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Abstract

The last two decades have shown a major shift from stand-alone software systems
to networked ones. As with all information system domains, Geographic Infor-
mation Systems (GISs) have been influenced to a large extent by recent internet
developments, resulting in an increasing availability of client/server applications
using distributed geo-(web-)services, such as interactive maps, route planners and
gazetteers. There is an increasing need for organisations to perform on demand
geo-processing tasks by integrating and reusing geo-information and geo-services
from within and outside the organisation. These activities are typically performed
in the context of so called Geo-information Infrastructures (GIIs).

The process of integrating services is commonly referred to as service chaining.
This requires that services can be easily found, and that they are executable and
interoperable. Interoperability means that the services ‘understand’ each other’s
messages. A major impediment is formed by the semantic heterogeneity (the dif-
ferences in meaning) of geo-information and of the functionality of geo-services.
Making services semantically interoperable is an important prerequisite for infor-
mation sharing in today’s networked society. This involves services that rely on
different knowledge domains, one of which is the geo-information domain.

Within this context, the research presented in this thesis provides solutions for
the computer-aided integration of distributed heterogeneous geo-information and
geo-services, based on their semantics (the meaning of their content).

Geo-information distinguishes from other information by its spatial relevance.
Geo-services often have to deal integrally with multiple-representations of features
in a spatial, temporal and thematic dimension. Geo-services are also implicitly
connected by the geographic location of the features they process. This has im-
plications for the interoperability of geo-services. For example, the validity of a
service (e.g., a routeplanner) may be bound to a specific geographic area, which
could imply it cannot be used in combination with services involving another valid-
ity area. On the contrary, services that seem to be incompatible due to differences
in feature representation (e.g., geometry, coordinate reference system), may turn
out to be useful in combination, because they contain information on the same
locations.

On demand geo-processing requires services and the meta-information that de-
scribes the services to be available at the time a task is being executed. Moreover,
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the service descriptions should be based on commonly agreed rules for service char-
acterisation. Inter-service contracts that contain such rules may result in service
interoperability and this can be achieved at three levels: syntax, structure and se-
mantics. The influential specifications of the Open Geospatial Consortium (OGC)
and the ISO 19100 series of standards, implement formal contracts on the syntac-
tical and structural level, but they prescribe only informal contracting at the se-
mantic level. Despite their rigid conceptualisation, they lack a machine-accessible
formalisation that supports the specification of semantics for geo-information and
geo-services. This research has developed such a formalisation, which is specified
in a so called semantic interoperability framework. In this framework a key role
is played by machine ontologies, which are machine-accessible representations of
knowledge that are used for inferring intra- and inter-resource relationships. Re-
cent research efforts in the field of the Semantic Web have contributed considerably
to the deployment of ontology-based applications by providing a theoretical foun-
dation (Description Logics), ontology languages (e.g., the Web Ontology Language
(OWL)), and tools for ontology creation, access and reasoning with web-based (ma-
chine) ontologies. The power of web-based ontologies lies in their interoperable
(XML based) representation, the use of unique namespaces and the fact that they
allow for automated reasoning.

The semantic interoperability framework developed in this research, contains
(1) geo-information modelling ontologies which are based on the ISO General Fea-
ture Model, (2) domain specific ontologies (amongst others, one which is based on a
data model used by the Dutch Topographic Service), and (3) a geo-operation mod-
elling ontology. The latter is based on a geo-operation taxonomy, an input/output
parameter characterisation and a workflow model. The taxonomy and parameter
characterisation have been developed as part of this research, the workflow model
is based on OWL-S, an OWL-based upper ontology for web services.

Ontology-based service descriptions have been created in the context of four
use cases in the following areas: (1) information model integration for risk map-
ping, (2) ad hoc data integration in a disaster emergency situation, (3) reuse of
geodata and geo-services in scientific research, and (4) ad hoc integration of travel
services. The ontology-based descriptions are used as representations of service
requests and advertisements in a matchmaking process. The matchmaking is per-
formed by an ontology reasoner which can infer implicit relationships that exist in
a knowledge base containing service descriptions as sets of concepts. The reasoner
is implemented together with the ontologies in a prototype environment. Except
for the reasoner, this has been carried out with open source software. Within
this environment, basic matchmaking has been successfully performed to support
data set integration and service chaining. This has been demonstrated by tests
implementing the aforementioned use cases.

The offered solution is flexible and extensible. With respect to flexibility, the
research demonstrates the use of incomplete service descriptions. With respect to
extensibility, the research shows how service descriptions can be extended with new
concepts. It is also demonstrated how existing application domains can be linked
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through ontology mappings. In the process of service chaining, four steps have
been identified, i.e., discovery, abstract composition, concrete composition and ex-
ecution. The link between the abstract and concrete composition of services is
realised by annotation, which connects ontology elements with parameters of exe-
cutable code. For one of the use cases, this code has been deployed in a prototype
software application (the latter being part of an external research effort).

There are also limitations to the approach followed, which are partly due to
the limitations of OWL and reasoning with it, i.e., with respect to spatial reason-
ing and the use of metaclasses. In addition, the current prototype environment
has several shortcomings: (1) constraints of the user-interfaces (entering service
descriptions in Description Logics is still rather complex), (2) the inflexibility of
the reasoning implementation and (3) the incompleteness of mappings between
domain ontologies, all of which are thought to be surmountable.

A number of recommendations are made for the improvement of the current
design and implementation of the interoperability framework, such as the incorpo-
ration of: meta-information propagation, concept similarity quantifiers and result
ranking in the matchmaking process. The deployment of the approach requires
key organisations such as OGC to develop and maintain domain independent parts
of a semantic interoperability framework and organisations with a GII mandate
to manage its domain dependent parts.

Application fields that are thought to benefit from the presented approach in
the short term are, amongst others: service discovery and chaining in GII, har-
monisation of geo-information models, multiple-representation of geo-information,
profile matching of geo-service users, documentation of geo-processing history (lin-
eage), and quality assessment of meta-information. The target groups of this re-
search are firstly geo-information engineers who are confronted with information
integration issues and service interoperability issues, and secondly, information
engineers in general confronted with distributed information and with end users
that need to access distributed services as one virtual application.
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Samenvatting

De laatste twee decennia hebben een verschuiving laten zien van autonome soft-
waresystemen naar genetwerkte systemen. Zoals alle domeinen in de informatie-
technologie zijn Geografische Informatie Systemen (GIS) sterk bëınvloed door
de recente ontwikkelingen van het internet. Deze hebben geresulteerd in een
toenemende beschikbaarheid van client/server-applicaties die gebruik maken van
gedistribueerde geo-(web-)services, zoals interactieve kaarten, routeplanners en
gazetteers. Er is een groeiende behoefte binnen organisaties aan het verwerken
van geo-informatie ”op verzoek” door middel van het integreren en hergebruiken
van geo-informatie en geo-services zowel van binnen als van buiten de organisatie.
Deze activiteiten worden doorgaans uitgevoerd in de context van geo-informatie
infrastructuren (GII).

Het proces van integreren van services is ook wel bekend als service chaining.
Dit vereist dat services vindbaar, uitvoerbaar en interoperabel zijn. Interopera-
biliteit betekent dat services elkaars berichten ‘begrijpen’. Een grote hindernis
wordt gevormd door de semantische heterogeniteit (verschillen in de betekenis)
van geo-informatie en van de functionaliteit van geo-services. Het creëren van se-
mantisch interoperabele services is een belangrijke voorwaarde voor het uitwisse-
len van informatie in de huidige genetwerkte maatschappij. Dit betreft services
die betrekking kunnen hebben op verschillende kennisdomeinen, waarvan het geo-
informatie domein er één is.

Binnen deze context draagt het onderzoek, beschreven in deze dissertatie,
oplossingen aan voor de computer-ondersteunde integratie van gedistribueerde
heterogene geo-informatie en geo-services, gebaseerd op hun semantiek (beteke-
nis van hun inhoud).

Geo-informatie onderscheidt zich van andere informatie doordat het een ruim-
telijke relevantie heeft. Geo-services worden gekenmerkt door hun vaak integrale
verwerking van meervoudige representaties van geo-objecten (representaties van
geografische fenomenen) in een ruimtelijke, temporele en thematische dimensie.
Geo-services zijn ook onderling impliciet verbonden door de geografische locaties
van de geo-objecten die ze verwerken. Dit heeft implicaties voor de interopera-
biliteit van geo-services. Bijvoorbeeld, de geldigheid van een service (bijv. een
routeplanner) kan verbonden zijn aan een specifiek geografisch gebied, hetgeen
kan inhouden dat deze service niet kan worden gebruikt in combinatie met andere
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services met een afwijkend geldigheidsgebied. Andersom, services die incompatibel
lijken door hun verschil in geo-object representatie (bijv. geometrie, coördinaat-
referentiesysteem) kunnen in combinatie bruikbaar blijken te zijn, omdat ze infor-
matie bevatten over dezelfde locaties.

Geo-informatie verwerking op verzoek vereist dat services en meta-informatie
die deze services beschrijft, beschikbaar zijn op het moment dat een taak moet
worden uitgevoerd. Bovendien moeten de service-beschrijvingen gebaseerd zijn
op overeengekomen regels voor de karakterisering van services. Inter-service con-
tracten die zulke regels bevatten, kunnen bijdragen aan service-interoperabiliteit
op drie niveaus, namelijk: syntax, structuur en semantiek. De invloedrijke specifi-
caties van het Open Geospatial Consortium (OGC) en de ISO 19110 standaarden
implementeren formele contracten op het syntactisch en structurele niveau, maar
op het semantisch niveau schrijven zij alleen informele contractering voor. On-
danks hun rigide conceptualisering missen ze een machine-toegankelijke formali-
satie die ondersteuning zou kunnen bieden voor de specificatie van semantiek voor
geo-informatie en geo-services. In dit onderzoek is zo’n formalisatie ontwikkeld.
Deze is gespecificeerd in een raamwerk voor semantische interoperabiliteit. In dit
raamwerk is een sleutelrol weggelegd voor machine-ontologieën. Dit zijn machine-
toegankelijke representaties van kennis, die kunnen worden gebruikt voor de aflei-
ding van relaties tussen informatie-elementen. Recent onderzoek op het gebied van
het Semantic Web heeft bijgedragen tot de ontwikkeling van ontologie-gebaseerde
applicaties door het beschikbaar maken van een theoretische basis (Description
Logics), ontologietalen (bijv. de Web Ontology Language (OWL)), en gereed-
schappen voor ontologiebouw, -toegang en redeneren met web-gebaseerde (ma-
chine) ontologieën. De kracht van web-gebaseerde ontologieën ligt in de inter-
operabele (XML-gebaseerde) representatie, het gebruik van unieke namespaces en
het feit dat ze automatisch redeneren ondersteunen. Het raamwerk voor seman-
tische interoperabiliteit, dat is ontwikkeld in dit onderzoek, bestaat uit (1) geo-
informatie modelleringsontologieën die zijn gebaseerd op het ISO General Feature
Model, (2) domein-specifieke ontologieën (o.a. één gebaseerd op het datamodel
dat wordt gehanteerd door de Nederlandse Topografische Dienst Kadaster), en
(3) een geo-operatie modelleringsontologie. De laatste is gebaseerd op een geo-
operatie taxonomie, een karakterisering van de invoer/uitvoer parameters en een
workflow-model. De taxonomie en parameterkarakterisering zijn ontwikkeld als
onderdeel van dit onderzoek, het workflow-model is gebaseerd op OWL-S, een
OWL-gebaseerde generieke ontologie voor web services.

De op ontologie gebaseerde service-beschrijvingen zijn gecreëerd in de context
van vier gebruikersscenario’s in de volgende toepassingen: (1) informatiemodel-
integratie for risicokartering, (2) ad hoc gegevensintegratie in een rampsituatie,
(3) hergebruik van geodata en geo-services in wetenschappelijk onderzoek, en
(4) ad hoc integratie van services in een reisscenario. De service-beschrijvingen
worden gebruikt als representaties van service-aanvragen en aanbiedingen in een
matchmaking proces. Deze matchmaking wordt uitgevoerd door een ontologie-
redeneer mechanisme (Eng: reasoner), dat impliciete relaties kan afleiden uit een
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kennisbank waarin services zijn beschreven als concepten. De reasoner is gëımple-
menteerd samen met de bovengenoemde ontologieën in een prototype omgeving.
Met uitzondering van de reasoner, is de implementatie uitgevoerd met open source
software. In deze omgeving zijn op succesvolle wijze basale vormen van match-
making uitgevoerd voor de ondersteuning van gegevensintegratie en service chain-
ing. Dit is gedemonstreerd aan de hand van tests, die implementaties vormen van
de bovengenoemde gebruikerscenario’s.

De aangereikte oplossing is flexibel en uitbreidbaar. Wat betreft flexibiliteit
wordt dit gedemonstreerd aan de hand van het gebruik van incomplete service-
beschrijvingen. Wat betreft uitbreidbaarheid laat het onderzoek zien hoe service-
beschrijvingen kunnen worden uitgebreid met nieuwe concepten. Tevens wordt
getoond hoe applicatiedomeinen kunnen worden gekoppeld middels ontology map-
pings. In het service chaining proces worden vier stappen onderscheiden, namelijk:
het vinden (Eng: discovery), abstracte compositie, concrete compositie en uit-
voering (Eng: execution). Het verband tussen de abstracte en concrete compositie
van services wordt gerealiseerd door middel van annotatie, die een verbinding
maakt tussen ontologie-elementen en parameters in de softwarecode. In één van
de gebruikerscenario’s is deze softwarecode daadwerkelijk gebruikt in een com-
putertoepassing (de laatste maakt deel uit van een extern onderzoek).

Er zijn tevens beperkingen in de gevolgde benadering. Deze zijn gedeeltelijk
te wijten aan de beperkingen van OWL en het redeneren met haar elementen,
bijvoorbeeld met betrekking tot het ruimtelijk redeneren en het gebruik van meta-
klassen. Bovendien heeft de huidige prototype-omgeving de volgende beperkingen:
(1) m.b.t. de gebruikerinterface (de invoer van service-beschrijvingen in Descrip-
tion Logics is nogal gecompliceerd), (2) de inflexibiliteit van de redeneringsimple-
mentatie, en (3) de incomplete set van mappings tussen de domein-ontologieën.
Desalniettemin worden deze prototypebeperkingen als tijdelijk gezien en niet als
principieel.

Een aantal aanbevelingen wordt gegeven voor het verbeteren van het huidige
ontwerp en de implementatie van het interoperabiliteitsraamwerk, zoals het mee-
nemen van: meta-informatie propagatie, de rangschikking van resultaten in het
matchmaking proces, en het kwantificeren van concept-gelijksoortigheid. Het
operationeel inzetten van het raamwerk vereist dat sleutelorganisaties, zoals OGC,
de domein-onafhankelijke delen van het raamwerk zullen ontwikkelen, onderhouden
en beschikbaar maken, en dat organisaties met een GII-mandaat de domein-
afhankelijke onderdelen beheren.

Toepassingsgebieden die op korte termijn worden geacht te profiteren van
de gepresenteerde aanpak zijn o.a. service chaining in GII, harmonisatie van
geo-informatie modellen, meervoudige representaties van geo-informatie, profiel-
matching van geo-service gebruikers, documentatie van de proceshistorie van geo-
informatie (Eng: lineage), en kwaliteitsbeoordeling van meta-informatie. De doel-
groepen van dit onderzoek zijn als eerste de groep van geo-informatie-technici,
die worden geconfronteerd met problemen van informatie-integratie en interopera-
biliteitsproblemen met services, en als tweede, informatie-technici, die in het alge-
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meen geconfronteerd worden met gedistribueerde informatie en met eindgebruikers
die gedistribueerde services moeten kunnen benaderen als zijnde één virtuele ap-
plicatie.
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Chapter 1

Why interoperability is
important

The thesis that lies in front of you describes a research effort that lies at the
crossroads of Geographic Information Systems (GISs) and the Semantic Web.

GIS GISs are specialised in the handling of georeferenced data (data containing
features with an earth-related location). The fact that the term GIS is increas-
ingly used in conjunction with Geo Information Services, demarcates the change
of software applications and more importantly, the way of thinking about geo-
spatial data handling, i.e., a paradigm shift is taking place from the data view-
point to the functional viewpoint. As with all information system domains, GIS
has been recently influenced to a large extent by internet developments, resulting
in an increasing availability of client/server applications using distributed geo-web-
services. Web services are software systems that provide specific functionality to
a group of clients over a computer network. New challenges lie ahead in order
to integrate these services into meaningful service chains (e.g., by using a shop
locator of provider X together with a route planner of provider Y ) and make them
instantly available to the clients.

Semantic Web The Semantic Web can be seen as the next step in the evolution
of the World Wide Web as originally envisaged by its founder, Tim Berners-Lee. In
the Semantic Web, documents and services are provided with well-defined mean-
ing (semantics), so that computers can more sophistically process and integrate
the content of these documents and services, in order to improve the access to
information. In the Semantic Web, the semantics of information are laid down
in formal descriptions (meta-information), based on machine-processable knowl-
edge structures (ontologies). The Semantic Web draws upon theories developed
in several existing disciplines such as mathematical logic, computer science and

1
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knowledge representation. With the advent of new web-oriented languages based
on the Extensible Markup Language (XML), the Semantic Web is slowly making
its way into current information systems. Its predominant application fields are
found in medical and multimedia information and service integration.

Regarding the limitations of the Semantic Web, Berners-Lee said the following
in 1998 [25]:

“A Semantic Web is not Artificial Intelligence. The concept of
machine-understandable documents does not imply some magical arti-
ficial intelligence which allows machines to comprehend human mum-
blings. It only indicates a machine’s ability to solve a well-defined
problem by performing well-defined operations on existing well-defined
data. Instead of asking machines to understand people’s language, it
involves asking people to make the extra effort.”

The potential synergy between GIS and the Semantic Web forms an important
basis of this research. The motivation for the work reported on in this thesis
is provided in Section 1.1. The research objectives and research approach are
presented in respectively Sections 1.2 and Section 1.3. An overview on related
work is provided in Section 1.4. The chapter concludes with an outline of the
thesis in Section 1.5.

1.1 Research context and motivation

Lost in the information clouds

The last two decades have shown an observable shift from stand-alone software
systems to distributed systems. This has been triggered by societal and business
incentives for collaboration as well as a great technology push in developments
of hardware, software and communication networks. The internet and the World
Wide Web have been important contributors to this process, providing a scalable
architecture with approachable technology for businesses and the general public.
As a result, the wide range of communication opportunities has led to an infor-
mation push, that produces countless electronic documents and on-line services.
Regarding the latter, geo-information technology is making its contribution with
services such as interactive maps, route-planners and gazetteers. Despite the fact
that this offers added value to our information society, many valuable information
sources are lost in the information clouds, because (1) their usage/functionality
is not properly made public and (2) they are only connected through low-level
hyperlinks and (3) their usage/functionality is still left as stand-alone. As a con-
sequence, documents and services are often (if at all) found in isolation and the
combination of their content is left to the end user. This leads to redundant sources
of data and makes information handling inefficient, especially when it comes to
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non-routine tasks. Such tasks are typically ones that do not have a known pre-
defined solution and require on demand information processing, which involves ad
hoc application building. In service-oriented environments, this can be achieved by
service chaining, which entails the discovery, composition and integral execution
of (potentially distributed) services to support a specific task.

Interoperability for all

Organisations have only recently started to work on more advanced forms of in-
tegrated information provision to support specific tasks on demand. Efforts in
the field of integrated geo-information provision are being run in initiatives to
build geographic information infrastructures (GIIs). This is done at local, re-
gional level and international levels [48, 70, 102, 286]. An example of a recently
started international GII is the European Union’s INSPIRE (INfrastructure for
SPatial InfoRmation in Europe) project. Its main objective and principles have
been described as follows [69]:

“INSPIRE aims at making available relevant, harmonised and quality
geographic information for the purpose of formulation, implementa-
tion, monitoring and evaluation of Community policy-making.

INSPIRE principles

• Data should be collected once and maintained at the level where
this can be done most effectively.

• It should be possible to combine seamlessly spatial data from dif-
ferent sources and share it between many users and applications.

• Spatial data should be collected at one level of government and
shared between all levels.

• Spatial data needed for good governance should be available on
conditions that are not restricting its extensive use.

• It should be easy to discover which spatial data is available, to
evaluate its fitness for purpose and to know which conditions ap-
ply for its use.”

In general, a GII provides the bridges between information providers and con-
sumers. Apart from the political, legal, organisational and financial aspects that
are involved, a key issue in this development is the advancement of interoperabil-
ity. Interoperability plays a role for hardware as well as for software. The problem
of interoperability and its possible solutions in the domain of GIS are illustrated
with the help of a travel power plug metaphor. Figure 1.1 shows three hardware
solutions to the problem a traveller faces when s/he wants to use electricity in a
country with another electricity supply system. Solution (a) is the most basic; it
adapts one socket shape to the other. Solution (b) provides multiple socket shapes
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(a) (b) (c)

Figure 1.1: Three different solutions to a well-known interoperability problem.

(and is commonly called a ‘universal adapter’). Although solution (c) is also ‘uni-
versal’, it is the most flexible of the three. It makes use of an intermediate socket
shape in order to accommodate specific end-pieces; any odd electricity supply sys-
tem just requires a different end-piece. In the context of information systems (in
general and GIS specifically), solution (a) is earmarked as a bi-lateral contract and
solution (b) as a multi-lateral contract. Solution (c) is representative of the ideas
of the interoperability program of the Open Geospatial Consortium (OGC), which
actually addresses the ‘front-piece’ of the contract as well (in contrast to many
travel plugs, which have no universal socket shape at the front). The members of
OGC are building up a set of interface specifications for generic geodata access and
geo-services. OGC specifications can be seen as the intermediate socket shape of
travel plug (c); the proprietary software products are the end-pieces which can re-
main independent with their own implementations. OGC’s specifications build on
top of ICT-mainstream standards, such as the Unified Modelling Language (UML)
and the Extensible Markup Language (XML). The aforementioned approach has
gained momentum over the last couple of years since important specifications, such
as OGC’s Web Map Service (WMS) and Web Feature Service (WFS) have proved
to offer a practical solution to heterogeneity problems in the increasing demand
for geo-information integration.

OGC and beyond

But the interoperability efforts do not end here. The attentive reader has noted
that the travel plugs of Figure 1.1 do not solve all electricity problems of the
traveller. Countries may differ in the electrical voltage they use and this is not
apparent from the socket shape. So it is with geographic information systems.
Users of geo-information need to know the content of a Web Map Service before
they can do meaningful things with it. Here, metadata standards help out. They
provide schemas with data fields that should be filled by the service provider with,
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Meta-information

Scope and purpose: A gazetteer

associates geographic names (place

names and feature names) with

geographic locations and other

descriptive information. The

Alexandria Digital Library (ADL)

Gazetteer combines the U.S. place

names from the U.S. Geological

Survey’s GNIS database, the

non-U.S. place names from the

National Imagery and Mapping

Agency’s GNS database, and other

gazetteer data sets.

Figure 1.2: The Alexandria Digital Library gazetteer web service. Left: output
in a web browser. Right: Part of the meta-information, describing the service; its
content representation is meant for humans, not for machines.

among others, the geodata acquisition method, its coordinate reference system,
displayed feature types (e.g. ‘parcels’), etc. And this is where it often ends.
The meaning of ‘parcels’ is left to the interpretation of the user. In addition,
many metadata elements are only required in informal text (see the description of
the ADL Gazetteer service1 in Figure 1.2)—which is reasonable given the human
effort required for metadata entry— and metadata is not cross-linked between
information sources2. Therefore, the challenge that lies in front of us, is to solve
this so called semantic heterogeneity problem.

To link back to our travel plug metaphor, what we are aiming for, is an ‘in-
telligent’ plug that recognises the voltage and adapts accordingly. At this point
it is informative to switch to a closer metaphor, namely PC motherboard expan-
sion slots and cards (e.g., sound card, video card, etc.), which commonly applies
a so called plug-and-play mechanism (the PC recognises the card and it installs
its drivers automatically). The plug-and-play paradigm lies close to the semantic
interoperability issues that we are facing in current distributed geo-services. The
units/services to be connected have to be recognised by a mediator. This so called
inferencing is done with the help of descriptions that are built into each service
(the services are called self-descriptive), see Figure 1.3.

Mediation between descriptions may be performed by a third service or by
the services themselves. If the mediation is done in-service then it is said they

1http://middleware.alexandria.ucsb.edu/client/gaz/adl/index.jsp
2Note that these arguments are similar to the remark above, that ‘...many valuable information

sources are lost in the information cloud...’
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Data set / service Meta-info Data set / service Meta-info

Figure 1.3: Inferencing resolves the connectivity question between information
sources and is done with the meta-information that describes those information
sources. We should be able to answer the question on top by answering the question
at the bottom.

‘recognise each other’. The fact that plug-and-play is often referred to as plug-
and-pray is due to the malfunctioning of the inference engine that is used to
resolve the connectivity between the descriptions of the plugged units. Part of the
challenge is to get this process to an acceptable level of quality.

Although the idea of making geo-services plug-and-play is an ambitious goal,
the fundament is on the horizon. One of the first steps is to facilitate seman-
tically enriched descriptions of geo-services and to apply inferencing to discover
relationships between them, in order to semi-automate the process of informa-
tion integration and service chaining. This is considered to be one of the major
challenges in this research.

What distinguishes geo-information services from other services?

This can be best understood by analyzing the kind of information they act on:
geo-information (a similar elaboration can be found in [164]):

• Geo-information contains representations of phenomena that are related to
the earth surface. Those representations model the properties of these phe-
nomena and the relationships between them, with respect to three aspects:
space, time and theme. Properties may range from a coordinate pair to a
cadastral transaction date. Relationships may involve an intersection be-
tween roads, an interpolated height value of two bore hole points, proximity
expressions, such as ‘the nearest bus station’, etc. Geo-services are a spe-
cial kind of services that support information of this type and enable the
user to derive new geo-information, based on spatial, temporal and thematic
relationships.
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• Data collection by multiple organisations results in multiple versions of the
same geographic feature with respect to accuracy, geometry, conceptual
model, etc.

• Geo-services are implicitly connected by the geographic location of the fea-
tures they process. This has implications for the interoperability of geo-
services. For example, the validity of a service (e.g., a routeplanner) may
be bound to a specific geographic area, which could imply it cannot be used
in combination with services with another validity area. On the contrary,
services that seem to be incompatible due to differences in representation
(e.g., geometry, coordinate reference system), may turn out to be useful in
combination, because they contain information on the same locations.

• Many geo-services combine information based on spatial relationships, and
as such they derive new information, by adding new spatial attributes to
the features’ existing spatial, temporal and thematic attributes. Due to this
multiple-dimensionality, geo-information is of a complex nature. The in-
tended use of its contents in geodata sets and in geo-services needs a thorough
description of its semantics (meaning). Therefore, geo-specific concepts, such
as geometry types and spatial relationship types need to be defined formally
and unambiguously.

• Geo-information can be massive. Therefor, care has to be taken in shipping
only relevant parts of a dataset or as alternative, shipping software code.

• Geo-services can make use of existing software libraries of mathematical
functions due to the geometric nature of its input and output.

• As geo-information often needs to be reused in different and dynamic ap-
plication domains, geo-services are required to be flexible and interoperable
with each other so that new applications can be built on-demand. Moreover,
the repeatedly reuse of processed information necessitates the availability of
unambiguous meta-information on the processing history (lineage) of geo-
information.

• Finally, end-user applications implementing geo-services often use a map
as an interface. Natural user-interactions, like zooming and panning, are
functions that many geo-services are expected to support.

1.2 Research objectives

The general objective of this research is to

Provide solutions for the computer-aided integration of distributed het-
erogeneous geo-information and geo-services, based on their semantics,
to support on demand geo-processing.
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More specifically, the research aims at:

• Providing a realistic and applicative framework in which the semantics of
geodata sets and geo-services can be described, which allows for automated
reasoning between these descriptions.

• The applicability of the framework to a variety of application fields in GIS.

• Extensibility. The framework should be extensible with extra descriptions
of its semantics, in order to accommodate the step-wise implementation of
an application domain.

• The use of influential information technology standards and geo-information
standards that support interoperability.

• The use of open source software. The licensing scheme of open source soft-
ware eases the use, modification and distribution of prototype software, re-
lated to the research.

Research questions

Specific research questions that are taken as guidelines in this research are found
below. The chapter numbers in brackets behind each question indicate the chapters
that address the relevant issues related to this question. All research questions are
answered specifically in Section 9.2.2.

1. What are the requirements of on demand geo-processing? (Chapter 2)

2. What are the key problems in making geo-services interoperable and what
solutions are currently available? (Chapters 2,3,4)

3. Up to what extent can and should semantics be modelled to support semantic
interoperability (both for geo-information and functionality of geo-services)?
(Chapters 5,6,7)

4. How can we semantically enrich meta-information of geo-information and of
geo-services to support service chaining? (Chapters 4,7)

5. What are the capabilities and limitations of Semantic Web tools to support
geo-semantic interoperability? (Chapters 7,8)

6. What are minimum requirements for a semantic interoperability framework
for geo-services? (Chapters 4,5,6,7)
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Research scope

The scope of this research can be characterised with the following demarcations:

• This thesis concentrates on the modelling of the functionality of geo-services
and their inputs and outputs. Reasoning is performed with spatial concepts,
not with the spatial characteristics of geographic instances of real-world ob-
jects. In other words, the reasoning applied in this research, can infer that
a service is capable of, for example, topological containment, but it cannot
infer the containment relationship between ‘Louvre’ and ‘Paris’. Reasoning
about the actual real-world objects is only relevant if these objects are made
part of the ontology. This research assumes they are part of a database.
However, in some parts of the thesis, methods are presented that are ‘close’
to incorporating such spatial reasoning. These will be indicated wherever
applicable.

• This thesis focuses on spatial and thematic aspects of information, not on
temporal aspects.

• The geo-information ontologies, developed in this research, are based on
work by OGC and the ISO 19100 series of standards, in particular (the short
names appear between brackets and can be found in Appendix B): 19101
(Reference), 19103 (Concept), 19107 (Spatial), 19109 (GFM), 19110 (Cat-
alog), 19111 (RefCoord), 19112 (RefIdent), 19119 (Services), 19125 (SFea-
ture), 19126 (FACC), 19131 (Product), 19133 (LBSNav) and 19136 (GML).
For an overview of the contents of these and other 19100 standards, see
Appendix B. Three-dimensional objects, as part of these standards, are not
supported.

• The geo-operation ontology (OPERA), developed in this research (see Sec-
tion 5.4), provides a general structure for all types of geo-operations. Its
detailed structure focuses on feature processing operations, such as buffer,
overlay, interpolation and transformation. Its design has concentrated on
vector-based feature operations, but raster coverages are supported as well.

• With respect to service chaining, this thesis elaborates upon the aspects of
discovery and abstract service composition, but not on the concrete compo-
sition and actual execution of a service chain. Languages such as WSBPEL
(briefly introduced in Section 3.2.2) and SOAP (briefly introduced in Sec-
tion 2.4.3) are therefore not considered to be at the core of this research.

• This thesis does not embark upon linguistic issues in the context of interop-
erability.
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Fields of application

The main target group of this research is the group of geo-information engineers
who are confronted with information integration issues and service infrastructural
issues that cannot be resolved due to the lack of a common understanding of the
meaning of the source content that is to be found or integrated. This research
aims at providing structural web-based solutions for dealing with such issues. For
an important part, these solutions draw upon existing state-of-the-art methods,
developed in generic computer science, specifically from the field of the Semantic
Web, and apply them to the field of geo-services. However, some of the presented
solutions are not geo-specific, such as the structure of the proposed interoperability
framework and annotation method, and may be also applied to other application
fields.

1.3 Research approach

To achieve the research objectives and answer the research questions of Section 1.2,
a semantic interoperability framework has been designed and implemented accord-
ing to the demands set in four use cases, using, as much as possible, existing inter-
operability standards. The design and implementation choices are as follows. The
starting point is the use of principal models of geo-information under development
by the Open Geospatial Consortium (OGC) and ISO/TC211 (International Orga-
nization for Standardization, Technical Committee 211, Geographic information/
Geomatics). These models contain knowledge of many international specialists
and follow a state-of-the-art approach. In addition, the specifications of OGC
are supported by industrial implementations. The Object Management Group’s
(OMG) Universal Modelling Language (UML) [202] is used in all ISO/TC211 doc-
uments and in order to maintain uniformity, UML is also deployed in all other
model documentation in this thesis. The ISO models are used as a basis for three
basic types of geo-ontologies, i.e., (1) concept ontology type, containing conceptu-
alisations of real-world phenomena, (2) symbol ontology type, containing symbolic
representations of geographic features and (3) operation ontology type, containing
a classification of geo-operations. This separation is made in order to acknowl-
edge the different levels of abstraction in geo-information. In all models, a feature
is considered to be the fundamental unit of geographic information. One of the
starting points for the classification of geo-operations has been to consider the
elements of the feature concept ontology and the feature symbol ontology to be
representatives for the input and output parameter types of the operation classes.
The symbol and operation ontologies are implemented fully. Concept ontologies
represent the conceptual world and a complete implementation is only feasible
at a generic level. As this thesis aims at providing an applicative framework, a
decision was made to implement a limited number of specific concept ontologies.
These represent the Dutch geo-information model NEN3610 [195], a data model
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of the Dutch topographic service (TOP10NL) [17] and two domain specific models
(‘Riskmap’ and ‘Travel’). Their content is chosen in overlap so as to serve as testing
materials. The ontologies are implemented in the World Wide Web Consortium’s
(W3C) Web Ontology Language (OWL) [184], which is chosen because it is cur-
rently the most versatile ontology language that supports web based applications.
OWL is supported by most ontology editors and other tools. Data sets and services
are described as advertisements with OWL constructs in order to allow integral
analysis in one ontology environment. Data set and service descriptions are also
queried with OWL constructs for the same reason. Such queries are formulated
as requests and are handled by a reasoner. The RacerPro reasoner [233] has been
chosen, because it is renowned for its ABox reasoning capabilities. An ABox is
the part of the knowledge base that contains assertions (hence the term ’ABox’).
ABox reasoning allows to infer ontological relationships between concepts and in-
stances of concepts. To allow a user to perform reasoning and service chaining in
one environment, an integrated prototype (‘GeoMatchMaker’) has been built by
adapting and integrating existing software modules. GeoMatchMaker implements
the OWL ontology for web services, OWL-S (S stands for services)[181]. OWL-S
was selected for its clear structure and conciseness.

Four use cases, each of which addresses different aspects of semantic interop-
erability, demonstrate the actual use of the framework in a practical environment.
Figure 1.4 shows the typical context of on demand processing in which these use
cases are thought to take place. A user who wants to perform a specific task is con-
fronted with a distributed data and service repository. Depending on his expertise,
he can decompose his task and sends dedicated requests to a discovery mechanism
(the GeoMatchMaker prototype). The right combination of data and services is
found using an iterative process. Once finished, the composite is executed on a
computer network.

To allow others to use the developed framework, documentation and references
are available in this thesis detailing all of the ontologies and tools used. All on-
tology constructs have been documented in Description Logics notation, in order
to remain implementation independent (the theory of Description Logics is the
mathematical foundation of OWL; see Section 4.2.1).

A note on terms Whenever the term information source is used in this thesis,
it refers to data sets as well as services. The term meta-information is used to
indicate descriptive information about data sets or services.

1.4 Related work

This section describes related work, close to the research objective of this thesis.
It elaborates on previous and current work in the field of the formal modelling of
geo-semantics. Geo-semantics is termed herein as the semantics of spatio-temporal
entities in geo-information and geo-information processing. For references to a
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wider embedding of this research work, the reader is referred to Chapters 2, 3 and
4. Some recent papers (late 2005 and onwards), have been included in this section,
but as they were not published at the time of undertaking the major part of this
research, their results could not be used in the actual research.

The modelling of geo-semantics has been part of GIS from day one. Also, the
field of geo-information has a long tradition of metadata handling and standards
development. However, making the semantics explicit for the purpose of model
integration and reuse, has only come to fruition recently. In this respect, many of
the semantics of geo-information have been brought closer to the formal level of
ontologies by the models provided by OGC specifications and ISO 19100 standards.
This section elaborates upon in particular the research efforts that have embarked
upon the use of formal ontologies in geo-information handling.

Major developments in the area of geo-semantics can be observed at several
research platforms, in particular the conference series of COSIT3, GIScience4 and
AGILE5 and the recent GeoS 2005 workshop [242]. A list of geo-semantics research
groups and individuals is being maintained at http://www.geosemantics.org.

A selection of prominent developments is highlighted in the remainder of this
section by distinguishing between the following main areas of application:

1. Foundations of geo-semantics

2. Spatial reasoning

3. Integration and multiple-representation of spatial data and schema

4. Geo-semantic frameworks and ontology building

5. Geo-service interoperability

6. Geo-service functionality and workflow modelling

This section ends with the positioning of the author’s work.

Foundations of geo-semantics

Several key research efforts have elaborated on the application of ontologies in
GIS. Foundations on the essence of ontologies in GIS have been laid down by
Frank in the Chorochronos project [83] and by Mark et al., reporting on issues in
cognitive models of geo-information [180]. GI-related interoperability issues that
occur in federated databases have been highlighted by Bishr [29] in an ontological
setting. Proposals for integrating ontologies in future GIS have been put forward
by Fonseca and Egenhofer [64, 78] and in [77]. More recently, the term seman-
tic reference systems was coined by Kuhn [153, 154]. It refers to the foundation

3http://www.cosit.info
4http://www.giscience.org/
5http://www.agile-online.org/
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of formal methods for computational mappings between ontological contexts in
a semantic framework. Kuhn speaks of ‘transformation’ and ‘projection’, analo-
gously to their counterpart methods in spatial reference systems. Bittner et al.
[31] and Agarwal [3] both give a comprehensive overview of the interoperability
issues involved in ontology-based geo-information integration.

Spatial reasoning

Spatial reasoning involves the inferencing of spatial relationships from spatial data.
In this area, fundamental work has been carried out in the field of qualitative spa-
tial reasoning [53, 248] and Description Logics [106]. [257] provides an overview
of current approaches. The Bremen University Semantic Translator for Enhanced
Retrieval (BUSTER) project [280] uses a place name structure to define spatial
footprints of objects as a basis for spatial reasoning between place name regions.
The recently conducted OGC Geospatial Semantic Web Interoperability Experi-
ment (GSW IE) has embarked on the processing of geographic queries based on
their ontology-based content, and has aimed at change proposals for OGC Web
Feature Service (WFS) / Filter Encoding specifications [169]. The involvement
of temporal aspects in reasoning in a spatio-temporal approach is presented by
Reitsma and Bittner [238], which draws upon a model of enduring objects and
perduring processes, as presented earlier in [101]. The inclusion of linguistic se-
mantics for performing spatial queries using imprecise spatial and temporal ref-
erences such as ‘far’ and ‘near’ is argued by I. Budak Arpinar et al. [13]. An
approach for automating semantic annotation for spatial relationships has been
reported by Klien and Lutz [145].

Integration and multiple-representation of spatial data and schema

The application of ontologies for the integration of geodata sets and geodata mod-
els has been fostered by mapping agencies and organisations tasked with the man-
agement of national spatial data infrastructures. Their motivation is, amongst
others, (1) to streamline the data acquisition and provision with the queries of
end-users which are often expressed in different world views [100], (2) to allow
integration with other data sources [94, 95], and the facilitation of update propa-
gation (the reuse of updates from one data set into another) [266].

One aspect of data set integration is semantic similarity between geo-spatial
concepts, of which measures have been proposed by Rodŕıguez and Egenhofer [241]
and Brodeur and Bédard [40]. Schwering and Raubal follow an approach that ac-
counts for spatial relations between concepts [251]. Duckham and Worboys [63]
propose a method that includes extensional knowledge (instance-based informa-
tion) for schema integration. Examples of specific fields that exploit geo-semantics
modelling for information integration, are cross border mapping [139] and cadas-
tral domain modelling [113]. Methods to integrate cadastral domain models by
means of translating UML into machine ontologies have been investigated in [114].
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The work of De Vries [281] is at several points related to the research presented in
this thesis as these two research efforts were carried out in the same time frame
and with occasional cooperation. The work of De Vries can be distinguished by its
focus on standards-based (mainly OGC) integration of actual geodata, covering
topics such as client-server architecture, OGC Web Services, Geography Markup
Language (GML), geodata visualisation and model harmonisation.

Geo-semantic frameworks and ontology building

The creation of geo-semantic frameworks is discussed in [142] by providing a gen-
eral approach for integrating ontologies, and in [75] in terms of formal mappings
between ontologies. Several research efforts have resulted in OWL ontologies and
tools, such as information brokers, see [280] for example. A set of OWL ontolo-
gies, based on ISO 19100, has been developed by Drexel University [124] and is
available at http://loki.cae.drexel.edu/∼wbs/ontology/list.htm. Several other ini-
tiatives have resulted in geo-spatial application ontologies (e.g., Mindswap6[116],
SWEET7). The ACE-GIS project has produced domain ontologies based on the
ISO standards 19107 (Spatial), 19111 (RefCoord)and 19112 (RefIdent) [227, 228]
and several application ontologies for an emergency scenario8. With respect to
geo-ontology design, Lutz and Klien [173] and Klien and Probst [147] give excel-
lent guidelines for the integrated creation of domain and application ontologies.

Geo-service interoperability

The application of semantic modelling to geo-services involves characterising ser-
vice functionality and their input and output, in order to achieve semantic inter-
operability. It has gained interest with the increasing popularity of OGC services.
Approaches for ontology-based geo-service discovery are currently being researched
by the Münster Semantic Interoperability Lab (MUSIL). In a number of publica-
tions, approaches are reported for query formulation [173], a query client interface
[146] and an integrated architecture, based on a semantic catalog [172]. Methods
for ontology-based annotation and registration of geo-information sources have
been reported in [146, 227, 277]. The exploitation of geo-semantics modelling to
specific service application fields can be particularly found in the area of disas-
ter management [229], sensor network services [247] and Location Based Services
[250, 288].

Geo-service functionality and workflow modelling

Approaches of formal modelling of geo-service workflow have been presented in
[6, 190]. The need for ontology-based approaches has been identified in [66], but

6Ontologies available at: http://www.mindswap.org/2004/geo/geoOntologies.shtml
7Ontologies available at: http://sweet.jpl.nasa.gov/ontology/
8Ontologies available at: http://musil.uni-muenster.de/onto/ACE/
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the actual implementation of ontology-based workflow models as present in OWL-S
to geo-service functionality is clearly an open field for further research.

Relations with this research

There appears to be a research niche, especially in the last topic (geo-service func-
tionality and workflow modelling). Current research has only shallowly embarked
upon the following issues:

• The development of strategies for the design and use of ontologies that sup-
port the description of geo-services in terms of their input, output, and
functionality.

• The application of reasoning with the above descriptions to support the
discovery of, and interoperability between geo-services.

The above issues are the main topics to which this thesis work contributes. It
does so, by proposing a semantic interoperability framework, embedded in existing
geo-information standards, and applying it in a prototype environment. The thesis
reports on theoretic and practical aspects of this framework and covers issues on
all six of the above topics, but specifically focuses on the last three topics.

Previous research contributions by the author have covered topic 3 (Integra-
tion and multiple-representation of spatial data and schema)[256], topic 4 (Geo-
semantic frameworks and ontology building) [157, 162], topic 5 (Geo-service in-
teroperability) [160, 161, 163] and topic 6 (Geo-service functionality and workflow
modelling) [158, 159, 164, 165].

1.5 Thesis outline

This section gives a brief overview of the contents of the chapters in the thesis. The
general structure of the thesis is as follows. Chapter 1 provides an introduction
to the thesis work. Chapters 2-4 provide theoretical foundations for the semantic
interoperability framework developed in this thesis. They contain relevant views
from existing literature as well as theory, developed as part of this research. Chap-
ters 5 and 6 describe the development of the semantic interoperability framework
and form the core development of this research. Chapters 7 and 8 describe the
thesis work related to the prototypes that implement this framework and which
are used to verify the presented concepts. Chapter 9 contains conclusions and
recommendations. An overview of the contents of each chapter is given below.

Chapter 1 provides a general introduction and characterisation of the thesis,
including research objectives, research questions, research methodology, related
work and thesis outline.
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Chapter 2 addresses relevant issues that are involved in on demand information
processing. It introduces the reader to common concepts of interoperability and
distributed services, that are reported in literature. In addition, it contains an
introduction to four use cases, in order to set a practical scene for the rest of the
thesis. The use cases are expanded upon in Chapter 7.

Chapter 3 describes the characteristics of services that are relevant for on de-
mand processing. It provides models for abstracting information and processes,
based on existing work and presents the principles of service chaining. The pre-
sented models are used as a basis for the semantic models in Chapters 5 and
6.

Chapter 4 provides an introduction to existing semantic modelling principles
and ways to access these models. Description Logics and Semantic Web tech-
niques play a central role in creating ontologies and reasoning with ontology-based
information sources. A major part of this chapter consists of generic information
technology, such as the Web Ontology Language (OWL) and OWL-S (OWL for
web services). Towards the end, it focuses on geo-information applications.

Chapter 5 presents an integrated framework of ontologies as a basis for the
description of, and the reasoning with, geo-information and geo-services. It applies
the modelling techniques, discussed in Chapter 4.

Chapter 6 demonstrates how OWL, OWL-S and reasoning (as described in
Chapter 4) can be applied to the framework of Chapter 5 for geo-information
matching and service chaining (discovery and abstract composition of services).

Chapter 7 describes the implementation of the use cases, introduced in Chap-
ter 2. These four scenarios concentrate on different aspects of the practical applica-
bility of the framework of Chapter 5 and techniques of Chapter 6. They are demon-
strated through performing several tests with data set/service advertisements and
requests. The implementation uses the prototype ontology, namedOnToGeo and
the prototype application, named GeoMatchMaker. They are described in Chap-
ter 8.

Chapter 8 describes the software implementation of the prototypes developed
in this thesis work and the workbench tools that were used for performing the
tests in the use cases, as described in Chapter 7.

Chapter 9 provides a summary of the thesis, its final conclusions, its main
contributions and ends with recommendations for further work.
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Appendix A provides the UML elements used in this thesis that are represented
with a notation that deviates from the standard UML 2 notation.

Appendix B lists all current ISO 19100 standards with their numbers and short
name.

Appendix C lists the atomic reference types for geo-operations in the OPERA-
R ontology and describes their functional semantics (the R in OPERA-R stands
for ‘reference operations’). This appendix is linked to Section 5.4. The list can be
considered to be the base taxonomy for OPERA-R. The input/output parameters
of each operation are given in Appendix D.

Appendix D lists the input/output parameters for each class of feature process-
ing operation in OPERA-R, as described in Sections 5.4, 5.5 and Appendix C. The
input/output parameters are expressed in terms of the classes in the SYMBOL
ontology.

Appendix E contains an OWL code example. It shows the code of the Alexan-
dria Library (ADL) Gazetteer service, which is used as example geo-service in
several parts of the thesis.

Appendix F contains a WSDL code example for the ADL Gazetteer service.

Appendix G provides all ontology mappings between ISO 19119 (Services)
classes and OPERA classes. These mappings are explained in Section 6.3.1.



Chapter 2

Interoperable distributed
services

The needs for organisations to integrate intraorganisational and interorganisa-
tional processes have directed these organisations to make use of well-defined and
interoperable processes and avoid duplication of data. Over the past two decades,
computer software systems have shifted from single purpose monolithic environ-
ments to modular ones. This has enabled organisations (1) to distribute software
processes over geographically distinct systems and at the same time keep them
synchronised, and (2) to reuse software modules. An example of the first is the
use of web services for purchasing books on-line at Amazon.com. An example of
the second is a routeplanner module that can be integrated in a variety of third
party web pages. The process of combining services to achieve larger tasks is called
service chaining.

Interoperable distributed services can play an important role in on demand
information processing, because they can provide specific (additional) functional-
ity in combination with each other or in combination with existing information
systems. In the latter case, this may also involve the creation of service chains
that are not executed fully by machines, but require a human effort (e.g., manual
start of a service, parameter provision) at certain places in the chain.

This chapter discusses the elements of distributed services and models that sup-
port their interoperability. This is done by raising issues and report on approaches
in the light of on demand processing. Section 2.1 provides the basic characteristics
of services as separate units and as units in a distributed service composition. Sec-
tions 2.2 and 2.3 highlight the heterogeneity issues that hamper the effectiveness
of such composition and reports on how this can be overcome by interoperability
measures. Existing interoperability models are provided in Section 2.4. Section 2.5
elaborates upon geo-services as a special case of services. It contains examples and
a coarse-grained classification of functionality. Section 2.6 introduces a set of four

19



20 2. Interoperable distributed services

use cases which have been developed as part of this research. They are consid-
ered to be representative for the application domain of distributed services and
on demand geo-processing. Section 2.7 contains a summary and reflection on the
current chapter.

2.1 Distributed processing paradigms

The ISO Reference Model on Open Distributed Processing defines distributed
processing as follows:

Term 2.1 (Adapted from [125]) Distributed processing is defined as information
processing in which discrete components may be located in different (geographic
and/or organisational) places, and where communication between components may
suffer delay or may fail.

Key characteristics of system distribution are [126] the spreading of components
across space and/or across management regime and their parallel and asynchro-
nous execution. Due to the independence of the system’s component providers,
heterogeneity appears in hardware and software. The components have a certain
control autonomy and may be physically mobile.

To enable the creation of flexible intraorganisational and interorganisational
distributed systems, they have to be open (supporting internetworking) and mod-
ular. In a modular software system, the functionality of the system is split-up
into well-defined modules. Modules are assigned areas of functional responsibil-
ity [20]. Modules are design artefacts and may have associated products such as
interface specifications and code. Note that modular systems are not necessarily
distributed.

2.1.1 Services as units of data processing

Reasons for splitting-up functionality in modular software systems are the needs
for:

• Flexibility to swap one module with another with the same specifications

• Reuse of modules

• Possibility to distribute a group of modules over multiple hardware systems

• Ability to connect distinct business processes between organisations

Good modular architectures make dependencies explicit and help to reduce
and control these dependencies [260]. Developments in information technology
have brought numerous paradigms, such as object-orientation and service-oriented
architectures and brought new concepts such as objects, components, agents, etc.
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Figure 2.1: Basic elements of interaction in a service environment.

The often unclear differentiation between some of these concepts has caused con-
fusion in literature. In the following section the principles of modular processes
and distributed processing are clarified and argumentation is provided for the ter-
minology used throughout this thesis.

Services Services as basic units of processing are considered to make available
operations and one or more interfaces that give access to them. They may be
tightly-coupled with data instances, needed by the operations (so called tightly-
coupled data, see definition of Term 2.8). Modular software systems can normally
be broken down into such basic units. We distinguish between client side software
and server-side software. The latter can encompass one or more services. Fig-
ure 2.1 portrays a typical service environment in which services communicate with
each other and with an end-user application. In the context of the client/server
paradigm, an end-user application always has the role of a client. In between-
service-communication a service X may become a client of another service Y and
service Y may be a client of service Z. The whole of services and end-user appli-
cation is called an application.

In summary, a service is defined as follows:

Term 2.2 (After [109]) A service is an abstract resource that represents, through
an interface, a capability of performing tasks that form a coherent functionality
from the point of view of providers entities and requesters entities. Entities may
be persons or organisations. To be used, a service must be realised by a concrete
software component and may be tightly-coupled to a data set. Services may be
composed into composite services.

The terms software component and web service are often used in the same
context, but refer to different concepts:
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Term 2.3 (Taken from [109]) A software component is a software object, meant
to interact with other components, encapsulating certain functionality or a set of
functionalities. A component has a clearly defined interface and conforms to a
prescribed behaviour common to all components within an architecture.

Term 2.4 (Taken from [109]) A web service is a software system designed to
support interoperable machine-to-machine interaction over a network. It has an
interface described in a machine-processable format (specifically WSDL). Other
systems interact with the web service in a manner prescribed by its description
using SOAP-messages, typically conveyed using HTTP with an XML serialisation
in conjunction with other web-related standards.

The terms WSDL and SOAP are explained in 2.4.2
Web services can be seen as deployed components paired with a service provider.

Unlike traditional web servers that serve web pages for consumption by people,
web services provide computational services to other systems [260].

Any service consists of interfaces, operations and may be tightly-coupled with
data to provide its functionality to clients or other services. An operation is defined
as follows:

Term 2.5 An operation is a function that a service makes available. An operation
has input and output parameters. Operations may be combined into composite
operations.

The interface of a service defines the service’s access points for a client or other
services:

Term 2.6 (Taken from [109]) A service interface is the abstract boundary that a
service exposes. It defines the types of messages and the message exchange pat-
terns that are involved in interacting with the service, together with any conditions
implied by those messages.

A service is accessible once it is bound. Binding takes place as part of the
negotiation between a service requestor and a service provider and is defined as
follows:

Term 2.7 (Taken from [109]) Binding is the mapping of an interface and its
associated operations to a particular concrete message format and transmission
protocol.

In addition to the input data that a service may accept and the output data it
may produce, a service instance may be tightly-coupled with a data set instance
[132], referred here as tightly-coupled data.

Term 2.8 Tightly-coupled data is data, that is tightly-coupled to the service (and
its operations) and is used by the service to provide meaningful responses to client
requests.
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Figure 2.2: UML class diagram showing the user context of service access.

An example of tightly-coupled data is a road data set of a country’s national
mapping agency that is tightly coupled to a routeplanner web service.

Several properties of services become more visible when we place them in a
user perspective of a modular software framework (see Figure 2.2). Central in
this figure is the service. A service makes available one or more operations. The
reflexive relation ‘is composed of’ indicates that a service may be composed of other
services (making it a composite service). Such composition may be constrained by
a composition framework, which is defined as follows:

Term 2.9 A composition framework prescribes for a set of services the specifica-
tions to which they and their potential service composition should comply.

For example, web services may be constrained by SOAP messaging (see also
Section 2.4.3.

The ‘acts on’ 1 relationship in Figure 2.2 between service and data implies that
the service may accept input data and produce output data. In fact, the service
acts on information contained in the data.

In practice a number of services does not handle input data from data sets,
because they create data from user-actions (e.g., in digitising).

A service may also contain a workflow, which is defined as follows:

Term 2.10 The workflow of a service defines the execution order (control flow)
and data bindings between its internal operations (or sub-services, in case it is a
composite service).

1the ISO Geographic information - Reference model [128] refers to ‘operates on’
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A stand-alone workflow, e.g., in the form of a description, is not executable. It
must be embedded in a service, even if the workflow is described in the form of a
script.

An end user application takes care of the communication between a human ac-
tor and a service or a combination of services. The application developer provides
the application with an appropriate human user-interface. The functionality of
access to a particular service may be offered in one case directly through an end
user client, in another case through another service. The end user application as
’first’ access to the service chain may be as thin as a web browser. The application
developer is involved with service selection as well as the initial development and
the maintenance of the end user application.

Services may be also invoked by other services, such as software agents. In this
case the invoking service is seen as a composite service that internally acts as a
client to the other services.

An important notion in the composition of services is the service chain, which
is defined as follows:

Term 2.11 (Adapted from [132]) A service chain is a pattern of services, which
can be represented by a directed graph, and where, for each adjacent pair of services,
occurrence of the first action is necessary for the occurrence of the second action.

Figure 2.3 shows the comparison between single services and a service chain. (a)
shows a single service making available a single operation. In (b), a single service
makes available multiple operations, but the interface hides from the outside of
the service the internal input/output parameters between its operations. In (c),
operations are made available in separate services, forming a service chain. Service
chains may also occur as a combination of (b) and (c).

Other terminology

In this thesis the combination of services and a client application is referred to as
client/service application or application in short.

The term metadata is often defined as data about data. However, in this thesis,
the term metadata has a wider scope and means data about something. This in-
cludes data descriptions, as well as operation descriptions and service descriptions.
The term meta-information is used to emphasise the semantic properties of the
metadata. In the context of GIS, the term feature data is used to indicate the
actual data that is described by the metadata. Feature data represents features
(abstractions of real world phenomena).

The term service discovery refers to the process of finding services that (partly
or completely) fulfil a user task.
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Figure 2.3: UML activity diagrams of (a) a single service with one operation, (b)
a single service with multiple operations and (c) a service chain. A service’s input
and output parameters are the publicly available parameters of its operations (sent
through its interface, indicated by the small square boxes). Although in (b) and
(c) only sequence patterns are shown, other patterns, such as split and iterate are
also possible.

2.1.2 Classification of services

Services can be classified along different classification axes (adapted list from
[274]). We distinguish:

• Application domain. An application domain refers to the concepts and oper-
ations that are common to a particular work field, such as land use planning
or disaster management. In case the service is bound to an application do-
main, it is called task-specific. Classification in application domains is sub-
ject to levels of detail; Within each application domain, more fine-grained
classifications are normally possible.

• Scalability: The ease with which a service can handle larger inputs, higher
number of inputs of the same type, or more requests per time interval.

• Intended type of coupling. Services are deployed in environments ranging
from tightly-coupled to loosely-coupled (see also section 2.1.3). This is
reflected in the design of the service’s data, operations and interface.

• Data dependency. A service’s data characteristics involve (1) input (2) out-
put and (3) the data that is internally used for its operations, the so-called



26 2. Interoperable distributed services

tightly-coupled data. The degree to which the service relies on the tightly-
coupled data (in other words: its data dependency or strong data coupling)
has a strong effect on its reusability. Consider the comparison between a
generic multiplier service and a more specific currency converter service. In
the generic form, the service needs the same data as in the specific form, but
in the generic form the data is not tightly-coupled data, but data provided
by the client.

A similar example can be given in a geographic analysis setting: An algo-
rithm that determines the shortest route between two points over a network
can be implemented by a generic service as well as a service that specifically
calculates the shortest route over the road network, represented by a road
data set (for example of the Dutch national mapping agency). Within the
same route finder context we can distinguish between a service that allows
for a destination input, specified by the application user and one that has
a fixed destination (the latter is often used in business web sites to provide
the client with a route to the business premises).

In application domains where we need frequent updates of data (in the two
examples respectively updates of currency rates and updates of road avail-
ability), typically such data sets can be offered through services. Data de-
pendency then exists through tightly-coupled services, rather than tightly-
coupled data.

• Interface. Services often perform their tasks within specific composition
frameworks by prescribed standardised interfaces. Services may be self-
descriptive of their interfaces. This is a common practice in loosely-coupled
architectures, such as web services.

• Reusability: The ability of a single service to be deployed multiple times in
combination with different (combinations of) services. The reusability of a
service depends —amongst other aspects— on its type of coupling and the
degree to which its interface, tightly-coupled data and application domain
matches with the other services. The demand of reusability has an influence
on the ‘weight’ of a service. In this respect there is a dualism in making a
service more reusable. It may be stripped to offer only its prime functionality
or it may be provided with more functionality to make it more robust to
different application domains. According to Szyperski et al.[260] there is
no universal rule to determine the optimal weight in a cost perspective. It
depends on factors of the service providers and on the target markets.

• Performance. Performance is concerned with how long it takes the service
to respond when an event occurs [20].

• Availability. Availability of a service is the probability that it will be oper-
ational when it is needed [20].
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• Security. Security is a measure of the service’s ability to resist unauthorised
usage while still providing its services to legitimate users [20].

• Cost. Services can be offered through different payment schemes, such as
pay-per-use or flat fees for a license period. Pay-per-use schemes may imple-
ment payment units of computing time, processed data size, number of user
interactions, number of software component calls, etc. Schemes that involve
calls to composite services charge for the components in a so-called billing
hierarchy [260]

Modular system architecture design The context of service combinations
can be classified along the following classification axes:

• Scope of distribution. Distribution may relate to:

– Hardware, i.e., the way in which the services are distributed on a num-
ber of nodes, which is determined by that number, the distance between
them and the network topology.

– Organisational level, i.e., whether the services are distributed within
the boundaries of the office, the enterprise or in a wider geographic
range.

• Composition framework. Services are designed to operate in compliance with
specifications that prescribe the way they are deployed and the way in which
they communicate once deployed. This also influences the type of coupling
between services.

Dynamics of service composition The following aspects play a role in the
way services are composed:

• User demands:

– How frequently end users access the services.

– How diverse the tasks are, that are generated by the environment in
terms of

∗ Functionality.
∗ Requested application interface.

– Urgency. The composition process may differ in speed, depending on
the time span between the initiation of a processing task and the re-
quested composition.

• Availability of services. The degree of instant availability of services deter-
mines how many new services have to be acquired (or created) to build a
new application or composite service.
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• Dynamics of service provision. The dynamics of an environment may cause
frequent changes in the provision of services.

In an environment with many similar tasks, applications may have to be rebuilt
many times. An application developer may want his application to be generic, i.e.,
to respond to a variety of input parameters. He can achieve this either by (1) using
a set of generic services without the need to regularly acquire new services for
different user requests or (2) by using many specific services which are composed
on-the-fly to solve the task at hand. Option 1 would be typically performed using
design-time coupling and option 2 using run-time coupling. For an explanation of
these terms, see Section 2.1.3.

2.1.3 Tightly- and loosely-coupled systems

The deployment of services results in the execution of an application that makes
use of these services through coupling.

Coupling is defined as follows:

Term 2.12 (adapted from [156]) Coupling is the degree of how strongly one sys-
tem element is connected to, has knowledge of, or relies on other elements. Ele-
ments can be software components, services, data, etc.

We distinguish between loose coupling and tight coupling. An element with
loose coupling is not dependent on too many other elements. ‘Too many’ is context-
dependent and refers to the consequences that are faced with tight coupling. These
consequences are [156]:

• Changes in dependent elements enforce local changes.

• Element properties are hard to understand in isolation.

• Reuse of an element needs the presence of dependent elements.

There is no absolute measure for the degree of coupling. The terms loosely-coupled
and tightly-coupled are used to compare the coupling characteristics of alternative
system implementations or architectures.

In system deployment another related distinction is made between design-
time coupling and run-time coupling. Design-time coupling typically is the start-
ing point for building tightly-coupled systems and run-time coupling for loosely-
coupled systems. However, this has to be put in perspective: tightly-coupled
systems can still be built with run-time coupling and vice versa.

Run-time coupling only needs dependent services to be present at run-time.
This allows for flexibility and independency in the implementation of these services.
Web services are prominent examples of services intended for run-time coupling.
Design-time coupling necessitates the services that are functionally dependent to
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be present in the same compiler environment at design-time. An example of a GIS
architecture using design-time coupling is ESRI’s ArcObjects architecture.

The Service-Oriented Architecture (SOA) facilitates the creation of loosely-
coupled services, such as web services (for a description of SOA, see Section 2.4.3).
Typically, loosely-coupled services can be easily interchanged with others of similar
functionality and an equivalent interface. This offers a great potential for service
integration. However, a set of loosely-coupled services by definition does not nec-
essarily offer integrated functionality. Loosely coupled therefore does not mean
interoperable. On the contrary, because of their independency, loosely-coupled
services are often heterogeneous and they are not a priori known to interoper-
ate at other levels than the syntactic communication agreements assigned by the
composition framework 2. Other consequences of loosely-coupled architectures are
that:

• services may need other services, which may not be available at run-time,
and

• loose-coupling has a run-time overhead, reducing application performance.

2.2 Interoperability and heterogeneity

There is an important distinction to make between web services as a paradigm and
actual instances of web services. The web services paradigm provides a framework
for the creation of web services as building blocks of one or more modular process
environments. This framework provides a common syntax on which web services
base their communication. Nevertheless, the individuals of an arbitrary set S of
web service instances do not necessarily behave as interoperable services within S,
because they may not have been intended to interoperate within this set. This is
due to the fact that their way of communication may not have a common structure
and semantics.

Interoperability is one of the key conditions for system integration and ser-
vice chaining, i.e., matching of service requests and service advertisements. The
following definition is based on [41]:

Term 2.13 Interoperability is the ability of two software artefacts (e.g., services)
to interact effectively at run-time to achieve shared goals, e.g., a joint activity.
The interoperation of two software artefacts X and Y requires that X can send
requests R to Y based on a mutual understanding of R by X and Y, and Y can
return responses S to X based on a mutual understanding of S as (respectively)
responses to R by X and Y.

Interoperability problems emerge when there exists heterogeneity in informa-
tion (represented by data sets or services). Heterogeneity can be characterised

2Levels of interoperability are defined in Section 3.1
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by the conflicts that occur when two resources (data sets and/or services) are
combined. These conflicts play a role on different abstraction levels. Information
heterogeneity can occur on three levels: syntax, structure and semantics [257].
Interoperability can be achieved at each of these three levels when it resolves the
heterogeneity issues at that level.

Some of the potential conflicts between heterogeneous resources are highlighted
with help of an example, provided in Table 2.1.

Name Lusaka
Country Zambia
Location 28.2 ,-15.3
Population 2 million
Capital yes
Access code +260 1

Table 2.1: A representation of the city of Lusaka.

At the syntax level, two resources may have conflicts on data encodings. In
the example of Table 2.1, a representation of the city of Lusaka may use a data
serialisation for the attribute location as below:

(Lusaka,28.2,-15.3)

Another may take a form, which is perfectly valid, but incompatible with the
previous:

(Lusaka -15.3 28.2)

The identification of the structure level is important in helping to understand
the essence of a heterogeneity issue and to create a separation of concerns in geo-
information and geo-service descriptions. At the structure level, the following
conflicts can occur:

• Different data types are used for the same attribute of a representation. For
example, the ‘capital’ attribute may be represented by a string or a boolean
type. The ‘location’ attribute may be represented by a point datatype or a
polygon datatype.

• A characteristic may take a single attribute in representation R and multiple
attributes in representation S. For example, an access code may be one value
in R and may be split into a country and area code in S.

• Attributes that appear in one resource are simply missing in the other.

Heterogeneity on the semantic level involves conflicts on the intended mean-
ing of different resources. Semantic heterogeneity refers to the differences in in-
terpretation of real-world phenomena and is believed to cause serious problems
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in communication processes [31]. Semantic heterogeneity can involve cognitive
heterogeneity and naming heterogeneity [30, 174]. These terms are also called
homonymy and synonymy respectively [257].

Here a distinction is made between a real-world phenomenon, its conceptu-
alisation (i.e., in the mind of a human) and the name that is attached to the
phenomenon by a human.

Cognitive heterogeneity involves situations where the same name refers to dif-
ferent conceptualisations of a real-world phenomenon (e.g., a ‘house’ in the mind
of a postman versus a ‘house’ in the mind of a house agent). Naming heterogeneity
exists when different names refer to a single conceptualisation (e.g., ‘railroad’ and
‘railway’). These types of conflicts may often be resolved by one-to-one concept
mappings. More complex are heterogeneities where these simple mappings can-
not be used and where semantic structures have to be taken into account [257].
A problem of this kind is relating the location of the Lusaka Holiday-Inn hotel
(28.195,-15.303) to the representation of Lusaka as in Table 2.1. This conflict of
accuracy has to be resolved with a model that makes the semantics of geome-
tries and their relation types explicit. Semantic structures may be divided into
information structures and process structures. The first allows to compare the
information concepts represented by data sets and process input/outputs. The
latter facilitates the comparison of process models, i.e., how the input information
is used and how the output information is produced.

Semantic interoperability The modelling of semantic structures may solve
semantic heterogeneity issues and consequently contribute to the achievement of
semantic interoperability between information and processes. Semantic interop-
erability involves the mutual understanding of the context of the requests and
responses as mentioned in Term 2.13.

Quantification of interoperability An intriguing question is whether inter-
operability can be quantified. Goodchild et al.[93] implies that interoperability
might be evaluated by ‘ease of use’, represented by the amount of training needed
to accomplish a certain task, or by the number of user actions required. Other
suitable metrics might be based on the transferability of knowledge, measuring
the effort required by someone trained on System A to achieve the same produc-
tivity on System B. More conceptual approaches make use of semantic distance
similar to the methods mentioned under semantic matchmaking. Ke-Thia Yao et
al.[291] reports on the implementation of interoperability gauges that use semantic
distance based on ontological relations.

2.3 Overcoming heterogeneity by contract

Interoperability can only be achieved if heterogeneity issues of the interacting
systems, are well understood. They can be overcome by system communication
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Figure 2.5: Data interchange by transaction.

agreements. The key to overcoming heterogeneity (and so achieving interoperabil-
ity) is to establish contracts that specify a set of agreed communalities between
systems [272].

Data interchange is basically done in two ways, by transfer and by transaction
[131]. The first is the more traditional way of transferring data sets in which a
contract is signed between systems, specifying communalities of their input/output
data (see Figure 2.4).

Data interchange by transaction refers to data exchange between systems in
which a contract is signed by the systems involved, specifying communalities of
their input/output data and a common interface to be used by these systems (see
Figure 2.5). This also requires the service to offer specific functionality. An exam-
ple is the Web Map Service (WMS) specification by OGC [211], which describes
the interface parameters of three operations that are made available in a WMS,
i.e., GetCapabilites, GetMap and GetFeatureInfo.

Data can involve feature data as well as metadata. Metadata describes the
characteristics of systems, such as their feature data, operations and/or interfaces.
Those descriptions may contain references to contracts that the systems commit
themselves to.

Contracts can be characterised by the following aspects:

• Abstraction level. Contracts about data may specify agreements at different
abstraction levels. A distinction can be made between the levels at which
heterogeneity is defined (see Section 2.2): syntactic, structural and semantic
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level.

• Contract formalisation and representation. A contract may be informally
described (e.g. in loose terms in natural language) or more formally in a
conceptual model with formalised relationships between concepts. Repre-
sentations of contracts may take different forms, such as text documents or
machine-accessible data structures, such as ontologies.

Contracts may define new formalisations, but may also contain references to
formalisations specified in other contracts.

• Contract scope

– Bi-lateral (contracts between two systems)
– Multi-lateral (contracts between more than two systems)

Bi-lateral contracts require a pair of translators for each contract. An ex-
ample is the conversion of ESRI’s shapefiles to DXF, and vice versa. When
more systems are involved, it requires n(n − 1) translators. Multi-lateral
contracting involves compliancy with one common model. The number of
required translators is reduced to 2n [272].

• Contract detail (the detail of the information models and process models,
that systems must comply to; see Chapter 3).

An interoperability standard can be seen as a set of multi-lateral contracts.
Standards that support geo-information interoperability have been developed by
OGC and ISO/TC211 and involve specifications on feature data, metadata, ser-
vices, etc. These standards may specify contracts of different abstraction, repre-
sentation and detail. They build on top of already existing standards, such as those
from ICT-mainstream technology. For example, the Open Geospatial Consortium
Web Map Server specification (WMS) [206] defines contracts for (1) feature data
syntax (an output map may be of the format JPEG, GIF or PNG) and structure
(raster) and (2) the syntax, structure and semantics of interface request/response
pairs (GetCapabilities, GetMap and GetFeatureInfo request/response). Syntax
and structure are formally defined by means of XML application schema, seman-
tics are informally represented. An overview on essential interoperability efforts is
given in Section 2.4.

Today, we observe that an important number of services are not interoperable
with services with which they could form valuable service chains. This is mainly
caused by the fact that contracts are often only bi-lateral, if they exist at all.

In initiatives to establish geo-information infrastructures (GII), a cohesive set
of standards is adopted in order to achieve a necessary and sufficient level of in-
teroperability. A current trend is to aim at standards that support the paradigm
of data exchange by transaction, because they provide a higher level of interoper-
ability. Examples can be found at national scale [48, 102] and international scale
[70, 286].
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2.4 Interoperability models

Past and ongoing efforts to create interoperable software systems have led to mod-
els that support the resolving of syntactic, structural and semantic heterogeneity
in data, service interfaces and metamodels describing them. The following sub-
sections provide relevant models and model-providing initiatives for our objective
of geo-service interoperability. The order of the sections is from basic ICT-generic
building blocks to specific geo-information models. It is common practice that
the specific ones are built on top of the generic ones. In some cases also cross-
fertilisation takes place such as between web service models and the Semantic
Web. For most of the described models, the World Wide Web (WWW) serves as
a backbone. For a description of the web, the reader is referred to the numerous
resources available, e.g., [26, 60].

UML Many interoperability models use the Unified Modelling Language (UML)
for providing a conceptual view of the model. UML allows to visually characterise
concepts and the relationships between them in an object-oriented manner. Al-
though UML originally only offered informal modelling constructs, a new version
UML 2 [202] has adopted formal semantics in its metamodel. In addition, UML
provides the Object Constraint Language (OCL) with which extra information
can be added to the elements of the UML model, in the form of constraints [11].

2.4.1 Distributed computing platforms

The need to distribute software applications between geographic locations within
and between organisations and the need to perform integral computing over them
has resulted in software technologies that support the building of distributed com-
puting platforms. Prominent examples are OMG’s CORBA [276], Microsoft’s
DCOM [186], and SUN’s Enterprise Java Beans [220]. Several research efforts in
this area have converged in the concept of the Grid. Grid technologies support
flexible, secure, coordinated resource sharing and problem solving in dynamic,
multi-institutional virtual organisations [80]. The Grid was originally focussed on
sharing computational power and resources for advanced science and engineering,
but the Grid community is now actively developing fundamental mechanisms for
the interaction of any kind of resources through a service oriented approach [90].
Requirements for the so called Grid services are beyond web services: they should
support dynamic, volatile, ad-hoc, large and long-lived computing environments.
As a consequence, issues on reliability, performance and security should be ad-
dressed. Recently the Grid and the Semantic Web communities have begun to
cooperate. A prominent example of Grid implementation is the Earth System
Grid (ESG) [79, 81]. ESG couples earth system models for the purpose of global
climate research. ESG has established GRID connections between servers at seven
computer centres across the USA. Services of ESG aim at data retrieval and on-line
data processing and analysis.
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Increasingly, the importance of web-based applications have stimulated the use
of information carriers that work well with internet protocols. W3C’s Extensible
Markup Language (XML) [282] has acquired a key role in today’s distributed
applications, such as the ones that use web services. This has the following reasons:

• XML provides a way to encode both structure and content of data. Its tag
naming allows for self-describing information.

• XML works well with internet applications.

• XML is flexible (its extensibility facilitates tailor-made languages).

• XML code is human-readable.

• XML namespaces facilitate unique global identifiers of information contained
in the XML document.

XML is used for the encoding of domain specific data, service requests and
responses, as well as for the description of services, workflow, etc.

2.4.2 ISO RM-ODP

The ISO/IEC 10746 Reference Model for Open Distributed Processing (RM-ODP)
is a standard developed to support the interconnection of distributed informa-
tion processing systems [126]. It is an architecture that provides a framework
for the specification of ODP systems. Amongst others, methods are prescribed
for (1) the specification of a complete system in terms of five viewpoints: en-
terprise viewpoint, information viewpoint, computational viewpoint, engineering
viewpoint and technology viewpoint and (2) the definition of a set of common
functions that are provided through services within the distributed processing sys-
tem. One prominent function is service trading [269], which is often referred to as
the publish-find-bind paradigm [204]. Figure 2.6 shows the actors and actions in a
web service environment that uses this paradigm. The service provider publishes
his service into a registry of service descriptions. The service requester searches
(and finds if available) a service in the registry and uses it by binding to the service
provider. Standard protocols such as WSDL (Web Service Description Language)
and UDDI (Universal Description, Discovery and Integration) are used to support
these actions. During the use of the service, service requests and responses are
communicated through SOAP (Simple Object Access Protocol).

2.4.3 Web services

The paradigm of web services facilitates the building of functional component
chains based on XML. A definition of a web service is given in Section 2.1.1. Busi-
nesses and individuals show a growing tendency of interacting dynamically with
data and services on the web and this explains the reason why the number of web
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Figure 2.6: Publish-find-bind paradigm, taken from [96].

services is growing rapidly. The exploitation of web services follows the publish-
find-bind paradigm [96] (also called Service-Oriented Architecture, SOA) speci-
fied in the Reference Model of Open Distributed Processing (RM-ODP, ISO/IEC
10746, see Section 2.4.2). Increasingly, effort is dedicated to the definition of
web services workflow languages that support the execution of service chains. In-
teroperability will surely prove to be the critical success factor in web services
proliferation [293].

Current research topics cover issues like modelling, development, deployment,
publishing, as well as discovery, composition, collaboration, monitoring and ana-
lytical control.

Attempts to ensure semantic interoperability between web services embark
upon semantic annotation and the development of Semantic Web-enabled Web
Services (SWWS) [44] (see also Section 4.7).

2.4.4 Semantic Web

The Semantic Web [27] is the next step in the evolution of the World Wide Web
into a network of documents and services that are provided with a well-defined
meaning. This is established by documenting relationships between web resources
(which could be referred to as meta-modelling), allowing for better resource dis-
covery results and better cooperation between computer applications. Resources
can be classic text documents, domain specific data (such as geo-data), software
applications, etc. A key role is played by ontologies. In the Semantic Web context,
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these are machine accessible representations of knowledge that are used for infer-
ring intra- and inter-resource relationships3. Recent work within the Semantic
Web community has resulted in W3C recommendations of two knowledge rep-
resentation languages, i.e., the Resource Description Framework (RDF) [23] and
the Web Ontology Language (OWL) [184]. OWL draws upon the formal theory
of Description Logics, which has roots in first-order predicate logic and provides
highly expressive concept-forming constructs [14]. See Section 4.2 for OWL’s back-
grounds and principles. Currently, main activities of the Semantic Web initiative
include:

• Development of ontology representation languages such as OWL

• Development of tools for ontology building and ontology mapping

• Semantic markup of resources, including web services

• Development of knowledge-based reasoners

• Application and demonstration development for information retrieval and
reasoning

The most prominent application domains of the Semantic Web are currently
bio-informatics as well as medical applications and storage and retrieval of docu-
ment and multi-media resources. GIS is an application domain that is not (yet)
at the forefront of Semantic Web applications, but geographic examples and earth
science applications are already referred to in a few presentations at the leading
Semantic Web conference [72]. Related to the Semantic Web ideas is the paradigm
of topic maps. Topic maps constitute a modelling approach for the semantic an-
notation of WWW resources. Topic maps are very similar to RDF and have been
developed more or less independently. While RDF was endorsed by the World
Wide Web Consortium, the topic map standard was approved as ISO 13250 in the
year 2000 [85]. Although mapping mechanisms are available between topic maps
and Semantic Web sources, they are not expected to be integrated. In another
arena, a cross-fertilisation initiative has been taken recently between the Seman-
tic Web community and the Object management Group (OMG) on developing a
specification for ontology engineering, the Ontology Definition Metamodel (ODM)
[84]. Chapter 4 elaborates on the technical principles of the Semantic Web.

2.4.5 Spatial data interchange standards

Spatial data interchange standards define the agreements in communicating spa-
tial data between users through software systems. This involves data format, data
structure and data content (see Section 2.3). Data exchange standards are typi-
cally represented by conceptual schemas on a high abstraction level, together with

3In Chapter 4 a more precise definition of ontology is provided.
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application schemas on lower levels of abstraction. They serve the purpose of
creating interoperability at all levels (syntax, structure and semantics) between
the resources that comply to these standards. Spatial data exchange standards
typically build geo-domain specific elements on top of geo-domain independent
models, adopted from ICT-mainstream technology. For example, today, XML is
the defacto encoding standard for many spatial data interchange standards.

The schemas used in the ISO 19100 series of standards make use of UML schema
representations for their precise definition and understanding. ISO 19109 (GFM)
[131] formalises the rules for building spatial data application schemas. The stan-
dard distinguishes between the conventional data interchange by transfer and the
increasingly popular data interchange by transaction (see Section 2.3). The first
implies that the application schema holds information about data structure and
data content of the data set. Examples are SDTS (USA), Interlis (Switzerland),
ATLIS(Germany) and NEN1878/NEN3610 (The Netherlands). In the second case,
application schemas also hold information on a common interface to be used by
the interchanging applications. The development of GII, such as the European
INSPIRE [70], is necessitating existing spatial data transfer standards to be har-
monised or revised, based on modern international standards, developed by ISO.
An example implementation of the ISO 19109 (GFM) standard is the new Dutch
data exchange standard NEN3610 (version 2) which serves as a data model for geo-
information exchange in The Netherlands [195]. It implements ISO 19109 (GFM)
by making use of a general feature model, a feature catalogue model and adopts
OGC’s Geography Markup Language (GML) as interchange standard. A feature
catalogue defines feature classes and their attributes. ISO has standardised the
method of feature cataloguing in [133]. The feature catalogue of NEN3610 (version
2) defines a feature on a high abstraction level by describing properties such as
location and geometry. In this way NEN3610 forms the common basis for more
specific geo-information models used in topographic mapping, land-use planning,
water management, etc. Feature catalogues are built from domain terminology
classifications. A well known example of such a system is the CORINE land cover
classification [36].

2.4.6 Open Geospatial Consortium (OGC) specifications

The Open Geospatial Consortium (OGC) is a consortium of commercial, govern-
mental and academic organisations that builds GI related specifications on top
of ICT mainstream technologies. OGC’s mission is to foster the interoperability
between geographic information systems. The work of OGC centres around the
delivery of spatial interface and encoding specifications for processes and data. In
this way the interfaces of services and client applications are standardised. The
publicly available OGC specifications can be implemented by system developers in
order to make their proprietary systems interoperable with others. OGC’s stan-
dards development takes place in consensus based processes, commonly through
interoperability testbeds. From its birth in 1994, OGC has gradually proceeded
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from building foundations such as feature and geometry models to building ser-
vice models. OGC’s data and process modelling is based on hierarchically related
information modelling constructs. The generic basis is formed by abstract speci-
fications with topics covering models for spatial features, services, metadata, etc.
At the implementation level, modelling languages are used to represent the syn-
tax, structure and semantics of geospatial and geoprocessing-related information
resources. An example of such a language is the Geography Markup Language
(GML) [210]. OGC’s specifications cover a wide range of issues, basically involv-
ing services, data and metadata. This may involve also specific types of services,
such as the OpenGIS Location Service (OpenLS) implementation for mobile ap-
plications. OGC uses wherever possible mainstream ICT of which UML and XML
are clear examples. In addition, OGC’s specifications are harmonised with the
ISO 19100 standards series under development by ISO/TC211 (International Or-
ganization for Standardization, Technical Committee 211, Geographic informa-
tion/Geomatics). OGC’s specifications cover both generic and domain specific
topics.

Service model RM-ODP has been applied in the OpenGIS Reference Model
[207] and consequently OGC adopts a service oriented architecture. In this archi-
tecture, services act either on data (e.g., processing services, portrayal services),
on metadata (e.g., catalog services) or on services (e.g., workflow services). Meta-
data describes either data or services. Well known OGC data service specifications
are the Web Map Service (WMS) [211] and the Web Feature Service (WFS) [218].
These services have well defined interfaces that support discovery actions through
a GetCapabilities operation and several standardised operations for data retrieval.
Within the more recent OGC Web Services Common Specification (OWS) efforts
[215], these services are aligned with the mainstream publish-find-bind paradigm
represented with SOAP, WSDL and UDDI, however without service chaining sup-
port. A taxonomy of geo-services has been initiated under OGC abstract specifi-
cation Topic 12 OpenGIS Service Architecture [205], which has adopted the ISO
19119 (Services) standard on Geographic information - Services [132]. ISO 19119
(Services) describes Geo services in the five viewpoints of RM-ODP and contains
a specification for service metadata.

Spatial operations Spatial operations as part of spatial analysis services have
been included as topology operators in the filter encoding specification [214]. Filter
encoding appears in several OGC specifications, such as WFS and Simple Feature
Specification (SFS) for SQL [127]. An extension to the filter encoding that allows
for the creation of new geometries, has been proposed by the Web Spatial Analysis
Service (WSAS) Implementation Specification [212].

In a more recent effort, the Web Processing Service (WPS) specification pro-
vides access to spatial operations, ranging from simple calculations to complex
models. The WPS interface exposes the parameters for data input, operation



40 2. Interoperable distributed services

initialisation and data output. This is done with three WPS operations: GetCa-
pabilities, DescribeProcess and Execute. The final report of the experiment [219]
concludes that WPS is able to handle different kind of data and processes, but also
identifies problems with aligning to other standards and limitations of service dis-
covery, which relies on text matching between keywords and service descriptions.

Service discovery In OGC context, service discovery is handled by a service
registry that provides service metadata with details on service types, as defined
in ISO 19119 (Services) [205]. Service metadata can be queried and managed
with catalog services [209]. The OGC Web Services Common Specification (OWS)
provides mechanisms within the publish-find-bind paradigm of RM-ODP. As today
there is no OGC specification that deals with semantics in support of service (and
data) discovery. An attempt is has been recently undertaken in the OGC Geo
Semantic Web Interoperability Experiment (GSW IE) [169, 213].

2.4.7 ISO 19100 standards

In 1994, ISO Technical Committee 211 (ISO/TC211) commenced its work on es-
tablishing a set of standards for Geographic information / Geomatics. Since then,
ISO/TC211 has integrated standardisation initiatives on geo-information world-
wide. The ISO 19100 series of standards, being developed by ISO/TC211, entail
the handling of geographic data, including management, acquisition, processing,
analysis, access, presentation and transfer [151]. Due to a common interest, the
paths of ISO/TC211 and OGC often meet. The work of ISO/TC211 and OGC
has been streamlined over the years. The focus of ISO/TC211 has been directed
towards generic specifications and OGC has focussed on implementation specifi-
cations and interoperability test beds and projects. ISO/TC211 and OGC have
agreed on the adoption of certain OGC specifications as ISO standards (e.g., the
OGC WMS specification as ISO 19128 (WMS) and OGC’s GML as ISO 19136
(GML)). An important basis in the 19100 series of standards is formed by the
General Feature Model (appearing in ISO 19109 (GFM)), a metamodel for ge-
ographic features and their properties. A number of standards are still under
development. An overview of the work of ISO/TC211 and the ISO 19100 stan-
dards can be found in [151] and on-line at http://www.isotc211.org/. A list of
standards that make up the 19100 family can be found with their identification
numbers and their titles in Appendix B. Note: References to ISO standards in this
thesis are indicated by their number and a short name between brackets, as listed
in Appendix B. When a reference is made to all the standards of the ISO 19100
family, the number ‘19100’ is used.
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2.5 Geo-services

Geographic information systems are gradually shifting from monolithic systems
to service-oriented ones. Geo-services are defined as services that involve data
(input, output or tightly-coupled data) with a geographic reference. Today’s GIS
products can be classified as design-time or run-time. Table 2.2 gives an overview
of some of these products. ESRI’s ArcObjects, ESRI’s Geoprocessing toolbox and
Intergraph’s Geomedia Objects are examples of commercial, design-time based,
software suites. They contain object-oriented software constructs for spatial data-
base creation, spatial data manipulation and the building of end user interfaces.
The combination of ESRI’s Geoprocessing toolbox and their Modelbuilder also
allows users to create service chains, visualise and store them in a script.

Other design-time based products are developed in an open source environment
such as GRASS [99], GDAL [86] and Geotools) [89]. Each provide a publicly
available application programming interface (API) that allows application builders
to use them within their programming environment.

Run-time based applications are typically implemented as client/server appli-
cations. There is an increasing number of products facilitating the building of
server and client components that can be used in service oriented applications.
Commercial examples are ESRI’s ArcWeb services and Microsoft’s Map point web
service. They use proprietary interfaces.

An increasing number of products, both design-time and run-time-based, are
implementing OGC interface specifications (e.g. for feature access, web mapping,
etc.). Web applications built with these products are considered to be loosely-
coupled, compared to the proprietary examples mentioned above.

The above products can be used to build repositories of geo-services and off-
the-shelf geo-software components that can be used to build applications. The
majority of such repositories are used within geo-information infrastructures (GII)
and are typically made available through web portals [47, 68] or through registries
that allow for direct interface access [89, 200, 253].

Geo-service classification The growing number of service-oriented implemen-
tations on the GIS market, necessitates the distinction of their purpose, in order to
select the best for the intended application. Several efforts have proposed classifi-
cations of GIS operations in terms of their functionality [7, 92]. Such taxonomies
can also be found in many GIS text books, of which good examples are [50] and
[275]. They are useful for describing primitive actions of geo-services. At a higher
abstraction level, ISO 19119 (Services) [132] classifies geodata-processing services
and services that are needed to find and create other services, such as catalog
services and services for managing service chains.

To the best of our knowledge, GIS operation taxonomies have not yet been
used in a formalised framework that supports reasoning for integral analysis of the
functionality of geo-services. A more elaborated section on geo-operation classifi-
cations, as a basis for such reasoning, can be found in Section 5.4. For now, we can



42 2. Interoperable distributed services

Software product Open
Source

OGC
based

Coupling Information ex-
change

ArcObjects No No Design-time Proprietary objects
Geomedia Objects No No Design-time Proprietary objects
ArcWeb Services No No Run-time SOAP
ArcIMS No No Run-time ArcXML
ArcIMS + WMS
connector

No Yes Run-time OGC WMS inter-
face

Microsoft Map-
Point web service

No No Run-time SOAP

Minnesota
Mapserver

Yes Yes Run-time OGC WMS inter-
face

GDAL Yes Partly Design-time GDAL/OGR API
GRASS Yes Partly Design-time GDAL/OGR API
GeoTools Yes Partly Design-time GeoAPI (OGC)
OGC OWS compli-
ant products

Yes/No Yes Run-time SOAP

Table 2.2: GI software product examples classified according to aspects of inter-
operability.

confine to a rough classification as in Table 2.3. In the light of the classification
axes, presented in Section 2.1.2, this classification identifies application domains
within geo-information handling.

On the top level we distinguish between services that support human inter-
action and services acting upon artefacts: feature model, feature, service and
meta-information. Meta-information can involve information about data or ser-
vices. In an end-user application, human interaction services are typically chained
to services of the other categories. An example of a human interaction service is
a map viewer service typically used for map displays, such as panning, zooming,
etc., that acts between the feature access service and a thin client such as a web
browser (a three tier client/server setup). Figure 2.7 shows an example of such an
intermediate map viewer service. In a two tier setup, a thicker client that contains
zooming and panning functionality is used to communicate directly to the feature
access service.

The service classification that is proposed here, only partly follows the ISO
19119 (Services) classification of services. Sections 6.3 and 6.5 clarify that the
proposed classification provides semantics that better support service discovery
and service chaining. It also holds more disjoint service sub types and allows
further disjoint sub typing in a taxonomic structure.
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Service type Service sub type Examples
H

u
m

a
n

in
te

ra
ct

io
n

(artefact it
acts on)
Feature
model

Feature modelling Services for modelling feature
types and feature type proper-
ties (including associations be-
tween feature types)

Feature Feature access (acquisition,
storage and exchange)

Sensor service, digitising service,
positioning service, format conver-
sion service

Feature processing and analy-
sis

Overlay service, buffer service,
generalisation service, gazetteer
service

Feature presentation manipu-
lation

Style and cartographic symbol ed-
itors

Service Service creation Chain validation service, documen-
tation service

Service execution Chain execution service, Grid ser-
vice (e.g., server allocation)

Meta-
information

Meta-information creation and
storage management

Annotation service, Publishing ser-
vice as part of catalogue/registry
service

Meta-information processing Discovery service as part of cata-
logue/registry service

Meta-information presentation
manipulation

Style editing service as part of cat-
alogue/registry service

Table 2.3: Geo-service classification.

2.6 Geo-service use cases

In order to demonstrate semantic modelling and its research issues, a number of
use cases have been defined. A short description is given below. The uses cases and
related experiments are worked out in chapter 7 All use cases have the common
goal of data/operation integration. The use cases are the following:

• Riskmap NL is project-oriented and focuses on the integration of information
models for integrating data-providing services for risk mapping.

• Emergency 112 focuses on ad-hoc integration of data sources in a disaster
emergency situation.

• Research Net is project-oriented and aims at the creation and reuse of meta-
information for data and operations in scientific research.

• Travel Google focuses on ad-hoc integration of travel data (e.g. hotel loca-
tions) and operations (e.g. route planners).

Table 2.4 provides a comparison of the different contexts for the use cases,
referring to some of the service characteristics given in section 2.1.1. The fields of
the table are interpreted as follows.
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Figure 2.7: Map viewer service, running in a web browser. The service allows to
display and interact with multiple OGC Web Map Services.

• The use cases focus either on pursuing interoperability of data only, or in-
teroperability of both data and operations. Typically this involves data-
providing services and data-processing services respectively.

• ‘Composition dynamics’ are expressed as project-oriented or ad-hoc, indicat-
ing the time for the interoperation effort is typically months, respectively a
few hours.

• ‘Service provision’ gives an indication on the heterogeneity and the dynamics
of the services that are to be composed.

• The ‘focus of the interoperation effort’ indicates on which aspect of service
(data and/or operation) integration the use case concentrates on: service
model integration, service description integration, service discovery, service
composition or service chain execution.

2.6.1 Riskmap NL

In response to two severe incidents in The Netherlands (fireworks disaster in En-
schede in 2000 and cafe fire in Volendam 2001) the Dutch government has decided
to provide more insight into potential hazards to civilians and disseminate this
information amongst governmental agencies. This has resulted in an initiative to
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Riskmap NL Emergency 112 Research Net Travel Google

Data / opera-
tion focus

Data / opera-
tions

Data Data / opera-
tions

Data / opera-
tions

Composition
dynamics

Project-
oriented

Ad-hoc, urgent Project-
oriented

Ad-hoc

Service provi-
sion

Few sources,
infrequent
changes

Many sources,
frequent
changes

Few sources,
infrequent
changes

Many sources,
frequent
changes

Focus of inter-
operation ef-
fort

Integration
of informa-
tion models
of different
domains

Fast integration
of data descrip-
tions

Reuse of re-
mote services
/ service
chains

Discovery
of remote
services, not
necessarily to
form a chain

Table 2.4: Context comparison of use cases.

produce interactive web based provincial risk maps. So far, nine out of twelve
provincial maps are on-line. Despite the template that is used, they differ signifi-
cantly in accuracy, categorisation and visualisation. Up to this stage, the use case
is based on facts. From hereon a fictive scenario is followed. A team of GI engi-
neers is instructed to integrate geo-information for risk maps and make these risk
maps interoperable with other data/services. The Riskmap team decides to do this
through the integration of ontologies, representing different data models such as
NEN3610 (see Section 2.4.5), TOP10NL (the object oriented model of the Dutch
Topographic Service) [148], and a hazard domain model (called ‘Riskmap’). This
integrated model is to be used by several future applications, such as map viewing,
planning and emergency response activities. Oscar is a member of the Riskmap
team, responsible for a feasibility study. He proceeds as follows. With Protégé (an
ontology editor) he builds the ontologies, based on documentation of NEN3610,
TOP10NL and the current provincial risk maps. He creates a mapping between
the ontologies by establishing relationships between similar concepts. Then, Os-
car applies software-based reasoning to (1) discover service extensions for the risk
map functionality and (2) perform integrated analysis over the three information
models.

2.6.2 Emergency 112

The following use case is based on a fictive scenario described in [102]. The overall
scenario is as follows. Severe weather conditions cause a flooding thread in the
east of the Netherlands. The regional water management control centre identifies
a crisis situation and demands to stop all river traffic. In this phase a severe
ship accident takes place in which one ship damages a dike and another ship,
loaded with ammonia, is damaged. The latter is feared to explode and to cause
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a gas plume. Evacuation of the area may be necessary. The remainder of this
use case description is an addition to the scenario as described in [102]. During
the emergency phase, data is coming in from different data sources (e.g. from
governmental agencies and through field observers) at a high pace. The support
of machine reasoning is called to be able to quickly integrate the information and,
at the same time, keep it consistent with the already available information. An
ontology is used to register all the information that is coming in (e.g. through field
observers) and to disseminate subsets of information to crisis management units
and the public/press. Kora is an information engineer at the emergency room and
registers all incoming information in an Emergency Information System (EMIS).

2.6.3 Research Net

This uses case centres around a platform for sharing GI services, called Research
Net, a fictive research environment with semantics-based service discovery possi-
bilities to support service chaining.

The use case involves the publishing of services (phase 1) and the discovery
of services (phase 2). It demonstrates the principle of lineage (the history of the
processing of a particular geo-information source).

Phase 1 Jody is a researcher at the International Institute for Geo-information
and Earth Sciences (ITC). She wants to evaluate the extent of flooding in the
confluence area of the Ganges and Jahmuna rivers in Bangladesh. The following
scenario is based on [175]. For the analysis she wants to use three satellite images
of different periods: during the dry season, during a moderately severe flood and
during a severe flood. First, she is going to search for the satellite image on the
web. She knows SPOT images are useful because they make distinction between
land and water possible. After finding and retrieving the satellite images Jody
follows the analysis procedure as below:

1. Apply band rationing

2. Apply slicing

3. Combine sliced maps

4. Classify

Jody decides to make the analysis available on the web in different ways:

1. Option 1: As a map showing the end result, together with ontology based
metadata containing lineage information

2. Option 2: A link to the raw satellite images and a composite web service
that performs the analysis
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3. Option 3: A link to the raw satellite images, separate web services of each
analysis step and a service chain description that can be used to obtain the
end result

Phase 2 Jeff is a researcher at the World Resources Institute (WRI) and needs
to perform an analysis, similar to the one by Jody in phase 1, but in another
geographic area. Jeff searches for the available services on the computer network
(amongst them those of Jody) and tries to integrate them on his PC.

2.6.4 Travel Google

On a business trip, Eddie is going to an OGC Technical Committee meeting in the
USA. As part of the preparations for the trip he looks for data of the destinations’
surroundings, such as the transport facilities and restaurants near his hotel and the
conference centre. Supported by his basic GI and ICT knowledge, Eddie searches
with a search engine for travel domain ontologies. He then searches for services
that are described with such ontology. Amongst those, he selects the ones that
provide spatial analysis functionality on hotels, restaurants and public transport.

2.7 Summary and reflection

This chapter has highlighted the prerequisites for on demand geo-processing. Gen-
erally speaking, on demand processing requires services to be available at the time
a task is being executed. To support a variety of tasks, these services have to
be generic (in contrast to task-specific), which may be achieved by introducing
modularity of service functionality. What is a good ‘size’ of software modules
depends for an important part on the demand for reusability. This chapter has
explained how distributed services can form one virtual information system. Sev-
eral standardisation efforts in information technology have facilitated the building
of interoperable software systems by means of contracts and overcome basic prob-
lems of heterogeneity. This involves mainly ‘low-level’ syntactic and structural
interoperability solutions that can be reused by domain specific standards. Spe-
cific interoperability issues in GIS are being addressed by OGC and ISO TC/211.
Foundational standards for generic service communication and more specifically,
geo-feature modelling are in place. In addition, modern spatial data interchange
standards are built up hierarchically, providing flexibility for specifying sub-domain
interoperability models.

A problem that still hampers the interoperability between services is caused
by the incomplete realisation of contracts. This is rather an implementation issue
than a design issue. For example, according to a survey of 1200 web services
in the year 2003 [143], 67% of the surveyed WSDL files were invalid and 70%
were incomplete. Another example is given by the mismatches that exist between
implementations of OGC’s GML specification, as reported in [87].
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Another issue is that most of the standards do not provide computer repre-
sentations which can be ‘understood’ by machines. This is particularly necessary
if we want to carry out semi-automatic processing of information sources, taking
into account the semantics of interoperability. Meta-information that sufficiently
describes service functionality is essential in this case. Such meta-information
should be structured in a way that is as close as possible to the elements (e.g., in-
put/output parameters, tightly-coupled data) of services and service compositions.
In addition, a classification of functionality helps in structuring service character-
istics. In case of loosely-coupled systems, such meta-information should support
each service to be self-descriptive. The structuring of the service meta-information
is the subject of the next chapter. The use cases, described in Section 2.6 form
the basic context in which the modelling in the rest of this thesis has to be placed.



Chapter 3

Service models for discovery,
composition and execution

To evaluate a service’s fitness for use and to create meaningful combinations of
services, it is necessary to model the essential properties of services that facilitate
their discovery, composition and execution. Services can be characterised by the
information they deal with and how they process this information. The abstraction
of information and processes is an important instrument to simplify the view on
the often complex structure of a service [171].

In this chapter, a discussion is provided on the use of abstraction models that
allow for machine based reasoning with service metadata. This chapter is organised
as follows. Section 3.1 describes an abstraction model for geo-information, which
forms the basis for conceptualising geo-information in Chapter 5. Section 3.2
provides background information on the modelling of processes, which is important
to understand the composition of services. Section 3.3 describes service chaining
as the combination of discovery, composition and execution.

3.1 Information modelling

The unambiguous integration of information requires the resolving of data hetero-
geneity between information resources, syntactically, structurally and semantically.
Heterogeneity issues can be better resolved when the semantics of potential under-
lying data models are made explicit. For this the use of publicly available common
data models within a user community is considered to be an important asset. This
section lays a foundation for the data model that is introduced in Chapter 5.

49
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3.1.1 A layered approach

Information systems deal with different types of artefacts to represent real-world
phenomena. An artefact can be a drawing, a database record, an XML snippet,
etc. The intended meanings of these artefacts differ with the context (e.g., appli-
cation domain, data structure context) in which they are used. The comparison
of artefacts should be done in the same context, in order to avoid the misinter-
pretation of information. In information exchange the sender and receiver agree
on the context in which the artefacts are used. However, such contexts need to
be specified and they can be complex. In order to disentangle the contextual el-
ements, one often breaks down complexity by a separation of concerns. This can
be done along several axes. Two are distinguished here: information abstraction
and application domain abstraction.

Information abstraction Information models exist at different levels of ab-
straction. The distinction of layers for the purpose of complexity reduction has
been proven useful in traditional database design, where a conceptual level, a logi-
cal level and a physical level are identified [290]. Similarly, in geo-information sci-
ence, several models have been proposed, mainly driven by interoperability issues.
Figure 3.1 shows a five layer abstraction model adapted from the five-universes
paradigm, proposed in [76], and the nine layers of abstraction of the OGC feature
model [203], [30].

The top layer contains elements of the real-world that we are living in. In
this layer, the elements are as they are in the real-world, and as soon as we
describe them, these are becoming abstractions of reality located in one of the
layers below. In the second layer, the cognitive world, the real-world elements
are captured by intuitive concepts in human thoughts which are communicated
by natural language. In the third layer, the formal concepts world, the intuitive
concepts are formalised. This is typically done by constructing a consensus based
model of concept definitions and concept relationships, possibly supported with
a domain ontology. The formalisation can be materialised in standards that are
documented in text and model representations such as UML diagrams. In the
fourth layer, the symbol world, formalised concepts are represented symbolically.
Geographic features are represented according to the object/field model, see [290].
The fifth and lowest level is the implementation world, containing computational
elements materialised as software classes and data serialisation. In this stack, the
term data set (or data) is distinguished from information. Information represents
a real-world phenomenon at all levels below the real-world level. Data resides on
the lowest level only and represents all the layers above.

Application domain abstraction Along another axis, orthogonal to the in-
formation abstraction axis (that is: horizontally, within each level) different appli-
cation domains can produce different abstractions. First, in different application
domains the same phenomenon may be conceptualised differently. For example,
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Figure 3.1: Information abstraction stack.
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Figure 3.2: Geo-ICT modelling stack.

a theatre may be seen as a location of cultural events or as a building. Second,
conceptualisations can be split according to the aspects that they model. For ex-
ample, geographic phenomena (those phenomena that can be related to the earth
surface) have thematic aspects, spatial aspects and temporal aspects, which are
all conceptualised differently. Third, intuitive concepts may range from general
(e.g., a physical object) to specific (e.g., a house). Similarly, at the implementa-
tion level, data serialisation models range from generic ones (e.g., XML) to specific
ones (e.g., GML). Figure 3.2 gives an interpretation of such abstraction in Geo-ICT
similar to the levels of data modelling described in [188], together with examples
of XML based implementations. The layers form a stack in which each layer is a
specification of the layer below it.

The layered model as interoperation stack When two systems interoperate
they will exchange data at the implementation level. The data of the sending
system has been abstracted from the real-world level to the implementation level,
passing the intermediate levels through a sequence of steps named capture, for-
malise, symbolise and encode 1. In each step, information residing on the upper
layer is abstracted to the lower layer. If this is not properly done, information is
lost. This information can be safeguarded by creating metadata at each layer and
link it to the abstracted artefacts at the layer below. The metadata refers to the
referential constructs in each layer (see figure 3.1). At the receiving system the
data will pass the layers in reverse order. The metadata is used to derive the cor-
rect semantics in the layer above. The principle of passing metadata through the
layers is similar to protocol stacks used in computer networks. This analogy has
been identified in [185] and [56] and is considered to be valid, despite the fact that
abstraction plays no role in computer networking layers. The translation steps be-
tween computer networking layers are performed by interfaces, see [261]. Artefacts
at the same level, called peers, have an agreement on a protocol. Similarly, in our
information abstraction paradigm, artefacts at the same level of abstraction (e.g.,
‘house’ in one application and ‘house’ in another application) refer to the same

1The generalised notion for these steps will be denoted as ‘represent’
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concept in an ontology. Interfaces (see figure 3.1) are involved with the annotation
and interpretation of metadata and the alignment between referential constructs.
The latter is referred to as mediation [76].

The practical implication of the layers can be understood as follows. A spatial
data set resides at the lowest level, but the same data set represents the char-
acteristics of a real-world phenomenon at all levels. A road for example can be
characterised by (1) its road class definitions such as ‘primary road’ (e.g., meaning
a 12 metre wide road) at the formal concept level, (2) the geometry that represents
the road in the database (representation level) and (3) its data elements (imple-
mentation level). However, descriptions of data sets do not necessarily contain
information about all levels. For data processing, operations may need to ‘know’
the identity of the data at the lowest level (data format) before any processing
can take place, but this is not necessarily so at higher levels in the stack (for ex-
ample when we perform a low level merge of data sets). The degree of semantic
interoperability that we can anticipate on, depends on the availability of meta
information linked to the data set at those levels. This meta information is crucial
for mechanisms (e.g. agents) that perform a mediation task between systems.

An interesting development is currently taking place at the implementation
level. Historically, data formats do not reveal much meta information on the
semantic level. However, with the advent of XML-based data set formats, such
as GML, it is easier to derive higher level descriptions from the data, through
text-based tags, namespaces and schema definitions.

3.1.2 Abstraction hierarchies

Abstraction is needed to simplify the models we use to describe services. Ab-
straction is a common technique in conceptual modelling and forms a basis for
object-oriented information systems. Commonly used forms of abstraction are
classification, aggregation and generalisation. These terms are defined in [35] as
follows:

Term 3.1 Classification is the grouping of entities that share common character-
istics into a class over which uniform conditions hold.

A clear distinction is made here between a class, for example Building and an
instance, e.g., Louvre. The opposite of classification is called instantiation.

Term 3.2 Aggregation is treating a collection of classes as a single class.

The opposite of aggregation is called partitioning. Aggregation of classes can
be done repeatedly. This results in an aggregation hierarchy. The levels in such
an hierarchy are referred to as aggregation levels.

Term 3.3 Generalisation is extracting from one or more given classes the descrip-
tion of a more general class that captures the commonalities but suppresses some
of the detailed differences in the description of the given classes.
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Figure 3.3: UML class diagram showing a concept generalisation hierarchy for a
constructions domain.

The opposite of generalisation is called specification. Generalisation of classes
can be done repeatedly. This results in a generalisation hierarchy. The levels in
such an hierarchy are referred to as generalisation levels.

A generalisation hierarchy is also referred to as taxonomy or hyponomy and
an aggregation hierarchy is also referred to as partonomy or meronomy [273]. To
indicate any of the two types the term abstraction hierarchy is used.

3.1.3 Information abstraction

Information abstraction is needed to simplify the models we use to describe ser-
vices. In abstraction of classes we can distinguish aggregation and generalisation.
They can be best described with the help of abstraction hierarchies.

In service interoperation, the data is exchanged between sender and receiver
passing the layers of the information abstraction stack as described in Section 3.1.1
and depicted in Figure 3.1. A more detailed view within each level of the infor-
mation abstraction stack will help in understanding interoperability issues at that
level. As we are interested in the semantic interoperability from the system’s per-
spective we will focus only on two levels: the formal concept world and the symbol
world.

Figure 3.3 portrays a generalisation hierarchy for constructions. Horizontal
lanes in the figure represent levels of equivalent generality. The hierarchy repre-
sents a specific focus on the real-world phenomena and is therefore considered to
be an example that represents only a part of all the aspects of the domain. For
instance for a building, levels of generalisation can be focussed on construction
aspects as well as usage aspects. In a ‘usage’ hierarchy we may also distinguish
between ‘shop’ as a superconcept and ‘supermarket’ as a subconcept.

To understand abstraction we need also to identify aggregational abstraction,
revealing the part/whole relationships in a domain. Figure 3.4 represents an ex-
ample of an aggregation model of a construction domain. Horizontal lanes in the
figure represent aggregation levels. Another example is the partitioning of regions
in a hierarchy of country, region, province and municipality. It is the context of the
application that determines up to which level (lowest and highest) an abstraction
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Figure 3.4: UML class diagram showing a concept aggregation hierarchy for a
constructions domain. Aggregation is identified on the vertical axis; Examples of
subclasses (generalisation) are provided along the horizontal axis.

should be carried out. The lowest level, relevant to the application, is called the
atomic abstraction level, containing atomic elements.

Generalisation and aggregation hierarchies are often used together to model a
domain. Due to inheritance, they can become intertwined to form complex models
[187] and they have to be treated with caution. Ontologies are well suited to
represent such complex conceptual domain models. Commonly the generalisation
relations are modelled as super-/subconcept relations. Aggregation relations are
modelled as concept roles of type ‘is-part-of’. Concept roles other than this type
(e.g., specific associations such as specific ‘has-a’ relationships) are not considered
to be relevant for the notions of generalisation and aggregation. More on ontology
design can be found in Chapter 4.

3.2 Process modelling

The integration of services as well as the search for a single service requires the
evaluation of each service’s data characteristics (input, output and tightly-coupled
data) and may require the evaluation of its internal process structure (the latter
exposes semantics on its functionality). Evaluation of the process structure can
be performed by executing the service in pre-defined tests, but it is typically done
first by interpretation of the metadata, describing its internal processes.

In order to define a framework in which one can describe software processes,
the notion of software processes can be abstracted into a generalised world of
dynamic systems. Numerous formalisms have been developed in the past to model
behaviour in terms of events, processes and operations and the artefacts that they
act upon. The formalisms differ with respect to the type of system they are able
to model, the purpose of the model (e.g., software architecture design, human
interaction analysis, simulation, process documentation, etc.) and the formalisms
that provide the model’s formal semantics.

Figure 3.5 represents the relationships between static and behavioural entities.
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Figure 3.5: UML class diagram showing the context of static and behavioural
entities in a service/task environment.

This representation is partly based on the different models presented in [170]. The
static entities in the figure (data, feature symbol and feature concept) reside in
respectively the implementation world, the symbol world and the formal concept
world as described in figure 3.1. A service acts —at the implementation level— on
the data as representation of a real-world phenomenon. The service may affect the
semantics of the data, represented at higher levels in the geo-information stack.
For example, an operation, overlaying a topographic map with a hazard map, may
enrich house features with hazard information. Tasks can act on static entities at
different levels of the information abstraction stack. For example, a task may be
a travel planning task, a hazard risk assessment or the conversion of a vector data
set to a raster data set. Kirwin and Ainsworth [144] coin a task as the attempt to
attain a goal in a particular context. Goals are defined as desired states of systems
under control or supervision, for example ’a pleasant journey’, or ’a hazard free
municipality’.

The entities the task can act upon may be limited. For example moving will
act upon a human being, a car, etc. A subset of tasks is tightly coupled with a
class of real-world phenomena. For example running involves human beings and
animals, not cars. This determines together with the work-field (e.g., ’financial
transactions’, ’hazard mapping’) the context of a task.

Task decomposition is a topic of research in task analysis [144] and activity
theory [231]. Hierarchical task analysis (HTA) is a technique for deriving task
descriptions [144]. HTA uses a top-down approach by describing the goal of a
system and then defining iteratively the subtasks and plans to fulfil that goal.
These methods are useful for system design, but do not support formal system
analysis due to the lack of formalisms.
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3.2.1 Modelling dynamic systems

This section introduces relevant principles of dynamic systems in terms of behav-
ioural aspects. A dynamic system can be seen as a set of processes. The terms
described below are drawn from the formal description technique LOTOS (Lan-
guage of Temporal Ordering Specification)2 [33] and the LOTOS based Interaction
System Design Language (ISDL) [278] (see also Section 3.2.2).

In LOTOS, a process is defined as follows:

Term 3.4 A process is an entity able to perform internal, unobservable actions,
and to interact with other processes that form its environment.

A process (also sometimes called a behaviour) can be seen as the model of the
behaviour of a system and its operations. The simultaneous execution of processes
is referred to as concurrency. Concurrency is controlled by synchronisation ele-
ments, called actions, such as interactions and events. Concurrency control is
needed to avoid deadlock, a situation that occurs when two processes wait for each
other to finish. Interaction between processes takes place through communica-
tion at the processes’ interaction points. The signature of a process comprises its
identification, the type of all its parameters and its return type.

Actions are abstract elementary units of a process. They are considered to be
atomic in the sense that, in contrast to composites of actions, they occur or they
do not occur at all. They do not occur partially.

Behaviour can be modelled by two distinct model types, state-based models,
which describe processes in terms of states and state transitions (e.g., workflow
models) and predicative models, which describe processes in terms of pre/post con-
ditions [167]. These models are also referred to as respectively intensional models
(describing what systems do) and extensional models (based on what an outside
observer sees) [51]. State-based models allow for simulation whereas, predicative
models are more suitable for formal analysis of system behaviour. State-based
models entail the group of theories known as process algebras such as pi calculus
and other theories such as Petri Nets. A common notion in predicative models
is a trace, or sequence of atomic actions executed by a system [51]. In behaviour
analysis systems are represented by traces. Theories such as the situation calcu-
lus (a first-order logical language for reasoning about dynamic systems [192]) and
dynamic logic have proven to be very useful for modern formal models that allow
for reasoning on system behaviour [234].

In addition, hybrid models can be found, such as applied in the process spec-
ification language ConGolog [167] and OWL-S (formerly DAML-S) [181] which
is based on Petri Nets and situation calculus. Mappings are used for transitions
between these notions [192]. OWL-S, as well as a number of other research efforts,
uses ontologies to model the attributes of processes. The OWL-S coalition [59]
defines an upper-ontology to enable the creation of service ontologies.

2ISO standard 8807:1989
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√ → Bmail.entry,
√ → Bmail.entry,
√ → Border.entry

interaction structure
Bclient, B mail interact on send, receive;
Border, Bmail interact on send, receive;

where
behaviour Bclient

entries
entry

instantiations
entry → Bclient-send.entry,
Bclient-send.exit → Bclient-reception.entry

where
behaviour Bclient-send

entries
entry

interactions
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Figure 3.6: ISDL graphic representation for a mail ordering action. Taken
from [278].

3.2.2 Formalised process models and languages

Formal models and languages have been developed to aid system architects in de-
signing and analyzing complex systems by creating system representations, based
on formal abstracted constructs. The model representations of a specific system are
used for implementation work and for sharing the system characteristics amongst
system designers and system users in order to facilitate a common understanding
of the system’s properties. The models are different in terms of the formalisms
that they are based on, their modelling constructs and the representations that
they provide. In the last decade many languages have been developed and gained
extra interest with the increasing popularity of web services. The remainder of
this section elaborates on the languages considered to be relevant for the context
of this thesis.

ISDL The Interaction System Design Language (ISDL) comes with a set of
methods to perform behaviour refinement, based on a careful consideration of
the architectural concepts of action and causality relation in distributed systems
[230, 278]. Based on the formal description technique and ISO standard LOTOS
[33], the language provides constructs to model a system’s internal structure and
its behaviour as distinct properties. ISDL stands out due to the possibility of com-
bining system structure and behaviour constructs in a well-defined textual as well
as graphical representation. Figure 3.6 shows an example graphic representation
of a mail ordering behaviour that takes a mail order as an input and depending
on the acceptance, produces either a package plus an invoice, or a rejection letter
(respectively, exits 1 and 2). Actions are represented by circles, interaction points
by triangles. The round-edged box represents a behaviour. Figure 3.7 shows an
equivalent textual representation.
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entry → send (ι : order),
exits

send → exit
endbehaviour # Bclient-send #

behaviour Bclient-reception
entries

entry
interactions

entry → receive (ι : letter),
entry → receive (ι : parcel),

endbehaviour # Bclient-reception #
endbehaviour # Bclient #

behaviour Bmail
entries

entry
interactions

entry → send (ι : I),
send → receive (ι : I) [ι = ιsend]

endbehaviour # Bmail #

behaviour Border
entries

entry
instantiations

entry → Border-reception.entry,
Border-reception.exit → Border-processing.entry,
Border-processing.exit → Border-delivery.entry1,
Border-processing.exit → Border-delivery.entry2

where
behaviour Border-reception

entries
entry

interactions
entry → receive (ι : order),

exits
receive → exit

endbehaviour # Border-reception #

behaviour Border-processing
entries

entry
actions

entry ∧ ¬reject → accept,
entry ∧ ¬accept → reject,
reject → letter,
accept → invoice,
accept → packing

exits
letter → exit2,
invoice ∧ packing → exit1

endbehaviour # B order-processing #

Figure 3.7: ISDL textual representation for a mail ordering action. Taken
from [278].

UML The Unified Modelling Language (UML) provides modelling constructs
for static structures as well as behaviour. A model is constructed through spec-
ifications in a so called semantic backplane. Diagrams provide visual views on
the model. For behaviour the following diagram types have been defined: Activ-
ity, UseCase, StateMachine, Sequence, Communication, InteractionOverview and
Timing. As mentioned earlier, a new version of UML, UML 2 has been finalised
and its superstructure was adopted in October 2004. In contrast with UML 1.x,
UML 2 has adopted formal semantics in its metamodel. Activity diagrams are
based on Petri Nets, although the strength of the alignment between the two is
questioned by Störrle and Hausmann [255]. The mail ordering example in 3.6 has
its counterpart in the UML 2 activity diagram of Figure 3.8.

PSL The situation calculus based Process Specification Language (PSL) was de-
veloped as a reference language for other process specification languages [192]. PSL
is defined in first-order logic, which facilitates reasoning with its implementations
[32]. PSL is also known as the ISO 18629 standard.

PSL has been used to ascribe a semantics to DAML-S (the predecessor of
OWL-S) [192]. An extension, built on top of PSL is used in the Semantic Web
Services Ontology (SWSO), which is also inspired by OWL-S [259].

An integration of PSL and flow models in general and UML 2 in particular has
been demonstrated in [32].

Process languages for web services Since the introduction of web services
many XML-based languages have been created for the modelling of web service
chains. A leading initiative in industry is the Web Services Business Process Execu-



60 3. Service models for discovery, composition and execution

reject accept

input

letter packing invoice

output 1output 2

Border-processing

Figure 3.8: UML 2 activity diagram equivalent of the mail ordering activity de-
picted in Figure 3.6.

tion Language (WSBPEL) [201]. WSBPEL has merged ideas from its predecessors
XLANG and WSFL, but has dropped their well-defined semantics [24]. Without
such semantic definition it is impossible for a computer program to reason with
the process model. For practical purposes of service matching, this is a serious
limitation. However, WSBPEL is useful for the composition of services that are
known to be interoperable.

The listing below provides an example of a WSBPEL service chain, defining
a sequence of three services in a Google search (input, search and output). Ser-
vices are implemented through partnerlinks and porttypes which are defined in a
corresponding WSDL 3 file. For conciseness, the declarations of namespaces and
partnerlinks are left out.

<process name="GoogleFlow">
:
<!-- Declarations of namespaces and partnerlinks -->
:

<sequence>

3Web Service Description Language
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<!-- Receive input from requestor -->
<receive name="receiveInput" partnerLink="client"

portType="tns:GoogleFlow"
operation="initiate" variable="request"
createInstance="yes"/>

<!-- invoke the remote Google Search web service -->
<invoke name="invoke" partnerLink="GoogleSearch"

portType="gns:GoogleSearchPort"
operation="doGoogleSearch" inputVariable="request"
outputVariable="response"/>

<!-- Asynchronous callback to the requester -->
<invoke name="replyOutput"

partnerLink="client"
portType="tns:GoogleFlowCallback"
operation="onResult"
inputVariable="response"/>

</sequence>
</process>

The plethora of web service chain languages have caused recent efforts to em-
bark upon languages that make chain definitions interoperable.

The Web Services Choreography Description Language (WS-CDL) of the World
Wide Web Consortium’s Web Services Choreography Working Group aims at
defining peer-to-peer collaborations between web services [284]. The language
specifies workflow constructs at a conceptual level. It leaves the specification of an
application’s execution logic to process execution languages, such as WSBPEL.

Several efforts, such as OWL-S [181], provide language constructs for modelling
semantic properties of web services. OWL-S is described in Chapter 4.

3.2.3 Process modelling in GIS

In addition to the generic approaches of process modelling discussed in the pre-
vious sections, a more specific analysis of tasks and operations in the geographic
domain is needed. Approaches can be found across different levels of abstraction
(cf. Figure 3.1), for example, analyzing the behaviour of objects in geographic
space, analyzing system end-user behaviour and classifying GIS operations [174].
Decomposition strategies of processes are reported in [292] for the domain of plan-
ning support systems. Other initiatives with similar objectives are reported in
[42, 152, 190, 263]. The need for formal modelling of geographic processes has
been identified in only a few sources, e.g., [6, 66].
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In an effort to provide a basis for creating geo-service specifications, OGC and
ISO have developed respectively the OGC service architecture [205] and the ISO
19119 standard for Geographic Information Services [132]. In these specifications,
geographic processes are viewed as service chains, following the RM-ODP (see
Section 2.4.2). ISO 19119 treats service chains as directed graphs and models
them using the UML activity graphs. To exchange service chain information with
other users performing tasks in a similar situation, ISO 19119 provides a taxonomy
of GIS operations (elaborated in Section 5.4) and introduces a Service Organiser
Folder (SOF) as a bag of unordered services to be used in a particular chain.

None of the above efforts have resulted in comprehensive formal machine-
accessible geographic process models that support semantic interoperability. This
forms a part of the motivation to perform this research as described in 1.2. The
way in which geographic processes are modelled in this research, is described in
Section 5.4.

3.3 Service chaining

The need for modular software processes has been identified in Chapter 2. The
integrated exploitation of those processes in distributed systems is facilitated by
service chaining, which is defined as follows:

Term 3.5 Service chaining (adapted from [132]) is combining services in a de-
pendent series to achieve larger tasks. It involves service discovery, composition
and execution.

We assume that service chaining is taking place in the context, depicted in Fig-
ure 3.5 and in a more practical sense, may use languages as described in Sec-
tion 3.2.2. The remainder of this section describes the user context and different
modes of service chaining.

3.3.1 User context

In modular software architectures, users will be able to use a single service, create
simple service chains or assemble services into their own applications, on demand.
In order to evaluate the usefulness of a service, alone or as part of a chain, one
needs to interpret the elements of its interface or infer from a service description the
syntactic, structural and semantic properties of the service’s operations, workflow
and input, output and tightly-coupled data. This process of service finding is
called service discovery. Service discovery is done through the evaluation of service
descriptions that are identified with available services 4.

Figure 3.9 shows the user context of service discovery and composition. This
figure is closely related to Figure 2.2. However, in the figure, the end-user ap-
plication and both its creator and user are now involved with service discovery,

4Service descriptions may be stored with the service and/or published in a separate directory.
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64 3. Service models for discovery, composition and execution

Atomic service

Composite service (chain)Workflow

iteration

Service ID

Service description (advertisement)

Control flow

iteration

isDescribedBy

has

Service

composedOf

identifies accesses

has

Discovery Composition Execution

Activity: Service chaining

Object flow

creates

Figure 3.10: The elements of service chaining, depicted in the combination of a
UML activity diagram (top) and a UML class diagram (bottom).

rather than service access. In service discovery, service advertisements are created
by the service developer and may contain descriptions of operations, workflow and
data (input, output, tightly coupled data). An end user, trying to perform a task
with services, uses a service discovery application to create a service request and
to compare this request with available service descriptions.

3.3.2 Modes of discovery, composition and execution

Service chaining is typically performed as a sequence of discovery, composition
and execution, see Figure 3.10. However, sometimes discovery, composition and
execution are performed as an iterative procedure, e.g., part of the chain is discov-
ered after another part has been composed or even has been executed. Further,
the ‘mode’ of service chaining is influenced by other types of variations are caused
by (1) the degree of control a human user has on the discovery, composition and
execution process and (2) the fact that certain services in the chain have been
prescribed.

Discovery

There are two starting points for discovery:

1. The user may be confronted with a task and has no prescriptions for the
component services in the chain.

2. The user is constrained to use:
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(a) specific types of services. This may involve any type variation along the
classification axes in Section 2.1.2. A constraint may be for example
that all services must have a web service interface. In another scenario
we would allow to have human operated interfaces in the chain.

(b) specific instances of services (e.g., a service provided by a certain com-
pany, because it has been proven reliable)

The user will be tasked to find a match between service request and advertisements.
In case of more than one match, the user may choose the best, based on human
or machine inference of the properties of each match. There are two options:

1. The user finds a composite service that fulfils the task.

2. There is no single composite service that fulfils the task. The service request
has to be decomposed, for which there are three options:

(a) The user ‘manually’ performs the decomposition and repeatedly uses
the discovery application for finding each service part.

(b) The discovery application performs the decomposition automatically.

(c) The user performs the decomposition semi-automatically, i.e., by ‘sug-
gesting’ service parts and using the discovery application to ‘fill the
gaps’.

Composition

Once the right service parts are found, the user composes these services in a
workflow. This workflow becomes executable once binding of its operations and
data is performed by creating a new composite service. In this phase the user is
considered to be a service developer5. When composition and execution platforms
are merged, a workflow may be directly executed. In other cases it may be exported
and stored to be executed at another place and/or at another time. Workflows
can be stored in languages such as described in 3.2.2.

Execution

ISO 19119 (Services) [132] defines three different architecture patterns for service
chaining. Apart from one pattern (transparent chaining), they focus merely on
execution details. A distinction is made between the following patterns:

• Transparent chaining (see Figure 3.11). The user is in full control of the
discovery process and the execution process. He invokes each service through
a software client.

5The reader is reminded that a workflow in the form of a description is not executable. If it
takes the form of e.g., a script it must be embedded in a service.
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7.3.5.2.5 Structure  

The User Defined Chaining Architecture Pattern is shown in Figure 5. 

NOTE The unique feature of the transparent pattern is that the chain is defined and controlled by the user.  In the 
figure, the user discovers available service through a catalogue service.  Alternatives for the user to select services are 
part of this pattern. For example, a Service Organizer Folder could be substituted for the catalogue. 

Client

Catalogue
service

Service Service
Service

1. Search request

2. Search Results

5a. Invoke service

4a. Invoke service3. Invoke service

tupni tseuqeR .b5tupni tseuqeR .b4

5c. Request input

Figure 5 — Transparent chaining 

Table 5 — Description of steps in Figure 5 

Step 1. Search request A human uses a client to send a search request (or series of searches) to a 
catalogue service.  The catalogue service provides queries on service 
metadata.

Step 2. Search results Catalogue Service returns metadata about services of interest to the user.  
For this example the user has found three services which will be chained. 

Step 3. Invoke service User invokes a service using the client, causing a result to be available for a 
subsequent service. 

Step 4a. Invoke service 
Step 4b. Request input 

User invokes a second service using the client.  The request includes a 
reference to the results from the previous step.  The service creates a result 
that is available for the next service. 

Step 5a. Invoke service 
Step 5b. Request input 
Step 5c. Request input 

User invokes a third service using the client.  The request includes references 
to the two previous services.  This third service returns a result to the client. 

Figure 3.11: UML communication diagram showing transparent chaining. Figure
taken from [132].

• Translucent chaining (see Figure 3.12). A chain is given and the user invokes
it through a workflow service. The status of the service chaining process is
communicated to the user.

• opaque chaining (see Figure 3.13). A chain appears as a single service to
the user. It is executed by a so called aggregate service that handles all the
transactions in the chain.

3.4 Summary and reflection

This chapter has proposed an approach for the abstraction of geo-information to
support the semantic modelling of geo-information and geo-services. It has been
derived from several approaches existing in both ICT and geo-specific commu-
nities. The principle idea is to break down the complexity of these models, so
that they have a clear structure and incorporate a separation of concerns. This
approach aims at filling a niche in the existing way of dealing with interoperabil-
ity as discussed in Chapter 2. The ideas are used in the design of a semantic
interoperability framework, which is elaborated upon in Chapter 5.
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7.3.5.3.5 Structure  

The Workflow-Managed (translucent) chaining architecture pattern is shown in Figure 6. 

NOTE There may be multiple workflow services.  If there is more than one the workflow services must coordinate to 
carry out the predefined chain.  In the extreme case, each service in the chain contains a workflow service and the chain is 
passed along with the service results.  The unique features of the translucent pattern are the existence of a predefined 
chain and the user’s awareness of the chain. 
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Figure 6 — Translucent chaining 

Table 6 — Description of steps in Figure 6 

Step 1. Invoke a chain A human uses a client to request that a workflow service execute a chain.  
The user may be allowed to modify some aspects of the chain prior to 
execution. 

Step 2a. Invoke service 
Step 2b. Service status 

The workflow service determines the services in the chain and invokes the 
first service.  The service informs the workflow service of the completion of the 
task.  Status of the service may be provided directly to the client.  The client 
may stop the workflow. 

Step 3a. Invoke service 
Step 3b. Request input 
Step 3c. Service status 

Upon notification of completion of the first service, the workflow service 
determines the next service in the chain and invokes it.  The second service 
requests results from the first service.  The service informs the workflow 
service of the completion of the task.  Status of the service may be provided 
directly to the client. The client may stop the workflow. 

Step 4a. Invoke service 
Step 4b. Request input 
Step 4c. Request input 
Step 4d. Service status 

Upon notification of completion of the second service, the workflow service 
determines the next service in the chain and invokes it.  The third service 
requests results from the first and second services.  The service informs the 
workflow service of the completion of the task.  Status of the service may be 
provided directly to the client. The client may stop the workflow. 

Step 5. Chain results Upon notification of completion of the last service, the workflow service 
informs the client of the completion of the chain. 

Figure 3.12: UML communication diagram showing translucent chaining. Figure
taken from [132].
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7.3.5.4.5 Structure  

The Aggregate service (opaque-chaining) architecture pattern is shown in Figure 7. 

Client

Aggregate
service

Service Service
Service

1. Invoke Service 5. Service Results

4a. Invoke service

3a. Invoke service

2. Invoke service

tupni tseuqeR .b4tupni tseuqeR .b3

4c. Request input

Figure 7 — Opaque chaining 

Table 7 — Description of steps in Figure 7 

Step 1. Invoke a service A human uses a client to request that an aggregate service execute a chain.  
The user may have no knowledge that the service is implemented using a 
chain of services. 

Step 2. Invoke service The aggregate service determines the services in the chain and invokes the 
first service.  The service informs the aggregate service of the completion of 
the task.   

Step 3a. Invoke service 
Step 3b. Request input 

Upon notification of completion of the first service, the aggregate service 
determines the next service in the chain and invokes it.  The second service 
requests results from the first service.  The service informs the aggregate 
service of the completion of the task. 

Step 4a. Invoke service 
Step 4b. Request input 
Step 4c. Request input  

Upon notification of completion of the second service, the aggregate service 
determines the next service in the chain and invokes it.  The third service 
requests results from the first and second services.  The service informs the 
aggregate service of the completion of the task.   

Step 5. Chain results Upon notification of completion of the last service, the aggregate service 
informs the client of the completion of the chain. 

7.3.6 Variations on chaining patterns 

The three chaining patterns discussed above could be combined in a variety of ways. 

Each of the lowest level services shown in the pattern diagrams could in turn implement a chain. This is 
recursive composition of services supported by the opaque pattern.  A service chain can become a new 

Figure 3.13: UML communication diagram showing opaque chaining. Figure taken
from [132].
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Chapter 4

Semantic modelling

The goal of semantic modelling is to provide a conceptual model of a domain
of discourse by formalising the semantics of the concepts and inter-concept rela-
tionships in this domain. In this thesis work, the aim of such formalisation is to
facilitate machine reasoning about geo-services for the purpose of interoperability.
As discussed in Chapter 2, the agreements on the communication syntax (rules for
the serialisation of elements in a message), communication structure (rules for the
structure of the underlying schema of a message) and communication semantics
(the meaning of message elements and the message as whole) are key to the inter-
operability between services. Those agreements can be laid down in several ways,
ranging from informal (e.g., human language-based) to formal (e.g., mathematical
logic-based) contracts, and from human-readable to machine-readable contracts.
In practice, the specifications of such contracts appear as documents, which in-
creasingly exist of a combination of human language and machine processable
language (e.g., XML schemas). Relevant examples of interoperability models that
specify such contracts for software systems have been discussed in Section 2.4. In
this chapter we focus on the building blocks of the Semantic Web (introduced in
Section 2.4.4), which facilitate the creation of semantic models for the purpose of
machine reasoning. Our target is to formalise (geo-)service models as discussed in
Chapter 3.

This chapter starts with an explanation of the notion of ontology as one of
the corner stones of the Semantic Web (Section 4.1). Section 4.2 presents the
foundations for the type of ontologies that can be used for machine reasoning.
Practical issues of ontology design and representation are discussed in respectively
Sections 4.3 and 4.4. Section 4.5 presents the notion of knowledge base and tech-
niques of machine reasoning that are used to infer relationships between concepts
and instances in a knowledge base. Section 4.6 discusses the embedding of on-
tologies in a semantic interoperability framework as a basis for creating and using
ontology-based descriptions of information sources. This chapter ends with a de-
scription of methods for the semantic modelling of services (Section 4.7) and a
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summary and reflection (Section 4.9).

4.1 What is an ontology?

Ontologies provide a way to share the semantics of concepts in some area of inter-
est, such as car driving, choosing a pizza or processing geographic information. It
is all about common understanding of essential concepts, such as the type of cheese
used on a Pizza Margherita and, in the latter case, what is meant for example by
‘geometric object’.

Much debate has been (and is still) taking place on the interpretation of the
term ‘ontology’ itself.

A generally accepted short definition of ontology is given by Gruber:

Term 4.1 (From [103]) An ontology is an explicit specification of a conceptuali-
sation.

The term conceptualisation is defined as follows:

Term 4.2 (From [88, 103]) A conceptualisation is the combination of objects,
concepts, and other entities that are assumed to exist in some area of interest
and the relationships that hold among them. A conceptualisation is an abstract,
simplified view of the world that we wish to represent for some purpose.

To emphasise the intended sharing of semantics, some ontology definitions
indicate the notion of agreement. Uschold et al. [268] and Guarino [104] cite the
following statement from Tom Gruber:

Ontologies are agreements about shared conceptualizations. Shared
conceptualizations include conceptual frameworks for modelling domain
knowledge; content-specific protocols for communication among inter-
operating agents; and agreements about the representation of particu-
lar domain theories. In the knowledge sharing context, ontologies are
specified in the form of definitions of representational vocabulary. A
very simple case would be a type hierarchy, specifying classes and their
subsumption relationships. Relational database schemata also serve
as ontologies by specifying the relations that can exist in some shared
database and the integrity constraints that must hold for them. (Tom
Gruber, 1994, SRKB Mailing list)

Another definition of ontology is used in [267]:

An ontology is a collection of shared concepts. More formally, an
ontology is ‘a structured, limitative collection of unambiguously defined
concepts’. This definition contains four elements:

1. An ontology is a collection of concepts.
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2. The concepts are to be unambiguously defined.

3. The collection is limitative. Concepts not in the ontology cannot
be used.

4. The collection has structure. Structure means that the ontology
contains relationships between the concepts.

To clarify the context of the term ontology further, the most important con-
textual concepts are depicted in a UML diagram, see Figure 4.1. This contextual
view integrates the ideas of leading literature in the field of ontology research
[103, 104, 105, 183, 257, 268].

Ontologies can be distinguished by their degree of formality, extent of ex-
plication, structure complexity, scope, specification language, expressiveness and
representation. Each of these characterisations are explained below.

Degree of formality Ontologies may differ in their degree of formality. Uschold
[268] defines four levels:

• Highly informal. Concepts are expressed loosely in natural language.

• Semi-informal. Concepts are expressed in a restricted and structured form
of natural language.

• Semi-formal. Concepts are expressed in an artificial formally defined lan-
guage. Examples are models that are expressed in UML, RDF, OWL, etc.

• Rigorously formal. Concepts are defined with formal semantics, theorems
and proofs of such properties as soundness and completeness.

These levels reside in a continuum of formality, which means that any intermediate
level may occur, depending on the formalisms used to design the ontology.

In recent research efforts in artificial intelligence and software engineering, on-
tologies are often considered to be formal (semi-formal or rigorously formal). In
this thesis, those ontologies are termed as formal ontologies. With the increasing
importance of ontology-based machine reasoning, ontologies are often also con-
sidered to be machine accessible and give some support to machine reasoning.
Ontologies of this kind are considered to make use of some kind of formalism. In
this thesis, those ontologies are indicated with the term machine ontologies. As
an example, ontologies that are expressed in OWL, are machine ontologies.

Extent of explication A conceptualisation provides the meaning of a set of
terms, called vocabulary 1. A conceptualisation also provides the context of these
terms and places them in a structure. A conceptualisation may exist in the mind
of a human or can be (partially) made explicit in an ontology. The extent to

1also coined as ‘shared’ vocabulary, because it is almost always intended to be shared
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Figure 4.1: UML class diagram showing the context and characteristics of the
concept of ‘ontology’.
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which the ontology makes the conceptualisation explicit may vary. A lower level
of explication, or ontological commitment, means that the conceptualisation relies
more on implicit assumptions (which are not directly verifiable).

Structure complexity An ontology explicates the structure between concepts
by using relational constructs provided by the specification language. An example
of a simple structure is a taxonomy, or generalisation hierarchy, which makes us
of so called ‘is-a’ relationships. More complex structures are formed when also
‘part-of’ relationships are involved or any other type of relationship, such as ‘uses’
or ‘produces’. It is important that the semantics of these relationship types are
sufficiently defined. Complex structures may be defined with formal languages
that are equipped with special constructs for that purpose (e.g. OWL). In fact,
natural language may also be used for creating complex structures, but they will
easily become obscure. However, the use of natural language remains important
for explaining the meaning of specific constructs used in formal languages.

Scope The scope of an ontology is determined by the area of interest of the
underlying conceptualisation (also called the domain of discourse). A ‘land cover’
ontology typically contains concept definitions such as ‘Forest’ and ‘Rice field’
but not ‘Population density’ or ‘Hotel rates’. When the scopes of two ontologies
overlap, a mapping of similar terms may be required to enable their integral use.

Specification language An ontology can be specified in natural language or in
a computer language. Natural language may be used to create definitions of terms,
such as in a shared vocabulary, but it is not efficient in creating a structure of rela-
tionships between them. An object-oriented design language such as UML provides
several formalisms, such as generalisation and aggregation, to create conceptual
structures. However, UML was not designed to allow for reasoning on the concep-
tual structures implemented with it and it allows for the creation of quite informal
models. Although OCL provides powerful additional constructs to formalise the
semantics in a UML-based model, it brings about computational complexity of rea-
soning [55] and lacks the basis of XML as communication mechanism. XML-based
languages such as RDF and OWL have the advantage of machine-accessibility over
the web. In addition, OWL provides the formal constructs that allow for decidable
reasoning with conceptual structures2. .

Expressiveness The expressiveness of a language is determined by the variety of
expressions that can be created with its constructs, given the constraints to which
the constructs must comply. Expressive languages (of which natural languages are
good examples) allow for a wide spread application, but implementations expressed
with them often suffer from ambiguity. The ontology language OWL has three

2in fact only a subset of OWL, named OWL-DL, supports decidable reasoning, (see a descrip-
tion of OWL in Section 4.2.3)
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sub languages, namely OWL-lite, OWL-DL and OWL-full. OWL-DL contains
more expressions and less restrictions than OWL-lite. OWL-full contains more
expressions and less restrictions than OWL-DL. This makes OWL-full the most
expressive sub language. However OWL-full suffers from undecidability and cannot
be used by current ontology reasoners. More details on OWL can be found in
Section 4.2.3.

Representation An ontology may be represented through its specification lan-
guage by a variety of artefacts. Natural language artefacts are normally text
documents. UML specifications are laid down in UML diagrams accompanied
with textual explanation. Implementations based on ontology languages may be
represented by mathematical notation, computer code (such as XML), diagrams
and/or textual explanations.

4.2 Foundations for machine ontology

Ontology languages provide the building blocks for machine ontologies. An ontol-
ogy language consists of constructs that are used (1) to declare the concepts of a
domain, (2) to define the relationships between these concepts and (3) to impose
restrictions on those relationships [9]. The expressiveness of an ontology language
determines the range of ontological statements that we can create with these con-
structs. The constructs of a machine ontology language are defined by their syntax
and semantics and typically support a certain level of machine reasoning. Several
machine ontology languages have been developed for use in conjunction with the
web. Amongst those, OWL is currently the most prominent one. The remainder of
this section describes the two major foundations of OWL, i.e., Description Logics
and RDF, and then provides an overview of its constructs.

4.2.1 Description Logics

Research in artificial intelligence in the 1970s brought forth two basic knowledge
representation approaches, i.e., logic-based formalisms and cognitive representa-
tions. In the latter, knowledge is represented by ad hoc data structures, for ex-
ample, semantic networks and frames [14]. Logic-based systems were considered
to be more powerful, network systems to be more practical. A fusion began with
the development of terminological systems that evolved in the mid 1980s in De-
scription Logics (DLs). In these approaches, logic-based constructs are used to
establish a basic terminology of the domain of discourse. Description Logics are
a family of languages, each with their own set of constructs [245]. The term ‘De-
scription’ Logics stems from the fact that the notions of a domain are represented
by concept descriptions [15]. The basic notions of DLs draw upon first order pred-
icate logic. They are concepts (unary predicates) and roles (binary relations). For



4.2. Foundations for machine ontology 75

example, a subsumption relation (also referred to as subclass or IS-A relation), can
be described as:

Building v Construction (4.1)

The following expression describes a building that has at least three floors and has
an accommodational function. It uses the intersection construct (u), the unqual-
ified number restriction construct (≥) and the existential quantifier construct (∃,
which means: ‘there exists at least one’):

Building u (≥3 hasFloor) u ∃hasFunction.Accommodation (4.2)

The expressions below characterise respectively a country with a coast and a land-
locked country:

Country u ∃hasBorderWith.Sea (4.3)

Country u ∀hasBorderWith.(¬Sea) (4.4)

The latter expression uses the universal quantifier construct (∀, which means: ‘for
all’) and the negation construct (¬). Expressions with universal quantifiers have
to be used with care as we will see in Section 4.5.1.

Concept and role descriptions

In Description Logics, a concept (e.g., ‘construction’) is interpreted as a set of
individuals (also called the extension of the concept [9], e.g., ‘Eiffel Tower’, ‘Taj
Mahal’, etc.), and a role (e.g., ‘hasMaterial’) is interpreted as a pair of individ-
uals (e.g., the pair (‘Eiffel Tower’,‘Steel’)). As a notational convention, concepts
are denoted with capital characters C and D, roles with capitals R and S, and
individuals with lower case a and b. Formally, an interpretation consists of an
(arbitrary) interpretation domain ∆I and an interpretation function ·I that maps
every concept to a subset of ∆I , every role to a subset of ∆I ×∆I and every indi-
vidual to an element of ∆I [82]. Atomic concepts (unary predicates) are subsets
of the interpretation domain, other concepts are obtained by using constructs such
as concept intersection and union. The notion of interpretation is used to define
the semantics of the constructs of a DL. For example, the semantics of the basic
Description Logic ALC are defined by extending the interpretation function, such
that its mappings satisfy the following equations [14]:

>I = ∆I (top concept)
⊥I = ∅ (bottom concept)

(¬C )I = ∆I\CI (negation)
(C uD)I = CI ∩DI (intersection)
(C tD)I = CI ∪DI (union)
(∃R.C)I = {a ∈ ∆I | ∃b.(a, b) ∈ RI ∧ b ∈ CI} (existential quantif.)
(∀R.C)I = {a ∈ ∆I | ∀b.(a, b) ∈ RI → b ∈ CI} (universal quantif.)
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The notions on the left-hand side are called concept constructors. The right-hand
side of the equation for the existential quantification has to be read as [245]:
‘for any a ∈ ∆I , there exists a b ∈ ∆I , with (a, b) ∈ RIand b ∈ CI ’,
and for the universal quantification (also called ‘value restriction’) as:
‘for any a ∈ ∆I holds that for all b ∈ ∆I , if (a, b) ∈ RI , then b ∈ CI ’.

The syntax of DLs is variable-free. According to Nardi and Brachman, [193]
a concept definition C compares to the first-order logic notion C(x), where the
variable ranges over all individuals in the interpretation domain and C(x) is true
for all individuals that are member of concept C. In the light of this translation,
description languages can be seen as fragments of first order predicate logic [16].

Within the family of DLs, a specific DL, such asALC or SHIQ, is characterised
by the particular constructs that are used to form complex concepts and roles
from atomic ones [245]. Each DL is named with a combination of characters,
each of which represent a set of constructs. Several extensions to ALC exist.
For extensions that add concept constructors, capital letters are added to ALC,
for role constructors, symbols are added as superscripts and for restrictions on
the interpretation of roles, symbols are added as subscripts [14]. For example,
the DL ALCQHIR+ extends ALC with qualifying number restrictions (Q), role
hierarchies (H), inverse roles (I) and transitively closed primitive roles (R+) [122].
The influential ALCQHIR+ is also known as SHIQ. In addition, if DL languages
are extended with simple concrete datatypes (e.g., integer or string), the symbol
(D) is added (cf. SHIQ(D)) [120].

Knowledge bases

A knowledge base consists of a set of terminological axioms (called the TBox ) and
a set of assertional axioms or ‘assertions’ (called the ABox ) [14]. The syntax and
semantics of these axioms is found below:

Terminological axioms

Syntax Semantics Name

C v D CI ⊆ DI (concept inclusion)
R v S RI ⊆ SI (role inclusion)
C ≡ D CI = DI (concept equality)
R ≡ S RI = SI (role equality)

Assertional axioms
Syntax Semantics Name

C(a) aI ∈ CI (concept assertion)
R(a, b) (aI , bI) ∈ RI (role assertion)
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TBox The TBox is the component of a knowledge base that contains intensional
knowledge [193] and constitutes a terminology of a problem domain (the T in
TBox refers to ‘terminology’). Formally, if the TBox T is a set of axioms, then
the interpretation I satisfies T if and only if I satisfies each element of T . In this
case I is called a model of T . An axiom in a TBox can be of the form C ≡ D.
Such an equality whose left-hand side is an atomic concept is called a definition
[14], giving necessary and sufficient conditions to the concept. In an ontology, such
a concept is also referred to as a defined class [118]3. An example of a definition
is:

CountryWithCoast ≡ Country u ∃hasBorderWith.Sea (4.5)

The above axiom defines ‘CountryWithCoast’ as a country that has at least one
of its borders with ‘Sea’. At the same time, reading in the opposite direction,
any country that has at least one of its borders with ‘Sea’, is considered to be a
‘CountryWithCoast’ (due to the sufficient condition).

In case we are unable to define a concept completely, a concept inclusion can
be used to state necessary conditions only. Such a concept is also referred to as
primitive class in an ontology. An example of a concept inclusion is:

Hotel v Building u ∃hasFunction.Accommodation (4.6)

The above axiom states that a hotel is a building with an accommodational func-
tion, but not every building with an accommodational function is a hotel. The
classification of concepts is seen as the basic task of building a terminology and
involves the validation of subsumption relationships between concepts. Reasoning
makes the implicit knowledge of the knowledge base explicit by the calculation of
inferences. Reasoning is discussed in Section 4.5.

ABox The ABox is the component of a knowledge base that contains extensional
knowledge [193], which is specific to the individuals of a problem domain. The A
in ABox refers to ‘assertional’ knowledge. Baader [14] also denotes the ABox as
world description, due to the fact that it introduces individual names and their
properties as the specific states of affairs of concepts and roles. The example
below states that the individual ‘Tuvalu’ is an instance of the class ‘Country’,
or in other words, it belongs to the interpretation of ‘Country’. An implication
of this assertion is that, if Country is a defined as a subclass of, for example,
‘Administrative area’, then Tuvalu is also an instance of ‘Administrative area’.

Country(Tuvalu) (4.7)

An example of a role assertion is given below. It specifies that Tuvalu borders the
Pacific Ocean. From the descriptions 4.5 and 4.7 it can be inferred that Tuvalu is
a country with a coast.

hasBorderWith(Tuvalu,PacificOcean) (4.8)

3A class can be seen as concrete representations of a concept
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Further ABox reasoning is discussed in Section 4.5.

Practical modelling constructs

Current systems that support the creation of machine ontologies, such as Protégé
(see Section 8.2.1), provide specific ontology design constructs, that can be retraced
to DL-constructs. Some of them are described below.

Domain and range A role can be assigned a domain and range. The domain
constraints the concepts to which a role can apply. This is equivalent with the
DL axiom ∃R.> v C. The range constraints the concepts that can fill the role (so
called role fillers), which is equivalent with the DL axiom > v ∀R.C.

Intersection In Protégé, multiple asserted conditions are treated as intersecting
classes. Restricting the class C by the conditions C v D and C v E means that
C is a subclass of the intersection of D and E:

C v (D u E) (4.9)

The latter can be used as one condition in Protégé as well, having the same
semantics as the combination of the two above.

Nested conditions Axioms that contain conditions with ‘nested’ roles are, in
this thesis, called nested conditions. Nested conditions can involve existential
quantification and universal quantification. The example below contains a nested
existential quantification:

∃R.(∃S.C) (4.10)

4.2.2 Resource Description Framework (RDF)

The Resource Description Framework (RDF) is a language for representing infor-
mation about resources in the World Wide Web [179]. The basic notion of RDF is
a data model that uses statements, (called triples), containing a subject, an object
and a predicate that relates subject and object (see Figure 4.2). The RDF data
model is a graph [249]. RDF uses an XML syntax for exchanging its graphs, called
RDF/XML.

RDF Schema (RDFS) is a separate language which can be used to specify a
domain specific vocabulary for usage in RDF. It can be seen as a type system
for RDF [179]. RDF Schema provides constructs such as ‘Class’ and ‘subClassOf’
to establish such vocabulary and is considered to be an ontology language that
enables a user to create a classification hierarchy with typing of properties [9].
Figure 4.3 shows an example of an RDFS triple.
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http://geoserver.itc.nl/lemmens/ontogeo#GeometricObject

http://geoserver.itc.nl/lemmens/ontogeo#hasReference

http://geoserver.itc.nl/lemmens/ontogeo#CoordinateReferenceSystem

Subject

Object
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Figure 4.2: Example of an RDF triple.

http://geoserver.itc.nl/lemmens/ontogeo#Point

http://www.w3.org/2000/01/rdf-schema#subClassOf

http://geoserver.itc.nl/lemmens/ontogeo#GeometricObject

Subject

Object

Predicate

Figure 4.3: Example of an RDFS triple.

4.2.3 Web Ontology Language (OWL)

The need for more expressive ontology languages than RDFS has initiated the
development of new ontology languages (e.g., RDFS does not contain constructs
for intersections, unions or complements of classes, nor does it support cardinality
constraints [179]). In 1999, the DARPA Agent Markup Language (DAML) pro-
gram was started to facilitate semantic interoperability among the projects in the
DARPA program and resulted in the DAML-ONT language [119]. At the same
time a European initiative embarked upon the development of another web based
ontology language, called OIL (the Ontology Inference Layer), which applied the
semantics of the Description Logic SHIQ. The merger of the two initiatives has
resulted in the DAML+OIL language. From here, the further development of the
ontology language was taken up by the World Wide Web Consortium (W3C) Web
Ontology Working Group. The Web Ontology Language became a W3C recom-
mendation in February 2004 [184]. The Web Ontology Language (OWL) has been
designed on the basis of Description Logics, RDF and, obviously, DAML+OIL
[121]. Further, OWL makes use of frames, that group the information on each
class (its super class and its properties), a principle that makes the code easier to
read by humans and that is also used in the knowledge representation mechanism
of Protégé (see Section 8.2.1). OWL draws upon the fact-stating capability of
RDF and the class/property structure of RDF Schema. In addition, OWL pro-
vides more powerful constructs for class expressions. Within the OWL statements,
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RDF statements are used in their original form, see the OWL code example below.
It defines the concepts of Point, Line and Polygon as subconcepts of the concept
GeometricObject.

<owl:Class rdf:ID="Polygon">
<rdfs:subClassOf rdf:resource="#GeometricObject"/>

</owl:Class>
<owl:Class rdf:ID="Point">
<rdfs:subClassOf rdf:resource="#GeometricObject"/>

</owl:Class>
<owl:Class rdf:ID="Line">
<rdfs:subClassOf rdf:resource="#GeometricObject"/>

</owl:Class>

OIL can be seen as a syntactic variant of the DL SHIQ(D) [120]; OWL is
very close to SHOIN (D) [121], which, compared to SHIQ(D), supports also
nominals4 (O) and is restricted to unqualified number restrictions (N instead of
Q). The formal semantics of OWL is provided as part of the OWL recommendation
[222] and is very similar to the semantics provided for Description Logics.

Specific OWL constructs are listed in Table 4.1. Note that the OWL language
also includes RDF and RDFS constructs (e.g., rdfs:subClassOf), which are not
included in this table.
The elements of Table 4.1 form the basis for three sub-languages of OWL: OWL-
Lite, OWL-DL and OWL-Full (in order of increasing expressiveness).

• OWL-DL: With ‘DL’ standing for Description Logics, OWL-DL’s semantics
are based on the semantics of the DL SHOIN (D). OWL-DL is designed
to maximally exploit the formalisms of Description Logics and its computa-
tional tractability [10]. In order to achieve this, it puts restrictions on the
use of the constructs as listed in Table 4.1, which basically yields that it
—unlike RDF and RDFS— does not allow classes to act as individuals, and
the language constructs cannot be applied to the language itself (e.g., to ap-
ply a cardinality constraint to a subclass construct). These restrictions are
required for current reasoners to guarantee a decidable reasoning procedure
[22]. For this reason, OWL-DL is also called decidable.

• OWL-Lite: The design of OWL-lite aimed at an ‘easier’ OWL for users
and reasoners. OWL-Lite is more restricted than OWL-DL. Besides further
restricting the use of OWL elements, it prohibits the use of the following
OWL elements:

4Nominals are individual names expressed in class descriptions. They are used to identify a
specific set of individuals, such as {Italy,France}.
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owl:AllDifferent owl:intersectionOf
owl:allValuesFrom owl:InverseFunctionalProperty
owl:AnnotationProperty owl:inverseOf
owl:backwardCompatibleWith owl:maxCardinality
owl:cardinality owl:minCardinality
owl:Class owl:Nothing
owl:complementOf owl:ObjectProperty
owl:DataRange owl:oneOf
owl:DatatypeProperty owl:onProperty
owl:DeprecatedClass owl:Ontology
owl:DeprecatedProperty owl:OntologyProperty
owl:differentFrom owl:priorVersion
owl:disjointWith owl:Restriction
owl:distinctMembers owl:sameAs
owl:equivalentClass owl:someValuesFrom
owl:equivalentProperty owl:SymmetricProperty
owl:FunctionalProperty owl:Thing
owl:hasValue owl:TransitiveProperty
owl:imports owl:unionOf
owl:incompatibleWith owl:versionInfo

Table 4.1: Language elements of OWL (taken from [22]).

owl:oneOf
owl:unionOf
owl:complementOf
owl:hasValue
owl:disjointWith
owl:DataRange

OWL-Lite has similarities with the DL SHIF(D). Despite its decreased
expressive power, it improves the tractability with respect to OWL-DL [121].

• OWL-Full: OWL-Full is the least restricted OWL sub language. It was
designed to support upward compatibility with RDF and RDFS. The trade-
off of this increased expressiveness is that OWL-Full is undecidable.

The following rules concern the compatibility between the three OWL sub lan-
guages (literally from [10]):

• Every legal OWL Lite ontology is a legal OWL DL ontology.

• Every legal OWL DL ontology is a legal OWL Full ontology.

• Every valid OWL Lite conclusion is a valid OWL DL conclusion.
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• Every valid OWL DL conclusion is a valid OWL Full conclusion.

The code example below shows the OWL-DL code that represents Description 4.4
of a land-locked country as stated in Section 4.2.1. One can recognise the OWL
language elements, as listed in Table 4.1.

<owl:Class rdf:ID="LandLockedCountry">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:ID="Country"/>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:ID="hasBorderWith"/>

</owl:onProperty>
<owl:allValuesFrom>
<owl:Class>
<owl:complementOf rdf:resource="#Sea"/>

</owl:Class>
</owl:allValuesFrom>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>
</owl:equivalentClass>
<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

</owl:Class>

4.3 Ontology design and creation

The conceptualisation of a domain and the implementation of this conceptualisa-
tion into a machine ontology is not trivial. It requires a thorough understanding
and careful formalisation of the domain semantics. As with other languages, the
constructs of ontology languages facilitate multiple ways to formalise a single do-
main. Several methods of good practice can be followed to carry out the conceptu-
alisation process, see for example [198]. Based on their recommendations and the
experiences gained in this research (especially in the work reported in Chapters 5
and 6), the steps below are considered to be efficient and sufficient in building
ontologies.

1. Determine the scope of the ontology.

2. Determine how it will be used; if for querying, what constitutes a typical
query?
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3. Create an ontology ‘sketch’ (on paper or with a software tool for drawing
diagrams) containing the most general concepts and associations between
them.

4. Create a list of all important concepts (at all detail levels) to be included.

5. Create the ontology concepts and their relationships with axioms in OWL
with an ontology editor. Carefully consider the meaning of using subsump-
tion relations, role restrictions, disjointness, etc. Repeat this step for any
newly added concepts. Check every new axiom to see if the ontology remains
consistent and is well-formed.

6. Instantiate the concepts with individuals.

UML can be used to make the ontology sketches in step 3 as UML supports
the characterisation of subsumption, aggregation and other associations between
concepts. UML’s Object Constraint Language (OCL) may be used for further
specification of concept constraints. However, the use of OCL may be overkill if
an informal UML model is given to information engineers for further elaboration
[11].

Ontology editors help the creator to apply the language constructors’ syntax
and semantics correctly. In the Protégé ontology editor (discussed in Section 8.2.1),
some common ontology design patterns have been build into the user-interface,
such as the creation of a covering axiom (see [118]) and the possibility to convert
primitive classes into defined classes and vice versa. Apart from the ontology
editors, dedicated tools exist for the verification of the correct syntax of the OWL
constructs used in the ontology and the determination of the OWL sub-language
(Lite, DL or Full), see for example the Wonderweb5 and BBN6 OWL validators.
In some cases it is possible to apply semi-automatic creation of ontologies from
information sources. This is known as ontology learning. Several approaches have
reported positive results, see for example [177, 243].

In this thesis the ‘Manchester House Style’ [118, 237] has been followed as
good practice for manual ontology creation. A brief summary of guidelines is
listed below (taken from [237]):

1. Always paraphrase a description or definition before encoding it in OWL,
and record the paraphrase in the comment area of the interface.

2. Make all primitives disjoint – which requires that primitives form trees.

3. Use the existential quantification (∃) as the default quantification in restric-
tions.

5http://phoebus.cs.man.ac.uk:9999/OWL/Validator
6http://owl.bbn.com/validator/
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4. Be careful to make classes defined - the default is primitive. The classi-
fier will place nothing under a primitive class (except in the presence of
axioms/domain/range constraints).

5. Remember the open world assumption (explained in Section 4.5.1). Insert
closure restrictions if that is what you mean.

6. Be careful with domain and range constraints. Check them carefully if clas-
sification does not work as expected.

7. Be careful about the use of ‘and’ and ‘or’ (intersectionOf, unionOf ).

8. To spot trivially satisfiable restrictions early, always have an existential quan-
tification (∃) corresponding to every universal quantification (∀), either in
the class or one of its superclasses (unless you specifically intend the class to
be trivially satisfiable).

9. Run the classifier frequently; spot errors (e.g., inconsistent classes) early.

4.4 Ontology representations and notation

The vast number of relationships that can exist in an ontology, even with a rela-
tively low number of classes, often poses problems of representation. A number of
research initiatives have provided visualisation methods to support the building
and communication of ontologies, see for example [5, 74]. In this thesis, ontologies
are represented in various ways:

• Concept hierarchies and role hierarchies are used to indicate multi-
ple subsumption relations. A concept or role hierarchy is represented with
indentations for subclasses. An isolated full colon demarcates a group of
classes that appears in the hierarchy but is not represented in the displayed
list:

GeographicFeature

Building

:

Country

CountryWithCoast

LandLockedCountry

Sea

• Description Logic statements (also called descriptions) are used to indi-
cate single subsumption relations, equivalence relations, conditions, etc.:

CountryWithCoast ≡ Country u ∃hasBorderWith.Sea (4.11)
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To avoid verbose pairs of existential quantifications and universal quantifi-
cations with similar elements, a new symbol is introduced in this thesis: ∃∀,
which is a conjunction of ∃ and ∀. Its semantics are follows:

∃∀R.C ⇐⇒ ∃R.C u ∀R.C (4.12)

For nested conditions, this yields:

∃∀R.(∃∀S.C) ⇐⇒ ∃R.(∃S.C u ∀S.C) u ∀R.(∃S.C u ∀S.C) (4.13)

• Ontology capture diagrams are frame-based diagrams, generated with
the Ontoviz software from the implemented OWL ontology (see also Sec-
tion 8.2.2). They are used to visualise instance relationships and multiple
roles, see an example in Figure 4.4.

LandLockedCountry

Country

isa

CountryWithCoast

isa

Germany

io

France

io

Belgium

io Luxembourg

io

hasBorderWith hasBorderWithhasBorderWith

Figure 4.4: An example of an ontology capture diagram. In this diagram, a class
is depicted as a box with black edges; An individual/instance is shown as a box
with red edges. A black arrow represents an ‘isa’ (a subsumption) relation be-
tween classes; A red ‘io’ (instance of) arrow represents an instantiation relation
between an individual and a class; A blue ‘hasBorderWith’ arrow is an example
of a property (or role, in DL terms).

• Venn diagrams are used to visualise the containment of ontology classes
with respect to their instances, see the example of Figure 4.5. This often
clarifies the effects of subclassing, disjointness, overlap, role restrictions, etc.
This way of visualising is also used in [118].

4.5 Reasoning with a knowledge base

A knowledge base can be seen as the set of axioms that represent an ontology.
Reasoning with the concepts in an ontology is in fact performed with these axioms,
based on logic-theoretical inferences.
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Country Sea

CountryWithCoast

hasBorderWith

Figure 4.5: Example of a Venn diagram representing classes (circles), individuals
(diamonds) and a property (arrow between individuals). Note: Individuals are
called instances if their class membership is being emphasised.

4.5.1 TBox and ABox reasoning

A knowledge representation system based on Description Logics contains explicit
knowledge, stored as a set of assertional axioms, and implicit knowledge, that
can be made explicit by means of reasoning [16]. Such explicit knowledge is repre-
sented by logical inferences. The process of calculating inferences for the TBox(es)
and ABox(es) of a knowledge base (as introduced in Section 4.2.1), is referred to
as respectively TBox reasoning and Abox reasoning. An important part of the
remainder of this section is based on [193] and [16].

TBox reasoning

Typical TBox inferences are defined below (literally from [16], page 62; the reader
is referred to Section 4.2.1 for a definition of interpretation I):

Let T be a TBox.

Satisfiability A concept C is satisfiable with respect to T if there exists a model
I of T such that CI is nonempty. In this case we say also that I is a model of C.

Subsumption A concept C is subsumed by a concept D with respect to T if
CI ⊆ DI for every model I of T . In this case we write C vT D or T |= C v D.

Equivalence Two concepts C and D are equivalent with respect to T if CI =
DI for every model I of T . In this case we write C ≡T D or T |= C ≡ D.

Disjointness Two concepts C and D are disjoint with respect to T if CI∩DI =
∅ for every model I of T .
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All of the above inferences can be reduced to either subsumption problems or unsat-
isfiability problems, which implies that reasoning mechanisms only have to check
for either subsumption or unsatisfiability of concepts. The following statements
provide the reduction to subsumption [16]:

C is unsatisfiable ⇔ C is subsumed by ⊥ (the bottom concept);
C and D are equivalent ⇔ C is subsumed by D and D is subsumed by C;
C and D are disjoint ⇔ (C uD) is subsumed by ⊥.

The following statements provide the reduction to unsatisfiability:

C is subsumed by D ⇔ (C u ¬D) is unsatisfiable;
C and D are equivalent ⇔ (C u ¬D) and (¬C uD) are unsatisfiable;
C and D are disjoint ⇔ (C uD) is unsatisfiable.

Reasoning mechanisms that check on subsumption should contain an intersection
operation and an unsatisfiable concept. Those that check on satisfiability should,
in addition, contain a negation operation. The latter group of reasoners make use
of so called tableau algorithms. These algorithms follow a procedure of generating
individuals and test their concept memberships. This is done by constructing a
tree structure with nodes, containing individuals, labelled with the concepts of
which they are assumed to be an instance [245]. In a process of breaking down
concepts and generating new nodes, a tableau algorithm applies transformation
rules to infer constraints and new tree nodes. If this process results in a so-called
completion without a contradiction, then the concept is satisfiable. Details on the
working of tableau algorithms are described in [16, 61, 122].

ABox reasoning

As described in Section 4.2.1, the ABox is filled with concept assertions and role
assertions, which respectively define concept membership (individuals as instances
of concepts) and role relationships between individuals. The basic task of ABox
reasoning is instance checking : checking whether individuals are instances of con-
cepts. Typical reasoning services that can be defined in terms of instance checking
are [193]:

• Checking the consistency of an ABox, i.e., whether every concept in the
knowledge base admits at least one individual.

• Realisation (finding the most specific concept of which an individual is an
instance).

• Retrieval (e.g., finding the individuals that are instances of a given concept).
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The consistency of an ABox is essential, because otherwise we could draw arbitrary
conclusions from it. An ABox A is considered consistent with respect to a TBox
T , if there is an interpretation that is a model of both A and T [16]. ABox
reasoning can be performed with the aforementioned tableau algorithms that have
been extended to ABoxes, see for example [122].

Open World Assumption

An important aspect of DL knowledge bases (and OWL ontologies) is that they are
based on the Open World Assumption (OWA), which has implications for the rea-
soning on them. OWA means that we cannot assume something doesnt exist until
it is explicitly stated that it does not exist [118]. This implies that the absence
of information in a knowledge base only indicates the lack of knowledge. In this
respect, instances of DL concepts are treated differently as instances of database
schemas [16]. A database instance is considered to represent one interpretation,
a DL instance as part of its ABox, represents all its models. The following ex-
ample clarifies that a DL reasoner uses this principle for computing its inferences.
Consider the definition of a landlocked country, based on expression 4.4:

LandLockedCountry ≡ Country u ∀hasBorderWith.(¬Sea), (4.14)

and a country totally consists of land and not sea:

Country v ¬Sea (4.15)

We fill the ABox with instances by means of the following concept assertions:

Country(Luxembourg)
Country(France)
Country(Belgium)
Country(Germany),

(4.16)

and role assertions that specify the border relationships for each country. In the
case of Luxembourg, this is materialised with the following role assertions:

hasBorderWith(Luxembourg,Belgium)
hasBorderWith(Luxembourg,France)
hasBorderWith(Luxembourg,Germany)

(4.17)

Under the Open World Assumption, a reasoner will not identify Luxembourg as
a landlocked country, unless we specify the number of boundaries a country has
(by means of a number restriction). Otherwise, the set of role assertions in 4.17 is
considered to be in an incomplete ABox.

In the same context, another issue has to be handled with care, i.e., whether
or not the reasoner applies the Unique Name Assumption. This issue is described
below.
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Unique Name Assumption

If a reasoner applies the Unique Name Assumption (UNA), it assumes that all
individuals are unique entities. In contrast, if a reasoner does not apply UNA,
then two individuals with different names (e.g., ‘Belgium’ and ‘Belgique’, but
also ‘Belgium’ and ‘France’) may be refer to the same individual, but they may
also refer to different individuals [118]. This holds unless we explicitly state that
whether they are the same or different. In the case of the landlocked country
example, we have to perform these declarations for every country, otherwise the
reasoner may infer that under certain axioms ‘Belgium’ and ‘France’ refer to the
same country.

Tools

Research in the field of the Semantic Web has provided several DL reasoners of
which currently KAON2, Cerebra, RacerPro and Pellet are the most commonly
known (for specific information on these reasoners, the reader is referred to [244].
The reasoners basically differentiate in the DL they support (i.e., the supported ex-
pressiveness), whether they support OWL, their internal algorithms and whether
they support TBox and/or ABox reasoning. A list of current reasoners is main-
tained at [244]. A comparison of reasoners has been carried out in [150], which
also reports on the lack of support of nominals in current reasoners. Obviously,
the performance of reasoners is an issue for large ontologies. It has to be noted
that although OWL-DL is decidable, it is still difficult to reason with [121].

This research has opted for the RacerPro reasoner, due to its extensive support
of both TBox and ABox reasoning and its OWL support and compatibility with
the Protégé ontology editor. RacerPro implements the aforementioned tableau
algorithms. It applies the Open World Assumption and by default it does not
apply the Unique Name Assumption. More details on RacerPro can be found in
Section 8.2.6.

4.5.2 Application of reasoning: matchmaking

Reasoning with a knowledge base is basically used for building and maintaining
the knowledge base and for obtaining information from it [193]. More specifi-
cally, the information retrieval that is supported by reasoning services can be used
(amongst others) to get answers to specified queries on the knowledge base. Some-
times such queries are called semantic queries, in order to distinguish them from
database queries. The term matching or matchmaking is used in case knowledge
structures are matched and/or partial matches are taken into account, or if queries
are used for the (partial) matching of entities (e.g., documents, services, etc.) in
a consumer-provider paradigm. Partial matching is a useful asset for environ-
ments in which (1) the searched items are composites (e.g., services) and/or (2)
the searched items do not expose detailed meta-information and/or (3) the users
are not likely to specify queries precisely (e.g., due to their unfamiliarity with the
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domain). Partial matching is a common way to increase the recall of search results
(the proportion of relevant documents retrieved), see also [28]. Moormann Zarem-
ski and Wing [189] emphasise that for example in software component matching
it is rarely the case that we aim for an exact match between components, but
rather a close one, and so, sacrificing precision (the proportion of retrieved doc-
uments which are relevant) for recall. Initial precise queries may also be relaxed
for this reason. Obviously, on the other hand one would not want to loose too
much on precision. Well-defined semantics of the model that underlies the infor-
mation sources is an essential key to maintaining precision. Such a semantic model
may be a domain ontology as part of a semantic interoperability framework (see
Section 4.6). A common matching strategy as reported in [168] considers exact
matches, disjoints and partial matches. Some approaches (for example [37, 241])
go further by defining semantic similarity of domain entity classes through quan-
titative identifiers. Recent research in information retrieval has embarked upon
the development of specific ontology query languages. Examples are OWL-QL [73]
and nRQL (see Section 8.2.6).

4.6 Semantic interoperability frameworks

Ontologies do not come as a single solution to a demand for information integra-
tion. They are typically embedded in a framework and an infrastructure. The
definitions below are adaptations of the notions of framework and infrastructure
which are used in [257] to characterise a specific information sharing approach. In
this thesis, they are defined as follows:

Term 4.3 A semantic interoperability framework is the combination of ontolo-
gies, their relationships, and methods for ontology-based description of information
sources (services, data sets, etc.). The framework serves the semantic interoper-
ability between information sources.

A semantic infrastructure is defined as follows:

Term 4.4 A semantic infrastructure comprises a semantic interoperability frame-
work and the tools to maintain and use the framework as well as the (meta-
)information sources that are produced with these tools.

The application domain of the ontologies determines the application domain of
the framework and infrastructure in which they are used. Examples of application
domains for which semantic infrastructures are currently being built are document
management, multimedia applications, medical and bio-informatics applications
and human networks. Illustrative demonstration examples can be found in the
yearly organised Semantic Web challenge 7.

Important aspects of building, maintaining and using a semantic infrastructure
are:

7http://challenge.semanticweb.org/
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1. Ontology creation and access

2. Ontology integration

3. Ontology-based description of information sources (annotation)

4. Reasoning-based information retrieval

5. Creation and use of ontology meta-information (information about ontolo-
gies)

Aspects 1 and 4 have been discussed in respectively Sections 4.3 and 4.5. The
remaining aspects are covered in the remainder of this section.

4.6.1 Ontology integration

The process of combining information resources in a semantic interoperability
framework is not trivial. It requires the careful evaluation of the effects on the
interpretation of the combined content.

An ontology is typically built with a specific scope that suits an application
domain. When it is used for information source integration, it plays the role of
global ontology, representing the shared vocabulary of these sources [257]. Once the
use of ontology-based information systems requires processing across application
domains, ontologies are subject to integration. Stuckenschmidt and van Harmelen
[257] identify two possible ways to use integrated ontologies as alternatives to the
single ontology approach:

• In a multiple local ontologies approach, each information source is described
by its ‘own’ ontology. Information integration is established by creating
relationships between each pair of ontologies.

• The hybrid approach uses multiple ontologies as well, but in addition, it uses
a global ontology with primitive concepts of the shared domain, in which the
other concepts can be expressed.

In the Semantic Web, mutually inconsistent ontologies will be very common
[45] and ontology integration has therefore recently received much attention in
semantics research of which prominent examples can be found in [140]. Ontology
mapping is key to many approaches. It is defined as follows (adapted from [140]):

Term 4.5 Ontology mapping is the task of relating the vocabulary of two ontolo-
gies that share the same domain of discourse in such a way that the mathematical
structure of ontological elements (classes and their relationships) and their in-
tended interpretations, as specified by the ontological axioms, are respected.

Ontology mappings are used in two different forms of ontology integration, i.e.,
alignment and merging. Ontology merging is aimed at the creation of a single
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coherent ontology based on the source ontologies. Ontology alignment involves
making the source ontologies consistent and coherent, while leaving them sepa-
rated [199]. Prior to mapping, the process of alignment and merging involves the
determination of:

• corresponding concepts among the source ontologies

• the set of overlapping concepts that are similar in meaning but have different
names or structure

• concepts that are unique to each of the sources

A major challenge lies in the identification of suitable mappings that model
these ontology relationships. Although it is expected that ontology mapping will
not be fully automated for quite some years [57], recent research efforts have come
up with successful semi-automatic methods [197]. We can distinguish three types
of approaches, i.e., the use of lexical correspondences, the use of corresponding on-
tological structures (see for example [114]) and the evaluation of instance-pairs (an
instance-pair is a pair between a class member in one ontology and a (semantically)
corresponding class member in another ontology). The latter has been exploited
by using formal concept analysis (FCA) in [239] and [258]. Instance-pairs may be
drawn from user communities. In semi-automatic methods, a common approach
is that an information engineer and a computer program iteratively suggest map-
pings.

Actual mappings may be created by introducing new concepts, stored in the
source ontologies (‘intra storage’) or by means of an intermediate ontology (‘extra
storage’). Note that both intra and extra storage may serve both the above men-
tioned multiple local ontologies approach and hybrid approach. Currently, three
groups of methods can be distinguished for the representation of mappings [197]:

• With bridging axioms, relationships are created between concepts and roles
of the source ontologies. These relationships can be expressed by simple
equivalence and subsumption relations, but can also involve role restrictions
in more complicated bridges [62]. Examples of bridging axioms can be found
in [196] and Chapters 5 and 6, e.g., Description 5.1.

• Instances (class members) are used to bridge classes between ontologies.
Each instance in the source ontology is translated into the most similar
instance in the target ontology [176].

• Mappings are expressed in first order logic with a query mechanism that is
more expressive than current DL [45].

4.6.2 Ontology classification

The paradigm of using global and local ontologies (see Section 4.6.1) forms the
design principle for so called upper ontologies, or also referred to as top-level or
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foundation ontologies. They provide primitive concepts at a general level, spanning
multiple application domains. Prominent examples are Wordnet8 [71] , SUMO9

[194], Cyc10 [166] and DOLCE11 [182]. In contrast to upper ontologies, domain
ontologies or also called lower ontologies have a narrower scope and provide more
specific concepts. They may be built upon upper ontologies. Obviously, the no-
tions of foundation and domain ontology are relative ones. One domain ontology
may be the foundation for another ontology that contains more specific concepts.
In addition, the generality difference between a foundation and domain ontology
may vary from one framework to the other.

In addition to the above kinds of ontologies, a number of researchers [105, 265,
270] distinguish task ontologies and application ontologies. Task ontologies provide
concepts about generic tasks and methods, which may apply to several domains.
In such an ontology one may for example define a shortest path calculation that
can be used in any kind of network structure. Similarly to domain ontologies,
concepts in an a task ontology may specify certain concepts of an upper ontology.

Application ontologies are associated with a specific application (typically a
software application) and draw upon the concepts of domain and/or task ontolo-
gies, and may directly or indirectly specify concepts of an upper ontology. For
example in a railway application ontology, the concept ‘shortest route’ may be
defined as the railway route between two train stations with a calculated shortest
distance.

4.6.3 Semantic annotation and markup

Information resources are considered to be the ‘carriers’ of information in the
infrastructure and may involve documents and services. The relationship between
information resources and ontologies is made through a process called annotation.
It can be seen as the creation of meta-information, using ontologies as reference
frameworks. The term annotation can refer to both the process itself and the result
of it (the relationships)12. More specifically, an annotation holds a link between
a characteristic of an information source (e.g., an HTML or XML tag value, an
object in an image, an entire image, etc.) and an ontology element (e.g., a class,
class property, etc). The characteristic of the information source can involve an
element of the actual information source or an element of a meta-information
source. The annotation can be ‘stored’ in three ways:

1. If the information source (or meta-information source) is encoded with an
anchor that links to the annotation or with an ontology reference, we speak
of semantic markup (cf. [271]).

8http://wordnet.princeton.edu/
9http://www.ontologyportal.org/

10http://www.cyc.com/cyc/
11http://www.loa-cnr.it/DOLCE.html
12From a different viewpoint (i.e., towards the ontology) they are also referred to as respectively

registration and registration mappings, see [38]
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2. If an annotation is stored in the ontology, it will in this thesis be referred to
as registration (cf. [38]).

3. If an annotation is stored in a third source, separate from, but holding iden-
tifiers for ontology and information source, it will in this thesis be referred
to as a registration mapping following the same notion as in [38] and which
has been applied in [173].

Depending on the ‘extend’ of the metadata, we speak of a certain certain level
of annotation. For example, for HTML sources, such level may reach from scraping
the presentation (the actual web page) to exposing the structure and context of
the database or information structure that formed the basis for creating the web
page. The inclusion of structure and context is referred to as deep annotation
[110].

In some cases, the ontology that we would like to act as a reference framework,
does not have suitable elements to bind annotations to. In such cases an anno-
tation template ontology is used as intermediate between reference ontology and
information sources (see an example in [117]).

Several annotation methods have been proposed in tools that annotate HTML
files (e.g. SMORE [141], iAnnotate [221] ) and Web Services (e.g. WSDL-S, see
Section 4.7). Currently there is no standard for semantic annotation.

4.6.4 Ontology meta-information

In a setting where multiple ontologies are used, whether or not related in a frame-
work, software agents and human users may require to analyse the characteristics of
an ontology first, before using it for annotation, querying, etc. This can be done by
abstracting the ontology content through creating ontology meta-information and
abstract representations, including visualisations (for the latter, see Section 4.4).

Ontology meta-information can be used in registries for discovery purposes.
The research efforts in this relatively new field are showing resemblance with
the meta-information and registry mechanisms for information sources (see for
instance RM-ODP in Section 2.4.2). An example of a registry for ontologies is
SchemaWeb13 and a semantic search engine called Swoogle14 is currently under
development by the University of Maryland. An ontology meta-information stan-
dard has been proposed in [112].

4.7 Semantic web services

On the crossroads of Semantic Web and web service applications we find ap-
proaches that make use of explicitly stated semantics of web service characteristics.
In such approaches, the so-called Semantic Web services (SWSs) are considered to

13http://www.schemaweb.info/
14http://swoogle.umbc.edu/
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be semantically enriched and support semi-automatic discovery, composition and
execution. Currently, four prominent SWS approaches are OWL-Services (OWL-
S) [181], Semantic Web Services Framework (WSMF) [285], internet Reasoning
Service (IRS) [191] and Meteor-S [223]. OWL-S and WSMF (and its ontology
WSMO) are current submissions under the World Wide Web Consortium Seman-
tic Web Services Interest Group [283].

OWL-S, WSMF and IIRS have been compared by Cabral et al. [44]. An
important conclusion of this paper is that the approaches are far from mature and
that end-user applications based on them, still need a human in the loop. OWL-
S and the WSMF ontology (WSMO) have been compared by Lara et al. [155].
They state that generally, OWL-S covers a wide range of applications and WSMO
is more focussed on e-commerce applications. For solving heterogeneity problems,
WSMO uses mediators, which are special services defined for that purpose.

In this research, OWL-S has been selected as starting point. Although the
actual processes, described with the OWL-S model can become rather complex,
the model itself has a clearly defined structure. It is embedded in OWL and it
is thus well rooted in the well-established theoretical foundation of Description
Logics. Further, OWL-S is generally considered to be more adaptive than the
other approaches and implementation independent because it does not prescribe
to use specific services. Finally, at the time of implementing the prototype, OWL-
S was the most mature of the SWS approaches and was offering the necessary and
sufficient constructs for modelling the characteristics of geo-services as targeted in
this thesis.

Service matchmaking The application of matchmaking (see Section 4.5.2) to
Semantic Web services has been subject to several research initiatives. Some
approaches take into account the task that services perform, by using service
profiles [168], others by additionally applying a task hierarchy [18, 46, 262] and/or
by analysing the service’s internal workflow [8, 235].

4.7.1 OWL-S

OWL-Services [181], or OWL-S in short, is an upper-ontology based on OWL
that models the characteristics of Web services and which can be used to create
semantically enriched Web Service descriptions.

OWL-S provides three modelling constructs at the top level, i.e., the service
profile (what the service does), the service grounding (how the service can be
accessed) and the service model (how to use the service in terms of semantic con-
tent, including its workflow). These three basic models are depicted in Figure 4.6.
OWL-S provides classes that can be instantiated by a service provider to create
specific service descriptions. This implies that such descriptions are expressed
as OWL individuals in all three OWL-S sub-ontologies. Because OWL-S is an
upper-ontology, it obviously does not provide domain ontologies. These have to
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Service
ServiceProfile

Service

presents

ServiceGrounding

ServiceModel
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describedBy

Figure 4.6: UML class diagram showing the overall service model of OWL-S (taken
from [181]).

be established by service communities themselves. The remainder of this subsec-
tion concentrates on the process model, because it is used as process model in
Chapters 5 through 8.

The process model of OWL-S (and its implementation in machine ontology) is
based on principles that have been developed in previous work on process mod-
elling, amongst others pi calculus, PSL and Golog [181] (see also Sections 3.2.1 and
3.2.2) . Figure 4.7 shows the basic structure of the OWL-S process ontology. Note
that the service model class appears in both Figures 4.6 and 4.7. A participant in
OWL-S is a client or a server. OWL-S supports the paradigm of IOPE parameters
(Input, Output, Precondition and Effect). For preconditions and effects it uses
local parameters and expressions, which can be declared in a specific language,
such as SWRL (Semantic Web Rule Language).

A process can be one of three types, i.e., atomic, simple or composite. An
atomic process is defined in [181] as a description of a service that expects one (pos-
sibly complex) message and returns one (possibly complex) message in response.
Atomic processes are directly invocable, they have no subprocesses and execute in
a single step, as far as the service requester is concerned. Composite processes
can be decomposed into other composite or non-composite processes. A simple
process is an abstraction of an atomic or a composite process.

The way in which a composite process is constructed, is depicted in the middle
part of Figure 4.7. A control construct can be any of nine control flow types.
These types can be directly related to the workflow patterns defined in [1]. A
composite process is constructed in the form of a tree with branches following
either ‘first’ or ‘rest’. The ‘Perform’ construct is used to instantiate the branches
(i.e., all branches and leaves are expressed as OWL individuals). An example of
such a tree is discussed in Section 6.2 and depicted in Figure 6.6.

Shorthand notation

For the sake of an effective human communication one needs to represent the
control flow of an OWL-S composite service in a comprehensive way. The OWL
encoding itself is quite verbose and therefor not very suitable. Better options are
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Figure 4.7: UML class diagram showing the process model of OWL-S (adapted
from [181] and [19]).
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to (1) visualise the control flow in a graph or (2) use a shorthand notation of the
most important control flow elements. The current version of OWL-S (1.1) does
not provide such a shorthand notation. This thesis proposes an XML style notation
similar to the one used in [289] for the representation of WSBPEL control flow .
The example below denotes a process sequence that first performs Service1 of type
ServiceTypeA and then performs Service2 of type ServiceTypeB and Service3 of
type ServiceTypeC in parallel:

<Sequence>
Service1 : ServiceTypeA
<SplitAndJoin>

Service2 : ServiceTypeB
Service3 : ServiceTypeC

</SplitAndJoin>
</Sequence>

This notation uses the control constructs (sequence, split, etc.) from OWL-S, but
because these (or semantically equivalent) constructs are commonly used in other
contexts, its application is not necessarily restricted to OWL-S.

4.7.2 Semantic annotation of web services: WSDL-S

Semantic annotation is used for linking an information source to an element in an
ontology (see Section 4.6.3). Semantic annotation of web services will support web
service discovery and composition. A standard for the annotation of web services
has been proposed by Akkiraju et al. [4] and has been submitted to the World Wide
Web Consortium Semantic Web Services Interest Group [283]. WSDL-S specifies
the placement within the WSDL file of specific tags with prefix ‘wssem:’, referring
to the namespace http://www.ibm.com/xmlns/WebServices/WSSemantics. The
following tagging example specifies that one of the output parameters of the service
at hand is a (geographic) point:

<wsdl:message name="getCoordinatesResponse">
<wsdl:part name="output" element="xsd1:ResponseType"
wssem:modelReference="Ontology0#OP_Point"/>

</wsdl:message>

The definition of ‘Point’ is given in ‘Ontology0’, which is defined in the same
WSDL file as follows:

xmlns:Ontology0="http://geoserver.itc.nl/lemmens/owl/ontogeo.owl"

This annotation example is further elaborated upon in Section 5.6.2.
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4.8 Geo-semantic modelling and spatial relevance

We should ask ourselves whether the semantic modelling of geo-services is es-
sentially different from semantic modelling in general. Section 1.1 has already
provided some introductory background on this issue. The essential question is
whether the information retrieval process has a spatial relevance, as pointed out
by [257]. In fact, it has with respect to several aspects. Although the research
work of this thesis does not embark upon spatial reasoning, the most prominent
aspects and consequences for semantic modelling are highlighted below.

• Geo-information is meant to exhibit spatial relationships between features.
These relationships are used for spatial analysis in GIS by computations on
topology and metrics of geometries. Currently, ontology languages such as
OWL do not contain specific constructs that model spatial relationships. As
a workaround, common practice is to specify roles with a spatial connotation,
such as ’Touch’, ’Overlap’ and ’North’. Examples can be found in [13, 280].
Another alternative is to outsource the spatial analysis to conventional com-
putational solutions.

• Geo-information is multi-dimensional. The integrated spatio-temporal and
thematic aspects of geo-information contribute to its importance in a wide
variety of application domains. At the same time, the interrelation of as-
pects introduces complexity of reasoning over multiple aspects when geo-
information is involved. Geo-services make use of operations that may act
on all dimensions of geo-information. For a proper understanding of the func-
tionality of those operations, it is important to identify these dimensions in
an operation.

• Geo-information is characterised by multiple-representations. Typical for
geographic information (and geo-services) is that it is very common for a
geographic phenomenon to take many different feature representations in
multiple or even a single geodata set. Representations may differ in terms
of spatial, temporal and thematic attributes. Such attributes may vary
also along different levels of generalisation and aggregation (as explained
in Section 3.1). Reasoning about geo-services has to take into account these
aspects, specifically with respect to the meaning of its input and output
parameters.

• Geo-services often depend on tightly-coupled geodata. Tightly-coupled data
(defined in Term 2.8 , Section 2.1.1) determines the validity area of a service
and may contain (part of) the semantics of the service’s input and output
parameters.

The above aspects have been taken into account in the implementation of the
proposed semantic interoperability framework described in Chapter 5 and deter-



100 4. Semantic modelling

mine the essence of the reasoning about geo-information and services as deployed
in Chapter 6 and 7.

4.9 Summary and reflection

This chapter has provided an overview of semantic modelling paradigms, mainly
as a result of recent developments in the Semantic Web. Semantic modelling
in this field centres around the creation and reasoning with machine ontologies,
represented in OWL. Aspects have been highlighted that are considered to be
important for building a semantic interoperability framework for geo-services in
the context of the use cases, described in Section 2.6. Several of these aspects are
rather domain-generic than geo-specific, such as ontology creation and reasoning.
The geo-specific aspects involve the handling of spatial relationships, multiple-
dimensions, multiple-representation of geo-information and the geodata that may
be tightly-coupled to a geo-service. More geo-specific implementation issues will
become apparent in Chapter 5.



Chapter 5

Semantic interoperability
framework for geo-services

This chapter describes the basic elements of a semantic interoperability framework
for geo-services, based on the principles of semantic interoperability frameworks,
discussed in Section 4.6. It describes the framework of formal ontologies and the
way they support the characterisation of geo-information and geo-operations for
the purpose of machine reasoning. The formal semantics of information and op-
eration concepts is expressed in Description Logic axioms and implemented as
machine ontologies in OWL. Section 5.1 introduces the basic parts of the frame-
work. The ontological implementation of the framework is described in Sections 5.2
through 5.5. Section 5.2 presents feature symbols as the basic constructs for de-
scribing geographic features. Section 5.3 provides examples of geographic domain
ontologies that make use of feature symbols. Section 5.5 presents an ontology for
geo-operations. Section 5.6 elaborates upon the creation of service descriptions,
based on the presented ontologies.

5.1 Semantic framework overview

This section gives an overview of the semantic framework and its ontologies that
we apply for the modelling of geo-information and geo-operations as contained in
geo-services.

The ontology design follows the principles as discussed in Section 4.3. The
scope of the ontology framework covers both geo-information and geo-services.
For demonstration purposes, four sub domains have a more specific scope. They
comprise respectively the Dutch generic geo-information domain (NEN3610), the
Dutch topographic mapping domain (TOP10NL), a risk mapping domain and a
travel domain.

The ontology framework will be used for geo-service discovery and service
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chaining, as discussed in Chapter 6, by means of ontology queries. Typical queries
that will be posed to this ontology framework are:

• Find all operations that match a set of input and/or output parameter types.

• Find all operations that fit an existing service chain with respect to their
input and/or output parameter types.

• Find all operations that are composed of operations that instantiate a given
set of operation types.

• Find all information/service concepts that are sub- or superclasses of a given
concept.

• Find all data sets that contain a specific feature type (e.g., Building).

UML is used for sketching an overview of each ontology. OCL is not used,
because concept constraints can be directly entered in the ontology without the
need for an intermediate documentation step. This would have made sense if the
design and implementation of the ontologies were separated, but in our case they
are not.

The proposed framework is depicted in Figure 5.1. It contains basic artefact
types such as data and operations, as defined in Chapters 2 and 3, and will be
elaborated upon in the sections below. Section 5.1.1 gives an overview of the
information model and operation model used. Section 5.1.2 introduces the ontolo-
gies that implement the framework elements. Details of the information models,
operation models and ontologies are discussed in Sections 5.2 through 5.5.

5.1.1 Information and operation model

Figure 5.1 depicts how feature types (e.g. Building, River) are described together
with the operations that act on them. The figure contains classes, indicated with
shaded boxes and instances (or ‘objects’), indicated with open boxes. The figure
is divided into two vertical parts, i.e., one that contains information elements and
one that contains operation elements.

Information part In line with the ideas of OGC and ISO, in this model we
consider the fundamental unit of geographic information to be a feature. A feature
is defined in ISO 19101 (Reference) [128] as follows:

Term 5.1 A feature is an abstraction of real world phenomena.

The definition intentionally uses the term phenomena in plural form. The fact
that features may be defined recursively, causes them to exist on different levels
of generalisation and aggregation [203]. Examples of features are: a road, the
connection between two roads, a satellite image, etc.
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Figure 5.1: UML class diagram, depicting an overview of the proposed semantic
interoperability framework for geo-information and geo-operations. Shaded boxes
represent classes, open boxes represent instances. Boxes with a dashed line contain
an example class.
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The information part is divided in three horizontal levels, which represent a
meta-level, an application level and a data level, according to the architecture
layers, used in the Conceptual Schema Modelling Facility of the ISO 19101 stan-
dard (Reference) [128]. The meta-level contains classes of the ISO General Feature
Model (GFM) as described in ISO 19109 (GFM) [131]. These are metaclasses that
are used for the classification of features (abstractions of real world phenomena)
and the specification of their relationships. The GFM makes use of the meta-
class ‘GF FeatureType’ and metaclasses for feature properties (feature attributes,
feature behaviour and associations between features).

At the application level, an instance of the class GF FeatureType is a specific
feature type that represents a class of real world phenomena, e.g., Building. At
this level, a feature is given specific attributes, such as Point as instantiation of a
spatial attribute type.

At the data level, we find instances of feature types such as Louvre and My-
Building.

Metaclasses In a system with metaclasses, such as the one presented here, a
class can also be seen as an object [58]. However, currently, Description Logics
does not provide a facility to treat classes as objects [34]. As a workaround, a so-
called meta-individual can be created, which is related to the class by, for example,
naming convention. Figure 5.1 shows the meta individual BuildingType and its
associated class ‘Building’ as two attached boxes. The combination of these two
boxes is also called a two-facetted construct, containing a class facet and an object
facet [58, 224]. The relation between class (e.g., GeometricObject) and meta-
class (SpatialAttributeType) can be made explicit by means of a materialisation
abstraction pattern as presented in [224, 225].

Operation part The operations part of Figure 5.1 is divided in an operation
type level, an operation instance level and an invocation level. Operation types
are part of an operation type hierarchy and their input and output parameter
types are the metaclasses, defined in the information meta-level. More specific op-
eration definitions require the definition of operation parameters also in terms of
classes such as ‘Point’. However, associations between parameter types and classes
at the information application level would not be proper, i.e., this would imply
that MyPoint (which is an actual point with coordinates) would be an instance of
ParType. For this reason, the class structures at the information application level
are copied to the operation part. Their elements are labelled with an ‘OP’ prefix.
The typeBijection relationship is introduced as a bridge between the information
meta-level classes and these ‘OP’ classes. This bridge can be seen as a materialisa-
tion between a class (e.g., OP Point) and a metaclass (GF SpatialAttributeType)
in which the class has only one instance (PointTypeRepresentative). In this way,
a specific operation instance (myOperation) can be associated to an individual-
representative of a parameter type.
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5.1.2 Framework ontologies

At the basis of the framework, there are three types of formal ontologies: feature
concept, feature symbol and geo-operation ontology. They are briefly introduced
below. Specific elements of the three ontologies are discussed in more detail in
Sections 5.2 through 5.5.

• A feature concept ontology formally defines the conceptualisations of real-
world phenomena and the relationships between them. This is done at the
formal concept world, as shown in Figure 3.1. Examples of elements in the
feature concept ontology are Building and ConstructionMaterial. The ele-
ments of a feature concept ontology make part of an application schema (the
conceptual schema for data required by one or more applications [128]). An
element in the feature concept ontology is defined by the relationships with
other elements in the feature concept ontology (for example, Building is a
subclass of Construction) and by the relationships with elements contained
in the feature symbol ontology (for example, ‘Building’ is represented in a
particular application schema by a Point. The latter relationship is indicated
in Figure 5.1 by hasGeometry for the specific example of ‘Building’. Gener-
ally speaking, the feature concept ontology ‘uses’ the classes of the feature
symbol ontology for its definitions.

• A feature symbol ontology formally defines the elements that make up a fea-
ture at the symbol world level and the relationships between them. The term
‘symbol’ does not necessarily refer to a visual symbol, but rather to a seman-
tic symbol, cf. Figure 3.1. Examples of these elements are GF FeatureType
(at the meta-level) and ‘Point’ and ‘Enumeration’ (at the application level).
A feature symbol ontology may also contain instances at the data level. For
example, an instance of the class Point is an actual point with coordinates.

• A geo-operation ontology formally defines types of operations in terms of
their behaviour. Each type is characterised by the behaviour of one out
of a set of well-known atomic GIS operations and their typical input and
output parameters. The input and output parameter types are described by
referring to elements from the feature symbol ontology. For example, these
elements may indicate that a service needs thematic attributes to function
properly (and, for example, does not need spatial attributes). Further, for
composite operations, the ontology contains control flow elements, such as
Sequence and Choice.

Each of the above ontology types may be materialised by a specific ontology or
a combination of ontologies. A specific feature symbol ontology may reflect how
a specific set of services of a software manufacturer handles its geographic feature
representations. Another feature symbol ontology may implement standardised
geographic feature representations, such as defined in ISO or OGC specifications.
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Similarly, geo-operation ontologies may be manufacturer-dependent (proprietary)
or contain standardised elements. With respect to feature concept ontologies, we
do not differentiate between proprietary and standardised ones, but rather be-
tween generic ontologies and domain-specific ones. The application domain that a
semantic framework has to serve, requires the feature concept ontology to include
a particular scope. For example, a semantic framework that serves the travelling
domain requires a feature concept ontology that defines travelling concepts. A
feature concept ontology is typically built by experts within information commu-
nities and tends to have a limited scope. An information community is defined in
[207] as follows:

Term 5.2 An information community is a collection of people (a government
agency or group of agencies, a profession, a group of researchers in the same
discipline, corporate partners cooperating on a project, etc.) who, at least part of
the time, share a common digital geographic information language and common
spatial feature definitions.

The integration of ontologies can be a substantial effort in building the semantic
framework. In this thesis, different feature concept ontologies and geo-operation
ontologies are used to demonstrate such integration. These ontologies make use of
the elements of one generally applicable symbol feature ontology, which is based
on the ISO 19100 series of standards.

In terms of the ontology classification provided in Section 4.6.2, a feature con-
cept ontology and a feature symbol ontology are both considered to be domain
ontologies. A geo-operation ontology falls under the category of task ontologies.
Application ontologies are not part of the interoperability framework described in
this chapter. They are considered to contain the specific concepts that describe
the data and services in the use case applications in Chapter 7. The relationships
between the different types of ontologies is addressed in Section 8.1.2.

Each ontology has been implemented with an individual namespace, such as
http://geoserver.itc.nl/lemmens/owl/symbol.owl, and its concepts appear, once
imported in another ontology, with a corresponding prefix, such as symbol:. For
the sake of carrying out experiments in the prototype (described in Chapter 8), all
ontologies are integrated in one ‘super’-ontology, called OnToGeo. However, apart
from their interrelationships, they may be considered as individual ones in terms
of design, storage and maintenance. This is the reason that they will be treated
individually here. A detailed description of the concepts within each ontology is
given in Sections 5.2 through 5.5.

5.1.3 Relations with ISO specifications

The framework, introduced in Sections 5.1.1 and 5.1.2, is based on a number of ISO
standards for geo-information. They are briefly introduced here, and discussed in
more detail in the remainder of this chapter. The ISO 19131 standard for data
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product specifications [137] provides guidelines for creating data product speci-
fications (such as those of national mapping agencies) in terms of other existing
ISO specifications. Application schemas and feature catalogues are given a central
role in representing the content of data. An application schema defines the data
structure and the data content in accordance with ISO standard 19109 (GFM)
[131]. The application schema implements a feature catalogue, which provides the
semantics of feature types, their attributes, attribute values, feature behaviour and
relationships between features. Specifications for creating a feature catalogue are
described in ISO standard 19110 (Catalog) [133]. Both the ISO models for appli-
cation schema and feature catalogue draw upon the rules given in the ISO General
Feature Model (described in ISO 19109 [131]). The new Dutch geo-information
model NEN3610 (version 2) is following the above ISO standards. Apart for ap-
plication schema and feature catalogue, the ISO 19131 (Product) further specifies
the inclusion of other elements such as data delivery parameters and data quality
parameters.

A feature symbol ontology as introduced in Section 5.1.2 can be considered as
a representation of a feature model. In this thesis, it implements the ISO General
Feature Model. A feature concept ontology represents a feature catalogue. This
may be a feature catalogue conforming to the ISO 19110 (Catalog) standard. The
ISO 19119 (Services) standard is relevant with respect to operation metadata and
operation type classification.

5.2 Feature symbol ontology

For the purpose of this thesis, a feature symbol ontology is developed in OWL.
In the remaining text it will be denoted as SYMBOL. To support the integration
mechanism depicted in Figure 5.1, this formal ontology was designed with two
design criteria in mind:

• To serve as upper ontology for feature concept ontologies, allowing classes of
the latter to use feature symbol concepts.

• To support the description of input and output parameters of geo-operations
(as defined in operation ontology OPERA). Copies of the classes in SYMBOL
appear as ‘OP’ classes in OPERA.

SYMBOL is based on ISO standards, in particular on the ISO 19109 (GFM)
standard. The conceptual models that form the basis for the ontology are depicted
as UML diagrams in Figures 5.2 through 5.4. SYMBOL deviates from ISO 19109
(GFM) and related standards, in the following aspects:

• Some simplifications were introduced to reduce the overall complexity of the
model. For example, the model in this thesis follows the simple feature model
of ISO 19125 (SFeature). It does not implement the topological model as
described in ISO 19107 (Spatial)—it only refers to topological objects as



108 5. Semantic interoperability framework for geo-services

‘black box’ entities— nor does it include 3D objects. Another limitation
is put on coverages. The model only includes Quadrilateral grid coverages
(also known as raster images) as specified in ISO 19123 (Coverage).

• Some additions to ISO 19109 (GFM) were thought useful, such as an iden-
tification of different subclasses of association roles (relationships between
feature classes).

By convention, classes in ISO standards are denoted with bialphabetic prefixes.
ISO 19109 (GFM) uses GF (General Feature Model) for most of its classes. Some
classes in 19109 (GFM) stem from other standards, such as GM Object (denoting
geometry model, ISO 19107 (Spatial)) and SC CoordinateReferenceSystem (from
ISO 19111 (RefCoord)). The following classes, appearing in Figures 5.2 through 5.4,
do not have ISO prefixes. They have been assigned prefixes specific to this thesis:

• Prefix ‘SF ’ for classes of the Simple Feature Model (ISO 19125),

• Prefix ‘SY ’ (Symbol) for classes that are additions to the ISO model in the
context of this thesis work.

The following sections describe the feature model with help of UML class diagrams.

5.2.1 Feature overview

The basis of this model is formed by the feature concept. In the ISO General
Feature Model, the term ‘Feature’ is used to denote ‘GF FeatureType’ at the
meta-level, or a specific feature type at the application level or an instance of
a feature type at the data level. In the ISO model, a feature is not necessarily
associated with a spatial object or field. A person is also considered an example
of a feature. A feature type has three kinds of properties (see Figure 5.2), i.e.,
attributes, behaviour (possible operations that can act upon the feature type)
and associations with other feature types. In the feature symbol ontology these
properties are implemented with the following role hierarchy:

hasProperty
hasAttributeType
hasFeatureBehaviour
hasAssociationRole

with domain and range defined for each role. For example, the domain of hasAt-
tributeType is the class GF FeatureType and its range is GF AttributeType.

Spatial associations and topology The class GF AssociationType is a meta-
class of which the instances themselves are associations. An example of an associ-
ation is ‘Road touches Crossing’, which is a spatial (or more specifically, a topolog-
ical) association between two feature types. GF SpatialAssociationType, as sub-
class of GF AssociationType has a role, represented by the class GF Association-
Role. In the example above, the association can be instantiated by the link



5.2. Feature symbol ontology 109

GF_AttributeType

GF_FeatureType

GF_PropertyType

SY_FeatureBehaviour

GF_AssociationRole

GF_TemporalAttributeType

GF_SpatialAttributeType

GF_LocationAttributeType

GF_ThematicAttributeType
GF_AssociationType

GF_AggregationType

GF_SpatialAssociationType

GF_TemporalAssociationType

All ISO 19109 unless indicated 
otherwise

Feature model Version 0.3

2005 Rob Lemmens (ITC)

GF_InheritanceRelation

same as 
GF_Operation

SY_MetricAssociationRole

SY_TopologicalAssociationRole

GF_MetadataAttributeType

0..*0..1
attributeOfAttribute

1

0..*

generalisation

1

0..*

specialisation

GF_Constraint

0..*

isConstrainedBy

0..*
isConstrainedBy

0..*

1..*

participatesIn

0..*

0..*

observes/affectsValuesOf

SY_ThematicAssociationType

SYMBOL – meta-level

Figure 5.2: UML class diagram showing the overview structure of the feature
symbol ontology (SYMBOL), based on the ISO general feature model (ISO 19109).

‘FourthAvenue touches UnionSquare’. In the General Feature Model, spatial asso-
ciations between feature types can be realised explicitly by such association types,
but also implicitly by means of topological primitives of their geometric repre-
sentations. The mechanisms for topological primitives are provided in ISO 19107
(Spatial) [129].

Value types Feature attributes are classified as spatial, location, temporal, the-
matic or metadata attribute types. An attribute type is constrained by its value
type. Thematic attributes typically take values of strings, integers, floats or enu-
merations. Spatial attributes have geometric or topological objects as their value
types, according to their definitions in ISO 19107 (Spatial) and ISO 19125 (SFea-
ture). Location attributes have geographic identifiers as their value types, as de-
fined in ISO 19112 (RefIdent), which is typically a name, an address or a reference
to another feature type.
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Domain of values A value type is restricted by its domain of values. For
example, the domain of values of an enumeration is the set of enumeration values;
the domain of values for a geometric object is known as its envelope [129].

5.2.2 Feature geometry

For feature geometry, we apply the model of ISO 19125-1 (SFeature). Figure 5.3
shows the ISO 19125-1 model within the dashed boundary. The classes outside
this boundary are added in order to support specific operation descriptions such
as interpolation (see their description in Appendix C). ISO 19125 (SFeature) is
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2..*

1..*

1..*
1..*

1..*

1..*

contains

0..*

0..1

hasReference

0..*

0..1

hasReference

isDescribedBy

Figure 5.3: UML class diagram showing the feature geometry model of the feature
symbol ontology (SYMBOL). Figure partly adapted from ISO 19125-1 (Simple
feature access) [135].

a limited model compared to ISO 19107 (Spatial), because it does not support
topological objects nor 3D objects. The ISO 19125 specification [135] contains
mappings for its classes to corresponding ISO 19107 classes.
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5.2.3 Thematic attributes

Thematic attributes represent the descriptive characteristics of a feature other than
the spatial, temporal, location or metadata attributes [131]. Attributes in general
are constrained by their value type. Value types may be basic data types such as
CharacterString, Integer, Boolean, Date and Enumeration or specific measurement
types such as Angle or Time. Data types are defined in ISO 19103 (Concept) [136]
and GML [?, ?]. On a more abstract level, thematic attributes are distinguished in
terms of levels of measurement. The following classification is used to distinguish
the parameters of geo-operations as described in Appendix C.4.3:

• Nominal: Measurements are classified into named groups. Example: a ‘land
use’ attribute with values ‘Forest’ and ‘ArableLand’.

• Ordinal: Ordinal measurements have the properties of nominal measure-
ments. In addition, measurements can be ordered. Example: a ‘suitability’
attribute with values ‘High’, ‘Medium’ and ‘Low’.

• Interval: Measurement is done with respect to a quantitative scale with
a fixed interval and an arbitrary zero reference. The operations add and
subtract can be meaningfully performed on interval measurements. Example:
(1) a ‘calender year’ attribute with example value ‘2000’ (representing the
period 1-1-2000 till 31-12-2000) , (2) a ‘Celsius temperature’ attribute with
example value ‘2 degrees’ (representing the interval 1.5 - 2.5).

• Ratio: Attributes can be measured with respect to a quantitative scale with a
fixed zero reference. Ratio measurements support the operations multiplica-
tion and division. Example: a ‘distance’ attribute with values ‘250 metres’,
‘330 metres’, ‘1000 metres’. Ratio measurements may be re-scaled, e.g., from
miles to metres.

• Count: A measurement is expressed as the count of a number of objects.
Counts are not nominal, nor ordinal. They cannot be re-scaled. Example: a
‘population count’ attribute with values ‘15234’, ‘120505’, ‘1240709’.

• Absolute: A ratio measurement becomes absolute if the unit of measurement
is not arbitrary [50]. They cannot be re-scaled. Example: a ‘probability’
attribute with values ‘0’, ‘0.5’, ‘1’.

The nominal, ordinal, interval and ratio levels originate from research by
Stevens [254]. The absolute and count levels were introduced as extensions to
Stevens’ levels by Chrisman [50]. Figure 5.4 shows the above classification in rela-
tionship with SYMBOL. Specific data types can be made subclasses of the more
abstract ones shown in the list above.
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Feature model Version 0.3

GF_ThematicAttributeType SY_LevelOfMeasurement

SY_RatioSY_Ordinal

SY_Qualitative SY_Quantitative

SY_Nominal SY_Interval

SY_Count

SY_Absolute

hasLevelOfMeasurement

SYMBOL – meta-level

Figure 5.4: UML class diagram showing the Classification of thematic attributes
in the feature symbol ontology (SYMBOL).

5.2.4 Coverages

In the ISO 19124 standard (ImgComp) [134] a coverage is defined as follows:

Term 5.3 A coverage is a feature that acts as a function to return values from its
range for any direct position within its spatial, temporal, or spatiotemporal domain.
In other words, a coverage is a feature that has multiple values for each attribute
type, where each direct position within the geometric representation of the feature
has a single value for each attribute type.

A direct position is defined as a position described by a single set of coordinates
within a coordinate reference system. The (spatio)temporal domain of a continu-
ous coverage consists of a set of direct positions defined in relation to a collection
of (spatio)temporal objects [134]. A coverage can be seen as a feature collection
(which is a feature itself, so it does not violate the definition of coverage). The
grid cells of a quadrilateral grid coverage (commonly known as a raster image)
are the individual features that carry feature properties, such as colour values or
classified raster values. The conceptualisation of coverage as described here allows
single grid cells as well as a complete coverage to be subject to geo-operations as
defined in Section 5.4.

5.2.5 Example usages of feature symbols in feature concepts

Table 5.1 provides some examples of features, feature properties and feature prop-
erty values, making use of the constructs in the SYMBOL ontology that is de-
scribed in Sections 5.2.1 through 5.2.4.
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«FeatureType»
GeoObject

+Identification[1] : CharacterString
+ObjectStartTime[0..1] : DateTime
+ObjectEndTime[0..1] : DateTime
+VersionStartTime[0..1] : DateTime
+VersionEndTime[0..1] : DateTime
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+Status[0..1] : Status
+Location[0..*] : Location
+StartTime[0..1] : Date
+EndTime[0..1] : Date
+Name[0..*] : CharacterString

0..*

0..*
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«FeatureType»
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0..*
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«metaclass»
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«metaclass»
DateTime

«metaclass»
Function «metaclass»

Status

«metaclass»
Location «metaclass»

Date

«FeatureType»
Building

«FeatureType»
FunctionalArea

«DataType»
Address

«DataType»
AddressCoordinate

«FeatureType»
GeographicArea

«FeatureType»
InfrastructureElement

«FeatureType»
Measurement

«FeatureType»
PipeOrCable

«FeatureType»
PlanningArea

«FeatureType»
Railway

«FeatureType»
RegistrationalArea

«FeatureType»
Relief

«FeatureType»
Road

«FeatureType»
SpecificTerrainElement

«FeatureType»
Terrain

«FeatureType»
Water

«FeatureType»
WaterDam

«FeatureType»
TypeOfBuilding

«FeatureType»
FunctionBuilding

«FeatureType»
Accessibility

«FeatureType»
MaterialOfBuilding

«FeatureType»
TypeOfPremises

«FeatureType»
Boolean

Metadata
0..*

1..*
has

symbol:GF_AttributeTypesymbol:GF_FeatureType

NEN3610 feature types

NEN3610

GeoObjectType

<<instantiates>>

FunctionType

<<instantiates>>

Figure 5.5: Overview of the NEN3610 data model. All classes in the dashed box
are subclasses of GeoObject. Translated from [195].

5.3 Feature concept ontologies

A feature concept ontology formally defines the conceptualisations of real-world
phenomena and the relationships between them. This section describes the con-
struction of formal ontologies for the following conceptual models:

• NEN3610: The standardised base data model for geo-information exchange
in The Netherlands [195].

• TOP10NL: The data model for the object-oriented topographic data, acqui-
sition scale 1:10000, of the Dutch Topographic Service [17].

• Riskmap: The conceptual framework that forms the basis for the Dutch
provincial risk maps.

• Travel: A small set of concepts that models a travel domain.

5.3.1 NEN3610

NEN3610 is a Dutch geo-information model based on ISO 19100 standards. The
recently-finalised NEN3610 data model [195] describes a basic set of feature types,
in NEN3610 called geo-object types, such as ‘Road’ and ‘Planning area’ in terms
of their textual definition, attributes, associations with other classes and sub-
class/superclass relationships, and some constraints, see an overview in Figure 5.5
and a detail in Figure 5.6.

All classes are abstract (indicated by italic font), which implies that they are
not designed to be directly instantiated. Instantiation is supposed to occur at
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1..*

«FeatureType»
Building

+TypeOfBuilding : TypeOfBuilding
+ActualFunction : FunctionBuilding
+PlanningFunction : FunctionBuilding
+PermitFunction : FunctionBuilding
+Accessibility : Accessibility
+Public : Boolean
+Material : MaterialOfBuilding
+BuildingPermit : Boolean

«FeatureType»
Premises

+TypeOfPremises : TypeOfPremises

«FeatureType»
Residence

+ResidenceRelation : CharacterString

1..*

hasResidence

Figure 5.6: Part of the NEN3610 data model, conceptualising the Building class.
Translated from [195] (the Dutch terms for Building, Premises and Residence are
respectively Gebouw, Pand and Verblijfsobject).

more specific sector models (read: by more specific domain models, such as the
TOP10NL data model of the Dutch Topographic Service). The NEN3610 model
provides the superclasses for the non-abstract classes in the sector models. An
example is given in Figure 5.7: the TOP10NL concept RoadSegment is a concrete
class (indicated by regular font) that can be instantiated.

«FeatureType»
nen3610:Road

+RoadType[0..1]

«FeatureType»
nen3610:RoadSegment

+Accessibility[0..1]
+TypeOfInfrastructure[0..1]

«FeatureType»
top10nl:RoadSegment

0..*

0..*

Figure 5.7: Relation between the abstract class RoadSegment of NEN3610 and the
RoadSegment class of TOP10NL. Translated from [195].

All NEN3610 classes reside at the application level (the information middle
level of Figure 5.1). The relationship between the application level and the meta-
level is depicted in Figure 5.5 by using two-facetted constructs for GeoObject and
Function, similarly to using the two-facetted constructs for Building and Point
in Figure 5.1. GeoObject and Function serve as examples; such two-facetted con-
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Geo-operation ontology
OP_FeatureType

OP_NEN3610_Building

Figure 5.8: Accommodation of NEN3610 feature types in the geo-operation
ontology. The dashed box includes all the NEN3610 feature types; the
OP NEN3610 Building serves as an example.

structs exist for all feature types and attributes in Figure 5.5. The use of NEN3610
concepts as parameter types in operations is depicted in Figure 5.8. The concept
OP NEN3610 Building is subsumed by OP FeatureType, which serves as a feature
type placeholder in the operation ontology (see Figure 5.1).

The concept ontology that represents NEN3610 in this thesis differs from its
UML modelling elements with respect to the fact that specific feature types (e.g.,
Road) are not considered to be ‘abstract’, in contrast to the UML model. In
the ontology, a NEN3610 Road is allowed to be instantiated, which facilitates
reasoning with its instances and does not violate the essential characteristics of
the model. Note however that the actual ontology reasoning does not involve
geographic instances of real-world objects (see the statement about research scope
in Section 1.2). In the NEN3610 ontology, feature attributes can be modelled in
two different ways:

1. Associating the role nen3610:hasAttribute to nen3610:GeoObject by declar-
ing the domain of nen3610:hasAttribute to be nen3610:GeoObject and the
range to be nen3610:BuildingAttribute.

The concept nen3610:BuildingAttribute is part of the concept hierarchy as
below:

nen3610:Attribute

nen3610:BuildingAttribute

nen3610:BuildingActualFunction

nen3610:BuildingPlanningFunction

Attribute values of nen3610:BuildingActualFunction are defined in an enu-
meration nen3610:BuildingActualFunctionValue with values such as nen3610:-
AccommodationalFunction and nen3610:OfficeFunction. Because these at-
tribute values are shared among the building attributes nen3610:Building-
ActualFunction and nen3610:BuildingPlanningFunction, two similar enumer-
ations are needed with values such as nen3610:ActualOfficeFunction and
nen3610:PlanningOfficeFunction.
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2. Modelled in a role hierarchy as follows (example of building attributes):

nen3610:hasBuildingAttribute

nen3610:hasBuildingActualFunction

nen3610:hasBuildingPlanningFunction

nen3610:hasBuildingActualFunction is conditioned by:

∃∀ nen3610:hasBuildingActualFunction.nen3610:BuildingFunctionValue

‘∃∀’ is a conjunction of ∃ and ∀. Its semantics can be found in Section 4.4.
The enumeration nen3610:BuildingFunctionValue has subclasses such as nen-
3610:AccommodationalFunction and nen3610:OfficeFunction.

Option 1 keeps the number of roles in the ontology limited through the reuse of the
role nen3610:hasAttributeType. However, there are the following disadvantages to
this way of modelling, compared to option 2:

• Cardinality restrictions can be applied only to nen3610:hasAttributeType and
cannot be refined to nen3610:BuildingActualFunction. This obstructs us
from defining different restrictions for different building attributes.

• In option 1, the entry of individuals does not provide the user with a selection
of attributes, as is the case in option 2. In the latter, the ontology editor
Protégé provides each attribute with a separate entry form, which eases the
instantiation process. The Protégé software is introduced in Section 8.2.1
and its entry forms in Section 8.4.1.

• In option 2, the sharing of attributes can be implemented without further
effort. In option 1 these concepts need separate trees with similar values. In
this research, option 2 was followed in building the concept ontology.

5.3.2 TOP10NL

The TOP10NL feature model is an object-oriented data model that forms the con-
ceptual basis for the TOP10NL topographic data of the Dutch Topographic Service
(in Dutch: Topografische Dienst Kadaster). As the TOP10NL is earmarked as one
of the models that should serve as specific sector model of the NEN3610 model,
it is being revised along with the NEN3610 modelling efforts. At the same time
NEN3610 draws some of its conceptualisations from the TOP10NL model. The
current TOP10NL data model (version 2.3) defines its concepts in Dutch [17]. A
translation of a limited set of terms was carried out in an earlier version of the
data model [148], but is considered to be a side-product. For the sake of this
thesis, all concepts and roles of the current version (2.3) have been translated into
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«FeatureType»
nen3610:GeoObject

«FeatureType»
Rights

«metaclass»
CharacterString

«metaclass»
DateTime

«metaclass»
Function «metaclass»

Status

«metaclass»
Location «metaclass»

Date

«FeatureType»
Building

«FeatureType»
FunctionalArea

«DataType»
Address

«DataType»
AddressCoordinate

«FeatureType»
GeographicArea

«FeatureType»
AdministrativeArea

«FeatureType»
RailwaySegment

«FeatureType»
Relief

«FeatureType»
RoadSegment

«FeatureType»
SpecificTerrainElement

«FeatureType»
Terrain

«FeatureType»
WaterSegment

«FeatureType»
TypeOfBuilding

«FeatureType»
FunctionBuilding

«FeatureType»
Accessibility

«FeatureType»
MaterialOfBuilding

«FeatureType»
TypeOfPremises

«FeatureType»
Boolean

«FeatureType»
GeoObject

NEN3610 feature types

TOP10NL  feature types
TOP10NL

Figure 5.9: Generalised structure of the TOP10NL concept ontology.

English. In the concept ontology, the TOP10NL element structure is similar to
the one of NEN3610. An overview is depicted in Figure 5.9. All TOP10NL feature
types are part of TOP10NL two-facetted constructs, similarly to the two-facetted
constructs for NEN3610 concepts as depicted in Figure 5.5. TOP10NL feature
types also appear as ‘OP’ classes in the geo-operation ontology, similar to what is
depicted in Figure 5.8.

The relationships with NEN3610 are modelled by means of mappings, declared
in the TOP10NL ontology. They are described below. All TOP10NL feature types
are subsumed by NEN3610 types of the same name, for example:

top10nl:RoadSegment v nen3610:RoadSegment (5.1)

Besides this overlap between the two ontologies, there are eleven NEN3610 feature
types that do not have a TOP10NL counterpart. A TOP10NL class that is sub-
sumed by a NEN3610 class, for example top10nl:Building, inherits the attributes of
the NEN3610 class nen3610:Building. TOP10NL attributes are not subclasses of
NEN3610 attributes. In the concept ontology the top10nl:hasBuildingAttribute is
modelled at the same level as the nen3610:hasBuildingAttribute, i.e., as a sibling.

Additional mappings have been created between NEN3610 and TOP10NL in
various ways. On the attribute level, direct subclassing is not sufficient and map-
pings have been created as follows (example of the concept Hotel). Hotel is defined
in NEN3610 as:

nen3610:Hotel ≡
(∃ nen3610:hasActualBuildingFunction.

nen3610:AccommodationalFunction)
(5.2)
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RiskMap
«FeatureType»
RiskMapObject

«DataType»
Institution

«FeatureType»
HazardousObject

«FeatureType»
VulnerableObject

«DataType»
Hazard

hasRiskSource

affects

«FeatureType»
RegisteredRGGSObject

«FeatureType»
RiskContourhas

«FeatureType»
EffectAreahas «DataType»

Effect has

manages «DataType»
HazardTypehas

«FeatureType»
EvacuationZonehas

«FeatureType»
TransportRoute

hasRiskSource

Figure 5.10: Generalised structure of the Riskmap concept ontology.

and in TOP10NL as:

top10nl:Hotel ≡
(∃ top10nl:hasBuildingType.top10nl:HotelType) (5.3)

An equivalence between nen3610:Hotel and top10nl:Hotel is created as a property
value mapping as also presented in [196] and uses in Protégé two separate ‘neces-
sary & sufficient’ conditions. This mapping makes it possible to create an instance
of a hotel in TOP10NL and to access it through the NEN3610 concept, and vice
versa. The corresponding OWL encoding is used by a reasoner to infer the correct
semantics of any instance (e.g., ‘Amstel Hotel’) across both data models. It has
to be noted that for the sake of simplicity the above mapping example excludes
potential other features with accommodational function, such as top10nl:Motel
and top10nl:RecreationCentre. However, they can be easily added in the asserted
condition. It is up to the knowledge engineer, who integrates the models, to make
the choices to include the right concepts in those mappings [256].

5.3.3 Riskmap

In this thesis work, an ontology has been created for the domain of risk mapping, as
indicated in the Riskmap use case (see Section 2.6.1). A risk survey manual [246]
and a glossary [240] formed the basis for this ontology. Its structure is depicted in
Figure 5.10.

All Riskmap feature types are part of Riskmap two-facetted constructs, sim-
ilarly to the two-facetted constructs for NEN3610 concepts as depicted in Fig-
ure 5.5. Riskmap feature types and data types also appear as ‘OP’ classes in the
geo-operation ontology, similar to what is depicted in Figure 5.8.

The Riskmap ontology was integrated with the other ontologies (NEN3610 and
TOP10NL) through a number of mappings. These mappings serve the purpose of
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interoperability, i.e., the provider of risk map information is bound to the class
definitions of NEN3610 and TOP10NL, that are mapped a priori to the Riskmap
classes. This makes the intended meaning of the information more explicit to the
user than without these mappings. Four example mappings with different kinds
of background are given below.

Hotel A simple equivalence mapping is created between the definitions of Hotel :

riskmap:Hotel ≡ nen3610:Hotel

Nuclear The class Nuclear (a subclass of Hazard) in the Riskmap ontology
represents a nuclear object. Similarly to riskmap:Nuclear, top10nl:NuclearReactor
and top10nl:NuclearPowerStation are defined as concepts. However, riskmap:-
Nuclear does not distinguish the power station as a subclass like TOP10NL does.
The mapping is effectuated as a simple concept equivalence:

riskmap:Nuclear ≡ top10nl:NuclearReactor

Road Riskmap maintains a classification of roads that is a subset of TOP10NL
roads, but this subset is not mapped by a 1-to-1 concept mapping. Further, the
Riskmap road classes are direct subclasses of riskmap:Road and TOP10NL defines
road classes as road attributes. The Riskmap road class hierarchy is as below:

riskmap:Road
riskmap:NationalRoad

riskmap:Highway
riskmap:ProvincialRoad

The mappings with TOP10NL are as follows (the concept starting with M is a
mapping concept):

riskmap:Highway ≡ ∃ symbol:hasThematicAttributeType.top10nl:Highway

riskmap:ProvincialRoad ≡
∃ symbol:hasThematicAttributeType.top10nl:RegionalRoad

M Top10-Riskmap-MainRoad v riskmap:NationalRoad

M Top10-Riskmap-MainRoad ≡
∃ symbol:hasThematicAttributeType.top10nl:MainRoad

Note that the TOP10NL road concept is also mapped to the NEN3610 road con-
cept (see Axiom 5.1).
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Figure 5.11: Generalised structure of the Travel concept ontology.

Tunnel The concept Tunnel in the Riskmap ontology is defined as ‘a location
where train, tram, or car traffic passes under a full-covering construction for at
least 250 metres’. Each tunnel has a category that puts restrictions on the type of
traffic that makes use of it. The riskmap:Tunnel class is a subclass of the nen3610
tunnel, not its equivalent. TOP10NL does not know the class Tunnel as object
but describes infrastructural elements in tunnels. Riskmap:Tunnel is defined as
follows:

riskmap:Tunnel v nen3610:Tunnel

riskmap:Tunnel v
∃ symbol:hasThematicAttributeType.(

top10nl:RailroadSegmentInTunnel t
top10nl:RailroadSegmentOnFixedPartOfTunnel t
top10nl:RoadSegmentInTunnel t
top10nl:TerrainInTunnel )

5.3.4 Travel

A simple travel ontology has been created as part of the thesis work to demonstrate
the discovery of travel information, such as local transport means and points of
interest. This information serves the use case discussed in Section 2.6.4. An
overview of the important concepts is given in Figure 5.11.

All Travel feature types are part of Travel two-facetted constructs, similar to
the two-facetted constructs for NEN3610 concepts as depicted in Figure 5.5. Travel
feature types and data types also appear as ‘OP’ classes in the geo-operation
ontology, similar to what is depicted in Figure 5.8. In addition, Figure 5.11 shows
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three examples of web services which operation descriptions make use of the Travel
‘OP’ classes. For example, the description of a route planner operation may make
use of the concept OP PointOfInterest to describe its parameters for the start
and destination of a route. Section 7.4 contains an example of the use of such a
description for service discovery.

5.4 Geo-operation characterisations — OPERA

This section describes the starting points for the design of an ontology of geo-
operations, called OPERA. From a design perspective, we would like such an
ontology to (1) have a hierarchical structure (for ease of human understanding),
(2) to have non-overlapping classes as much as possible, (3) to include the most
important geo-operations and (4) to be extensible. In the past, several attempts
have been made to create a classification of geo-operations. The most relevant
ones are stemming from research by Albrecht [6, 7], Chrisman [49, 50], from stan-
dardisation efforts, such as [132] and from software models [92, 111]. Most of them
are, however, informal and lack sufficient semantics for classifying individuals. A
major problem was caused by the lack of sufficient mechanisms to support multiple
inheritance. With modern ontology languages such as OWL, we can now overcome
this problem.

OPERA is based on the principles of OWL-S and particularly implements its
process model. However, specific to OPERA is its classification of geo-operations
and its descriptions of specific geo-operation parameter types, both of which are
not part of the OWL-S ontology. The main strategy in classifying geo-operations
is to consider the elements of the feature concept ontology and the feature symbol
ontology to be the basic representatives for the input and output parameter types
of the operation classes.

5.4.1 Atomic geo-operations

The design of a geo-operation ontology in this thesis is based on a distinction
between atomic geo-operations and composites of them. The definition of an
atomic geo-operation, as provided below, follows the definition of an atomic process
in OWL-S (see Section 4.7.1). In OWL-S, an atomic process is defined as a directly
invocable process that executes in a single step. It takes an input message and
returns an output message. These messages can take as many formal input c.q.
output parameters as required.

An atomic geo-operation may include functionality also performed by another
atomic operation. This does not make it a composite. For example, consider
an overlay operation that is performed on a feature collection of which the topo-
logical relationships between its features are not made explicit. As part of the
operation it must first calculate the intersections between the features and then
combine the thematic attributes. This (sub)operation could be performed by the



5.4. Geo-operation characterisations — OPERA 123

atomic operation ‘MakeTopologyRelationshipsExplicit’. The overlay operation is
still considered to be atomic. Further, an atomic geo-service is considered to be a
service that makes available an atomic geo-operation and is not composed of other
services.

A distinction has to be made between operation implementations and operation
descriptions. An operation implementation is the invocable software artefact (e.g.,
a software component) that carries out the operation. A description is considered
to be represented by (1) an allocation of the service to an operation class in the
geo-operation ontology or (2) a workflow with its sub-operations, each of which is
allocated to an operation class in the geo-operation ontology.

At first glance, one would choose to describe an atomic operation implementa-
tion with option (1) and a composite operation implementation with option (2).
However, cross options are also possible, which are explained below.

Case 1 The operation is considered to execute in one step (see definition atomic
geo-operation). It may have internal workflow constructs, but they are unknown.
The description contains only formal input and output parameters.

Case 2 The operation is considered to execute in one step (see definition atomic
geo-operation). However, the description may detail out internal workflow. This
workflow may even be a virtual one, which is not the exact workflow implemented,
but which has a similar effect. The description contains formal input, output
parameters and workflow constructs.

Case 3 The operation is a composite one, exposing its workflow constructs dur-
ing execution. The description treats the operation still as atomic, it contains only
formal input and output parameters.

Case 4 The operation is a composite one, exposing its workflow constructs dur-
ing execution. The description contains formal input and output parameters and
workflow constructs. This workflow may be a virtual one, which is not the exact
workflow implemented, but which has a similar effect.

5.4.2 Ontology design — OPERA-R and OPERA-D

Our geo-operation ontology (OPERA) is developed with two sets of concepts:

• A reference geo-operation ontology (OPERA-R), containing atomic geo-operation
types that act as building blocks for all other geo-operation types.

• Derived geo-operation ontologies (OPERA-D), which may contain

– atomic geo-operation types, each of which is defined in terms of an
operation type, existing in the reference ontology (OPERA-R).
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Figure 5.12: Generalised structure of the OPERA geo-operation ontology.

– composite geo-operation types, each of which is defined in terms of
a workflow and its component operation types, being geo-operation
reference types or derived types.

An overview of the main structure of OPERA is given in Figure 5.12. At
the root is the class GeoOperationType. It has five direct subclasses that involve
respectively human interaction operations, feature modelling operations, feature
operations, operations on services and meta-information operations. This top level
classification and sub classification follows the classification as given for services in
Table 2.3 and details out the structure given in Figure 5.1. OPERA-R describes
atomic geo-operation types. Each type can be instantiated by an atomic geo-
operation instance as depicted in Figure 5.1. A more detailed description of the
informal semantics of the classes of OPERA-R is provided in Appendix C.

The class FeatureProcessingOperation has been selected to be specified in more
detail as it forms a broad basis for geo-information processing and analysis activ-
ities in practice. In contrast to feature modelling operations, feature process-
ing operations are not meant to add feature types to an application schema, al-
though they may create feature types and feature properties as placeholders for
feature instances and their attributes. For example, an operation of type Buffer
may have an output parameter, named BufferZone of type GF FeatureType with
GF SpatialAttributeType as a property type. An instance of this operation (e.g.,
MyBufferOperation) has an output parameter of type OP FeatureType with an
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attribute of type OP Polygon. At the operation invocation level, the output of
this operation may be an actual buffer instance, represented by an actual polygon
with coordinates.

The input and output parameter types of a feature processing operation are
expressed in terms of elements of the feature symbol ontology, described in Sec-
tion 5.2. A FeatureProcessingOperation may be coupled to a data set. This may
constrain the validity of usage of that operation. For example, a specific route
planner operation may operate within the boundaries of a national data set. Fea-
ture processing operations are discussed in more detail in Section 5.5.

Examples of OPERA-D instances are elaborated upon in Chapter 6.

5.5 OPERA-R — Feature processing operations

This section describes types of feature processing operations as part of the semantic
interoperability framework. The feature processing operations in this framework
apply the OWL-S process model. This implies the distinction between atomic and
composite operations. In OWL-S, an atomic feature processing operation does
not maintain state, but a composite operation does. The notion of atomicity is
clarified in Section 5.5.1.

5.5.1 Atomicity

In this thesis, an atomic feature processing operation is a specific case of an atomic
geo-operation (see the subsumption relationship in Figure 5.12). It is defined as
follows (see Section 5.1 and Figure 5.1 for a description of terms such as ‘application
level’ and ‘feature type’). A characterisation of an atomic operation is depicted in
Figure 5.13.

Term 5.4 A feature processing operation is atomic if, and only if, it has all of the
following characteristics:

• It must create, modify or extract one or a combination of the following:

– feature type (at the information application level),

– feature instance (at the data level),

– feature property type( at the information application level),

– feature property value (at the data level).

• It may use and/or produce non-feature values (values not associated with
features, e.g., the average car speed, needed as input for a fastest route cal-
culation).

• It must be performed as a single step; the operation does not expose a work-
flow.



126 5. Semantic interoperability framework for geo-services

Feature instances

Feature property types

Feature property values

Non-feature values

Input Output

Features

Feature properties

Feature property values

Create

Change

Delete

Extract

Features

Single step

Non-feature values

Operation
(single step)

Feature types

Feature instances

Feature property types

Feature property values

Non-feature values

Feature types

Figure 5.13: Atomic geo-operations are performed in a single step. Input and
output parameters are defined in the feature symbol ontology.

• The input and output parameters must allow specification in terms of (1)
classes that exist on the meta-level of the feature symbol ontology (SYMBOL)
and (2) OP-class copies of the application level of SYMBOL.

Note that Definition 5.4 includes feature associations, due to the fact that in the
ISO General Feature Model GF FeatureType subsumes GF AssociationType (see
Figure 5.2).

A composite feature processing operation is defined as follows:

Term 5.5 A composite feature processing operation is composed of an atomic
feature processing operation or another composite feature processing operation.

Atomic feature processing operations and composite feature processing oper-
ations borrow the semantics from, respectively, OWL-S atomic and composite
processes (described in Section 4.7.1).

5.5.2 Classification of operations

An overview of feature processing operations is provided in Figure 5.14, their
informal semantics are described in Appendix C.

Each operation class is given a short name for easy reference, such as ‘Change-
CRS’ (a class of operations that change the coordinate reference system of a coordi-
nate set). The operations are grouped in sections. This classification is principally
based on the kind of feature properties that they act upon or return. The classi-
fication of GIS operations by Chrisman [50] follows for the major part the same
principle and is used in particular in this thesis for the description of attribute
operations, overlay and distance-based operations. Other parts of that classifica-
tion are not directly followed, such as his concept of transformation. Chrisman
defines a transformation as an operation that changes a measurement framework
(a scheme with measurement rules). This mechanism is rather complex and seems
to lead to an ambiguous classification of operations. The concept of transforma-
tion that is used in this thesis classifies geometric transformations as operations
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Figure 5.14: Feature processing operation classes in the OPERA-R ontology.

that change the coordinates of positions (see Section C.4.14 for a subclassification
of the geometric transformation operation type).

Other resources used, such as the ISO 19100 standards are mentioned through-
out Appendix C.

In some cases, an operation type may be classified under another section as well.
For example, the GridSlope operation type is classified under both the category
GridFilter and CalculateSlope (both subclasses of the Neighbourhood operation
type), which implies that the latter two categories are not mutually exclusive.

5.5.3 Operation type descriptions

Each operation type as depicted in Figure 5.14 is characterised by its functional
description in Appendix C, its input and output parameters and its tightly-coupled
data. Pre- and postconditions may be represented in these parameters.

Descriptions of the specific input/output parameters attached to each reference
operation are provided in Appendix D. The input parameters attached to an
operation type by the hasInputPar are the formal parameters minimally needed
for that operation type. The output parameters attached to an operation type
by the hasOutputPar are the formal parameters that are minimally needed to
contain the output of the operation type. Operation instances may make use of
other parameters, but they are irrelevant for describing the operation type. With
respect to parameter passing, a single formal parameter may be used to pass
multiple values (e.g., instances of geometric objects) in an array. In this respect,
the operation descriptions in Appendix D are generic in the sense that they do not
specify cardinality constraints for parameter values. This is left to more specific
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descriptions that are potentially created to describe subclasses of generic operation
types. For example, a more specific description of a route optimisation operation
may specify the number of given points in a route. Further, our input/output
model assumes a call-by-value parameter evaluation; the parameter descriptions
in Appendix D assume feature modifying operations (e.g., the SimplifyGeo class
of operations) to modify its local copy of the feature.

The input/output model assumed here, follows the one of OWL-S, which sup-
ports stateless services (with input and output parameters) as well as stateful
services (with, in addition, pre- and/or post-conditions). A feature processing op-
eration may require a data set to comply with a precondition, i.e., to be in a specific
state. This may involve the features being processed, but also any other feature in
the data set. For example, the entire data set must be defined in a specific coor-
dinate system. A postcondition may be of a similar kind. Other operations than
classified in Appendix C can be defined, based on the reference classes and they
are called ‘derived operations’, which may be atomic or composites. Composite
operations are described in Chapter 6. In OPERA, all geo-operation types are
subsumed by opera:GeoOperationType. The class hierarchy as indicated in Fig-
ure 5.12 is translated into ontology classes. The ontology also contains so-called
support concepts. They define the general characteristics of operations such as
operation specific details, like a property named topological selection method that
is (only) attached to the overlay operation.

Disjointness Two operation types are considered to be disjoint if, based on
their functionality, an individual operation can only be classified as one of the
types (and not both). Disjointness has been created between some, but not all
of the operation types in OPERA-R. This choice has been made for each individ-
ual class, based on its semantics, as described in Appendix C. For example, the
LocSpat operation type (representing the class of operations that have as input pa-
rameter type GF LocationAttributeType and as output GF SpatialAttributeType)
is disjoint from the SpatLoc operation type (input type: GF SpatialAttributeType
and output type: GF LocationAttributeType), but GridFilter and CalculateSlope
are not disjoint.

Primitive vs. defined classes The operations in OPERA-R have been imple-
mented as primitive classes and not as defined classes (see the distinction made in
Section 4.2.1, paragraph ’Tbox’) due to the following. Some geo-operations types
have identical input and output parameter types, but have different functional-
ity. We would like such types to be disjoint in the ontology. If these operation
types are described by their parameters only, defined classes cannot be disjoint,
but primitive classes can.
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Example 1

An example of an operation definition that is used for instantiation and reasoning is
given below for the LocSpat operation. The name ‘LocSpat ’ represents an operation
type that reads a location attribute type (e.g., instantiated as an address type) and
produces a spatial attribute type (e.g., instantiated as a geometric object type),
which is typically found in a gazetteer:

opera:LocSpat v
opera:AcrossAttributeTypes u
(∃∀ opera:appliesToDataStrucType.

(symbol:ObjectFeature t symbol:GridCell )) u
(∃∀ opera:hasInputPar.(∃ opera:hasParType.

symbol:GF LocationAttributeType)) u
(∃∀ opera:hasOutputPar.(∃ opera:hasParType.

symbol:GF SpatialAttributeType)) u
(≥1 opera:isCoupledToDataset)

(5.4)

The above operation description is a translation of the LocSpat entry in Appen-
dix D into Description Logic. Note the notational occurrence of pairs of existential
quantifications (∃...) and value restrictions (∀...) as a combination (∃∀...) for each
role as introduced in Section 4.4. In the above example, the opera:hasInputPar
is conditioned by an existential quantification to state that the LocSpat opera-
tion needs at least one parameter of type symbol:GF LocationAttributeType. The
value restriction is used to make sure that any input parameter is of type sym-
bol:GF LocationAttributeType and nothing else. The cardinality restriction of the
role opera:isCoupledToDataset indicates that the operation is coupled to at least
one data set.

Example 2

The use of a support concept (which notion was introduced in 5.5.3) is illustrated
in the definition of an overlay operation below. Shown is the generalised definition
of a geometric intersection operation with the support concept opera:Attribute-
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CombinationMethod :

opera:GeometricIntersection v
opera:ObjectOverlay u
(∃∀ opera:appliesToDataStrucType.symbol:ObjectFeature) u
(∃∀ opera:hasInputPar.(∃ opera:hasParType.

((∃ opera:typeBijection.symbol:GeometricObject) t
symbol:GF ThematicAttributeType))) u

(∃∀ opera:hasOutputPar.(∃ opera:hasParType.
((∃ opera:typeBijection.symbol:GeometricObject) t
symbol:GF ThematicAttributeType))) u

(∃∀opera:hasAttributeCombinationMethod.
opera:AttributeCombinationMethod) u

(=0 opera:isCoupledToDataset)

(5.5)

The above description states that the geometric intersection operation needs as
input the combination of geometric objects AND thematic attribute types (the
cardinality is not defined here) and produces a similar combination as output.
Further, it states that it uses an attribute combination method (the method that
combines thematic attributes of the intersected features and assigns them to the
newly formed features, see Section C.4.9), but it does not specify which one. In
a more specific definition, this can be accommodated by adding the following role
restriction in Description 5.5:

(∃∀ opera:hasAttributeCombinationMethod.
(opera:EnumerationRule t opera:DominanceRule))

(5.6)

The above definition represents a type that can be instantiated by a geometric
intersection operation like ESRI’s ArcGIS Intersection tool.

5.6 Geo-service descriptions

Service descriptions represent the syntactic, structural and semantic properties of a
service’s operations, workflow, input, output and tightly-coupled data. A machine-
processable service description based on the semantic framework described above
extracts the semantic properties (concept identifiers) from the ontologies, relevant
to the service at hand. If, in addition to service discovery, service execution is rele-
vant, then the semantic properties are linked to the syntactic parameters, necessary
for invoking the service. There are two options for integrating syntactic, structural
and semantic properties, i.e., (1) annotating ontology documents with parameters
representing syntax and structure and (2) annotating syntax/structure-providing
service descriptions with ontology concepts. They are discussed in Section 5.6.2
after an overview of general description methods with OWL in Section 5.6.1.
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5.6.1 Semantic descriptions based on OWL

Descriptions using classes

In our semantic framework, the relation between a service and its operations is as
follows. The serv prefix represents ‘service’, local to OPERA, and is distinct from
the service prefix used in OWL-S:

serv:GeoService v ∃∀ serv:makesAvailable.opera:GeoOperation (5.7)

To clarify the description of an existing service, the Alexandria Digital Library
(ADL) Gazetteer service [115] (introduced in Section 1.1) is taken as example for
the following description:

serv:ADLGazetteerService v
(serv:GeoService) u
(∃∀ serv:makesAvailable.opera:ADLGazetteer)

(5.8)

The above description states that the (only) operation type of serv:ADLGazetteer-
Service is opera:ADLGazetteer, which is a subclass of opera:LocSpat (described in
Section 5.5.3, example 1, Description 5.4). The description provided for opera:-
LocSpat can be refined for opera:ADLGazetteer as follows:

opera:ADLGazetteer v
opera:LocSpat u
(∃∀ opera:appliesToDataStrucType.symbol:ObjectFeature) u
(∃∀ opera:hasInputPar.(∃ opera:hasParType.

(∃ opera:typeBijection.opera:OP Address))) u
(∃∀ opera:hasOutputPar.(∃ opera:hasParType.

(∃ opera:typeBijection.opera:OP Point))) u
(=1 opera:isCoupledToDataset) u
(∃ opera:isCoupledToDataset.ADLWorldDataset)

(5.9)

This description states that any ADLGazetteer operation takes as input opera:-
OP Address as input and produces as output opera:OP Point. It deals with object
features, not with grid coverages. For its functioning, it relies on a data set, called
ADLWorldDataset. Further refinement of the definition can be established by
including other role restrictions, such as the definition of the coordinate reference
system to which the output of the service is restricted:

Refinement 1

A refinement of the description of opera:ADLGazetteer is made when the role
restriction below is included in Description 5.9.

(∃∀ opera:hasOutputPar.(∃ opera:hasParType.
(∃ opera:typeBijection.
(∃ opera:hasReference.opera:OP SC CRS LatLon))))

(5.10)
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Another refinement specifies that opera:ADLGazetteer accepts a city name (as
partial address) as input:

Refinement 2

In this refinement the role restriction of Description 5.9

(∃∀ opera:hasInputPar.(∃ opera:hasParType.
(∃ opera:typeBijection.opera:OP Address))) (5.11)

is replaced with

(∃ opera:hasInputPar.(∃ opera:hasParType.
(∃ opera:typeBijection.opera:OP CityNameAddress))) (5.12)

The omitted ‘forall’ quantifier means that symbol:CityNameAddress always has to
be provided, but that the operations can also take additional input types (however,
they are all symbol:GF LocationAttributeType, as specified in Description 5.4).

Descriptions using individuals

The gazetteer operation, made available by the ADL Gazetteer service can also
be described using individuals, in two ways:

1. As instance of the root class opera:LocSpat as defined in Description 5.4.
The characterisation of its parameters are established by role assertions, for
example for its input:

opera:hasInputPar(ADLGazOperation,ADLGazInputPar 1) (5.13)

where the role opera:hasInputPar is attached to the individual ADLGaz-
Operation and has as filler the individual ADLGazInputPar 1. This and
other role assertions and instantiating concepts of ADLGazOperation are
depicted in Figure 5.15. The diagram shows the ADLGazOperation as in-
stance of the LocSpat operation with the characterisation its input and out-
put parameters. Concept-instance relations are only displayed for the input
parameters (similar concept-instance relations exist for output parameters,
but they omitted to avoid congestion in the figure). An OWL representa-
tion of this service description can be found in Appendix E. The description
contains an import statement that imports all the elements (concepts, roles
and individuals) of the OnToGeo ontology. Because of this import, the ser-
vice description itself does not contain these elements and can therefore be
relatively short. In addition to the import statement it contains the import
namespaces and the individuals that instantiate the import concepts.
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Figure 5.15: Ontology capture diagram showing the Alexandria Digital Library
Gazetteer service (ADLGazService) as instance of the serv:GeoService concept.
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2. As instance of the class opera:ADLGazetteer as defined in Description 5.9
(with OWL representation in Appendix E). The characterisation of its pa-
rameters is done by role assertions, similar to option 1. However the allowed
instances are restricted to a more confined set of individuals, due to the more
specific concept conditions. In contrast with option 1, this option obviously
requires for each operation description a specific concept definition.

ADLGaz_WsdlAtomicProcessGrounding

grounding:wsdlInputMessage = ADL-WSDL#getCoordinatesRequest

grounding:wsdlOutputMessage = ADL-WSDL#getCoordinatesResponse

grounding:wsdlVersion = http://schemas.xmlsoap.org/wsdl/

grounding:wsdlDocument = ADL-WSDL/ADLGazClient.wsdl

grounding:wsdlOperation = ADLGaz_WsdlOperationRef

...

ADLGaz_WsdlOperationRef

grounding:portType = ADL-WSDL#ADLGazClient

grounding:operation = ADL-WSDL#getCoordinates

grounding:wsdlOperation

ADLGaz_WsdlInputMessageMapList

list:first = ADLGaz_WsdlInputMessageMap

grounding:wsdlInputs

ADLGaz_WsdlOutputMessageMapList

list:first = ADLGaz_WsdlOutputMessageMap

grounding:wsdlOutputs
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Figure 5.16: Ontology capture diagram showing the OWL-S grounding of the
Alexandria Digital Library Gazetteer service. Note that, in contrast to other
ontology capture diagrams used in this thesis, this diagram shows expanded class
boxes with their attributes.
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5.6.2 Creating hybrid descriptions: grounding

A semantic description of service concepts must be complemented with a syntax-
/structure-providing description of service access protocols once service execution
is needed. The following paragraphs elaborate upon alternative approaches for
creating hybrid descriptions which support syntactical, structural and semantic
interoperability. They will be applied to the ADL Gazetteer service example (in-
troduced in Section 1.1 and also used in Section 5.6.1).

OWL-S grounding

In OWL-S, the annotation of concepts with syntax/structure-based parameters is
done in the OWL-S grounding, as discussed in Section 4.7.1. The ADL Gazetteer
service grounding is performed with its WSDL file (see Appendix F). The resulting
OWL-S grounding is depicted in Figure 5.16. For display reasons, the original
URI prefix of the WSDL file ‘http://localhost:8080/axis/services/ADLGazClient’
is represented in the figure by the shorter prefix ‘ADL-WSDL’.

Such grounding makes it possible to integrally perform service parameter in-
ference and invocation.

Annotation with WSDL-S

Annotating syntax/structure-providing service descriptions, such as WSDL files,
with ontology concepts is done according to the WSDL-S approach (see Sec-
tion 4.7.2). The following namespaces have been added to header of the WSDL
file:

xmlns:wssem="http://www.ibm.com/xmlns/WebServices/WSSemantics"
xmlns:Ontology0="http://geoserver.itc.nl/lemmens/owl/ontogeo.owl"

The message part body of the WSDL file has been annotated with WSDL-S con-
structs (with ‘wssem’ prefix):

<wsdl:message name="getCoordinatesRequest">
<wsdl:part name="name" element="xsd1:RequestType"
wssem:modelReference="Ontology0#OP_Address"/>

</wsdl:message>

<wsdl:message name="getCoordinatesResponse">
<wsdl:part name="output" element="xsd1:ResponseType"
wssem:modelReference="Ontology0#OP_Point"/>

</wsdl:message>

The result is comparable with the aforementioned OWL-S grounding approach.
However, the annotation involves less effort and it fits more invocation approaches,
because currently, WDSL file handling is more common practice (e.g., in WS-
BPEL) than the handling of OWL-S documents.
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Especially the construct wssem:modelReference is generally applicable (it asso-
ciates an XML schema element directly with an ontology concept) and is thought
to be useful for the semantic annotation of information sources in general. Other
annotation approaches for information sources have been proposed in [146, 227,
247, 277]. This thesis proposes to use wssem:modelReference as a basic construct,
due to its well defined semantics, compared to the others. An example of its use
in the context of this thesis is provided in the use case described in Section7.2.1.

5.7 Summary and reflection

This chapter has provided the basic elements of a semantic interoperability frame-
work for geo-services, based on the principles of semantic interoperability frame-
works, discussed in Section 4.6.

An important starting point has been the well-established conceptual model for
geographic features of ISO. The generic constructs of this model are implemented
in this research as concepts in ontologies. By doing so, the ISO model can be
used for asserting and inferring relationships between specific geographic domain
models. The ISO model forms a solid basis for concept formalisation. However,
some issues complicate the realisation of machine ontologies:

• Integrated data structure representation. The ISO General Feature
Model (ISO 19109) and Coverage Model (ISO 19123) are quite detached, and
although in the same models, coverages are seen as features, it is difficult to
integrate them for operation typification.

• Metaclass implementation. The paradigm of metaclasses would demand
for an ontology implementation where class instantiations at the meta-level
can be treated as classes in the level below (application level). In practice,
this can be achieved only with OWL-Full. Because OWL-Full is undecidable,
this does not give us the possibilities of reasoning that we strive for. The
basic ISO model has been implemented in OWL-DL, but not without a
careful treatment of the so-called ‘meta-bridges’. These meta-bridges appear
at two places (see Figure 5.1):

1. Between the meta-level and the application level of the information
model. Traversing these meta-bridges relies on the use of a naming
convention, i.e., the use of similar names for class and corresponding
meta-individual. No naming convention-based mechanism can be built
into the ontology itself; it has to be deployed by an external algorithm.
The latter has not yet been implemented in the prototype design of this
research.

2. Between the meta-level of the information model and the operation type
level of the operation model. Intuitively, we might draw direct role rela-
tionships between parameter types in the operation model and classes
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in the information model, for example the role hasParType between
Parameter and Point. However, the problem that we face here is that
an instance of Point is an actual point with specific coordinates (repre-
senting a real-world object). As a workaround, this research has opted
for an approach that uses operation parameter classes that are ‘clone’
classes of the information model. These clone classes apply a naming
convention by adding the prefix ‘OP ’ to the names of the information
model classes. Because there exist only one-to-one relationships be-
tween the information model classes and OP classes, a type bijection
has been implemented in the operation ontology. This makes the tra-
versing of the meta-bridge possible from within the ontology and thus
it can be used for reasoning.

The ontologies have been developed according to the method proposed in Sec-
tion 4.3.

Ontology mappings Examples of mappings between geo-information ontolo-
gies have been provided. The presented ontologies have a relatively simple struc-
ture and manual mapping by a domain expert seems to be feasible. Moreover, the
NEN3610 and TOP10NL ontologies have been developed in cooperation, so that
some conceptual relationships are already apparent in their design. However, with
the growing demand for the (sometimes ad hoc) integration of geo-information
within other disciplines, it is not unlikely that mappings are also needed with on-
tologies having a totally different and more complex structure. Semi-automatic
mapping methods as discussed in Section 4.6.1 will then be needed.

Operations and OWL-S In addition to utilising feature concepts in data mod-
els, they are also used to specify the input and output parameters of geo-operation
types. By deploying the process model of OWL-S, we are able to create and reason
with combinations of operation type descriptions. Although we have applied the
basic principles of OWL-S, our model provides additional functionality. First, it
allows to associate types of functionality to operations within a service (in OWL-S
this is only possible at the service level, i.e., in the service profile). Second, it adds
two simple constructs for service composition, which will be discussed in the next
chapter.

Concepts versus individuals The discussion on concept vs. individual mod-
elling is both a fundamental and a practical one. Concept modelling allows us
to define subsumption relationships, disjointness, etc. and will be always at the
basis of describing sets of individuals. An essential choice has to be made whether
to define the leafs of the ontological tree as concepts or individuals. Rector [236]
provides a rule of thumb as follows: Can it have kinds - if so, it is a class . In
a practical sense, concepts have the advantage of being able to comprise accurate
conditions, referring to other concept definitions. In addition, concepts have to be
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used in case of mappings with other ontologies. On the other hand, individuals
provide an easier service description entry by a service provider or service requester
and they allow us to fully deploy query languages such as OWL-QL. Obviously,
the description and ontology design in terms of concept vs. individual modelling
is also directly linked with the reasoning method. The building of the OnToGeo
ontology concentrates on the description of data sets and services. To allow for
different modes of reasoning, the semantic interoperability framework (according
to the definition in Section 4.6, without the data/service descriptions) has been
modelled entirely with classes. This is to be able to accommodate all data/service
descriptions as instances. This is a requirement of three out of four modes of
matchmaking as elaborated in Chapter 6.



Chapter 6

Geo-information matching
and service chaining

Geo-service chaining draws much on the service chaining paradigms that have
been developed in ICT mainstream. As stated in Section 3.2.3, specific for the
GIS domain are the special kind of services, called geo-services, that are implicitly
connected by the geographic location of the features they contain. Geo-services
support the complex nature of geo-information and enable the user to derive new
geo-information and reuse it with the same or other services for further process-
ing. In addition, because of the reuse, integrated spatial and thematic attribute
analysis methods are part of the provenance of geodata (in GIS, also the term lin-
eage is often used to indicate provenance). This chapter discusses the descriptive
relationships that can be created between geo-services, for the purpose of single
service discovery and chaining. It starts with the description of an example geo-
service chain in Section 6.1. Section 6.2 introduces the basic elements of a service
chain as used for reasoning. Section 6.3 discusses how the reference operation
descriptions of OPERA-R can be used for derived operation descriptions for both
atomic and composite operations in OPERA-D. Section 6.4 presents the reasoning
mechanisms that use these description for calculating inferences, for the purpose of
matching service requests and advertisements. The chapter ends with a summary
and reflection.

6.1 Example: Riskmap chain

For demonstration purposes a simple service chain has been created as a sequence
of four services (see Figures 6.1 and 6.2). The aim of this service chain is to generate
a map with information about potentially hazardous objects such as ammonia and
fireworks depots, centred around a location provided by an end user. Each service
in the chain is described by one operation with the same name as the service. The
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City name

ADLGazetteer

BBoxCreate

UMN Web Map Service
- GetMap operation

Point

Bounding box

Map image

Feature selection

CRS

URL

Make GetMapRequest

Figure 6.1: UML activity diagram
representing a service chain that dis-
plays a risk map of an area around
a location provided by an end-user.
The boxes on the right-hand side rep-
resent in/output parameters; CRS
means Coordinate Reference System.

Enschede

Hengelo

Figure 6.2: Result of risk map-
ping service chain with location ‘En-
schede’ as input. The map shows
the area around the city of Enschede
with fireworks depots (small (red)
circles) and ammonia storage loca-
tions (large (blue) circles).

first part of the chain is implemented by the Alexandria Library Gazetteer service
[115], which returns the coordinates of a point, based on an input location name.
The second service (BBoxCreate) creates a bounding box around this point and a
third (MakeGetMapRequest) creates a URL that contains the necessary parameters
for the fourth service, an OGC-compliant Web Map Server, implemented with the
University of Minnesota WMS software. Note that the result in Figure 6.2 is
shown in a web browser, which acts as a client application. This client application
is not part of the service chain itself. More on the creation of this chain can be
found in [165].

6.2 Semantic modelling of geo-service chains

The purpose of modelling a service chain is twofold. First, it supports discovery
through inferencing on its component services, its operations and its control flow.
Second, it supports syntax/structure-providing service descriptions in concretely
composing the service chain. There exist various possibilities to model a service
chain within the semantic framework of Chapter 5. Their suitability depends on
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(1) the particular needs for the above-mentioned discovery of the chain and its
component services, and (2) the needs to communicate the chain’s characteristics
to execution mechanisms, different from the one which performs the discovery and
composition.

Data flow

The anatomy of a service chain has been discussed in Section 2.1.1 and has been
illustrated in Figure 2.3. Each single feature processing operation of a geo-service
chain reads and returns particular characteristics of features. In our model, these
characteristics are represented by the parameter types as specified in Section 5.1.1.
During invocation, the formal parameters are substituted with parameter values;
in a service chain they are passed between service instances and constitute a data
flow. In a service chain, there are many places where the input of a service is
obtained from the output of a preceding service [181]. We will use this type of
data flow for reasoning in Section 6.4.2.

Control flow

The control flow of a composite service specifies the chaining pattern of its compo-
nent services. A control flow may describe this pattern using the service operations
as components. The Risk map chain of Section 6.1 is written in shorthand notation
(introduced in Section 4.7.1) as:

<sequence>
ADLGazetteer : opera:LocSpat
BBoxCreate : opera:BoundingBox
MakeGetMapRequest : opera:BuildRequest
UMN WMS : opera:ExtractMap

</sequence>

The names with prefix opera: indicate the operation types that appear in the
OPERA ontology. In the above sequence, no data flow is specified. This is done
in more specific data flow definitions, which are, for example, available in OWL-S
[67]. How such control flow may be described in DL is discussed in Section 6.4.5.

Simple OWL sequence

A simple sequence construct can be defined in OWL as follows:

opera:GeoOperation v
(∀ opera:hasSequenceNext.opera:GeoOperation) u
(=1 opera:hasSequenceNext)

(6.1)

Note that an operation has only one subsequent operation in the case of
a specific instance of a service chain. Such a construct makes it possible to
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ADLGaz

opera:hasSequenceNext

RiskMapService

RiskMapOperation

serv:makesAvailable

opera:hasSequenceStart

opera:nil

BBoxCreate

MakeGetMapRequest

opera:hasSequenceNext

UMN_WMS

opera:hasSequenceNext

opera:hasSequenceNext

Figure 6.3: Ontology capture diagram showing a risk mapping service chain mod-
elled with a simple OWL sequence construct.

chain instances as a sequence. The end of a chain is marked by instantiating
opera:GeoOperation with opera:nil. The Riskmap service chain is instantiated as
in Figure 6.3.

Its parameter binding mechanism is shown in Figure 6.4 for its two operations
ADLGaz and BBoxCreate.

The parameter typing mechanism has been discussed in Section 5.1.1. The
parameter identifiers, like InputPar 18, are internal identifiers, generated by the
ontology editor.

An even more simple construct is formed by the isComposedOf role, which is
useful for highly abstracted service chain requests and advertisements. It specifies
nothing else than that an operation is composed of other operations, without
stating any control flow pattern (this reflects also the principle of the Service
Organiser Folder (SOF) in ISO 19119 (Services), as described in Section 3.2.3):

opera:GeoOperation v
(∀ opera:isComposedOf.opera:GeoOperation)

With this construct, the Risk map service chain can be instantiated as in Fig-
ure 6.5.

OWL-S

OWL-S provides more powerful control flow constructs than the aforementioned
simple OWL sequences. Besides sequence, it allows for split, iterate, etc. (see
Section 4.7.1). The structure of the service chain, modelled in OWL-S is depicted
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ADLGaz

BBoxCreate

opera:hasSequenceNext

OutputPar_17

opera:hasOutputPar

InputPar_3
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PointTypeRepresentative
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typeBijection
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Figure 6.4: Ontology capture diagram showing the parameter binding of two sub-
sequent operations of the risk mapping service chain of Figure 6.3.

ADLGazetteer

RiskmapService

RiskMap

serv:makesAvailable

opera:isComposedOfGeoOperation

MakeGetMapRequest

opera:isComposedOfGeoOperation

BBoxCreate

opera:isComposedOfGeoOperation

UMN_WMS

opera:isComposedOfGeoOperation

Figure 6.5: Ontology capture diagram showing a risk mapping service chain mod-
elled with a ‘isComposedOf’ construct. It does not specify a control flow.
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in Figure 6.6. The boxes represent instances of OWL-S process concepts. Amongst

BBoxCreate

MakeGetMapRequest list:nil

Sequence_18

ControlConstructList_34

process:components

Perform_23

list:first

ControlConstructList_35

list:rest

UMN_WMS

ControlConstructList_36

Perform_25

list:first

ControlConstructList_37

list:rest

process:process list:rest

Perform_26

list:first

ADLGazetteer

process:process

Perform_24

process:process

RiskMapChain

process:composedOf

process:process

list:rest list:first

Figure 6.6: Ontology capture diagram showing a risk mapping service chain mod-
elled in OWL-S. In addition to the sequence control flow pattern shown in this
example, other patterns such as split and iterate are supported.

them are the geo-operations (ADLGazetteer, BBoxCreate, MakeGetMapRequest)
and supporting control constructs (Sequence, Perform, etc.). The postfix numbers
are automatically generated by the ontology editor. The sequence pattern can be
recognised by following the ’first-rest’ control flow as portrayed as a UML activity
in Figure 6.1. The ’first-rest’ control constructs have been illustrated in Figure 4.7.

6.3 Derived operations and ontology mappings

Derived operations are atomic or composite operations that are described in terms
of an OPERA-R class or other derived operations. They are contained in the
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OPERA-D ontology in a way that the ontology class opera:DerivedGeoOperation
serves as a placeholder for them. Derived operations may involve:

• Classes of another model (such as ISO19119 (Services)). These are estab-
lished by mappings of the type that is also used for the symbol and concept
ontologies in Section 5.3. Examples of such mappings are provided in Sec-
tions 6.3.1 through 6.3.3.

• Class definitions of actual operation implementations, established by service
descriptions as described in Section 5.6.1.

6.3.1 ISO 19119 mapping

A full mapping has been made between OPERA and the ISO 19119 (Services)
taxonomy of services (see Appendix G). In these mappings it is assumed that
each ISO 19119 service makes available one, possibly composite, operation. Some
examples are now explained. The mapping below has to be interpreted as: The
(composite) operation made available by the ISO19119 ImageGeometryModelCon-
versionService is subsumed by the Resampling class in OPERA.

iso19119:ImageGeometryModelConversionService v opera:Resampling

Note that the ISO19119 service may have other subsumption relationships with
concepts in other ontologies. The use of a mapping of this kind for reasoning is
discussed in Section 7.4.3. Mappings may also include composite operations:

iso19119:SamplingServiceSpatial v C

in which C is an ontological concept that describes the iterate control flow pattern
below (written here with the shorthand notation introduced in Section 6.2). How
such control flow may be described in DL is discussed in Section 6.4.5.

<Iterate>
opera:ExtractGeoInfoFromStream
opera:SelectByTopo

</Iterate>

The use of a mapping of this kind for reasoning is discussed in Section 7.3. In
some cases, the ISO 19119 services are defined with a mapping to another ISO
19119 service class, which has been mapped to an OPERA class already.
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6.3.2 Multiple ontology mapping

Mapping between multiple ontologies is an important asset for service discovery,
because:

• it allows to find matching services across models, and

• models become more rigidly defined, when they are interlinked.

Mappings with descriptions of commonly used operation types increases the reach
of the discovery. This section provides mapping examples of two domains with
commonly used operations, i.e., OGC services and mainstream proprietary GIS
products.

Mappings with OGC services

In addition to the mappings with ISO 19119 (Services), the OPERA ontology can
also be mapped to the OGC’s services model (OWS). As a design strategy, the
OGC services are mapped as subclasses of ISO 19119 classes and not as direct sub-
classes of OPERA classes. After all, ISO19119 classes have been already mapped
as subclasses of OPERA classes. Such a ‘subsumption chain’ is considered to be a
stronger ontological construction for reasoning purposes than a sibling construc-
tion (ISO19119 and OGC both subsumed by OPERA). The choice is justified,
because OGC’s service model is strongly related to the ISO model and is therefore
better represented by direct subsumption relationships. Another option would be
to make certain OGC classes equivalent to ISO19119 classes. However, by design,
ISO19119 are of a more general nature.

OGC Web Map Service OGC’s WMS can be mapped as follows:

ogc:WebMapService v iso19119:MapAccessService

OGC Web Feature Service OGC’s WFS can be mapped as follows:

ogc:WebFeatureService v iso19119:FeatureAccessService

OGC OpenLS The OpenLS specification is an effort to standardise the inter-
faces between the various types of LBS services and LBS clients. It defines abstract
data types (e.g., Address ADT) and defines the five core LBS service types together
with the request and response parameters for each service type. Below, the service
types are listed with a short description in italics, taken from [216] and a mapping
to ISO 19119 (Services), based on the more elaborated definitions in the OpenLS
specification:
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• Directory Service. An online directory to find the location of a specific or
nearest place, product or service.

ogc:OpenLSDirectoryService v iso19119:ProductAccessService (6.2)

• Gateway Service. A network-accessible service that fetches the position of a
known mobile terminal.

ogc:OpenLSGatewayService v iso19119:PositioningService (6.3)

• Location Utility Service (Geocoder/Reverse Geocoder). A network-accessible
service that transforms a description of a location, such as a place name,
street address or postal code, into a normalised description of the location
with a point geometry. The Location Utility Service does not have a direct
correspondence with a ISO19119 (Services) leaf class. Therefore a more de-
tailed mapping is needed. In the OGC ontology, the Location Utility Service
subsumes a Geocoder and reverse Geocoder:

ogc:OpenLSGeocoder v ogc:OpenLSLocationUtilityService (6.4)

ogc:OpenLSReverseGeocoder v
ogc:OpenLSLocationUtilityService

(6.5)

The first has a corresponding leaf class in ISO19119 (Services), but the latter
does not, so it may be allocated at a higher hierarchy level in the ISO 19119
class hierarchy:

ogc:OpenLSGeocoder v iso19119:GazetteerService (6.6)

ogc:OpenLSReverseGeocoder v
iso19119:GeoModelInfoManagementService

(6.7)

An alternative mapping can be created with OPERA:

ogc:OpenLSGeocoder v opera:LocSpat (6.8)

ogc:OpenLSReverseGeocoder v opera:SpatLoc (6.9)

In fact, the mapping represented by axiom 6.8 was already accomplished by
Axiom 6.6 and the Axiom (iso19119:GazetteerService v opera:LocSpat) in
Appendix G.
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• Presentation Service. A network-accessible service that portrays a map made
up of a base map derived from any geospatial data and a set of ADTs as
overlays.

ogc:OpenLSPresentationService v iso19119:MapAccessService (6.10)

• Route Service. A network-accessible service that determines travel routes
and navigation information between two or more points.

ogc:OpenLSRouteService v
iso19119:RouteDeterminationService

(6.11)

Mappings with functionality of proprietary GIS products Mappings be-
tween the ontologies described above and operations, made available in propri-
etary GIS products, some of which are listed in Section 2.5, can also rigidify
the existing ontologies and improve service discovery. The blueprints of a GIS
product (e.g., ESRI’s ArcObject UML model diagrams) and software documen-
tation may serve as a basis for these mappings. As an example, ESRI’s Ar-
cWeb Services provides a route finder service API, which can be mapped as sub-
class of opera:RouteOptimisation (opera:RouteOptimisation is defined in Appen-
dix C). In addition, it provides an interface for OpenLS, so it also subsumed by
ogc:OpenLSRouteService. A more detailed mapping is needed if one needs to de-
scribe the options that are provided by this service, i.e., the choice of shortest or
quickest route.

6.3.3 Definitions of actual operation implementations

In addition to service models such as OPERA and ISO 19119 (Services) we can
define service operation implementations as derived operation, similar to the ADL
Gazetteer description in Section 5.6.1 (Description 5.9). In the discovery process,
such derived operation serves to further tie existing ontology definitions. Further,
it can be used as example for users to specify their query in service discovery,
similar to the idea of query-by-example [294].

6.4 Matchmaking

Geo-service discovery involves the identification of service advertisements that
match a service request. Apart from behavioural aspects, matches are sought
between requested and advertised input/ouput parameters. Matchmaking may
involve service parameter concepts as well as data set concepts. Further, match-
making, as described here, is done in a semantic framework. The ontological
concepts and individuals involved are abstract representatives of the actual service
parameters and/or database entities. Despite the fact that ontologies are capable
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Figure 6.7: Semantic matchmaking provides conceptual links between information
models and may form an intermediate between a user query and a database query
or service execution. It does not query data directly in the database nor does it
invoke a service directly.

of also containing the concrete parameters and entities, they are not used for this
purpose here. Figure 6.7 shows that there needs to be a translation between a user
query and a query, posed to the knowledge base, and a translation of the result
of the latter to either a database query or a service invocation. The top-right box
and bottom-right box represent respectively the information and operation part
described in Section 5.1.1.

The following sections describe the methods that support the matchmaking
process. After introducing a notational convention in Section 6.4.1, different
matchmaking modes are introduced in Section 6.4.2. Methods for ontology rea-
soning are explained in the context of our semantic interoperability framework in
Sections 6.4.3 through 6.4.6.

6.4.1 The service descriptor, a shorthand notation

For further discussion, a shorthand notation is introduced for the descriptor of a
service, which comes in two forms:

Term 6.1 A concept-based service descriptor is an ontological concept indicated
with a capital C which (partially) describes characteristics of a service, such as
the input and output parameters of its operations and its workflow.

Partially means that the descriptor may not contain all characteristics of a service.
For example, C may be defined solely by Description 5.9 or by also including the
Role restriction 5.10.
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Term 6.2 An individuals-based service descriptor is an ontological individual in-
dicated with a lower case c which represents characteristics of a service, such as
the input and output parameters of its operations and its workflow.

Note that an individuals-based descriptor is indicated with a lower case c. c
represents the characteristics of the service by being linked to a set of individuals,
through role assertions. An example of such a set of linked individuals can be
found in Figure 5.15 (individuals are depicted by boxes with red edges).

If the service descriptor involves only input parameters or output parameters,
then the notation Cin respectively Cout is used for concept-based service descrip-
tors and cin respectively cout for individuals-based service descriptors.

6.4.2 Matchmaking modes

This section elaborates on the concept of matchmaking, applied to isolated services
or as part of a service chain. The shorthand notation introduced in Section 6.4.1
is used. In matchmaking, we distinguish between a requesting service descriptor
and advertised service descriptors. They are denoted as R respectively A for
concept-based service descriptors and r respectively a for individuals-based service
descriptors. During the matchmaking process, a requesting service descriptor is
matched with each of the advertised service descriptors.

The following four degrees of freedom for matchmaking are considered relevant
in the context of this thesis work:

• Matching with concept-based descriptors, with individuals-based descriptors
or with both.

• Matching by means of splitting concept intersections.

• Requesting for an isolated service, versus requesting a service as part of a
chain.

• Matching specific service characteristics (I/O parameters, control flow, or
overall class).

Their variations are orthogonal and a concept match is characterised by an option
out of each of the four degrees of freedom. The variations are described below.

Concepts versus individuals

Depending on whether we use concept-based service descriptors or individuals-
based service descriptors, there are four possible match types:

match (R,A) type I (between concepts)
match (R, a)) type II (between a concept and individuals)
match (r, A)) type III (between an individual and concepts)
match (r, a) type IV (between individuals)

(6.12)
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They are defined below.

• Match type I

match (R,A) is a function which takes as input a TBox (terminological part
of a knowledge base, see explanation in Section 4.2.1), a requesting concept
R and an advertised concept A, and returns one out of the following five
result types: Exact, PlugIn, Subsume, Intersection, Disjoint. These result
types are further discussed in Section 6.4.3.

• Match type II

match (R, a) is an instance checking function which takes as input a re-
questing concept R and an ABox (assertional part of a knowledge base, see
explanation in Section 4.2.1), and returns all the individuals a that are in-
stances of R.

• Match type III

match (r, A) is an instance checking function which takes as input an in-
dividual r (r represents a requesting service) and an ABox, and returns all
concepts A of which r is an instance.

• Match type IV

match (r, a) is a similarity function which takes as input an ABox, an indi-
vidual r (which represents a requested service) and an individual a (which
represents an advertised service), and returns a value as measure of similarity
between the two individuals.

Matches of type I are performed by Tbox reasoning. The other three match
types are performed by Abox reasoning. Differences between TBox and ABox rea-
soning have been elaborated upon in Section 4.5. The practical aspect of creating
definitions, in this case for services, plays an important role in the realisation of
(prototype) implementations. The creation of individual-based service definitions
makes use of an already defined structure of class definitions (including role asser-
tions) and is therefore less flexible, but principally more a matter of ‘filling in’ the
concepts with instances. Such experiences are described in Chapter 8. The specific
application of TBox and ABox reasoning is described in respectively Sections 6.4.3
and 6.4.4.

Splitting of concept intersections

Service descriptions are typically consisting of intersections of concepts, each of
which represents specific characteristics of a service, like its input parameters.
As we will see in Section 6.4.3, for matchmaking it makes sense to split such
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an intersection in its concept parts and match them individually. This approach
has been identified by [257] as query relaxation, in which specific variables of a
conjunctive query are removed from the query to target a specific match.

In this respect there are four types of matching. We denote a description
containing concept intersections as Ru or Au for respectively request and adver-
tisement. A partial description (not containing intersections) is denoted as Rpart

respectively Apart:

match (Ru, Au)
match (Rpart, Au)
match (Ru, Apart)
match (Rpart, Apart)

(6.13)

The above match types are all of type I. Similarly they can be written for concept-
based descriptions in match types II and III. For example, for a match type II we
can distinguish:

match (Ru, a)
match (Rpart, a) (6.14)

Isolated service versus chain

A distinction is made between (1) the evaluation of a single service in isolation
(from here on referred to as ‘isolated service’) and (2) a service that is part of a
chain (see a depiction of both in Figure 2.3). For searching an isolated service, a
requesting concept R should contain a role hasInputPar to specify the requested
input parameters and a role hasOutputPar to specify the requested output para-
meters. For searching a service that is part of a chain, the parameters of candidate
preceding or following services are matched with those of the target service. In
this case, a requesting concept R should contain a role hasInputPar to specify the
requested input parameters of a following service in the chain and a role hasOut-
putPar to specify the requested output parameters of a preceding service in the
chain. The requesting concept may make use of a partial description Rpart (as
introduced above) that contains only input or output parameters. As a notational
convention, we write a requesting concept Rpart with only input parameters as
Rin and one with only output parameters as Rout.

Matching specific service characteristics

The concept match may involve the testing of I/O parameters, control flow, or
ontological relations with an overall service class description. Control flow testing
is described in Section 6.4.5.
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6.4.3 TBox reasoning

A match of type I (between concepts) can basically have five result types. The
match is:

• Exact if R and A are equivalent concepts, formally R ≡ A. In terms of our
request, all individuals in advertised service concept A satisfy the requested
service concept R.

• PlugIn if R is a subconcept of A, formally R v A. In terms of our request,
there may be some (but not all) individuals in advertised service concept A
that satisfy the requested service concept R. For example, if our request is
a house, then an advertisement of a building is a PlugIn match.

• Subsume if R is a superconcept of A, formally A v R. In terms of our
request, all individuals in advertised service concept A satisfy the requested
service concept R. The difference with an exact match is that A is less general
(or: more specific) than R. For example, if our request is a building, then an
advertisement of a house is a Subsume match.

• Intersection if the intersection of R and A is satisfiable (or in Protégé
terms, consistent), formally ¬(A u R v⊥) For example, if our request is a
house, then an advertisement of an office is an Intersection match (if in the
ontology, the concepts of house and office are not disjoint).

• Disjoint if the intersection of R and A is not satisfiable (or in Protégé
terms, not consistent), formally (A u R v⊥). In other words, there are no
individuals in advertised service concept A that satisfy the requested service
concept R.

Reasoner tests

In the Protégé-Racer reasoner environment (software details can be found in Chap-
ter 8) match tests were conducted with a range of descriptions, each demonstrating
a particular interpretation of the reasoner. The followed approach describes geo-
information entities, similarly to what efforts in DL research [91, 168, 264] have
applied in other domains.

Test case 1: Matching partial descriptions.
A request R is created for searching a feature represented with a geographic coordi-
nate reference system (using latitude and longitude coordinates). As an example,
R is matched with an advertisement A of features represented by addresses:

match (Rpart, Apart) with

Rpart ≡ (∃symbol:hasReference.symbol:SC CRS LatLon)
Apart ≡ (symbol:Address)

(6.15)
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The reasoner infers that R is a sub class of symbol:GeometricObject. As sym-
bol:GeometricObject and symbol:Address are defined in the ontology as disjoint,
the reasoner classifies R and A as disjoint. In other words, there are no individuals
in the advertised concept A that satisfy the requested concept R.

Test case 2: Matching with concept intersections.

match (Ru, Au) with

Ru ≡ (symbol:Point) u
(∃∀symbol:hasReference.symbol:Projected)

Au ≡ (symbol:GeometricObject) u
(∃∀symbol:hasReference.symbol:UTM)

(6.16)

In this example, R has a coordinate reference system characteristic symbol:Pro-
jected that subsumes the symbol:UTM concept of A. Vice versa, the symbol:Geo-
metricObject of A subsumes symbol:Point of R. In a match with partial descrip-
tions we would discover these subsumption relationships but in a match with
descriptions containing intersections, we do not identify these subsumption rela-
tionships, we only observe that R and A intersect. A similar problem occurs with
one partial description and one description containing intersections:

match (Rpart, Au) with

Rpart ≡ (symbol:Point)

Au ≡ (symbol:Point) u
(∃∀symbol:hasReference.symbol:Projected)

(6.17)

In this case, a test will result in a subsumption A v R. Although a match
with solely partial descriptions would display the equivalence relation between the
‘Point’ role restriction of R and A, the above match ‘hides’ this equivalence.

6.4.4 ABox reasoning

ABox reasoning involves concept matches of types II, III or IV (see Formulas 6.12
in Section 6.4.2).

Type II (between a concept and individuals): Matches of this type have been
implemented in the prototype. The matching is performed by the RacerPro rea-
soner with the command (concept-instances R). The following example match
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searches for a subsequent operation to the ADLGazetteer operation, as discussed
in Section 6.1:

match (Rpart, a) (6.18)

where R represents the output parameters of the ADLGazetteer operation and a
is sought. R is defined as the query concept:

ADLGazetteerOut ≡
(∃ opera:hasInputPar.(∃ opera:hasParType.

(∃ opera:typeBijection.opera:OP Point))) u
(∃ opera:hasInputPar.(∃ opera:hasParType.

(∃ opera:typeBijection.
(∃ opera:hasReference.symbol:SC CRS LatLon))))

(6.19)

An example of an individual a that matches the query is BBoxCreate, and is
depicted in Figure 6.4.

Type III (between an individual and concepts): Matchmaking type III requires
all advertisements A to be specified as concept definitions and the request r to
be one of a set of linked individuals. A match of this type is performed with the
RacerPro reasoner command (individual-types r).

Type IV (between individuals): Matchmaking type IV can be performed by
comparing two individuals r and a as part of a set of linked individuals. This type
of matching has not been implemented in this research, due to time constraints.
However, some ideas for applying this match type are given below. A simple
example is provided in Figure 6.8.

In the figure, r is Point 7 as part of Point 7—LatLon 8 and a is Point 6 as
part of Point 6—LatLon 1. Point 6 is found to be similar to Point 7, because they
are instances of the same class (symbol:Point). A similar correspondence exists for
their coordinate reference systems (LatLon 1 and LatLon 8 ). The example match
applies to geographic information entities, but can also be applied to input and
output parameters of geo-operations. More complex similarity matches have to
take into account similarity functions, such as proposed in [178] and (by including
the instance types) [241].

6.4.5 Reasoning with control flow

This section describes how control flow is used in reasoning. We adopt the process
model constructs of OWL-S, as described in Section 4.7.1. A control flow is as-
sumed to be constituted of one or more of the following constructs: Sequence,
Split, Split+Join, Choice, Any-order, If-then-else, Iterate, Repeat-while, Repeat-
until. Knowledge about control flow can be valuable in service discovery. For ex-
ample, composite advertised services that expose their control flow, allow for more
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specific concept matches than advertisements that do not expose their control flow;
ditto for service requests. Control flow can be expressed in many different ways.
The two options of Section 6.2 (A simple OWL sequence (not based on OWL-S)
and one modelled with OWL-S) are elaborated below with the risk mapping chain
of Section 6.1.

Simple OWL sequence

Consider the Riskmap chain as a composite operation. Its control flow can be
written as a DL axiom as follows (only valid for sequence):

RiskmapOperation v

(∃ opera:hasSequenceStart.opera:ADLGazetteer) u

(∃ opera:hasSequenceStart.(
∃ opera:hasSequenceNext.opera:BBoxCreate)) u

(∃ opera:hasSequenceStart.(
∃ opera:hasSequenceNext.(

∃ opera:hasSequenceNext.opera:MakeGetMapRequest))) u

(∃ opera:hasSequenceStart.(
∃ opera:hasSequenceNext.(

∃ opera:hasSequenceNext.(
∃ opera:hasSequenceNext.opera:UMN WMS)))) u

(∃ opera:hasSequenceStart.(
∃ opera:hasSequenceNext.(

∃ opera:hasSequenceNext.(
∃ opera:hasSequenceNext.(

∃ opera:hasSequenceNext.opera:nil))))

(6.20)

The description does not contain value restrictions, because the role hasSe-
quenceNext has a value restriction ‘=1’ (see its definition in Section 6.2). This
means that an operation can only participate once in a hasSequenceNext rela-
tionship and the use of a ‘forall’ restriction in the above axiom would not make
sense.

The description can be used as advertisement or request concept (in the case
of a request, written with ≡ instead of v) in concept matches of type I, II or III.
Individuals in these matches are of the form as presented in Figure 6.3 and 6.4.

Note that each of the five parts of the above description represents a subsequent
operation. Obviously, a sequence construct of this kind is simple in nature, but
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io
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Figure 6.8: Ontology capture diagram showing matchmaking type IV: connecting
individuals representing two points.

has a verbose representation. However, a requesting concept does not necessarily
contain all five parts. For example, if our aim is to find a service with a gazetteer
as first operation, than only the first part is needed. A similar case occurs when
we search for an OGC Web Map Server at the end of the chain, then only the last
part of the description is needed.

Further, note that Description 6.20 assumes that each operation is defined as a
class in the ontology. If we want to search for similar operations as components of
the chain, then each requested operation can be described by its superclass, e.g.,
opera:ADLGazetteer becomes opera:LocSpat. A third option is to target individu-
als, e.g., the first lines of Description 6.20 become

(opera:hasSequenceStart 3 ADLGazetteer)

and the second axiom becomes

(∃ opera:hasSequenceStart.(opera:hasSequenceNext 3 BBoxCreate)

Composed of The simple construct opera:isComposedOf can be used for match-
making if only the component operations of a control flow are relevant in a request.
Again, one can specify single or multiple components. A single component request
is for example:

(∃ opera:isComposedOf.opera:ADLGazetteer)

OWL-S

In contrast to the simple control flow structures above, the more complex OWL-S
control flow structures provide more possibilities for reasoning, but also make the
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service description procedure and the reasoning process more complicated. OWL-
S expresses its control flow with a set of linked individuals (see Figure 6.6). A
requesting concept may search the whole or parts of the chain. As an example,
we will search for a partial sequence of an operation of type LocSpat (typically a
gazetteer operation), immediately followed by a bounding box creator operation.
This request can be formulated as follows:

R ≡

(∃ list:first (∃ process:process.opera:LocSpat)) u
(∃ list:rest (∃ list:first (∃ process:process.opera:BoundingBox )))

When concept matching type II is performed, the following instance will be
found (test performed with the RacerPro reasoner): ControlConstructList 34 (see
Figure 6.6). Obviously, we want to know to which service this instance belongs.
This can be done by tracing it to the instance a in R(a, b), with R being the
OWL-S role process:composedOf. Another possibility is to simplify the composition
information by neglecting the control flow and evaluating only the collection of
component operations, as in the opera:isComposedOf construct above. However, in
OWL-S such a construct is not available and to extract the component operations,
one has to navigate to them through the first-rest relations in the set of linked
individuals.

Single service discovery A single service, which may be a component of a
service chain, can always be discovered with a simple query (type II) of the form:

R ≡ opera:LocSpat

This will result in the discovery of, for example, the ADLGazetteer operation.
When an operation, for example ADLGazetteer, is part of a chain, than it is
modelled both as an instance of opera:LocSpat and of process:process. This ensures
that further inspection of the service reveals it is part of a chain. Such inspection
can be performed by querying the graph structure of which ADLGazetteer is a
part (see Figure 6.6).

6.4.6 Exploitation of ontology mappings

Mappings between ontologies can be used to discover a resource advertisement
defined in one ontology, with a request defined in another. It also enables the
discovery of advertisements over multiple ontologies. Mappings can involve infor-
mation concepts (see Section 5.3) and operation concepts (see Section 6.3).

Examples of the use of mappings in reasoning can be found in Sections 7.1
and 7.4 for respectively geo-information and geo-operations.
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6.5 Summary and reflection

This chapter has discussed the application of the semantic interoperability frame-
work of Chapter 5 for the purpose of describing services and service types and
reasoning with them.

When translating textual definitions of service types into ontological concepts,
some deficiencies in these definitions became apparent. Some examples were shown
for the OGC and ISO 19119 service taxonomies. Although the geo-service tax-
onomy, contained in the ISO19119 (Services) standard provides a useful generic
breakdown of service classes, it falls short as a single basis for a geo-service ontol-
ogy, due to the following reasons:

1. The semantics of several classes are not well-defined.

2. Several subsumption relations between classes are not identified.

3. Several classes show a large overlap.

4. For some classes, its granularity is too coarse to distinguish common sub-
operations sufficiently, for example with respect to spatial overlay and mea-
surement.

Reasoning and design patterns of service descriptions

Reasoning is a combined play between a request and advertisements and there
are many choices to be made to construct them in a way that makes sense for
a reasoner. One example is the choice between existential quantifiers and value
restrictions. The existential quantifier is the most common role restriction that is
used in OWL ontologies [118]. In some cases it does not give enough ‘restrictive
power’ and therefore, another common pattern is the conjunction of an existential
quantifier and a value restriction (∃∀...).

Matchmaking modes

Matchmaking can be performed in different modes, as discussed in Section 6.4.2.
Class-based requests and advertisements can be described with either concept in-
tersections or with partial descriptions (split concepts with no intersections). Par-
tial descriptions allow for a more specific matching of data/service characteristics,
but it requires the splitting of data/service descriptions into parts, which is, if done
manually, a tedious process. Further, in the ontology editor, used in this research,
the entry of individual-based descriptions is much easier than creating class-based
descriptions. A summarising typification of the the different matchmaking modes
is provided below:

• Type I (between requesting and advertised classes): The match results are
represented by the class relations ‘exact’, ‘disjoint’, ‘subsume’, ’plug-in’ and
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‘overlap’. In case of descriptions containing concept intersections, the latter
three result types have to handled with care, because they ‘shield’ positive
matches of atoms.

• Type II (between requesting class and advertising individuals): Matchmak-
ing is done by requesting the reasoner to find all individuals that are in-
stances of the requesting class. In the current prototype setup, requests are
defined as partial descriptions. As advertisements outnumber the requests,
this is a convenient mode for entering descriptions (see the last remark in
the introduction of this bullet list)

• Type III (between requesting individual and advertised classes): This type
is similar to type II, but has an inconvenience in the tedious entering of
class-based data/service advertisements.

• Type IV (between requesting and advertising individuals): Allows for con-
venient advertisement and request entry, but is limited with respect to the
possibilities of the current reasoning implementation. The current reasoning
process does not provide options to compare graphs of linked individuals.
This may be solved by using combinations of reasoner commands and ‘nav-
igate’ the graph in such way that detailed comparisons are possible. This
has not been implemented in the current prototype.

Relaxed matching

The fact that ontologies deploy class subsumption and intersection, facilitates the
use of relaxed matching. Information and services may be described imprecisely
by using rather general concepts instead of specific ones. This is useful when re-
quests and/or advertisements cannot be formulated in detail. In this context also
simplified control flow is possible with the help of the constructs hasSequenceNext
and isComposedOf, compared to the more complex OWL-S control flow struc-
ture. However, the mixed use of the three types of control flow models requires a
translation between the descriptions formulated in either model.

Application value

Matchmaking has shown to be applicable for input/output parameter type match-
ing and for matching of control flow patterns. Example applications are further
worked out in the use cases of Chapter 7.



Chapter 7

Use case implementations

In this Chapter, the use cases, as presented in Section 2.6, are further elaborated
upon by applying the methods described in Chapter 5 and 6. Each of the use
cases discusses different aspects of the developed semantic interoperability frame-
work and the reasoning about its concepts. Use is made of the GeoMatchMaker
prototype, which is integrated with the Protégé ontology editor and the RacerPro
reasoner and described in Chapter 8. For all uses cases, the assumption is made
that users, who interrogate the ontologies, are either able to write DL-axioms or
they are equipped with a query client that translates query formats to DL-axioms.
Obviously, the use cases are implemented with a significant involvement of human
decision making (a high degree of human-in-the-loop). In this context, the empha-
sis of this chapter is to demonstrate where semantic service descriptions can play
a role in the process of semantic service chaining. The sections 7.1 through 7.4
correspond to the introductions given in respectively the Sections 2.6.1 through
2.6.4.

7.1 Riskmap NL

The overall goal of this use case is to improve the interoperability of the risk map to
allow service extensions and integrated analysis over multiple information models.
As introduced in Section 2.6.1, the key person in this use case scenario is Oscar,
a member of the Riskmap team, responsible for carrying out a feasibility study.

7.1.1 Extension of the Riskmap chain1

First, the risk map is converted into an OGC Web Map Service (see a screenshot of
the implemented prototype service in Figure 6.2). Now consider a scenario where
this is the only service available and we want to extent it with the functionality

1Parts of this section also appear in [165].
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City name

?

UMN Web Map Service

Map image

URL

Figure 7.1: UML activity diagram representing the Riskmap service chain with
the first part to be discovered.

of a gazetteer service as presented in Section 6.1. However, the preceding services
are not directly available and have to be searched for. The elements of the service
chain and the aimed output are depicted in Figure 7.1. Oscar proceeds as follows.
He requests for one service that converts a city name address to a bounding box
with the following request:

Request ≡ Rin uRout (7.1)

with

Rin ≡ (∃ opera:hasInputPar.(∃ opera:hasParType.
(∃ opera:typeBijection.opera:OP CityNameAddress)))

Rout ≡ (∃ opera:hasOutputPar.(∃ opera:hasParType.
(∃ opera:typeBijection.opera:OP BoundingBox)))

(7.2)

As the above request does not give any result, Oscar tries again with a less re-
strictive request that will give a result on either an operation’s input or output
parameter:

Request ≡ Rin tRout (7.3)

This query results in a number of gazetteer operations and a number of operations
that create a bounding box around a point, see Figure 7.2. None of these single
operations can convert a city name address to a bounding box, but a combination
of two can, because the output of any of the three gazetteers fits the input of any
of the bounding box creators. The gazetteer operations are ESRIPlaceFinder2,
LatLonLocator 3 and ADLGazetteer4 (see also Section 5.6.1). A choice between

2http://www.arcwebservices.com/v2006/livesamples/placefinder/index.jsp
3http://www.xmethods.net/ve2/ViewListing.po?key=uuid:F90B2ACA-8C99-9F04-21E7-

A455DEC05F1E
4http://middleware.alexandria.ucsb.edu/client/gaz/adl/index.jsp
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Figure 7.2: Output of the GeoMatchMaker prototype: All service operations are
found that have an address as input or a point geometry as output.

the three gazetteer services can be made by a match refinement or by evaluating the
actual services through their demo URL’s. The next step involves the evaluation
of the bounding box creator, which is not elaborated here. After selecting the
BBoxCreate service, there is one service left to complete the chain. This is a
service that must build a GetMapRequest from the bounding box. Information,
such as feature selection and coordinate system metadata, which are needed by the
GetMapRequest, are also needed as input to this service. The chain is now finished
and looks as the one already discussed in Section 6.1. As WSDL documents are
available for each of the services in the chain, it is possible to invoke the complete
chain of services via a WSBPEL document, that contains the concrete composition.
The execution of the WSBPEL document is done by the Oracle BPEL manager5.
The actual implementation of concrete composition and execution of the chain has
been described in [165] and is based on work of Granell [97].

7.1.2 Exploitation of ontology mappings

In a next stage, Oscar is going to test how the actual mappings between the
NEN3610, TOP10NL and Riskmap ontologies can support the integrated analysis
over multiple geo-information models. In the light of the Riskmap NL use case,
suppose a service has to be created that supports the checking of land use plans
against safety regulations. Such service may show a map with risk information

5http://www.oracle.com/technology/products/ias/bpel/index.html
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Figure 7.3: Output of the GeoMatchMaker prototype: Top10Hotel is found as a
match with the RiskMapHotel query.

and topographic information, with more detail than the public risk maps described
earlier. An end-user may now request to see hotels in both Riskmap and TOP10NL
models. A direct ‘hotel’ mapping between the models does not exist. However,
two other mappings, i.e., TOP10NL-NEN3610 (see Section 5.3.2) and Riskmap-
NEN3610 (see Section 5.3.3) have been created and indirectly map Riskmap with
TOP10NL. The query below expresses a request in the Riskmap model:

R ≡ riskmap:Hotel

Due to the mappings between the models, GeoMatchMaker finds all the individ-
uals of top10nl:Hotel as a query result (see Figure 7.3; in the prototype only one
individual (TOP10Hotel) has been stored and is therefor the only one found). Note
that the query result is a result of the knowledge base and not a direct database
query (see the explanation of Figure 6.7).

7.2 Emergency 112

The use case, described in Section 2.6.2, is worked out as follows. During the
emergency, information is coming in via sensors and messages that people send
via their mobile phone. An emergency information system (EMIS) is used by
Kora, the information engineer, for storing and retrieving such information. A
knowledge base is used to infer relationships between registered information items
(which can involve data and services).
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7.2.1 Annotation

A connection between EMIS and the knowledge base is created through semantic
annotations of incoming information items. This is performed in three ways (see
their principles in Section 4.6.3):

• Annotation method 1: Adding semantic tags to the incoming information
item. This is done when the items are likely to be reused in another semantic
framework.

• Annotation method 2: Registering information item references in the
ontology. This is done for performing ontology reasoning instantly.

• Annotation method 3: Registration mapping; if an annotation is stored
in a third source, separate from, but holding identifiers for ontology and
information source.

In this use case implementation, method 1 is preferred over the third option of reg-
istration mapping, because the first can be implemented instantly with currently
available tools. The latter would necessitate an additional interface for the ontol-
ogy to read the mappings. The followed annotation procedure is described below
with two examples, one for a sensor message and one for a human observation.
They are first described with method 1 and then with method 2.

An example of an incoming sensor message schema is given below (taken from
[217]).

<om:observedProperty>

<swe:CompositePhenomenon gml:id="UserDefinedID" dimension="4">

<gml:name>UserDefinedComposite</gml:name>

<swe:component xlink:href="urn:ogc:data:time:iso860"/>

<swe:component xlink:href="urn:ogc:phenomenon:location:EPSG:4326:longitude" />

<swe:component xlink:href="urn:ogc:phenomenon:location:EPSG:4326:latitude"/>

<swe:component xlink:href="urn:ogc:def:phenomenon:OGC:1.0.30:WindSpeed"/>

</swe:CompositePhenomenon>

</om:observedProperty>

The above sensor information snippet is a serialisation as specified in the OGC
Sensor Observation Service specification [217]. The example is part of the response
of a sensor to the GetObservation request as described in the same specification.
Kora annotates the sensor information with the wssem tags of WSDL-S, described
in Section 5.6.2. The annotation of method 1 contains a declaration of ontology
namespaces and a set of semantic tags in the body of the sensor message.

Annotation method 1: Adding semantic tags to the information item

First, the following ontology namespace declarations are placed in the header of
the sensor source file among the already existing namespaces:
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xmlns:wssem="http://www.ibm.com/xmlns/WebServices/WSSemantics"

xmlns:Ontology0="http://geoserver.itc.nl/lemmens/owl/symbol.owl"

xmlns:Ontology1="http://geoserver.itc.nl/lemmens/owl/riskmap.owl"

Second, semantic tags are placed in the sensor message body. The tags are marked
below with boxes:

<om:observedProperty>

<swe:CompositePhenomenon gml:id="UserDefinedID" dimension="4">

<gml:name>UserDefinedComposite</gml:name>

<swe:component xlink:href="urn:ogc:data:time:iso860"/>

wssem:modelReference="Ontology0#DateTimeCode" />

<swe:component xlink:href="urn:ogc:phenomenon:location:EPSG:4326:longitude"

wssem:modelReference="Ontology0#Point","Ontology1#LatLon" />

<swe:component xlink:href="urn:ogc:phenomenon:location:EPSG:4326:latitude"

wssem:modelReference="Ontology0#Point","Ontology1#LatLon" />

<swe:component xlink:href="urn:ogc:def:phenomenon:OGC:1.0.30:WindSpeed"

wssem:modelReference="Ontology1#WindSpeed" />

</swe:CompositePhenomenon>

</om:observedProperty>

The following spoken message is received from an human observer and entered
as written text in the emergency information system:

‘I am at the Stationstraat and I see smoke coming from East direction’.

The annotation below shows the use of the wssem:modelReference construct in
a form that slightly differs from the form defined in the WSDL-S specification in
[4]. We apply it here as an XML element instead of an XML element attribute.

xmlns:wssem="http://www.ibm.com/xmlns/WebServices/WSSemantics"

xmlns:Ontology0="http://geoserver.itc.nl/lemmens/owl/symbol.owl"

xmlns:Ontology1="http://geoserver.itc.nl/lemmens/owl/riskmap.owl"

<message>

<wssem:modelReference="Ontology1#Observer"> I </wssem> am at

<wssem:modelReference="Ontology0#Address"> Stationstraat </wssem> and I see

<wssem:modelReference="Ontology1#HazardousSubstanceMoveble"> smoke </wssem>

coming from

<wssem:modelReference="Ontology1#WindDirection"> East direction </wssem>

</message>

Annotation method 2: Registering source references in the ontology

The Riskmap ontology contains place holders for incoming emergency information.
For example, each sensor observation is stored as an instance of the riskmap:-
SensorObservation class (see Figure 7.4). The figure shows that SensorObserva-
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Figure 7.4: Annotation of sensor observations in the Riskmap ontology. The figure
shows the XML references of one observation in the Protégé ontology editor.

tion 12 contains XML references on the sensor’s location (latitude, longitude), its
measured quantity (WindSpeed) and the timestamp of measurement (time iso860).
These references are based on OGC URNs that appear in the GetObservation
request for this sensor. Figure 7.5 shows for one reference (‘latitude’) how it is
registered to the ontology concepts Point, CoordinateSet and LatLon; all instances
of concepts in the SYMBOL ontology. Finally, Kora can see from the reference to
the XML structure (see Figure 7.6) where the XML structure can be found.

7.2.2 Information retrieval

Kora uses the knowledge base of registered emergency information to infer new
concept relations:

• She searches for specific information that has been registered to concepts in
the knowledge base with a concept match type II, for example:

R(T ) v (∃ containsXMLReference.(∃ refersToConcept.riskmap:WindSpeed))

• She searches the web for other sensors with similar information to the ones
already registered, based on their semantic annotation.

• She searches for a service that simulates the progression of the gas plume,
based on the sensor information. This service is then chained with traffic
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Figure 7.5: Annotation of sensor observations in the Riskmap ontology — detail
1. The figure shows the ontology concepts to which the XML reference ‘latitude’
refers. The postfix numbers are id-numbers, generated by the Protégé ontology
editor.

Figure 7.6: Annotation of sensor observations in the Riskmap ontology — detail
2. The figure shows the reference to the XML structure that defines the sensor
content information. It is stored in the ontology as a URL in a rdf:comment field.

services that provide detour information to in-car navigation systems. The
service discovery and composition is done through the method, described in
the use case in Section 7.1.1.

• For the dispatch of aid workers, the accuracy of locations is an essential
property. Kora uses the reasoner to classify all registered emergency infor-
mation in the knowledge base, based on the accuracy of their address labels.
For example, some addresses contain street name and house number, others
contain only street name. The classification is done through the classifica-
tion of concepts, which is depicted in Figure 7.7. The address elements for
the four most specific address types are indicated in Table 7.1. The address
type at the bottom is the most specific. The reasoning applied above can be
considered a kind of ‘spatial reasoning’.
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Figure 7.7: Classification of address classes, performed with the RacerPro reasoner
classification procedure. Left: asserted hierarchy (before classification). Right:
inferred hierarchy (result of classification).

Address concept Elements

symbol:AD NLCityNameAddress City name

symbol:AD NLStreetNameAddress City name, street name

symbol:AD NLStreetHouseAddress City name, street name, house number

Table 7.1: Address elements for three types of Dutch addresses. The AD bi-
alpha prefixed concepts refer to prescribed address classes, specified in ISO 19133
(LBSNav) [138].

Because all incoming information is registered with a time stamp, a full play-
back of knowledge registration is possible when an aftermath analysis is performed.
This considerably contributes to the establishment of lineage for this application.

7.3 Research Net

This section describes the implementation of the use case as a continuation of
Section 2.6.3. The use case involves a researcher named Jody who creates a service
chain for the purpose of satellite image processing and a researcher named Jeff who
reuses this service chain.

7.3.1 Phase 1: Service provision

In this first phase, Jody has the role of service developer, as depicted in Figures 2.2
and 3.9. For creating the services, she uses three SPOT images, representing
respectively the periods during the dry season, a moderately severe flood and
a severe flood (see Figures 7.8 and 7.9). In this phase, it is assumed that the
processing services have been identified and that they are directly available. As
Jody wants to describe her method and wants to make it available to others,
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Figure 7.8: SPOT color composite of
moderately severe flood, taken from [175]

Figure 7.9: SPOT color composite of se-
vere flood, taken from [175]

she creates meta-information for each component service and for the composite
service (a sequence). As each service contains only one operation, this is done
by referencing each service to a class in the OPERA ontology. The result is an
OWL-S document that describes the service chain semantically. The subsequent
services are described below:

1. Jody uses a band rationing service to distinguish land-water boundaries.
Dividing SPOT band 3 by band 1 is a known method that accomplishes
this. This service can be classified as opera:CrossCalculate in the OPERA
ontology.

2. A slicing service is used to classify the water and land pixels in each SPOT
image. The result for the moderately severe flooding period is shown in
Figure 7.10. This service is a subclass of OPERA’s opera:Classify.

3. With a cross service, the three land-water grid coverages are now combined
into one, by creating a class for each combination of land and water attributes
(see Figure 7.11). The cross service is classified as opera:CrossCalculate in
OPERA.

4. Finally, Jody uses a service called ConvertToClasses to show the impact
areas of two flooding periods. She selects the class with attribute landdry*-
watermfl*waterfl to represent a moderately severe flooding period and the
class with attribute landdry*landmfl*waterfl to represent a severe flooding
period (respectively the second and third class from the top of the legend in
Figure 7.11). The service is a subclass of opera:Group
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Figure 7.10: Result of the slicing service for the moderately severe flooding period,
taken from [175].

With an annotation tool (in this case the OWL-S editor, described in Chapter 7),
she imports the OPERA ontology and enters the service chain definition below:

EvaluateFlood ≡ C

in which C is an ontological concept that describes the control flow pattern below:

<sequence>
BandRationing : opera:CrossCalculate
Slicing : opera:Classify
Cross : opera:CrossConcatenate
ConvertToClasses : opera:Group

</sequence>

Depending on the publication option (see the three options in Section 2.6.3), Jody
creates service groundings as well. So far, Jody has applied the principle of trans-
parent service chaining, as described in Section 3.3.2. Now, she is going to make
the flood analysis available to another user in different modes, i.e., allowing a user
to (1) see a single map, (2) perform opaque chaining and (3) perform translucent
chaining. These three options are implemented as follows.

Option 1: An OGC Web Map Service (WMS) showing the end result.

• Discovery: The meta-information, describing this WMS, is materialised as
an OWL document with the following items:



172 7. Use case implementations

Figure 7.11: Result of the cross service. An attribute class is formed for each
combination of land and water attributes of the three periods (dry, moderate
flood, severe flood). Figure taken from [175].

– End result meta-information (OWL constructs with references to OPERA,
SYMBOL and concept ontologies)

– Lineage meta-information (OWL-S control flow constructs)

• Execution: Link to the WMS in the form of a URL (GetMap request).

Option 2: A link to the satellite images, implemented by an OGC Web Coverage
Service (WCS) [208] and a link to the (composite) EvaluateFlood service.

• Discovery: The meta-information, describing these services, is materialised
with an OWL document for each service with references to OPERA, SYM-
BOL and concept ontologies. In addition, the EvaluateFlood service is de-
scribed by OWL-S control flow constructs.

• Execution:

– A link to the WCS in the form of a URL (GetCoverage request)

– A link to the EvaluateFlood service in the form of a URL, that invokes
the service chain. This mode is referred to as opaque service chaining,
see Section 3.3.2.

Option 3: A link to the satellite images and meta-information to create a service
chain.

• Discovery: The meta-information is the same as in option 2.
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• Execution:

– A link to the WCS in the form of a URL (GetCoverage request)

– A link to a WSBPEL document, containing the control flow of the ser-
vice chain and WSDL descriptions for each of the component services in
the chain. This mode allows for translucent chaining, see Section 3.3.2.

7.3.2 Phase 2: Service consumption

Jeff is a user that would like to use a flood evaluation service. In this second
phase of the use case scenario, he has the role of application user, as depicted
in Figures 2.2 and 3.9. To find the composite service, Jeff first formulates the
following query that holds a key characterisation of its functionality:

R ≡ opera:CrossCalculate u
(∃ opera:hasInputPar.(∃ opera:hasParType.

(∃ opera:typeBijection.opera:OP ISO19115 MDBand)))
(∃ opera:hasOutputPar.(∃ opera:hasParType.

(∃ opera:typeBijection.opera:OP ISO19115 MDBand)))

(7.4)

Jeff is able to discover this service, independent of the option that Jody has
chosen. After all, the OWL-S document with chain information is made available
in each option. By investigating the meta-information in more detail (following
the single service discovery procedure, described in Section 6.4.5), Jeff discovers
that the band rationing service is part of a service chain, called EvaluateFlood (see
Figure 7.12). Depending on Jody’s publication option, Jeff is now able to view her
end result (option 1) or to perform the chaining himself with other data (options
2 and 3).

7.4 Travel Google

This section describes the implementation of the use case, as discussed in Sec-
tion 2.6.4. The use case makes the following assumptions:

• A considerable number of geo-information resources (data sets and services)
have been described, based on one or more ontologies, and these descriptions
have been published in a registry.

• Ontologies that contain travel concepts, similar to the ones described in
Section 5.3.4 are available on the web.

• Ontologies are discoverable through their registered meta-information. A
Semantic Web search engine facilitates their discovery and enables the in-
spection of their ontological structure and capabilities.
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ControlConstructList_9

Perform_5

list:first

52N_BandRationing

process:process

Sequence_8

process:components

52N_EvaluateFlood

process:composedOf

Figure 7.12: Part of the OWL-S service chain that shows the band rationing service
as first part of the composite flood evaluation service.

The key person in this use case is Eddie who has a meeting in the United
Nations headquarters in New York. He would like to stay in a hotel in southern
Manhattan and wants to travel with public transport between his hotel and UN as
preparation for his trip. He wants to know the restaurants in the neighbourhood
of his hotel and wants to have a printed map with this information for walking
around downtown.

Eddie first searches for a suitable ontology that facilitates the description of
geo-information and services in the travel domain. He uses a Semantic Web search
engine (see Section 4.6.4) to find ontologies and service descriptions containing the
concepts hotel, restaurant and travel. In a first round he selects four ontologies :

• TravelOntology6

• OnToGeo ontology7

• SUMO8

• Wordnet9

which he is going to evaluate on their suitability for the task at hand.

6http://learn.tsinghua.edu.cn/homepage/2003214945/travelontology.owl
7http://geoserver.itc.nl/lemmens/owl/ontogeo.owl
8http://reliant.teknowledge.com/DAML/Mid-level-ontology.owl
9http://xmlns.com/wordnet/1.6/
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Figure 7.13: Cluster map, generated by the AutoFocus software, that shows the
relationships between three search terms (rounded boxes) that appear in the On-
ToGeo ontology. The spheres in each cluster represent the ontology concepts and
properties that match one or more of the search terms. A number indicates the
number of items found.

7.4.1 Ontology inspection

During a further inspection of the ontologies with the AutoFocus tool see Chap-
ter 7), Eddie finds out that the SUMO and Wordnet ontologies are generic ontolo-
gies that do not provide relationships between the hotel and restaurant concepts in
a travel domain. The Travel ontology turns out to be designed for describing travel
reservations in the travel agency domain and is too limited to describe potential
geo-resources. He selects the OnToGeo ontology, because it provides constructs
to describe features and their spatial relationships in travel information and ser-
vices. This means that the ontology facilitates resource descriptions, semantically
rich enough to hold meaningful advertisements to a more detailed service request.
The cluster map, generated by the AutoFocus software10 in Figure 7.13, shows
the essential relationships between three key terms in the OnToGeo ontology, that
clarify the above mentioned ontology property. In the figure, each search term
is indicated by a rounded box, ontology concepts and properties are represented
by spheres. These spheres are clustered in subsets that match the specific search
term. In this particular ontology representation, a term match means that an
OnToGeo concept or property contains the (textual) term in its definition. The
figure shows that in the OnToGeo ontology there are:

• Concepts that contain operation elements and spatial association elements.
10AutoFocus is discussed in Section 8.2.9
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• Concepts that contain operation elements and point-of-interest elements.

• One concept that contains operation elements and spatial association ele-
ments and point-of-interest elements. However, this concept is a probe class
for testing purposes that does not actually belong to the core model of the
ontology.

Ruling out this last concept, even the first two items give an indication of the
potential capability of the ontology.

7.4.2 Creation of service request

Using the OnToGeo ontology, Eddie creates a service request that seeks for ser-
vices, showing the spatial relationships between hotels, restaurants and public
transport hubs. The query is translated into a request (type II) of the form:

R ≡
((∃ opera:hasInputPar.

(∃ opera:hasParType.symbol:SpatialAssociationType)) t
(∃ opera:hasOutputPar.

(∃ opera:hasParType.symbol:SpatialAssociationType))) u
(∃ opera:hasInputPar.(∃ opera:hasParType.

(∃ opera:typeBijection.opera:OP Travel Hotel))) u
(∃ opera:hasInputPar.(∃ opera:hasParType.

(∃ opera:typeBijection.opera:OP Travel Restaurant))) u
(∃ opera:hasInputPar.(∃ opera:hasParType.

(∃ opera:typeBijection.opera:OP Travel TransportHub)))

(7.5)

Request 7.5 makes use of the following assumption: Operations that either use or
create a spatial association role have the capability of spatially relating geographic
features. Examples of such operations are those in the categories opera:DistanceBased,
opera:Topology, etc. (see Appendix D).

To relax the request 7.5, a more general request is formulated as well, to ‘catch’
services that may not have categorised their points of interest. The last three
axioms of Request 7.5 are then interchanged with:

(∃ opera:hasInputPar.(∃ opera:hasParType.
(∃ opera:typeBijection.opera:OP Travel PointOfInterest))) (7.6)
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7.4.3 Exploitation of ontology mappings

To be more specific, the request is refined by adding a partial request for a route
planner. Eddie is familiar with the OGC OpenLS specification and expresses his
request accordingly. This is translated by the query client into the following axiom:

R v ogc:OpenLSRouteService (7.7)

Relaxing the request Assuming that the advertised services are all defined in
the ISO 19119 ontology (Services), the mapping between the OpenLS and 19119
ontology enables the discovery of services, ‘close’ to Eddie’s request. Note that
it requires to relax the request first to the superclass of ogc:OpenLSRouteService,
otherwise it will not target all advertisements in the ontology. Figure 7.14 shows
the mappings that serve this purpose. The ‘unrelaxed’ request 7.7 will only find
ESRIArcWebRoute. Once we relax the request to the superclass iso19119:Route-
DeterminationService as follows

R v iso19119:RouteDeterminationService (7.8)

the reasoner will also find the other advertisements shown in Figure 7.14. This
also includes the advertisement a that is defined in yet another ontology O which
is mapped to the ISO 19119 (Services) ontology. The advertising instances are
elaborated in the next paragraph.

opera:RouteOptimisation

iso19119:RouteDeterminationService

GoogleMaps 
(Advertisement)

ogc:OpenLSRouteService 
(Request)

Map24 
(Advertisement)

ESRIArcWebRoute 
(Advertisement)

NYITM 
(Advertisement)

Operation instance a
(Advertisement)

Operation class C 
(ontology O)

Figure 7.14: Venn diagram representing the ontology mapping context, used in the
discovery of a route service. The figure shows the containment of advertisements
for the ontology classes of OPERA, ISO 19119 and OGC. The detailed mappings
between these classes are described in Section 6.3.2.

Another use of ontology mapping had in fact been used in request 7.5. The role
opera:hasInput.symbol:SpatialAssociationRole is defined in OPERA-R for a subset
of its operations. Due to the mapping between ISO 19119 (Services) and OPERA-
R, a subset of ISO 19119 operation concepts inherit this role (see Figure 7.15). As
a consequence, the role can be used in matchmaking between concepts in either
ontology.
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opera:RouteOptimisation

iso19119:RouteDeterminationService

opera:hasInput (inherited)

symbol:SpatialAssociationRole

opera:hasInput

Figure 7.15: Venn diagram representing the ontology mapping context, used in the
discovery of a service that has the capability of spatially relating geographic fea-
tures. The example in the figure shows that the class RouteDeterminationService,
defined in the ISO 19119 taxonomy, inherits this characteristic from its mapped
superclass in the OPERA ontology.

7.4.4 Service description analysis and service selection

With the request 7.8 in the previous section, Eddie discovers four services:

1. GoogleLocal11 (including the GoogleMaps functionality)

2. ESRI ArcWeb Services-Routing (ESRIArcWebRoute) finder12

3. Map2413

4. New York Interactive Transit Map (NYITM)14

Eddie derives from the service descriptions that the ArcWebRoute service com-
plies to the OpenLS standard. However, it is available as an API (with most of
the requested options) and as a limited demo application. As Eddie wants quick
results, the API is not suitable. The demo has no point-of-interest input option
and suffices neither. The GoogleLocal and Map24 services are quite similar in
functionality. However, the GoogleLocal service description shows two options
that Eddie likes: (1) map output can be overlaid with satellite images and (2)
point coordinates are accepted as input to display on the map.

From the advertisements, Eddie finds out that service 1 and 3 show subway
stations, but do not provide route planning on the subway network (they provide
street route planning only). Service 4 provides subway route planning, but only
shows a map background, no other points of interest, such as the hotel of departure.
Service 4 cannot be chained with 1 or 3 through data streaming. However, from
the same advertisement it is clear that they all contain a map background, so they

11http://local.google.com/
12http://mapapps.esri.com/aws routing/index.cfm
13http://www.us.map24.com/
14http://www.brail.org/transit/nycgoogle.html
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can be compared and ‘chained’ visually. Eddie would like to compare all three
services and performs his task with as follows:

1. In the ‘point-of-interest’ option of Map24 he selects the category ‘Lodging’
and city ‘New York’. He selects the Cosmopolitan hotel (see Figure 7.16).

2. He uses Map24’s ‘proximity search’ option to locate surrounding restaurants.

3. In Google Local he zooms in on Southern Manhattan and searches for ‘hotel’.
He selects the Cosmopolitan hotel (see Figure 7.17).

4. He searches for surrounding restaurants with the key words ‘cosmopolitan
hotel restaurants’.

5. He uses Google Local to locate the United Nations head quarters.

6. He uses the NYITM application to find the right subway line, see Fig-
ures 7.18 and 7.19. The application requires the user to enter start location
and destination by mouse-clicking on the map. Eddie estimates his loca-
tions by looking at the locations resulting form the previous applications.
In Figure 7.18, the start location is indicated by a triangle-in-balloon, the
destination by a square-in-balloon. The in-between balloons indicate sub-
way stations. The service also provides textual information with subway line
identifiers (not displayed in the figures).

Figure 7.16: Map features of the Map24 application. Box 1 is the selected hotel.
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Figure 7.17: Map features of the Google maps application. The Cosmopolitan is
the selected hotel.

Figure 7.18: Subway route between hotel
and conference centre, calculated by the
NYITM application.

Figure 7.19: Detail of the NYITM appli-
cation, that borrows functionality from
Google Maps. The insert shows the
United Nations head quarters.
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7.5 Summary and reflection

This chapter has provided relevant examples for the typical use of the semantic
interoperability framework as presented in Chapter 5 and the reasoning described
in Chapter 6. The examples have demonstrated the following:

• Based on the tests described in Section 7.1.2 and the discussion in Section 6.4
(section introduction) we observe that machine ontologies can be seen as
useful extensions to XML schema (on which for example TOP10NL and
NEN3610 are based) when it comes to concept integration. Ontologies can
also be used as data repositories, but, for simple data carrier purposes XML
documents and schema will suffice (see also a related discussion in [256]).

• Semantic service descriptions can successfully assist a human user in discov-
ering a geo-service in isolation or as part of a service chain. This discovery
is based on the services’ type (as part of a taxonomy), their input/output
parameters, their validity region/application domain (imposed by tightly-
coupled geodata), and their internal workflow. A limitation in the discovery
process is formed by the fact that it still significantly depends on the human-
in-the-loop.

• The applied reasoning is based on the constructs, provided by OWL-DL. No
additional spatial hierarchies have been created to facilitate spatial reason-
ing, except for the structuring of address types as locations. This implies
that the spatial matching of feature instances has not been possible. As
this research assumes that instances of real-world objects (e.g., Louvre and
Paris, see the research scope in Section 1.2) are not part of the ontology, this
does not pose a problem. However, for the case of matching service validity
regions —imposed by tightly-coupled geodata— spatial reasoning would be
useful. The inability to do so forms a limitation in the presented framework
and prototype.

• In a combined research effort which has been described in Section 7.1.1 it
is shown15 that the results of the GeoMatchMaker prototype in the form
of abstract compositions can be successfully used as input to the process
of concrete composition and execution. The ‘glue’ between abstract and
concrete composition is provided by semantic annotation.

• Ontology mappings are crucial for the discovery and interoperability of ser-
vices across different application domains. The creation of these mappings
is not trivial and needs expert knowledge. Semi-automatic methods are re-
quired to assist domain experts in creating consistent and complete mappings
between large ontologies.

15The actual results are described in [165].
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Chapter 8

Implementation of prototypes:
OnToGeo and
GeoMatchMaker

The interoperability framework described in Chapter 5 has been implemented in an
OWL-ontology that is from here referred to as the OnToGeo prototype ontology.
OnToGeo integrates the namespaced concepts of the SYMBOL, feature concept
and OPERA ontologies.

OnToGeo is created with a selection of currently available software tools, which
is referred to as the workbench. These tools are also used for ontology analysis and
reasoning. Some of the software tools were adapted and integrated for build-
ing the GeoMatchMaker prototype, which was developed in this thesis work for
matchmaking purposes. The combination of the OnToGeo prototype, the work-
bench tools and the GeoMatchMaker prototype are from here referred to as the
prototype environment.

Figure 8.1 shows a general overview of the components of the prototype envi-
ronment. The dashed boxes indicate the major usage of the components:

• Semantic framework creation, updating and inspection; introduced in Chap-
ter 5.

• Geo-information matching and service chaining (discovery and abstract com-
position); introduced in Chapter 6.

Both usages were also elaborated upon in the use case implementation of Chap-
ter 7.

Conceptual design considerations of OnToGeo have been discussed in Chap-
ter 5. The current chapter discusses practical design and implementation consider-
ations (Section 8.1). Central in the software part of the prototype environment is

183
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2005 Rob Lemmens (ITC)

Protégé
GeoMatchMaker
(Java Eclipse)

UML Component diagram

Plug-ins
OnToGeo

 OWL ontology

Semantic framework creation, updating and inspection

Geo-information matching and service chaining (discovery and abstract composition)

read/write

Auxiliary 
programs

«uses»

Figure 8.1: UML component diagram showing an overview of the main prototype
components.

the Protégé ontology platform. It is used with several of its plug-in software mod-
ules and auxiliary programs. An example of the latter is the RacerPro reasoner.
An overview of the software tools is given in Section 8.2; the GeoMatchMaker pro-
totype is discussed in Section 8.3. Procedures followed for the creation of service
descriptions in the prototype environment are discussed in Section 8.4.

OWL-S OWL-S is considered to be an important asset to the OnToGeo and
GeoMatchMaker prototypes. However, the prototypes have been designed in such
a way that they can also function independently of OWL-S and their ties with
OWL-S are clearly visible. These ties are discussed in Sections 8.1 and 8.3.

8.1 Practical design and implementation issues of
OnToGeo

The OnToGeo ontology has been designed according to the Manchester House
Style [237] (see Section 4.3). Operations are implemented as primitive classes (see
the remarks in Section 5.5.3). Figure 8.2 shows part of the asserted hierarchy
of OPERA with the asserted conditions for its LocSpat operation, which is the
implementation of Description 5.4 in Section 5.5.3.

8.1.1 Implementation of OWL-S

OWL-S has been integrated with OnToGeo through the linking of operation iden-
tifiers and operation input/output parameters, as described below.
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Figure 8.2: Screenshot of the Protégé ontology editor, showing the asserted class
hierarchy of OPERA (left window), the asserted conditions of the LocSpat opera-
tion (bottom-right window) and a short explanation of its functionality (top-right
window).

Operation identifiers

Operation identifiers have been constructed both in opera:GeoOperation (in OPERA)
and process:Process (in OWL-S). If the operation is modelled as a class, than it is
modelled as subclass of both

• a named OPERA operation type from Appendix C or a derived operation
type.

• a subclass of the OWL-S process:Process class: either process:AtomicProcess,
process:CompositeProcess or process:SimpleProcess.

If the operation is modelled as an individual, than this individual has two
class types as listed above, at the same time. Dual class types are created in the
OWL-DL individuals tab by the Add named type option.
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«Ontology»
NEN3610

«Ontology»
TOP10NL

Imports

«Ontology»
Symbol
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«Ontology»
OWL-S

«Ontology»
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«OWL file»
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Imports

Imports

Imports

Figure 8.3: Import pattern of separately-stored ontologies in the prototype. The
example shows how Riskmap service descriptions make use the ontologies. Service
descriptions of another type than Riskmap may use another import pattern, e.g.,
by importing NEN3610 directly and bypassing TOP10NL.

Operation input/output parameters

Another link between OPERA and OWL-S is established through the dual class
typing of their input and output parameters. An individual that represents an
input parameter instantiates both opera:InputSymbol in OPERA and process:Input
in OWL-S. This is done similarly for output parameters. In this way other OWL-S
constructs, such as the grounding, can use the individuals, created in OPERA.

8.1.2 Distributed ontologies and namespaces

There are two basic ways to store and manage the ontologies used in the prototype.
First, they can be stored in a single OWL file, as is currently done. Preferably,
the ontologies have different namespaces, so that their concepts remain unique.
Once this file is loaded into a knowledge base (e.g., Protégé), the concepts of all
ontologies are fully editable. The advantage of this approach is that changes in each
of the concepts is performed in the knowledge base and relationships with other
concepts are updated instantly. Second, the ontologies can be stored separately.
In an environment where the ontologies are shared among different applications,
this separated storage allows for ontology maintenance at the source and clearly
shows their dependencies. Each application that wants to use an ontology has to
import it. Often, imported ontologies import ontologies themselves, so they are
imported in chains (see Figure 8.3). This may imply that some ontologies are
imported more than once (e.g., the symbol ontology in the figure). In practice this
should not be a problem, as long as these ontologies are identical.

To avoid some of the problems involved with versioning, the Protégé ontology
environment does not allow changes to the concepts of imported ontologies nor
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to the relations that they already participate in. Actions that are allowed with
imported concepts are the addition of subclasses, superclasses, role creation, etc.

Storing multiple ontologies in a single OWL file is useful when the ontologies
are developed integrally and subject to frequent change. Once they are more sta-
ble, and their independency is an issue, they may be stored separately. Ontology
separation is still a tedious job and is not well supported by current ontology
tools. The inverse process, ontology conjunction, is easier, for example by edit-
ing/merging the OWL files directly in the XML code.

Either way, the use of prefixes for ontology ‘domains’ is considered a good
practice. In OnToGeo, all derived service classes get the default prefix opera, unless
they belong to a specific domain, such as openls or ogc. Individuals normally do
not get a prefix.

8.2 Workbench tools

This section discusses the tools that have been used as part of the prototype
environment. Sections 8.2.1 through 8.2.3 describe the Protégé ontology editor and
its plug-ins. Sections 8.2.5 through 8.2.8 comprise tools involved in the reasoning
process. The tool described in Section 8.2.9 is used for ontology exploration.

8.2.1 Protégé core and OWL plug-in

Protégé is an open source ontology editor that supports OWL-based ontology
development and inferencing. Protégé is java-based and is extensible via plug-ins
[149]. Around seventy plug-ins have been developed and published for a wide
variety of purposes, e.g., ontology export formats, visualisation, reasoning, etc.
Some of them have been included in the standard installation procedure of Protégé.
In fact, OWL support itself is provided through a plug-in, see Figure 8.4; Protégé
has its own internal representation mechanism for ontologies and knowledge bases,
based on a metamodel, which is comparable to object-oriented and frame-based
systems [149]. In the prototype environment discussed in this thesis, Protégé
version 3.1 Build 195 and Build 207 were used, with respectively OWL plug-
ins version 2.1 beta Build 275 and version 2.1 rc Build 283. Protégé and its
OWL, Ontoviz and OWL-S editor plug-ins have been extensively used in this
thesis project. The most relevant details of their functionality is discussed in
the current section. Examples of their usage are highlighted in Chapter 7 and
in the remainder of the current chapter. For further documentation on Protégé,
the reader is referred to [118, 149] and the reference materials at the CO-ODE
website1.

1http://www.co-ode.org/resources/reference/
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Figure 8.4: The extension mechanism of Protégé. Figure taken from [149].

8.2.2 Ontoviz plug-in

Ontoviz [252] is one of the Protégé ontology visualisation plug-ins. It has been used
extensively in this project due to its possibility to visualise classes together with
individuals and properties (DL-roles) and the flexibility of class and individual se-
lection. This makes it a powerful tool for ontology inspection and documentation.
The figures that have been produced with OntoViz in this thesis are identified as
‘ontology capture diagrams’. An example of such a diagram is Figure 4.4.

Ontoviz has been developed by Michael Sintek at the German Research Center
for Artificial Intelligence (DFKI).

8.2.3 OWL-S editor plug-in

The OWL-S editor is designed for easy and intuitive OWL-S service development
[67]. The control flow of services, described in the OWL-S process model, can have
a rather complex structure. The OWL-S editor provides a graphic editor to easily
construct control flows. In addition, the plug-in provides an interface to create
OWL-S groundings and import WSDL files. In the prototype environment, the
OWL-S editor is considered to be a powerful tool for abstract service composition.
It was this functionality and the wish to create an integrated discovery-composition
environment that led to the integration of the OWL-S editor and the GeoMatch-
Maker prototype. The details of this integration are discussed in Section 8.3.
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8.2.4 OWLDoc plug-in

OWLDoc is a Protégé plug-in, distributed by the CO-ODE project2, that creates
Java Doc3 style documentation for OWL ontologies. OWLDoc creates for each
ontology element (class, individual and role) a small HTML file with the charac-
teristics of that element. For example, for each class it shows its local class hierar-
chy. All elements are hyperlinked to the ones they have an ontological relationship
with. This facilitates the exploration of the ontology through a web browser as a
stand-alone client, which is very useful for sharing its meta-information over the
web. Figure 8.5 shows an example output of OWLDoc.

8.2.5 Reasoning through DIG interface

Protégé can be connected with a reasoner through the DIG interface, which is a
standardised XML interface to Description Logics systems developed by the DL
Implementation Group (DIG) [21]. Protégé has several commands it can send to
through the DIG interface. This functionality is here referred to as the Protégé
DIG reasoning commander. It entails the following functions for checking the
entire ontology (function group 1):

• Check consistency (‘? .’ menu option): checks the entire ontology for unsat-
isfiable concepts. In the Protégé class window, all unsatisfiable concepts are
marked red.

• Classify taxonomy (‘C .’ menu option): checks the entire ontology for un-
satisfiable concepts and implicit subsumption relationships between concept
names. In the Protégé class window, all unsatisfiable concepts are marked
red and two additional windows are opened with respectively the inferred
class hierarchy and an overview of concepts, moved by the reasoner.

• Compute inferred types (‘I .’ menu option): Computes the inferred types
(classes) for the individuals in the ontology. The results are displayed in the
OWL-DL individuals tab, distributed by the CO-ODE project4

It provides functions for each concept (function group 2):

• Check concept consistency (‘? .’ menu option): see similar function in func-
tion group 1. The results are displayed in a temporary result window.

• Compute individuals belonging to class (‘I .’ menu option). Note that this
function is not the same as the one with the same icon in function group 1.
The results are displayed in a temporary result window.

2http://www.co-ode.org/downloads/
3http://java.sun.com/j2se/javadoc/
4http://www.co-ode.org/downloads/
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Figure 8.5: Output of OWLDoc for the TOP10NL ontology (see Section 5.3.2).
Exploration of the ontology in a web browser is facilitated through hyperlinked
ontology elements.



8.2. Workbench tools 191

• Get inferred superclasses (‘v .’ menu option): computes the classes that
subsume this class. The results are displayed in a temporary result window.

and a function for each individual in the ontology (function group 3):

• Compute types (‘T .’ menu option): computes the inferred types (classes) for
the individuals in the ontology (similar to the I . menu option in function
group 1). The results are displayed in a temporary result window.

8.2.6 RacerPro

RacerPro 5 is a knowledge representation system that can be used for reason-
ing with ontologies. RacerPro and alternative reasoners have been introduced in
Section 4.5.1, under ‘Tools’.

RacerPro implements the description logic ALCQHIR+ , also known as SHIQ
[233]. RacerPro can directly read OWL-Lite and OWL-DL documents and rep-
resent them as TBoxes and ABoxes in DL knowledge bases [108, 287]. The only
restriction for OWL-DL is that RacerPro does not support nominals (individual
names expressed in class descriptions). RacerPro provides numerous functions for
managing the knowledge base and reasoning with its TBoxes and ABoxes. These
functions are classified as follows [232]:

• Knowledge base management functions: initialisation of TBoxes and ABoxes,
OWL document import, etc.

• Knowledge base declarations: creation of concepts, individuals, roles, disjoint
concepts, etc.

• Reasoning modes: functions for changing the reasoning mode, for example,
to set unique name assumption6.

• Evaluation functions

– Queries for concept terms: checking of class subsumption, disjointness,
etc.

– Role queries: checking of role subsumption, transitivity, domain, range,
etc.

– TBox evaluation functions: classify TBox, check coherency, etc.

– ABox evaluation functions: checking of Abox consistency, etc.

– ABox queries: Checking role relations between individuals, checking
instantiation relationship between concept and individual, etc.

5RacerPro stands for Renamed ABox and Concept Expression Reasoner Professional
6By default RacerPro assumes no unique name for each individual, which means that two

named individuals could be the same or different, unless explicitly stated by the model.
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• Retrieval

– TBox retrieval of: taxonomy, all sub/super classes of a concept, all
sub/super roles of a role, etc.

– ABox retrieval of: all concepts of which an individual is an instance, all
individuals that are instances of a concept, role assertions in which an
individual participates, etc.

All these functions can be called through a LISP interface but RacerPro also
acts as a server, providing these functions through a TCP interface and an HTTP-
based standard DIG interface (see Section 8.2.5) for connecting client programs.

Further, Racerpro provides a recently developed API for expressing specific
queries on the knowledge base. This API is called nRQL, not to confuse with an
RDF query language. nRQL can be seen as an expressive ABox query language
that implements a subset of the OWL-QL query language[287]. nRQL’s func-
tionality shows an overlap with that of the reasoning functions listed above. For
example, the RacerPro function (concept-instances R(T )) (see Section 6.4.4) re-
turns the same result as the nRQL query (retrieve (?x) (?x R(T ))). nRQL has not
been implemented in the prototype. Although not investigated, it is expected that
inclusion of nRQL functionality in the prototype will increase its expressiveness.
The version of RacerPro used in this thesis project is 1.8.1 2005-06-29.

8.2.7 JRacer

JRacer is a Java software library that provides Java methods for creating client ap-
plications to the RacerPro server TCP socket interface [107]. Each JRacer method
represents a RacerPro function as discussed in 8.2.6. The RacerPro function re-
quests and responses are sent as booleans or strings through the socket interface.
In this thesis project, the JRacer API version 2 has been used to implement rea-
soning functionality in the OWL-S editor plug-in of Protégé (see Section 8.3). This
version of JRacer is the version, originally developed by Jordi Alvarez7.

8.2.8 RICE

RICE (RACER Interactive Client Environment) [54] is a software program that
provides a graphical user interface to RacerPro. It lets a user to invoke all RacerPro
functions by typing or pasting them in a request window and displays RacerPro’s
reply in a separate window. It makes use of the JRacer API. Although RICE is
not capable of programming multiple RacerPro requests and was not designed for
integration in other software, it is very suitable for testing single concept requests.
It is used accordingly in the prototype environment (Version 1.2 Build 36: April
11, 2004). RICE has been developed by Ronald Cornet at the department of
Medical Informatics, Academic Medical Center, University of Amsterdam.

7A newer version makes now part of the RacerPro software distribution and is named JRacer
1.8.
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8.2.9 AutoFocus

AutoFocus [2] is a software tool for the exploration and search of information stored
in electronic documents . A search is performed by entering search terms similar
to common web search engines. The software produces a list of relevant documents
and for each one it lists the most significant terms found, which can be used for a
refinement of the search. In addition it creates a cluster map, that shows graphical
clusters of documents that contain the search term entered. When more than one
search term is entered, the documents are also clustered for each combination of
terms. In this so called guided exploration, a user can interpret the significance
of multiple terms in the document repository. AutoFocus supports several file
formats, such as MS-Word and HTML, both on-line and locally stored. In the
prototype environment, AutoFocus has been deployed together with OWLDoc (see
Section 8.2.4) to explore ‘foreign’ ontologies. OWLDoc has been used to generate
HTML files for each class and property of such ontology. Then AutoFocus was used
to earmark particular ontology elements and visualise their relationships in order
to get an overview of the scope8 of the ontology. This method is also proposed for
the inspection of the OnToGeo ontology by third parties, as demonstrated in the
Travel Google use case in Section 7.4. Figure 7.13 shows an example of the cluster
map generated in this use case.

8.3 GeoMatchMaker, an integrated prototype

The GeoMatchMaker prototype has been developed to perform ontology editing
and service chaining in one, integrated software application. It has been developed
in the Eclipse Java developing environment. Eclipse9 is an open source software
development platform, which is extensible through a plug-in mechanism [123]. It
is particularly renown for its excellent Java development tools. The development
of GeoMatchMaker entailed the modification of the OWL-S editor of SRI Inter-
national by providing it with a connection to the RacerPro reasoner and a simple
user interface to interact with the reasoner. The prototype application is built in
Eclipse from modified source code of the OWL-S editor and Java jar files of the rest
of the Protégé software. By compiling the source files in this way, GeoMatchMaker
behaves like Protégé, but with additional functionality.

8.3.1 Functional parts

Figure 8.6 shows the components of the prototype. The functional parts of Protégé
are indicated with boxes in the Protégé component box. Protégé uses an OWL
parser to import and export OWL documents. Communication with the RacerPro
reasoner is done in two ways:

8The scope of an ontology has been defined in Section 4.1
9http://www.eclipse.org/
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Figure 8.6: UML component diagram showing the GeoMatchMaker prototype with
implemented software components.

1. Via the HTTP-based DIG interface.

2. Via TCP-based JRacer calls in the augmented OWL-S editor.

The actual reasoning is performed on a knowledge base, that is temporarily created
by RacerPro and filled by Protégé’s reasoning commander (see Section 8.2). The
RICE software is used for checking purposes and manual testing of the reasoner.

Figure 8.7 shows the relationships between the augmented OWL-S editor and
JRacer at java class and package level. The methods Check and SearchSimilar of
the java class CheckWithRacer are invoked by buttons in the OWL-S editor GUI.
They form placeholders for the implementation of algorithms that call JRacer
Methods (that for their part call RacerPro functions). For all the experiments re-
ported in this thesis, the method conceptInstances is used in type II ABox queries.
The option of a relaxed query (see its discussion in Section 8.3.3) has been imple-
mented with the conceptParents method. Figure 8.8 shows the Eclipse workbench
used for the implementation and executions of the java classes. The left-hand
window of the workbench contains the source packages and Java Archive (jar)
files files used in the application. The top-middle window contains part of the
source code of the CheckWithRacer.java class. The bottom-middle window shows
a test run with the OnToGeo ontology and the right-hand side window shows the
methods and properties of the CheckWithRacer.java class.
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Figure 8.7: UML class diagram showing the essential class and package relations
that augment the graphic user interface of the OWL-S editor by customisable
reasoning capabilities. Only the most important Java classes and methods are
displayed in the diagram.
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Figure 8.9: UML communication diagram showing the compilation process of the
GeoMatchMaker prototype software. It includes in the build-path: (1) the adapted
source code of the OWL-S editor and (2) the Java Archive (jar) files of the Protégé
software and its other plug-ins.

8.3.2 Compilation of Java code

An executable of GeoMatchMaker is built with a combination of source files and
Java Archive (jar) files, as indicated in Figure 8.9. The executable is a java jar
file (Protege.jar) that is used in the experiments discussed in Chapter 7.

8.3.3 Usage

The workflow of a typical experiment is presented in Figure 8.10. Note that the
components in the figure are the same as in Figure 8.6. After reading the OWL
document ontogeo.owl (step 1), a semantic query is formulated as a requesting
concept R in step 2. This involves two substeps:

1. Creating a probe class with appropriate conditions

2. Creating an individual with the same name, as instance of the process:Query
class. The latter is a class that is added to the OWL-S service model as
depicted below:

service:ServiceModel

process:Process

process:AtomicProcess

process:CompositeProcess

process:SimpleProcess

process:Query

In step 3, the ontology is loaded in the RacerPro knowledge base by invoking
any of the ‘group 1’ commands of the Protégé DIG reasoning commander. In step
4, the query is run by selecting the query instance of step 2.(see the red-boxed
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Figure 8.10: UML communication diagram showing the workflow of a semantic
query in the prototype.

process name in Figure 8.11) and subsequently selecting the newly created ? .
menu option in the OWL-S editor’s process window (see the red-boxed button in
Figure 8.11). The JRacer command call invokes the corresponding RacerPro func-
tion (step 4.1) and RacerPro’s response is captured (step 5) as a string (containing
one or more ontology elements, in this case individuals). In step 5.1, the query
result is displayed in a separate window (the central window in Figure 8.11). The
window shows the following items

• The selected request. In fact, this can be any request specified as a concept
in the ontology, but considered the purpose of the prototype, it will involve
in practice a request for geo-information or for a geo-operation.

• The ontology elements (in this case individuals) found as instances of the
requesting concept.

• Suggestions for a relaxed request. This is a rudimentary implementation by
providing the superclasses of the originally selected request, which can be
used to specify a new request in step 4.

In step 6, the ontology (with additional probe class) may be stored again as
OWL document. In addition, Figure 8.11 shows the rest of the OWL-S editor GUI.
When selected, a composite service is shown by the editor as graph (right-side
window). The menu bar of the visual editor’s middle window contains diamond-
shaped buttons that are used for the creation of the OWL-S control flow elements,
such as sequence (S ) and Repeat-until (Ru).
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8.3.4 Exploitation and embedding

The OnToGeo and GeoMatchMaker prototypes have been embedded in an inte-
grated approach, by combining them with another prototype, under development
by Granell [97, 98]. This prototype, referred from here as Integrated Component
Designer, supports concrete composition and execution of services. Figure 8.12
shows the integrated architecture of the combined prototypes as also described in
[165]. It combines the user contexts of Figures 2.2 and 3.9 and implements the
service chaining process as depicted in Figure 3.10. OnToGeo serves the interop-
erability between different processes as it is used for (1) WSDL annotation, (2)
discovery and abstract composition and (3) concrete composition. Workflow doc-
uments form links between GeoMatchMaker, Integrated Component Designer and
the workflow engine. New composite services that are created in the Integrated
Component Designer, are fed into the registry, ready for use in newly defined tasks.
The thick arrows in the figure indicate the workflow performed by an application
user. In this case it shows the result of the workflow discussed in Section 6.1.

2005 Rob Lemmens (ITC)

GeoMatchMaker
(Java Eclipse)

UML Component diagram

OnToGeo
 OWL ontology

Service discovery 
and abstract 
composition

Service concrete 
composition

Service execution

Web service 
registry

Workflow 
document 
(OWL-S)

Workflow 
document 

(BPEL)

Integrated 
Component Designer

(Java Eclipse)

Service 
developer

Workflow 
engine (Oracle)

Annotated 
WSDL

reads
writes

Application 
user

‘Enschede’

published in

creates

uses
Uses Uses

points to

composite service created as

writesreads reads

Semantic 
service 

description composite service created as

reads

Figure 8.12: Integrated architecture for service chaining. Figure adapted from
[165].

8.3.5 Limitations

The JRacer methods used in the prototype are limited to conceptInstances and
conceptParents. Algorithms that implement these and other JRacer calls in a
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Figure 8.13: Implementation in Protégé of the concept request of Section 7.1
(Description 7.3).

sequence or other control flow are deemed very useful and their realisation is fairly
straightforward in the prototype architecture that has been realised in this thesis
work. Such algorithms may involve methods to solve more advanced queries and
allow for ‘ontology navigation’. However, they have not been implemented yet in
the prototype.

8.4 Creating service descriptions

8.4.1 Individual-based descriptions

The creation of instances is done in the instance browser of Protégé. Protégé
provides a mechanism that lets the user enter only an appropriate role assertion,
constraint by the range of the role. It allows to enter ‘nested’ role assertions, by
‘chaining’ individuals. This nesting is effectuated by nested windows (one for each
individual) in the user-interface.

8.4.2 Class-based descriptions

A concept that is intended as request for a concept match is created as subclass
of (1) ontogeo:GeoOperationQuery if it models the parameters of a geo-operation
or (2) ontogeo:ProbeClass in all other situations. Figure 8.13 shows the repre-
sentation of a concept request in Protégé with two necessary & sufficient blocks.
Individuals are returned that satisfy either of the two blocks. The first block shows
the implementation of a nested concept condition. Figure 8.14 shows the use of a
union construct in a concept request with one necessary & sufficient block.

In Protégé, individual-based descriptions are more easy to create than class-
based descriptions, because the user is directed by forms, based on the correspond-
ing class definitions. Obviously, it depends on the mode of matchmaking (type I,
II, II or IV) which kind of description is appropriate.
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Figure 8.14: implementation in Protégé of the concept request of Section 7.4
(Description 7.5 with 7.6).

8.5 Summary and reflection

This chapter has described the implementation aspects of the OnToGeo and Ge-
oMatchMaker prototypes.

The Manchester House style (which is introduced in Section 4.3) provides useful
guidelines for consistent ontology creation. However, two remarks are made below
with respect to the ontology building process in this research:

1. Disjointness between concepts (which is elaborated upon in Section 5.5.3)
was only used where needed. In some cases disjointness does not appropri-
ately represent the intended semantics.

2. Domain and range restrictions (introduced in Section 4.2.1) were considered
carefully, but did not pose a problem in the ontologies at hand.

The prototype environment has proved to be sufficient to demonstrate the use
cases. However, the tools are not yet mature enough to be deployed instantly in
practice. The following limitations of the work bench tools can be identified:

• The lack of support for extracting and copying parts of the ontology to other
files (the Prompt plug-in did not provide satisfactory results).

• Protégé uses a Jena parser for importing and exporting OWL files. The
order of OWL constructs is different, every time an OWL file is exported. In
addition, modules of constructs, combining multiple role restrictions, may
be found scattered around the OWL file. This does not pose a problem with
Protégé’s import, but it does with the import in RacerPro. This the reason
for using the method of loading the ontology directly from Protégé in the
knowledge base of RacerPro.

• The current prototype environment uses Protégé as an ontology editor, which
has a user-friendly interface for entering individuals by means of forms. For
class-based definitions, Protégé provides syntax checking, but the creation
of nested role restrictions cannot considered to be user friendly. In addition,
the creation and implications of multiple axioms in a class definition is not
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intuitive for a typical developer of geo-information sources that wants to
enter meta-information. This definitely requires a more user-friendly menu-
driven interface. Finally, Protégé is subject to improvement, which could
help the development of the prototype development. This concerns amongst
others, its OWL import/export method, ontology extraction/copy facilities
and ontology visualisation.

The integrated architecture for service chaining as presented in Figure 8.12
(Section 8.3.4), is prototypical for a basic semantic infrastructure (see its definition
in Section 4.6) and is proposed as such by this research.
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Chapter 9

Conclusions and
recommendations

We start this last chapter of the thesis by recapturing the overall objective of this
research as stated in Section 1.2:

The general objective of this research is to provide solutions for the
computer-aided integration of distributed heterogeneous geo-information
and geo-services, based on their semantics, to support on demand geo-
processing.

The research puts an emphasis on the formal modelling of semantics, because the
reasoning about the meaning of geo-information content and geo-service function-
ality is essential in geo-information integration and service interoperability. Yet,
these semantic modelling techniques have not penetrated in current geo-application
development and thus forms a challenge for future software implementations.

With this focus, the remainder of this chapter starts with a summary of the
most important observations made in this research. It serves as a bridge between
the summary and reflection sections in each chapter and the final conclusions in
Section 9.2. The main contributions of this research are summarised in Section 9.3.
Section 9.4 addresses key issues that play a role in the deployment of the proposed
semantic interoperability framework. The chapter ends with recommendations for
further work.

9.1 Summary and reflection

Solutions to overcome heterogeneity conflicts between geo-information sources
have shifted from bi-lateral to multi-lateral contracting. Open interface specifi-
cations, endorsed by OGC, and a rigid geo-information model in the ISO 19100
series of standards, have contributed to the success of this shift (see Chapter 2).

205
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Current issues that still hamper the interoperability of geo-services lie in the fact
that contracts are often only loosely defined at the semantic level by referring
informally to the concepts used. This so called semantic heterogeneity can be
approached by formalising contracts and by making them machine accessible, so
that software-aided processes can help to resolve heterogeneity conflicts. Making
services semantically interoperable is an important prerequisite for information
sharing in today’s networked society.

This research has embarked upon such formalisation, by firstly analysing ab-
straction models for information and processes (see Chapter 3) and then translat-
ing existing submodels of ISO into machine ontologies (see Chapters 4 and 5). The
representation was done using the Web Ontology Language (OWL). A satisfactory
model still did not exist for modelling geo-services. This was developed, based on
a set of common operations in GIS, reported in pertinent literature, software man-
uals and the ISO 19119 (Services) taxonomy. The ontologies were integrated in
such a way that they form a semantic interoperability framework for expressing
geo-information and geo-service descriptions.

The formalisation of a conceptual model can lead to many different OWL
representations of the same model. This is due to the freedom we have in OWL
(and Description Logics) to represent our concepts. Several literature resources
provide design patterns as examples of ‘good design practice’ (see Section 4.3). The
design of ontologies used in this thesis has been following the ‘Manchester House
Style’ as closely as possible (see Section 8.1). The research has given explanations
for the various design choices and alternatives.

The semantic interoperability framework, developed in this research, has been
used for creating geo-information/service descriptions and to perform matchmak-
ing between them (see Chapter 6). This has been done by applying existing
Semantic Web techniques and adapting tools where necessary. Chapter 7 has de-
scribed the use cases in which all of the above has been tested. The software tools
that have been used have been described in Chapter 8.

A final reflection needs to be made on the limitations of the research. Ulti-
mately, the task of a geo-information user is solved in a fully automated process
that analyses the task, then matches it with several solutions, ranks them and
finally presents them to the user (or provides it to a software agent that takes im-
mediate action). Such a scenario requires adaptive task models and the simulation
of combinatory modular solutions (read: services) and seems only implementable
on the short/medium term in a closed problem space with not too many para-
meters. Most of the current approaches (including the method adopted by this
research) assume the presence of a human in the loop, who is capable of taking
care of parts of the reasoning process.
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9.2 Conclusions

This section provides final conclusions, starting with the main and general con-
clusion, followed by answers to the research questions and conclusions on specific
topics.

9.2.1 Main conclusion

The application of Semantic Web technology forms a promising approach for im-
proving the interoperability of geo-services. This research has demonstrated that
the geo-information models used (based on existing ISO models and a newly devel-
oped geo-operation model) lend themselves well to translation into formal, machine
accessible, ontologies. The ontologies have proved to be mappable and suitable as a
basis for creating semantically enriched meta-information for geo-information and
geo-services in a semantic interoperability framework. Finally, basic matchmaking
has been successfully applied in use case scenarios involving data set integration
and service chaining. The limitations of the current prototype environment are
formed by the constraints in (1) the user-interfaces, (2) the flexibility of the rea-
soning implementation and (3) the completeness of mappings between domain
ontologies (e.g., ‘Travel’ and ‘TOP10NL’), all of which are thought to be sur-
mountable.

9.2.2 Answers to research questions

The research questions listed in Section 1.2 appear below with their answers.

1. What are the requirements of on demand geoprocessing?

The background to answer this question has been provided in Chapter 2. In
conclusion, on demand geo-processing requires:

• Software and data to be modular and services (as a realisation of soft-
ware and data) to be sufficiently generic to support different tasks.
The ‘size’ of the implementation of a module depends on factors in the
provider-consumer market, amongst which the demand for reusability
of the service.

• The availability of service meta-information based on commonly agreed
rules for service characterisation. Loosely-coupled systems need to be
self-descriptive.

• Machine-supported reasoning about service meta-information.

• Interoperability at all levels (syntactic, structural and semantic). The
available service meta-information and reasoning should make it possi-
ble to identify if such interoperability requirement is met.

• Services to be readily available for execution.
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2. What are the key problems in making geo-services interoperable and what
solutions are currently available?

These issues have been addressed in chapters 2 through 4. The key problems
are summarised below together with their solutions:

• Heterogeneity. Section 2.2 has shown that the interoperability between
services is hampered by heterogeneity issues at the syntactic, struc-
tural and semantic level. Heterogeneity can be overcome by contracts
(system communication agreements) at each of these levels. Semantic
heterogeneities may be apprehended by informal or by formal (machine
accessible) contracts. The latter allow for resolving the heterogeneities
by machine reasoning. Currently, the common approach to establish
multi-lateral contracts is by using OGC specifications and ISO 19100
standards.

• Informality of contracts. OGC specifications and ISO 19100 standards
implement formal contracts on the syntactical and structural level, but
they prescribe only informal contracting at the semantic level. They
lack a formal, machine accessible model for the specification of seman-
tics for geodata and geo-services. This problem may be overcome by the
incorporation of an information model and process model (these issues
have been addressed in Chapter 3) to which geodata and geo-services
can refer their content. To break down the complexity of these mod-
els, it is important that they have a clear structure and incorporate a
separation of concerns.

• Incomplete realisation of contracts. Contracts are often only partly
realised by the implementing services (e.g., WSDL files that are incom-
plete, services that are not fully OGC compliant). This is a rather grave
issue that can only be resolved by providing the service with a wrapper,
or if possible, to use only the compliant parts of the service.

• Incomplete description of contracts. A clear distinction has to be made
between the contracts themselves and the service meta-information that
describes the contracts the service adheres to. Incompleteness of this
meta-information reduces the possibility to assess the degree of inter-
operability between services in a service chaining context.
Web-based ontologies can play an important role in the discovery and
integration of geodata sets (e.g., data set harmonisation) and geo-
services (e.g., service chaining) by overcoming the limitations of tex-
tual agreements, which are deployed in many of todays geo-information
standards. The power of web-based ontologies lie in their interoper-
able (XML based) representation, the use of unique namespaces and
the fact that they allow for automated reasoning (see Chapter 4). A
typical niche for web-based ontologies is not in the area of syntactic
data formats (which are sufficiently covered by many standards) but
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rather at the level of conceptual data models where current standards
fall short. Web-based ontologies can provide a backbone for service de-
scriptions that can be used for identifying (non-) interoperability issues
as addressed in the key problems above.

• Incompleteness and incompatibility of semantic models (ontologies).
Under the assumption that semantic models are being used for con-
tracting and service descriptions, it may occur that these models are
incomplete or not compatible with other models, used by candidate
services. Ontology mappings can be used for the alignment between
and the refinement of the concepts used in each semantic model (see
Chapter 4). The required content of semantic models is addressed in
the next research question.

3. Up to what extent can and should semantics be modelled to support semantic
interoperability (both for geo-information and functionality of geo-services)?
The demand for machine-supported reasoning requires the model of an ap-
plication domain to be formal and machine readable. In Section 7.5 it was
stated that machine ontologies can be seen as useful extensions to XML
schema when it comes to concept integration. Ontologies can also be used
as data repositories, but for simple data carrier purposes XML documents
and schema will suffice.
In the geo-information domain, introduced in Chapter 5, an ontological con-
cept is typically constructed by the basic notion of a feature type and its
properties (e.g., the geometric object that represents it). These constructs
form the common ground (called the semantic interoperability framework)
to which semantic descriptions of interoperable services should refer. These
descriptions are expressed with ontological constructs. For the purpose of
service discovery, we distinguish between requesting service descriptions and
advertised service descriptions. The proposed semantic framework allows for
descriptions with different detail and makes relaxed queries possible.
The provision of concepts at the level of geographic features (e.g., ‘Building’,
‘Point’) is considered a minimum requirement for a semantic interoperability
framework for geo-services. As a backbone, a basic ontology with general
constructs is made available, based on the ISO General Feature Model (ISO
19109). The fact that the concept of feature can be recursively defined
(see Section 5.1.1) provides a flexible solution for modelling phenomena at
different levels of generalisation and aggregation.
Domain ontologies that sufficiently cover specific domains can make use of
these basic concepts. Examples have been provided in this thesis for the
Dutch basic schema for geo-information NEN3610 and the data model of
the Dutch topographic service (TOP10NL).
The approach of extensibility of concepts that was applied in this research
(as described in Section 5.6.1 for single concepts and in Section 8.1.2 for
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groups of concepts) offers the flexibility to upscale to any level of detail that
is needed.

In addition to information modelling constructs, we need to model the char-
acteristics of service functionality to support the exchange of explicit service
capabilities. For this purpose, services are described by the operations that
they make available. Based on the findings in Chapters 5 through 7 we can
state that the elements of the feature concept ontology and the feature sym-
bol ontology have proven to be a solid basis for the description of the input
and output parameter types of atomic geo-operation types in the proposed
geo-operation ontology.

In conclusion, in this thesis, a basis is provided by an OWL implementation
with the following basic elements for a geo-operation description. They are
considered to be the essentials that can be modelled semantically and of
which at least one should make part of a geo-operation characterisation:

• classification of geo-operation functionality,

• description of operation input and output parameter types,

• description of geodata that is tightly-coupled to the service,

• description of the control flow in (virtual) composite operations.

Each of the above characterisations may be used in isolation to describe an
operation type, but in combination they are much more effective.

However, the following main limitations still hamper semantic interoperabil-
ity in the context of the proposed model:

• Spatial reasoning. The geodata that may be tightly-coupled to a
geo-service imposes a validity region on the service and may have im-
plications for the meaning of input/output parameters. Service chaining
requires to match these regions. As discussed in Section 4.8, there are no
built-in constructs in OWL that support such reasoning. Alternatively,
spatial relations can be modelled (1) in a separate hierarchy using the
property construct of OWL or of another ontology language, or (2) by
outsourcing spatial reasoning by conventional geometric computation.

• Implementation of metaclasses. The information model and op-
eration model as discussed in Section 5.1.1 apply metaclasses. The
inability of current Description Logics (in combination with reasoning
algorithms) to provide reasoning support to metaclasses, necessitates
the use of naming convention-based mechanisms to create meta-bridges.
As discussed in Section 5.7, the creation of meta-bridges between in-
formation model and operation model implies the creation of a rather
impractical clone structure of classes.
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4. How can we semantically enrich meta-information of geo-information and of
geo-services to support service chaining?

Geo-information and geo-services may be annotated with references to on-
tological concepts (as demonstrated in Section 7.2). Alternatively, geo-
information and geo-services descriptions may reside in a knowledge base,
immediately available for reasoning (again, see Section 7.2). As mentioned in
the answer to the previous research question, geo-services are characterised
by their functionality, input/output, tightly-coupled data and workflow. The
annotation of this meta-information in service description is essential for
the transition from abstract to concrete composition in a service chaining
process.

5. What are the capabilities and limitations of Semantic Web tools to support
geo-semantic interoperability?

Currently, several commercial and open source tools are available for the cre-
ation, editing and management of RDF-based and OWL-based ontologies.
Based on the findings in Chapters 7 and 8, we observe that the tools used
(which can be considered mainstream Semantic Web tools) provide basic
support for constructing concepts, creating a knowledge base with individ-
uals and connecting to reasoning software. However, these tools are quite
immature, compared to what database management tools and programming
tools can do in their respective fields. For example, debugging of concept
inconsistencies and visual design are in its infancy. In addition, they are lack-
ing intuitive user-interfaces for people without some background in knowl-
edge representation. Typically, the tools support knowledge engineering by
the information technologist and they (still) need considerable interfacing to
support specific application domains.

6. What are minimum requirements for a semantic interoperability framework
for geo-services?

The implementation of the use cases in Chapter 7, taking into account the
design issues described in Chapters 4, 5 and 6, has demonstrated that a
semantic interoperability framework should at least consist of:

• A set of ontologies, containing concepts, concept relationships and in-
stances of concepts that represent the domain of discourse sufficiently
enough for the intended applications. This thesis work proposes to use
the tripartite ontology structure (feature symbol—feature concept—
geo-operation) developed in this research. The ontologies may be dis-
tributed (maintained at different geographic/organisational locations).

• A set of mappings between the ontologies that make them consistent
as a set. The ontologies should allow for ontology extensions by means
of new mappings between new and existing concepts.
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• A set of guidelines on how to derive descriptions for the data sets and
services, based on the ontologies, and how to use them for matchmaking.
Descriptions may be implemented as a set of concepts or individuals,
or both.

The following steps are recommended to be taken in building a semantic
interoperability infrastructure:

(a) Semantic framework building, comprising of ontology building (see Con-
clusion no. 3 in Section 9.2.3) and prescription of description creation.

(b) Documentation and on-line presentation of the ontologies.

(c) Tool building (preferably by using and/or adapting existing tools):

i. Creation of dedicated client interface for information providers for
the creation of data set/service descriptions, based on ontology
concepts.

ii. Creation of dedicated client interface with examples of queries /
reasoning requests for information consumer.

A model architecture for a semantic infrastructure has been proposed in Sec-
tion 8.5 as a operationalisation of the prototype architecture of Figure 8.12
(Section 8.3.4). A more in-depth discussion on this can be found under the
header Deployment in Section 9.4.

9.2.3 Specific issues

Specific conclusions that can be drawn from the research are given (per topic) in
the subsections below.

Ontology design strategies

1. On the ontology design strategy the following statements can be made:

(a) The Manchester House style provides useful guidelines for consistent
ontology creation (see Section 8.5). The research as discussed herein
has successfully applied these guidelines and therefore advocates to use
them.

(b) Regarding the use of classes and individuals in geo-information/service
descriptions and the ‘core’ ontology (without the descriptions), the fol-
lowing can be stated. Classes form the basis of each ontology; individ-
uals instantiate them. Careful design choices have been made at the
‘leaves’ of the ontology (see the discussion in Section 5.7). For exam-
ple, the concept PostOffice occurs at the leaf of the TOP10NL concept
hierarchy, but is it a class or an individual?



9.2. Conclusions 213

In this respect, the OnToGeo core ontology was built according to the
requirement of three out of four modes of matchmaking (type II, III and
IV, involving individuals), i.e., to include data/service descriptions as
individuals: the semantic interoperability framework has been modelled
entirely with classes, geo-information/service descriptions have been
modelled with individuals (for tests of type II, III and IV). To test type I
(between classes) reasoning, some geo-information/service descriptions
were also written as classes. The selected strategy was considered to be
satisfactory with respect to both testing capacity and the possibility to
extend the core ontology with subclasses during further development
(with individuals this is impossible).

(c) During ontology building one has to model as accurate as possible. For
example, the concept nen3610:Forest has to be modelled as a feature
attribute value and not as a feature type, because it as appears as such
in the NEN3610 data model (similarly to BuildingFunctionValue, see
Section 5.3.1). But at the same time it is important to stay pragmatic
and avoid unnecessary complicated structures that become hard to un-
derstand.

2. Ontology mappings are essential constructs to integrate the content of two
or more ontologies. They allow a user to pose a query using the constructs of
one ontology and return results based on the inferred constructs of the other.
For example, as a result of a specific mapping between the NEN3610 and
TOP10NL ontology, a user may request a service that displays ‘accommo-
dations’ (a NEN3610 ontology concept) and is provided with service adver-
tisements that include hotels (as defined in the TOP10NL ontology). Such
mappings have proven to work well across multiple ontologies and for the
cross referencing of service functionality (see the mapping between OPERA
and ISO 19119 (Services) in Section 6.3.1.

However, creating ontology mappings is not trivial. It requires in-depth
knowledge about the semantics of the domains to be integrated and is prefer-
ably managed by domain experts. Attempts, external to this research, have
been made to semi-automate the mapping process, with reasonable results
(see Section 4.6.1).

3. In general, the steps below have proven to be efficient and sufficient in build-
ing the OnToGeo ontologies. In practice, the first four steps have to be done
in consultation with domain experts.

(a) Determine the scope of the ontology.

(b) Determine how it will be used; if for querying, what constitutes a typical
query?

(c) Create an ontology ‘sketch’ (on paper or with a software tool for draw-
ing diagrams) containing the most general concepts and associations
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between them (see the UML diagrams in Chapter 5).

(d) Create a list of all important concepts (at all detail levels) to be in-
cluded.

(e) Create the ontology concepts and their relationships with axioms in
OWL with an ontology editor. Carefully consider the meaning of using
subsumption relations, role restrictions, disjointness, etc. (see Chap-
ters 5 and 6 and the other conclusions in this topic.) Repeat this step
for any newly added concepts. Check every new axiom to see if the
ontology remains consistent and is well-formed.

(f) Instantiate the concepts with individuals (in case of OnToGeo this in-
volves data set and service descriptions).

Information model

4. Based on the efforts made in Chapter 5, we can state that in general, the
ISO 19100 series of geo-information standards are very well documented
and provide enough conceptual structure to translate their contents into
ontologies. Some exceptions to this observation include the loosely defined
relations between features and coverages and the shortcomings of the ISO
19119 service taxonomy (see the conclusion under Process model).

5. The ISO 19109 General Feature Model forms the basis of the geo-information
ontology as presented in this thesis. Its combined use of classes and meta-
classes has problematic implications for the use of according concepts in the
ontology that implements this model (see the discussion in Section 5.7). In
OWL-DL, classes cannot be treated as instances of other classes and as such,
metaclasses cannot be modelled, if we demand decidability (all computations
will finish in finite time) of reasoning systems. In this research, meta-bridge
mechanisms have been created as a workaround (see the explanation in Sec-
tion 5.7).

the form of a bijection between the metaclasses and specific classes in the geo-
operation ontology. Materialisation and a naming convention approach have
been suggested in literature as alternative workarounds (see Section 5.1.1 for
more details), but they have not (yet) been implemented in the prototype.

Process model

6. The ontology mapping efforts discussed in Section 6.3.1 have shown that
the geo-service taxonomy, contained in the ISO 19119 (Services) standard
provides a useful generic breakdown of service classes. However, they have
also demonstrated that ISO 19119 falls short as a single basis for a geo-service
ontology, as described in Section 6.5. For this reason, it is recommended
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to use the newly developed OPERA ontology in conjunction with the ISO
19119 (Services) taxonomy (a mapping has been provided in the OnToGeo
ontology).

7. Sections 6.2 and 6.4.5 have shown that OWL-S has proven to be a valuable
basis for the modelling of geo-web services. This is besides its clear model
structure, simply because it is based on OWL and lets us define extensions for
input/output parameters for services and link them with service categories
in a taxonomy. Reasoning with the control flow within OWL-S is possible
with matchmaking type II, but class requests can become complicated with
multiple operations involved. A more simple (and obviously less powerful)
‘bag’ type of construct is missing in OWL-S and has therefore been developed
in this research as to support relaxed queries for control flow.

Matchmaking

8. Matchmaking between data set/service descriptions can be done in a number
of modes, as presented in Section 6.4.2. Firstly, testing with ‘split’ (with-
out concept intersections) data/service descriptions provides a more refined
matchmaking than with aggregated descriptions (containing concept inter-
sections). Secondly, class-based descriptions are more flexible than the ones
based on individuals, but with the current user interfaces, individuals are
easier to create. Based on the pragmatics of finding a right balance between
query expressiveness and usability, the current prototype was implemented
both with class-based data/service requests and individual-based advertise-
ments. The advertisements are aggregates and the requests are either aggre-
gates or atoms, based on the refinement needed in the query.

Prototype environment

Based on the experiences reported in Section 8.5, the following conclusions
are drawn:

9. The current prototype environment is not yet ready for instant deployment.
Major issues are (1) the need for a user-friendly interface for entering ser-
vice descriptions as class definitions and (2) the need for tools that support
ontology comprehension by information engineers.

10. The prototype environment is currently limited by the reasoning mode (ba-
sically type II) it can handle. In addition, the method of providing a relaxed
match is very rudimentary. However, the prototype has been developed in
such a way that it allows for extensions with reasoner functions, other than
the ones used, with fairly low effort.
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9.3 Main contributions

The thesis has made the following main contributions:

1. The research has given an overview of the potential and impediments of
current interoperability models for distributed geodata and geo-services. It
has concentrated on the influential standards of the ISO technical committee
for Geographic information/Geomatics (ISO/TC 211) and the specifications
of the Open Geospatial Consortium (OGC). The developed solutions are
therefor compliant with current mainstream geographic standards.

2. The research has provided solutions for modelling the semantics of geo-
information and geo-services with the design and implementation of ma-
chine ontologies, based on existing geo-information standards by ISO and
OGC (which was reported in Chapter 5). The solutions are flexible and
extensible. This was realised by the following achievements:

(a) A theory has been provided (in Section 5.1, and based on Section 3.1.1)
for the separation of ontology types (‘concept’ and ‘symbol’ world) ,
based on the layered abstraction of geo-information and their concep-
tual relationships with a geo-operation ontology (‘OPERA’).

(b) A generic geo-operation ontology (described in Sections 5.4 and 5.5)
that serves as a reference for service descriptions has been designed
and implemented in such a way that it can accommodate common geo-
operations as instances. In addition, it allows for the extension with
sub-ontologies containing more specific geo-operations.

(c) Flexibility was achieved by using Semantic Web technology, allowing
reasoning with imprecise requests and advertisements of (geo-)informa-
tion and (geo-)services (see the examples given in Sections 7.1.1 and
7.4.3). This allows users to provide imprecise data/service requests
and advertisements, whilst matchmaking will still give results. This
would not be possible without the semantic structure as a backbone.
The results may not represent a match of all data/service details but
it can be accurate enough for the purpose of the information discovery
or source integration. This is an important asset for GII’s that are
typically faced with different levels of metadata detail in the provision
of advertisements and requests.

(d) Extensibility was built into the design by splitting the ontology up into
well defined domains for information concepts (e.g., ‘travel’, ‘riskmap’)
and process concepts (‘OPERA-R’, ‘OPERA-D’) and by applying a
different namespace to each domain respectively.

(e) Ontological constructs have been documented in the thesis in Descrip-
tion Logic notation. This helps to better understand the OWL im-
plementation of the prototype and facilitates eventual implementations
other than OWL.
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3. The taxonomy of GIS-operations which has formed the basis for the design
of the geo-operation ontology (‘OPERA’), has been documented in such a
way that it can also serve in ‘textual’ form as a reference for informal service
descriptions. In addition, a mapping with the ISO 19119 service taxonomy
has been documented.

4. The research has resulted in a proposal for a semantic interoperability frame-
work for geo-services, comprising of ontologies and prescriptions for creating
(1) ontology-based descriptions of geo-information sources (data sets and
services) (discussed in Section 5.6) and (2) inter-ontology relationships (dis-
cussed in Section 6.3). It is based on the fundamental ISO 19109 (GFM)
standard and accommodates the meta-information standards of ISO 19115
(Metadata) and ISO 19119 (Services). The research has shown by means of
use case implementations (Chapter 7) how this framework can be used for
at least the following applications:

(a) Data set integration

(b) Geo-information and service discovery and abstract composition as part
of service chaining.

(c) Documentation of data set lineage and service chains

Design alternatives have been proposed for several parts of the framework
(e.g., with respect to workflow models and information source descriptions).
In addition, alternative uses of the framework have been indicated (e.g., with
respect to service matchmaking)

5. Generally speaking, this research has presented the application of Semantic
Web technology to existing geo-information models. It has shown its ap-
plicability in different geographic application domains, ranging from project-
oriented to ad hoc activities and from data to service oriented environments.

6. The research has resulted in a prototype environment which comprises an in-
tegrated toolset (‘GeoMatchMaker’) for the exploitation of ontologies as well
as the complete set of developed geo-ontologies (‘OnToGeo’) (see Chapter 8).
This prototype can be used by a data/service provider to describe the of-
fered products as well as by a data/service consumer that wants to discover
and integrate these products. In addition, the prototype can be used by
an information engineer to extend the existing geo-operation ontology with
new operation types and to plug-in new conceptual data models, similar to
the examples of TOP10NL (data model of the Dutch Topographic Service)
and application domains (‘Travel’, ‘Riskmap’). Except for the reasoner, the
prototype environment is entirely built with open source software.
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General applicability A note on the general applicability of the research find-
ings. The research results and lessons learned are, in certain aspects, not con-
fined to the field of geo-information and geo-services. This applies especially to
the following issues as raised in the thesis: Research question 1 (Section 9.2.2),
implementation of metaclasses in research question 3, ontology design strategies
(Section 9.2.3), and general aspects of ontology mapping, process modelling and
matchmaking.

Other research findings may apply to fields that resemble the geo-information
field in specific aspects. For example, an application field that deals with multiple
versions of its ‘features’1, will have to deal with ontology mappings in a similar way
as presented here. Further, users of applications that are characterised by a regular
reuse of services and data, may also refer to the non-geo-specific findings of research
question 6 (semantic interoperability framework) and Section 9.4 (deployment).

9.4 Deployment

As the proposed semantic interoperability framework has been developed in an
obviously conditioned prototype environment, its immediate deployment in a spe-
cific application requires the creation of a semantic infrastructure as described in
Section 4.6 and in the answer to the last research question in Section 9.2.2. In
such an infrastructure, the presented feature symbol ontology (SYMBOL) and
geo-operation ontology (OPERA) as discussed in respectively Sections 5.2 and 5.4
are immediately deployable.

In addition, an application ontology has to be built for the specific application
at hand. This application ontology may refine OPERA by adding subclasses of
operations that are specific to the application. It may also need to extend existing
domain ontologies with respect to feature concepts. Existing domain ontologies
may be found in libraries, such as SchemaWeb (see Section 4.6.4). Once the proper
ontologies are found, a complete set of mappings needs to be established between
them. In this form, the framework can function as a basis for semantic service
descriptions.

Multi-user environments may be needed in some applications. They are sup-
ported by some of the tools used in the prototype, but they have not been tested
in this thesis work as such.

The proposed semantic interoperability framework can be applied to a variety
of fields, as demonstrated in the use cases. Application fields that are thought to
benefit from the developed theory in the short term are:

1. Harmonisation of NEN3610 and its sector models; Creation of ontology-
based meta-information and application of matchmaking.

2. Generalisation of geographic features (such as in database/geographic map

1See Section 1.1, paragraph ‘What distinguishes geo-information services from other services?’



9.4. Deployment 219

generalisation). Semantics are needed for making the right decisions with
respect to (re)moving and grouping of feature instances.

3. Data set and service discovery as part of catalogue mechanisms in Geo-
information Infrastructures (GIIs) at all organisational levels.

4. Ontology presentation to users of a specific data model (e.g., TOP10NL).
This requires a comprehensive visualisation tool.

5. The matching of user profiles with service advertisements, for example to
create context-awareness in LBS applications.

6. Quality assessment and improvement of metadata for data sets and services.
Reasoners can check the consistency and completeness of ontology-based
information source descriptions, by integrally inferring the ontological rela-
tionships that exist between them.

Organisational issues

The creation and maintenance of a semantic infrastructure as part of a GII needs
the commitment of several organisations. The responsibilities of key organisations
is proposed as follows with reference to the model architecture depicted in Fig-
ure 8.12 (Section 8.3.4). The feature symbol ontology and the fixed part of the
geo-operation ontology (in the prototype environment contained in the OnToGeo
ontology as respectively SYMBOL and OPERA-R) should be maintained by OGC.
OGC should also issue specifications on the methods for ontology-based descrip-
tion of information sources (services, data sets, etc.). Eventually, ISO TC/211
may recognise the abstract part of these specifications as standards.

The feature concept ontologies (e.g., NEN3610 and RISKMAP in the proto-
type) and the extensible part of the geo-operation ontology (OPERA-D) should
be maintained by so called information communities (see its definition in Sec-
tion 5.1.2), that have a mandate within the GII to do so. Each information
community should be responsible for mapping its ontology to global ontologies
and, if applicable, to the local ontologies of other information communities. The
coordination of such mapping activities may be steered by a commonly agreed
method and representation of mappings, possibly materialised in a standard.

The rest of Figure 8.12 is part of the semantic infrastructure that lies outside
the semantic interoperability framework. Crucial elements are the web service
registry and the tools for service chaining. A web service registry could be managed
by a mandated unit within the GII or by commercial clearing houses. Tools for
service chaining may be provided by any software developer, commercial or non-
profit.
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9.5 Recommendations for further work

Based on the outcomes of this research, the following recommendations are made
for further work:

1. As stated in the answer to the third research question (Section 9.2.2), there
is a need for spatial reasoning about tightly-coupled data in order to match
geo-service validity regions. Further work is needed to incorporate existing
approaches that apply spatial hierarchies.

2. The creation of advertisements (by a data set/service provider) and requests
(by a consumer) needs the development of more user-friendly graphical user
interfaces (GUIs). Although the Protégé ontology editor supports enter-
ing individuals with the help of rather user-friendly forms (similar to data-
base entry forms), the implementation of ontology class-based descriptions
is rather difficult. Moreover, a normal user cannot be expected to familiarise
herself with an ontology editor. An interface is suggested with which a user
can enter a query with help of menus, keywords and keyword suggestions that
are drawn from the ontology. This could also involve a query-by-example in-
terface (as mentioned in Section 6.3.3).

3. Matchmaking between classes (type I) needs a more thorough interpretation
mechanism for its result types ‘PlugIn’, ‘Intersection’, etc. This may help
this method to be better applicable in the current prototype.

4. More flexible ontology visualisation tools are needed, so that ontologies can
be made more understandable to a wider audience and inspection of ontolo-
gies becomes easier. Such tools should at least include:

(a) The option to display any combination of ontology construct types
(class, individual, role, role restriction).

(b) A facility to zoom, based on subsumption levels and role depth.

(c) Expandable ontology items, driven by mouse clicks.

(d) An option to toggle labels on and off.

(e) An export facility to common graphic formats (including vector formats
such as SVG).

5. The current GeoMatchMaker prototype has limitations with respect to the
service chaining process. The following actions that are currently left to the
human user should also be subject to automation:

(a) Result ranking. A ranking mechanism, based on data set/service de-
scriptions would help the user in choosing the best information source.
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(b) Meta-information propagation. The automatic calculation of meta-
information propagation and evaluating candidate combinations that
constitute a given task (expressed in Description Logic), would help a
service consumer to find service chains faster, and to eventually per-
form a simple simulation. It can also help a service provider in creating
service chain descriptions.

6. Some more recent Semantic Web techniques have not been taken into ac-
count in this research. It is worthwhile to investigate whether they can
contribute to the improvement of the prototype. These techniques include
rule-based reasoning (e.g., Semantic Web Rule Language (SWRL)) and ded-
icated ontology query languages (e.g., OWL query language (OWL-QL) and
new Racer query language (nRQL)).

7. An issue left open is the one of (semi-)automatic ontology mapping. The
manual creation of ontology mappings is a tedious job. Section 4.6.1 has in-
troduced some approaches for the semi-automatic identification of mappings.
This research recommends to test such semi-automatic mapping methods to
establish links between the ontologies currently in OnToGeo and potential
new ones to be integrated.

8. Query relaxation is a useful instrument to increase the recall of search re-
sults. Strategies are needed to determine the variables to be removed from
the query, unless it is clear which variable is targeted (such as the input pa-
rameters of an operation). The approach, reported in [257] relies on rather
general heuristics and may not work in our specific situation. However, this
is left for further research.

9. Tools are needed for helping a data set/service provider with the annotation
of these information sources. First prototypical examples are found [39,
141, 221]), but they are application specific, many of them use proprietary
annotation tags and some of them are still buggy. A tool is suggested that is
universal, by taking as input (1) the ontology that serves as the annotation
base and (2) the structure of the document to be annotated, e.g., the XML
schema of it.

10. Semantic Web technology is slowly finding its way into the OGC community
(see the end of Section 2.4.6). Based on the discussion in Section 9.4, this
research recommends OGC and ISO/TC211 to establish a semantic inter-
operability framework and use the ideas of semantic service annotation (as
demonstrated in Section 7.2.1) and ontology based matchmaking (demon-
strated throughout Chapter 7) to make more formal the existing geo-service
standards (such as the GetCapabilities request/response pair of OGC Web
Services (OWS), ISO 19115 (Metadata) and ISO 19119 (Services)) and to
allow semantic queries on the content of the resources that comply with these
standards.
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Appendix A

UML notation

Some of the UML elements used in this thesis are represented with a notation that
deviates from the standard UML 2 notation as specified in [202] and described in
[11]. This was done in order to enhance the visualisation and avoid diagram
congestion. The deviating notation is depicted in the figure below. All other UML
elements used in the thesis are represented according to the UML 2 standard.

MyPoint

GeometricObject

Point

NEN3610

Class

Set of classes (one or more examples are 
represented)

Instance (object)

Package

NEN3610 feature types

Set of classes (all classes are represented)
Association applies for each class 

ISO 19125-1

Elements within this box are defined in 
ISO 19125-1

Figure A.1: Deviating UML notation used in this thesis.
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Appendix B

ISO 19100 overview

This appendix lists all current ISO 19100 standards with their numbers and short
names. The ISO 19100 standards are the result of the work of ISO Technical
Committee 211 (ISO/TC211) (see an introduction in Section 2.4.7). The short
names in the last column of the table below are used throughout the main text
of this thesis as reference names. Not all standards have the official status of
International Standard yet. Current information regarding this status is available
on-line at http://www.isotc211.org/.

Standard
No.

Standard name Short name

6709 Standard representation of latitude, longitude and
altitude for geographic point locations

LatLon

19101 Reference model Reference
19101-2 Reference model - Part 2: Imagery RefImg
19103 Conceptual schema language Concept
19104 Terminology Introduction Terms
19105 Conformance and testing Conform
19106 Profiles Profiles
19107 Spatial schema Spatial
19108 Temporal schema Temporal
19109 Rules for application schema GFM

Note: ISO 19109 contains the ISO General Feature
Model (GFM)

19110 Methodology for feature cataloguing Catalog
19111 Spatial referencing by coordinates 19111 - Revision

of ISO 19111:2003
RefCoord

19112 Spatial referencing by geographic identifiers RefIdent
19113 Quality principles Quality
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19114 Quality evaluation procedures QualityEval
19115 Metadata Metadata
19115-2 Metadata - Part 2: Extensions for imagery and grid-

ded data
MetaImg

19116 Positioning services Position
19117 Portrayal Portrayal
19118 Encoding Encoding
19119 Services Services
19120 Functional standards Functional
19121 Imagery and gridded data Imagery
19122 Qualifications and Certification of personnel Certify
19123 Schema for coverage geometry and functions Coverage
19124 Imagery and gridded data components ImgComp
19125-1 Simple feature access - Part 1: Common architecture SFeature
19125-2 Simple feature access - Part 2: SQL option SFeatureSQL
19126 Profile - FACC Data Dictionary FACC
19127 Geodetic codes and parameters Geodetic
19128 Web Map server interface WMS
19129 Imagery, gridded and coverage data framework ImgFrame
19130 Sensor and data models for imagery and gridded data Sensor
19131 Data product specifications Product
19132 Location based services - Reference model LBSRef
19133 Location based services - Tracking and navigation LBSNav
19134 Multimodal location based services for routing and

navigation
LBSMulti

19135 Procedures for registration of geographical informa-
tion items

RegItem

19136 Geography Markup Language GML
19137 Generally used profiles of the spatial schema and of

similar important other schemas
SchemaProf

19138 Data quality measures QualMeas
19139 Metadata - Implementation specification MetaImplem
19140 Technical amendment to the ISO 191** Geographic

information series of standards for harmonization
and enhancements

Harmonize

19141 Schema for moving Moving



Appendix C

OPERA-R geo-operation
types

This appendix lists the atomic reference types for geo-operations in the OPERA-R
ontology and describes their functional semantics (the R in OPERA-R stands for
‘reference operations’). This appendix is linked to Section 5.4. The list can be
considered to be the base taxonomy for OPERA-R. The input/output parameters
of each operation are given in Appendix D.

C.1 Human interaction operations

• InvokeDataOperation: Parses a user command to activate a geo-operation
of the other categories (operations on feature data, operations on services,
operations on metadata). For example, it may invoke the Intersection oper-
ation to overlay two map layers.

• MapDisplay: This operation allows a user to interact with geodata through
a graphic display. Operations of this type are typically used by map viewer
services and may involve the following operations: ShowMap, PanMap,
ZoomMap. They trigger the SelectByContains operation and the Extract-
GeoInfo operation (see operations on feature data).

• FeaturePropertyDisplay: Based on a feature selection, this operation
renders feature properties for displaying in the client, other than a map
display, e.g., a table display. This operation triggers the GetPropertyValues
operation (see operations on feature data).

• MetadataInteract: Operation that provide user interaction with a meta-
data store.
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• ServiceManagementInteract: Operation that provide user interaction
with service (chain) management operations.

C.2 Feature modelling

Feature modelling operations change the feature model of a data set through its
feature types and feature property types. Feature instances operations are covered
under Section C.4.1.

• ActOnFeatureType: An operation that creates or deletes a feature type or
changes its meta-information (such as its name). An operation that deletes
entire feature types also deletes all its instances and geometric objects, if
existing.

• ActOnFeaturePropertyType: An operation that creates or deletes a fea-
ture property type or changes its meta-information (such as its name). An
operation that deletes entire feature property types also deletes all its in-
stances, if existing.

The subclasses create, delete and change are subtypes of the above ‘ActOn’ oper-
ation types. They appear in OPERA as respectively as subclasses. For example,
the subclasses of ActOnFeatureType are CreateFeatureType, DeleteFeatureType
and ChangeFeatureType.

C.3 Feature access

• DataSourceAccess: Operations that are needed to access a data source,
such as opening a connection to a database or sensor stream and authenti-
cation operations.

• ExtractGeoInfoFromStream: This operation extracts features from an
input stream. It may be used in sensor services such as a positioning service.

• ExtractGeoInfoFromDB: Based on a feature type selection and a map
extent, this operation extracts features from a database. It (1) makes them
directly available or (2) renders a map for displaying in a client application.
Subclasses corresponding to (1) and (2) are respectively :

– ExtractFeature

– ExtractMap

• DataSourceManagement: Operations that involve the management of a
data source (e.g., authentication, query optimisation, tiling etc.).
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• ExtractMetaInfo: Extracts meta-information from features (e.g., data
structure informations, data types, number of features, feature names, etc.)
This operation does not annotate metadata to a data set; this is done by the
AnnotateMetaInfo operation (see Section C.8)

• FormatConversion: Converts the data exchange format.

C.4 Feature processing

The classes in this section have been chosen to have as little overlap as possible. For
this reason, certain operation categories that are commonly known from practice
may not occur as named classes. An example is ‘terrain analysis’. This class
spans several of the classes listed below. In general, it holds the operations that
involve geometric objects and thematic attributes, of which the latter represents
the terrain height attribute. Note that there are other cases of operations that
may not have a named class, but which sub-operations can be classified in one or
more of the classes listed in OPERA-R.

C.4.1 Feature instantiation

Note that this category deals with feature instances only. Operations that change
the feature model are covered under Section C.2.

• ActOnFeatureInstance: An operation that creates or deletes a feature
instance (including its geometric object, if existing).

• ActOnFeaturePropertyInstance: An operation that creates or deletes a
feature property instance.

The subclasses create, delete and change are subtypes of the above ‘ActOn’ oper-
ation types. They appear in OPERA as respectively as subclasses. For example,
the subclasses of ActOnFeatureInstance are CreateFeatureInstance, DeleteFeature-
Instance and ChangeFeatureInstance.

C.4.2 Across attribute types

These operations use feature attributes of one type to calculate feature attributes
of another type. This involves:

• SpatLoc: Operations that use spatial attributes to return location at-
tributes (e.g., an address finder). This is done with help of a geographic
query on a tightly coupled data set.

• LocSpat: Operations that use location attributes to return spatial at-
tributes (e.g., a gazetteer). This is done with help of a lookup table or
geographic query on a tightly coupled data set.
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C.4.3 Among thematic attributes

These operations change the thematic attributes of features. To be more spe-
cific, thematic attributes are distinguished in terms of levels of measurement, see
Section 5.2.3. The operations identified, are partly based on the classification by
Chrisman [50].

The first group needs as input the values of one feature attribute type of one
feature. These operations act on the domain of values (cf. feature symbol Do-
mainOfValues) of an attribute and may need additional ‘decision’ information or
external parameters in the form of so called lookup tables to perform successfully.
The change in the domain of values also changes the actual attribute values.

• Group: The Group operation combines classes into another class. For ex-
ample, land use classes ‘DeciduousForest’ and ‘ConiferousForest’ may be
grouped as one class named ‘Forest’. The Group operation transfers a nom-
inal classification into another nominal classification.

• Classify: The Classify operation creates ordinal classes from interval, ratio,
absolute, or count measurements. For example it converts population figures
to population classes ‘Village’, ‘SmallTown’, ‘LargeTown’.

• Rank: The Rank operation creates an order in classes. It converts from a
nominal scale to an ordinal scale. For example, it may rank restaurant types
in terms of a person’s preferences.

• Scale The Scale operation changes the units of a ratio measurement. For
example, it may change the units of a distance measurement from miles to
metres.

• Evaluate: The Evaluate operation changes measurements in the nominal,
ordinal or interval level to the interval level. For example, it may convert
the categories ‘Old’ and ‘New’ into a calender year. It is obvious that this
operation needs new information for each feature instance.

• Separate: The separate operation is used to separate attributes that have
been concatenated with a concatenate operation (see the CrossConcatenate
operation below). It creates separate attribute types.

The operation below does not act on the domain of values, but directly on the
attribute values.

• Calculate: The Calculate operation performs a calculation between at-
tribute values, measured at interval, ratio, count, or absolute levels, resulting
in a value at the interval ratio, count or absolute level. Some restrictions
exist, for example interval scales do not support multiplication or division
and the difference between two interval values results in a ratio value. Cal-
culations may involve any mathematical or statistical function. Examples of
the latter are Average, Count, Deviation, Frequency, Maximum, Minimum.
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The operations below combine values from different attribute types for one
feature type. Chrisman’s classification is only partly followed, because his classes
‘Sum and Difference’ and ‘Rate and Density’ are too restrictive and prevent a
structured extension of this category with new operation types.

• CrossConcatenate: The CrossConcatenate operation ’glues’ the attribute
values in a new code, without information loss. The result is at the nominal
level. For example, it may combine a land use attribute and elevation zone
attribute, for which the original values of a feature instance are ‘Urban’ and
’BelowSeaLevel’ and the resulting value is ‘UrbanBelowSeaLevel’. It can be
also used to interleave the bands of a satellite image.

• CrossCalculate: The CrossCalculate operation performs similarly to the
Calculation operation described above, with the difference that it needs val-
ues from different attribute types for one feature type.

• Proportion: The Proportion operation is a special case of the CrossCal-
culate operation. It divides two values, measured at the same scale on the
ratio, count or absolute level. The result is a proportion and resides at the
absolute level. For example, a proportion operation may divide the popula-
tion count of a province by the total country population count, which results
in a percentage of the total country population (an absolute value).

Note: The ‘isolate’ operation as identified in this same category by Chrisman
appears here in Section C.4.4.1 as ‘SelectByThemQuery’ operation. This is due to
the fact that it has essentially different input/output parameters.

C.4.4 Feature selection

C.4.4.1 Feature selection based on thematic attributes

• SelectByThemQuery: The SelectByThemQuery operation selects features,
based on a query on thematic attribute types. For example, an SQL query
may select the features of type ‘House’ that have more that three floors.
The SelectByThemQuery operation does not involve spatial selections; this
is covered by other operations. The SelectByThemQuery operation may be
also used for the simple selection of a ‘map’ layer containing one feature
type.

C.4.4.2 Feature selection based on geometric objects

These operations select features based on a topological relationship with an geo-
metric object. They may also output the actual features with all their attributes.
The topological relationships of Section C.4.7 are used. The following operation
types are identified: SelectBy<Topological relationship>, where <Topological
relationship> is one out of the nine relationships defined in Section C.4.7. In
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case these operations take geometric objects as their input, topological tests are
included in the operation mechanism. These tests are not necessary in case the
input consists of already existing topological associations between the objects or
the input involves topological objects.

C.4.5 Get feature property values

These operations extract the property values of selected features and forward them
to an output stream.

• GetAttributeValues: Gets the values of GF AttributeType. For example,
this may be ‘RoadWidth = 12’ from a road feature’s GF ThematicAttributeType
‘RoadWidth’.

• GetAssociations: Gets the associations that exist for the selected features

• GetFeatureBehaviour: Provides the stored behaviour of the features.
More specifically in terms of ISO 19109 (GFM), it retrieves the methods
defined by GF Operation for each feature.

C.4.6 Geometric object change

These operations change the spatial attributes of features. ISO 19109 (GFM)
considers spatial attributes of features to be represented by a spatial object (geo-
metric or topological). In the ISO Simple Feature Model (ISO 19125-1), spatial
objects may be single geometries or geometry collections. The latter can be used
for aggregated geometries (such as a country feature, constituted by an aggregate
of its mainland and its island polygons) 1. The following operations are identified:

• DeleteGeoPart: Delete parts of geometric objects.

• MoveGeoPart: Move parts of geometric objects.

• MoveGeoWhole: Move entire geometric objects.

• SimplifyGeo: Simplify geometric objects : composite of the above two.

• MergeGeo: Merging geometric objects.

• GeneraliseGeo: Generalisation of geometric objects : composite of the
above.

Deleting an entire geometric object is performed with the ActOnFeatureType op-
eration (see Section C.2).

Examples can be found in Figure C.1.
1In the more advanced ISO Spatial Schema standard (ISO 19107) these geometries are mod-

elled as GM Primitive and GM Aggregate classes respectively.
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Figure C.1: Operations on geometric objects.

C.4.7 Topology

These operations test the topological relationship between geometric objects. Topo-
logical relationships have been defined by Egenhofer by means of the possible in-
tersections of geometric object boundary, interior and exterior in the so called 9
intersection model (9IM) [65]. His model was extended by Clementini et al. with
dimension information, in the dimension extended method(DEM) [52] and ex-
pressed in object-calculus terms in the calculus based method (CBM). This model
is as expressive as the 9IM, but groups the potential topological relationships in a
basic set of five general operation types that can be applied on area, line and point
objects (see Table C.1 ). The grouping makes it easier for end-users to apply in
a GIS environment, yet its underlying operators can be used for implementation.
The distinction between topological relationships becomes clear from the decision
tree in Figure C.2. In the figure, λ1 and λ2 denote the feature type (represented by
their geometric objects). λo, denotes the interior of λ. The function dim returns
the dimension of a point-set.

The above operators have been adopted in the ISO standard on simple features
(ISO 19125) through the specification of predicate tests. In software implemen-
tations these predicate test should be made available through methods supported
by geometries. The standard uses slightly different terms, i.e., Touches, Within,
Crosses, Overlaps and Disjoint for the CBM operations. They are specified as
follows (example of Touches):
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A/A L/L P/P L/A P/A P/L
Touch x x x x x
In x x x x x x
Cross x x
Overlap x x
Disjoint x x x x x x

Table C.1: The five topological relationships of the calculus based method (rows
in the table) compared to the geometric object combinations to which they can
be applied (columns in the table). A = Area, L = Line, P = Point. The crosses
indicate a possible application of the relationship. Table derived from [52].

touch disjoint in

in

cross overlap

T

T

T

T

T F

F

F

F

F

Figure C.2: Topological relationships decision tree. Figure taken from [52].

Touches(anotherGeometry : Geometry) : Integer
Returns 1 (TRUE) if this geometric object ‘spatially touches’ anotherGeometry.

It has to be noted that the application of topological relations as described in
the ISO 19125 standard (SFeature) is not completely conform Table C.1. In con-
trast to the CBM, (1) it allows the ‘overlap’ relation between points and (2) it
allows the ‘crosses’ relation between point and area and between point and line.
This is due to the fact that ISO 19125 (SFeature) considers Points as well as
MultiPoints to be included in ‘P’ the relation table. Also, MultiLineStrings and
MultiPolygons are included in respectively ‘L’ and ‘A’, but this does not change
the table.

ISO 19125 (SFeature) also adds the operations Contains, Intersects, Equals
and relate. They are specified as follows:
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• Contains, defined as a.Contains(b) ⇔ b.Within(a)

• Intersects, defined as a.Intersects(b) ⇔ ¬(a.Disjoint(b))

• Equals (Returns TRUE if geometries are spatially equal)

• Relate (Allows for a more elaborated testing on intersections between the
interior, boundary and exterior of two geometric objects. It uses a pattern
matrix, representing the intersection pattern of the 9IM.)

In the OPERA ontology the above topological relationships are used to identify
operation types that enable the testing of topological relationships between geo-
metric objects. In summary, the following operation types are identified, following
the semantics of ISO 19125 (SFeature):

• Touches Tests whether two geometric objects spatially touch.

• Within Tests whether one geometric object is spatially within the other.

• Contains Tests whether one geometric object spatially contains the other.

• Crosses Tests whether one geometric object spatially crosses the other.

• Overlaps Tests whether one geometric object spatially overlaps the other.

• Disjoint Tests whether one geometric object is spatially disjoint to the other.

• Equals Tests whether one geometric object is spatially equal to the other.

• Intersects Tests whether one geometric object spatially intersects the other.

• Relate Tests whether one geometric object is spatially related the other.
The relation is specified by the pattern matrix.

For simplicity, a general operation is added to OPERA that integrally per-
forms the above tests. It inputs geometric object pairs and returns the topological
relationship of each pair:

• CreateTopo: Operation that uses geometric object pairs to calculate topo-
logical relationships between these objects. It returns either

– a spatial association type (GF SpatialAssociationType) with a topo-
logical association role (GF AssociationRole, being Touches, Within,
Contains, Crosses, Overlaps, Disjoint, Equals, Intersects or Relate), or

– topological objects (as defined in ISO 19107 (Spatial): TP Object)
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C.4.8 Metric measurement

Measurement operations return the following property values

• of geometric objects: Volume, Area, Length, and Perimeter

• between geometric objects: Distance, Bearing

These operations have been defined as operations on features (GF Operation)
in ISO 19107 (Spatial) and partly in the ISO 19125 (SFeature). The associated
geometric objects are provided in Table C.2.

Simple Features Feature model
ISO19125-1 ISO19107

VolumeMeasure Not defined GM Solid
GM MultiSolid

AreaMeasure Surface GM GenericSurface
MultiSurface GM MultiSurface

GM Solid
GM MultiSolid

LengthMeasure Curve GM GenericCurve
MultiCurve GM MultiCurve

DistanceMeasure Between Geometries Between GM Object’s
PerimeterMeasure Not defined GM GenericSurface

GM MultiSurface
BearingMeasure Not defined Between GM Point’s

Table C.2: Measurements on geometric objects.

Note 1: The DistanceMeasure operation can also be classified under the cate-
gory Distance based.
Note 2: Operations that provide statistics on measurements (e.g., providing the
polygon with the greatest area) are considered to create a thematic attribute type
based on a metric measurement (e.g., ‘area’) for each feature instance and then
apply the Calculate operation on the attribute values.

Other operations compare the spatial characteristics of geometric objects:

• MatchGeo: Identifies whether geometric objects or parts of them are simi-
lar. This used to evaluate whether they could represent the same feature or
feature part (e.g. edge matching).

C.4.9 Overlay

These operations use topological relationships between geometric objects to create
new features and/or create new attribute values. Newly created features carry a



C.4. Feature processing 237

combination of attributes of the input features. An overlay operation contains a
spatial combination part and an attribute combination part. Overlay operations
are defined for all three categories of object features, grid coverages and grid cells,
but they are implemented differently for object and grid. Grid coverages and grid
cells that are being overlayed, are considered to have the same spatial reference.
Their overlay only contains the attribute combination part. This equates this
operation, with the CrossCalculate operation (for grid coverages and grid cells).
With the above distinction in mind, we identify two sub-operations:

• ObjectOverlay: Overlay of two or more object features.

• GridOverlay: Overlay of two or more grid coverages or grid cells.

Spatial aspects of overlay For the spatial part, four set operators are identi-
fied, following the methods identified for spatial analysis on geometric objects in
ISO 19125 (SFeature):

• Intersection

• Union

• Difference

• Symmetric difference

ISO 19125 (SFeature) specifies these operations for geometric objects as follows
(example of Intersection):

Intersection(anotherGeometry : Geometry) : Geometry
Returns a geometric object that represents the Point set intersection of this geo-
metric object with anotherGeometry.

Examples of the operations are depicted for polygons in Figure C.3. As a geo-
metric object may involve a GeometryCollection, the operations may execute on
more than one geometry object pair.

Attribute combination of overlay After the spatial combination of features,
their thematic attributes can be combined and attached to the newly formed fea-
tures. A distinction between the methods of attribute combination is made by
Chrisman [50], based on the combinator rule used:

• Enumeration rule: The individual thematic attributes of the input features
are preserved as concatenations, similar to the CrossConcatenate operation
in Section C.4.3

• Contributory rule: Each (or a subset) of the individual thematic attributes of
the input features contribute to the output attribute, by means of a function.
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A.intersection(B) A.union(B)

A.difference(B) B.difference(A) A.symDifference(B)

A

B

Figure C.3: Overlay operations between geometric objects. Figure taken from
[279]. For an explanation of the operations, see Table C.3.

• Dominance rule: The thematic attribute assigned to the output feature is
one value chosen from the individual input attributes, e.g., the maximum or
an attribute from a predetermined feature type. The dominance rule is a
special case of the contributory rule.

• Interaction rule: Similar to contributory rule, but the attributes re combined
pairwise in steps. The combination criterion/function in each step may differ.

C.4.10 Distance-based

These operations use distances between geometric objects to select features or
create new features.

• EqualDistance: The EqualDistance operation creates geometric objects
that have an equal distance to input geometric objects (e.g., an operation
that calculates Thiessen polygons).

• FixedDistance: The FixedDistance operation creates geometric objects
that have a fixed distance to input geometric objects (e.g., a buffer opera-
tion).

• Nearest: The Nearest operation identifies geometric objects that are nearest
to input geometric objects.
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Operation Meaning
A.intersection(B) The intersection of two Geometries A and B is the

set of all direct positions which lie in both A and B.
A.Union(B) The union of two Geometries A and B is the set of

all direct positions which lie in A or B.
A.difference(B) The difference between two Geometries A and B is

the set of all direct positions which lie in A but not
in B.

B.difference(A) The difference between two Geometries B and A is
the set of all direct positions which lie in B but not
in A.

A.symDifference(B) The symmetric difference of two Geometries A and
B is the set of all direct positions which lie in either
A or B but not both.

Table C.3: Meaning of overlay operations between geometric objects as depicted
in Figure C.3.

C.4.11 Neighbourhood

Neighbourhood operations use the attribute values of features surrounding a target
feature to create new attributes and/or features. Such operations may also be
performed for more than one target feature. The neighbourhood of a feature can
be defined in terms of metrics (i.e., Euclidean distance) or in terms of topology
(i.e., with the intersects relationship [50]. Topological near features may be far in
terms of distance. Neighbourhoods are applicable to object features as well as to
grid coverages. The attribute values of the input features are combined in the same
way as in the overlay operation (see Section C.4.9. For example, a buffer operation
can be seen as a neighbourhood operation, creating a feature with attribute values
according to the contributory rule.

In this category we can distinguish:

• CalculateSlope: This operation calculates the rate of change of elevation
[12].

• CalculateAspect: This operation calculates the direction that a surface
faces [12].

• GridFilter: Filter operations that traverse all cells in a grid with a window
and assign a value for each window position based on a function. This
includes smoothing filters, edge detection filters, image enhancement filters,
etc.
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C.4.12 Connectivity

Connectivity operations accumulate values as they traverse over a feature or a set
of connected features 2.

These operations are applied on object features as well as on grid coverages. In
the latter case they are typically implemented by filters based on neighbourhoods.
This combination of characteristics is the reason why they appear differently in
various classifications. For example, some of their subclasses are placed under
neighbourhood operations ([43]), or connectivity operations ([12]), or ‘iterative
operations’ ([50]).

• Spread The spread operation calculates the accumulated value of a function
from one or more source locations in all directions. It can be used to identify
drainage points.

• Seek A seek operation performs a directed search outward in a step-by-step
manner from a start location using a specified decision rule [12]. Typically it
uses a ‘friction’ service to calculate the path of least resistance from a source
location to a ‘lowest’ point.

• Network A network is a set of interconnected linear features that form a
pattern or framework. Typically network operations are used for utility and
traffic analysis. The following operations are identified [12]:

– LoadPrediction: This operation calculates the quantity that ‘flows’
through specific parts of the network.

– RouteOptimisation: This operation finds the optimal route between
two points. ‘Optimal’ may be ‘shortest’, ‘fastest’, or constrained by any
other criterion.

– ResourceAllocation: This operation partitions a network into service
zones that are assigned to specified target positions.

• Viewshed: A viewshed operation (also called intervisibility determines the
locations that are within the unobstructed line-of-sight of a viewing position
[12].

C.4.13 Interpolation

Interpolation is defined in mathematics as the calculation of the value of a function
between the values already known. In a geo-information context this involves two
cases (expressed in terms of ISO 19107 (Spatial)):

• InterGeoObject: The interpolation operation calculates a number of Di-
rectPositions between known DirectPositions (so called control points) as
representations of a geometric object such as a curve or surface.

2this characterisation is adapted from [12]
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• InterAttribute: The interpolation operation calculates the value of a fea-
ture attribute at a DirectPosition between DirectPositions already known.

Interpolation operations are distinguished by their method (linear, cubic spline,
etc.) A non-exhaustive list of methods is given in [129]. Extrapolation is considered
to be similar to interpolation, with the difference that the calculated DirectPosition
is lies not between but outside the known DirectPositions.

C.4.14 Geometric transformation

Geometric transformations change the coordinates of all DirectPositions contained
by all geometric objects of a feature type. This may involve the change of the
geometric objects’ coordinate reference system. This classification does not follow
the transformation classification of Chrisman, which does not clearly distinguish
with many of the other operations described. The following transformations are
identified in this thesis:

• GeoObjectChange These operations change the geometric objects that
represent feature types into another geometric object type. In the context of
ISO 19125 (SFeature) and ISO 19107 (Spatial) this may involve any geomet-
ric object type as defined in these standards. For example, in the context of
ISO 19107 (Spatial), an operation of this type may convert a Digital Eleva-
tion Model (DEM) into a Triangular Irregular Network (TIN). In addition,
this operation type involves transformations between object and grid models:

– ObjectToGrid: These operations convert a data set containing object
features to a grid coverage. They are commonly known as ‘vector to
raster’ operations or ‘rasterisation’

– GridToObject: These operations convert a grid coverage to a data
set containing object features, commonly known as ‘raster to vector’
operation or ‘vectorisation’. Mechanisms for vectorisation and rasteri-
sation are not covered by the ISO 19100 standards. They are described
in various other literature resources, for example [226, 290].

• Resampling: A resampling operation transforms the attribute values of a
source grid to those in a target grid. The change of grid may be due to a
resolution change, rectification, coordinate reference system change, etc. A
resampling operation includes an interpolation mechanism.

• ChangeCRS: A change in coordinate reference system my involve a coor-
dinate conversion or transformation. A coordinate conversion is defined by
ISO 19111 (RefCoord) [130] as ‘a one-to-one mapping of coordinates based
on one coordinate reference system to another coordinate reference system
on the same datum’. A coordinate transformation changes coordinates to
another datum [130]. Subclasses are:
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– CoordConversion (Datum is not changed)

– CoordTrans (Change datum)

C.4.15 Temporal

These operations create, delete or change temporal attributes of features. Ex-
amples of temporal operations are change detection, temporal reference system
transformation, etc. (see ISO 19119 (Services) [132] for a short list of services
in which these operations are used. Note that temporal information can also be
stored as thematic attribute. In that case the operations of type Among thematic
attributes apply.

C.5 Feature presentation manipulation

• CartoSymbolEdit: Creates or edits a cartographic symbol.

• CartoSymbolAssign: Assigns cartographic symbols to features.

C.6 Service creation and management

• ChainEdit: Operations that support the creation or editing of a chain of
existing services/operations.

• ChainValidation: Operations that validate the chaining of service/operation
components (also referred to as ‘matchmaking’). These operations may use
the QueryMetaInfo operation.

• ServiceDoc: Operations that extract meta-information from a service, such
as method names and parameter names.

C.7 Service execution

These operations are, among others, used by workflow enactment services:

• BuildRequest: Operation that builds a service request from a service de-
scription (e.g. a SOAP request from a WSDL document).

• ServiceExecute: Executes a service or service chain

• ServiceSchedule: Schedules a service chain across servers.

• ServiceOrderHandling: Operation that involves the handling ordering of
a service or service chain (subscription, quoting, status querying, billing,
etc.).
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• EventNotification: Operation that notifies clients of a certain event, such
as the moment a service or data set becomes available.

C.8 MetaInfo creation and storage management

• MetaInfoManagement: Operations that involve the management of meta-
data stores (authentication, query optimisation, etc.).

• AnnotateMetaInfo: Operations that support the annotation of meta-
information to features, data sets, or services, that cannot be extracted
automatically.

• PublishMetaInfo: Operations that allow users to publish the meta-information
of their data and services.

C.9 MetaInfo processing

• QueryMetaInfo: Operations that query meta-information. These opera-
tions are used for searching data or service catalogs/registries. The latter
may be cascaded. Subclasses are:

– QueryFeatureMetaInfo: Querying information about features in data
sets and service

– QueryFeatureMetaMetaInfo: Querying information about schema’s,
information models, feature ontologies, etc.

C.10 MetaInfo presentation manipulation

• MetaInfoStyleEdit: Creates or edits a presentation style for meta-information.

• MetaInfoStyleAssign: Assigns a presentation style to meta-information.
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Appendix D

OPERA-R
I/O parameters for feature
processing operations

The table below lists the input and output parameter types of the OPERA op-
erations, which model is described in Section 5.1.1 and which classification is
described in Appendix C. These parameter types are coded as constraints in the
OWL implementation of the OPERA ontology. The table columns read as follows.

• Operation: The name of the operation as appears in OPERA. An indentation
of the name indicates a subclass.

• Application scope: An indication whether the operation’s input-output pair
can be of one of the following data structure types: O = Object feature, G
= Grid, C = Grid cell coverage. Combinations are possible. For example,
‘OG’ means that the operation has an object feature input-output pair or a
grid coverage input-output pair. A ‘T’ indicates a transformation between
any of the three types, which is for example the case for the operations
ObjectToGrid and GridToObject.

• Input/output parameter types: The is the name of either of the following:

– An ‘OP’ class (e.g., OP Point) as described in the operation part of
Section 5.1.1 or a class at the meta-level of the feature symbol ontology
(e.g., GF ThematicAttributeType). The indication of such a metaclass
means that the operation type may have any parameter type that in-
stantiates that metaclass.

– Another parameter type, such as Distance or SelectedFeature. Parame-
ters come along with their data type, indicated after a full colon.

245
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I/O parameters for feature processing operations

Section 5.5.3 provides more background on the meaning of input and output
parameter types.
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Appendix E

ADL Gazetteer OWL service
description

This appendix contains the OWL code of the Alexandria Library (ADL) Gazetteer
service, which is used as example geo-service in several parts of the thesis, for
example in Sections 1.1, 5.6.1 and 6.1.

<?xml version="1.0"?> <rdf:RDF
xmlns:serv="http://geoserver.itc.nl/lemmens/owl/implem.owl#"
xmlns:symbol="http://geoserver.itc.nl/lemmens/owl/symbol.owl#"
xmlns:expr="http://www.daml.org/services/owl-s/1.1/generic/Expression.owl#"
xmlns:nen3610="http://geoserver.itc.nl/lemmens/owl/nen3610.owl#"
xmlns:swrlb="http://www.w3.org/2003/11/swrlb#"
xmlns:refont="http://geoserver.itc.nl/lemmens/owl/refont.owl#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:opera="http://geoserver.itc.nl/lemmens/owl/opera.owl#"
xmlns:concept="http://geoserver.itc.nl/lemmens/owl/concept.owl#"
xmlns:ontogeo="http://geoserver.itc.nl/lemmens/owl/ontogeo-v3.0.owl#"
xmlns:top10nl="http://geoserver.itc.nl/lemmens/owl/top10nl.owl#"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:riskmap="http://geoserver.itc.nl/lemmens/owl/riskmap.owl#"
xmlns:profile="http://www.daml.org/services/owl-s/1.1/Profile.owl#"
xmlns:process="http://www.daml.org/services/owl-s/1.1/Process.owl#"
xmlns:list="http://www.daml.org/services/owl-s/1.1/generic/ObjectList.owl#"
xmlns:swrl="http://www.w3.org/2003/11/swrl#"
xmlns:time="http://www.isi.edu/~pan/damltime/time-entry.owl#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:travel="http://geoserver.itc.nl/lemmens/owl/travel.owl#"
xmlns:service="http://www.daml.org/services/owl-s/1.1/Service.owl#"
xmlns:grounding="http://www.daml.org/services/owl-s/1.1/Grounding.owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns="http://geoserver.itc.nl/lemmens/owl/adlgazetteer-service.owl#"
xmlns:daml="http://www.daml.org/2001/03/daml+oil#"

xml:base="http://geoserver.itc.nl/lemmens/owl/adlgazetteer-service.owl">
<owl:Ontology rdf:about="">

<owl:imports rdf:resource="http://geoserver.itc.nl/lemmens/owl/ontogeo-v3.0.owl"/>
</owl:Ontology>
<opera:LocSpat rdf:ID="_ADLGazOperation">

<opera:hasInputPar>
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<opera:InputPar rdf:ID="ADLGazInputPar_1">
<opera:hasParType rdf:resource="http://geoserver.itc.nl/lemmens/owl/ontogeo-v3.0.owl#AddressType"/>

</opera:InputPar>
</opera:hasInputPar>
<opera:hasOutputPar>

<opera:OutputPar rdf:ID="ADLGazOutputPar_1">
<opera:hasParType rdf:resource="http://geoserver.itc.nl/lemmens/owl/ontogeo-v3.0.owl#PointType"/>

</opera:OutputPar>
</opera:hasOutputPar>

</opera:LocSpat>
<serv:GeoService rdf:ID="_ADLGazService">

<serv:makesAvailable rdf:resource="#_ADLGazOperation"/>
</serv:GeoService>

</rdf:RDF>



Appendix F

ADL Gazetteer WSDL
service description

This WSDL file was generated by Carlos Granell in a joint project with the author
(see for more information Sections 7.1.1 and 8.3.4).

<?xml version="1.0" encoding="UTF-8" ?>
<wsdl:definitions targetNamespace="http://localhost:8080/axis/services/ADLGazClient"

xmlns:apachesoap="http://xml.apache.org/xml-soap"
xmlns:tns="http://localhost:8080/axis/services/ADLGazClient"
xmlns:xsd1="http://localhost:8080/axis/services/ADLGazClient.xsd"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<wsdl:types>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://localhost:8080/axis/services/ADLGazClient.xsd">
<complexType name="tCoordinates">
<sequence>

<element name="latitude" type="xsd:double"/> <element
name="longitude" type="xsd:double"/> </sequence> </complexType>
<element name="RequestType" type="xsd:string"/> <element
name="ResponseType" type="xsd1:tCoordinates"/> </schema>
</wsdl:types>

<!--
WSDL created by Apache Axis version: 1.3 Built on Oct 05, 2005
(05:23:37 EDT) -->
<wsdl:message name="getCoordinatesResponse">

<wsdl:part name="output" element="xsd1:ResponseType" />
</wsdl:message>
<wsdl:message name="getCoordinatesRequest">

<wsdl:part name="name" element="xsd1:RequestType" /> </wsdl:message>

<wsdl:portType name="ADLGazClient">
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<wsdl:operation name="getCoordinates">
<wsdl:input message="tns:getCoordinatesRequest"
name="getCoordinatesRequest" /> <wsdl:output
message="tns:getCoordinatesResponse" name="getCoordinatesResponse"
/> </wsdl:operation> </wsdl:portType>

<wsdl:binding name="ADLGazClientSoapBinding" type="tns:ADLGazClient">
<wsdlsoap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="getCoordinates">

<wsdlsoap:operation soapAction="" />
<wsdl:input name="getCoordinatesRequest">

<wsdlsoap:body
namespace="http://localhost:8080/axis/services/ADLGazClient"
use="literal" /> </wsdl:input>

<wsdl:output name="getCoordinatesResponse">
<wsdlsoap:body
namespace="http://localhost:8080/axis/services/ADLGazClient"
use="literal" /> </wsdl:output> </wsdl:operation>

</wsdl:binding>
<wsdl:service name="ADLGazClientService">
<wsdl:port binding="tns:ADLGazClientSoapBinding" name="ADLGazClient">

<wsdlsoap:address
location="http://localhost:8080/axis/services/ADLGazClient" />
</wsdl:port> </wsdl:service> </wsdl:definitions>



Appendix G

ISO 19119 mapping

This appendix provides all ontology mappings between ISO 19119 (Services) classes
and OPERA classes. These mappings are explained in Section 6.3.1. In the list
below the mappings are grouped according to the ISO 19119 classification of ser-
vices. Some mappings make use of the shorthand notation for control flow patterns
as introduced in Section 4.7 in a way that is explained in Section 6.3.1.

Geographic human interaction services

———
iso19119:CatalogueViewer v opera:MetaDataInteract
———
iso19119:GeographicViewer v opera:MapDisplay
———
iso19119:GeographicSpreadsheetViewer v opera:FeaturePropertyDisplay
———
iso19119:ServiceEditor v

opera:InvokeOperation u
(∃∀ opera:invokesOperation.opera:ServiceOperation) u
(∃∀ opera:invokesOperation.(

∃∀ opera:ActsOnServiceType.iso19119:GeographicProcessing))
———
iso19119:ChainDefinitionEditor v

opera:InvokeOperation u
(∃∀ opera:invokesOperation.opera:ServiceEdit)

———
iso19119:WorkflowEnactmentManager v

opera:InvokeOperation u
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(∃∀ opera:invokesOperation.ServiceExecution)
———
iso19119:GeographicFeatureEditor v

(opera:MapDisplay t opera:AnnotateMetaInfo)
———
iso19119:GeographicSymbolEditor v

opera:InvokeOperation u
(∃∀ opera:invokesOperation.opera:FeatureDataPresentation)

———
iso19119:FeatureGeneralizationEditor v

opera:InvokeOperation u
(∃∀ opera:invokesOperation.opera:GeneraliseGeo)

———
iso19119:GeographicDataStructureViewer v

opera:InvokeOperation u
(∃∀ opera:invokesOperation.(opera:Extractmetainfo t opera:Extractfeature))

———

Geographic model information management ser-
vices

———
iso19119:FeatureAccessService v

opera:ExtractFeature u
(∃∀ opera:appliesToDataStruc.symbol:ObjectFeature)

———
iso19119:MapAccessService v opera:ExtractMap
———
iso19119:CoverageAccessService v

opera:ExtractMap u
(∃∀ opera:appliesToDataStruc.symbol:Coverage)

———
iso19119:CoverageAccessServiceSensor v iso19119:CoverageAccessService
———
iso19119:SensorDescriptionService v opera:QueryMetaInfo
———
iso19119:ProductAccessService v opera:DataSourceManagement
———
iso19119:FeatureTypeService v opera:FeatureModelling
———
iso19119:CatalogueService v opera:QueryFeatureMetaInfo
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———
iso19119:RegistryService v opera:QueryFeatureMetaMetaInfo
———
iso19119:GazetteerService v opera:LocSpat
———
iso19119:OrderHandlingService v opera:ServiceOrderHandling
———
iso19119:StandingOrderService v opera:ServiceOrderHandling
———

Geographic workflow task management services

———
iso19119:ChainDefinitionService v opera:ChainEdit
———
iso19119:WorkflowEnactmentService v

(opera:ServiceExecute t opera:ServiceSchedule)
———
iso19119:SubscriptionService v opera:EventNotification
———

Geographic processing services

Geographic processing services - Spatial

———
iso19119:CoordinateConversionService v opera:CoordConversion
———
iso19119:CoordinateTransformationService v opera:CoordTrans
———
¬ ((iso19119:CoverageVectorConversionService u opera:GeoObjectChange) v ⊥)
———
iso19119:ImageCoordinateConversionService v iso19119:CoordinateConversionService
———
iso19119:Rectification v opera:Resampling
———
iso19119:OrthoRectification v iso19119:Rectification
———
iso19119:SensorGeometryModelAdjustmentService v opera:Resampling
———
iso19119:ImageGeometryModelConversionService v opera:Resampling
———
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iso19119:SubSettingServiceSpatial v C
in which C is an ontological concept that describes the control flow pattern below:

<Iterate>
opera:ExtractGeoInfoFromStream
opera:SelectByTopo

</Iterate>
———
iso19119:SamplingServiceSpatial v C
in which C is an ontological concept that describes the control flow pattern below:

<Iterate>
opera:ExtractGeoInfoFromStream
opera:SelectByTopo

</Iterate>
———
iso19119:TilingChangeService v opera:DataSourceManagement
———
iso19119:DimensionMeasurementService v opera:SpatialMeasurement
———
iso19119:FeatureManipulationService v opera:GeometricObjectChange
———
iso19119:FeatureMatchingService v opera:MatchGeo
———
iso19119:FeatureGeneralizationServiceSpatial v opera:GeneraliseGeo
———
iso19119:RouteDeterminationService v opera:RouteOptimisation
———
iso19119:PositioningService v opera:ExtractGeoInfoFromStream
———
iso19119:ProximityAnalysisService v C
in which C is an ontological concept that describes the control flow pattern below:

<Sequence>
opera:FixedDistance
opera:SelectByWithin

</Sequence>
———

Geographic processing services - Thematic

———
iso19119:GeoparameterCalculationService v opera:AmongThematicAttributes
———
iso19119:ThematicClassificationService v opera:AmongFeatureProperties
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———
iso19119:FeatureGeneralizationServiceThematic v opera:AmongFeatureProperties
———
iso19119:SubsettingServiceThematic v opera:SelectByThemQuery
———
iso19119:SpatialCountingService v C
in which C is an ontological concept that describes the control flow pattern below:

<Sequence>
opera:SelectByWithin
opera:Count

</Sequence>
———
iso19119:GeographicInformationExtractionServices v opera:EctractObjectInfo
———
iso19119:ImageProcessingService v opera:GridFilter
———
iso19119:ReducedResolutionGenerationService v opera:Resampling
———
iso19119:ImageManipulationServices v

(opera:GridFilter t opera:AmongFeatureProperties)
———
iso19119:ImageUnderstandingServices v

(opera:GridFilter t opera:ExtractObjectInfo)
———
iso19119:ImageSynthesisServices v

(iso19119:ImageProcessingService t iso19119:ImageManipulationServices)
———
iso19119:MultiBandImageManupilation v iso19119:ImageManipulationServices
———
iso19119:ObjectDetectionService v opera:EctractObjectInfo
———
iso19119:GeoParsingService v opera:EctractObjectInfo
———
iso19119:GeocodingService v opera:LocSpat
———

Geographic processing services - Temporal

———
iso19119:ChangeDetectionServices v

(iso19119:ImageUnderstandingServices u opera:Temporal)
———
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iso19119:TemporalReferenceSystemTransformationService v opera:Temporal
———
iso19119:SubsettingServiceTemporal v C
in which C is an ontological concept that describes the control flow pattern below:

<Iterate>
opera:ExtractGeoInfoFromStream
opera:SelectByTemporalAttribute

</Iterate>
———
iso19119:SamplingServiceTemporal v C
in which C is an ontological concept that describes the control flow pattern below:

<Iterate>
opera:ExtractGeoInfoFromStream
opera:SelectByTemporalAttribute

</Iterate>
———
iso19119:TemporalProximityAnalysisService v opera:Temporal
———

Geographic processing services - Metadata

———
iso19119:StatisticalCalculationService v opera:ExtractMetaInfo
———
iso19119:GeographicAnnotationService v opera:AnnotateMetaInfo
———

Geographic communication services

———
iso19119:EncodingService v opera:Coding
———
iso19119:TransferService v opera:DataSourceAccess
———
iso19119:GeographicCompressionService v opera:FormatConversion
———
iso19119:GeographicFormatConversionService v opera:FormatConversion
———
iso19119:MessagingService v opera:DataSourceManagement
———
iso19119:RemoteFileAndExecutableManagement v opera:DataSourceManagement
———
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[241] Rodŕıguez, A., and Egenhofer, M. Determining Semantic Similarity
Among Entity Classes from Different Ontologies. IEEE Transactions on
Knowledge and Data Engineering 15, 2 (2003), 442–456.
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