

For those who are used to thinking in terms of S-systems, it may come as a surprise that one is
and Q. (.
5.(s)

different S-systems. The reason is that the transformatxon paranl:eters A p In model formulation

allowed to simply add the covariance maps Qi (s) of coordinates defined in

(3.2.12) already take care of the possibie discrepancy between the two S-systems,
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This brings us to another important point, namely that of the interpretability of the transformation
parameters A|§. A shallow study of (3.2.15) might convince us that all transformation parameters
are estimable and that one is allowed, in the context of testing alternative hypotheses, to test
whether some or all of the transformation parameters are significant or not. Here, however, one
should exercise great care. In particular one should be aware that one can not test whether an

arbitrary linear function of the transformation parameters, ct Ap say, is zero or not, i.e.:

Ixr rxl
=(s) 2(s) L t
HO: Aﬁl - Axl = VlAp, c Ap = 0,
against (s) T(3) N
~( 8 2 S t
H,: AR, - Ax T = Vibp, c Ap £ 0.

The reason is that, in the general case we are considering here, one cannot treat all transformation
parameters on an equal footing. In case of our example of subsection 3.1, for instance, only the
orientational parameter Apl is eligible for a test like above.

Finally we like to pcint out the great resemblance between (3.2.10) and (3.2.15). The two methods
only differ in their order of computing the transformation parameters A|§ and increments
(A§§s) , A§§S) , A>:<§§), A>:<§§)). Hence, in principle no preference can be given to either
method, unless one chooses on the basis of computational convenience. One can argue namely that
method I is to be preferred since it only needs the inverse of the covariance matrix of the difference
vector a<§) or (3.2.7), whereas method II needs the inverse of
both G, (s) + G2(3) + (V) (V])® and RECNORETHON VDD L.

Let us no%v consider
method III

The Helmert-blocking method is essentially a phased type of adjustment applied to a second standard
problem formulation. Instead of performing the adjustment in one step, the original set of observation
equations is divided into two groups, each describing one of the two overlapping networks, After
having formed the corresponding normalsystems one then reduces to obtain the reduced normals
pertaining to the common unknowns of the two networks. Through inversion of the sum of these
reduced normals one solves for the final adjusted values of the common unknowns. The remaining
unknowns are found by means of back-substitution (e.g. Wolf, 1978).

If we reduce for the sz -parameters, (3.1.1.a)'s normalsystem becomes

t -1 t -1
A A
(PZAl) Qy (PZAl) 0 X (PZAl) Gy y

t -1 t -1 - t -1 )
A AQ A_|lA ACQ@ A
A8y Ay 2%y T\, 20y Y

Hence as a solution of (3.1.1.a) we have
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t.-1 -1t -1 (s) .
5 (A, 7A,)TTALGI T (By - AJ8%)°T), with
(3.2.16.a)
t~-1 -1, t-1
PZ =1 - AZ(AZQy AZ) Asz , and
S = R(S) complementary to Nu(PZAl)

In a similar way we find for (3.1.1.b) the solution

o ,2(5) _ afat,s & ta-l,s & va2)-lat,s t-1
1% ax;%h = 5(5F(PLA)) Q; (P5A[)5) 7757 (P5A)) Qz Ay
o 2(s) -t -1- . -1-t_-1, - = 2(s) .
A = Q-"A AZQ-"(Ay - A A th
X3 (A3Q- A5) TALACT (By 1A% ) Wi
[ (3.2.16.b)
- <~ xt -1z \-1lzt -1
F-)3 = I_- AB(ABG-)./ A3) ABGy_,_and
S = R(S5) complementary to Nu(PBAl)

Thus the reduced normals of (3.1.1.a) and (3.1.1.b) pertaining to the common unknowns are

t.-1 -

i N. = A Q A
respectively N, (F’2 1) y (F’2 l) and N,
our assumptions (3.1.1) we cannot simply add them together yet. What we need is a slight

N o
= (PBAl) Q;/(PBAl)' However, in view of

modification of one of the two reduced normals Nl and Nl , such that relation (3.1.1.d) is taken care
of. That is, if

1 1 1 1 -
ROV)) = R((V]))) @ RO(V)D,) = R((V)) ) » Na(PA)),
and N N L
RIVD) = RO(V]D5) @ ROV, = RU(VI)S) @ Nu(P,AL),

’

1
we either need to modify N; with the aid of R( (V.l ) 3) to an Nl

. . 1 = . = 1
with the aid of R((Vl)l) to an Nl with Nu(Nl) = R(Vl).

For our example of subsection 3.1 such a modification of N; would mean that we eliminate the scale-

) , 1 -
with Nu(Nl) = R(Vl) , Or Nl

and orientational information of the first network. And likewise, elimination of the orientational
inforr_nation of Jt_he second network would correspond to modifying Nl to an ﬁll with
Nu(Nl) = R(Vl).

Since by assumption the first network contains more information than the second, we will opt for

modifying N. . For our example this means that we eliminate the orientation of the second network

1
in favour of the astronomical orientation of the first network.

The modified reduced normal ﬁl we are looking for will thus be the reduced normal of the relaxed

model

Ax

= - - - 1 - 1| call, = . = . |Ax

Ay = . . - - \ A = . . .2,

y (Al Agt -AL(VI) ) - A 3)l) X3 (A AB)[AVlJ (3.2.17)
Ap
1

mx1l mxn mxn g mx(r-q) (n+n3+r-q)xl
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And since the solution of this relaxed model reads as

0 (E) = = = t -1, = =, -1=t = - t 1
= - S (P_A Q-
17 A%y 5(S (P3Al) @y (PjAl)S] ( 3 l) Ay,
o (s) =t -1z -1zt (s .
= - - ﬁ h
AC (ABQy A3) 3 (Ay AlA ), wit
(3.2.18)
= l l:t 'l
P3 =1 (ABGy A.) 3Q_ , and
= 1 - -
3 = r(S) complementary to Nu(P A ) = R(Vl) o) Nu(PBAl)

I

= = = -l = =
the reduced normal we are looking for is given by Nl (PBAl)tG- (P3A1 ). Note that since
(3.2.18) is merely obtained from relaxing (3.1.1b) to (3.2.17) the two solutions (3.2.16.b) and (3,2.18)

will be related by an appropriate S-transformation. We have for instance
(s) ] ) A% (s)
S, Nu(PBAl )

Now that we have the appropriate reduced normals N1 and N, we can proceed with the Helmert-

1
blocking method and add the two reduced normals to solve for the common unknowns. The remaining
unknowns are then found through back-substitution,

All in all the final solutions reads as:

A;ZES)_ s(s' ((PA) @ (P Al )+(P A ) @ (P A ))S]—lSt((PZAZ)tQ;lAw(E}Z\l)tGilA;'),
A§;5)= (A;Q;lAz) lA; Sy - Ale(s)),
A5(5)= (/z\;G):Il/:\B)-l/f\;Gil(A; - A1A§§s)), which can be decompased by means of
Av = (Ax;Ap;)t and /=\3 = (/_\3:- /-\l(V'lL)l- AB(V;)I) into
Aél - -[(vi (PA ) @ (P Al )(v ) ]'l(vi) (PA ) @ Lay - A1A§ES)),
Aié“: (Agailx‘\})'li\;@il[l - AV ALV D).

. [(vi);(ﬁBAl)to;Hﬁ}Al)(vi)l]'l(vi);(p A) @9 Yay - AlA?(l(S))

= (A}@ili\\})’li\;@;lu; - A (A“(S)-(Vi‘)lAél)]+(V'3L)1Af)l,
with S= R(S) complementary to Nu(PzAl). (3.2.19)

Thus if we take the customary abbreviations
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N
1

and

A
"

t -1 - - - .t -1, - - - = - .t -1 = -
- A A - A : A), N P.A.) Q- (P_A
(PR Q) (PpAp)s Np = (PSA)QET(PLA D, Ny (P3A )70 (PSA ),

(3.2.20)

t -1 - - -1 - = . -1 -
= (P.A)Q "A An, = (P_A_) Q-"A An. = (P.A.) Q="A
A1) 8,8y, 5 Ay ; Ay

we can summarize the general procedure of method III as:

a)

b)

c)

d)

e)

Reduce the normal systems of the two original models (3.1.1.a) and (3.1.1.b) to the

common unknowns: N Axl = Anl and N Axl = Anl

Relax the reduced normal system of the second network with the aid of (V )

Ny =N VD, ey ) an,
'(Vi);Nl (Vi)iﬁl(vj)l APy _ (Vj)tAal .
Add the reduced normal system of the first network:
N+ R - ROV YA An_+ AR
1 1 1171 1 - 1 1 )
v N DR o Jlasg ) LA,
By means of further reduction one gets
N+ ﬁl 0 bxg) [ b0y Aﬁl
SO N RN ol TN B S i I ’
with the solution:
-1
Aiis) - s(st (Ny+ N))S) St(Anl + a0
2 I T T T Sy PO
bp, :'[(Vl)lNl(Vl)ﬂ (V) an - Nax ")

(s) -1 2(s)
A X = (A Gy AZ) ’ (Ay - Ale )
-1
2(s) 1 -t -1 (s) 1 2 1 2
Ak = (A_Q- A3) A}Q— (Ay - Al(Axl (Vl)lApl)] + (V3)1Apl

(3.2.21)
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In the above approach to the Helmert blocking procedure we have seen that, as a consequence of our

general assumptions (3.1.1), the reduced normals N; and N, are singular. Hence, in general one can

not start from the principle that both reduced normals are 1‘egular, unless 1° there are no degrees of
freedom involved, which is highly unlikely, or 2° one assumes that the degrees of freedom are already
been taken care of before applying the Helmert blocking procedure. The reduced normals will namely
be regular if for instance the S-systems of both networks are defined a priori in their non-overlapping
parts.

The question that remains to be answered is then, whether one can still apply the procedure as
outlined in (3.2.21). With some slight madifications we will see that the answer is in the affirmative.
The important difference with (3.2,31) is however that we shall need additional transformation
parameters to take care of the a priori S-system definition.

Let us start with the two solutions one gets when the S-systems are defined in the two non-
overlapping parts of the two networks.

For the first network one would get instead of (3,2.16.a), the solution

(s,) -1

o 2 - t -1, . - t_ -1
1 A = P_A Q A A Q A

X ((PA TG (PTA D) (PrA )T “ay

(s, ) -1 (s )
o] A 2 t t -1 t t -1 A 2
2 A =S (S.AQ "A_S S Q Ay - A_A i .2.22.

X, 2( 228, 7A, 2) A, y (Ay 1A% 7 ), with (3.2.22.3)
o1 - A (statalas )'1stAt@'1, and

27272727y 272 2727y £ o1 -1t -1
S, = R(SZ) complementary to Nu(PlAz) = R((I-Al(Ale Al) Ale )AZ)'
and for the second network,

(s.) -1
o 273 N S R I
1 A = - P A Q-

1 ((PBAl) @y (PBAI)) (PsA) ; Ay, )

(s.) -1 (s.)

22937 gt -1- - -t=t -1, - - 273

A = S Q- - (Ay - i 22,22,
2 X 53( 3R ; A353) 53A3@y (Ay Abx, ), with (3.2.22.b)
-1
o - - o otst_-1- ~t-t -1
P.=1-A (S_A_Q-"A_S_) S_A_.Q-", and
3 D 373473730y T3v3) 0 7303y ot c1e -l-t -1 -
= P_A = I- - Q- .

S, R(SB) complementary to  Nu( 1 3) R{( Al(Ale Al) Al ; )AB)

These two solutions are easily verified by transforming with the appropriate S-transformations the
two solutions (3.2.16.a) and (3.2,16.b).

For the Helmert blocking procedure we have in the above case the disposal of the reduced normal

systems
“Ax. = An~ A%, = An” .2.23.
N1 X, n] and N1 X Ny (3.2.23.a)
with
N7 = (P7A ) ta T P7A L) N = (B7A ) et (BTAL)
1 ° 21 y 2717 1~ 31 y 317
and
- t -1 - e b -1
An” = (PTA Q A A = -"Ay.,
n] ( 2 l) y y ’ n (PBAI) Qy y
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But as before we cannot simply add the two reduced normals Ni' and NI to solve for the common

unknowns. What we need is a modification of Ni'

back. And secondly to incorporate (V ) to get Nl. Therefore

First to get rid of the a priori 53- system

definition. This will give us Nl

instead of (3.2.21.b), the relaxed normal system needed, reads

NZ i Nl(vl)l - N VD), bx, HI
-DNT VDRIV NI, | | sey |= - et
-RT VDRTOVD L v oRE) || e, -(vi);Aﬁl
or
R N7 []ax ] " -
_(vl)tN (vi)t&z(vi) ap | -(Vi)tAﬁl . T

Note that, contrary to (3.2.21), additional transformation parameters Ap2 are needed to take care
of the a priori §3— system definition.
By adding N”Ax_ = An” to (3.2.23.b) we get

171 1
NN N A bn7s An
Nl + Nl (V ) X1 ni+ Ang 52250
= wlelDsC
1l t-~ Lot-w 1t -m )
- A - A
(Vl) Nl (v ) Ny (V ) P (vl) n,
and after some reduction steps we obtain
Nl + Nl 0 0 Axl Anl+ An
1.t- 1.t- 1, I A
- A = - . .2.23.
(vl) Ny (vl)lNl(vl)l 0 Py (Vl)lAnl (3.2.23.d)
B A L. t-» 1 Lot-w 1 L.t -~
- A -
(Vl)2 1 (Vl)le( l)l (Vl)le(Vl)2 P, (Vl)zAnl

In a similar way as in (3.2.21) we then find the final solution as

(s )
pi F o (N RO Nanme an )
1 1 1 1 1
- t -1 ., = - t -1 = - -1 - t -1 = - t -1 -
= P A Q P A P A Q- (P A P A Q A Q- A
(¢ A , (P7A )+ ( , R ; ( , l)) (¢ ; 1) , y+(P3Al) ; y),
2 n -1 3.t (SZ)
AD - An -N Ax
P, ((vl>l l<vl>l) <vl>l( n N Bx ) -
s
1.t - - t -1 - - 1. -1 1.t = = t -1, - « a 2
=-((v P.A)Q- (P.A )V P_A - LAy-A_A
(¢ RN A ; ( A 1)1) <vl>l< ; R @y (ay 8% )
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(s_)

2 -1 1 -2 2 me 2
vo) N (v v An~ N A N7(VD) A
Ap, ((1)2 1( )) (1)[n1 A%y AN VD ap ] )
L
Lt omme b <1 —m- Lo o1 Qo =m= £ =1 o~ = 20 1 4
(V) (P.A) Q- (P.A )(V)) (V) (P.A) Q- (Ay-A_(Ax -(V) . ap.)
(v, (PsA Q- (PADKV ) (V) (PA) ; (ay-A (A% 10 18P )
(s )
:(82) t t -1 -1t t -1 2 2
Ax =5 (S.AQ AS5 ) SAQ (Ay-AAx I
2 247272y 272 22y 1771
(s ) (s )
adi P o s (tAteltAs ) tANa Ay -A (ad viad )y . via
X = - - - - .
3 3 y 373 3oy OYTRLAY P 3 °P
(3.2.23.e)

We thus see that also in case the S-systems of both networks are defined a priori, one can apply the
procedure as outlined in (3.2.21). The important difference is however, that in the above case
additional transformation parameters Ap2 are needed which, contrary to Apl, will not be
invariant to the choice of S-systems. This emphasizes once more our earlier remark about the
interpretability of the transformation parameters.

Note that solution (3.2. 23. ) is esgent;ally thga safne as solution (3.2.19) or (3.2.21). One can verify this

)
by showing that (Axl °2 y AXy , Ax; 27y transforms with an appropriate S-transformation
to (Ax< ), ~(S)’ Axgs)).

In this section we have seen how the three customary methods for connecting geodetic networks
generalize if one starts from the general assumptions (3.1.1).
As to the first two methods, it is interesting to remark that in the geodetic literature one usually
assumes either one of the following two attitudes when discussing the problem of connecting geodetic
networks: Either one places the whole discussion in the context of free networks, thereby suggesting
that free networks are really something special and that they should not be confused, let alone be
compared with "ordinary" networks. Or, one assumes the attitude that the coordinates of the two
overlapping networks merely differ by a similarity transformation, which is easily taken care of by
estimating the transformation parameters in a least-squares sense. Both attitudes are however
needlessly too restrictive. Although in the first approach one is normally very careful in stating what
type of networks are involved, one usually starts from the too restrictive assumptions that
Nu(PzAl) = Nu(ﬁBAl) = R(V;) . In the second case, however, one often neglects to state the
basic starting assumptions. It is namely not enough to say that the two coordinate sets differ by a
similarity transformation. Important is, to know what type of networks are involved. Only then will
one be able to identify which of the transformation parameters are estimable.
When reviewing the relevant geodetic literature, it is also interesting to note that those who assume
the above mentioned first attitude usually end up with the method of condition equations as solution
strategy, whereas those who assume the second attitude usually find themselves formulating the
problem in such a form that first the transformation parameters need estimation. But both methods
are of course equally applicable in principle. In fact, the aversion which is generally felt towards the

method of condition equations, does not apply in case of connecting networks, since one can argue
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that method I is more tractable computationwise than method II. In some cases at least.

As to the third method, we showed how one should go about when the S-systems are defined either
before or after the merging of the two reduced normals. Here also the fact that in general not all
transformation parameters can be treated on an equal footing, became apparant.

Some authars have proposed in the context of method IIl to give weights to some of the
transformation parameters. They argue that in case of for instance two networks which both are
known to contain orientational information, this is a way of deciding how much of the orientational
information of both networks is carried over to the final solution. This in itself is true of course, but
we do not think that in general this is an advisable way to go about, since it has an element of
arbitrariness in it. So far namely, no objective criterium has been proposed on the basis of which to
decide to follow such a procedure. It seems therefore mare advisable to decide on the basis of
statistical tests whether or not the two networks significantly differ in their orientation.

As a final remark we mention that in this chapter we have adopted the customary assumption that
the coordinate systems in which the two networks are described differ only differentially. If this is
not the case then one has to recourse to either a preliminary transformation which make the two
networks coincide approximately or to an iteration. In the next chapter we will see that in some cases

one can do without an iteration and formulate an exact non-linear solution.
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IV. GEOMETRY OF NON-LINEAR ADJUSTMENT

1. General problem statement

In the previous chapters we were primarily concerned with the linear model

Yye NcM, N = AN . (1.1)

As a general solution of the linear unbiased estimation problem we found that the actual adjustment

problem was solved by

1%, (¢ _p S Y M= R(A) @ C°,

R(A),C

and the actual inverse linear mapping problem by
2%, %) _p 7Y M- se muA),

S, Nu(A)
where B: M » N is allowed to be any arbitrary inverse of the linear map A: N + M .
In this chapter we take up the study of non-linear adjustment. A problem which heretofore has almost
been avoided in the geodetic literature. To this end we replace the linear map A by a non-linear map

y: N + M . Instead of the linear model (1.1) we then have the nan-linear model
yeNcHu, N=yWW. (1.2)

It seems natural now to extend our results of the linear theory to the companion problem of non-
linear operators. But unfortunately one can very seldom extend the elegant formulations and solution
techniques from linear to non-linear situations.

In correspondence with the linear theory the problem of non-linear adjustment can roughly be divided
into (a) the problem of finding the estimates y and X, and (b) the problem of finding the statistical
properties of the estimators involved. In order to keep our non-linear adjustment problem
surmountable we will restrict ourselves to least-squares estimation and also we assume for the

moment that map y is injective. Our non-linear least-squares adjustment problem reads then

min.2 E(x) = min. (y_-y,y_-y) =<y -y,y -¥) (1.3)
xeN yeN=y(N) = ° s s s M

(the factor 2 is merely inserted for convenience).

N . . -1
In order to solve for y and x we need non-linearmaps P: M = N and y ": M > N such that
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17y = Ply),
and 1
2° X = y'1(§), with y = o y = identity .

Due, however, to the non-linearity of map y it is very seldom that one can find closed expressions for
the maps P and y'1 (there are exceptions!), In practice one will therefore have to recourse to methods
which are iterative in nature. One starts with a given point x0 e N, the initial guess, and proceeds
,X. ... which hopefully converges to the point X. Most methods

1" 2
which are discussed in the literature (see e.g. Ortega and Rheinboldt, 1970) adhere to the following

to generate a sequence XX

scheme:
B B B .
X = x + t Ax, B8 = 1,...,n3 no summation over g, (1.4)
q+l q 9 q
(i Set g=0. An initial guess is provided externally,
(ii) Determine an increment vector qu in the direction of the proposed step,
(iii) Determine a scalar tq such that || ys—y(xq+1)| IM < | ys-y(x ) IM ,
i.e., such that the qth step may considered to be an improvement over the (g-1)th
step. The way in which tq is chosen is known as a line search strategy.
(iv) Test whether the termination criterion is met. If so, accept Xqe1 3 the value of x. If

not, increase q by one and return to (ii).

Generally one can say that the individual methods falling under (1.4) differ in their choice of the
increment vector Ax and the scalar tq. The iterative techniques fall roughly into two classes:
direct search methods and gradient methods. Direct search methods are those which do not require
the explicit evaluation of any partial derivatives of the function E, but instead rely solely on values
of the objective function E, plus information gained from the earlier iterations. Gradient methods on
the other hand are those which select the direction Ax using values of the partial derivatives of
the objective function E with respect to the independent variables, as well as values of E itself,
together with information gained from earlier iterations. The required derivatives, which for some
methods are of order higher than the first, can be obtained either analytically or numerically using
some finite difference scheme. This latter approach necessitates extra function evaluations close to
the current point xq, and effectively reduces a gradient method to one of direct search.

We will not attempt to give an exhaustive list of iteration methods which could possibly solve our
adjustment problem (1.3). For a comprehensive survey of the various methods we refer the reader to
the encyclopaedic work of (Ortega and Rheinboldt, 1970). Instead, we restrict ourselves to that
gradient method which seems to be preeminently suited for our least-squares adjustment problem,
namely Gauss' iteration method. This method can be considered as the natural generalization of the
linear case and it is the only method which fully exploits the sum of squares structure of the
objective function E.

As to the second problem, namely that of finding the statistical properties of the estimators involved

we will not present a complete treatment of the statistical theory dealing with non-linear

adjustment. We cannot expect a well working theory for the non-linear model as we know it for the
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linear one. The probability distribution of the non-linear estimator for y for instance, depends on both
the non-linear map P and on the distribution of the data. Hence, it depends on the "true" values of x
which are generally unknown. Therefore, even when we can derive a precise formula for the
distribution of the estimator, we can evaluate in general only the approximation obtained by

substituting the estimated parameter values for the "true" ones.
The plan for this chapter is the following:

As said we will discuss Gauss' iteration method in some detail. We have chosen to make use of
differential geometry as a tool for studying Gauss' method. We strongly believe namely that geometry
and in particular differential geometry provides us with a better and richer understanding of the
complicated problem of non-linear adjustment. Many of the geometric concepts developed in
differential geometry turn out to be important indicators, qualitatively as well as quantitatively, of
how non-linearity manifests itself in the local behaviour of Gauss' method and in the statistical
properties of the estimators. We therefore commence in section 2 with a brief introduction into

Riemannian geometry.

In section 3 we consider the problem of univariate non-linear least-squares. That is, we consider the
problem of orthogonal projection onto a parametrized space curve, For this purpose we first study the
local geometry of a space curve with the aid of the so-called Frenet frame and Frenet formulae. The
geometrical impact of the Frenet formulae is that if T and N are respectively the unit tangent vector
and unit normal to a plane curve and s its arclength parameter, than to an accuracy of the order of

the second power of small quantities As, we have

T + AT cos (kAs) T + sin (kas) N
N + AN = - sin (kAs) T + cos (kas) N,

i.e., the Frenet formulae embody the fact that the Frenet frame (T,N) undergoes a rotation
depending on the curvature k of the plane curve as one moves from the point on the curve
corresponding to s to the nearby point corresponding to s + As. It is this observation on which
mast of our further developments are based.

After having studied the local geometry of a space curve, we show how curvature affects the local

behaviour of Gauss' method. The section is closed with some examples and preliminary conclusions.

In section 4 we consider the case of multivariate non-linear least-squares adjustment. That is, we
consider the problem of orthogonal projection onto a parametrized submanifold. In order to
generalize the results of section 3 we have to find an appropriate generalization to the Frenet
formulae. This we find in the so-called Gauss' equation, With the aid of the normal field B, which can
be considered as the multivariate generalization of the second fundamental tensor b known from
classical surface theory (see e.g. Stoker, 1969), we then show how the extrinsic curvatures of the
submanifold affect the local behaviour of the multivariate Gauss' iteration method. At the end of

subsection 4.4 we summarize the more important conclusions. The section is ended with a subsection
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in which we show how Gauss' method can be made into a globally convergent iteration method.

In section 5 we start by considering the classical two dimensional Helmert transformation as a typical
example of a totally geodesic submanifold, i.e. a manifold for which all extrinsic curvatures are
identically zero. Next we show that for a particular class of manifolds, namely ruled surfaces,
important simplifications of the non-linear least-squares adjustment problem can be obtained through
dimensional reduction. Based on this idea we then present a non-linear generalization of the classical
two dimensional Helmert transformation, which we call the two dimensional Symmetric Helmert
transformation. We also give the solution of the two dimensional Symmetric Helmert transformation
when a non-trivial rotational invariant covariance structure is pre-sup;ﬁosed. After this we generalize
our results to three dimensions. Finally we give some suggestions as to how to estimate the extrinsic
curvatures in practice and we estimate the curvature of some simple 2-dimensional geodetic

networks.

In the last but one section we briefly discuss some of the consequences of non-linearity for the
statistical treatment of an adjustment. We also show how the first moments of the estimators are

affected by curvature.

2. A brief introduction into Riemannian geometry

We cannot expect to convey here much of the theory of Riemannian geometry. For a comprehensive
treatment of the theory we refer the reader to the relevant mathematical literature (see e.g. Spivak,
1975).

Riemannian geometry is a generalization of metric differential geometry of surfaces. Instead of
surfaces one considers n-dimensional Riemannian manifolds. These are obtained from differential
manifolds by introducing a Riemannian metric, that is, a metric defined by a quadratic differential
form whose coefficients are the components of a two times covariant positive definite symmetric
tensor field. The corresponding geometry is called Riemannian geometry.

Surfaces, with their usual metric inherited or induced from the ambient 3-dimensional Euclidean
space, are 2-dimensional Riemannian manifolds, and part of our considerations will be a
generalization of ideas from the theory of surfaces and curves. However, for n=1 or 2 there are many
simplifications that have no counterpart when n > 2. Consequently, a nhumber of new facts and

concepts will have to be introduced in the following sections.

In this section we only present briefly some of the basic notions of Riemannian geometry. We first
consider manifolds. An n-dimensional differentiable or smooth manifold can roughly be described as a
set of points tied together continuously and differentiably, so that the points in any sufficiently small
region can be put into a one-to-one correspondence with an open set of points in IR". That
correspondence furnishes then a coordinate system for the neighbourhood. Moreover the passage from
one coordinate system to another is assumed to be smooth in the overlapping region,

The manifold concepts generalizes and includes the special cases of the real line, plane, linear vector
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space and surfaces which are studied in the classical theory. The mathematician (see e.g. Hirsch,
1976) usually begins his development of differential topology by introducing some primitive concepts,
such as sets and topology of sets, then builds an elaborate framework out of them and uses that
framework to define the concept of a differential manifold. For our present application, however, we
can ignore most of the topological aspects, They are either very natural, such as continuity and
connectedness or highly technical. Moreover, our analysis in subsequent sections will mainly be of a
local nature, i.e. differential geometry in the small. For differential geometry in the small one can do
without the global considerations in most cases since one assumes that a single coordinate system
without singularities covers the portion of the manifold studied.
We have chosen to define manifolds as subsets of some big, ambient spacele. This has the advantage
that manifolds appear as objects already familiar to those who studied the classical theory of
surfaces and it also enables us to surpass many of the topological concepts. Suppose that N is a subset
of some big, ambient space le. Then N is an n-dimensional manifold if it is locally diffeomorphic to
IRM; this means that each point x of N possesses a neighbourhood V = V' N N |, for some open set V'
of IRk, which is diffeomorphic to an open set U of IR". The two sets U ¢ IRn and Vc N are said
to be diffeomorphic if there exists a map h: U + V which is one-to-one, onto and smooth in both
directions. This diffeomorphism is called a parametrization of the neighbourhood V. Its inverse
h™ : V+ U is called a coordinate system on V. When the map h™! is written in coordinates,
h'l = (xl, ooy xn) , the n functions xa s, @=l,...,n, arecalled coordinate functions,
As a simple geodetic example of a manifold, let N be the set of all planar geodetic networks having,
say, #n number of points. Each planar geodetic network represents then a point x of N. The most
obvious way to give N a manifold structure is then by taking the diffeomorphism hnl: N+ IR" as
the identity map. The coordinate functions are then the standard cartesian coordinates. However, one
could of course also take polar coordinates, cylindrical coordinates, spherical coordinates or any of
the other customary curvilinear coordinates provided they are suitable restricted so as to be one-to-
one and have non-zero Jacobian determinant.
If two sets 0 and N both are manifolds and 0 ¢ N, then 0 is said to be a submanifold of N. In
particular, any open set of N is a submanifold of N. Assume for instance that 0 is the set of all planar
geodetic networks having %n number of points, with the additional restrictions that, say, some
distances between some network points are taken to be constant, Then 0 can be shown to be a

submanifold of the above defined N.

Let us consider the linear approximation of a manifold N, i.e. its tangent space. The vectors in it are
the tangent vectors to N. Let ¢ be a point on the manifold N and let e trace out a curve e(t). In
local coordinates the curve is given by < (t) = < (e(t)), o« = 1,...,n. The velocity vector
to this curve is given by dca/dt. It is now established practice in differential geometry to
generalize the classical definition of tangent vector, and to consider a differential operator as
tangent vector. To do this we take a real-valued function E(x) defined on N and consider its rate of
change along the curve c¢(t).The rate of change of E(x) in the direction of ¢ (t) is dE/dt. In local
coordinates this becomes BaE dca/dt (here we have abbreviated 9E/3 x(Jl by 3aE) . In other
words dE/dt is obtained by applying the differential operator T = dca/dt 3a to E. It is T which

we now define as the tangent to N at c in the directions given by the curve c(t). If we apply T to the
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local coordinate  functions X we obtain the traditional velocity vector, i.e.
T(xa ) = ch /dt 3 X = d& /dt. Sa, a tangent vector T is now a differential operator of the
form T = i 9 . The space of all possible tangents at a point ¢ is called the tangent space of
N at ¢ and is awritten as TcN . In terms of local coordinates the differential operators
3a y a=1l,...,n, form a basis of TcN. If the components 'IS1 are smooth functions, then
T =T (x )aa is called a vector field on N.

In addition to partial differentiation, a second differential operator is commonly introduced on a
manifold. This is the operator of covariant differentiation. It is closely related to the concept of
connections. The subject begins by observing that the tangent spaces TXN, Tx'N at two
neighbouring points x and x' change as one moves from x to x'. A connection is essentially a structure
which endows one with the ability to compare two such tangent spaces at a pair of inifinitesimally
separated points. The connection is given by defining what is called parallel transport or parallel
translation in N. Consider TxN and Tx'N and any curve, c say, joining x to x. Let T be a tangent
to the curve c at x, then T is said to be parallely transported along the curve c if T is pushed from x
to x' in such a way to always remain parallel to itself, If t is the parameter of the curve then the
covariant derivative of T is the rate of change of T with respect to t. This covariant derivative will
differ from the ordinary partial derivative, the quantity that measures this difference is the
connection,

Let X and Y be vector fields on N. The covariant derivative of Y with respect to X is then denoted by
VXY and it is a vector field on N. The application of the operator V is defined to be linear in both its
arguments and must satisfy the chain rule Vx(fY) = X(f)Y + f Vx , where f is any real-
valued smooth function on N. With the local coordinate expressions X = )gaa y Y = \?aa we

therefore get

VY - vx&‘ 3,) = x(¥ g + \vaae

o o g %\fvaaas , (2.1)

which shows that VXY is totally specified once Va 3, is given, It is customary to express these

8
vectors fields in the coordinate fields 3Y as «

Vaaez I‘ZB ay’ a By =1,...,n. (2.2)
a

The n° real-valued smooth functions I‘ZB determine the connection and are called the connection
coefficients.

Let c(t) be acurve in N. A vector field X on N is then said to be a parallel vector field along the
curve c(t) , if its covariant derivative with respect to the direction T = e /dt aa is

identically zero, i.e.,

V.X = 0. (2.3)

There are special types of curves c(t) which are so-called self parallel. That is, parallel transport
from t to t' takes the velocity vector at c(t) into the velocity vector at e(t'). These curves

are called geodesics. Since the covariant derivative VTT measures the rate of change of T in the
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direction T under parallel transport, an equation describing the above definition of a geodesic is
simply
VTT = 0, (2.4)
where T is the velocity vector of e(t). With T = dc®/dt 3 , (2.1) and (2.2), (2.4) becomes in
o

local coordinates

s~ 4 T —=—— === = 0. (2.47)

So far we have equipped the manifold N only with a connection given by the defining equation (2.2).
We will now give it some additional structure. Assume given a smooth real-valued, symmetric and
positive-definite bi-linear map < y . > <N :TXN X TXN + |R. A manifold equipped with such a
bi-linear map is called a Riemannian manifold. The bi-linear map < .y > <N is called the metric
tensor and in local coordinates it is given by the smooth functions gaB (x) = < aa ,d >xN .

There is a unique symmetric connection on a Riemannian manifold such that parallel translation
preserves the Riemannian metric. It is called the Levi-Civita or Riemannian connection. It is that

unique connection satisfying

XY -YX

a) V.Y - V.
X \2( (2.5)

b)  Z(XY) = (VXY) + (X, VYD,
for any vector fields X,Y and Z on N. A connection satisfying (2.5.a) is said to be symmetric or

torsionfree, and a connection satisfying (2.5.b) is said to be metric.

Up till now we have considered only one manifold N. Let us now consider two manifolds N and M, and
a smooth injective map y between them, i.e. y: N + M. Then the image N = y(N)c M defines
a submanifold of M.

The map y provides a way of mapping vectors on N into vectors on M. The image of T N underyis a
tangent space of N at y(x), and is denoted by T y (x )N « This map between tangent spaces induced
by y is written yi TxN + Ty(x)N and is called the push forward of y. The precise action on a
vector X ¢ TxN ) is such that given a function f on M, so that f(y(x)) 1saa function on N, then
yx(X) € Ty(x)N is defined by (y{X)xf Xf(y{x)). With X = X 3a this would give in

local coordinates

(y;x)xf = X f(y(x)) X“aif aayi = ><°‘amyl aif ’

or

x) =x :
y, (X, (x) 3,y (x) 8, ,
where yi, i=1,...,m, are the local coordinate functions of M, ai y i=1,..,m, the corresponding

i
coordinate vector fields and y (xa) the coordinization of the map y: N + M,

Although it is possible to suppress explicit reference to the map y, to identify N with the subset
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y(N) of M and each TxN with the subspace y*(TxN) of T M, we will not do so. Recall
namely that also in the case of linear maps we are not used to identify the range space with the

domain space, although both spaces are isomorphic.

As a closing of this section we define the observation- and parameter space of our adjustment. In our
least-squares adjustment context the observation space M is taken to be Euclidean with Euclidean
metric < PN >M . The coefficients of the metric are given by the real-valued constants
g i = <ai ’ aj>M . The connection compatible with the Euclidean metric of M will be denoted by
D. And sinri:e Da' -aj =0, i,j=1,...,m, we have for any two vector fields V and W on M that
Dvw =V 3 i (WJ )d., i.e. the covariant derivative reduces to the ordinary vector derivative, The
directional derivative of a function f on M in a direction V will sometimes be denoted by va .

Manifold N will play the role of the parameter space and the non-linear map y replaces the linear
map A which has been used hitherto. Manifold N will be endowed with a Riemannian metric by pulling

the metric of M back by y. That is, given the metric of M we define the metric of N by

(x,v)N = (¥, (X),y (V) )M forany X,Y e T N. (2.6)
3. Orthogonal projection onto a parametrized space curve
3.1. Gauss' iteration method

It seems reasonable that we should begin our discussion of non-linear least-squares adjustment with
the simplest class of problems, namely those in which manifold N is one dimensional, In case of our

least-squares problem

min. (yg-voy sy ) = {y -y -¥y) (.1)
y e N = y(N) s s ® s

this means that we need to consider the problem of orthogonally projecting the observation-point
Yg € M onto a space curve.

Since we like to denote the space curve by e(t) , we replace the map y: N -+ M in this section by
the map

c: telR=N=>M. (3.2

Our univariate least-squares adjustment problem reads then

min. (y_-c,y -c) =(y_-c,y_-¢ ) . (3.3)
celi=cn) S 8 M 2 S
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From geometric reasoning it will be clear that a necessary condition for ¢ to be the least-squares

solution of (3.3), is that

d
Ceplar) Yo e = G4

d . .
must hold, where qt is a basis of Tl:lR = TI:N .

In the linear case it was necessary and also sufficient faor the residual vector to be orthogonal to the

linear submanifold N = AN . Inthe non-linear case however, it is necessary but not sufficient.
Since the residual vector ys-é needs to be orthogonal to the linear tangent space
Té(c(N) )= Téﬁ of the non-linear manifold N = e(N) at ¢, we need to know Téﬁ . But due to

the assumed non-linearity of the mapping e¢: N =|R + M, the tangent space Té(c(N)) is
generally unknown a priori. Hence our minimization problem cannot be solved directly. Expression
(3.4) does however suggest a way of solving our adjustment problem. Instead of orthogonally
projecting Ye onto the tangent space Téﬁ , one can take as a first approximation the orthogonal

projection of Yg onto a nearby tangent space, Tc N say. Of course then,
q
(e Ay, y -¢) 4 0. (3.5)
x dt s cq,M

But by pulling the non-orthogonality as measured by (3.5) back to the Riemannian manifold N, we get

(%E, Atq>t N <c*(gi), Y C)o i with At e T,R=T N, (3.6)
q q q q
which suggests in local coordinates the following iteration procedure:
-1 dc’ i .
Atq = g(tq) T (tq)gij(ys-c (tq)), i,j = 1,.00.,m. (3.7)
t =t + At ’

a+l  q q

where g(t) is the induced metric of N = IR,

This is Gauss' iteration method and it consists of successively solving a linear least-distance
adjustment problem until condition (3.4) is met.

Before we now proceed with studying the local behaviour of Gauss' iteration method (3.7), we will

first derive some local geometric properties of the space curve c itself. An appropriate approach for

studying the local geometry of curve ¢ is by using

3.2. The Frenet frame

With the tangent field (or velocity field if one considers t € IR to be a time parameter)
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d
Vo= oe (5P

of curve c(t), we obtain for non-zero velocities the unit tangent field T as
T =V/||IV .
[ V] IM
And since || T| |M = 1 for all admissible t ¢ IR, we have
0=TK(T ,T>M = (DTT,T>M + <T,DTT>M ,
which shows that DTT is orthogonal to the unit tangent field T. We define the first curvature kl as
= D 3.
k, = DT G.8)
and when kl > 0 the first normal N by
k.N. = D.T. (3.9)

Geometrically the first curvature k; can be seen to determine the rate of change of the direction of

the tangent to the curve with respect to its arclength, where arclength is defined as

t
s(t) = [ [IVEEDI| dr'. (3.10)

t
o

The curvature k, is a property of the curve ¢ and it is invariant to a reparametrization.

From the orthogonality of Ny and T follows that

0 =T (N,TH = (DN, T+ (NpDET), = (DN TR+ ks
which shows that T is orthogonal to DyN; + k; T .Similarly it follows from | | N, | |M = 1 that
0= T NNy = KON+ KNBDING,
Thus DTNl + le is orthogonal to both Nl and T. We now define the second curvature k, as
k2 = || D_H\ll + lel lM , (3.11)

and when k2 > 0 the second normal NZ by

k. N, = . .
Ny = DINy + KT (3.12)
We can proceed in this way to define ks, N3 etc. The vectors T, Nl’ NZ’ ... are called the Frenet

vectors and the equations that express the DyT, DTNi in terms of the Frenetvectors are called the

Frenet equations. For the case m=3 they read as
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DTT
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x
Z

(3.13)
DN = -k_N
T 2

In order to find the relative position of the curve ¢ with respect to its Frenetframe at some regular
point, we can study the projections of the curve onto the planes of the Frenetframe. For convenience
we assume that the curve ¢ has been parametrized with the arclength parameter s . Now let our
point, P say, correspond to the value s = 0 of the arclength parameter. The curve c(s) can then be
written in the form

c(s) = c(o) + Tos + % (DTT)Os2 + (DiT)os3 + 0(33). (3.14)

o+~

The subscript "a" denotes that the value is taken at the point corresponding to s = 0. And Landau's o(.)
3
symbol means that o(s )/s3 + 0 if s+ 0.
Since
DTT = klNl,

it follows that

dk
2 1
DT = D_(k_N = T(k_ )N kDN = —= - .
T kN (kINp # kgDgN) = 557 Np o+ kg GG T+ N,
dl<l
Substituting the above two expressions into (3.14) gives then with k] = g5 ¢
12, .3 1 2 1, .3 1 3 3
- = (s- 2 = = = o
c(s)-c(o) = (s 6l<l([])s )To+(2kl(0)s + 6l<l(0)s )N1,0+(6kl(0)k2(0)s )N2’°+ (s™).

Choose now a special coordinate system in M such that the point P under consideration is the origin
and the vectors T, Ny o and N, o are the unit vectors of the first three coordinate axes. In this
t4 ?

coordinate system the curve c(s) can be represented by the equations

i=1 1 2 3 3

c (s) = s - g kl(O)s + o(s )

2y s 2k st v L kst 4 ots))

[o] s = 2 l S + g l s + 0\S |

i=3 1 3 3

c (s) = = k (0)k (D)s + o(s ) (3.15)
. 61 2

CI(S) = o(s ), i = 4,...,m.

These equations are called the canonical representation of curve cs) at s = 0, and the leading terms
in it conveniently describe the behaviour of ¢(s) near the point corresponding to s = 0.

It will be clear that many curves exist which have up to 0(s3) the same canonical representation as
cs). That is, for s small enough these curves behave alike and are thus indistinguishable.

We will now give a characterization of such "kissing" curves and one of them, namely
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3.3. The "kissing" circle

will be used for a further analysis of Gauss' iteration scheme (3.7).
Consider two curves ¢;(s;) and cy(s,) with a common point c;(0) = €5(0). s; and s, are taken as their
natural arclength parameter. Let ¢;(sy=h) and c,(s,=h) be two points on respective c;(s;) and c,(sy).

We say that the two curves have a contact of order n if

n
ey (h) - ey(mI1 = oth™),
but
ey () - ey(hIL # oh™) ashs 0.

From this follows that two curves cl(sl) and cz(sz) have a contact of order n at a regular point
corresponding to sy = s, = 0 if and only if

i ; dci dc; dnci dnc; dn+lc; dn+lc;
¢, (0) = ¢, (0), —(0) = —(0),..., (0) = (0), (0) # (0),
1 2 q ds CISn q n dsn+l cisn+l
°1 2 1 2 1 2
i=1,...,m,

where the coordinates of the two curves are given with respect to a fixed frame of M. With (3.15)

follows then that two curves have a contact of order at least two at a common point P if and only if

they have at P a common tangent vector T, a common normal N, g and moreover, the same
H]

curvature kl(O). All such curves will thus have the same canonical representation

1 2 2
c(s) - c(o) = sT0 * 3 kl(O)s Nl,o + o(s"). (3.16)
And in the above sense of contact such curves can be considered each others best approximation.
Now, if we recall our iteration scheme (3.7) we observe that only first order derivative information is
used, Hence, for a small enough portion of the curve c(s) about the least-squares solution

¢ = c(o), we can replace the space curve c{s) by

E(s) = (o) + sT_ + % kl(O)sle,o.

In fact, with the same approximation we can replace the space curve c(s) by the circle

1

C(s) = c(o) + l<l(o)'1$1n(|<l(0)s)T0 + [kl(o)' - kl(g)'lcos(kl(U)s)]Nl,o(Z.U)

This follows from

kl(o)'lsin(kl(o)s) = s + o(s2)

and
1

-1 - 1 2 2
kl(O) cos(kl(O)s) = kl(O) -3 kl(O)s + o(s").
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Thus we can use the circle C{(s) to replace the curve c(s) in a neighborhood of P. The circle C(s) is
known as the osculating (="kissing") circle of c(s) at ¢ = c(0) or the circle of curvature.

Note that by replacing c(s) by C(s) we achieve a drastic simplification of our original non-linear least-
squares adjustment problem. First of all we achieve a dramatic decrease in dimensionality:
c(s) e M, whereas C(s) lies in a two-dimensional plane of M spanned by T, and Nl,o' And
secondly we can now exploit the simple geometry of the osculating circle C(s) in order to understand
the local behaviour of Gauss' iteration method (3.7).

Consider therefore the situation as sketched in figure 24.

C(s)

figure 24

;s is the orthogonal projection of the observation point ys € M onto the plane spanned by T, and
Nl o and C(sl) is the initial guess to start the iteration procedure.

44
Since the orthogonal projection of yg onto the tangent of C(s) at C(sl) gives the same increment

As 1 as the orthogonal projection of ;s , we have for our first iteration step

d d
<E; ’ Asl>sl,N=<Cx(_d;)’ ys-C>C(sl),M

d -
<C¥(a;)’ ys_C>C(sl),M

-IIys-C(sl)IIMsin(a-¢l) )

or

As

1= '||9s - C(sl)llM sin(a-¢l) . (3.18)

From the figure also follows that in a sufficiently small neighbourhood of c,

||ys-C(sl)||Msin a
o) = tan ¢, = 1 ’
k (0) "-|ly -c y -
l( ) ||Ys cl IM + ||)’s C(sl)||M cos a

or

4

6, (k07 11y <811, ) = 115,-CGs DI, (sin a-¢ cos o)

(3.19)

I

||;'S~C(Sl)| |M sin(a-d)l) .
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With ¢ 1° kl (0) 5, combination of (3.18) and (3.19) gives

As

i

() (O] 1y -ell, -Ds,

And with s2 = s, +As

1 1’ this finally gives the relation

S, = s. + Asl > kl(O)IIys-cI IM s, = <kl(0)N1,o’ y ¢ >M s, (3.20)

From this expression we can now formulate several important conclusions concerning the local
behaviour of Gauss' iteration method as applied to the curve c(s): First of all expression (3.20) tells us
that in case kl(O) £ 0, the local convergence behaviour of Gauss' iteration method as applied to
the space curve c(s), is linear. That is, the computed arclength of the curve c(s) from ¢ to c(sq+l)
depends linearly on the computed arclength from ¢ to the point c(sq) of the preceding step.

Secondly, a necessary condition for convergence of Gauss' iteration method is that

-1
I<N1,ys-c>é,MI <k (0)77. (3.21)

And thirdly, expressian (3.20) shows that the local linear convergence behaviour is determined by two
terms, namely the first curvature k; of the curve c(s) at ¢ and the projection <N1,y -c> M of
the residual vector y -¢ onto the first normal Nl at ¢ Thus the smaller the curvature and the
smaller the component of yg - ¢ in the direction of Nl’ the faster Gauss' iteration method as applied

to the space curve c(s) converges.

So far we assumed for convenience that the curve cdR=N+ M was parametrized with its arclength
parameter s. But in general one would of course have an arbitrary parametrization e(t), with
t # s. The gquestion that remains is then whether the above given conclusions still hold when t £ s.
To study this more general case, it seems appropriate to look for the direct analogon of the Frenet

equations (3.13). These are given by the so-called
3.4 One dimensional Gauss- and Weingarten equations

From the definition of the arclength parameter s,
t d
s(t) =I ||V(t')IIM dt', with V = c*(az) ,

t
a

follows that

s(t) = 200 = 1TVl (5.22)
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We therefore have that

2 2
= 1 = 1 ] = ' ' 1 - n 1] D .
D,V DS,T(s T) = s'D.(s'T) = s T(s')T + (s') DT = s"T « (s") -y

And with (3.22) and DTT = klNl follows that

1 -1 n ' 2
DVV = (s') “(s")V + (s') klNl.

In a similar way we find that

Dle = (s')D_I_N1 and DVNZ = (s')DTNZ.

With these last three equations we can now replace (3.13) by

DYV = (17 MMV + DN,
Dle = -le + (S')k2N2 (3.23)
DVNZ = = (S')kle

For m = 3, these equations can be considered as the one-dimensional analogons of the Gauss- and

Weingarten equations.
3.5 Local convergence behaviour of Gauss' iteration method

Now let us return to our adjustment problem and see how the equations (3.23) come to our use for
describing the local properties of iteration scheme (3.7).

First observe that (3.7) can also be written as

-1 dE

At = - — . 24
tq g(tq) dt(tq) (3.24)

Expanding the right-hand side into a Taylor series about the least-squares solution t gives then with

ﬂ%(i) = 0:

oyl & - 232 dg ivd2E ety acty-1 L5 212 212
peg=-g(£) 1 LH(E) (tg-D)+ F(2a(D) 2 BWDHLH(E)-g(0)7 £H(D) Ntg-)Prol(tg-D)D)  (.29)
And with

2 -
258 = (Ve - OWys e o
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(ViVau = alt) = (s'(1))?,

DyV = (s')'l(s")V + (s')zklNl, and

the above expression (3,25) reduces to

t (3.26)

g+l = t = (kNI yg-eda y(tg - t)

N

But this is exactly the result we obtained in (3.20) for the special case t =s, t = 0. Hence, we
have as a fourth conclusion that the local linear convergence behaviour of Gauss' iteration method as
applied to the space curve c(t), is invariant to any admissible non-linear parameter transformation. It
is thus idle hope ta think that one can improve the convergence behaviour by changing to a different

coordinate system.

Now let us assume that the first curvature k; of the space curve c(t) is identically zero.
Then

which means that the unit tangent vector T is parallel along the whole curve e(t). And since M is
Euclidean by assumption, this means that the curve c(t) is a straight line. From (3.25) follows then
that

. . ~ g2 a 1 e . .
tqe1 - € = % (20(8)72 -gf(t) -SEE(t) - g(t)1 %m] (tg-)% + o((tg-t)?). (3.27)

And with
2c R
dZ6 (1) = q(t
th ) = g(t) ,

g(t) = (s'(t))2 , and (3.28)
ng(g) = 3 s'(t)s"(t)
dt ’

for kl = 0, follows then that

tge1m € = 3 (G (e Tem(0)) (e -0)2 | . C(.29)
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Hence, for the case the curve c(t) is a straight line (kl = 0), Gauss' iteration scheme (3.7) will
have a local quadratic convergence behaviour. But how is this passible? Doesn't orthagonal projection
onto a straight line correspond to the case of linear least-squares adjustment. And if so, wouldn't that
mean that iterations are superfluous? The answer is partly in the affirmative and partly in the
negative. It essentially bails down to our earlier remarks made in the previous chapters, namely that
adjustment in the general sense should be thought of as being composed of the problem of adjustment

in the narrow sense, i.e. the problem of finding an estimate ¢ such that
)’méﬁ. <ys-y,ys-y>M = <ys-§,ys-§>M , and the problem of inverse mapping, i.e. the
problem of finding the pre-image & of § under the map y: N + M ., Thus the actual adjustment
part, namely that of finding the point ¢ in the submanifold N of M which has smallest distance to
ys e M, is essentially an observation space oriented problem. In this light we must therefore be
more precise as to what we mean by "linear least-squares adjustment”, Usually one means by "linear
least-squares adjustment’ that the coordinate functions yl (xa ), i =1,...,m @& = 1,...,n
of the map y are linear. We will, however, call a least-squares adjustment problem linear, if the
submanifold N of the Euclidean observation space M defined by the map y: N +M , is linear or
flat. For our problem of orthogonal projection onto the curve c this means that the adjustment
problem is termed linear if ky = 0. But it also means that linear least-squares problems may admit
non-linear functions c!(t), i = 1,...,m. The non-linearity in c!(t) is then only caused by the choice of the
parameter t. That is, by choosing another parameter it is possible to eliminate the non-linearity in
ci(t). In particular if one takes the arclength parameter s or a linear function thereof as parameter,
the functions ci(t) will become linear. As a consequence we see that the local quadratic convergence
factor of (3.29) is not a property of the curve cf(t) itself, but instead depends on its parametrization.
In the special case namely of t = s, we would have (s')'ls" = 0, l.e. no iteration would be necessary
then. Thus we see that with (3.29) we are actually solving for the inverse mapping problem, instead of
the actual adjustment problem.

To put the argument geometrically, consider an arbitrary parametrization of the straight line ¢ such
that the parameter t is not a linear function of the arclength s. The length ||V (t)! IM = s'(t)
of the curve's tangent vector V changes then when moving along the curve from point to point.
Hence, the coordinate expression of the induced metric of N, g(t) = (c* (gf)’ c, (g-E)>M ,
will be a function of the parameter t. But this means that when one applies formula (3.7) of Gauss'
iteration method one is in fact using two different "yardsticks"., One yardstick given by the pulled
back metric of the tangent space of the curve ¢ at point c(tq), namely g(tq), and a second yardstick,
namely g(t), the induced metric of the parameter space N itself. And it will be clear that the induced

metric g(tq) of the linear tangent space T_ N will be constant for the whole space, whereas the

t
induced metric g(t) of N itself changes fromqpoint to point. Thus when one computes the tangent

= - h
vector Atq Atq dat € Tt(:J throug

d
(Gt 8t

d
N T <cx(a)’ys-c>c(tq),M

and adds its coordinate At to tq, to obtain
q
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one is in fact neglecting that Tt N and N are endowed with two different metric tensors (see figure
25). q

s
KJCM ! ) — — metric: =
L tg,.. = 9. a
c(tl) E 1) < [’ ]>M
d
0 gg 1 2 3 4 5 6 7 8 9 . d d
Ttij : dt' . X . . ! T 3 metric: g(tl) =<E’E>
¢ At t N
1 1 1
N 0 1 2 3
t =
1 tz tl + Atl
metric: g(t) = %’g—t>
’
figure 25

And because of this neglectance one is, despite the flatness of FI, still forced to recourse to an

iteration to find t. Note, however, that if one is not interested in E, but instead is satisfied with ¢ no

iteration i{s necessary. From the linearity of the submanifold N = c(N) follows namely that
i i dci 1 dcj k Kk
= t —— t t —— t - t
6 = et ) v grm(r gl )T G gy (ymeT (k)

is independent of the choice for tq.

Since (3.28) also holds for the case kj £ 0 but ys-é = 0 , it follows that we also have the local
quadratic convergence rule (3.29) for zero residual vector adjustment problems. This is in fact not
very surprising since for both the cases kj = 0 and ys-é = 0 , we do not need an iteration to
solve the actual adjustment problem. In case of k; = 0 the actual adjustment problem is namely linear
and in case of ys-é = 0 the actual adjustment problem is indeed already solved a priori, since
y.: ¢ . Thus for both the cases ky = 0 and ys-é = 0 , the iteration is only needed for the

inverse mapping problem and not for the actual adjustment problem.

To illustrate the theory developed so far and to demonstrate the various effects mentioned we will
now give some examples.
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3.6 Examples

Example 1: Orthogonal projection onto the curve 0(2).

In this first example we take as non-linear model the two dimensional Helmert transformation only

admitting a rotation. The non-linear model reads

;i = ;icose + ;'isine (3.30)
;i = -)-<isin 6 + ;'icos 9 ,
where: - 1= 1,seeyn = number of network points,
- the tilde "~" sign stands for the mathematical expectation,

X;»y; are cartesian coordinates of the networkpoints,
- >_<i ’ ;' ; are the fixed given coordinates,
t .
(Xl ’yl yeeny xn 'Y ) ¢ 18 the abservation vector, and

- 6 is the rotation angle to be estimated.

For the observation space M = IR2n we take the standard metric, i.e.

Ca59), =85 (3.31)

with ai , 1 = 1,....2n the standard basis.

It will be clear that the above model (3.30) determines a curve ¢(€ ) in the observation-space M. To
solve for (3.30) we therefore need to project the observation vector (><l ,yl yesasy xn , yn ):
orthogonally onto e¢(6 ).

For illustrative purposes we will first derive expressions for the induced metric, the first curvature
kl of ¢(6) and the convergence factor cf. of Gauss' iteration method as applied to (3.30). After
this, we give the exact non-linear solution teo (3.30). And finally we will give an alternative

interpretation of model (3.30) by using the manifold structure of the group 0(2) of orthogonal
matrices of order 2.

Note that we can write model (3.30) in the form of

1 1
y = (I%cos e)e1 + (I%sin e)e2 , (3.32)

<)
l

t
where: (xl’yl’”"xn’yn) ’

—
It

-2 -2
igl(xi+ yi)

1
-3~ - - -t
e, = I 2(xl,yl,...,xn,yn) , and
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- - - -t
e, = I *(y ,-xl,...,yn,-xn) R

with <el,e2>M =0, <el,e1>M = <BZ’BZ>M =1 .

Hence our non-linear model (3.30) describes a circle which lies in the two-dimensional plane spanned

by the orthonormal vectors e; and e, (see figure 26).

"Helmert transformation only admitting a rotation"

figure 26

The radius of this circle is given by the square root of 1.

Thus we have immediately that

-3 - -2.1\-%
kl = 1 = [igl (x? + yi)] . (3.33)

We also see at once that the arclength parameter s of ¢(9) is given by

from which follows that the induced metric is constant along c(9).
Hence, if by any chance the least-squares residual vector ys-& is identical to zero, Gauss' iteration
method as applied to (3.30) will have a third order convergence behaviour.

To compute the local linear convergence factor

of. = [Ny, y-e)qs il

of Gauss' iteration method as applied to (3.30), we need the length of the residual vector ys-é
projected anto Ny, the first normal of c(6). Thus we need the length of the pseudo residual vector
ys~c , where ys is the vector obtained by projecting Yg orthogonally onto the plane spanned by €
and e, (see figure 26). Hence,
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;'s = <e1, ys>Mel + <e2, ys>M e, (3.34)

1 1
with <e1,ys>M = 1 igl (Xixi+yiyi)’ <e2,ys>M | i=l(yixi Xiyi)

Therefore

15 -elly= |1y Ly -11ell, 1

2 2
| \/<91”'s>M + ey - !

| <N1,ys-c > é,MI

1
2

With (3.33) follows then that

cf. = | 1 - x1, (3.35)
with 2 2
oy + Yl
A= - ,
or
B - 2 " - 2
V[.B (y.x.-x.y )+ (B (xx.+y.v.))
i=1 70 i it i=1 i i “ii
A= . (3.39")
g (§2+§2)
i=1 i i

Note that (3.35") is precisely the estimate of the scale parameter which one obtains when solving for

the two dimensional Helmert transformation

i xikcose+;/i>\sin9

x!
H

-xi)\sin9+;’i>\cos 0,

<!
I

admitting a rotation and scale (see also (5.12)).

Of course the above discussion is only meant as illustration. In practice one will not solve model
(3.30) by using an iteration method, since an exact non-linear solution is readily available. From

figure 26 follows namely that

tan © -t 2
<el’ys>M
Hence,
- ik OpxRy)
6 = tan : . (3.36)
2y Oxpey )
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It will also be clear from the figure that solution (3.36) is a global minimum of the minimization

problem
in. - - . 3.3
min.  (y -y, Y oY), (3.37)
y € c{6)
Except for the case | | ;sl |M = 0. Then namely the solution is indefinite.

We will now give an alternative interpretation of the non-linear model (3.30). For the moment this
alternative interpretation is only of theoretical interest. Observe that we can write model (3.30) in

the form of

X,y X,y
.l .l _ .l .l cos 8§ -sin © (3.38)
O P sin 8 cos 6| '’
Xn yn xn yn
which we abbreviate as
~ t
y = A Xy X X = 1. (3.39)

Thus y stands for the nx2 matrix on the left hand side of (3.38), A for the nx2 matrix on the right
hand side and x for the 2x2 rotation matrix.

We will denote the linear vector space of nx2 real matrices by M(nx2), and the space of 2x2
orthogonal matrices by 0(2):

It can be shown that 0(n) is an nln-1) - dimensional manifold. Thus, with the usual abbreviations

M=M(nx2), N=0(2),and N = AD(2)c M , we have that

dim. M = 2n, dim. N = dim. N = 1, (3.40)

and that A 0(2) describes a curve in M.
To make our new formulation (3.39) compatible with (3.30) and the metric (3.31), we take for the

metric tensor of M = M(nx2) the following definition:
def. t
SIS 2" trace ((.) () . (3.41)

It is easily verified that < .« g . >M as given by (3.41) fulfils the necessary conditions of
symmetry, bi-linearity and non-degeneracy.

With (3.39) and (3.41) we are now in the position of rephrasing our original least-squares problem
(3.37) as

. . t
min. <ys-A x,ys-A X>M = min. trace[(ys-A x) (ys-A x)) .
xeN=0(2) xeN=0(2)
And this is the formulation which we will use in our discussion of the three dimensional Helmert

transformation (see subsection 5.5).
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In the remaining four examples of this section we give some numerical results of some simple models
to demonstrate the various effects mentioned of Gauss' iteration method. In all these examples we

take the metric of M to be the standard metric.

Example 2: Orthogonal projection onto a unit circle

Our model reads as: ci:l(t) = cos(t), cij_'z(t) = sin(t),
The observation point given is: ly;= = 0.5, vy :2: 0.0, and
our initial guess reads: t0 =" (rad.)
The numerical results are:
iteration step q cizl(tq) W cizz(tq) tq
1 0.90822 0.41849 0.43178
2 0.97534 0.22070 0.22254
3 0.99371 0.11195 0.11218
4 0.99842 0.05618 0.05621
5 0.99960 0.02812 0.02812
6 0.99990 0.01406 0.01406
7 0.99997 0.00703 0.00703
8 0.99999 0.00352 0.00352
9 0.99999 0.00176 0.00176
10 0.99999 0.00088 0.00088
11 0.99999 0.00044 0.00044
12 1.00000 0.00022 0.00022
13 1.00000 0.00011 0.00011
14 1.00000 0.00005 0.00005
15 1.00000 0.00003 0.00003
table 1
Since the unitcircle has curvature kl = 1, we have with the observation point y =1 = 0.5,
i= -U 0 that <klNl, y c> = 0.5. And this local convergence factor is indeed

clearly recognizable from the above glven numerical results,

Example 3: Orthogonal projection onto a unitcircle
Again our model reads: ci:l(t) = cos(t), cizz(t) = sin(t),

1= :2
but this time we have as observation point: Yy 1 = 1.5, y; = 0.0,

s
our initial guess reads: t0 =3 (rad.).
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The numerical results are:

iteration step gq c (tq) c (tq) tq
1 0.96235 -0.27180 -0.27526
2 0.99124 0.13205 0.13244
3 0.99785 -0.06560 -0.06564
4 0.99946 0.03274 0.03275
5 0.99987 -0.01637 -0.01637
6 0.99997 0.00818 0.00818
table 2

Again we have here a curvature ki=1. In contrast with example 2, however, we have that

<kl!:ll, ys-c> &M = -0.5, which follows from the fact that the residual vector

Yoo ¢ has a direction opposite to that of N,. Thus, when compared to example 2, this third

example reveals another feature, namely that when the observation point yg and the centre of

curvature are on opposite sides of the curve, the convergence factor will be negative. As a

consequence the steplength of each iterationstep will be too long, resulting in an overshoot. Hence,

the oscillatory behaviour of the abave iteration.

In the previous example the obervation point Yg and centre of curvature were on the same side of the

curve. And in that case the steplength will be too short (see figure 27). This effect is indeed clearly

recognized from table 1 where the points in the sequence ty, ty ... approach t  from one side.

§
\< 2

n)

figure 27

Example 4: Orthogonal projection onto a straight line
Our model reads as: ci=1(t) - elOt, i=2(t) = el0t

1=
the observation point is given by: Y = 0, Yo
the initial guess reads: t,=0.

C(s)
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The numerical results are:

: : i=1 i=2

iteration step q c (tq) c (tq) tq
1 5.57494 5.57494 0.17183
2 3.33967 3.33967 0.12059
3 2.77267 2,77267 0.10198
4 2.71881 2,71881 0.10002
5 2,71828 2.71828 0.10000

table 3

Since the curve onto which the observation point is projected has no curvature, the local convergence
behaviour of Gauss' iteration method as applied to the above model must be quadratic. In fact, with
% (s' (E))'ls--(E) = 5 for the above model, the local convergence rule of (3.29) is easily
verified from table 3.

When viewing the last column of table 3 we also notice another interesting feature. We see that all
iterates tq except the inijtial guess t stay on the same side of the solution E.The explanatian is that

ZUt, is monotonic and

the induced metric function, which for the above model reads g(t) = 200 e
increasing. With a monatanic and increasing metric function one will namely have an overshoot. In
the above iteration this has the following effect. Since t < E, we see that with the graph of g(t)
we are going uphill. Hence, in the first iteration step we will have an overshoot. Thus t; > E

But for the next step this means that with the graph of g(t) we are going downhill. Hence, for the
second and succeeding steps we will have an undershoot, which explains why t;, t,... all approach t

from the same side.
Example 5: Orthogonal projection onto a unitcircle with zero residualvector

Our model reads: ¢'=1(t) = cos(t), ci=.2(t) = sin(t),

the abservation point is given by: y;z = 1.0, yS: = 0.0, and
the initial guess reads: tD =" (rad.).

The numerical results are:

. . [:l i:l
iteration step g c (tq) c (tq) tq
0.99694 0.07821 0.07821
2 1.00000 0.00008 0.00008
1.00000 0.00000 0.00000

Although the unitcircle has a curvature of k; = 1, the observation point lies on the circle. Hence, we
expect a local quadratic convergence behaviour governed by rule (3.29). However, a closer look at the
above results reveals a third order behaviour instead of second order. The explanation is given by the

fact that t equals the natural arclength parameter s of the unit circle. Thus %(s’(t))'ls"(t) =0.
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3.7. Conclusions

In this section we have considered the univariate minimization problem of orthogonally projecting a
given observation paint y; onto a smooth curve ¢ in M. As a natural generalization of the linear least-
squares problem we obtained Gauss' iteration method (3.7) which consists of successively solving a

linear least-distance adjustment problem until the necessary condition of orthogonality,

<c¥( %T ), ys'c>c(E),M = 0,

is fulfilled. At each iteration step g+l the observation point Ys is orthogonally projected onto a new
tangent space Tq(y ) (e(N)) ,which will be close to the previous one, To(p j(e(N)).

Hence, the rate in w?ﬁch the tangential part of ys-c(t )decreases will depend on the rate of
change of tangent spaces. And since curvature is defined as the measure of the rate of change of
tangents, one can expect the local behaviour of Gauss' iteration method to depend on the curvature of
curve c. Through geometric reasoning we found that the local behaviour of Gauss' method is properly

described by
tqel - t = ( kyNy, ys-c>é’M(tq—t) + o((tg-t)).
Hence, a necessary condition for convergence is
- -1
| (Nps ygme ) gyl < k()77

and the rate of convergence is linear.
Moreover, it will be clear from the pictorial presentations given earlier that ¢ is a strict local

minimum if
. ty-1
<N1! ys'c>c,M< kp(t)™=.

We also found that the local convergence behaviour of Gauss' method is invariant to any non-linear
admissible parameter transformation.

The decisive factors which determine the local convergence rate are given by kq and ys-é. If
either of them or both are equal to zero, then Gauss' method will have a local quadratic convergence

behaviour:
P o= £yy-1 £ £y2 Y2
tqer -t = 3 ((s"(E))7dem(£)) (tg-8)2 + o((ty-8)2) .
Instead of solving the actual adjustment problem, one is then solving for the inverse mapping
problem: given ¢ find the pre-image t under map c: t € N=IR+M,

Consequently, the local quadratic convergence behaviour will not be invariant to a reparametrization.

In the next section we extend our results to the multivariate case. Can we expect the generalizations
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to be simple and straightforward? In most cases yes, although there are two points which are worth
mentioning. Firstly, when we consider manifolds other than curves, we must in same way take care of
the increase in dimensions. And secondly, we must recognize that a surface in a three dimensional
space is the simplest object having its own internal or intrinsic geometry. In our investigation of the
space curve oft) we were lead to the invariants of curvature. But these are invariants rather of the
way the curve is situated in space, than internal to the curve. That is, they are extrinsic invariants. A
curve has no intrinsic invariants, since essentially the only candidate for this status is the natural
parameter of arclength s. But s is by itself inadequate for distinguishing the curve from, for instance,
a straight line, i.e. we can coordinatize a straight line with the same parameter s in such a way that
distances along both curve and straight line are measured in the same way. For surfaces and
manifolds in general the situation is different. It is impossible, for instance, to coordinatize the
sphere so that the formula for distance on the sphere in terms of these coordinates, is the same as
the usual distance formula in the ambient space. A consequence is that where in the univariate case
the possible local quadratic convergence behaviour of Gauss' method could be reduced to a third order

behaviour by taking the arclength s as parameter, this will not be possible in the multivariate case.
4. Orthogonal projection onto a parametrized submanifold
4.1. Gauss' method

In this section we will consider Gauss' method for the multivariate case of non-linear least-squares
adjustment. Thus we assume dim. N = n > 1. Furthermore we assume that the imbedding of the
n-dimensional manifold N into the m-dimensional space M is established by the injective nonlinear
map y, i.e. y: N + M.

When we speak of the metric of N we mean as before the induced metric, i.e. the metric obtained by

pulling the metric of M back to N :
<X,Y>N 2 <y‘ (x), Y, ) >M for any vector fields X,Y on N.
Now, consider again the least-squares minimization prablem

mine (Y =¥y my ) = (Y Yay -tV (4.1
y e N = y(N) 8 N M y N .

For y to be a solution to (4.1) we have as necessary condition that the resndual vector y y must

be orthogonal to the tangent space TyN of N at Y, i.e. we have that

(7,03 2,y -y), = 0, 4.2)

must holdat y e N.

Due, however, to the assumed nonlinearity of map y, the tangent space T;N is generally unknown a
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priori. Hence, our adjustment problem cannot be solved directly in general. But as in the previous
section, (4.2) suggests that we take as a first approximation the orthogonal projection of yg onto a
chosen nearby tangent space Ty N of N at yq = y(xq). Of course then
q
- 0. 4.3
(v, (a,)sy, y)yq,M;é (4.3)

But by pulling the non-orthogonality as measured by (4.3) back to the Riemannian manifold N, we get

<aa’qu>qu = <Y,‘3a)’ys'y>qu ) with Ax e quN : (4.4)

And in local coordinates this expression suggests Gauss' iteration method:

B Bo i i
Ax = (x )3 (x Jg. . (y -y'(x))

q J q o’ q glJ Yey q (4.5)
xB = xB + AxB, i,j=l,ee.,m; a,B=1l,...,N .
g+l q q

This scheme is thus the multivariate generalization of (3,7), and it consists of successively solving a
linear least-distance adjustment problem until condition (4.2) is met.

In order to understand the local behaviour of Gauss' method we shall now proceed in a way similar to
that of the previous section. One of the problems, however, we have to deal with is the increase in
dimensions. Nevertheless, the linearity of the local rate of convergence of Gauss' method (4.5) is

easily shown. From Taylorizing

Ba
(y{g aa),ys—)')qu

about the least-squares solution follows namely

]
x
{

- Ba _ Ba _ Y_2Y 2 2
Xqe17%q = Yy (9 30y, y);M+ Dyi(aY)O,(g 3, )Y, y};M(xq XY) + OC I x-%115)

Ba Bo Y %Y
Y,(9 73, )syg-y)- D ("8 ),y -y)~ (xD-xT)
vy (6°%9, ),y )yM+ ( vy (3, )7x(9 300, y)yM XY -%T)

Bo 2 2
+ (v, ("% ), D,l(aY)<ys-y)>;M(xg-xY> + O | x =811 ).
And since
B -
<y¥(g aaa),ys_y>;M: 0 and Dy (a )(YS‘Y) = 'y¥(a‘Y)’
LI
we get

B B _ o 2
X178 _<Dy¥(aY)y¥(g aa),ys-y>;M(xE-RY) + O xg=211 %), .6

111



which proves our statement. Thus, for points close enough to the solution the coordinate-differences
of the current point Xg+l and the solution X depend linearly on the coordinate differences of the
previous point xg and X.

Upon comparing (4.6) with our univariate result (3.26) we see that we still lack a proper geometric
interpretation of the convergence factor of Gauss' method (4.5) although we can expect that in some
way the curvature behaviour of the submanifold N at y will be involved. To make this statement

precise it seems appropriate that we look for the multivariate analogon of
4.2. The Gauss' equation

as given in (3.23).

To do so, we first recall that the connection D of M satisfies

gW = fV{(g)W + fgD W, 4.7

DfV v

for all smooth functions f,g: M =|R and vector fields V,W on M; that it is torsionfree, i.e.

DVW - DwV = VW-WV, (4.8)

for all vector fields V,W on M ; and that it is metric, i.e.

DU<V’W>M = (OVsW)y + (V,D W), (4.9)

for all vector fields U,V,W on M.
We say that a vector field U on M is an extension of a vector field Z on N, if U restricted to N

equals the pushforward of Zon N, lLe.

|
IN

y*(Z), (4.10)

or in components

i i_a
U, -
IN a

n

Q
<

N

Now, let X,Y and Z be three vector fields on N and let V, W and U be their extensions. As in (3.23),
we then decompose DVW restricted to N , into a tangential and normal part:

DW - = Tang.(Dvw

Wik + Norm. (D W, -

IFJ) VN

(4.11)
say
= y*(VXY) + B(X,Y) .

With the connection properties (4.7), (4.8) and (4.9) of D we can then derive the following properties
for V and the normalfield B (see e.g. Spivak, 1975):
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(i) Let f and g be smooth functions on M and denote their pullbacks by f and (5 respectively, i.e.
f=foy, g=g o y. From(4.7),(4.10) and (4.11) follows then that

(4.7)

vagwlh-l 2 fV(gIW + ngVW}IN
(4.10) X(3)y, (V) + T3 DM 5
(4.11)

y*(?x(é)v + fg v, Y) + fg B(X,Y)
or
y*(V?ng) + B(fX,gY¥) = y*(fX(g)Y + fg VXY) + fg B(X,Y) .

Hence,
V?xE’Y = fX(g)Y + fg V,Y  and B(fX,gY) = fg B(X,Y). (4.12)

Since additivity is trivial to prove, these two equations show that V defines an affine connection on
N and that B is bilinear in its arguments.
(ii) From (4.8) follows that
i j i j
(DW-D V) - = (W-W) - = (V3 W -W3. V')a, -
vVoow | IS V) il

N N

And with (4.10) this gives

i i
(Dvw-DwV)m (xBaB<aay ) - YBaB(aay >51))aj

j
>,y <x336\/’ . \ﬁasf‘)aj

y*(XY-YX) .

Hence, with (4.11) we have

yx(VXY) + B(X,Y) - y*(VQ() - B(Y,X) = y*(XY-YX) ,
or
VXY - VQ( = XY - YX and B(X,Y) = B(Y,X) . (4.13)

But this shows that the torsionfreeness of D implies that V is torsionfree and that B is symmetric in
its arguments.
(iii) From (4.9), (4.10) and (4.11) follows that

Du<v,w>“\-J ({DV,W) + (V.0 W) i
3 (X ,y, (YD) + (y, (X),y (V,V)),

(VZX,Y)N + (x,VZY>N

"

And since
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BuVsW) = VW) 1 =z Y = v, Y

it follows that also V is metric, i.e.

VAXY) = (UXY ) + (XTY) (4.14)

Concluding, (4.12), (4.13) and (4.14) taken together show that V is an affine, torsionfree and metric
connection of N and that the narmalfield B is bilinear and symmetric in its arguments. Hence, V is
the unique Riemannian connection (also known as the induced or Levi-Civita connection) of N which
is completely described by the induced metric  (.,. >N .

Those familiar with Gaussian surface theory will probably recognize the connection V more easily if

we show how the connection coefficients I‘(Y! defined by

B’

v, 9 - rZB 30 WBSY = Lewun, (4.15)
o

can be computed from the coefficients of the induced metric tensor <.,. >N . Since we assume

that partial derivatives commute, it follows from (4.13) for X = aa, Y=23 that

B’
Y Y
= r.=T_ . .
Va aB Va aa o Top Ba (4.16)
a B
With X = aa, Y = 38, Z= aY and (4.15), we can write (4.14) as
$ §
3 =T T .
YgaB YGQGB * Ysgda
Cyclically permuting the indices gives then three equations which, with (4.16) show that
r’ :ngd{ag +3.g. -9} 4.17)
aB 2 a“Bs B78a §ap” ° )
This is Christoffel's second identity well known from surface theary.
The decomposition formula
D\)Nm = y;(VxY) + B(X,Y) |, (4.18)

which brought the above derived properties af V and B about is known as Gauss' equation.
Its complementary counterpart, i.e. Weingarten's equation, is obtained from applying Dy to a

normalfield, N say, on N , followed by an orthogonal decomposition:

BN = - %5000 + AN (@39

And with a similar derivation as used above one can show that KN(X) is bilinear in N and X, and that
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1 1- -
D is a metric connection for the normalbundle TN of N in M (see e.g. Spivak, 1975).
We shall now show how equation (4.18) for V = y*(aa), W= )"((aB ), le.

By (5 yx'%) = (Y 3) + BGR,,3), (4.20)
x a

d
specializes to the first equation of (3.23) if we assume n=1, and replace y by ¢ and aa by Tk

With these assumptions, (4.20) becomes

d d d
D (_)c ( ) *(vd_d—t) + Bc(ﬁ_t’&) . (4.21)
x dt dt

(We have given B, the subindex "c" to emphasize that the normalfield B, belongs to the spacecurve ¢

viewed as a one dimensional manifold),
With (4.16) and (4.17) it follows that the first term of (4.21) can be written as

— -ldg,.yd
c (Vd E) *(2 g(t) dt(t) dt) . (4.22)
dt

For the second term of (4.21) it follows from

0= DV<V,N>M = (DVV,N)M + (V,D‘PI>M ,

d
and (4.19), (4.21) and V = cx(dt) that

(8 c dt dt > (e (dt) ¢ (m( ))>M :

d d 1
if L ty. - ; ;
Hence, if we p(;lt Bc(dt’dt) Bc(t)Nl, N Nl where Nl is a unitnormal, and
m (—) =k (t) — we get for the second term of (4.21) that

d d
Bc(x—it’dt) = g(t) kl(t)Nl . (4.23)
Thus, with (4.22) and (4.23), (4.21) can be written as

D » (%) = c*(% (t) (t) —) + g(t)k, (N
(G
or as

QY = (57 () len (v + (57 (1)K (0N, (4.26)
1
since gt) = (s'(t))2 and V = c*(%) .And (4.24) is indeed the equation which we already derived in

(3.23).
Note from comparing (4.20) and (4.24) that
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st tene) L generalizesto ) 3 ,
dt aB’y

and
(s'(t))zk (t)N generalizesto  B(3 ,3 ).
1 1 a B

Hence, we can expect that the curvature behaviour of submanifold N is contained in the normalfield

B. Let us therefore study
4.3. The normalfield B

in more detail,
According to (4.23), the first curvature ky(t) of a curve cR+ M can be obtained from the
normalfield B, through

<B(

cdt ’ dt >M k (t)<

i dt) . (4.25)

Now in order to find the proper multivariate generalization of this expression, one of the problems we

have to deal with is the increase in dimensions. We can, however, get round this difficulty if we

consider two curves, one in N, which we denote by C;: IR > N, and one in Ne M, which we
denote by c :IR+ Nc M. And furthermore we assume that c,=Yyo cye Thus we have the
following SItuatlon
¢, y )
t elR N Nc M
2

With the connections D and V of M and N respectively, we can then apply the univariate Gauss'

decomposition formula twice. Namely to curve cy and to curve ¢y, With

V=e, (E) and X = ©lx (E)
this gives

va = cz*((S'(t)) "(t) ) + (s'(1)) k (t)NZ,l’ (4.26.a)
and

WX = e ((s () tene) §) + (s’(t))zkl,l(t)Nl’l, (4.26.b)

where k and N are the first curvature and first normal of curve e, in M, and k and N are
2,1 2,1 2 1,1 1,1

the first curvature and first normal of curve c in N.

Note that the arclength parameter s is equal for both curves since c2 =y oe,. Hence

1
V= y*(X). Application of the multivariate Gauss' decomposition formula gives then

BV = ¥, (5X) + BOGX) .
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And substitution of (4.26.b) gives

' -1 " d ' 2
DVV = y*(cl*((s (t)) s (t)dt)) + y*(s (t)) kl,l(t)Nl,l) + BOX,X)
ar
[ -1 n d ' 2
DVV = CZ)(((S (t)) s (t)dt) + (s'(t)) kl,l(t)yx(Nl,l) + BOGX) . (4.27)

From comparing (4.27) with (4.26.a) follows then that

2 2
(t))k tIN = (s'(t)) k t N B(,X) .
(s'(t)) 2,1( ) b1 (s'(t)) 1,1( )y, ( 1’1) + B(X,X)
Hence, for curve e, which lies entirely in Nc M, the normalfield B equals the orthogonal companent

of (s' (t))zk2 l(t)N2 1 Thus for an arbitrary unit normal N ¢ Ty!\_l we have
?

’

<|3(x,x),N>M = (kz’l(t)Nz,l,N>M (x,x)N , (4.28)

2
since (s'(t))" = (X,X> .
We call <k2 l(t)N2 l,N \ the extrinsic curvature of curve ¢, with respect to the unitnormal N and
denote it by kN(t) (t,he first curvature kl,l(t) of curve ¢; in N is sometimes called the intrinsic or

geodesic curvature). We can now write (4.28) as

1.
{(BOX,X),N )M = kN<X,X>N , With N e TN, X TN (4.29)

and this expression can considered to be the praoper generalization of (4.25). As a consequence of the
increase in dimensions we thus see that to every combination of a tangent vector X and a
normalvector N, there belongs an extrinsic curvature KNy

Tangent directions for which the extrinsic curvature kyy attains extreme values are called principal
directions with respect to the unitnormal N. And the corresponding extrinsic curvatures are called
principal curvatures with respect to N. Thus in order to find the principal directions- and curvatures

for a chosen unit normal N, we need the extreme values of the ratio

B(X,X),N a
W,V X=X aaeTxN.

Recall from linear algebra that this problem reduces to the eigenvalue problem

(BOGY)N), = )N<X,Y>N, VYeTN . (4.30)
The eigenvectors X determine then the mutually orthogonal principal directions and the
corresponding eigenvalues the principal curvatures.

. . . r
We will denote the n principal curvatures for the normal directions N by kN’ r=1,...,n, and

assume that
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kt];lzk:lz'“-zk:l' (4.31)

The corresponding mutually orthogonal principal directions are denoted by X , r=1,...,n.
For later reference we define the mean curvature l_<N of submanifold N = y(N) for the normal

direction N as the average trace of B:

- 1l , a8 1 r
= 5o BOLINY == 8 4.32)

and the unique mean curvature normal N of N as
R=2¢g®Ba ,a )N N = RN, (4.33)
n a BT pM p P
hi
where N_, p=1,...,(m-n) is an orthonormal basis of T N.
p y
Now that we have found the geometric interpretation associated with the normalfield B, let us return

to our nonlinear least-sguares adjustment problem and apply our results to obtain a geometric

interpretation of
4.4. The local rate of convergence
of Gauss' iteration method.
Recall from (4.6) that
"24‘*8 - <DY,(3Y )yx(gsaaa)’ ys-y>“ M (XZI-QY) + 0l xq-R' |2)°

y

But Gauss' decomposition formula states that

Ba _ Ba Ba
D, (a ACEE IR ym(Va g 3 )+ B(g aa,aY) .
Xy Y
Hence,
Y4
b g- = (B Dy oy)g yO0- )+ O Ixg- 11D, (4.34)

R 1.
since ys-y e T.N.
Thus we see that indeed the extrinsic curvatures of submanifold N at y with respect to the normal
direction ys-§ govern the local convergence factor of Gauss' method. We can rewrite (4.34) in a
form which better resembles our univariate result (3.25) if we make use of the eigenvalue problem
(4.30). Assume therefore that Xp T = 1yeeeyy forms an orthonormal basis of principal directions in
T N. Then

X

<B(aa’aB)’N>9M >€ = k':' gas%i (no summation over r).
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With
)ﬁ -f(Bzur XS, )P_RB:UI')P
g+l qtl r q q T
and

N= (y -y vl
expression (4.34) can then be written as

r r ~ r t s
= - O .
Yol a1y Yy Uy (UthSUq)

Hence, we have

r r r t s .
Ugel <kN N,ys-y>9M ug * O(uqstsuq) r=l,..,n  (NO summation over r). (4.35)

Compare this with our univariate result (3.26).

With (4.35) we are now able to generalize some of our conclusions of section three:

(i If
r
|<kNN’ ys-y>9M| <1, r=1,...,n, (4.36)
and

Xg i8 sufficiently close to &,
then the sequence {xq} generated by Gauss' method converges to R.

(i) The local convergence behaviour of Gauss' method is determined by the combined effect of

the curvature behaviour of submanifold N at ¥, and the residual vector ys-§.

(iii) Since the extrinsic curvatures are a property of the submanifold ﬁitself, the local
convergence behaviour of Gauss' method is invariant to any admissible parameter
transformation. Hence, we cannot expect to speed up convergence in general by choosing a

particular parametrization.

(iv) Gauss' method has a local linear rate of convergence. From (4.35) follows that

(x> B)

o B
q+l-2 )gaB(R)(qu_R

lim

1 ~ n ~ 2
m < (max {1k |y -yl e | Hly_-yll } ).
a+ (xc; _Ra)guB(g)(xz -gB) kN s M kN s M

(6.37.a)
Hence, the local convergence factor (Icf.) of Gauss' method reads

1 ~ n -
lef. = max. {1k | yg=yly » Ikg ! H ys-YIlM} . (4.37.b)
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Note that since <B(a ,aB) ’N>M need not be positive definite, the extrinsic curvatures can
a
either be positive, zero or negative. But they are always real, since B is symmetric in its

arguments.

v) From the geometry of our non-linear least-squares problem follows that the solution y is a
1 N ~
strict local minimum if 1 - kN ||ys-y| |M> 0. The fact that y is a strict local minimum

does however not ensure local convergence of Gauss' method. See (4.36).

(vi) If kf: < 0, then the observation point yg and the with kf: corresponding centre of
curvature lie on opposite sides of the submanifold N. Consequently, one will overshoot the
target x along the principal direction X, in each iteration step if l{l < 0. Hence, the
iteration will then show an oscillatory behaviour along the direction Xr.

Similarly, one will have an undershoot along the direction X if kf: > 0 (see also example 3

of the previous section).

An interesting point of the above conclusion (vi) is that it indicates the possibility of adjusting the
steplength in each iteration step with the aid of the curvature behaviour of KI, so as to improve the
convergence behaviour (4.35) of Gauss' method. Let us therefore pursue this argument a bit further,
Instead of (4.5) we take

R N (4.38)

where A8x is provided by Gauss' method and t_ is a positive scalar, chosen so as to adjust the

q
steplength. Instead of (4.35) one would then get

r r r t S
Yge1 T [(l'tq) SR yM tq] CH O(qutsuq)’ “.39)

r = 1,...,n; N0 summation overr,

As could be expected, it follows from (4.39) that the scalar tq should be chosen less than one if all

extrinsic curvatures are negative, and greater than one if all extrinsic curvatures are positive. Now
let us investigate what the optimal choice of tq would be. Since the in absolute value largest

coefficient of u;, r=1,...,n, in(4.39) is given by

1 n
max {1(1-t ) + (N =y)e b 1o 1Ct ) + (g Ny -yyoy b 11

it follows that the optimal choice of tq is given by the solution of
- 1 n
in. . 1-t N,y -y)., t 1-t N,y -y).,, t .
" >U[max Tt + (g Ny Yoyt 11t )+ (g Ny -y)oy b 1)
q
From figure 28 follows then, that if y is a strict local minimum, the optimal choice for tq iss

2

= 1
2 (N, T

t
q

. (4.40)
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n
G0y, g

1
|(l-t)+<kN N,ys-y>;,Mt |

1 >

1
1- <kN N, ys_y>§,M

1

n
-Gy Ny 05y

2

2 - <("|i1+ k,Z)N, ys-y>;,,M

figure 28

Substitution of (4.40) into (4.39) gives then

1. n 1 r
r <(kl'\l-kN)N’ys-y>§'M ) <(kl\l-kN>N’ys-y>§M r

t s
Ygel T 1 n B 1 n uq * C)(uq‘stsuq)' (4.41)
a 2- <( kN+kN)N’ ys'Y>9M 2- <(kN+kN)N, Ys')’>;, M

And from this follows that the smallest attainable linear convergence factor (Icf.) for Gauss' method

with a line search strategy is given by:

lef. = . (4.42)

Note that although now local convarglence is guaranteed if y is a strict local minimum, convergence
n

can still be very slow; namely when kN-kN >> 0 for instance.

The above discussed Gauss' method with the optimal choice (4.40) is of course not practical
executable as such, since we generally lack the curvature information needed. Nevertheless, the
above results are of some importance since with (4,42) we have obtained a lower bound on the linear
canvergence factor attainable for Gauss' method with a line search strategy. This means that when
one decides to use a line search strategy in practice, one should choose a strategy which gives a rate
of convergence close to (4.42).

Apart from the minimization rule which will be used in the next section to establish global
convergence, we shall not discuss in the sequel any of the existing line search strategies. For details
the reader is therefore referred to the relevant literature (see e.g. Ortega & Rheinboldt, 1970). Our

decision of not including a discussion on various line search strategies is mainly based on the
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following important conclusion:

- 1 n . . . .
(vii) If <(kN+kN)N,ys—y>9M is small, then tq-l is a good choice for a line search strategy (see
(4.40)). Hence, for small residual adjustment problems and moderately curved submanifolds
N , Gauss' method without a line search strategy has a close to optimal rate of convergence.
In fact, if either B=0 or Yg = 9, one must choose tq = 1 in order to assure a local quadratic

convergence behaviour,

(viii)  From (4.35) follows that Gauss' method has a local quadratic convergence behaviour if either
the normalfield B vanishes identically on h-l, i.e. B=0, or ys € h-l, i.e. yg = y. Submanifolds
for which B = 0 are called totally geodesic. This as a generalization of the concept of a
geodesic ("straight line™) for which the first curvature vanishes identically.

The local quadratic convergence behaviour is described by

Y _oy_ 1oy a o, B B ol 13
xq+1 &= > I‘aB(ﬁ) (xq % )(xq &)+ o(||xq &7y . (4.43)

Of course, we still have to prove (4.43). But it is reasonable to expect that (4.43) holds, since we know
from the previous section that for geodesics Gauss' method has a local quadratic convergence
behaviour with convergence factor % (s'(i))'ls"(f:). And we also know that (s’ (t))_ls"(t)
generalizes to the Christoffel symbols of the second kind I‘ZB.

If B=0, then TyN = N which means that our actual adjustment problem is linear. Hence, if B=0 then

a

= - ol(y - o
y=y, + PTN,TN (ys yl) for sare y e N , (4.44)

from which follows that

(yi“(aot),ys-y)qu = (y*(aa),PTﬁ,mJ-(ys-y)) o = (y*(aa),fl-y}qu . (4.45)

This already shows that indeed the convergence behaviour will be the same if either B=0 or Ys = y
holds. Remember that in both cases we are actually solving the inverse mapping problem: given
y = y; + PTN,Tﬁl(ys_yl) for sare ye N , find the pre-image X under map y. To prove the
quadratic convergence behaviour (4.43), we Taylorize the right-hand side of

B _ Ba _
SRS ACRRRA y>qu ,

about the least-squares solution y. With (4.45) and x2+1 = xi + Ax?q this gives
8 g1 Ba Y .Y, 8 .8 3
Xl & = 2(Dy,‘(aY)ym(g 3a),y*(36)>9M (xQ-% )(xq-ﬁ )+ O(Iqu-ﬁll ). (4.46)

But according to Gauss' decomposition formula we have
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Ba Ba
(D x »x (g a )y, (3 )} <y*(VaYg 3,0y, (s ))M =<V3Yg 3 1% ), -

And since
Ba B Tp
V, a =-T 3,
a T p
aY Y
this gives
Ba B
=- T
<Dy*(aY)’;‘9 3, (3%)), = - L.

Hence, with (4.46) the quadratic convergence rule (4.43) follows.
(ix) As another generalization of the univariate case we have that the local quadratic
convergence rule (4.43) is not invariant to nonlinear reparametrization. This follows from the

fact that the Christoffel symbols are not the components of a tensor.

With the reparametrization X o (xa )}, their transformation law reads namely as

v a9
FY _{rYex 9x | }9x . (4.47)
o Ba2af P

Note that this is the generalization of the easily verifiable tranformation rule

2 -
(s ()7 Lem(E) = (st (t)) Tom(ry SESE, 4L} &

dt dt dt2 dt

With respect to the univariate case there is however one big difference. In the univariate case we
could always find a parametrization for which (s'(t))'ls"(t) would vanish identically. In the
multivariate case however this is only possible if B =0. The explanation is that in the univariate case
TtN and N are identifiable irrespective the curvature of the space curve ¢, whereas in the
multivariate case TxN and N are only identifiable if B = 0. Namely, only if B = 0 can one find a

parametrization for which < ey > reduces to the standard metric globally.

N Y
Nevertheless there do exist parametrizations for which the Christoffel symbols raB vanish locally.

Coordinates for which the Christoffel symbols vanish at a point, x, say, are geodesic polar

o
coordinates.
The procedure of finding geodesic polar coordinates is the following:
According to the theory of ordinary differential equations a geodesic c¢(s) through a point Xg is
locally uniquely characterized by the coordinates of x, = c(o) and the tangent vector c, (—) at
xge Hence a point x = c(s) € N on this geodesig‘ can be identified by c ( )at X, and s. Or in
coordinates: the point x € N with coordinates x = ¢ (s) can be 1dent1f1ed locally with the point
X e Tx N bhaving coordinates

o

a a dca

X = R o) . (4.48)
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Thus, since the geodesic c(s) is locally uniquely characterized by X, = c(c) and c‘(%) at xq,

there exists locally a diffeomorphism from N into Tx N . Let us denote this map in coordinates by

o
)é! = Xa()(a).
(4.49)
From the Taylor expansion of ¢(s),
Q a o dca 1 dzca 2
x =c(s)=x +— (0)s + = (0) s + «uu
o ds 2 2
ds
follows then with
dzca . T Qa ch dcY 0
- — -0,
d82 BY ds ds
that
Qa B Y
o] a Qa dc 1_a dc dc 2
= = — - =T — — (0 e
X c (s) LI (0) s 2 Tay (0) o5 (D) & (0) s" +
Or with (4.48),
a 1_a By, Y Y
= -=T - -
X Ne 2 Tay ()P xo)(X xo) +
The inverse of this relation gives then
a 1l _ o B B.,Y Y
= =T - - .
=t . > Tay (x xo)(x xo) + (4.50)

as the desired expression for (4.49).
We can now view (4.50) as a nonlinear parametertransformation. It is admissible since the Jacobian
determinant equals 1 at xg. The new coordinates )8 are known as geodesic polar coordinates,
In these new coordinates the geodesic c(s) is found as the solution of

2
dX  sa o8 o
. AN AT

ds2 BY ds ds

=0 ,

where the new Christoffel symbols I'_B$ follow from (4.47) using (4.50). But as is easily verified the

5 Q . . . . .
coefficients I'B vanish at x . Hence in a neighbourhood of x, the geodesic c(s) is given in

geodesic polar coordinates as

a
ac’

o o
X (s) =x + 8
o] ds

(0) . (4.51)
a

From the above discussion follows that if the coordinates x in (4.46) are geodesic polar coordinates

at x by chance, and B £ 0 but Ys = ¥, then Gauss' method has a local third order convergence

behaviour. Note by the way that since the geodesic polar coordinates )? are linear in s we are

indeed dealing here with the proper multivariate generalization of the case considered in the previous
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section where the univariate parameter t was chosen as linear function of s so as to eliminate the

necessity of iteration for solving the inverse mapping problem.
4.5. Global convergence

In the abave local analysis of Gauss' method we have seen that both the initial guess x, had to be
sufficiently close to the solution X and | <kl£l N,ys-y>9M | < 1 hadto hold for all r = 1,..,n in order
to assure convergence. For most practical problems we indeed believe that these conditions are
satisfied. Nevertheless, it would be dissatisfactory not to have an iteration methad which guarantees
convergence almost independently of the chosen initial guess and curvature behaviour of the
submanifold N. In the following we will discuss therefore the necessary conditions which assure
global convergence. Note that the adjective "global" does not refer to %, but to the almost

independency of the initial quess x,, i.e. usually one will have global convergence to a local minimum.

Q!
The method we will discuss is essentially the abave discussed Gauss' method, but now with the so-
called minimization rule as line search strategy. In formulating the method we have chosen to start
from some general principles so as to get a better understanding of how the various assumptions

contribute to the overall proof of global convergence.
As a start we assume

that we are given a sequence {x } for which E(x_ ) < E(x ),
q @l = q (4.52)
for all q = 0,],... )

This seems a natural conditon to start with since we are looking for an iteration method which can
locate a local minimum of E. From (4.52) follows that the sequence {E(x )} converges to a limit,
since the sum of squares function E£ is bounded from below [U_<_ E(x), Vx] and the sequence
{E(x )} is non-increasing.

Now, in order to find an appropriate iteration method which generates a sequence {x } satisfying
the conditions of (4.52), we first need to know, given an initial guess, in which direction to proceed. In
ordinary vector analysis the gradient of a scalar field E is defined as the vector field
BQE, a=1,...,n. And it is well known that -BaE points in the direction in which the function E
decreases most rapidly locally, In view of (4.52) it seems therefore appropriate to proceed in the
direction of -3QE. However, this ordinary definition of gradient is not invariant under a change of
coordinates. With our geometric exposition of the preceding sections in mind we can therefore expect
that the simplicity of the ordinary vector analytic definition of the gradient almost inevitably forces
difficulties and awkwardness when problems involving change of coordinates are encountered, A way
out of this dilemma is offered if we bring the requirements of invariance under change of coordinates
to the foreground. Therefore, given a function E: N+ |R we define the gradient field, denoted by grad

E, invariantly by
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{grad E,X >~ = X(E) for all vector fields X on N. (4.53)
In local coordinates this expression reads as
(grad E)ag )(B = XBa E.
aB B

And this gives

B

(grad £)* = ¢* B gE- (4.54)

Since the direction for which

(grad E,ax >N

1
(Ax,Ax>§
is minimized as function of Ax # 0, is given by
x = Ax(x) = -grad E(x) ¢ TxN , (4.55)
it follows that Ax(x) points in the direction of maximal local decrease of E. Note that since
= ooy oyl i )
aaE(X) = -3,y (X)gij(ys y (x)),

the vector
o1 a afB
Ax = Ax (x ) = - x )3 _E(x )
q q 9 (xg 3Bl

equals the incremental step as produced by Gauss' method (4.5). Hence, both the geometry of our non-
linear least-squares problem as well as the fact that -gradE points in the direction of maximal local
decrease of E, suggest that the vector Ax(x) as given by (4.55) is an appropriate choice for the
direction of search. However, although Ax(x) points in the direction of maximal local decrease of E,
this does not necessarily imply that the function value of E(x) decreases by taking Ax(x) as
incremental step. In fact we already saw in the previous section that the descent property only holds
if N is moderately curved and x sufficiently close to x. So, we still need a rule according to which we

can compute an appropriate x4 from xq. Nevertheless, the above discussion is not without meaning

q+
since by agreeing upon taking Ax(xq) as the direction of search we have reduced the dimensions of

our problem essentially from n to 1. That is, by choosing a curve cq: t elR+ N, with

d
c(t=0) = x and ¢ (—) =4x = &x(x ) = -grad E(x ), (4.56)
q q gx dt X q q q
we can define x‘:I+1 by qu = cq(tq), where tq is an appropriate scalar so that

E(xq+l) = E(cq(tq)) < E(Cq(O)) = E(xq)
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holds. That such a scalar exists is seen as follows. Since

Ee, (1))-E(e (o)) dc:
'1:-1:; - = BaE(xq) P (0) = {(grad E, cq*(

d
d_t-)>x N
q

d
i i < - - - if
it follows with cqi(dt)x Ax(xq) grad E (xq), that i Ax(xq) #0,

E(Cq(t)) - E(cq(o))
'l:lrg : = - (grad E, gradE>x N < 0.

Hence, if Ax(x ) # 0, there existsa & > 0 so that E(cq(t)) < E(cq(o)) for all t € (0,9).

Thus if Xq is not a critical point of E it is always possible to choose a positive scalar tq so that

E(x

) = E{e (t )) <E(ec (0)) = E(x)). (4.57)
g+l q q q q

It seems appropriate to choose tq so that the maximal possible decrease in E is obtained. This is the

case when t_ is chosen so as to minimize E along the curve cq(t). That is, when t_ is computed as

q
the scalar satisfying the minimization rule

q

E(cq(tq)) = rpl)g E(cq(t)). (4.58)

So far we did not specify the type of curve c (t) chosen. The simplest way computationwise would
be to choose the curve cq(t) so that its coordinate functions are given by

a o o

c (t) = x +t Ax.

q q q
But other choices are also possible. And since the particular type of curve chosen is not important for
our convergence analysis, we just assume that a rule is given which smoothly assigns a unique curve
c : telR+ N to every point Xq SO that the initial conditions (4.56) hold. That is, we assume that the

a .

coordinate functions ¢, o=1l,...,n, of the curve cq are smooth functions of not only the

parameter t but also of the initial conditions, Instead of cq(t) we may therefore write

c(t,xq,Ax(xq)) and by Taylor's formula we have

o] o dc:‘ l a 2
= — = t Mx )t
c (t,Xq,AXq) Cq(U) + dt (U)t + 2 ¢ ( ’Xq’ q) (4.59)
o a 2
= X +Axt+1¢a(t,x,Ax)t.
q q 2 q9 q

where the smooth functions ¢a depend on the rule given.

Summarizing, we have come up with the following iteration method:
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1 Choose an inijtial guess x, and set g = 0. Choose a rule which smoothly
assigns a unique curve ¢ : t €|R + N to every point Xq with

the prescribed initial conditions
d
c (0) =x and ¢ (=) =Ax(x) £ 0.
q q gx dt’x q
(ii) Compute Ax(xq) = - grad E(xq). If Ax(xq) = 0 then stop. (4.60)

(iii) Compute the scalar tq satisfying E(cq(t )) = min. E (cq(t)).
t>0

(iv) Campute x = ¢ (t ) and set q = g+1. Return to (ii).
q+l q q

The sequence {x } generated by (4.60) is either finite or infinite. If it is finite then clearly its limit
is a critical (or stationary) point of E by virtue of the stop command in (4.60). But if it is infinite then
the only thing we know for sure is that the sequence {E(x )} has a limit, It is important to realize,
however, that this by itself implies nothing about the validity of the final convergence statement
which we set out to prove, namely that (lr'ugg. X = x, with x being a critical point of E, This is best
seen by means of an example: Take E(x) = m.e x, where m is a real-valued constant, and Xq = 279,
Then lim. E(x ) = m and lim. x = 0, but x = Qis clearly not a critical point of E.

In fact, the convergence of Eﬁe sequence {E(x )} does in general not even imply the convergence of
the sequence {xq}. Therefore, in order to assure that the sequence {xq} as generated by (4.60)

converges to a critical point of E, we assume in addition to (4.52),

that the initial guess x, is chasen such that the level set
L(x )= {x | E(x) < E(xo)} is bounded, and that the function (4.61)
values of E at critical points in L(xo) are distinct.

With (4.61) we are now in the position to prove that the sequence {x } converges to a critical point
of E. We will assume that the sequence {x } is infinite. d

According to (4.52) we have E(x +1) < E(x ) for all g=0,1,2... . Hence, xq € L(xo) for all
q=0,1,2... . And since the level set L(x ) is bounded by assumption, it follows that {x } has at least
ane convergent subsequence, say {x } where q 4 > q;» and with limit | im. xq_q-. X.

We shall now proof by contradiction ‘:hat x is a crltlcal pomt of E. Assume therefonla that X is nat a
critical paoint of E.

We denote the unique curve assigned to x by e(t,x,Ax(x)), and the positive scalar t satisfying
E(c(E,;(,Ax(;())) =tmin(.] E(e(t,x,ax(x))) by t = t(x). Similarly, we denote the unigque curve
assigned to an arbitrary point x by c(t,x,Ax(x)); and the scalar t' satisfying
E(e(t’,x,ax(x))) = r{gB Ele(t,x,Ax(x))) by t'=t(x).

Now we define a function F(x) as

F(x) = E(e(t(x),x, x(x))) - E(x) . (4.62)

128



S

Since F(x) is continuous by inspection and lim. x.,. = x, it follows that

j»e T9j

lim. F(x. ) = F(x).
j>e qj

From the definition of the limit of a convergent sequence (see e.g. W. Flemming, 1977) follows then

that for every € > 0 there exists a positive integer r such that
IF(xq ) - F(x) | < e forevery i > r. (4.63)

Since we assumed X to be a non-critical point, we have
F(x) = E(e(t(x),x, x(x))) - E(x) < 0.
Hence, we can take € > 0 in (4.63)tobe € = % IF(x)|. This gives us then
F(xq.) < % F(x) <0 for every i > r (4.64)
i
From
E(C(t(X),X, x(x))) < E(c(t,x, x(x)))
or
E(e(t(x),x, x(x))) - E(x) < F(x),

follows then that

E(c(t(xqi),xqi, x(xqi))) - E(xqi) < F(xqi) i%F(;) < 0 for every i

|v

r’
or

1 > . s N
E(xqi+1) < E(xqi) + 75 F(x), with F(x) < 0, forevery i >r.

Wwith E(x ) < E(x ) follows that
. - q.+1
i+l i

E X < E X -% F(; With | F(x)l £ 0 |OI‘ ever i> T.
I ence,

lim, E(x ) = -», (4.65)
. q.

1+ 1

Thus if x is not ‘a critical point then (4.65) must hold. But this contradicts the fact that {E(xqi)}
converges to E(x). Hence, x must be a critical point of E.

To prove that the sequence {x } itself converges to a critical point of E, suppose that x and ; are
distinct limits of two convergent subsequences of {x }. We know then that x and ):< must be critical
points of E. And since {E(x )} converges, we must have E(X) = E():(). But this contradicts with
our assumption that the critical values of E are distinct. Hence we must have that X = ; which

means that the sequence {xq} itself converges to a critical point.
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This concludes the proof of the following global convergence theorem (Ortega & Rheinhold, 1970):

Let an initial guess x, be chosen such that the level set L(xo)z{x | E(x) < E(xo)}
is bounded, and let the function values of E be distinct at critical points in (4.66)
L(xg). Then the sequence {xq} defined by (4.60) is either finite and terminates
at a critical point of E, or it is infinite and converges to a critical point, i.e.
(l:ri";r') Xq = ;( with grad E(;() = 0.
To conclude this section we will prove the following result on the rate of convergence of the globally

convergent iteration method (4.60):

If

1 N
Ky Ilys-yIIM <1,
then

2 o2 1 n2 )
Ilys-y(xml)IIM - Ilys-yIIM GG Il)/s-y||M

lim. 2 2 < T 7 (4.67)
>0 - - -y - -v

= |ly, y(xq )| |M Hy-ylly  (2-(ggk)! ly -y L)

Recall from (4.60) that in order to generate the sequence {x } one should first decide upon a descent
curve c(t,xq,Ax(x )). Fortunately all methods for selecting such a curve are asymptotically
equivalent in the sense that the curves are all tangent at the starting point Xqr That is, as the
stepsize goes to zero the methods all move approximately along the same curve, which implies that
the asymptotic properties of the sequence {x_} are independent of the type of curve chosen provided
that the initial conditions (4.56) hold. Hence, for the determination of the local rate of convergence
we are free in choosing the type of curve cq(t). For convenience we will assume therefore that the

descent curve cq(t) is a geodesic.

Now, before we prove (4.67) we will first prove that the linear map H: TxN > TxN defined by

HX = ngrad E for all X € TxN, (4.68)
satisfies
(H x,\()N = (x,y)N - {B(X,Y) ,N>M for all XY e TN, (4.69)
where
N=P 1 _(ys-y) . 4.70)
TN ,TN

From (4.70) and the definition of the pushforward of grad E ,

y!(grad E) = -P ) __L(ys~y),
TN,TN

follows that

YooY = P _ _l(ys-y) +P _(ys—y) = - y*(grad E) + N.
T, TN TN, TN

And with Dy*(X)(ys-y) = -y*(X), this gives
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-yx ) = -Dy{ (x)y*(grad E) + Dy* (X)N'

Hence,
(XY, =y, Xy, (), = <Dy* oYy 9Fad E), y, (VD) - (Dy* oY, ). @7

Since,
Q= Dy* 9 (N, y, ) )M = <Dy* oy, )M + <N,Dy! (x)y*(v)>M ,

we can write (4,71) also as

<X,Y>N= <Dy* (x)y*(grad E),y, (Y)>M + <Dy*(x)y*(Y) N >M .
Two times application of Gauss' decomposition formula (4.18) gives then

<X,Y>N = <y*(V)(_;rad E),y)‘(Y)>M + <B(X,Y) ,N>M .
or

<V>@rad E,Y)N = (H x,\()N = <X,Y>N - <B(x,Y),N>M s
which proves (4.69).

With (4.29), it follows from (4.69) that

H X,X
%——%‘E 1-k P, G-yl . (4.72)
XX N wah oM

But for X = grad E(x ), this is precisely to a first order approximation the inverse of the scalar tq
satisfying the minimization rule E(cq(tq)) = min E(cq(t)). To see this, take a plane section of the
submanifold N through the points y(xq), Y, and y(xq) - y*(grad E(xq)), and approximate the

resulting plare curve by its circle of curvature (see figure 29).

||P
TN‘L,TN

y(cq(t))

figure 29
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In a neighbourhood of y(xq) this circle of curvature can then be considered as a sufficient
approximation of the curve y(cq(t)). Since the curve cq(t) is a geodesic by assumption it follows

that
o B

q q
t — (t) — (t
gaB(Cq( )) prami s (t)
is constant along the curve, Hence, s, the parameter of arclength, is proportional to t. Since

d
qu(EE)xq = - grad E(xq),

it IO“OWS tllerelore that
s = g! ad E X t = y (g! ad E X t . 4.73

Furthermore we know that the scalar tq satisfies the minimization rule. Therefore

d
<Y*(Cq*(a)),ys-y y(cq(tq))M =0

must hold. From figure 29 follows then that

IIY*(grad )| y(xq)M

—S{:qu taan=R o ( , (“.784)
- (N Tﬁl,Tﬁ ys_y)>y(xq)M
where N; is the first normal of y(cq(t)) .
With (4,73) follows then
t = R = 1 )
a9 R -<Nl’PTﬁl,Tﬁ (ys-y))y(xq)M 1- ”PTNJ',TFJ(YS_Y)Hy(xq)M
(6.75)

Compare with (4,72).

To make relation (4.75) precise we recall that geodesics are characterized by

. d
VVV =0, with V= cq_x(a).

From the fact that tq satisfies the minimization rule follows then

2
0= <grad E, V>cq(tq) = <grad E, V>cq(o) +<varad E’v>cq(o) tq + O(tq).

d
i . Vv = . - - is ai
And with (4.68) and cq(o) cqx(dt)xq grad E(xq) this gives
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{grad E, grad E>x Ny

_ q
by = +0( |lgrad EI] ). (4.76)
<H grad E, grad E>x N q
q

Compare with (4.75).

Now, to continue our proof of (4.67), we substitute (4.76) into

1 2 3
E(cq(tq)) - E(cq(o)) (grad E, V >cq(0) tq+ E(varad E, V>cq(0) tq + O(tq)

- {(grad E, grad E>c (0) tq +
q

1 2 3
+ E<H grad E, grad E>Cq(°) tq + O(tq) y

and find

2
(grad E, grad E) < N

3
1+ o(llgrad EN ) %.77)
<H grad E, grad E>x N q
q

1
E(xq+1) - E(xq) =-3

By assuming that xq and x are connected by a geodesic ¢(s) with ¢(o) = xq and c(8) = ;(, we

can write

1 .
E(e(8)) - E(e(0)) = (grad E, W) & + Z(HW, W) ¢ 0 (&) (©.78)
q q
d
where V“rl =0 X and W = cx(—d_s)'
Since grad E(x) = 0, we have for an arbitrary parallel field U (i.e. V“,J = 0) along c(s),

0=(gradE, Uy, =(gradE, U) +(HW, U) &+ o(s?).

Hence, q q

_1 2
wa = - H "grad E(xq) + O(| | grad E||x N).

q q
Substitution into (4.78) gives then

E(x) - E(xq) = - -%(H'lgrad E, grad E>qu+ O(| | grad E| lin ). (4.79)
And subtracting this from (4.77) gives
E(Xq+1) - E(X) =

2
(grad E, grad E>x

- 3
1- SR (E(x)-E)+O([lgrad €1, ),
(H grad E, grad E>x (H “grad E, grad E>x
q q
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or

‘ . 2
E(xml){(x) <Ax,Ax> «
- |1- _‘l‘ (1+oqlax Il ), (4.80)
E(x)) () (Hax,8x) — (H “8x,8x) q
q q
with Ax(xq) = - grad E(x ).

By assuming that x is a strict local minimum of
1 2
E == -
(x) 2 | | ys Y(x)l ‘M ’

we can now apply Kantorovich' inequality to (4.80). Kantorovich' inequality (see Rao, 1973, p. 74)

states namely that if a linear map
A: TN> TN
X X

is positive definite and selfadjoint with eigenvalues

xnz kn-lz ...3k1> 0,
then
1 1 2
1 2 ‘n 2
-1 1([x A
1< (Adx,ax) (A Bx,0xp< 2| [ s x—l , (4.81)

for all normalized Ax € T N,i.e. <Ax,Ax>N = 1.

Since the eigenvalues of the linear map H read

r T
A=1- kN ”ys'YI |M s r=1l,...,n,

application of (4.81) to (4.80) finally gives the desired result (4.67).
5. Supplements and examples

In this section we will consider some examples to illustrate the theory developed in the previous
sections. Apart from the examples, we also present new results on the Helmert transformation and

give some suggestions as to how to estimate the extrinsic curvatures.
5.1. The two dimensional Helmert transformation

In subsection 3.6 we have seen that the solution of the Helmert transformation only admitting a
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rotation could be found by orthogonally projecting the observation point onto a circle with radius
equalling the square root of the moment of inertia of the network involved. We will now generalize
this result and consider the full Helmert transformation. That is, we will assume the scale- and
translation parameters to be included as well.

Of couse, the solution to the two dimensional Helmert transformation is well known (see e.g. Kchle,
1982). It is therefore not so much our purpose to present the solution, but to emphasize the geometry
involved. And the method chosen for deriving the solution prepares us for the case considered in our
next example,

The model of the Helmert transformation reads

X, = u.x cos 8 + v. X sin 6 + t_ + e
i i i X X :
. (5.1
- . ’
y; = u.l)\ sin 6 + vi)\ cos 6 + ty + eyi
where: - i=1l,..,n = number of paints,

X;sy; are the cartesian coordinates of the network points in the first coordinate
system, and
- u;,v,; are the coordinates in the second coordinate system,
- X, 0, tx and ty are respectively the scale, orientation and translation
parameters, which need to be estimated, and
- exi , ey‘l are the errors to be minimized in the 2-norm.
If we write model (5.1) as

Yo = A cos © X) X sin 8 Xy * l:xx3 + l:yx4 + e, (5.2)

where:
y = (x_,y X Y )t e = (e e e e )t
- l, l""’ ’ ’ - b LA | ’ ’
s n"’n S X yn
x. = {(u,,v u ,v )t x_ = (v u v u )t (5.2")
1 171" 2 '’ ? 2 17 71’7 e? n ’ :
t t
x3=(1, Oyeeee, 1, 0)°, xa=(0, lyeees, 0, 1) ,
our least-squares problem becomes
min. E(A,e,tx,t ) = min. IIys- Acos@ X, - Asing X,- t Xg- t x4||2.
A,0,t ,t Yoox,e,t ,t X y oM
Xy Xy
(5.3)
We shall solve (5.3) by proceeding in two steps. First we assume )\ and 6 fixed and solve the
subproblem
min. E(A,8,t ,t ). (5.4)
Xy
t ,t
X°y
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Let t y (rA,0), t y (A,06) denote the solution to (5.4) and formulate the second problem as

min. E(A,8,t (A,0),t (Xx,0)). (5.5)
x,8 X Y

Let i,é denote the solution of (5.5). The overall solution of our original least-squares problem (5.3)
is then

A, 8,6, (X,8), v, (X,8). (5.6)
By taking this two-step procedure we have separated our original four-dimensional least-squares

problem (5.3) into two two-dimensional least-squares problems (5.4) and (5.5).
With the abbreviation

ys(k,e) =y - Acos B x, - Asin 8 X, (5.7)
the first subproblem (5.4) becomes
. . 2
min. E(A,e,tx,t ) = min. ||ys(x,e) - tx‘x3 - tyx4IIM° (5.8)

t t t t
x'y x’

And geometrically this problem can of course be seen as the problem of finding the point in the plane
spanned by the orthogonal vectors x3 and X4 (as before we assume that the observation space is

endowed with the standard metric) which is nearest to ys()\ ,0). (see figure 30).

y (4,0)

1
</—ﬁ Xa,ys(l ’e)>M

figure 30
Si the t t 1 dlx th 1, it foll that th int in the pl
ince the two vectors = x, and = x, are orthonormal, it follows that the point in the plane
spanned by x3 and x, closest to y _(,8) is
s
- 1 1 1 1
y(r,0) = (5 "z’ys“’e)>M xR "a”s“"e)>M v e
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Hence,

t (A, 0) = %<"3’ys“’9)>M ; t(2,0) = % (xgr¥5(X,0)),

or with (5.7)
tx(k,e) = r—11(x3,ys - Acos & x; - X sin B x2>M , 59
ty(k,e) =%<xa,ys - A cos 6 x; - A sin esz . .

This concludes the first step.
To solve (5.5), we substitute (5.9) into (5.3) and find

. . 2
min. E(Xx,8,t (x,8),t (x,08)) = mln.llyc - A cos 8 x° - ) sin @ xc|| , (5.10)
X y s 1 2 M
A, 0 As 0
where: 1 1
c
Y = ¥s T ;<x3,ys>M X3~ h <x4’ys>M X4
c 1 1
17 %17 E<"3”‘1>M *3 " & <"4”‘1>M *4 (5.10)
c 1 1
27 % "% <"3”‘2>M X3~ 4 <"4”‘2>M X4

The geometry of problem (5.10) is illustrated in figure 31.

R XZ’ys>M
figure 31
- 1 e 1l e . c c
Since the two vectors R X and R Xy with R = | IXll [ = IXZII , are orthonormal,
it follows that the point in the plane spanned by x(l: and x; closest to ys is

N 1 e ¢ 1 ¢ 1l ¢ ¢ 1 ¢
y'=(g "1’ys>M g1 * <R "z’ys>M R *2°
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Hence,

c .c c .C
. u xS,y . R (x5,y >
A cos § = x$,¥€ ) = (Xqays )y X sin 8 = x (5.11)
é2< I'Ys M <x;([:sx(f ’ lZ( 2'ys> <xc,xt2:>
or
< c> < c c>2 < c c>2
6 - -1 AX2:Ys /M s oV AX12Ys/y X2:Ys 2l
= tan ’ A= c .Cc\Z < c .c\Z °
(x1:¥5), <x1”‘1>A4 xZx3)
With (5.10" and (5.2') this can be written as
2 21
n cc cc n cc cec n cc cc
LvXx -uy (Zux +vy) + (g vx =-uy)
“ -1 i=11i i it ~ izl i i i i=1 ii
6 = tan y A= ,
n cc cc c 2
):ux+vy £ (u) + (v)
i= 11 = i
; ; ; Py | O
X v
c j=1j c j=lyj c j=1j c j=1j
where: x = x_- y Y. =Y.~ , = u_ - sy V. =V - .
i i n i i n i i n i i n

To find the least-squares solution for the translation parameters we substitute (5.11) into (5.9) and

find

tx(i,é) - %<x3’ys <X1!Y§_)_M

X (x§ x1>
. Ay - 1 R <"1'Ys>u
ty = ty()\,e) = n<xa,ys <x1,x1>

<x2’ys>M .
(*z'*z> > ’
< XZLZs)M >
<xz xz)

£ uSxC . vcyC ST y
E _ >(c i=1"1 i'i uc i=1 i vc
X T on c c.2 T n c,2 2 ’
2y (U lv) Ly Cup e v
D S8, V&,C AL
SN 5 i 008 WM S SN 3 1 0 SO 0 SN 5.1
y y n c,2 c,2 n c,2 cz2 Yo )
Zo(u )T H(v)) 2o {u )T (v
i=1 i izl i i
E X X E u E v
¢ i21% ¢ i%1Y ¢ iz1Yi c i1V
where: x = —~—— , ¥y = ———— , U = ————— y Vo= =,
n n n n
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(5.12) together with (5.13) constitute the well known solution of the two dimensional Helmert
transformation (see e.g. Kéchle, 1982).

Note that although the functions occurring in model (5.1) are non-linear, the actual adjustment
problem is linear. That is, the submanifold N as described by model (5.1) is a typical example of a
totally geodesic manifold. The non-linearity present in (5.1) effects therefore only the inverse
mapping problem. This follows from (5.11) if one solves for the parameters A and 6.

Also note that we are by no means restricted to the particular two-step procedure chosen in (5.4) and
(5.5). Instead of taking the above two-step procedure, we could for instance have decided to only fix
6 first. In the first step we would then have to solve for A (6), tx(e) and ty(e ). And this is
still a linear adjustment problem. But when solving for € in the second step, we would get a non-
linear adjustment problem namely that of orthogonally projecting onto a circle. Hence we see that
where we started with an essentially linear adjustment problem we end up with two subproblems of
which the second is non-linear. What has happened is of course that by fixing 6 we have chosen to
project onto a non-linear curve lying in an otherwise flat manifold. Thus generally speaking such a
step procedure would not be very recommendable since it produces a non-linear problem out of a
linear one. An interesting point is, however, that if we reverse the argument one should be able in
some cases to get a linear subproblem out of an essentially non-linear problem by applying the
appropriate step procedure. Think for instance of parametrized curved submanifolds which have
linear, i.e. straight, coordinate lines. In the following we will consider a typical class of such

manifolds.

5.2. Orthogonal projection onto a ruled surface

A ruled surface is a surface which has the property that through every point of the surface there
passes a straight line which lies entirely in the surface. Thus the surface is covered by straight lines,
called rulings which form a family depending on one parameter.

In order to find a parametrization of a ruled surface choose on the surface a curve transversal to the
rulings. Let this curve be given by c(tl ). At any point of this curve take a vector T of the ruling
which passes through this point. This vector obviously depends on t;. Thus we have T(t 1 ).

Now we can write the equation of the surface as
t = . .
y( 1,tz) c(tl) + tzT(tl) (5.14)

The parameter t; indicates the ruling on the surface, and the parameter t, shows the position on the
ruling.

If in an adjustment context the submanifold N turns out to be a ruled surface, one can expect to
take advantage of the special properties of N. N will namely be flat in the directions of the
rulings, whilst curved in the directions transversal to it. Hence, it might turn out to be advantageous
to perform the adjustment in two steps. In the first step one would then solve for a linear least-
squares adjustment problem, and in the second step for a non-linear adjustment problem of a reduced

dimension. For the ruled surface (5.14) for instance, we would choose a point on the curve
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c(t1 ), e ti) say. To this point there corresponds a ruling with direction T(ti). The linear
least-squares adjustment step consists then of orthogonally projecting the abservation point Yy Onto

the ruling given by
o o
= T . .15
y(tz) c(tl) +t, (tl) (5.15)

As solution we get an adjusted point on the surface which depends on the choice of ruling, i.e. on the

. o
choice t 1%

c(t9) + t,(tPHT(EY) =
c(tf) + <T(t’f),T(t‘f)>M'1<T(tg),ys-c(t‘i’»MT(t‘f) .

)
y(t1) (5.16)

The second step consists then of orthogonally projecting yg onto the curve given by (5.16). This
problem is of course in general still non-linear, but it has the advantage of being of a smaller
dimension than the original adjustment problem.

As an example one could think of a cylinder (this is in fact a very special ruled surface, since it is
developable). Then we have (see figure 32):

(9]
—_
or
~
1

i=2 .
R cos (tl), c (tl) = R sin (tl), o

—_
or
~
H
o
-

-
—
T
~
"

g, Tizz(tl) - o, T2

"
—
.

o]

In the first step we would choose t 1

. This would give us then
)’(t‘]:_)) = C(t?) + ys=3T .
For the second step we would then need to minimize

. i=3 o i=3 o
:%n- (Ygyg T -e(t)), y -y 'T- c(tl)% .
1

>
\—’?4&,
N—

figure 32

It will be clear that the above described procedure also holds for ruled-type of manifolds.
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5.3. The two dimensional Symmetric Helmert transformation

As a nice application of the idea described in the previous example we have what we shall call the
two dimensional Symmetric Helmert transformation.

Recall the model of the two dimensional Helmert transformation (see (5.1)) and note that the model
in its classical formulation favours one point field above the other. This can also be seen from the
rather asymmetric solution of the scale parameter (see (5.12)).

It has bothered the present author for some time that one was satisfied with the classical formulation

(5.1). A better formulation would namely be:

X1
H

. Uu.A cos & + v.X sin 6 + t
i i i X
;. = - u, A sin 8 + v A cos 6 + t
i i i (5.17)
X, = u, )
i i
v: Y
where: - i=1,...,n = number of points,

- the tilde "M sign stands for the mathematical expectation,

- XpY; and )—(i ’ ;'i are the "observed" cartesian coordinates of the network points in
the two coordinate systems,

- Xy 6, tx and ty are the transformation parameters which need to be estimated,
and

j» Vi are the cartesian coordinates which need to be estimated.

- u
Of course, the submanifold as described by the classical Helmert transformation is totally geodesic.
Hence, one could fear in the first instance that (5.17) can only be solved iteratively, i.e. through the
process of linearization. However, in this example we will show that if one views model (5.17) as a
ruled-type of manifold, one can in fact find its least-squares solution also analytically.

Note that if we fix Up Vi i=1yemnyn, in (5.17) we are back at the classical Helmert transformation,
which was linear. Hence, manifold N as described by (5.17) is flat in directions transversal to the
ui,vi-coordinate lines. But if we fix » and 8, we see that it is also flat in the directions transversal
to the X ,8- coordinate lines. Thus in the first adjustment step we can either fix the UppVis i=1,eesyn,
or A and 6. It turns out that the choice of fixing A and 6 is the most advantageous one.

Skipping the tedious but trivial adjustment derivation we find for fixed A and @ the solution of the

first adjustment step as:

Gi(x,e) = ko + (1 + A2 (x§ + x{x cos 8 - y§ A sin @),

v.(r.0 c 22 -l c - c

vila,8) = yo + (1 + (5 + xfx sin & + y§{ X cos @),

t,(A,8) = X, - X, A cos 8 - y, A sin @, (5.18)

Ey(x,e) = Yo + Xo A sin 8 - §. X cos @,

where:
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[
Mo
-

€ J N (5.18"
xS 2 % - % -c---)_/ xC = x, - x y. = y. - Yy
i~ Ti c’ Yi =Y c’ i~ i c’ i i c’
Hence, for the second adjustment step we get
2.7t 2 c
x. = x + (1 +2%) (%% + x5\ cos © +y(_:)\ sin6) + e ,
i c i i i ><i
2 -1 2 c c c
y. =y + (1 +Xx7) (Ay, - x_ XA sin® +y, A cosH) +e |,
i c i i i yi
-1 (5.19)
- - 2 -
x. = x + (1 +27) ( x(,:+x(_:)\cose-y(,:)\sin9)+e-,
i c i i i X,
2 -1 c c c
y, =y + (1L +x7) ( y + x, XA sin® + y, A cos 6) + e- ,
i c i i i Y,
or
exi 9 -1 x(i: cos 9 sin 0 >-<T
= (1 +2Xx7) - ,
€ ¢ -sin@ cos6l|yS
Yi Yi i
(5.19")
e)—(i 2 -1 (cos 6 -sin® X(i: cos 6 sin @ ;<(:
= = A(1 + A7) - ’
e- . c . -c
Y, sin © cos © Y -sin 6 cos @ Y,
where e are the residuals.
The sum of the squared residuals reads then:
(e + e2 + e- + e-) =
i=1 . Y. . .
i i i i (5.20)
t
-1n x(,: cos 8§ sin © )\)—(c x(,: cos 6 sin © )\)—(c
2 \ i i i
= (1L +12%) ) - - .
. c . -C C . -C
i=1 yi -sin 6 cos © kyi y,l -sin 6 cos 6 Ayi

And this function needs to be minimized in order to find the least-squares estimates X and é The
function is of course still non-linear (and non-quadratic) in A and © .However, observe that if we fix
XA =1, the model underlying the function of (5.20) equals, apart from the fact that we are
dealting here with coordinates referring to the centres of gravity, the Helmert transformation (3.30)
admitting only a rotation. Hence, for an arbitrarily fixed value of A the minimum é(k ) of (5.20)

follows readily from (3.36) as
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-C C -C C -C C -C ¢C
. -1 1gl(xy1x1' Axpyp) -1 igl(yixi-xiyi)
0(X) = tan - = tan - . (5.21)

-C C -C C -C C ~-C C
A g
igl(“ixi+ yivy) j27 (pxgeyyyd

Note that not too surprisingly the estimated rotation angle is invariant to scale changes.
From substituting (5.21) into (5.20) we find

t
2 -1 n x(i: cos O sin © >-<C x? cos O sin ® )_<C
f0) = A L] |- A A é - A A ;
i=1 Y -sin 8 cos 6 Y Y -sin ® cos © Y
(5.22)
which needs to be minimized in order to find A.
With the reparametrization
1
k:tan¢,0<¢<5n, (5.23)
we can write (5.22) also as
f(¢) =(cos ¢ e, + sin ¢ €,,Cos ¢ e, + sin ¢ eZ%A , (5.24)
where:
t
c ¢ c c
el = (Xl’ yl”“’ xn’ yn) ’
(5.24Y
. . N . N " " . t
e_ = (-cosh >-<C-sine ;/C sing >—<C-cose ;'C -cos® X -sing ;'C sind x_-cosé y$)
2 1 1’ 1 1’ n n’ n Yol e

1
Observe that the function f(¢)?* describes the distance from the origin to an ellipse lying in the
plane spanned by the vectors e and e,. Hence, to minimize f (¢) we need to find that point on the
ellipse

y(¢) = cos ¢ e

l+sin¢1>ez,

which is closest to the origin. This minimization problem results then in the following eigenvalue
problem
<el,el>M <e1,32‘%{ cos ¢ ., cos ¢ .25
. - . b .
<e2,el> <e2,ez> sin ¢ sin ¢
M M
And the minimum of f(¢) equals the smallest eigenvalue Moin of (5.25). The eigenvalues of (5.25)

follow from

<e1’°1%{ - <el’°2%

<e2,e1% <e2,e2% '
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as

<e1,e1> + <e2,e2>t \/[(el,e1> + <e2,e2>]2 _ 4[<e1,e1><e2,e2> - ((el,e2>)2]l
W= 2
Hence,
<e1,e1>+<e2,e2> - \/[<e1,el>+ <e2,e2>]2 - 4(<e1,e1><e2,e2> -(<e1,e2>)2]
Fmin, = 2

Substitution of y = u into (5.25) gives

min

( <e2,e2>-<e1,e1>] - \/[ <e1,e1>+ <e2,e2>)

4[<e1,e1> <e2,

tan ¢ =

2<e1,

o

or with (5.23) and <e1,e2> = sgn [<e1,e2>] |<e1,e2>|

) (Ceyre,) - (oprey))

<e2,e2> -

PR

+ - sgn [<e1,e2>] [

2<e1,e2>

2<e1,e2§

<e1,e1>J z
+ 1

2 1
e2>-(<e1,e2>) )

(5.26)

With (5.24", (5.21) and (5.18) the least-squares solution of the two dimensional Symmetric Helmert

transformation (5.17) finally becomes:

H% oHH - B Hh

: l

%

>

\/ E (x x + y Y )) + (igl(;lcxc

-c c,,2!
- x.y.))
i’i

E ((x ) + (y ) ) -

-c.2
igl((xi)

. (§i)2>

-c c -c Cc,.2
V( El(xixi + yiyi))

-cc -c c,.2
* (igl(yixi- X;¥;))

g (;Cx - xcyc)
" 1 i=1""1i i'i
6 = tan ,
g (;Cx + -Cyc)
i=1 i i1
Ex = Xg - Xg A cos B - Yo A sin é,
Ey = Yo + Xg A sin 6 - Yo A cos é,
° 5 22,71 cC c 3 a C 3 ip B
uj = Xo + (1 + A (X7 + xf X cos 6 - y7 XA sin 8) ,
Vs Te s L+ A0 (58 4 %@ R sin 8+ yC R cos §
Vi = Yo ¢ + ) (¥ + x§ sin + Y] cos 6) .

2|
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Note that the reciprocal scale parameter reads as

+(y))

c-c,. 2!
iyi))

-c.2 -
- BGH L DY - B

C
l
c=-C c-C
2 OB 6838w ST e (B 0SS

BGH? DD - Bt oD

2 VOB SRS 4y 5T e (BLOSS - St)?

which demonstrates the symmetry in our least-squares solution of the scale parameter. This in

contrast to solution (5.12) of the classical Helmert transformation.

5.4. The two dimensional Symmetric Helmert transformation with

a rotational invariant covariance structure

Up til now we assumed the simplest structure possible for the covariance matrices of the abserved
cartesian coordinates. In many practical applications this assumption will do, but it will not be
sufficient for all applications. Unfortunately one can not expect to find a solution like (5.27) if the
observed coordinates are allowed to have an arbitrary covariance matrix. One of the reasons that the
derivation of (5.27) went so smoothly is namely that the covariance matrices used for the two sets of
coordinates are scaled versions of each other and are invariant to rotations. This indicates, however,
that if we assume the covariance matrices Q and Q of the two coordinate sets (... x % EREE )t

t
and (...x ,y sees) tobe of such a structure that

for some k ¢ R*, (5.28)

x
2]
1
o

and

Py
2]
Py
i

Q, (5.29)

where R is a 2n x 2n block diagonal matrix with equal 2 x 2 blocks

cos O sin O

- sin © cos 6 |’

one should be able to generalize (5.27) accordingly.
Note, that it follows from (5.28) and (5.29) that C-J_l consists of 2 x 2 diagonal blocks of the type

ij
d 0
i (5.30)
0 at)

Hence, the Baarda-Alberda criterium matrix (see e.g. Baarda, 1973 or Teunissen, 1984b) is a proper
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candidate for Q.

To solve for the Symmetric Helmert transformation with the new covariance structure (5.28), (5.29)

we apply the same two-step procedure as used before.

For fixed XA and 6 we get then as solution of the first step:

- 2.-1,- 2 2
U 00) = X+ (1 (D7) (x(;+k)\cosex?-k)\siney?),
- 2.-1,-c 2 i s 2 c
vi()\,e) =Y.+ (1 + (kA) ) (y. + k A sin exi + k )\ cos eyi) ,
t (A,8) = x_ - Acos @ x_ - A sin gy, (5.31)
X c c c
t = i X - y
y(x,e) Yo *+ A sin @ x_ A cos 8y,
where:
iy . iyt s
X = [§ (zd 7)) =z (d xj); Yo = [g (2d 7)) =z yj);
ij -1 ij ij -1 ij
- — - \ [)
X = [xj; [)f d 7)) 1 (d 'x.); Y, = [§ [)f d )) 3 (d yj), (5.31%
x$ = x X y$ =y y xS = x X © -
i i et Vi 7Y Yoo i =i e Vi T Yoo
From this follows that we get for the second adjustment step:
e c . -C
xi] 2 -1 x_l cos sin @ xi
= l k)\ = X
e J 1+ () c . ||’ (5.32)
y. Y. - sin g cos @||y.
i i i
e- . c -c
xi 2 -l{cos @ - sin g xi cos 6 cos @ xi
= - k'a 1+ (k)7 - A
e- . c ] -c
y.l sin ¢ cos § y_l - sin @ cos @ yi
where e are the residuals.
Hence, the weighted sum of the squared residuals reads then
t
I - gitbi o . 3
. . . . l-l,l . . . .
c| |-c -c . 0.. d c| |-e -c
2 2-1 xi x.l y,l acosgyl ,i,i-1 d“ 0 d1,1+l X, X, Y.
k(1 +la) ) c|’|-¢ -e iyi-1 ii 1,0+l (l:- : :
y. . -x. |(Asing o . d 0 d’ yo | [¥5 xS
i i i i+l,i . i i i
. . . . d 0. . . .
. . Lt 0 gttt - . P
(5.33)
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and this function needs to be minimized in order to find 3\ and 6.

With the reparametrization
1
kA = tan ¢, 0 < ¢ < 7 (5.34)

we can rewrite (5.33) as

sing cos (;?d”)_(c v lJy ) 0 -k(;?d”x? + ;I‘i:d”y?) sing cosg
min. [sing sin® 0 (i?d”ic ” C) -k()-/‘_:d”x? - i?duyc_) sing sing
6,6 i i j i j
H .. ..
cosd —k(;((i:dl]xj yC lJy ) -k()-lti:d”x(j: - x5 l"y ) k (x dlJ T ” c) cos¢
(5.35)
where we have used Einstein's summation convention.
The least-squares problem (5.35) results in the following eigenvalue prablem:
(x le T ;?dll;?) 0 _k(;?lex? + Q?dljy?) sin¢g cos8® sin¢ cos®
0 (x dl'l T y(i:d”)-/(j:) -k(;?d”x(j: - )_<?le (j:) sing sind|= u| sing sing
o I . P 2 .
-k(x?d”x? + y?d”y?) -k(y?d”xC - x(_:d”y(j:) k (x?d”x(j: ycley ) Ccos¢ cos¢
(5.36)
And the minimum of (5.35) equals the smallest eigenvalue Mhin. of (5.36).
The smallest eigenvalue reads:
1 -c ij-c 2 cijc 1]0
Hin. =32 {(x.d y.d ’y.) + k (Xid X, ) -
(5.37)

-c ij-c -c ij-c, /2, c ij c cuc ij e ceqlley2 -c ij c-c ijcd
(x.d "x +y d Ty )-k (x;d "x_+ )) +bk (x d ; ) +(y d Ix -x.d Ty )
%1 Y, (4 x4y d J) “( x ey d Ty Ty d T gexgd Ty 9

From the first two equations of (5.36) we find that

. % .
6 = tan — S— , (5.38)

and from the third equation we get
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2
. - kT ({x
mline.

cC

.dIJX.
1 J

c c ij c
+y,;d Jyj)

kA =tan ¢ =

(o4 C

-k(<§fd"x

Together with (5.37) and (5.38) this finally gives

L+ )_/_d”y(_:) cos 6 + (;/(,:d”x
) 1 ) 1

¢ - x%dMyS) sin 8)
) 1 )

kxSt IxE Ca'lySy o (x%aMIRS 4 v S
i j i j i j i j
kA = 5 —2_
2k Mé;?dllx? + y5d' S (ySd' xS - x%d' Y5
1 ) 1 ) 1 )] 1 J (5.39)
- = i 21
kz(x(i:d”xj y?dl]y?) - (x?d”x? y(i:d”y(;)
' o c ij c ij c z c ij c c ij c 2
- -c - -
2k (xid ij + yid”yj) + (yid ij Xid J)’.)

The adjusted coordinates and translation parameters can be found by substituting (5.38) and (5.39)

into (5.31).

5.5. The three dimensional Helmert transformation and its symmetrical generalization

Now that we have found the solution to the two dimensional Helmert transformation and its non-

linear generalization, it is natural to try to generalize these results to three dimensions.

We will first consider the classical three dimensional Helmert transformation. The model for the

three dimensional Helmert transformation reads:

where:

system,
UpVyp
parameters,

e, ey ye, are the errars, and

i i i
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by R3(Y)R2(B)Rl(a)

i = 1,eeeyn = number of network points,

u. t e
i X X,
i
v i+ |t + |e , (5.40)
1 Y )’i
W, t e
i z z

Xj»Yjpzp are the “observed" coordinates of the network points in the first coordinate

w; are the fixed given coordinates in the second coordinate system,

X, (a,B,y) and (tx,ty,tz) are respectively the scale, orientation and translation



1 0 0
- Rl(a)z 0 cosq sina
0 -sing cosa

cosp 0 -sinp
,RZ(B)z 0 1 0
sing 0 cosg

cosy siny O
-siny cosy O
0 0 1

’Rj(Y)=

In contrast to the two dimensional case, the submanifold of the three dimensional Helmert
transformation is curved. This complicates matters considerably. However, a number of
simplifications can be obtained if we again apply the appropriate two-step procedure. In the first step
we therefore assume the orientation parameters a,8 and vy to be fixed, and solve for the scale
x{a,B,y) and translation parameters tx(a,B,Y) ,ty(a,B,Y) ,tz(a,B,Y). Since the first step
consists of a linear adjustment problem, it is relatively easy to solve. The second adjustment step,
where we have to solve for the orientation parameters, is however still non-linear. We will solve this
second adjustment step by making use of the alternative formulation as discussed in example 1 of

section 3.6 .

To apply the alternative formulation which makes use of the trace operator, we take the

abbreviations
xl Y1 zl ul vl wy exl eyl ezl
X = |. . o, U o= . vl E = . . ,
nx3 . . . nx3 . . . nx3 8 e 8
X y Z u v w X y z
n n n n n n n n n
(5.41)
1 t
. X
H=|. t = [t = R
: ’ y ’ R 3(Y)R2(B)Rl(a) ’
nxl . N
1 z
and write (5.40) as
t t
X = XUR +Ht + E . (5.42)
nx3 nx3 nx3 nx3

The first step of our adjustment problem reads then

min, f{l,t) = min. trace [(X-1x U Rt-Htt)t(X-)‘ U Rt-Htt)]. (5.43)
At At

To find the critical point of the function f(A,t) the following resuits on matrix differentiation will
be used:

If 3/3 L = a/a L', then

@) 9_trace (KL M) _ Kt
a L
3 trace [LtK L M)
(b) - = 2 K L M, whenK and M symmetric (5.44)

3 trace (L M LtK] .
3L = 2 K L M, whenK and M symmetric

(@
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The proofs of these relations are straightforward, and we illustrate the method by proving (5.44.a):
Let .
trace (KL M) = KijLJ Mki’

where Einstein's summation convention is understood.

Then
3_trace (K L M) _ K oMo kbt
5 LN im ni mi in
or
3 trac: EK L M) - kb,

With the aid of (5.44) it follows from (5.43) that

(a) %{ = 22 (XAURH*H + 20t =0
) (5.45)
(b) 5{ = 2\ trace [UtU) - 2 trace [(X-Htt)t(U Rt)] =0
From (5.45.a) follows that
1
b= (XA U RO | . (5.46)
Substitution of (5.46) into (5.45.b) gives
1 1
A trace (U'(I - = H HYU) - trace (X'(I - = H HHU RY) = . (5.47)
Note that I -%HHt is a projector, ie. (I -%HHt)(I -%HHt) =
(I - = HH"). With the abbreviations
1 t
C o= -2urhyu ad xS - - ianh x (5.48)
n n
nx3 nxn nx3 nx3 nxn nx3

it therefore follows from (5.47) that

trace [(Xc)t(UC)Rt]
A = T . (5.49)
trace ((U7) (U7))

Formula (5.46) together with (5.49) constitute the solution of the first step. To formulate the second
adjustment step, we substitute (5.46) and (5.49) into

t t,t t
trace ((X-A UR - Ht ) (X-A UR - Htt)) .
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This gives for the second adjustment step:

: trace’((xX%)(U%HRY)
min. {trace ((Xc) (Xc)] - ot o b
a,B,Y trace ((U7) (U7)) (5.50)

subject to R = RB(Y)RZ(B)Rl(a) .

Since we know that the scale parameter A must be positive and that trace( (Uc)t(UC)] is
positive, it follows from (5.49) that trace( (x%)te )Rt) must be positive. We can therefore

rephrase our second adjustment step as

max. trace( (X®)'(USR'Y)  subject to R = Ry(y)R,(B)R,(a). (5.51)
a,B,y
To find the solution R to (5.51) we apply the singular value decomposition theorem (see e.g.
Teunissen, 1984a) to the matrix (Xc) t (Uc) . This theorem says that the matrix (X%) t (U®) may

be factorized in the form

xH'W% = v. b vt o, (5.52)
3x3 BX% 3x3 3x§
where V, and V, are orthogonal matrices of order 3x3 respectively, and D is a diagonal matrix of the
form
d 1 0 0
D = 0 d2 0 ,
3x3 0 0 d3

where d;, i=1,2,3, are the singular values of (Xc)t(Uc), which may be ordered so that

d, > d, > d; > 0.

1 2 3

From (5.52) follows that (U®) t (x%) (x%) t W) = VZDZV; . Hence, the columns of V, give an
orthonormal set of eigenvectors of the symmetric matrix (Uc) t(XC) (Xc) t(UC) and the d?
are the corresponding eigenvalues.

Substitution of (5.52) into (5.51) gives

max. trace (V DVth) subject to R = R_(yI)R_(BIR (a) . (5.53)
1 2 3 2 1
a,B,Y
Since for arbitrary matrices A andB, trace (A B) = trace (B A), we can rewrite (5.53) as
max. trace (V;RtVlD) subject to R = R}(Y )RZ(B )Rl(a) . (5.54)
a,B,y

If we denote the diagonal elements of the matrix V;RtVl by a;, i=1,2,3,it follows that
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D) = a,d, + a_d_ + a_d_. (5.55)

t_t
trace [VZR \% 19 295 395

1
Let us now first assume that all three singular values are non-zero. Then, since the singular values di
are positive and the matrices in the triple product VthVl are orthogonal, it follows that (5.55) is

2
maximal if a; = 1, i = 1,2,3. This implies then that (5.55) is maximal if and only if

Hence, our solution becomes

- t
R =
VlVZ’

or with (5.52)

>

1

A
|

c.t, c,, ~-1,t
(X7) (U )VZD v2 . (5.56)

Thus in case of non-zero singular values di’ i=1,2,3, the orthogonal matrix R can be found from the
eigenvectors and corresponding eigenvalues of the symmetric matrix
(UC)t (X% (x5 t (US) . Since this matrix is of order 3x3 its characteristic equation js a cubic,
say

3 2
M + auy + by + c = 0.

Substitution of

o= x - %a (5.57)
gives
3
x* + px + g = 0, (5.58)
3
where p:b-%azandq=c+-2-%a-%ab.

According to the Cardanian formula (see e.g. Griffiths, 1947) the three roots of (5.58) are:

1/3 1/3
1 1 .2 1 .3 1 1.2 1 3
x )= (- panfGa+GGp 7 )+ (- a-fGa) T+ 3p)T ),
1/3 1/3
1 1 .2 .1 .3 2.1 1 .2 1 3
X, =w (- 2a4/G+5p)" )+ w (- Je-/G (5P ), (1 (5.59)
1/3 1/3
2. 1 1 .2 ,1 3 1 1 2 1 3
xy = 0 (- 20/G TGP ) 4w (- a/GaTHGe)T ),
2

2

where w = cos %n + i singnandi =-1.
Thus with (5.59) and (5.57) one can compute the eigenvalues of the symmetric matrix
W) t (x%)(x%) t (U®). Once the elgenvalues are known it becomes straightforward to compute

the corresponding eigenvectors.
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Although the case of zero singular values will not occur very often in practice, let us now assume
that one of the singular values, say dj’ equals zero. It follows then again that (5.55) is maximal if and

only if [;{ = VlV; . With (5.52) we can therefore write

- c,t, c + .t t
= u)v . D \ .60
R = (X7)(U7) LV, + leZj’ (5.60)
where D*' is the pseudo-inverse of D, and Vlj and sz are the j-th column vectors of V| and V,

respectively.

Finally we cansider the case of multiple zero singular values. The case dy = dy = d3 = 0 is trivial,
since then the orthogonal matrix R is indeterminate and may take any arbitrary form. In case only

two of the singular values, say d, and ds, equal zero, we find that (5.55) is maximized if R takes the

form
1 0 0 ¢
R = Vl 0 cos¢ +sing V2 , where ¢ is arbitrary.
0 -sing +cos¢

Thus in case the two singular values dj and d equal zero we find with (5.52) that the orthogonal

matrix R takes the form

t
2

t

t t t
V..V i -
+ coso( 1j thV V. )+ snnq)(J_erjV

Vo V,.), (5.61)

- c.t, c +
R = (X7) (U )VZDV 2k V1kY2;

1k 2k

where ¢ is arbitrary.

In the geadetic literature a number of authors have studied the three dimensional Helmert
transformation. The two most recent papers on the subject are (Sansd, 1973) and (Kéchle, 1982).
References to earlier papers can be found in (Schwidefsky and Ackermann, 1976).

Using the factorization of Cayley, (Kéchle, 1982) arrives at an iterative solution for the orthogonal
matrix Ii (Sansd, 1973) on the other hand, formulates the solution for f;{ through the use of
quaternion algebra in terms of an eigenvalue problem of a symmetric 4x4 matrix. His result is
therefore to some extent comparable with our solution. Note, however, that our derivation is mare
general than Sansd's, since it does not require any restrictions on the number of columns in the
matrices X and U in (5.42).

Now that we have found the solution of the three dimensional Helmert transformation (5.42), we will
consider the three dimensional generalization of the Symmetric Helmert transformation (5.17). Using

our alternative formulation the model can be written as

X )\URt+Htt+E

(5.62)

X U + E

As in section 5.4 we assume that the covariance matrices @ and G of the two coordinate
t - - - R
sets ("'Xi’yi’zi"") and (“'Xi’yi’zi"‘)t are of such a structure that Q 1

consists of 3x3 diagonal blocks of the type
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and

sz = Q forsome k ¢ IR".

Our adjustment problem becomes then

minimize f(ui,vi,wi,)\,tx,ty,tz,a,B,Y), (5.63)
ui,vi,wi,k,tx,ty,tz,a,B,y

with
2 t t,t t t - t =
f = k“trace((X-Ax UR -Ht ) G(X-A UR -Ht )] + trace((X-U) G(X-U)], (5.63"

and where the element of the nxn symmetric matrix G on place ij is given by dij.
To solve (5.63) we will proceed in three steps. First we will fix the scale A and orientation
parameters a,B,y:

minimize u ,v, ,w ,t ,t ,t =
g( ViVt )‘, Z)
U,,v,,w.,t ,t ,t
i1l xT Ty 2

minimize {kztrace[(X-x UR Y 'ax-a U Rt-Htt)] + trace[(i-U)tG(i-u)]}.
ui’vi’wi’tx’ty’tz
(5.64)

With the aid of the matrix differentiation rules of (5.44) we find that the critical point of g should
satisfy:

(a) %L% = 2(k2x2+l)G U - 2\ sz(X-Htt)R -2GX=0
) ) . (5.65)
(b) %%:-Zk(X-AURt)tGH+2ktHGH=0
From (5.65.b) we find that
t = (HtG H)'l(x-x U Rt)tG H. (5.66)

Substitution of (5.66) into (5.65.a) gives
2 2 - t - -
(k024U - kKAa(1-HHG B o)X R - (k) Zarte ) e u - X 0. (.67)
Premultiplication with HH'GH) IHG shows that

HH'G H) " IHtG U = HHte 1) HiG % .
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Hence, we can write (5.67) also as
(224 )UK (1-HHG 1) "X R- (11 H) T HG)R- (kA2 NG H) G % =0
With the abbreviations
C

- - -1 -
X = (I-H(HtG H) lHtG)X and X° = (I-H(HtG H) HtG)X R

we thus find that

U = HHSG 1) TRiG X+ () Ze1) T HXC sk Py XCR) . (5.68)
When we substitute (5.68) into (5.66) we find the translation vector as
b = mte H) THYe(x-a X RY) . (5.69)

(5.68) and (5.69) constitute the solution of our first adjustment step. Compare (5.68) and (5.69) with
(5.31).

To commence with our second adjustment step we substitute (5.68) and (5.69) into (5.63") and find
2 2 -1 -c_t.t -c_t
f o=k ((kA) 1) Ttrace((XS-a X°RO) a(xS-a X°RD)). (5.70)

In a similar way as (5.56) was derived, we find that for fixed scale the conditional minimum of (5.70)

is obtained by

~

R - (xc)tc(kc)vzo'lv; , (5.71)

where the diagonal matrix D contains the singular values of (x®)'G(X®) and the column vectors
of the orthogonal matrix V, are provided by the eigenvectors of the 3x3 matrix
(x4 'a(x®) (x%) fa(x®).

To find the least-squares estimate of X, we substitute (5.71) into (5.70) and use the

reparametrization

1
kA = tan ¢, 0 < ¢ < 5 T (5.72)

This gives

-l-c “t -l-c
kztrace[(cos¢ Xc-sin¢ k lXC R )tG(costp XC-sin¢ k lXC Rt)]. (5.73)
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The minimization of (5.73) leads then to the following eigenvalue problem

cos ¢ . cos ¢ . (5.76)
sin ¢ sin ¢

Since the minimum of (5.73) equals the smallest eigenvalue Henin of (5.74) it follows that

kztrace( (Xc)tG(XC)) -k trace[(Xc)tG(ic)ét]
-k trace( (x)'a(X*)RY) trace( (X%)'a(X%))

. . umin-kztrace( (XC)tG(XC))
ki = tan ¢ = _—, (5.75)

-k trace( (XC)tG(;(C)ét)

From (5.74) follows that

u = % {kztrace( (XC)tG(XC)) +trace( (>_<C) tGO_(C))}

min.
. v{kztrace[(x°>ﬁ3(x°>)-trace((i°>te(iF)))2 + akPtrace’( 6O) 'GEERY) .
(5.76)
Substitution of (5.76) into (5.75) then finally gives
2 c.,t c -c,t_ . -c
. -l{k trace( (X7) G(X7))-trace( (X ) G(X))
A =k p +
2 k trace( (X%)'a(X*)RY)
- | 67D
trace( (X¥)'G(X%)) - trace( (X§'a(X®))
+\/1 + t 1 }
2 k trace( (X°) G(X°)R")

The least-squares estimates t and U are found from substituting (5.71) and (5.77) into (5.69) and
(5.68) respectively.

5.6. The extrinsic curvatures estimated

In general, the problem of finding the curvature behaviour of submanifold N can only be solved
through actual computation of the extrinsic curvatures kpy from the normal field B for a chosen
tangent direction X and normal direction N. But, as will be clear from (4.30) the computation of the

principal curvatures entails some extra expenses. It is therefore of some importance to have ways of
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finding realistic estimates for the extrinsic curvatures of N. As we see it, there are three

possibilities:

(i

Try to compute the extrinsic curvatures analytically. Those cases where this is possible will,

however, be rare.

L.et us take as an example the Symmetric Helmert transformation (5.17), For convenience we

reparametrize (5.17) as

X. = au, + bv., + t_,
i i i y
Y = -bul + av. + ty’
X = u., ©.78)
i i
;Ii = Vl ’
where a = Acosf and b = rsin#.
I
We assume that the observation equations y (x%) s, 1 = 1,...,4n, and the parameters
xa, o = l,...,2n+4, of model (5.78) are ordered such that the design matrix Bay
reads in partitioned form as
A 5 (5.79)
c b}’ )
where:
a b
matrix A is 2n x 2n block-diagonal with equal 2 x 2 blocks b ,
- a
1
L\:l ul 0 g
1 1
B = . : . . , C = ? and D O .
. . . . n
2nx4
nx y v 1 0 2nx4 2nx4
n n
v -u 0 1
n n
We also assume that the observation space has the standard metric, i.e. 953 13 It
follows then that the induced metric g 8 reads in partitioned form as
a
AtA + 1 AtB
Z2n
¢ t ’ (5.80)
BA BB
with:
t 2
AA = )1
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au_-bv bu_+av eeeeea. au -bv bu +av
n n n n

1 1 1 1
¢ avl+bul bvl-aul avn+bun bvn-au
B'A = , and
4x2n a b a b
-b a -b
2 2
E (u +v?) ] nu nv
i=1 i i 2 2 c c
0 E (u +v.)) nv -nu
t i=1 i i c c
BB = .
nu nv n 0
c c
nv -nu 0 n
c c

I a
Furthermore it follows from (5.78) that the non-zero second derivatives of y (x )are given

by:

a2yI=21-l . 82yI=21-l

5T T _ = ’ —o _ = ’
aXo:._Zl ’laxa_n+l axa_Zl axou_n+2

a2yI=21 . ) a2yI=21
aXc:t:Zi-lachI.=n+2 - an aX<nn=218x<m=n+l - !

for i = 1,eeeyne

Hence for an arbitrary unit normal vector N, i.e.
<y*(3a), N>M = O’ (5.81)

the matrix <B( 3(! , 38) ,N>M reads in partitioned form as

’ (5.82)

where:

E = @] y G = O and
2nx2n  2nx2n 4x4 4x4

NI=LNI=2 0 (l=2n-1 I=2n
Pt [ NTEENIEL 0 NtEEn g I=ane
4x2n 0 0 eeeeenen O 0

0 0 tereenan O 0
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In order to determine the with the normal direction N corresponding principal curvatures, we

need to solve the general eigenvalue problem

I <B(aa,36),N>M-kN 9gl = 0.

With (5.80) and (5.82) this gives

2 t
-kN(l+)\ )I2n F - kNQ B

(F - kNAtB)t -kNBtB !

- 0. (5.83)

Now assume that kN £ 0 . Then we can apply the following well-known result:

If U is a regular square matrix, then

U Y -1
=l Ul ] V-XU“'Y]| . (5.84)
X Vv
This applied to (5.83) gives
t t.t t 2_t. .t 2 2.t
FF-kNFAB-kNBAF-kaBAAB—kN(IO\)BB[:U. (5.85)

Since N is a normal vector it follows from (5.79) and (5.81) that

1 . . .
5_] (NZI u, + NZIV,) = 0, by (NZI lv_ - N2]u,) = 0,

2i

t t 2
Hence F AtB = 0. With A"A = X I_ , this gives for (5.85)

2n
t
FF-kpBIl =0,
or
2 1.2 2 2 2 2 2
1€1(N ) kN igl(ui+vi) 0 KU TRNY
2 2 2 2
0 E (N ) N lZzl(u v ) kN anuc .
2 2 2 - :
e Y R
kN N u 0 -an
(5.86)
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(ii)

(iii)

160

We can now apply the following variant of (5.84):

u v -1
= | vl U-vYyYvVv XI.
XV
This gives for (5.86)
2 1.2 2 2 2 2 2 2
I Igl(N ) -k 1)51(”1”1)) I, + nklugev ) I, [ =0,
or
2 [.2 2 2 2 2 2 2 .2 , c.2
- . . - K .
Igl(N ) KN [ig (uje vi) -nu - nv ) N igl((ui) +(v))

Thus the two non-zero principal curvatures of model (5.78) read

1
ol
k,, = + - . (5.87)
N - gll[ (uc)2+(vc)2]

Try to estimate the extrinsic curvatures with the help of the information which comes
available during the iteration. Recall from section 3.6 that the numerical examples clearly
betray the curvature involved.

In order to estimate the curvature during the iteration we need a manageable formula.
Formula (4.37a) does therefore not apply, since it needs x in advance. The following

faormula, however, can be used:

I y*(grad )l yix )

1
Lim ®* .

g |l y*(grad ) Y(Xq)

O ) g, (x )(xB -xB }
- |t ee B ol e A <l | Hy SR Ty
(xq+l-xq ) gms(xq )(><Q+l-><q )

(5.88)
The proof of (5.88) goes similar to that of (4.37.a).

Try to obtain rigorous bounds on the extrinsic curvatures. From Gauss' decomposition formula
(4.18) follows that

ND) = .
<Dy*(x)y*(Y), )M (B(X,Y),N >M , (5.89)

1.
forX,Y e TN, Ne TN .
X y



Let k denate the in absolute value largest principal curvature for the normal direction
N = e/llel ‘M , with e = ys—§'. According to the eigenvalue problem (4.30) we

have then

R Ba -
= | 5.90
Ik N,e%{ | = 11{g B(aa,aY),e%{ I, (5.90)

where the matrix norm | | .

| 2 is the spectral norm.
With (5.89) and the Cauchy-Schwarz inequality we obtain the following upperbound:

IA

- Ba -
I{ N,e%‘I g 11, 1 (B(am,ay),ekdll2

1A

YY 2 i -]

3 b )
g ()| og” (11, 9; ;¢ I, o0
with gYY(R) = trace (gaB(R)).

To estimate the spectral radius of 328)'1 one can make use of the various exclusion
theorems known from the literature. For instance, one of the simplest exclusion theorems is:

For all eigenvalues U of a matrix AaB one has

a1
lul < gax ——— 57 (5.92)
x $0  IlIx Il
where || .|| is a chosen vector norm.
For the max-norm | | x| |m = max | x8| this becomes then
8
< ' | i.e. . .

lul < ma x Y| Ag! s i.e. the largest row of A g (5.93)

B

For a diagonal dominant matrix one could take Gershgorin's theorem, which says that the
union of all discs

D, = {pecllyu-A I<J 1 A_ I}, (no sunmation over a), (5.94)

Tl o8
B

contains all eigenvalues of the n x n matrix AaB .

Instead of using exclusion theorems one could also try to compute the spectral radius of
2 i

3

af y

only a few parameters are involved.

directly. This can turn out to be feasible especially when per observation equation

As an alternative to (5.91) welcould make use of condition equations if they are available.
Let Ye T N and Ne T N . Then {y_(Y) JN) = 0. Hence,
X X x M

l6l
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0 = DYx(x)<y!(Y),N>M = (Dy!(x)y!(Y),N>M + <y!(Y)’Dy*(X)N>M ,

and with Gauss' decomposition formula (4.18) this gives

B(X,Y),N) = - (D N,y (Y . 5.95)
(BOGY),R) = - ¢ y () Y, (Y, (
Now assume that

N=P _(ys-y) =P | e
TN ,TN TN ,TN

With the condition equations o® (y) =0, p=1,...,(m-n),we can write then

S - (aiky P
N = (g U nga

T 1 -
\ue )aj, jykyl=1,.0.m; p,T=1,...,{m-n),

where
ng = a,upglJB,uT.
1 J
And with X = aa, Y = 38 this gives for (5.95),
_ in2 p i T k
= -3 ) 3 3 .
<B(am,a8),|<1>M of 2159 %Y 93 e
Hence,
" Ba -
k = ] =
¢ N,e)Ml I'1{q B(aa, Y)'e>MH2

6 ) ) ) . (5.96)
Qa 1 o] ] T -
Ig (%13 y (R)aiju (9)8Yy (ﬁ)ngW)aku (9)é ||2 ,

@,B,y = 1,000,n , i,j,k = 1,000,m, p,T = 1y¢0.,(m-n) .

Expression (5.96) still looks horribly complicated. But we can simplify it somewhat by
i

recalling the well known result that for two arbitrary matrices Ai’ Ba’

a i
izl,...,m, a=1,...,n their products AiB; and BaAE: have the same non-zero

eigenvalues with the same multiplicities. Application of this result to (5.96) gives

. _ Ba i Im_ 2 p T Ak, n
I{k N,e)MI = Ilg (23 y (R)g, g~ 3 U (9)g (913, u(9)e 8y CL
_ Im_2 o T Jk.on Ba i
=llg 8 u (9)901(9)8ku (9)e 3gY (8)g™(R)3 y (®)g, I,
I 2 ~k i
<11g™ 3l F9g 93 @111,y R 02y Ry 1,
or



()

(ii)

A Im _ 2 p T Ak
| (k N,e% | < Ilg "0 u (9)ng(9)3ku (9)e|

207 (5.97)

since the eigenvalues of a projector equal one or zero.

5.7. Some two dimensional networks

Recall that Gauss' method (4.5) has a local quadratic convergence behaviour in case
submanifold § is totally geodesic. A typical example of a type of gecdetic network for which
this holds is a planar geodetic triangulation chain if the parameters are cartesian coordinates

(see figure 33).

figure 33

In the previous subsection we observed that it may be worthwhile to try to compute the
spectral radii of the matrices 35 yl , i=l,...,m,directly if every observation equation
only contains a few parameters. Fortunately, this is precisely the case in geodetic network
theory. In case of a two dimensional trilateration network for instance only four parameters
are involved in each observation.

By expanding the distance function lpq connecting the network points Pp and Pq we get

Ax
p
o] o] 0 o] o] Ax
1 =1 « (- x X -y ) q|+
PG Pq PqQ P9 PG “pa’ | Ay
1 p
Pq Ay
q
o 2 o 2 [ o
(y ) -y ) =-xy Xy AX
Pq Pq PA'Pq P9 pq
o 2 o 2 o o o o
-ty )y ) xy -x_y AX
+ (Ax Ax Ax Ay ) o o PAP9,  P3PY e
o 3 P 9 p q -X Yy Xy (x ~-(x ) Ay
2(1 ) PAPq  PAPq  pq Pq
Pq o o o o o 2 o}
Xy -x y -(x (x Ay
PA'PQ  PIPQ  Pq Pq
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And it is not too difficult to verify that the maximum eigenvalue of its 4x4 Hessian is given
by

A N (5.98)

Pq

Since in practice the observations are usually assumed to be uncorrelated with equal
variance, we can write

-2
.. = diag (... 0 "...) (5.99)
g” g Y

Now if we also assume that all distances in the network are about the same, i.e. 10q =1,
and that the variances of the estimated parameters do not differ too much, we get with
(5.98) and (5.99) for (5.91):

SR
Ik Ny8) | <20 2 220 (5.100)
M 02 i=1 1
y
(iii) As an example of how to apply (5.97) we take a two dimensional closed polygon in which

every two neighbouring points are connected by one measured distance 1 and one measured

azimuth A. The two condition equations read then:

Bl cos A =0, and B sina -0. (5.101)

i=1 i=1 i

If we assume that the observations are uncorrelated and the variances satisfy

2 2 2
[0} = o .
N li A’ (5.102)
i i
then
pT 2 PT
o" = (Bol )%, et (5.103)
i
and
-1 . .
(,E 02 ) %2( ezj-lcos A - ezjl,sin A) cgll a, for p=1
T K =117 =1 j j j
gp'raku e = 1 (5.104)
P 2 n£2 2j-1 . 2j call
(o) Z (e sin A, + el cos A)) = b, for p=2
=117 j=1 j j j

where the odd numbered residuals refer to the distance residuals and the even numbered
residuals refer to the azimuth residuals,

Furthermore it follows that the following two 2n X 2n matrices
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Im 2 LP =1 Im, 2 p=2 X . .
g 3 and g 3 u are block-diagonal with blocks of respectively
mn mn
0 -02 sin A, 0 02 cos A,
i, i 1 i i
21 and 2 2 .
- i - g - g i
g ‘sm Ai CA_li cos Ai A cos Ai A,li sin Ai
i i i ! (5.105)

From (5.102), (5.103), (5.104) and (5.105) follows then that.the 2n x 2n matrix

Im 2 T k
g aan’ nga KUoe s (5.106)
is block-diagonal with blocks

0 cf (- a sin Ai+bcos Ai)
i
-2 2 -1 '
02 1. (- asin A, + b cas A,) -0 1, (acos A, + b sin A,)
li i i i li i i i

The eigenvalues A ; of matrix (5.106) read

- (a cos Ai + b sin Ai) t\/lt(az+b2) - 3(a cos Ai + b sin A_l)2

A, = .
! 21,0-2
il
i
And from this follows that
02
3 li
Il 3 77— (al « Ibl) . (5.107)

i

Hence, with (5.104) we find for (5.97):

Ik Ny | <
M

(5.108)
z nf2 *2j-1__ ~ *2j° - ~2j-1 . & *2j° -
% |,£ e cos A -1, sinA l+] B et sinA, el cosal
3 k j=1 i j i =l j j j
2 2 -
12101 b

A 2 -~
where lk is the distance for which 01 /1 .’ i=l,...,n, isthe greatest.
i
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6. Some statistical considerations

In the previous sections we dealt with the problem of finding the least-squares solution ¥ to
min. |y -yIIZ. (6.1)
yeN 8 M
But it is of course not enough to compute a vector y € N and state that this is the estimated
value of the unknown Yy € N. The step following the actual adjustment process is equally
important. That is, one also needs to find the statistical properties of the estimators involved and
formulate ways of testing statiétical hypotheses. Unfortunately we are not able yet to present a
complete treatment of the statistical theory dealing with non-linear geodesic estimation, although it
will be clear that in considering non-linear models one cannot expect a well working theory as we
know it for linear models. In the following we will restrict ourselves therefore to a few general

remarks.

As we have seen, Gauss' method enabled us, given the observation point ys e M, to compute the
least-squares estimate X of x. And with the map y: N+ M this gives the least-squares estimate
;' = y(;() of y € NcC M . In this way the least-squares estimation method defines, at least

= -1
implicitly, two non-linear maps P: M+ N and y "o P: M = N such that

b 24
il

y = P(ys) and y-1 o P(ys), (6.2)

where y'1

is a leftinverse of y: N + M .
If the observation pracess which yielded our data were to be repeated, we would obtain different
values for yg. And application of the maps P and y-1 o P to the new data would yield different
values of y and x respectively. Thus the ;'and x are themselves samples drawn from certain
probability distributions which depend both on the nature of the maps involved and on the assumed
normal distribution of the observations. For making statistical inferences it is therefore important to
know the statistical properties of the estimators involved.

In case the coordinate functions yl (x*) of the map y are linear, it is not difficult to derive the
precise distribution of the least-squares estimators. The following distributional properties are well
known:

) (c) &'w N(O,cz(gij-’&myigcl

i _i 2. iaB
(b) § v N(y ,078 yg 3

ngB 636)’]))

(a) &%+ N o
. (6.3)
j a2 242

d) | -yl 7w X
gy ) (d) |ys y lM o
However, these results do not carry aver to the non-linear case. Only in the exceptional case that one
is dealing with a totally geodesic submanifold N will the last three distributional properties of (6.3)
still hold, Of course, a similar complete theory as we know it for linear models can hardly be
expected. Essential properties which are used repeatedly in the development of the linear theory

break down completely in the non-linear case. Take for instance the mathematical expectation
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operator E{ .} . If z is a random variable and g is a non-linear map, then
E{ g(2)} # gq(€ 2 ), (6.4)

i.e., the mean of the image differs generally from the image of the mean. Hence, we can hardly
expect our least-squares estimators to be unbiased in the non-linear case. Consequently, one cannot
justify least-squares estimation anymore by referring to the Gauss-Markov theorem. Of course this by
no means implies that one should do away with the least-squares estimators. Under the usual
assumption of normality the least-squares estimators are namely still maximum likelihood estimators.
Besides, when one overemphasizes the importance of exactly unbiased estimators, one can find
oneselves in an impossible situation, Very often namely we have a natural estimator which is,
however, slightly biased. For example, if z is a good unbiased estimator of z, and if it is required
to estimate g(Z), then it seems natural to estimate g(z) by g(z), although this estimator will
nearly always be biased.

Another property that fails to carry over to the non-linear case, is the property of estimability.
Recall that with respect to a linear model Y ¢ N = ANcM, a linear function
(x*,x) ’ xx € N*, X € N , is usually defined to be an estimable function if it admits an
unbiased linear estimator. However, this definition cannot be used for a non-linear model. First of all
since a restriction to linear estimators is not reasonable anymore, and secondly since non-linear
estimators are almost always biased. Thus what we need is a more general definition of estimability,
one which for linear models reduces to the above given one. The answer is given by the dual relation

ATl (o) = (a*M)°. (6.5)

This dual relation implies namely that either

x* = A*y* for some y‘e #* or Ax = 0 and (x*,x) £ 0,

x
but not both hold. Hence, asking for an unbiased linear function (x ,x) is equivalent to asking for
a linear function (x*,x) which is invariant to solutions of Ax = 0 (see e.g. Grafarend and
Schaffrin, 1974). Therefore in general it would seem more appropriate to couple the definition of

estimability to the property of invariance.

Since it is impossible in general to derive precise formulae for the distributional properties of the
non-linear estimators, the best we can do seems to be to find approximations. Three approaches
suggest themselves:

When one has a non-linear model it is natural to hope that it is only moderately non-linear so that
application of the linear theory is justified. In practical applications the first step taken should
therefore be to prove whether a linear(ized) model is sufficient as approximation, because then the
statistical treatment is much more simple. And since the origin of all complications in non-linear
adjustment lies in the presence of curvatures, it seems reasonable to take the mean curvature as a
measure of non-linearity. Let us therefore Taylorize the expressions in (6.2) about the true values
y = y(x). With e = ys-7 this gives:
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k

ok - (P(ys))k VN a,l(p(y))kei '

N

afjm(‘y“))ke'e’ b

-1 a a -1 — i 2 -1 o0
& =(y "o F’(ys)) = x + ai(y o P(y)) e 4 3“_( y "o P(y)) elels ... .

N | =

4
By taking the expectation we find to an approximation of the order 0 :
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=508 (PN

and ) (6.6)
1 2 -1 _ ]

= = 3 .
> 0 iJ.(y o P(y)) g

And with the definitions of the unique mean curvature normal N (see (4.33)) and the Christoffel
a

symbols of the second kind TBY (see (4.17)), and by using the fact that Y- P(ys) € T;ﬂ , one
will find that one can rewrite (6.6) as

N
Z
«

and P
a o 1

(b) E{R-x}:—acg . , (6.7)

where Np’ p=1,...,(m-n), is an orthonormal basis of T;;ﬁ

and a,B,y = 1,...,n.

(see also Teunissen, 1984c).

Thus the first moments of the parameters depend on the connection coefficients of N, whereas the
first moment of the residual vector depends on the mean curvature of submanifold y(N).
Hence, the first moments of the parameters can be manipulated by a change of parameter-choice,
whereas the first moment of the residual vector is invariant to such a change of parameters.

As an example, let us apply (6.7) to the two dimensional Symmetric Helmert transformation (5.17).
We assume that the observation space has the standard metric,

According to (5.87) the non-zero principal curvatures of model (5.17) for an arbitrary normal
direction N read

n, 1.2
Igl(N)

c,2 c.2
igl((ui) +(vi) )

N

Hence, the corresponding mean curvature reads IZN = 0. With (6.7.a) follows then that the adjusted
coordinates XisY; and XisYis i=1,...,n, areunbiased.

The bias in the parameters follows if one applies (6.7.b.) For the Symmetric Helmert transformation
one will then find that
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o, E{tx-tx} = E{ty-ty} =0 .

Similar estimates as given by (6.7) can also be derived for the higher order moments of the non-linear
estimators.

Fortunately our rather pessimistic estimates in section 5 indicate that the application of the theory
of linear statistical inference is generally justified in geodetic network adjustments. But, we must
admit that it is not clear to us yet what to do when the model is significantly non-linear and
therefore much more research needs to be done in this area. Such being the case one may be surprised
to realize how little developed is the statistical theory of non-linear estimation for practical
applications. See for instance the survey papers (Cox, 1977), (Bunke, 1980); the book (Goldfeld and
Quandt, 1972) and the very recent book (Humak, 1984),

An alternative way to estimate the properties of the distribution of the estimators involved, would be
to use computer simulation. One could replicate the series of experiments as many times as one
pleases, each time with a new sample of errors drawn from the prescribed normal distribution and so
obtain the relevant distributional properties by averaging over all replications. Although this
approach could give us valuable insight into the effect of non-linearity, it must be carried out on a
system whose parameters are known in advance, and such a system may not always be realistic. But
then again, since the distributions of the estimators involved depend on the actual distribution of the
observational data which on its turn depends on the "true" values x which are generally unknown, one
is almost always faced with the problem that even when one can derive exact formulae for the
distributions one can evaluate only the approximation obtained by substituting the estimated

parameters for the true ones.

Finally we mention the possibility to rely on results from asymptotic theory. The central idea of
asymptotic theory is that when the number m of observations is large and errors of estimation
corresponding small, simplications become available that are not available in general. The rigorous
mathematical development involves limiting distributional results holdingas m + <  and is closely
related to the classical limit theorems of probability theory. In recent years many researchers have
concentrated on developing an asymptotically theory for non-linear least-squares estimation. In
(Jennrich, 1969) a first complete account was given of the asymptotic properties of non-linear least-
squares estimators. And in (Schmidt, 1982) it was shown how the asymptotic theory can be utilized to
formulate asymptotic exact test statistics, See also the very recent book (Bierens, 1984). Roughly
speaking one can say that under suitable conditions one gets the same asymptotic results for the non-
linear model as for the linear one. Unfortunately, we doubt whether the results obtained up to now
can satisfy the requirements of applications in practice. In particular, the theory still seems to lack

statements concerning the accuracy of the approximations by limit distributions.
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7. Epilogue

In this chapter we have tried to show how contemporary differential geometry can be used to improve
our understanding of non-linear adjustment. We have seen that unfortunately one can very seldom
extend the elegant formulations and solution techniques from linear to non-linear situations. For most
non-linear problems one will therefore have to recourse, in practice, to methods which are iterative
in nature. As our analysis showed, the Gauss' method is pre-eminently suited for small extrinsic
curvature non-linear adjustment problems., On the whole, one could say that solutions to linear
problems are prefabricated, while exact solutions to non-linear problems are custom made. An
important example is our inversion-free solution to the Symmetric Helmert transformation.

Although we have treated a number of new aspects of non-linear adjustment, we must recognize that
we are only on the brink of understanding the complex of problems of non-linear adjustment. Many
problems and topics were left untouched or were not further elaborated upon.

For instance, in our proof of the global convergence theorem (4.66) we made use of the line search
strategy known as the minimization rule. However, its practical application is limited by the fact
that the line search must be exact, i.e., it requires that the exact minimum point of the function

E(e (t)) be found in order to determine x Therefore in practice the exact minimization is

q+l°
replaced by an inexact line search, in particular by a finite search process (see e.g. Ortega and

Rheinboldt, 1970).

In our discussion of Gauss' method, we assumed the non-linear map y to be injective. However, in
many practical applications the matrix of first derivatives aayl becomes of non-maximum rank
(see e.g. chapter III) and the required inverses cannot be calculated. A way out of this dilemma is
suggested by the theory of inverse linear mapping. Instead af an ardinary inverse of gaB , one then

-Ba B -Ba

takes a generalized inverse, gB say, of 98" To show that Ax = -g 3aE = -(grad E) is

8

still in a descent direction, note that
i i k -Ba 1 i o
- = - 3 - .
(grad E, Ax>N (yS y (x))gikasy (x)g  (x) o (x)glj(yS y?(x))

Hence, if Ax £ 0 then - <grad £, Ax >N > 0, which shows that Ax has a positive
component along the negative gradient and so is downhill.

As to the local rate of convergence of Gauss' method, recall that the extrinsic curvatures are a
property of the submanifold N. Therefore, the local convergence results obtained for Gauss' method

i
will remain unchanged if Bay has non-maximum but local constant rank.

Of the many iteration methods available, we only discussed Gauss' method. We did not mention any of
the possible alternative iteration methods such as, for instance, Newton's method, Levenberg-
Marquardt's compromise or the method of conjugate-gradients (see e.g. Ortega and Rheinboldt, 1970).
Although more intricate, these methods can become quite attractive in case of large curvature

problems since they take care, in one way or the other, of the curvature behaviour of N.
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Also did we not discuss the interesting point of view which is provided if one interprets the iteration

process as a dynamical system. Consider namely Gauss' method

B _ Ba i i
(a) AXq =g (Xq)aay <Xq)gij(ys y (Xq)),
(b) xB = XB + t AXB ,

g+l g q q

and assume that the positive scalar t_ is taken infinitesimally small in each iteration step. We obtain

q
then the autonomous dynamical system

5;5 = gB“(xmay‘ (x) 8, (y}- ¥' () = - (grad. EG))E. (7.1)
Its solution is a curve c(t) which passes through the initial value xg at time t=0 and which has its
velocity given by the value of the vector field - grad E. Although the uniqueness theorem for systems
of differential equations implies that ¢(t) is never a critical point of E, this should nat bother us
too much since one can show that wunder suitable conditions “Q c(t) = X with
grad.E(x) = 0. This is like the pendulum paradox, which says that the pendulum once it is in
motion can never come to a state of rest, but only approximate one arbitrary closely. Thus, given an
initial guess x, which is not a critical point of E, one can try to solve our non-linear adjustment
problem by solving the system of differential equations (7.1), using one of the many numerical

integration methods available,

In connection with the above dynamical interpretation we also mention the potential value which a
study of the qualitative theory of the global behaviour of dynamical systems and of Morse theory, can
have for a betterment of our understanding of non-linear adjustment. This qualitative theory is
namely concerned with the existence of equilibrium behaviour of a dynamical system, together with
questions of local and global stability (see e.g. Chillingworth, 1976; Hirsch and Smale, 1974). And
Morse theory studies, amongst other things, the equilibrium configuration of a gradient system. The
Morse inequalities, for instance, place restrictions on the number of critical points that a function E

can have due to the topology of the manifold on which it is defined (see e.qg. Hirsch, 1976).

Finally we note that we omitted the important case of an implicitly defined submanifold N. This
would correspond to a non-linearly constrained adjustment problem, Although the geometry of the
problem is not too different from the one discussed in this chapter, the various methods for actually
solving a constrained problem can become quite involved (see e.q. Hestenes, 1975). The usual way to
go about is, to prolong the original constrained problem with the aid of the Langrange multiplier rule
to one which is unconstrained. It is interesting to point out that although the Lagrange multipliers are
often thought of as being merely dummy variables, which are just needed to prolong the constrained
problem into an unconstrained one, they actually have an important interpretation of their own. In
fact, there is a very rich duality theory connected with the Lagrangian formulation (see e.g.
Rockafellar, 1969). It goes back to the Legendre transformation of classical mechanics. The
Lagrangian formulation has namely the physical significance that it replaces the given (kinematical)

constraints by forces which maintain those constraints. As a result the multipliers equal the forces of

171



reaction (see e.q. Krarup, 1982b). The multipliers can therefare be used as test statistics. For linear
madels one can show that the standardized Lagrangian multiplier equals Baarda's w-test statistic (see

Teunissen, 1984b).

That many more problems and topics related to non-linear adjustment can be brought forward is
indisputable. Many questions are still open for future research and it will probably take some time
before we understand non-linear geodesic adjustment as well as we understand linear adjustment. We
therefore conclude by expressing the wish that the rather unsurveyed area of non-linear adjustment

and statistical inference will receive more serious attention than it has received hitherto.
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