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Abstract

Data processing in geodetic applications often relies on the least-squares method, for which
one needs a proper stochastic model of the observables. Such a realistic covariance matrix
allows one first to obtain the best (minimum variance) linear unbiased estimator of the
unknown parameters; second, to determine a realistic precision description of the unknowns;
and, third, along with the distribution of the data, to correctly perform hypothesis testing
and assess quality control measures such as reliability. In many practical applications the
covariance matrix is only partly known. The covariance matrix is then usually written as an
unknown linear combination of known cofactor matrices. The estimation of the unknown
(co)variance components is generally referred to as variance component estimation (VCE).

In this thesis we study the method of least-squares variance component estimation (LS-
VCE) and elaborate on theoretical and practical aspects of the method. We show that
LS-VCE is a simple, flexible, and attractive VCE-method. The LS-VCE method is simple
because it is based on the well-known principle of least-squares. With this method the
estimation of the (co)variance components is based on a linear model of observation equa-
tions. The method is flexible since it works with a user-defined weight matrix. Different
weight matrix classes can be defined which all automatically lead to unbiased estimators
of (co)variance components. LS-VCE is attractive since it allows one to apply the existing
body of knowledge of least-squares theory to the problem of (co)variance component esti-
mation. With this method, one can 1) obtain measures of discrepancies in the stochastic
model, 2) determine the covariance matrix of the (co)variance components, 3) obtain the
minimum variance estimator of (co)variance components by choosing the weight matrix as
the inverse of the covariance matrix, 4) take the a-priori information on the (co)variance
component into account, 5) solve for a nonlinear (co)variance component model, 6) apply
the idea of robust estimation to (co)variance components, 7) evaluate the estimability of
the (co)variance components, and 8) avoid the problem of obtaining negative variance
components.

LS-VCE is capable of unifying many of the existing VCE-methods such as MINQUE,
BIQUE, and REML, which can be recovered by making appropriate choices for the weight
matrix. An important feature of the LS-VCE method is the capability of applying hypoth-
esis testing to the stochastic model, for which we rely on the w-test, v-test, and overall
model test. We aim to find an appropriate structure for the stochastic model which in-
cludes the relevant noise components into the covariance matrix. The w-test statistic is
introduced to see whether or not a certain noise component is likely to be present in the
observations, which consequently can be included in the stochastic model. Based on the
normal distribution of the original observables we determine the mean and the variance
of the w-test statistic, which are zero and one, respectively. The distribution is a linear
combination of mutually independent central chi-square distributions each with one degree
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of freedom. This distribution can be approximated by the standard normal distribution for
some special cases. An equivalent expression for the w-test is given by introducing the
v-test statistic. The goal is to decrease the number of (co)variance components of the
stochastic model by testing the significance of the components. The overall model test is
introduced to generally test the appropriateness of a proposed stochastic model.

We also apply LS-VCE to real data of two GPS applications. LS-VCE is applied to the
GPS geometry-free model. We present the functional and stochastic model of the GPS
observables. The variance components of different observation types, satellite elevation
dependence of GPS observables’ precision, and correlation between different observation
types are estimated by LS-VCE. We show that the precision of the GPS observables clearly
depends on the elevation angle of satellites. Also, significant correlation between observa-
tion types is found. For the second application we assess the noise characteristics of time
series of daily coordinates for permanent GPS stations. We apply LS-VCE to estimate
white noise and power-law noise (flicker noise and random walk noise) amplitudes in these
time series. The results confirm that the time series are highly time correlated. We also
use the w-test statistic to find an appropriate stochastic model of GPS time series. A com-
bination of white noise, autoregressive noise, and flicker noise in general best characterizes
the noise in all three position components. Unmodelled periodic effects in the data are
then captured by a set of harmonic functions, for which we rely on least-squares harmonic
estimation (LS-HE) developed in the same framework as LS-VCE. The results confirm the
presence of annual and semiannual signals, as well as other significant periodic patterns
in the series. To avoid the biased estimation of the variance components, such sinusoidal
signals should be included in the functional part of the model before applying LS-VCE.
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Introduction 1
1.1 Background

Data processing in geodetic applications usually relies on the least-squares method, or
equivalently, when the inverse of the covariance matrix of observables is taken as the
weight matrix, the best linear unbiased estimation (BLUE). To that end we deal with two
models, namely, ‘functional model’ and ‘stochastic model’. The former is usually either
well-known or subject to extensive research, and the latter, containing the second-order
central moments of the observables receives far less attention. Statistical models in use for
instance in the fields of Global Navigation Satellite Systems (GNSS) positioning applica-
tions are usually simple and rudimentary. For many applications, it is of importance to have
information available on the covariance matrix of an observable random vector. Such infor-
mation allows one to study the different contributing factors of the errors in observations,
to properly describe the precision of functions of interest by means of application of the
covariance propagation law, and to obtain minimum variance estimators of the parameters
in a linear model. This will also allow one to correctly perform hypothesis testing and to
assess other quality control measures such as reliability.

An adequate statistical model is thus needed to arrive at a proper description of the
estimators’ quality. Incomplete knowledge of the covariance matrix of the observables
occurs in many of the GNSS applications. Often, however, the covariance matrix of the
observables is only partly known, as a consequence of which the unknown part needs to be
estimated from the redundant observables. The estimation of these unknown components
of a covariance matrix is generally referred to as variance component estimation (VCE).
Various VCE-studies have been conducted to improve our knowledge of the GNSS stochastic
model. Variance component estimation is also an important issue in other geodetic fields of
application, in particular in applications where heterogeneous data needs to be combined.
An example where the heterogeneous data should be combined is the combination of InSAR
and leveling data. Another example is the combination of classical geodesy networks and
GPS networks.

Methods for estimating (co)variance components have been intensively investigated in
the statistical and geodetic literature. There exist many different methods for variance
component estimation. The methods differ in the estimation principle employed, as well
as in the distributional assumptions that need to be made. Most methods have been
devised for the linear model, for which one assumes that the covariance matrix of the
observables can be written as an unknown linear combination of known cofactor matrices.
The coefficients of this linear combination are then the unknown (co)variance components
that need to be estimated. Of the leading variance component estimators, we mention
the minimum norm quadratic unbiased estimator (MINQUE), the best invariant quadratic
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unbiased estimator (BIQUE), the least-squares variance component estimator (LS-VCE),
the restricted maximum likelihood estimator (REML), and the Bayesian method to VCE.

The MINQUE method is one of the more commonly used methods for estimation of
variance components. Apart from the first and second order moments of the observables,
this method does not require any distributional assumptions. The BIQUE, however, does
require knowledge of some of the higher order moments. This minimum variance quadratic
estimator has been derived and studied, under the assumption of normally distributed
observables. The LS-VCE method is based on the least-squares principle and works with
a user-defined weight matrix. As such the method only requires information on the first
and second order moments. The REML method and the Bayesian method, both require
in contrast to the other methods, complete information on the probability density function
of the observables. Using the normal distribution, maximum likelihood estimators and
Bayesian estimators have been derived and studied by different authors.

1.2 Objectives of thesis

In this thesis we further study and use the least-squares variance component estimation
(LS-VCE) which was originally developed by Teunissen (1988). For a review see Teunissen
and Amiri-Simkooei (2006). Since the method can be applied to many modern geodetic
applications, this thesis elaborates this theory in much detail. Although the method is
probably one of the lesser known VCE-methods, we will show that it is a simple, flexible
and attractive method for the estimation of unknown variance and covariance components.

• The method is simple, since it is based on the principle of least-squares. This will lead
us to use one unified estimation principle, namely the well-known and well-understood
least-squares principle, for both the functional and stochastic model.

• The method is flexible, since it works with a user-defined weight matrix. The
weighted LS-VCE does not need any distributional assumption for the observables.
The weighted LS-VCE is formulated in a linear model and thus leads to unbiased
(co)variance component estimators. In case of elliptical distributions which include
for instance the normal distribution, the method can automatically produce minimum
variance estimators.

• The method of LS-VCE is attractive, since it allows one to directly apply the existing
body of knowledge of least-squares theory. In this thesis we present the LS-VCE
method for different scenarios and explore its various properties. All other methods
of VCE, for instance, concern only the estimation of (co)variance components. But,
LS-VCE allows one also to apply hypothesis testing to the stochastic model which is
considered to be a distinguished feature of this method.

Being a least-squares estimator, the LS-VCE automatically inherits all the well-known
properties of a least-squares estimator. We show how the existing body of knowledge of
least-squares theory can be used to one’s advantage for studying various aspects of VCE.
For example, since the method is based on the least-squares principle, the precision of
(co)variance estimators can directly be obtained.

We include various examples to illustrate this theory at work and address implementation
aspects. Application of LS-VCE to real GPS data will be considered as well. We will use



1.3 Outline of thesis 3

LS-VCE to study the stochastics of GPS code and carrier phase data and also of GPS
coordinate time series.

1.3 Outline of thesis

This thesis is organized as follows:
Chapter 2 explains the least-squares estimation and validation in a general linear model

of observation equations. Three estimation principles, which lead to the weighted least-
squares estimation, the best linear unbiased estimation (BLUE), and the maximum likeli-
hood estimation, will be discussed. Equivalent expressions for estimators are determined
using the model of condition equations afterward. The last part of this chapter deals with
hypotheses testing to find misspecifications (with respect to data) in a linear model. This
includes two types of equivalent tests: the observation test and the parameter significance
test. For this purpose the overall model test, the w-test statistic, and the v-test statistic
will be addressed. Detection of observation outliers is a prerequisite for obtaining unbiased
(co)variance estimators.

Chapter 3 briefly reviews various (co)variance component estimation principles. We
start from elementary error sources and construct a variance component model. We
then apply different principles like unbiasedness, minimum norm, minimum variance, and
maximum likelihood to this model to obtain various estimators. This includes minimum
norm quadratic unbiased estimators (MINQUE), best invariance quadratic unbiased esti-
mators (BIQUE), the Helmert method to VCE, maximum likelihood estimators (MLE),
the Bayesian method to VCE, and least-squares estimators. These methods differ in the
estimation principles as well as in the distributional assumptions. We will present the under-
lying assumptions of each method. We then discuss simple and approximate VCE methods
which need less computational load when compared to the rigorous methods.

Chapter 4 introduces the principle of weighted least-squares for the estimation of un-
known (co)variance components. We formulate a linear (co)variance component model,
define the least-squares variance component estimator and determine its covariance matrix.
We consider the weighted LS-VCE method for a special class of weight matrices. Based
on this weight matrix class we then show how the LS-VCE can be turned into a minimum
variance VCE. We also show how the existing body of knowledge of least-squares theory
can be used to one’s advantage for studying and solving various aspects of the variance
component estimation problem. Topics that are addressed are: measures of inconsistency,
the use of a-priori variance component information, nonlinear variance component estima-
tion, and robust and non-negative variance component estimation. Later, in this chapter
we make some comments, supported by a few examples, on the estimability of (co)variance
components.

In chapter 5 we apply hypothesis testing to the stochastic model. The w-test, the v-test,
and the overall model test will be generalized for the stochastic model. It is aimed to find
misspecifications in the stochastic model, to improve an existing stochastic model, and
to judge whether or not (or which) additional (co)variance components are likely to be
included in (or excluded from) the stochastic model. We will derive the distribution of the
w-test and the v-test statistics under the normality assumption of the original observables.
For the overall model test statistic, the distribution is complicated. We thus only obtain the
first and the second order moments, instead of its complete distribution. However, using
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an approximation we show how the overall model test of the stochastic model is converted
to the overall model test of the functional model.

Chapter 6 deals with multivariate parameter and variance-covariance estimation and
validation. We aim to apply the theory on least-squares estimation of (co)variance compo-
nents introduced in chapter 4, and to apply the idea of detection and validation introduced
in chapter 5, to a multivariate linear model of observation equations. We show that the
estimators in the multivariate model can be considered as a generalization of the estimators
in the univariate model. This holds in fact for the w-test and the v-test statistics as well
as for their related distributions. We also show, when the redundancy of the model is
large enough, that the distribution of the test statistics can be approximated by a normal
distribution.

Chapters 7 and 8 present numerical results of application of LS-VCE to real GPS data.
Chapter 7 deals with the GPS geometry-free observation model for which LS-VCE is used
to assess the stochastics of GPS pseudorange and carrier-phase data. The purpose of this
chapter is to come up with a realistic and adequate covariance matrix of GPS observables.
Topics that will be addressed are: the precision of different code and phase observations,
satellite elevation dependence of the observable’s precision, and the correlation between
different code and phase observations. Chapter 8 concerns coordinate time series analysis
of permanent GPS stations. We discuss both the functional model and the stochastic
model in detail. We will then introduce the least-squares harmonic estimation (LS-HE) to
come up with an appropriate functional model by introducing a set of harmonic functions
to compensate for unmodelled effects in the data series. We then apply the LS-VCE to
estimate different noise components (white noise, flicker noise, and random walk noise)
of the series. We also employ the w-test, in conjunction with LS-VCE, to come up with
an appropriate stochastic model for GPS time series. Other topics like misspecifications in
both the functional and the stochastic model, and duality between these two models are
addressed as well.

Finally, chapter 9 reviews the conclusions of this work and presents recommendations
for further research.



Least-Squares Estimation and Validation 2
2.1 Parameter estimation in linear models

2.1.1 Optimal properties of estimators

This chapter reviews in general the theory of least-squares estimation and validation in an
inconsistent linear model where the inconsistency is caused by errors in the data. From
experience we know that various uncertain phenomena can be modeled as a random variable
(or a random vector), namely y. An example is the uncertainty in instrument readings
due to measurement errors. The randomness of y is expressed by its probability density
function (PDF). In practice, our knowledge of the PDF is incomplete. The PDF can usually
be indexed with one or more unknown parameters. The PDF of a random m-vector y is
denoted as fy(y|x), in which x is an n-vector of unknown parameters to be estimated. The
approach is to take an observation of the m-vector y and to use this observation vector
to estimate the unknown n-vector x. The observation y as a realization of y with PDF
fy(y|x) contains information about x which can be used to estimate its value.

We thus require to determine x̂ from an observation vector y. The essential estimation
problem is therefore to find a function G : R

m �→ R
n, such that x̂ = G(y) can be taken

as our estimate of x. In fact, if we apply G to y, we obtain the random vector x̂ = G(y).
The random vector x̂ is called the estimator of x and x̂ is called the estimate of x. The
estimator is a random vector which has its own probability density function (distribution),
while, the estimate is a realized value of the estimator and thus a deterministic vector.
The difference ε̂ = x̂ − x is called the estimation error. Since x̂ depends on the chosen
function G, the estimation error depends on G as well. We list three desirable properties
for ε̂ which all express in some sense the closeness of x̂ to x. Such properties can be used
as criteria for finding an ’optimal’ function G.

Unbiasedness The estimator x̂ is said to be an unbiased estimator of x if and only if
the mathematical expectation of the estimation error is zero. An estimator is therefore
unbiased if the mean of its distribution equals x

E{x̂} = x for all x , (2.1)

where E{.} denotes the expectation operator. This implies that the average of repeated
realizations of ε̂ will tend to zero on the long run. An estimator which is not unbiased is
said to be biased and the difference E{ε̂} = E{x̂} − x is called the bias of the estimator.
The size of the bias is therefore a measure of closeness of x̂ to x. The mean error E{ε̂} is
a measure of closeness that makes use of the first moment of the distribution of x̂.
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Minimum variance (best) A second measure of closeness of the estimator to x is the
mean squared error (MSE), which is defined as

MSE = E
{‖x̂ − x‖2

}→ min , (2.2)

where ‖.‖ is a vector norm. If we were to compare different estimators by looking at their
respective MSEs, we would prefer one with small or the smallest MSE. This is a measure
of closeness that makes use also of the second moment of the distribution of x̂. The ’best’
estimator, in the absence of biases, therefore is of minimum variance.

Maximum likelihood Rather than relying on the first two moments of a distribution, one
can also define what closeness means in terms of the distribution itself. As a third measure
of closeness we therefore consider the probability that the estimator x̂ resides in a small
region centered at x. If we take this region to be a hypersphere with a given radius r, the
measure is given as

P
(‖x̂ − x‖2 ≤ r2

)→ max . (2.3)

If we were to compare different estimators by looking at their respective values for proba-
bility (2.3), we would prefer one with large or the largest such probability. Unfortunately it
is rarely possible to derive an estimator which has the largest such probability for all x.

2.1.2 Model of observation equations

There are different estimation methods that we discuss in this chapter. The simplest
method that one can apply needs information about the first moment of the distribution.
Since the PDF depends on the unknown parameter x, the mean will generally depend on x
as well. We will however assume that we know how the mean depends on x. The relation
is through a mapping A : R

n �→ R
m. In the linear(ized) case A is an m × n matrix.

Redundancy Redundant measurements are often taken to increase the accuracy of the
obtained results and to check for the presence of blunders (i.e. m > n). Due to intrinsic
uncertainty in observations, redundant measurements generally lead to an inconsistent
system of equations. For m > n such an inconsistent linear system of equations has the
form y ≈ Ax. This linear system of equations for which m > n = rank(A) is also referred
to as an overdetermined system. The number b = m− rank(A) = m− n is referred to as
the redundancy of the system (or redundancy of the functional model).

Least-squares principle It is well known that an inconsistent system has no solution
x that can reproduce y. As a first step one can make the system consistent by adding a
measurement error vector e: y = Ax+e. But now we have m+n unknowns in m equations,
and therefore an infinite number of possible solutions for x and e (underdetermined system).
It seems reasonable to select from this infinite set of possible solutions, the solution which
in some sense gives the smallest value for e. This implies choosing the solution for x such
that Ax is, in some sense, as close as possible to the measurement vector y. The (weighted)
least-squares (LS) principle states to minimize the (weighted) norm of the residual vector
e, namely ‖e‖2

W = eT We = (y−Ax)T W (y−Ax), where ‖.‖ denotes the norm of a vector
and W is the weight matrix. Any symmetric and positive-definite matrix is considered to
be in the class of admissible weight matrix W (see Teunissen et al., 2005).
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Linear model From now on we will refer to the linear system of equations y = Ax + e as
the linear model of observation equations which is denoted as

E{y} = Ax , W, or D{y} = Qy , (2.4)

where y is the m-vector of (stochastic) observables, A is the m × n design matrix, x is
the n-vector of unknown parameters, and W and Qy are the m × m weight matrix and
covariance matrix of the observables, respectively. The design matrix A is assumed to
be of full column rank, i.e., rank(A) = n, provided that m ≥ n, and W and Qy are
symmetric and positive-definite. Again E{.} denotes the expectation operator, and D{.}
the dispersion operator. The above parametric form of the functional model is referred to
as a Gauss-Markov model when y is normally distributed, i.e. y ∼ N(Ax,Qy).

Estimation methods Three different estimation methods will be treated in this chap-
ter. They are: weighted least-squares estimation (WLSE), best linear unbiased estimation
(BLUE) and maximum likelihood estimation (MLE). The methods differ not only in the
estimation principles involved, but also in the information that is required about the PDF
fy(y|x). WLSE is applied when we only have information about the first moment of the
distribution. BLUE is a method which can be applied when we have information about the
first two moments of the distribution. MLE is used if we know the complete structure of
the PDF fy(y|x). An important example for which the complete structure of the PDF is
known is the multivariate normal distribution, i.e. as y ∼ Nm(Ax,Qy).

2.1.3 Weighted least-squares estimation

Definition 2.1 (Weighted least-squares) Let E{y} = Ax, with A an m × n matrix of
rank(A) = n, be a possibly inconsistent linear model of observation equations and let W
be a symmetric and positive-definite m × m weight matrix (W = W T > 0). Then the
weighted least-squares solution of the system is defined as

x̂ = arg min
x∈Rn

(y − Ax)T W (y − Ax) . (2.5)

The difference ê = y − Ax̂ is called the (weighted) least-squares residual vector. Its
squared (weighted) norm ‖ê‖2

W = êT Wê is a scalar measure for the inconsistency of the
linear system. �

Estimator Since the mean of y depends on the unknown x, also the PDF of y depends
on the unknown x. The problem of determining a value for x can thus now be seen as an
estimation problem, i.e. as the problem of finding a function G such that x̂ = G(y) can
act as the estimate of x and x̂ = G(y) as the estimator of x. The weighted least-squares
estimator (WLSE) is given as (Teunissen et al., 2005)

x̂ = (AT WA)−1AT Wy , (2.6)

which is a linear estimator, since all the entries of x̂ are linear combinations of the entries
of y. The least-squares estimator ŷ = Ax̂ of observables and ê = y − ŷ of residuals follow
from equation y = Ax + e as{

ŷ = PAy ;
ê = P⊥

A y ,
(2.7)
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with PA = A(AT WA)−1AT W and P⊥
A = Im − PA two (orthogonal) projectors. The

projector PA projects onto the range space of A (i.e. R(A)), and along its orthogonal
complement (i.e. R(A)⊥), while P⊥

A projects onto R(A)⊥ and along R(A). R(.) denotes
the range space of a matrix. For some useful properties of these two projectors refer to
Teunissen (2000a).

Unbiasedness To get some insight in the performance of an estimator, we need to know
how the estimator relates to its target value. Based on the assumption E{e} = 0, the
expectations of x̂, ŷ and ê follow as

E{x̂} = x , E{ŷ} = E{y} = Ax , E{ê} = E{e} = 0 . (2.8)

This shows that the WLSE is an linear unbiased estimator (LUE). Unbiasedness is clearly
a desirable property. It implies that on the average the outcomes of the estimator will be
on target. Also ŷ and ê are on target on the average. Note that the unbiasedness of the
WLSE is independent of the choice made for the weight matrix W .

Covariance matrix In order to obtain the covariance matrices of x̂, ŷ and ê, we need the
covariance matrix of e or observables y, namely Qy. The covariance matrices of x̂, ŷ and
ê will be denoted respectively as Qx̂, Qŷ and Qê. Application of the error propagation law
to equations (2.6) and (2.7) yields⎧⎨
⎩

Qx̂ = (AT WA)−1AT WQyWA(AT WA)−1 ;
Qŷ = PAQyP

T
A ;

Qê = P⊥
A QyP

⊥T
A .

(2.9)

These covariance matrices depend on the choice made for the weight matrix W .

Mean squared error The mean and the covariance matrix of an estimator come together
in the mean squared error of the estimator. As before, let ε̂ = x̂ − x be the estimation
error. Assume that we ’measure’ the size of the estimation error by the expectation of the
sum of squares of its entries, E{ε̂T ε̂} = E{‖x̂ − x‖2}, which is called the mean squared
error (MSE) of the estimator. It can easily be shown that the MSE is decomposed as
E{‖x̂ − x‖2} = E{‖x̂ − E{x̂}‖2} + E{‖x − E{x̂}‖2}. The first term on the right-hand
side is the trace of the covariance matrix of the estimator and the second term is the
squared norm of the bias of the estimator. But since the WLSE is unbiased, the second
term vanishes, as a result of which the MSE of the WLSE reads

E{‖x̂ − x‖2} = tr(Qx̂) . (2.10)

Quadratic form of residuals In weighted least-squares, one important criterion which
shows the inconsistency of the linear model of observation equations is the quadratic form
(squared norm) of the residuals which is given as

‖ê‖2
W = êT Wê = yT Wy − yT WA(AT WA)−1AT Wy . (2.11)

Note 2.1 The results in equations (2.8), (2.9), (2.10) and (2.11) are all independent of
the unspecified distribution of y. The unbiasedness property (2.8) is even independent of
the choice made for the weight matrix W , while the covariance matrices (2.9), the mean
squared error (2.10), and the quadratic form (2.11) depend on W . One may therefore
think of the ’best’ weight matrix that minimizes the MSE (see next section). �
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Normality The random vectors x̂, ŷ and ê are all linear functions of y. This implies
that they have a Gaussian (normal) distribution whenever y has a normal distribution.
Therefore, if y has a normal distribution, i.e. y ∼ Nm(Ax,Qy) then

x̂ ∼ Nn(x,Qx̂); ŷ ∼ Nm(Ax,Qŷ); ê ∼ Nm(0, Qê) . (2.12)

Note, since the covariance matrix Qê is singular, that the least-squares residual vector ê
has a singular normal distribution. Also note that the first two distributions differ from the
third in the sense that their means are unknown. Therefore, if Qy is given, only the shape
of their PDFs is known, but not the location. The PDF of ê, however, is completely known
once Qy is given. This property will turn out to play an important role in section 2.2.

2.1.4 Best linear unbiased estimation

Minimum MSE The weighted least-squares approach was introduced as an appealing
technique for solving an inconsistent system of equations. The method itself is a deter-
ministic principle, since no concepts from probability theory are used in formulating the
least-squares minimization problem. In order to select an optimal estimator from the class
of linear unbiased estimators (LUE), we need to define the optimality criterion. As optimal-
ity criterion we choose the minimization of the mean squared error (MSE). The estimator
which has the smallest mean squared error of all LUEs is called the best linear unbiased
estimator (BLUE). Such a minimization problem results in the smallest possible variance
for estimators, i.e. E{‖x̂ − x‖2} = tr(Qx̂) ≡ min.

Estimator If the covariance matrix Qy of the observables is known, one could use the
best linear unbiased estimation (BLUE) by taking the weight matrix to be the inverse of
the covariance matrix, namely taking W = Q−1

y in equations (2.6) and (2.7). With this
the BLUE estimators of x, y, and e in equation y = Ax + e read

⎧⎨
⎩

x̂ = (AT Q−1
y A)−1AT Q−1

y y ;
ŷ = PAy ;
ê = P⊥

A y .
(2.13)

where both PA = A(AT Q−1
y A)−1AT Q−1

y and P⊥
A = Im − PA are orthogonal projectors.

Substitution of W = Q−1
y into equation (2.9) yields the covariance matrix of the BLUE

estimators as⎧⎨
⎩

Qx̂ = (AT Q−1
y A)−1 ;

Qŷ = PAQy ;
Qê = P⊥

A Qy .
(2.14)

It can be shown that of all linear unbiased estimators, the BLUE-estimator has minimum
variance. It is therefore a minimum variance linear unbiased estimator. The BLUE is
also sometimes called the probabilistic least-squares estimator. The property of minimum
variance is also independent of the distribution of y (like the unbiasedness property). In
the literature, the choice of W = Q−1

y , leading to the BLUE, is often made by default. In
the thesis, in general, we will treat the weighted least-squares estimators and the BLUE to
be different.
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Quadratic form of residuals From the BLUE estimators, the inconsistency criterion of
the linear model of observation equations, expressed by the quadratic form of the residuals,
is given as

‖ê‖2
Q−1

y
= êT Q−1

y ê = yT Q−1
y y − yT Q−1

y A(AT Q−1
y A)−1AT Q−1

y y . (2.15)

The preceding squared norm of the residuals will play an important role in section of
detection and validation (section 2.2).

Note 2.2 In the weighted least-squares the weight matrix W plays the role of a metric
tensor in a vector space. The BLUE estimators take the weight matrix as the inverse of the
covariance matrix. Therefore, the covariance matrix of the observables is closely related
to the metric tensor. We have thus some probabilistic interpretations in our vector space.
For example if the covariances between observables are zero, this means that the standard
basis vectors of the vector space are orthogonal ; uncorrelated observables mean, for basis
vectors, having no projection on each other. If in addition the variances are equal, this
means that the basis vectors are orthonormal . Therefore, if we take the weight matrix as
the inverse of covariance matrix, the definition of the minimum distance (minimum norm)
in the vector space obtained from weighted least-squares will coincide with the definition
of minimum variance in the stochastic model (space) obtained from BLUE. �

2.1.5 Maximum likelihood estimation

So far we have seen two different estimation methods at work: WLSE and BLUE. These
two methods are not only based on different principles, but they also differ in the type of
information that is required of the PDF of y. For WLSE we only need information about
the first moment of the PDF, the mean of y. For BLUE we need additional information.
Apart from the first moment, we also need the second (central) moment of the PDF, the
covariance matrix of y. For the linear model, the two principles give identical results when
the weight matrix is taken equal to the inverse of the covariance matrix. In this section we
introduce the method of maximum likelihood estimation (MLE) which requires knowledge
of the complete PDF.

The principle The maximum likelihood (ML) method is conceptually one of the simplest
methods of estimation. It is only applicable however when the general structure of the PDF
is known. Assume therefore that the PDF of y ∈ R

m, i.e. fy(y|x), is known apart from
some n unknown parameters. Since the PDF will change when x changes, we in fact have
a whole family of PDFs in which each member of the family is determined by the value
taken by x. Since x is unknown, it is not known to which PDF an observed value of y, i.e.
y0, belongs. The idea now is to select from the family of PDFs, the PDF which gives the
best support of the observed data. For this purpose one considers fy(y0|x) as function of
x. This function is referred to as the likelihood function of y0 which produces, as x varies,
the probability densities of all the PDFs for the same sample value y0. Would x be the
correct value, then the probability of y being an element of an infinitesimal region centered
at y0 is given as fy(y0|x)dy. A reasonable choice for x, given the observed value y0, is
therefore the value which corresponds with the largest probability, maxx fy(y0|x)dy, and
thus with the largest value of the likelihood function. The maximum likelihood estimator
(MLE) of x is therefore defined as follows:
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Definition 2.2 (Maximum likelihood) Let the PDF of the vector of observables y ∈ R
m

be parameterized as fy(y|x), with x ∈ R
n unknown. Then the MLE of x is given as

x̂ = arg max
x∈Rn

fy(y|x). � (2.16)

The computation of the maximum likelihood solution may not always be an easy task. If
the likelihood function is sufficiently smooth, the two necessary and sufficient conditions
for x̂ to be a (local or global) maximizer are

∂xfy(y|x̂) = 0 ; and ∂2
xxT fy(y|x̂) < 0 , (2.17)

with ∂x and ∂2
xxT the first and the second order partial derivatives with respect to x,

respectively. Therefore, the gradient has to be zero and the Hessian matrix (the symmetric
matrix of second-order partial derivatives) has to be negative definite. For more information
see Teunissen et al. (2005).

Note 2.3 (MLE and BLUE) In case of normally distributed data (Gauss-Markov
model), the MLE estimators are identical to the BLUE ones. Let y ∼ Nm(Ax,Qy), with

x the n-vector of unknown parameters. Then fy(y|x) = (det(2πQy))
−1/2 exp{−1

2
‖y −

Ax‖2
Q−1

y
}, from which it follows that arg maxx∈Rn fy(y|x) = arg minx∈Rn ‖y − Ax‖2

Q−1
y

.

Therefore, x̂ = (AT Q−1
y A)−1AT Q−1

y y. The estimators ŷ and ê as well as their covariance
matrices are also the same as those given for BLUE estimators (see previous section).

2.1.6 Model of condition equations

Relations between variables can be expressed in various equivalent forms. Two prime
examples are the so-called parametric form and the implicit form. So far we have expressed
the linear model in the form E{y} = Ax. This is the so-called parametric form of the
linear model (model of observation equations). The mean of y is explicitly parameterized
in terms of the unknown parameter vector x. Although this is the most common form of
the linear model, other equivalent formulations exist. For example, one can also include
some hard constraints into this model (see appendix D.1). We can enumerate at least
other forms like the conditioned model and combined (mixed) model. The implicit form of
the linear model is called the conditioned linear model. In this chapter we restrict ourselves
only to the model of condition equations. This model describes the conditions which are
satisfied by the entries of the mean vector E{y}. For this formulation we will give the
corresponding expressions for the BLUE estimators.

Linear model Each parametric linear model E{y} = Ax has its equivalent conditioned
linear model. The model of parametric equations can be rewritten in terms of the model
of condition equations as

BT y = t , E{t} = 0 , Qt = D{t} = BT QyB , (2.18)

with B a given m× b matrix, and Qt the b× b covariance matrix of misclosure b-vector t.
The vector of misclosures provides a direct measure for inconsistency. The matrix B has
full column rank, i.e., rank(B) = b provided that b ≤ m, which is always true since b, the
redundancy of the functional model, is given as b = m − n. The matrix Qt is assumed to
be symmetric and positive-definite.
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Relation with A Each additional observation on top of the n-number of observations
which are needed for the unique determination of the unknown parameters x in the linear
model E{y} = Ax leads to an extra condition equation. For example, the height differences
of a closed loop in leveling should sum up to zero. Or three interior angles of a triangle
should always add up to π. The matrix B is constructed on the basis of these independent
conditions which the redundant observations have to fulfill. It should be pointed out that
obtaining the condition equations and the B matrix is sometimes difficult. The following
relation is always true between two matrices A and B

BT A = 0 , (2.19)

which means that the columns of the matrix B are complementary and orthogonal to the
columns of the matrix A. That is, R(B) = N (AT ) which means that R(A)⊕R(B) = R

m

and R(A) ⊥ R(B), where R(.) denotes the range space of a matrix, N (.) the null space
and ⊕ denotes the direct sum of the two subspaces.

Estimator In order to obtain the BLUE estimator, we will use the following identity:

A(AT Q−1
y A)−1AT Q−1

y + QyB(BT QyB)−1BT = Im . (2.20)

For a proof see Teunissen et al. (2005). According to this matrix identity, we have for the
orthogonal projector PA = A(AT Q−1

y A)−1AT Q−1
y and P⊥

A = I − A(AT Q−1
y A)−1AT Q−1

y

equivalent expressions in terms of the model of condition equations (B-model)

PA = P⊥
QyB = I − QyB(BT QyB)−1BT ;

P⊥
A = PQyB = QyB(BT QyB)−1BT ,

(2.21)

where P⊥
QyB is an orthogonal projector which projects onto R(QyB)⊥ and along R(B) and

PQyB projects onto R(B) and along R(QyB)⊥. From equation (2.18), the least-squares
estimator (BLUE) of the observables and residuals is obtained as

ŷ = P⊥
QyBy ; ê = PQyBy , (2.22)

with the covariance matrices of the form

Qŷ = P⊥
QyBQy, Qê = PQyBQy. (2.23)

Quadratic form of misclosures The vector of misclosures has a direct link with the
BLUE’s residual vector. The BLUE’s residual vector ê = y − ŷ and its squared norm
‖ê‖2

Q−1
y

can be expressed in the vector of misclosures as

ê = QyBQ−1
t t ; ‖ê‖2

Q−1
y

= ‖t‖2
Q−1

t
= tT Q−1

t t . (2.24)

Note 2.4 The formulas of the weighted least-squares estimators of section 2.1.3 can also
be obtained for the model of condition equations. For this purpose we need to define the
projectors PA and P⊥

A as P⊥
W−1B and PW−1B, respectively, where Qy is substituted by W−1

in projectors (2.21) .
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2.2 Detection and validation in linear models

2.2.1 Testing simple and composite hypotheses

Most powerful test The simple likelihood ratio (SLR) test is derived based on the
Neyman-Pearson testing principle. This principle states to choose, among all tests or
critical regions possessing the same size type I error, α, the one for which the size of the
type II error, β, is as small as possible. Such a test with the smallest possible type II error
is called the most powerful test.

Simple hypotheses We consider two simple hypotheses. Using the Neyman-Pearson
principle, we will test the null hypothesis against the alternative one. When the m-vector y
has the probability density function (PDF) fy(y|x), we may define two simple hypotheses as
Ho : x = xo versus Ha : x = xa. Both hypotheses each pertain to a single distinct point
in the parameter space. The objective is to decide, based on observations y of observables
y, from which of the two distributions the observations originated, either from fy(y|xo) or
from fy(y|xa). The simple likelihood ratio (SLR) test as a decision rule reads (Teunissen
et al., 2005)

reject Ho if
fy(y|xo)

fy(y|xa)
< a , (2.25)

and accept otherwise, with a a positive constant (threshold). It can be proved that the
simple likelihood ratio test is a most powerful test.

In practice we usually deal with composite hypotheses. We deal with the general problem
of testing a composite hypothesis against another composite hypothesis. The generalized
likelihood ratio (GLR) test is therefore defined. The fact that a composite hypothesis
represents more than just a single distinct point in the parameter space complicates the
notion of the power of a test. We can therefore address the uniformly most powerful
(UMP) property of a test. In case of testing a simple hypothesis against a composite
hypothesis, it is possible to derive indeed an UMP test, but most tests in practice (e.g.
composite Ho versus composite Ha) are unfortunately not uniformly most powerful.

Composite hypotheses The probability density function (PDF) of observable vector y is
fy(y|x) with x ∈ Φ, where parameters in x may pertain to the location and shape of the
PDF (think for instance of mean and variance). The parameter space Φ which contains all
possible values for x is divided into two parts. The hypotheses then read

Ho : x ∈ Φo ; and Ha : x ∈ Φ\Φo . (2.26)

The set Φ\Φo is the subset of Φ that is complementary to Φo. Therefore, Φ\Φo = {x ∈
Φ | x �∈ Φo}. The null and alternative hypotheses together cover the whole parameter
space.

GLR test The PDF of the vector of observables y specified by fy(y|x) is a function of x.
Therefore, the specification implies a whole family of PDFs. For the (given) observed y
one considers fy(y|x) as a function of x. This is referred to as the likelihood function of y;
see section 2.1.5. When x varies, the likelihood function produces the probability densities
of all possible PDFs for the observed sample vector y. We maximize the likelihood function
through the method of maximum likelihood estimation (section 2.1.5). This holds for x
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restricted to the set Φo under the null hypothesis as well as for the unrestricted case x ∈ Φ.
The generalized likelihood ratio test is defined as

reject Ho if
maxx∈Φo

fy(y|x)

maxx∈Φ fy(y|x)
< a , (2.27)

and accept otherwise, with a ∈ (0, 1). The GLR-test (2.27) yields a binary decision. The
numerator implies maximization of the likelihood within the subset Φo ⊂ Φ put forward
by the null hypothesis Ho. The denominator amounts to a maximization over the whole
parameter space Φ. When the numerator is, to a certain extent (specified by a), smaller
than the denominator, the null hypothesis Ho is likely not true and therefore is rejected.

2.2.2 Hypothesis testing in linear models

In this section we address an important practical application of the generalized likelihood
ratio (GLR) test, namely hypotheses testing in linear models. In many applications, ob-
served data are treated with a linear model; validation of data and model together. The
goal is to make a correct decision to be able to eventually compute estimates for the un-
known parameters of interest. This also provides us with the criteria such as reliability to
control the quality of our final estimators.

The observables are assumed to have a normal distribution. In addition, different hy-
potheses differ only in the specification of the functional model. Misspecifications in the
functional model have to be handled prior to variance component estimation. In this chap-
ter, the stochastic model of the observables is not subject to discussion or decision (see
next chapters instead). When testing hypotheses on misspecifications in the functional
model, we consider two types of equivalent tests: the observation test and the parameter
significance test. These types of hypothesis testing using the GLR are dealt with when the
covariance matrix Qy of the observables is completely known. This is called ’σ known’.
When the covariance matrix is known up to the variance of unit weight, i.e. Qy = σ2Q,
we will give some comments. This is referred to as ’σ unknown’.

Observation testing The general approach to handling observed data is that a nominal
or default model is usually available. One wants to verify whether the observed data ’obey’
the basis model also this time. There could have been disturbances or anomalies that
invalidate the nominal model. Testing for gross errors and anomalies in the observations is
referred to as observation testing. In this section the m-vector of observables y is assumed
to be normally distributed

y ∼ Nm(Ax,Qy) , (2.28)

with (for the moment) known covariance matrix Qy. The following two composite hy-
potheses on the expectation of y are put forward:

Ho : E{y} = Ax ; and Ha : E{y} = Ax + Cy∇, ∇ �= 0 , (2.29)

with the m × n design matrix A and the n-vector x of unknown parameters. In the
alternative hypothesis q additional unknown parameters in vector ∇ are related to the
expectation of y by m × q matrix Cy. Matrix Cy is assumed to be of full column rank,
i.e. rank(Cy) = q. Columns of A and Cy are also assumed to be linearly independent, i.e.
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rank(A Cy) = n + q. The matrix Cy prescribes how unmodeled effects translate into the
individual observations, i.e. into all elements of vector y.

The number of parameters which describes the expectation of the observables is extended
in the alternative hypothesis Ha. The goal is to accommodate extraordinary effects in the
observed process, e.g. disturbances, systematic effects, and gross errors of the observables.
The generalized likelihood ratio (GLR) test will provide us with a decision whether or not
the additional explanatory variables in ∇ should be taken into account.

Test statistic The probability density functions read, under Ho: fy(y|x) = N(Ax,Qy) and
under Ha: fy(y|x) = N(Ax + Cy∇, Qy). The two parts of the GLR are maxx N(Ax,Qy)
with x ∈ R

n, and maxx,∇ N(Ax + Cy∇, Qy) with x ∈ R
n and ∇ ∈ R

q. Maximizing
these likelihoods leads to the maximum likelihood estimators (MLE); or here BLUE as it is
identical to MLE for a normal distribution. One can show that the test statistic related to
this testing problem is given as (Teunissen et al., 2005)

T q = êT
o Q−1

y Cy(C
T
y Q−1

y Qêo
Q−1

y Cy)
−1CT

y Q−1
y êo , (2.30)

where êo is the least-squares residuals under the null hypothesis Ho. Therefore, practically
one does not need to compute quantities under the alternative hypothesis. The index q
refers to the additional degrees of freedom by vector ∇ in the alternative hypothesis. The
preceding test statistic is distributed as

Ho : T q ∼ χ2(q, 0) ; and Ha : T q ∼ χ2(q, λ) , (2.31)

where the noncentrality parameter λ is given as

λ = ∇T CT
y P⊥ T

A Q−1
y P⊥

A Cy∇ = ‖P⊥
A Cy∇‖2

Q−1
y

, (2.32)

which equals the squared norm of the vector P⊥
A Cy∇. The GLR-test is therefore used to

decide between the extended model under the alternative hypothesis and the default model
under the null hypothesis Ho.

Special cases The number of parameters in vector ∇ in alternative hypothesis (2.29)
can range from 1 to m − n, i.e. 1 ≤ q ≤ m − n. With m observations, the maximum
number of estimable unknown parameters is m as well. If we have already n parameters in
vector x, there are q = m − n parameters left. This is considered as the upper bound for
vector ∇ in the alternative hypothesis Ha. In this chapter we consider two special cases of
the GLR-test in linear models, namely the case q = m − n that yields the overall model
test, and the case q = 1 that leads to the so-called w-test. For the parameter significance
test we will only consider a special case that is equivalent to the w-test. This is referred
to as the v-test.

2.2.3 Overall model test

Test statistic In the limiting case of q = m−n, there is no redundancy in the alternative
hypothesis Ha in equation (2.29). This implies immediately that êa = 0, where êa is the
least-squares (BLUE) residual vector under the alternative hypothesis. One can show that
the test statistic (2.30) yields

T q=m−n = ‖êo‖2
Q−1

y
= êT

o Q−1
y êo , (2.33)
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which is expressed as the quadratic form (squared norm) of the residuals (cf. equa-
tion (2.15)). The test of Ha with q = m − n versus Ho by means of the above test
statistic, is referred to as the overall model test.

Note that both A and Cy should be of full column rank and therefore matrix (A Cy)
square and invertible. According to the alternative hypothesis Ha, the vector of observa-
tions y is allowed to lie anywhere in the observation space R

m. The vector of observations
will always satisfy the alternative hypothesis, i.e. y ∈ R

m. This vector is therefore checked
for the validity all in one go without having yet a specific error signature in mind.

Distribution The test statistic value of (2.33) equals the squared norm of vector êo and
provides an overall inconsistency measure. The test statistic T q=m−n is distributed as

Ho : T q ∼ χ2(m − n, 0) ; and Ha : T q ∼ χ2(m − n, λ) , (2.34)

where the noncentrality parameter λ in the alternative hypothesis is stated in equa-
tion (2.32).

Variance of unit weight When the covariance matrix of the observables is decomposed
as Qy = σ2Q with Q the m × m cofactor matrix, then

σ̂2 =
êT

o Q−1êo

m − n
(2.35)

is an unbiased estimator for the (un)known variance of unit weight since E{êT
o Q−1êo} =

σ2(m − n); see example 4.7. The relation with the above overall model test statistic
becomes clear from

σ̂2

σ2
=

êT
o Q−1êo

σ2(m − n)
, (2.36)

which equals T q=m−n/(m−n), and is the estimator for the variance factor of unit weight.
It indicates how we have to scale up or down the a-priori taken σ2 to achieve the value for
the overall model test statistic T q=m−n being equal to its expectation value m − n. Next
to gross errors and anomalies an incorrect stochastic model through covariance matrix Qy

may also cause rejection of the null hypothesis Ho in the overall model test. When for
instance the elements of matrix Qy are taken too small, the value for the overall model
test will become too large. Therefore, it is (more) likely that the null hypothesis Ho will
be rejected. In this case the estimate obtained from equation (2.36) measures how to
scale up the a-priori variance σ2.

Note 2.5 With just the overall model test through test statistic (2.33) we cannot allocate
a rejection of the null hypothesis. Rejection can be caused by large (gross) errors in the
observed data, an inappropriate (default) functional model for the data at hand, and/or
by a poor specification of the observables’ noise characteristics in the stochastic model
(through matrix Qy). Just the overall model test by itself cannot provide the answer. �

2.2.4 The w-test statistic

In the data snooping method which was originally proposed by Baarda (1968), each indi-
vidual observation is screened for the presence of an outlier. The number of parameters in
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vector ∇ in alternative hypothesis (2.29) can range from 1 to m− n, i.e. 1 ≤ q ≤ m− n.
Let us now consider the lower bound of q = 1. We will test for specific single observational
errors (single in the sense of one dimensional, q = 1). One popular application of this
special test is to check every observation for a large error (outlier). This will be done for
all m observations, implying that we will perform an m number of tests.

Test statistic When q = 1, the matrix Cy actually reduces to a vector. We will denote
this m-vector by cy. Introducing this vector in equation (2.30) leads to

T q=1 =
(cT

y Q−1
y êo)

2

cT
y Q−1

y Qêo
Q−1

y cy

, (2.37)

where the numerator and denominator are both scalar quantities. The test statistic T q=1

is distributed as

Ho : T q ∼ χ2(1, 0) ; and Ha : T q ∼ χ2(1, λ) , (2.38)

with the noncentrality parameter λ expressed in equation (2.32). In practice, it is more
convenient to use the square root of the test statistic (2.37), namely

w =
cT
y Q−1

y êo[
cT
y Q−1

y Qêo
Q−1

y cy

]1/2
, (2.39)

which is normally distributed , and even has standard normal distribution under Ho

Ho : w ∼ N(0, 1) ; and Ha : w ∼ N(∇w, 1) , (2.40)

with ∇w = [cT
y Q−1

y Qêo
Q−1

y cy]
1/2∇. The noncentrality parameter in equation (2.32) is

related to ∇w as λ = ∇w2. Random variable w is referred to as the w-test statistic.

Data snooping An important application of the w-test is blunder detection. A blunder,
or outlier affects just a single observation. To screen the observations, in order to identify
those that are grossly falsified by outliers, we formulate m alternative hypotheses. And
they are all tested against the default or nominal model, represented by Ho. The vector cy

is taken a canonical unit vector, i.e. a vector with all zeros and a one at the ith position
cyi

= [0, . . . , 1, . . . , 0]T , and i ranges from 1 to m. This screening of the observations with
equation (2.39) is also referred to as data snooping . When the test for observation i is
rejected, it is concluded that observation i is affected by some extraordinary large errors.

Normalized residuals When dealing with data snooping, if the covariance matrix Qy of
observables is diagonal, the expression for the w-test statistic reduces to a very simple form.
The simple expression for the w-test statistic then reads

wi =
êi

σêi

, (2.41)

with σêi
= (Qêo

)
1/2
ii the standard deviation of the least-squares residual i, for i = 1, . . . ,m.

This quantity is also referred to as the normalized residual.
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Geometric interpretation To conclude this section, we consider the geometric interpre-
tation of the w-test statistic in general. With êo = P⊥

A y and Q−1
y P⊥

A = P⊥T
A Q−1

y P⊥
A ,

the numerator of equation (2.39) equals the the inner product of the projected vector of
observations êo = P⊥

A y with vector P⊥
A cy in the observation space R

m. The inner product
equals 〈P⊥

A cy, P⊥
A y〉 = ‖P⊥

A cy‖.‖P⊥
A y‖ cos ϕ with ϕ the angle between the two vectors.

Also with Q−1
y Qêo

Q−1
y = P⊥T

A Q−1
y P⊥

A , the denominator is the length (norm) of m-vector

P⊥
A cy which equals ‖P⊥

A cy‖Q−1
y

. Assembling all parts leads to the conclusion that the test

statistic (2.39) reads

w =
〈P⊥

A cy, P⊥
A y〉Q−1

y

‖P⊥
A cy‖Q−1

y

= ‖êo‖Q−1
y

cos ϕ , (2.42)

which is equal to the length of the projection of vector êo onto vector P⊥
A cy. This expression

shows that the value of the w-test statistic is undefined, when vector cy lies in the range
space of matrix A, cy ∈ R(A) or ϕ = π/2, and hence P⊥

A cy = 0. The occurrence of an
error with a signature represented by this vector cy can never be found or detected with
statistical testing in this set up.

2.2.5 The v-test statistic

In the previous sections the default or nominal model Ho was tested against alternatives
which compared to Ho were extended with one or more parameters in ∇. It is because
we want to account for unmodeled effects as disturbances and gross errors in the observa-
tions. In this section we address the question whether the full nominal model is needed to
appropriately describe the observed data. That is, we will test the model against a more
restrictive one (fewer degrees of freedom). We consider a testing problem that, though
mathematically equivalent to the above given testing problem, occurs when one wants to
test the significance of parameters. The resulting test is thus referred to as a parameter
significance test. The idea is to test whether or not it is possible to reduce the number
of unknowns, e.g. by introducing hard constraints on the parameters. One goal for in-
stance is to leave out parameters that are not significant (e.g. when they are statistically
indistinguishable from zero).

General form We can derive the appropriate generalized likelihood ratio test of size α.
Based on this GLR test we can obtain the corresponding test statistic as well as its distrib-
ution. The m-vector of observables y is assumed to be normally distributed. The following
two composite hypotheses on the expectation of y are put forward:

Ho : E{y} = Ax with CT
x x = co ; versus Ha : E{y} = Ax, (2.43)

with n × d constraint matrix Cx, and d-vector co with known values. The constrained
linear model is introduced in appendix D.1. The m × n design matrix A is again assumed
to be of full rank. The constraint matrix Cx is also assumed to be of full column rank, i.e.
rank(Cx) = d where d ≤ n. A row of matrix CT

x generally implies a linear combination of
the parameters in vector x.

The alternative hypothesis Ha is actually the default model, without constraints on the
parameters. In the null hypothesis Ho the vector x of unknown parameters is subject to
d (hard) constraints. In practice, generally by default, the computations are carried out
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using the alternative hypothesis, i.e. the model without constraints in equation (2.43). The
resulting quantities can be indexed here with ·a. But just for convenience we will drop the
index a.

v-test One may wonder whether all parameters currently included in vector x in the func-
tional model are really necessary to describe the expectation of the observables. As a
special case we consider the case with a single constraint (d = 1). The constraint in
the null hypothesis becomes cT

x x = co with n-vector cx and scalar co. The test statistic
obtained from the generalized likelihood ratio test is given as (see appendix D.2)

v =
cT
x x̂ − co√
cT
x Qx̂cx

, (2.44)

which is referred to as the v-test statistic and is distributed as

Ho : v ∼ N(0, 1) ; and Ha : v ∼ N(∇v, 1) , (2.45)

with the noncentrality parameter ∇v = (ca − co)/
√

cT
x Qx̂cx where ca �= co under the

alternative hypothesis. Again, note that both x̂ and Qx̂ are given under the unrestrictive
alternative hypothesis Ha. One can give a similar geometric interpretation of the v-test
statistic to that previously given for the w-test statistic. One can also obtain the w-test
statistic from the v-test statistic and vice versa (see appendix D.3).

Example 2.1 In case one is interested in a single unknown parameter, the vector cx = ci can be
taken to be the corresponding canonical unit vector. The test statistic (2.44) then simplifies to

v =
cT
i x̂ − co√
cT
i Qx̂ci

=
x̂i − co

σx̂i

. (2.46)

One can in addition test whether or not two unknown parameters xj and xi are equal. In this
case, vector cx = cj − ci and scalar co = 0 which lead to the v-test statistic as

v =
x̂j − x̂i√

σ2
x̂i

+ σ2
x̂j

− 2σx̂ix̂j

, (2.47)

with σ2
x̂i

and σx̂ix̂j
, respectively, the variance and covariance elements of x̂ obtained from Qx̂

under alternative hypothesis Ha. �

2.2.6 Unknown variance of unit weight

So far the parameter estimation and testing of statistical hypotheses in linear models
concerned the case that the covariance matrix Qy of the observables is completely known.
This sometimes turns out not to be the case. We can address the case that the covariance
matrix is decomposed into a known cofactor matrix Q and an unknown variance of unit
weight, i.e. Qy = σ2Q. This is referred to as σ unknown. This is the simplest form of an
unknown covariance matrix, which can occur in many practical applications.

One can simply show that the BLUE estimators are not affected by the unknown variance
factor of unit weight. This is however not the case for their covariance matrices as they
are directly dependent on σ2. For hypotheses testing, the difference here with the case
’σ known’ is that the overall model test does not exist when σ is unknown. We can just
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estimate the unknown variance factor of unit weight and testing is not possible. But one
can derive the corresponding w-test and v-test statistics. In this case both test statistics
have a Student t distribution; see Teunissen et al. (2005).

In this thesis we will assume a more complicated form of the covariance matrix. In the
next chapters we consider the problem of estimating the stochastic model. The covariance
matrix can in general be written as a linear combination of some known cofactor matrices.
This linear combination is, however, not known and some variance and covariance compo-
nents are to be estimated. We are going to estimate the unknown (co)variance components
of the stochastic model based on the least-squares principle that was introduced in this
chapter.
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3.1 Introduction

So far we assumed that the covariance matrix Qy is known. Therefore, in the estimation
process one is usually concerned about the optimal estimation of the unknown parameters
in the functional model. In this chapter we consider the problem of estimating the sto-
chastic model. The importance of specifying a correct stochastic model is evidenced by
formulas (2.13). What we really need in these equations is a realistic covariance matrix
of observables. A realistic description of the measurement noise characteristics through
the observation covariance matrix is required to yield minimum variance (best) estimators
(BLUE). Often in geodetic literature, the covariance matrix of the observables y consists
of one simple component, namely

E{y} = Ax; Qy = σ2Q , (3.1)

where σ2 is the unknown variance of unit weight and Q is the known m×m symmetric and
positive-definite cofactor matrix. This is in fact the simplest form of an unknown covariance
matrix in a linear model. The BLUE expressions x̂, ŷ, and ê are invariant against a change
in the variance σ2, but in general not against other changes like different weighting and
covariances. More importantly, the covariance matrices Qx̂, Qŷ, and Qŷ describing the
precision of the least-squares estimators, directly depend on Qy. In addition, test statistics
highly depend on the a-priori assumption for the stochastic model.

This chapter reviews the principles and the resulted formulas for the (co)variance com-
ponent estimation problem. We start from the same point of departure, but each time
with a different line of thought. We will show how these formulas give identical results
under certain conditions. There are different estimation methods based on optimality cri-
teria as unbiasedness, best (minimum variance), minimum norm, and maximum likelihood
(see previous chapter). Over the past years several variance component estimation (VCE)
techniques have been developed. A complete review of all methods would be beyond the
scope of this thesis. A relatively comprehensive review of several rigorous and simplified
methods for VCE is given by Grafarend (1985); Crocetto et al. (2000); Fotopoulos (2003).
In this chapter we review the methods that were previously developed for estimating the
(co)variance components. We will outline the underlying assumptions of each method.
The focus is placed on identifying and discussing the key developments related to geodetic
research and applications.

An effective way for characterizing different VCE procedures is to list them according to
certain distinguishable features. Most approaches for VCE within a least-squares estimation
framework can be categorized after Crocetto et al. (2000)

• functional model (Gauss-Markov, condition model, Gauss-Helmert, etc.);
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• stochastic model (block diagonal, block-structured, etc.);

• estimation principles (MINQUE, BIQUE, MLE, Bayesian method, etc.);

• rigorous or simplified methods (as almost unbiased estimation (AUE), etc.).

Using such a categorical scheme, a timeline outlining the key developments in VCE theory
applicable to geodetic problems is tabulated by Fotopoulos (2003).

Functional model The relation between variables can be expressed in different equivalent
forms. In chapter 2 we gave two important formulations of the functional model, namely
the model of observation equations (Gauss-Markov model, see equation (2.4)) and the
model of condition equations (condition model, see equation (2.18)). Another important
formulation is called mixed model which involves both the observables and the unknown
parameters in an implicit form

BT E{y} = Ax; D{y} = Qy . (3.2)

In the geodetic literature, the preceding model is also known as Gauss-Helmert model.
A desirable property of an estimator should be its independence from the type of the
formulation of the functional model. For example, the least-squares residuals of y are
invariant to the sort of the formulation of the functional model. Given the (co)variance
estimators in one of the functional models, it is not difficult to obtain estimators for other
formulations (see e.g. section 4.7). In this chapter we will only consider the model of
observation equations.

The stochastic model consists of variance and covariance components. In the next
section we will consider a general form of the stochastic model. Our emphasis in a later
section is on the major existing estimation principles.

3.2 Variance component model

The concept of a (co)variance component model can now be introduced as an extension
of the linear model of observation (or condition) equations where the covariance matrix is
written as a linear combination of p components. The division of the covariance matrix
in components should always be the result of a detailed analysis of the stochastic model.
Preferably each component should have a natural explanation in the measurement process
or in the physical limitations of the measurements. In many cases the basis of a variance
component model can be found in an analysis of the m×1 vector of stochastic errors. The
resulting observational errors can often be considered as a function of several elementary
error sources. A relevant decomposition of the stochastic model can then be derived from
an analysis of the influence of these elementary errors on the observations. Consider the
observational errors e as a linear function of p̄ groups of errors εk, k = 1, ..., p̄

e = U1ε1 + ... + Up̄εp̄ =

p̄∑
k=1

Ukεk = Uε , (3.3)

with the m×mk transformation matrices Uk describing the influence of the kth error group
on the observables, and the mk × 1 vectors εk of error sources for different groups. Note
also that the m×∑p̄

k=1 mk matrix U and the
∑p̄

k=1 mk × 1 vector ε are respectively given
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as: U = [U1, ..., Up̄] and ε = [εT
1 , ..., εT

p̄ ]T . We assume that the error sources are zero
on average, they have different variance components, and in general they are mutually
correlated. In other words

E{εk} = 0; D{εk} = σkkQεk
; C{εk, εl} = σklQεkεl

; k, l = 1, ..., p̄ . (3.4)

Application of the error propagation law to equation (3.3) leads to the (co)variance com-

ponent model with p = p̄(p̄+1)
2

variance and covariance components

Qy =

p̄∑
k=1

σkkUkQεk
UT

k +

p̄−1∑
k=1

p̄∑
l=k+1

σkl(UkQεkεl
UT

l + UlQεlεk
UT

k ) . (3.5)

Just for the sake of notation convenience the above stochastic model can be reformulated
as Qy =

∑p
k=1 σkQk with p-number of unknown variance and/or covariance components

σk and their known cofactor matrices Qk of the form either UkQεk
UT

k or UkQεkεl
UT

l +
UlQεlεk

UT
k . The Gauss-Markov model with p (co)variance components is then given as

E{y} = Ax; Qy =

p∑
k=1

σkQk , (3.6)

where σ1, ..., σp are unknown (co)variance components, and Q1, ..., Qp are known sym-
metric and positive definite m × m cofactor matrices. The estimation of the (co)variance
components shall therefore be considered as a generalization of the estimation of the vari-
ance of unit weight. Variance components are estimated, for example, if sets of different
observations like those of the carrier-phase and pseudorange GPS observables are given. If
in addition different observation types are statistically dependent, then covariance compo-
nents are estimated to express the degree of dependence of the observables. The above
unknown covariance matrix is called the (co)variance component model or simply the sto-
chastic model . This by default also includes E{y − Ax} = E{e} = 0.

As a necessary condition, the cofactor matrices Q1, ..., Qp should be linearly independent
(see Note 4.2). One can show that the system of equations in the stochastic model
becomes singular if at least one of the cofactor matrices is written as a linear combination
of the others, i.e. if Ql =

∑p
k=1,k �=l αkQk. The (co)variance component model, therefore,

needs careful consideration before we make any inference on the unknown (co)variance
components (see section 4.8).

3.3 Rigorous methods

3.3.1 MINQUE method

Rao (1971a, 1973) derived the minimum norm quadratic unbiased estimators (MINQUE)
for which he avoids any distributional assumption. The MINQUE method is one of the
commonly used methods for the estimation of (co)variance components. This approach
was extended to the condition model and to the general Gauss-Helmert model by Sjöberg
(1983). In the following we will give the underlying assumptions and the final results of
the MINQUE method. Rao (1971a) derived the MINQUE estimators first for variance
components and then extended it for covariance components. Here we consider only
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the problem of variance component estimation. Let an estimator of a linear function
fT σ of variance components be defined as a quadratic form of the observables y, namely

fT σ̂ = yT My. This estimator is now subject to the following three conditions:

• The estimator should be unbiased (i.e. AT MA = 0, tr(MQk) = fk, k = 1, ..., p),

• The estimator is invariant under translations of the parameters x (i.e. MA = 0),

• The difference between estimator and a natural estimator in sense of Euclidean norm
should be minimum.

The estimator is unbiased if E{fT σ̂} = E{yT My} = tr(MQy)+xT AT MAx = fT σ. The

unbiasedness property can therefore be achieved if the second term is zero, i.e. AT MA = 0
and the first term equals fT σ, i.e. tr(MQk) = fk. The estimators should also be invariant
under translation of the parameters x (i.e. transformation y → y+Ax for arbitrary x). One
can simply show that this can be achieved if MA = 0. To understand the last criterion let
us refer to equation (3.5) when the covariance components are absent. If the stochastic
model ε were known, a natural estimator for the linear function fT σ is given as

fT σ̂ =

p∑
k=1

fkσ̂k =

p∑
k=1

fk

mk

εT
k Q−1

εk
εk = εT Dε, with D known , (3.7)

where εk is a hypothetical random vector with mean zero and dispersion matrix σkQεk
. The

preceding equation is written as a quadratic form of ε = [εT
1 , ..., εT

p ]T . Another estimator
is fT σ̂ = yT My which can also be written in a quadratic form of ε as εT UT MUε (note
that y = Ax + Uε). To ensure the estimator to be optimal, the difference between these
two estimators should be minimum

min
M

εT (UT MU − D)ε . (3.8)

Rao proposed to minimize the Euclidean norm (sum of squares of all elements of a matrix)
of the matrix UT MU − D. This leads to the following minimization problem:

min
M

‖UT MU − D‖2 = min
M

tr(MQyMQy) , (3.9)

subject to the invariance and unbiasedness conditions

MA = 0, tr(MQk) = fk, k = 1, ..., p . (3.10)

The preceding minimization is solved for M using a minimum trace problem. This leads
to the following normal equations for estimation of the (co)variance components

σ̂ = N−1l , (3.11)

with the p × p matrix N and the p-vector l as

nkl = tr(QkQ
−1
y P⊥

A QlQ
−1
y P⊥

A ); and lk = yT P⊥T
A Q−1

y QkQ
−1
y P⊥

A y, (3.12)

respectively, and k, l = 1, 2, ..., p. In a later work, Rao (1971b) derived the minimum
variance quadratic unbiased estimators of variance components that under the normality
condition coincides with the MINQUE estimators. This can also be considered as an
alternative derivation for BIQUE estimators (see next subsection).
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3.3.2 BIQUE method

The BIQUE method as a quadratic-based estimation in the stochastic model is the coun-
terpart to the BLUE method as a linear-based estimation in the functional model. They
both give minimum variance estimators. Koch (1978, 1999) uses Lagrange multipliers
to solve the best invariant quadratic unbiased estimators (BIQUE) when observables are
normally distributed. The term best indicates that the estimator has minimum variance
compared to all other quadratic unbiased estimators. Caspary (1987) assumes the normal
distribution and considers the covariance matrix as a sum of some variance components.
He defines the BIQUE and derives an iterative procedure for these estimates. Sjöberg
(1984) assumes the normal distribution and a stochastic model consisting of variances. He
has suggested an iterative procedure for the BIQUE estimates and shows the coincidence
of these estimates with the MINQUE. With regard to the more general functional model
(Gauss-Helmert with constraints on the parameters), Yu (1992) used a block-structured
stochastic model. He derives the BIQUE theory of (co)variance component estimation,
showing that the MINQUE of Rao (1971a) and BIQUE of Sjöberg (1984) are special cases
of his estimate. In addition, he shows that, in the case of a block-structured covariance
matrix, the Helmert estimators of (co)variance components are identical with BIQUE.

In the following we will give the underlying assumptions and the final results of the
BIQUE method. We again consider an estimator of a linear function fT σ of (co)variance
components as a quadratic form of the observables y, namely fT σ̂ = yT My. Strictly
speaking the first two conditions are the same as Rao’s. The third condition is rewritten
as

• The estimator should be of minimum variance (‘best’ property).

Note that the unbiasedness and invariance conditions are independent of the distribution
of the observations. The best property is achieved when we minimize the variance of
a quadratic form, which can only be specified if up to and including the fourth central
moment of the distribution of the observables is known. Based on the normal distribution
this leads to the following minimization problem:

min
M

D{yT My} = min
M

tr(MQyMQy) , (3.13)

subject to the invariance and unbiasedness conditions

MA = 0, tr(MQk) = fk, k = 1, ..., p . (3.14)

Koch (1978, 1999) minimizes the variance of the estimator by minimizing a Lagrange
function consisting of the unbiasedness and translational invariance constraints

g(M) = 2tr(MQyMQy) − 4tr(MAΛT ) − 4

p∑
k=1

λk(tr(MQk) − fk) , (3.15)

where −4Λ denotes the m×n matrix of Lagrange multipliers for the constraints MA = 0
and −4λk are the p Lagrange multipliers for the constraints tr(MQk) = fk. Solving for M
from the above minimization problem leads again to equation (3.11) with equation (3.12).
Schaffrin (1983) obtained the BIQUE by the E-D-correspondence method.



26 Chapter 3. Variance Component Estimation: A Review

3.3.3 Helmert method

In geodetic applications, variance component estimation originates from Helmert (1907)
who used the least-squares residuals to estimate heterogeneous variance components. Using
the Gauss-Markov model (model of observation equations), Helmert (1924) proposed a
stepwise method for unbiased variance estimates. Grafarend (1984) extended Helmert’s
method to the models of condition equations and Gauss-Helmert (mixed model). As
an intuitive approach the method is closely related to a derivation from the expectation
of the shifting variate proposed by Förstner (1979). The derivation of the (co)variance
components is in fact only based on the unbiasedness and invariance properties.

The point of departure here is the least-squares residuals ê = P⊥
A y = P⊥

A e which are
invariant with respect to the transformation y → y + Ax. The shifting variate is the
squared norm of the least-squares residuals. Its expectation is given as

E{êT Q−1
y ê} = E{eT P⊥T

A Q−1
y P⊥

A e} = tr(P⊥T
A Q−1

y P⊥
A Qy) . (3.16)

Grafarend (1985) used a block-structured covariance matrix: Qy =
∑p

l=1 σlQl with the
multinomial inverse of the form Q−1

y =
∑p

k=1 Ek. He gave a simple example how to obtain
Ek’s. When the covariance matrix Qy has a block-diagonal structure one can also simply
obtain Ek’s. Substituting these two terms in the preceding equation yields

p∑
k=1

E{êT Ekê} =

p∑
k=1

p∑
l=1

tr(P⊥T
A EkP

⊥
A σlQl) . (3.17)

From the expectation of the kth term one obtains

E{êT Ekê} =

p∑
l=1

tr(P⊥T
A EkP

⊥
A Ql)σl, k = 1, ..., p . (3.18)

The preceding equation can be written in a compact form as E{q} = Hσ with the p × p
matrix H and p-vector q as

hkl = tr(P⊥T
A EkP

⊥
A Ql); q

k
= êT Ekê = yT P⊥T

A EkP
⊥
A y; k, l = 1, ..., p . (3.19)

respectively. If H is regular, an unbiased estimator of (co)variance components reads

σ̂ = H−1q . (3.20)

One can also show that the above estimators are also translational invariant. Grafarend
(1984, 1985) did not specify a general way of obtaining the multinomial submatrices Ek.
From Q−1

y = Q−1
y QyQ

−1
y =

∑p
k=1 Ek with Qy =

∑p
k=1 σkQk it follows that we may choose

Ek = σkQ
−1
y QkQ

−1
y . If we now substitute Ek in equation (3.19) we obtain hkl = σknkl

and q
k

= σklk, where nkl and lk are given in equation (3.12). This confirms the equality
of the estimators with the MINQUE and BIQUE estimators.

3.3.4 MLE method

Maximum likelihood estimation (MLE) as one of the conceptually simplest methods is
applicable only when the general structure of the probability density function is known.
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Most of the efforts in the field of (co)variance component estimation is restricted to the
normal distribution. There are two methods of maximum likelihood, namely (unrestricted)
ML and restricted ML. The maximum likelihood estimator of variance components in a
linear model can be biased downwards because it does not account for the degrees of
freedom lost by estimating the unknown parameters x in the linear model. Restricted
maximum likelihood (REML) corrects this problem by maximizing the likelihood of a set
of residual contrasts and is generally considered superior.

Using the Gauss-Helmert model, Kubik (1970) considers a simplified stochastic model.
He used the maximum likelihood method for estimating weight ratios in a hybrid distance-
direction network. Koch (1986), assuming the Gauss-Markov model and that the observ-
ables are normally distributed, derives an iterative procedure for the maximum-likelihood
estimates of the (co)variance components using the orthogonal complement likelihood func-
tion. This approach is equivalent to the restricted maximum likelihood estimation (REML).
He also shows that these estimators are identical to the best invariant quadratic unbiased
estimators (BIQUE) of (co)variance components and also to the MINQUE estimators. Ou
(1989), with the same functional model and with normally distributed data, assumes a
block-structured covariance matrix. He shows that the iterative maximum-likelihood esti-
mates are identical to the Helmert (1924) and Koch (1986) estimates. Making the same
assumptions about the functional and stochastic models, Yu (1996) derives the maximum
likelihood estimates of the (co)variance components. He expands the formulas given by
Kubik (1970) and Koch (1986). In addition, he proves the equivalence of the maximum-
likelihood estimator to that of the Helmert type and to the BIQUE.

Assume that the observables y have a multivariate normal distribution, namely y ∼
N(Ax,

∑p
k=1 σkQk). Then the log-likelihood function associated with y is

ln L(y; x, σ) = −m

2
ln 2π − 1

2
ln det(Qy) − 1

2
(y − Ax)T Q−1

y (y − Ax) . (3.21)

The unknown parameters of the log-likelihood function (i.e. x and σ) are then solved by
setting the partial derivatives of the unknown parameters equal to zero. Maximization of
ln L with respect to x yields the well-known normal equations of the maximum likelihood
estimators which gives identical results with the method of least-squares or best linear
unbiased estimation (BLUE); see equation (2.13). One should however note that the max-
imum likelihood estimator of σ is biased downwards. To handle the problem the restricted
maximum likelihood is employed (Patterson and Thompson, 1971; Harville, 1977). The
method takes care of the ”loss in redundancy” due to estimating the unknown parameters,
in which we maximize the likelihood of a set of m − n linearly independent residual con-
trasts. In fact the transfered observables t = BT y are the residual contrasts. In geodetic
literature this is equivalent to reformulating the model of observation equations in terms of
the model of condition equations. With doing so, for normally distributed data, we will get
the same results as the MINQUE and BIQUE methods (see section 4.6). Such estimators
are therefore unbiased, of minimum variance, and restrictedly of maximum likelihood.

3.3.5 Bayesian method

Another approach sometimes used for estimating the unknown (co)variance components
in linear models is the Bayesian method (Koch, 1987). Both the maximum likelihood
and the Bayesian methods belong to the family of distribution-based methods as we need
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to assign a distribution function to the data. The key difference is that the Bayesian
method requires some prior information (e.g. provided by equipment manufacturers) about
the vector of (co)variance components in the form of a prior probability density function
(PDF). Application of the Bayes theorem results in the a posterior PDF which is the product
of the likelihood function of the data and the priori PDF of the (co)variance components.
To find the Bayes estimate, classical techniques can be applied to the posterior PDF. A
common technique is the maximum likelihood which was introduced in the previous section.
The principle of maximum a posteriori (MAP), (see e.g. Koch, 1987; Ou and Koch, 1994)
or also called generalized maximum likelihood (GML) (see e.g. Grodecki, 1999, 2001) relies
on maximizing the a posterior PDF.

Using the normal distribution, Bayes estimators and confidence intervals for the
(co)variance components are obtained by Koch (1987). Ou (1991) proposes an approxi-
mate and a strict Bayes estimation method and the Bayes confidence limits for variance
components in the Gauss-Markov model for a block-diagonal covariance matrix (disjunctive
uncorrelated groups). A few years later, Ou and Koch (1994) gave an analytical expression
for Bayes estimates of variance components. Based on informative and non-informative pri-
ors, they derive posterior density functions of variance components using series expansion
of the likelihood function. Grodecki (1999) derived the generalized maximum-likelihood
(GML) estimator using the inverted gamma distribution as the prior information. In a later
work, Grodecki (2001) applied the principle of generalized maximum-likelihood (GML) es-
timation to the a posterior probability density function with no prior information for the
estimation of (co)variance components. He also showed that his estimator agrees numeri-
cally with the MAP estimator of Ou and Koch (1994).

Since a full explanation of this method is beyond the scope of this work, we only give an
example of variance estimators derived by the Bayesian method. For non-informative priors,
the Bayes and the MAP estimators of variance components of a disjunctive uncorrelated
group model are respectively of the form (Koch, 1990; Ou and Koch, 1994)

σ̂B
k =

bk

bk − 2
σ̂k; σ̂M

k =
bk

bk + 2
σ̂k; k = 1, ..., p , (3.22)

where σ̂k is the BIQUE estimator of σk and bk is the so-called redundancy number for the
ith set of observations. Using this method, one can also obtain a confidence interval for
variance components (see Ou, 1991).

3.3.6 Non-negative methods

A drawback of the VCE techniques is that the estimate of variance components may turn
out to be negative, which is obviously not acceptable. Sjöberg (1984), Caspary (1987) and
Kubik (1970) affirm that a negative BIQUE estimate may be due to either an insufficient
number of observations (low redundancy in functional model) or an improper stochastic
model. As a quadratic-based estimation scheme, there have been suggested two non-
negative methods, namely

• best quadratic minimum bias non-negative estimation (BQMBNE)

• best quadratic unbiased non-negative estimation (BQUNE)

Sjöberg (1995) demonstrates that the two conditions of non-negativeness and unbi-
asedness are incompatible in an additive two-variance component stochastic model. In an
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earlier work, Sjöberg (1984) derived explicit formulas for the BQMBNE estimators in a
(co)variance model consisting of uncorrelated disjunctive groups (each group consists of
two variance factors). He also gives the BQUNE estimators of individual variance compo-
nents. The BQUNE exists in the case of the disjunctive uncorrelated groups with only one
variance factor for each group. In other words, for such a model the variance components
are always positive and therefore they are automatically unbiased. The BQMBNE coincides
with the BQUNE if it exists. Moreover, Sjöberg notes that the computational effort for
the BQMBNE is much larger than that for the BIQUE.

There are some methods that intrinsically give non-negative variance components. One
of such methods is given in section 3.4. In section 4.8.1 we will suggest a method which
enforces the variance components to be non-negative.

3.3.7 LS method

Teunissen (1988) developed a least-squares formula for estimation of (co)variance com-
ponents. Since the approach is based on the least-squares principle, the estimators are
unbiased. If we take the weight matrix as the inverse of the covariance matrix of the ob-
servables we can in addition obtain the minimum variance estimators. The derivation given
of the least-squares VCE formula is based on the model of condition equations rather than
the model of observation equations. We can however present the LS-VCE (co)variance es-
timators for both the model of observation equations and the model of condition equations.
We can derive the least-squares (co)variance component estimation formula by rewriting
the (co)variance component model into a linear model of observation equations. Motivated
by the fact that the method of least squares is one of the leading principles in parameter
estimation, in this thesis, we introduce and develop the method of least-squares variance
component estimation (LS-VCE) and apply the theory to a few GPS applications.

It can be shown that five different methods of VCE, namely MINQUE, BIQUE, Helmert,
REML and LS, give identical estimators if the normal distribution is assumed. Least-squares
variance component estimation has however many attractive features that will be elaborated
upon in this thesis. It provides a unified least-squares framework for estimating the unknown
parameters of both the functional and stochastic models. Since the method is based on the
least-squares principle, our existing body of knowledge on least-squares theory is directly
applicable to LS-VCE. We can at least mention the following features:

• we can find a general class of unbiased estimators which are independent of the
distribution of the data,

• we obtain minimum variance estimators for a class of elliptically contoured distrib-
utions. For special examples we obtain the minimum variance estimators which are
independent of the distribution,

• as with the functional model, the covariance matrix of (co)variance estimators can
directly be obtained,

• LS-VCE has a similar insightful geometric interpretation as standard least squares,

• properties of the normal matrix and the orthogonal projectors can easily be estab-
lished,
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• measures of inconsistency such as the quadratic form of residuals and the w-test
statistic can directly be given.

The theory of LS-VCE will be treated in chapters 4, 5, and 6.

3.4 Simplified methods

The use of variance component estimation formulas is often time consuming and results in
a vast amount of computational work. In general, an iterative procedure, starting from a set
of initial values for (co)variance components, is needed (see next chapter, figures 4.1 and
4.2). In geodetic literature to reduce the computational load of (co)variance component
estimation the following ways are recommended:

• Approximate variance component estimation formulas
Because of the considerable computational effort required for even moderately sized
models, approximate methods have been developed. Almost unbiased estimation
(AUE) is intended to reduce the large computational load required in VCE (Horn
et al., 1975; Förstner, 1979). To derive the almost unbiased estimation formula of
variance components, let us rewrite equation (3.16) as

E{êT Q−1
y QyQ

−1
y ê} = tr(Q−1

y P⊥
A Qy) . (3.23)

If we substitute Qy =
∑p

k=1 σkQk, it follows that

p∑
k=1

E{êT Q−1
y σkQkQ

−1
y ê} =

p∑
k=1

tr(Q−1
y P⊥

A σkQk) . (3.24)

By equating the corresponding terms in the preceding equation, the variance com-
ponents are estimated using the following iterative formula:

σ̂k =
êT Q−1

y σkQkQ
−1
y ê

tr(Q−1
y P⊥

A Qk)
, k = 1, ..., p, (3.25)

which is not in general an unbiased estimator of variance components but almost. If
the ratio of the a priori values for the variance factors is correct (when they are known
up to a factor α) this formula gives unbiased estimators. An alternative formula for
almost unbiased estimation of variance factors is given by Hsu (1999). One can
show that the above estimator leads, at the point of convergence, to the results of
the iterated estimates of the local MINQUE, BIQUE or REML estimates (see Koch,
1986, 1987; Ou, 1989; Koch, 1999). That is, the iterated almost unbiased estimators
(IAUE) are also unbiased at the point of convergence. This can also be verified by
Hsu (2001) who showed that the Helmert method is identical with the IAUE method.
It can easily be shown that a variance component obtained from the IAUE is always
positive provided that the resulting covariance matrix is positive definite.

• Simple formulation of functional and stochastic models
Different authors have proposed approximate methods with low computational cost
(Kusche, 2003a; Satirapod et al., 2002; Lucas and Dillinger, 1998; Sjöberg, 1984;
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Caspary, 1987; Ou, 1989, 1991; Barbarella and Pieri, 1983). Most of these meth-
ods assume more simplified stochastic models which are frequently used in geodetic
applications. They assume for instance that the covariance matrix is block-diagonal

Qy = blkdiag(σkQk), k = 1, ..., p , (3.26)

where blkdiag is a block-diagonal operator and σk are some variance components.
This stochastic model corresponds to the observable vectors that are referred to as
disjunctive group models. Such observations are uncorrelated between groups but
can be correlated within the same group. The limitation of this simplified stochastic
model is that only one unknown variance component is associated with each group
of observations but has the advantage of having less computational load.

• Monte-Carlo technique
Kusche (2003a) employed the Monte-Carlo technique to estimate variance compo-
nents in satellite geodesy without the need for repeated inversion of the matrices
involved.

3.5 Applications to geodetic data

Examples of recent geodetic applications in which different variance-component estimation
methods or noise assessment techniques were used include

• assessment of classical triangulation and trilateration network for monitoring tectonic
activity observed with different electromagnetic distance measuring instruments and
theodolites, and estimating error components and weighting of GPS observations
(Chen et al., 1990)

• assessment of noise characteristics, namely, white noise, random walk noise and
flicker noise, in daily coordinate time series of permanent GPS stations (see e.g.
Zhang et al., 1997; Mao et al., 1999; Williams et al., 2004; Amiri-Simkooei et al.,
2006)

• assessment of stochastic model for satellite laser ranging and very long baseline
interferometry data (see Sahin et al., 1992; Lucas and Dillinger, 1998, respectively)

• studying the elevation dependence of the GPS observables precision (see e.g. Euler
and Goad, 1991; Gerdan, 1995; Gianniou, 1996; Jin and de Jong, 1996)

• estimation of covariance matrix for precise GPS observables to improve precision,
reliability, efficiency of positioning results, and/or increasing success rate for GPS
ambiguity resolution (see e.g. Wang et al., 1998; Jonkman, 1998; Teunissen, 1998)

• determination of the GPS stochastic model (e.g. stochastic characteristics of mul-
tipath error and receiver noise ) using for instance the GPS signal to noise ratio
(SNR)(see e.g. Barnes et al., 1998; Barnes and Cross, 1998; Barnes, 2002)

• estimation of a stochastic model for processing of GPS code and phase data that
incorporates time correlation and/or cross correlation of GPS observables (Satirapod
et al., 2002; Tiberius and Kenselaar, 2000a,b, 2003; Tiberius et al., 1999; Bona,
2000; Amiri-Simkooei and Tiberius, 2007)
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• determination of the stochastic model for long-baseline kinematic GPS positioning
derived from observation time series (Kim and Langley, 2001a,b)

• employing a statistical test procedure based on uncorrelated least-squares residuals
to show that the assumption of constant variances for GPS observables is not appro-
priate, and giving a procedure to estimate an individual variance function for a pair
of satellites and to check the appropriateness of the estimated variances (Bischoff
et al., 2005, 2006)

• development of a stochastic model for GPS phase observations from a single receiver
under the assumption of dominance of noise caused by variations in atmospheric
delays and estimation of its time-dependent scale factor by VCE as a measure for
atmospheric turbulence (strength)(Kleijer et al., 2004)

• estimation of variance components for weighting data of different types in gravity
field models (Koch and Kusche, 2002; Kusche, 2003b)

• assessment of the stochastic model of CHAMP data using the energy balance in an
iterative VCE method (Kusche and van Loon, 2005; van Loon and Kusche, 2005)

• application of bias-corrected methods for estimating variance components in linear
ill-posed models and the effect of regularization on VCE (Xu et al., 2006)

• estimation of covariance matrix for the adjustment of combined height data types,
i.e. ellipsoidal, orthometric and geoid heights (Fotopoulos, 2003, 2005).
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4.1 Introduction and background

This thesis formulates a unified framework for both the estimation and validation problem
of the stochastic model. In this chapter we concentrate on the problem of estimating
components of the stochastic model. The method which was originally proposed by Te-
unissen (1988) is based on the least-squares principle. The idea is to investigate whether
it is possible to use the method of least-squares estimation, introduced in chapter 2, also
for the problem of variance component estimation. This turns out to be the case. As
a consequence, we will have the possibility of applying one estimation principle, namely
our well-known and well understood method of least-squares, to both the problem of es-
timating the functional model and the stochastic model. In this chapter the probability
density function (PDF) of a random m-vector y is written as fy(y|x, σ), in which x is an
n-vector of unknown parameters in the functional model, and σ is a p-vector of unknown
(co)variance components in the stochastic model. In this case the first two moments of the
observables y, namely E{y} and D{y}, are partially unknown. We will therefore employ
the least-squares principle to estimate both x and σ.

We derive the deterministic (weighted) least-squares (co)variance component estimation
(LS-VCE) formula for which an arbitrary symmetric and positive-definite weight matrix can
be used. We will give the formulation both in terms of the model of condition equations
and the model of observation equations. The LS-VCE method gives unbiased estimators.
One advantage of the method over other methods of (co)variance component estimation
is that the (weighted) least-squares estimators are independent from the distribution of
observables, namely from fy(y|x, σ).

Based on the normal distribution of original observations, we derive the covariance matrix
of the observables in the stochastic model. We can therefore obtain the minimum variance
estimators of previous chapter by taking the weight matrix as the inverse of the covariance
matrix. This corresponds to the BLUE estimator of unknown parameter x in the functional
model (see chapter 2). These ’probabilistic’ least-squares estimators are both unbiased and
of minimum variance. The property of minimum variance is however restricted to normally
distributed data. As a generalization, Teunissen and Amiri-Simkooei (2006) derived such
estimators for a class of elliptical distributions.

Note 4.1 In the sequel, we will sometimes use the term ’functionally known quantity’ in
a few examples. We mean that the functional model is of the form E{y} = μy (known)

where A = {} (empty). This leads to the model of condition equations as BT (y − μy) =

t, B = I, b = m and the orthogonal projector as P⊥
A = I. A zero-mean stationary noise

process is considered as an example for which μy = 0. The goal is to arrive at a clear and
simple expression in our formulation in examples. �
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The remainder of this section deals with some basic mathematical concepts that we
will frequently use in the rest of the chapter. Before going further into the details, let us
consider the following five definitions:

Definition 4.1 (Kronecker product) Consider a matrix S = (sij) of order u × v and a
matrix T = (tij) of order q × r. The Kronecker product of the two matrices, denoted by
S ⊗ T is defined as the partitioned matrix

S ⊗ T =

⎡
⎢⎢⎣

s11T s12T · · · s1vT
s21T s22T · · · s2vT

...
...

. . .
...

su1T su2T · · · suvT

⎤
⎥⎥⎦ . (4.1)

The matrix S ⊗ T is a matrix of order uq × vr. It has uv number of blocks; the ijth block
is the matrix sijT of the order q × r. �

Definition 4.2 (vec-operator) Let S = [s1 s2 ... sv] be an arbitrary matrix of size u× v,
with si its ith column (vector) of size u. Then the vec operator on this matrix is defined
as

vec(S) = vec([s1 s2 ... sv]) =
[
sT
1 sT

2 ... sT
v

]T
. (4.2)

Therefore, the vec operator creates a column vector of size uv × 1 from the matrix S by
stacking the column vectors of S below one another. �

The transpose of S, namely ST , contains the same uv elements as S, but in a different
pattern. Therefore, there exists a unique uv × uv permutation matrix which transforms
vec(S) into vec(ST ). This is called the commutation matrix and is denoted by Kuv.

Definition 4.3 (Commutation matrix) The commutation matrix Kuv is the uv × uv
matrix with the property that

Kuvvec(S) = vec(ST ) , (4.3)

for every u × v matrix S. When u = v, we use the notation K instead of Kuv. In this
case, the commutation matrix has the following form:

K =
u∑

i=1

u∑
k=1

cic
T
k ⊗ ckc

T
i , (4.4)

where ci = (0 · · · 0 1 0 · · · 0)T is the canonical unit vector which contains zeros except a
one at ith position. �

Definition 4.4 (vh-operator) Let S = (sij) be an arbitrary square matrix of size u. The
vh operator of S is obtained in a similar way as vec(S) is defined, but it starts each column
at its diagonal element. That is, vh(S) contains the 1

2
u(u + 1) elements sij, i ≥ j, only

the elements on and below the diagonal of S. �

If S is symmetric, then vh(S) contains precisely the 1
2
u(u + 1) distinct elements of S and

the elements of vec(S) are those of vh(S) with the off-diagonal elements occurring twice.
Therefore, there exists a unique u2 × 1

2
u(u+1) matrix which transforms, for symmetric S,

vh(S) into vec(S). This transformation matrix is called the duplication matrix.
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Definition 4.5 (Duplication matrix) Let S be a symmetric matrix of size u. The du-
plication matrix D is the u2 × 1

2
u(u + 1) matrix with the property that

Dvh(S) = vec(S). (4.5)

The duplication matrix D is of full column rank, namely rank(D) = 1
2
u(u + 1). �

The reader is referred to appendix A, for properties of the vec and vh operators, the
Kronecker product, and the commutation and duplication matrices. For a complete refer-
ence on the properties and the theorems among the vec and vh operators, the Kronecker
product, and the commutation and duplication matrices see Magnus (1988). The most
useful properties of the Kronecker product have also been collected by Langville and Stew-
art (2004). The preceding operators and transformation matrices will be frequently used
in the sequel.

4.2 Weighted least-squares estimators

Consider the following linear model of observation equations (Gauss-Markov model):

E{y} = Ax ; D{y} = Qy = E{(y − Ax)(y − Ax)T} = Q0 +

p∑
k=1

σkQk , (4.6)

where, again, A is assumed to have full rank, Q0 is the known part of the covariance matrix,
and Qk, k = 1, . . . , p are the cofactor matrices such that the sum Q0 +

∑p
k=1 σkQk is

non-negative definite. The matrices Qk, k = 1, . . . , p should be linearly independent
and symmetric. Symmetry of the cofactor matrices is on account of the symmetry of
the covariance matrix of the observables. Linear dependency of the cofactor matrices will
however cause the normal matrix of the stochastic model to be singular. In this case, at
least one of the cofactor matrices can be written as a linear combination of the others,
i.e., Ql =

∑p
k=1,k �=l αkQk. Note that the linear independency of cofactor matrices is only

a necessary condition and not sufficient (see Note 4.2).

Stochastic model In the preceding model, we have two sets of unknowns: the parame-
ter vector x and the (co)variance components (or even sometimes correlation coefficients)
σk, k = 1, 2, ..., p. The idea of the least-squares approach to (co)variance component esti-
mation is now to interpret the matrix equation in the second part of equation (4.6), which
represents the covariance matrix of y, as a set of m2-number of observation equations.
Therefore, just like we interpret the functional model E{y} = Ax as a set of m-number of
observation equations with the observation vector y, we are going to interpret the stochas-

tic model E{(y−Ax)(y−Ax)T} = Q0+
∑p

k=1 σkQk as a set of m2-number of observation

equations with the observation matrix (y − Ax)(y − Ax)T . There is however one compli-

cation: The matrix (y − Ax)(y − Ax)T is not completely observable since the vector x is

unknown apriori. This problem can be circumvented by taking the term AxxT AT to the
right-hand side. Therefore, the second part of equation (4.6) can also be rewritten as

E{y yT − Q0} = AxxT AT +

p∑
k=1

σkQk , (4.7)
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which looks like the model of observation equations, namely E{y} = Ax; on the left

hand side, the observation matrix y yT − Q0 and on the right hand side, the unknown
parameters x and σ. Let us, for the moment, assume that the covariance matrix Qy is
known and therefore remains on the right-hand side. Assume that the observable vector
y is transferred into a new observable vector y′ using the following m × m regular and
invertible transformation matrix T :

y′ = Ty =

[
(AT Q−1

y A)−1AT Q−1
y

BT

]
y , (4.8)

where the m × (m − n) matrix B satisfies BT A = 0, with rank(B) = m − n = b the
redundancy of the functional model (see section 2.1.6). Since T is square and invertible,
reparameterization of the observables y does not lose or add any information. Therefore,
an equivalent expression for equation (4.7) is given as

E{Ty yT T T} = TAxxT AT T T + TQyT
T , (4.9)

If we now substitute T from equation (4.8) into the preceding equation, it will follow that

E

{[
x̂ x̂T x̂ tT

t x̂T t tT

]}
=

[
xxT 0

0 0

]
+

[
(AT Q−1

y A)−1 0
0 BT QyB

]
, (4.10)

with x̂ = (AT Q−1
y A)−1AT Q−1

y y and t = BT y the misclosure vector. The above equation
consists of three separate parts, namely

E{x̂ x̂T} = xxT + (AT Q−1
y A)−1; E{x̂ tT} = 0; E{t tT} = BT QyB . (4.11)

The first part is trivial as we have the same number of observables as unknowns. There-
fore, the observables x̂ x̂T are just enough to estimate the unknowns xxT (we recognize
x̂ as the BLUE of x). In other words, there is no more redundancy left to estimate
any (co)variance components. The second part E{x̂ tT} = 0 has no interaction with
(co)variance components and shows that x̂ and t are uncorrelated. They are independent
if y is normally distributed. We may therefore focus on the third part for the problem of
variance component estimation. Substituting Qy = Q0 +

∑p
k=1 σkQk, the third part reads

E{t tT} − BT Q0B =
∑p

k=1 σkB
T QkB. The same transformation can also be applied to

the first part of equation (4.6), namely E{Ty} = TAx. Therefore, equation (4.6) can be
reformulated in terms of the model of condition equations as

E{t} = 0; E{t tT} − BT Q0B =

p∑
k=1

σkB
T QkB . (4.12)

Note that the first part of equation (4.12), i.e., the functional part, consists of all redundant
observations as there exists no unknown in this model. The adjustment of this part is trivial
because t̂ = 0. We may therefore concentrate on the second part, i.e., the stochastic model.
Note also that the condition E{t} = 0, which implies that there is no misspecification in
the functional model, has been used in the second part by default because Qt = E{t tT}−
E{t}E{t}T . The matrix equation in the second part of equation (4.12) can now be recast
into a set of b2-number of observation equations by stacking the b-number of b×1 column
vectors of E{t tT} into a b2 × 1 observation vector.
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Since the matrix of observables t tT is symmetric, its upper triangular elements do not
provide new information. There are only b(b+1)

2
distinct (functionally independent) elements.

We can therefore apply the vh operator to the second part of equation (4.12). This results
in the following equation (note that both the vh and the E operators are linear):

E{vh(t tT − BT Q0B)} =

p∑
k=1

σkvh(BT QkB) . (4.13)

Equation (4.13) can be rewritten, in a matrix form, as the linear model of observation
equations for (co)variance component model:

E{vh(t tT − BT Q0B)} = Avhσ, Wvh or Qvh , (4.14)

where Avh is a b(b+1)
2

× p (design) matrix and has the following form:

Avh =
[
vh(BT Q1B) vh(BT Q2B) · · · vh(BT QpB)

]
, (4.15)

and σ is a p-vector as σ = [σ1 σ2 · · · σp]
T . The b(b+1)

2
× b(b+1)

2
matrix Qvh is the covari-

ance matrix of the observables vh(t tT ) and the b(b+1)
2

× b(b+1)
2

matrix Wvh is accordingly
the weight matrix. This is therefore a standard form of the linear model of observation
equations with a b(b+1)

2
-vector of observables, a b(b+1)

2
× p design matrix and a p-vector of

unknown (co)variance components.

Redundancy In an analogous way to the functional model in which one deals with redun-
dancy b = m−n, one can define the redundancy or here the degrees of freedom df in the
stochastic model. From equation (4.15) it follows that:

df =
b(b + 1)

2
− p , (4.16)

when the design matrix Avh of the stochastic model is assumed to be of full rank, and with
p, as before, being the number of unknowns in stochastic model, namely the number of
(co)variance components. One point which is obvious from this formula is that the relation
between functional and stochastic redundancies is not a linear but a second order function.
When for instance b changes from 100 to 101, the redundancy of the stochastic model
changes from 5050 − p to 5151 − p. That is, the redundancy of the stochastic model can
in one way or another be deceptive. The worst case occurs when p = b(b+1)

2
which gives

df = 0, meaning that all elements of the covariance matrix Qt are assumed to be unknown
(see example 4.1). The best situation, however, occurs when p = 0, df = b(b+1)

2
, meaning

that all elements of the covariance matrix or the stochastic model are known. In the special
case that we deal with only one variance component, i.e. Qy = σ2Q, the redundancy is

given as df = (b−1)(b+2)
2

, which is zero when b = 1. This implies that the least-squares
estimation of the variance of unit-weight in case of a redundancy of one in the functional
model is reduced to the simple unique estimation.

Note 4.2 As previously mentioned in chapter 3, the cofactor matrices Qk, k = 1, ..., p
should be linearly independent. This is indeed the necessary condition and not sufficient.
With our formulation in equation (4.15) it becomes clear that the variance component
model has a unique solution if and only if (necessary and sufficient condition) the matrices
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BT QkB, k = 1, ..., p are linearly independent. From the definition of the redundancy df
of the stochastic model it goes without saying that the maximum number of estimable
(co)variance components in the stochastic model is b(b+1)

2
which leads to df = 0 (unique

solution). That is, in general an m(m+1)
2

− b(b+1)
2

number of distinct elements of Qy remains
inestimable as m ≥ b. Xu et al. (2007) also prove that all variance and covariances are

not estimable. They propose a method to show that at most only a b(b+1)
2

number of
independent parameters are estimable. �

(Co)variance estimators (1) Having established these results, we can now apply the
estimation methods of chapter 2. That is, if the weight matrix Wvh is known (or assumed),
we can obtain the weighted (deterministic) least-squares estimators of the (co)variance
components. The weighted least-squares estimators of the (co)variance components then
read (cf. equation (2.6))

σ̂ = (AT
vhWvhAvh)

−1AT
vhWvhvh(t tT − BT Q0B) . (4.17)

If we denote N = AT
vhWvhAvh and l = AT

vhWvhvh(t tT−BT Q0B) it follows that σ̂ = N−1l.
This equation can be written out in full as⎡
⎢⎢⎢⎣

σ̂1

σ̂2
...

σ̂p

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

n11 n12 · · · n1p

n12 n22 · · · n2p
...

...
. . .

...
n1p n2p · · · npp

⎤
⎥⎥⎦
−1 ⎡⎢⎢⎢⎣

l1
l2
...
lp

⎤
⎥⎥⎥⎦ , (4.18)

where

nkl = vh(BT QkB)T Wvhvh(BT QlB) , (4.19)

and

lk = vh(BT QkB)T Wvhvh(t tT −BT Q0B) , (4.20)

with k, l = 1, 2, · · · , p. Any symmetric and positive-definite matrix Wvh can play the role
of the weight matrix. An important feature of the preceding estimators is the unbiasedness
property. One can obtain the BLUE estimators (or in fact BIQUE estimators as they results
in a quadratic form of the original observables) by taking the weight matrix as the inverse
of Qvh. Unfortunately, in practice it is not always possible to obtain Qvh as it depends
on the fourth central moments of the observables (see equation (4.53)) which may not be
obtainable all the times, but only for special cases. In the following, we will however show
two examples as limiting cases that no supposition on the distribution is required.

Example 4.1 Consider the model of condition equations E{BT y} = E{t} = 0 with a completely
unknown covariance matrix Qt (all elements are unknown). It is possible to obtain the solution
of these unknown (co)variance components. For this purpose we can write the unknown matrix
Qt as

Qt =

b(b+1)
2∑

k=1

σkCk, with Ck =

⎧⎨
⎩

cic
T
j , if σk = σii, i = j ,

cic
T
j + cjc

T
i , if σk = σij , i �= j ,

(4.21)
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where σk is respectively σ11, σ12, ..., σ1b, σ22, σ23, ..., σbb and ci = (0 · · · 1 · · · 0)T is the canonical
unit vector of size b containing zeros except a one at ith position. With the preceding formulation,
the matrices BT QkB in equation (4.15) are of the form Ck = cic

T
i or Ck = cic

T
j + cjc

T
i .

Applying the vh operator to these matrices gives canonical unit vectors in R
b(b+1)

2 . That is, Avh

in equation (4.14) is given as Avh = I b(b+1)
2

. This means that the (co)variance components σ

can be uniquely estimated as

σ̂ = vh(Q̂
t
) = A−1

vh vh(t tT ) = vh(t tT ) , (4.22)

which is independent of the weight matrix Wvh or covariance matrix Qvh, and therefore of
distribution of t. This expression can be rewritten as Q̂

t
= t tT . One can also obtain the

covariance matrix of these estimators (see example 4.4). �

Example 4.2 If we measure a zero-mean quantity (see Note 4.1), then E{BT y} = E{y} =
E{t} = 0, b = m. Let the observables be independent and identically distributed (in general
unknown distribution). In this case Qt = σ2I with σ2 an unknown variance component to be
estimated. It is not difficult to show that only the following central moments (up to degree four)
are non-zero

E{t2i } = μ2; E{t4i } = μ4; E{t2i t2j} =

⎧⎨
⎩

μ4 if i = j ,

μ2
2 if i �= j .

(4.23)

With these non-zero elements it becomes clear that Qvh is diagonal with the entries

diag(Qvh) = (μ4 − μ2
2 ,

m−1 times︷ ︸︸ ︷
μ2

2 , ... , μ2
2 , μ4 − μ2

2 ,

m−2 times︷ ︸︸ ︷
μ2

2 , ... , μ2
2 , ... , ... , μ4 − μ2

2). (4.24)

After a few simple mathematical operations one obtains the inverse of the matrix Qvh as

Q−1
vh =

1

μ4 − μ2
2

DT (I ⊗ I)D +
μ4 − 3μ2

2

μ2
2(μ4 − μ2

2)
(DT D − Im(m+1)

2

). (4.25)

In equation (4.17) we have Avh = vh(I). If observables are normally distributed, then μ4 = 3σ4

and therefore the second term of Q−1
vh vanishes. But even though the distribution is not specified,

the second term when pre-multiplied with vh(I)T becomes zero. Therefore, one obtains

N = n11 =
m

μ4 − μ2
2

; l = l1 =
tT t

μ4 − μ2
2

, (4.26)

which gives the variance estimator σ̂2 independent of μ4 as

σ̂2 =
tT t

m
. (4.27)

This estimator is therefore independent of the unspecified distribution of t. Such an estimator is
not only unbiased but also of minimum variance. Note however that the variance of this estimator
is given as N−1 = n−1

11 which is obtainable when we specify the distribution. �
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Weight matrix As mentioned, any symmetric and positive-definite matrix Wvh can play
the role of weight matrix in equation (4.17). From a numerical point of view such arbitrary
weight matrices may not be advisable as they are as large as by the second power of the
sample size. Now we will restrict ourselves to those weight matrices which computationally
are more efficient. To find different classes of admissible weight matrices Wvh we first
come up with different classes of admissible weight matrices for Wvec. Pre-multiplying
equation (4.14) with the duplication matrix D yields that

E{vec(t tT − BT Q0B)} = DAvhσ, Wvec . (4.28)

We now recall the property of invariance of the estimators under a regular transformation
matrix T . Let us assume that the original observation vector t is transformed into v using
the non-singular b × b matrix M , i.e. v = M t or t = M−1v. In this case, one obtains

vec(t tT ) = vec(M−1v vT M−T ) . (4.29)

Using equation (A.13), in appendix A, the preceding equation reads

vec(t tT ) = (M−1 ⊗ M−1)vec(v vT ) = Tvec(v vT ) . (4.30)

To make our estimators independent of the type of reparameterization of observables, we
can use the identity W t

vec = T−T W v
vecT

−1, which yields

W t
vec = (MT ⊗ MT )W v

vec(M ⊗ M) . (4.31)

From the definition of vec and vh operators, it follows that for any symmetric matrix
one gets vec = DD+vec where D+ is the pseudo inverse (Moore-Penrose inverse) of the
matrix D and is given as D+ = (DT D)−1DT (see appendix A). Since the matrix DD+ has

rank b(b+1)
2

, this implies that we will only deal with b(b+1)
2

number of distinct (functionally
independent) elements. Therefore, in order to specify a class of weight matrices for the vh
operator, we can argue that both the vec and vh operators should give identical estimators.
Comparing the least-squares solution of equation (4.14) with that of equation (4.28) simply
with equation (4.31) follows that

Wvh = DT WvecD = DT (MT ⊗ MT )W v
vec(M ⊗ M)D . (4.32)

In order for the weight matrix Wvh to be simple, we may take simple forms for W v
vec in the

preceding equation. Here we consider two choices as follows:

• The identity matrix W v
vec = Ib2 = I ⊗ I is positive-definite and therefore an element

of this class. It follows then

Wvh = DT (MT ⊗ MT )I(M ⊗ M)D = DT (MT M ⊗ MT M)D . (4.33)

Since MT M is a positive-definite symmetric matrix, a class of admissible weight
matrices for vh(t tT ) is given as

Wvh = DT (Wt ⊗ Wt)D , (4.34)

where Wt is an arbitrary positive-definite symmetric matrix. Using the properties of
the Kronecker product one can show that Wvh is also positive-definite and therefore
can play the role of the weight matrix.
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• The second weight matrix includes, in addition to identity matrix, one more simple
term as W v

vec = I ⊗ I +αvec(I)vec(I)T . For some α, namely α > −1
b

, this matrix is
positive-definite. When substituted in equation (4.33), the second term simplifies to
(see equation (A.13)): (MT ⊗ MT )(vec(I)vec(I)T )(M ⊗ M) = vec(Wt)vec(Wt)

T .
This results in the following weight matrix:

Wvh = DT (Wt ⊗ Wt + α vec(Wt)vec(Wt)
T )D . (4.35)

(Co)variance estimators (2) In this thesis we consider only the simplest weight matrix
Wvh = DT (Wt ⊗ Wt)D (first choice). But we will as well give a few comments on the
second case. Equation (4.14) can therefore be rewritten as

E{vh(t tT − BT Q0B)} = Avhσ, Wvh = DT (Wt ⊗ Wt)D, (4.36)

with Wt any positive-definite symmetric matrix and D the duplication matrix. Substitution
of vh with D+vec and Wvh = DT (Wt ⊗ Wt)D in equation (4.19) follows

nkl = vec(BT QkB)T D+T DT (Wt ⊗ Wt)DD+vec(BT QlB) . (4.37)

Using identities (A.21) and (A.22) with (A.15) and (A.18), in appendix A, the terms
D+T DT and DD+ in the preceding equation can be left out, i.e.

nkl = vec(BT QkB)T (Wt ⊗ Wt)vec(BT QlB) . (4.38)

This also confirms that the operators vh and vec, on symmetric matrices, give identical
results. Using equation (A.14), the preceding equation reads

nkl = tr(BT QkBWtB
T QlBWt). (4.39)

In a similar manner, lk of equation (4.20) simplifies

lk = tr(BT QkBWt[t tT − BT Q0B]Wt) (4.40)

or finally

lk = tT WtB
T QkBWtt − tr(BT QkBWtB

T Q0BWt). (4.41)

The weighted least-squares (co)variance component estimation was formulated by
rewriting the (co)variance component model into a linear model of observation equations.
Note that the above formulation to (co)variance component estimation is based on the de-
terministic least-squares technique for which an arbitrary weight matrix Wvh (e.g. in form
of equation (4.34)) can be used. The (co)variance components are therefore estimated as
a linear unbiased estimator (LUE) of the quadratic misclosures vh(t tT ) which can then be
rewritten as an invariant quadratic unbiased estimator (IQUE) of the misclosures t.

The following example shows that the empirical autocovariance function is a weighted
LS-VCE, if the weight matrix is chosen from the given weight matrix class in equa-
tion (4.34).
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Example 4.3 (unbiased empirical autocorrelation function) Let yi, i = 1, . . ., be a zero-
mean stationary random process, with unknown covariance function σij = στ (τ = |i− j|). If m
random variables are available, we have, with y = (y

1
, . . . , y

m
)T , that

E{y} = 0 and D{y} = Qy =
m−1∑
τ=0

στQτ , (4.42)

with the m × m cofactor matrices

Qτ = aτ

m−τ∑
i=1

(cic
T
i+τ + ci+τc

T
i ) , (4.43)

for τ = 0, 1, . . . , m − 1, with a0 = 1
2 and aτ = 1 for τ �= 0. Note that σ0 is the variance of yi

and that στ is the covariance between yi and yi+τ .
We can now apply the above formulation to estimate σ = (σ0, σ1, . . . , σm−1)

T . In our case
we have t = BT y, with B = I. We will use Wt = Wy = I as weight matrix. Substitution of
B = I and Wt = Wy = I into equation (4.39), gives, with equation (4.43) (see below)

nτ,κ = tr(QτQκ) =

{
2aτ (m − τ) if τ = κ ;
0 if τ �= κ .

(4.44)

Therefore, the normal matrix is a diagonal matrix. In a similar manner, and with Q0 = 0, we find
for the entries of the right-hand side vector, lτ = 2aτ

∑m−τ
i=1 y

i
y

i+τ
(see below). The LS-VCE

solution for the unknown (co)variance components follows therefore as

σ̂τ =

∑m−τ
i=1 y

i
y

i+τ

m − τ
, τ = 0, 1, . . . , m − 1. (4.45)

This solution is known as the unbiased sample autocovariance function of a zero-mean stationary
time-series yi, see e.g. Priestley (1981). We thus have shown that the sample autocovariance
function is a LS-VCE, if the weight matrix is chosen as the identity matrix. If one has a functionally
known quantity with mean μ, one will use the residuals êi = y

i
−μ in the preceding formula. One

can also compute the correlation coefficients that together represent the empirical autocorrelation
function (ACF)

ρ̂
τ

=
σ̂τ

σ̂0

, τ = 1, ..., m − 1. (4.46)

where σ̂0 = σ̂2 is the variance of the noise process, and σ̂τ the covariances. �

Proof. (nτ,κ and l
τ

) Substitution of Qτ = aτ
∑m−τ

i=1 (cic
T
i+τ + ci+τc

T
i ) and Qκ =

aκ
∑m−κ

j=1 (cjc
T
j+κ + cj+κcT

j ) into nτ,κ = tr(QτQκ) results in the following equation

nτκ = 2aτaκ

m−τ∑
i=1

m−κ∑
j=1

tr(cic
T
i+τcjc

T
j+κ + cic

T
i+τcj+κcT

j ), (4.47)

or

nτκ = 2aτaκ

m−τ∑
i=1

m−κ∑
j=1

δi+τ,jδi,j+κ + δi+τ,j+κδi,j , (4.48)



4.3 Covariance matrix of observables vh(t tT ) 43

where δi,j is the Kronecker delta. The first term of the above equation is identical to zero except
for the case that τ = κ = 0. Also, the second term is zero when τ �= κ. It then follows that
nτ,τ = 2aτ (m − τ) and nτ,κ = 0 if τ �= κ. For the right-hand side vector, substitution of
Qτ = aτ

∑m−τ
i=1 (cic

T
i+τ + ci+τc

T
i ) in lτ = yT Qτy gives

lτ = aτ

m−τ∑
i=0

yT cic
T
i+τy + yT ci+τc

T
i y, (4.49)

or, finally

lτ = 2aτ

m−τ∑
i=0

y
i
y

i+τ
. � (4.50)

Before we enumerate the attractive features of the least-squares approach to (co)variance
component estimation, let us first derive the covariance matrix of the observables vh(t tT ).

4.3 Covariance matrix of observables vh(t tT )

In order to evaluate the covariance matrix of (co)variance components, i.e. Qσ̂, we need

to know the b(b+1)
2

× b(b+1)
2

covariance matrix of vh(t tT ), namely Qvh. In addition, one
can in particular take the weight matrix Wvh to be the inverse of Qvh to obtain the BLUE
estimators (or better say BIQUE estimators, as our ’observations’ are in quadratic form of
the original ones). Let us first derive the covariance matrix of vec(t tT ) which is based on
the following theorem:

Theorem 4.1 (Central moments) Let the stochastic vector t be normally distributed
with mean zero and covariance matrix Qt, i.e. t ∼ N(0, Qt), then the odd-order central
moments of t are zero, and the second and fourth central moments are of the form

E{titj} = qij ;
E{titjtktl} = qijqkl + qikqjl + qjkqil ;
i, j, k, l = 1, 2, · · · , b ,

(4.51)

where qij represents Qt in index notation, i.e., qij = Qti,tj . �

Proof. For a proof of the preceding theorem we refer to appendix C. �

Note 4.3 The multivariate normal distribution is classified as an elliptical distribution.
Another example of elliptical distributions is the multivariate Student t distribution. For
elliptically contoured distributed data one needs to define a kurtosis parameter κ in order
to obtain the moments of different orders, see Berkane and Bentler (1986); Maruyama and
Seo (2003); Teunissen and Amiri-Simkooei (2006). The kurtosis parameter for normally
distributed data is zero. �

Covariance matrix Qvec The elements of the covariance matrix Qvec are by definition
given as

Qi j k l
vec = E{(titj − E{titj})(tktl − E{tktl})}, i, j, k, l = 1, 2, · · · , b . (4.52)
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This shows the covariance between elements of observable vector vec(t tT ), i.e. between
titj and tktl. If we factor the right-hand side we obtain

Qi j k l
vec = E{titjtktl} − E{titj}E{tktl}, i, j, k, l = 1, 2, · · · , b . (4.53)

This result shows that we need the second and the fourth multivariate central moments of
the random vector t. Using Theorem 4.1, equation (4.53) as a fourth-order tensor, can be
written as

Qijkl
vec = C{titj, tktl} = qikqjl + qjkqil, i, j, k, l = 1, 2, ..., b . (4.54)

One can rewrite the preceding equation in terms of a second-order tensor (a matrix). To
follow consider the following theorem:

Theorem 4.2 Let Qt = qij be a symmetric and positive-definite matrix of size b. Then
Qijkl

vec = qikqjl + qjkqil, i, j, k, l = 1, 2, ..., b, as a fourth-order tensor, is equivalent to the
following second-order tensor (matrix):

Qvec = 2 DD+(Qt ⊗ Qt)D
+T DT , (4.55)

which represents the covariance matrix of the observable vector vec(t tT ), where the b2 ×
b(b+1)

2
matrix D is the duplication matrix. �

Proof. From Qijkl
vec = qikqjl + qjkqil, i, j, k, l = 1, 2, ..., b it follows that the b2 × b2 covariance

matrix Qvec, as a fourth order tensor, is composed of b2-number of b × b submatrices, i.e.

Qvec =

⎛
⎜⎜⎜⎝

Q1.1. Q1.2. · · · Q1.b.

Q2.1. Q2.2. · · · Q2.b.

...
... Qi.k.

...
Qb.1. Qb.2. · · · Qb.b.

⎞
⎟⎟⎟⎠ , (4.56)

where the b×b submatrix Qi.k. is of the form Qi.k. = cT
i QtckQt+Qtckc

T
i Qt, with ci the canonical

unit vector. Equation (4.56) can be rewritten as follows:

Qvec =
b∑

i=1

b∑
k=1

cic
T
k ⊗ Qi.k.. (4.57)

Substituting Qi.k. = cT
i QtckQt + Qtckc

T
i Qt in the preceding equation yields (note that the term

cT
i Qtck = qik is a scalar)

Qvec =
b∑

i=1

b∑
k=1

cT
i Qtckcic

T
k ⊗ Qt + cic

T
k ⊗ Qtckc

T
i Qt. (4.58)

Using the properties of the Kronecker product, after a few simple matrix operations, the preceding
equation yields

Qvec = [Qt ⊗ Qt + (I ⊗ Qt)K(I ⊗ Qt)], with K =
b∑

i=1

b∑
k=1

cick ⊗ ckc
T
i , (4.59)

the commutation matrix (see definition 4.3). Using equation (A.24) and then equations (A.5)
and (A.27), the preceding equation reads

Qvec = [I + K](Qt ⊗ Qt) = 2DD+(Qt ⊗ Qt), (4.60)

which with equations (A.22) and (A.18) completes the proof. �
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Covariance matrix Qvh One can show that the covariance matrix Qvec suffers from a rank
deficiency of b(b−1)

2
. This is what we would expect. The b(b−1)

2
number of elements of matrix

t tT located in the upper triangle do not introduce new information. That is why they are
one-to-one correlated with those located in the lower triangle. This causes the matrix Qvec

to be rank deficient. Applying the error propagation law to vh(t tT ) = D+vec(t tT ) results
in the covariance matrix of the observable vector vh(t tT )

Qvh = 2 D+(Qt ⊗ Qt)D
+T , (4.61)

which is a symmetric and positive-definite matrix provided that Qt is positive-definite;
rank(Qvh) = b(b+1)

2
. Using the properties of the duplication matrix, the inverse of Qvh is

obtained as (see identity (A.23))

Q−1
vh =

1

2
DT (Q−1

t ⊗ Q−1
t )D . (4.62)

Note 4.4 For normally distributed data, Q−1
vh is an element of the class of admissible

weight matrices defined in equation (4.34) with

Wt =
1√
2
Q−1

t . (4.63)

Teunissen and Amiri-Simkooei (2006) show that for elliptically contoured distributed data,
the inverse of Qvh is of the form

Q−1
vh =

1

2(κ + 1)
DT

[
Q−1

t ⊗ Q−1
t − κ

2(κ + 1) + κb
vec(Q−1

t )vec(Q−1
t )T

]
D . (4.64)

This means that for elliptical distributions the above matrix is an element of the weight
matrix defined in equation (4.35) with

Wt =
1√

2(κ + 1)
Q−1

t ; and α =
−κ

2(κ + 1) + κb
. (4.65)

This is in fact an interesting result because we can now take the weight matrix as Wvh =
Q−1

vh to obtain the minimum variance estimators of the (co)variance components (not
only for the normal distribution but also for a larger class of elliptical distributions, see
section 4.5). �

4.4 Properties of least-squares estimators

4.4.1 Optimal properties

The above (weighted) least-squares solutions to the (co)variance components are inde-
pendent of the distribution of vh(t tT ) which has been left unspecified so far. Since the
approach is based on the least-squares principle, we know without any additional derivation
that the estimators are unbiased . This property is also independent of the distribution (or
even the covariance matrix) of the observable vector vh(t tT ).

Note that the weighted least-squares solution is however not necessarily of minimum
variance as we can use any positive-definite symmetric matrix as the weight matrix in
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equation (4.34). This problem can however be circumvented by taking the weight matrix
to be the inverse of the covariance matrix, i.e. Wvh = Q−1

vh (see next section). Therefore, in
this alternative and indeed the most efficient technique, we can use the ’probabilistic’ least-
squares technique to obtain the BLUE estimators (or better say, BIQUE estimators, since
the observables are in quadratic form of the original ones, i.e. vh(t tT )) of the (co)variance
components. In the previous section, we specified the covariance matrix Qvh for the
normal distribution. Therefore, in this thesis, the property of minimum variance of the
(co)variance component estimators is restricted to the class of normally distributed data.
As a generalization, Teunissen and Amiri-Simkooei (2006) give the minimum variance
estimators for a larger class of distributions, namely elliptical distributions.

4.4.2 Covariance matrix of estimators

Since the (weighted) least-squares estimators are in a linear form of the observables vh(t tT ),
applying the error propagation law to equation (4.17) automatically gives us the covariance
matrix of the estimated (co)variance components, namely Qσ̂, provided that the proper
Qvh, or equivalently the proper Qt, is input as the covariance matrix of the vector vh(t tT ).
Applying the error propagation law to equation (4.17) gives (cf. equation (2.9))

Qσ̂ = N−1AT
vhWvhQvhWvhAvhN

−1 , (4.66)

or simply

Qσ̂ = N−1MN−1, (4.67)

where the p × p matrix M is given as

M = AT
vhWvhQvhWvhAvh . (4.68)

It is also possible to simplify the preceding equation. Substituting for Wvh from equa-
tion (4.34) and for Qvh from equation (4.61) gives

mkl = 2tr(BT QkBWtQtWtB
T QlBWtQtWt), (4.69)

where mkl represents the p × p matrix M in index notation.

Proof. Matrix M is given as M = AT
vhWvhQvhWvhAvh = mkl =

vh(BT QkB)T WvhQvhWvhvh(BT QlB) where Wvh = DT (Wt ⊗ Wt)D and for normal
distribution Qvh = 2D+(Qt ⊗ Qt)D

+T . Substitution of these terms, with vh(.) = D+vec(.)
and DD+vec(.) = vec(.), gives the above expression for M . �

Equation (4.67) can therefore provide us with the precision of the estimators. This is in
fact an important feature of the least-squares variance component estimation. Since the
covariance matrix Qvh depends on the distribution of the original observations, our results
are again restricted to the class of normal distributions.

Example 4.4 (Example 4.1 continued) Let us assume that the misclosures t are normally dis-
tributed. It is now possible to compute the covariance matrix of the estimated (co)variance
elements of Qt, namely the covariance matrix of σ̂ = vh(Q̂

t
) = A−1

vh vh(t tT ) = vh(t tT ). This is
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in fact a very simple example as Avh = I. Application of the error propagation law to σ̂ = vh(t tT )
gives

Qσ̂ = Qvh = 2D+(Qt ⊗ Qt)D
+T . (4.70)

In the preceding equation Qt is unknown apriori. One will thus have to be satisfied with an
estimate of Qt, namely Q̂t = t tT . This leads to an estimate of Qσ̂ as

Q̂σ̂ = 2D+(t tT ⊗ t tT )D+T . (4.71)

Strictly speaking, the (co)variance elements of Qt are estimated as σ̂ij = ti tj , with the variance
of σ̂2

σ̂ij
= 2t2i t2j (follow similar way to Theorem 4.2 when k = i and l = j). Note that the

estimator σ̂ij is of the same order as its standard deviation σ̂σ̂ij
. This indicates that the estimated

(co)variance elements σ̂ij may not be precise enough. In practice one may not have all the

elements of Qt to be unknown but only p << b(b+1)
2 (co)variance components which leads to a

better precision of their related estimators. In the sequel, just for the sake of convenience, we
will drop the hat notation located on top and simply denote Q̂ as Q. �

Example 4.5 (Example 4.3 continued ) To determine the precision of the empirical autoco-
variance function, we will assume that y is normally distributed. The entries of matrix N in
the expression of the covariance matrix Qσ̂ = N−1MN−1 of σ̂ = (σ̂0, . . . , σ̂m−1)

T , are given in
equation (4.44). To determine the entries of matrix M , we substitute Wt = Wy = I and B = I
into equation (4.69). This gives

mτκ = 2tr(QτQyQκQy). (4.72)

Therefore, the entries of the covariance matrix are given as

(Qσ̂)τκ =
tr(QτQyQκQy)

2a2
τ (m − τ)2

. (4.73)

This expression is easily evaluated numerically. A simple, but approximate, analytical expression
can be obtained, if we approximate the covariance matrix of y by Qy ≈ σ0I. This is a good
approximation, the closer the randomness of the time-series resembles that of white noise. With
this approximation, the covariance matrix of equation (4.73) becomes a diagonal matrix, with
entries

σ2
σ̂τ

=
σ4

aτ (m − τ)
, τ = 0, 1, ..., m − 1, (4.74)

with σ4 = σ2
0. To obtain the variance of the autocorrelation function one can apply the error

propagation law to the linearized form of equation (4.46)

σ2
ρ̂τ

=
1

m − τ
+

2ρ2
τ

m
, τ = 1, ..., m − 1. (4.75)

This shows that the precision of the autocorrelation function gets poorer with increasing time-lag
τ . This also makes sense, since less data are used when τ increases. �

4.4.3 Quadratic form of residuals

Since the approach is based on the least-squares principle, parts of the standard quality
control theory can be applied to the model in equation (4.36) and the result in equa-
tion (4.18). One can in particular apply the idea of hypotheses testing to the stochastic
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model. Chapter 5 deals with the w-test statistic and the quadratic form of the residuals in
the stochastic model.

As an important measure of any least-squares solution, one can compute the quadratic
form of the residuals. This quadratic form is given by equation (2.11) for the functional
model. This can in fact be generalized for the least-squares (co)variance component esti-
mation, i.e. to the stochastic model. Therefore, one will obtain

êT
vhWvhêvh = vh(t tT − BT Q0B)T [Wvh − WvhAvhN

−1AT
vhWvh]vh(t tT − BT Q0B) .

(4.76)

In a similar manner to the previous derivations, substitution Wvh = DT (Wt⊗Wt)D results
in the following formula:

êT
vhWvhêvh =(tT Wtt)

2 − 2tT WtB
T Q0BWtt + tr(BT Q0BWtB

T Q0BWt) − lT N−1l ,

(4.77)

with N and l introduced in equations (4.39) and (4.41), respectively. If Q0 = 0, then it
follows that

êT
vhWvhêvh = (tT Wtt)

2 − lT N−1l , (4.78)

with lk = tT WtB
T QkBWtt obtained from equation (4.41). Note that the quadratic form

is also independent of the (unspecified) distribution of the observable vector vh(t tT ).

4.4.4 Prior information

In some cases, we may have prior information about the (co)variance components. Such
information can be provided by equipment manufacturers or from a previous process. Let
us assume that this information can be expressed as σ0 in the following way

E{σ0} = Cσ ; Wσ0 , (4.79)

where Wσ0 is the weight matrix of σ0 and C is a known matrix. One important feature
of the LS-VCE is the possibility of incorporating such prior information with the observ-
ables vh(t tT ). Without additional derivations, we can obtain the weighted least-squares
(co)variance estimators as (Teunissen, 2000a)

σ̂ = N−1l + N−1CT (CN−1CT + W−1
σ0

)(σ0 − CN−1l). (4.80)

The method uses all of the information in an optimal way. Concerning the preceding
formulation, we can at least mention that

• the method is considered as a competitor to the Bayesian method. The prior infor-
mation, here for the LS-VCE, is in the form of the weight or covariance matrix rather
than the probability density function,

• the method can be used as a regularization technique for ill-posed (co)variance com-
ponent models (see ill-posed problems in section 4.8.3),
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• the method may also be used for incorporating several estimators obtained from
various data sets in a sequential way.

• if we choose W−1
σ0

= 0, then the solution obtained corresponds to using the hard
constraints σ0 = Cσ.

• if we choose Wvh = Q−1
vh and Wσ0 = Q−1

σ0
, we then obtain the minimum variance

estimators. In this case, the covariance matrix of estimators is simply given as
Qσ̂ = (N + CT Q−1

σ0
C)−1 = N−1 − N−1CT (CN−1CT + Qσ0)

−1CN−1 (cf. later on
equation (4.88)),

4.4.5 Robust estimation

Since we estimated the (co)variance components on the basis of a linear model of obser-
vation equations (see equation (4.36)), we can think of robust estimation methods rather
than the least-squares. One can in particular think of an L1 norm minimization problem.
The usual method for implementation of the L1 norm adjustment leads to the solving of a
linear programming problem. For more information we refer to e.g. Amiri-Simkooei (2003).
This may be an important alternative if one wants to be guarded against misspecifications
in the functional part of the model.

Example 4.6 In example 4.2 we can apply the idea of L1 norm minimization problem. The
stochastic model expressed in terms of a model of observation equations is as follows:

E{vh(t tT )} = vh(I)σ2, Wvh = I . (4.81)

The L1 norm principle states that the sum of the absolute values of the ’residual’ vector vh(t tT )−
vh(I)σ2 should be minimized. Because b(b−1)

2 elements of vh(I) are zeros, they do not effect the
minimization problem. Therefore, the L1 norm minimization problem is reduced to the following
problem:

m∑
i=1

|t2i − σ2| → min . (4.82)

This is in fact very similar to the problem of measuring one unknown quantity, where the observ-
ables are t2i , i = 1, ..., m. It is well known that the L1 norm minimization will lead to the sample
median as an estimator of the population mean for repeated measurements of an unknown quan-
tity. Therefore, the variance component is estimated as the median of the t21, t

2
2, ..., t

2
m, namely

σ̆2 = t2m+1
2

, (4.83)

whereas the least-squares solution gives the mean of t21, t
2
2, ..., t

2
m (see example 4.2). �

4.5 Minimum variance estimators

As with the BLUE estimator introduced in chapter 2, the (co)variance components can
be estimated as the best linear unbiased estimator of the observables vh(t tT ). One can
obtain such estimators by taking the weight matrix Wvh as the inverse of the covariance
matrix of the observables, Q−1

vh . Then this linear form of the observables vh(t tT ) can be
written as the best (minimum variance) quadratic unbiased estimator of the misclosures
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t. This can therefore be considered as an alternative derivation of the BIQUE estimator
introduced in chapter 3. In section 4.3 we derived the covariance matrix Qvh for normally
distributed data. Therefore, the ’best’ (minimum variance) property is restricted to the
normal distribution (or even to a larger class of elliptical distributions).

Estimator To obtain the minimum variance estimators, one needs to substitute Wvh =
Q−1

vh = 1
2
DT (Q−1

t ⊗ Q−1
t )D in equation (4.17)

σ̂ = N−1l = (AT
vhQ

−1
vh Avh)

−1AT
vhQ

−1
vh vh(t tT − BT Q0B) . (4.84)

After simplification, the p × p normal matrix N , and the p × 1 vector l read, respectively
(follow the same way as the previous derivations)

nkl =
1

2
tr(BT QkBQ−1

t BT QlBQ−1
t ), (4.85)

and

lk =
1

2
tT Q−1

t BT QkBQ−1
t t − 1

2
tr(BT QkBQ−1

t BT Q0BQ−1
t ). (4.86)

Note that the preceding equations can simply be obtained from equations (4.39) and (4.41)
with Wt = 1√

2
Q−1

t (see equation (4.63)). In the case that Q0 = 0, the preceding equation

reads

lk =
1

2
tT Q−1

t BT QkBQ−1
t t . (4.87)

Note 4.5 For elliptically contoured distributed data one can obtain the above estimators
by choosing the inverse of covariance matrix Qvh given in equation (4.64) as the weight
matrix. The normal matrix N and the vector l are respectively given as (follow the same
way as the previous derivations)

nkl = 1
2(κ+1)

[tr(BT QkBQ−1
t BT QlBQ−1

t )+αtr(BT QkBQ−1
t )tr(BT QlBQ−1

t )];

lk = 1
2(κ+1)

[tT Q−1
t BT QkBQ−1

t t + α(tT Q−1
t t)tr(BT QkBQ−1

t )],

with κ the kurtosis parameter and α defined in equation (4.65). Note again that for normal
distribution κ = α = 0. �

Covariance matrix Since we have formulated our variance component estimation problem
in the least-squares sense, we know without any additional derivation that the inverse of the
normal matrix N automatically gives us the covariance matrix of the estimated (co)variance
components

Qσ̂ = N−1, (4.88)

which provides us with the precision of the (co)variance estimators. The preceding equation
can also be obtained from equation (4.67) because in this case M = N .
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Implementation of LS-VCE (B model)

Input:
1. matrix B of condition equations;
2. observation vector y;
3. cofactor matrices Qk, k = 0, ..., p ;
4. initial (co)variance components σ = σ0 = [σ0

1, ..., σ
0
p]

T ;
5. small value for ε;

begin
check for presence of gross errors in observations;
compute misclosures t = BT y;
set iteration counter i = 0;
begin

evaluate matrix Qy = Q0 +
∑p

k=1 σkQk;
compute matrix Qt = BT QyB;
invert covariance matrix Qt;
calculate matrix N and vector l from equations (4.85) and (4.86);
solve for a new σ̂ from normal equations Nσ̂ = l;
increase i by one step;
update vector σi ← σ̂;
while ‖σi − σi−1‖Q−1

σ̂
> ε repeat;

end

obtain σ̂ and its covariance matrix Qσ̂ = N−1.
end

Figure 4.1: Symbolic algorithm for implementation of least-squares variance component estimation
in terms of linear model of condition equations (B-model); σi contains the (co)variance components
estimated in iteration i.

Quadratic form of residuals In a similar manner, from equation (4.77), the quadratic
form of the residuals is given as

êT
vhQ

−1
vh êvh = 1

2
(tT Q−1

t t)2 − tT Q−1
t BT Q0BQ−1

t t
+ 1

2
tr(BT Q0BQ−1

t BT Q0BQ−1
t ) − lT N−1l

, (4.89)

with N and l defined in equations (4.85) and (4.86), respectively. When Q0 = 0, one
obtains

êT
vhQ

−1
vh êvh =

1

2
(tT Q−1

t t)2 − lT N−1l . (4.90)

Implementation In this thesis we mainly deal with linear models; the observations and
the unknown parameters are related to each other by the linear model of observation
equations, namely E{y} = Ax. An equivalent representation of this model is expressed
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in terms of model of condition equations, i.e. BT E{y} = 0. We will now concentrate
on the implementation of this formulation. Before we are able to use the observations,
we need to check for the presence of some (large) gross errors in observations, because
outliers in the data will lead to biases in the (co)variance components. Since the functional
model is generally known, obtaining some rough measures for verifying the correctness of
observations is not difficult. For instance, GPS pseudo-range observations can be roughly
checked on exceeding the interval 18000-26000 km.

From equations (4.85) and (4.86) with equation (4.18) we see that we need Qt =
BT Q0B +

∑p
k=1 σkB

T QkB in order to compute the estimators σ̂k. But the (co)variance
components σk are unknown apriori. One way out of this dilemma is to perform iterations.
One starts with an initial guess for the σk. Using these values, one computes with equa-
tion (4.18) estimates for the σk, which in the next cycle are considered the improved guess
for σk. Figure 4.1 shows an iterative algorithm for performing a least-squares (co)variance
component estimation in terms of the model of condition equations. This can only be a
straightforward and symbolic procedure. In real problems, specially when the redundancy of
the functional model is large, one may use more simplified procedures (see e.g. section 3.4).

Note 4.6 It should be perceived, from equation (4.14), that this model is intrinsically
linear in terms of the observable vector vh(t tT ). But when applying the (probabilistic)
least squares technique, one needs to know the covariance matrix Qvh of the observables
which is unknown and is to be estimated (because Qt is unknown). Therefore, the usual
strategy is to estimate the stochastic model through iteration. For this purpose the apriori
values of the (co)variance components are needed. Such values may be obtainable all the
time since the nominal precision of the instruments is usually known. One may also employ
approximate methods to obtain these values.

4.6 Maximum likelihood estimators

The maximum likelihood (ML) method to (co)variance component estimation is only ap-
plicable when the general structure of the probability density function (PDF) is known (see
section 2.1.5). In this section we will restrict ourselves to the normal distribution for which
we obtain

y ∼ N(Ax,Qy) , with Qy = Q0 +

p∑
k=1

σkQk , (4.91)

where the first two moments of the observables y, namely E{y} and D{y}, are partially
unknown. As mentioned in section 2.1.6 an equivalent expression for the model of obser-
vation equations E{y} = Ax is in terms of the model of condition equations. With this,
the preceding equation is reformulated as

t = BT y ∼ N(0, Qt) , with Qt = BT Q0B +

p∑
k=1

σkB
T QkB , (4.92)

in which we have left out the unknown parameters x of the functional model. The (re-
stricted) likelihood function is therefore of the form (see also section 3.3.4)

L(t; σ) =
1

(2π)
b
2 det(Qt)

1
2

exp(−1

2
tT Q−1

t t) , (4.93)
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with Qt expressed in equation (4.92). In order to solve for the unknown (co)variance
components, one needs to maximize the likelihood function over these unknowns

σ̂ = arg max
σ

1

(2π)
b
2 det(Qt)

1
2

exp(−1

2
tT Q−1

t t) (4.94)

In practice, it is more convenient to work with the log likelihood function, namely

σ̂ = arg max
σ

ln L(t; σ) = arg max
σ

− b

2
ln 2π − 1

2
ln det(Qt) − 1

2
tT Q−1

t t (4.95)

where ln is the natural logarithm. The preceding maximization problem is equivalent to
the following minimization problem:

σ̂ = arg max
σ

ln L(t; σ) = arg min
σ

1

2
ln det(Qt) +

1

2
tT Q−1

t t (4.96)

To minimize the preceding equation (or maximize log likelihood) one needs to take the
partial derivatives with respect to σ and set them to zero. With doing so, the following set
of nonlinear equations is obtained

1

2
tr(Q−1

t BT QkB) − 1

2
tT Q−1

t BT QkBQ−1
t t = 0, k = 1, ..., p . (4.97)

There are standard procedures for solving a nonlinear problem. We use here a very sim-
ple technique to solve for the unknown parameters which is equivalent to the well-known
Newton-Raphson method. The term tr(Q−1

t BT QkB) in the above equation can be rewrit-
ten as tr(Q−1

t BT QkB Q−1
t Qt). If we substitute Qt from equation (4.92) we obtain

1

2
tr(Q−1

t BT QkBQ−1
t [BT Q0B +

p∑
l=1

σlB
T QlB]) =

1

2
tT Q−1

t BT QkBQ−1
t t . (4.98)

If we now take the known term 1
2
tr(Q−1

t BT QkBQ−1
t BT Q0B) to the right-hand side, the

preceding equation reads
p∑

l=1

nklσ̂l = lk, k = 1, ..., p , (4.99)

with nkl and lk defined in equations (4.85) and (4.86), respectively. This is an interesting
result which confirms that the least-squares (co)variance estimators are identical to the re-
stricted maximum likelihood (REML) estimators if the observables are normally distributed.
These estimators are therefore unbiased, of minimum variance (best), and restrictedly of
maximum likelihood (cf. Note 2.3).

4.7 In terms of model of observation equations

The least-squares technique to (co)variance component estimation can directly be used,
through equation (4.18) with equations (4.85) and (4.86), if the matrix B is available
(model of condition equations). In practice however one will usually have the design
matrix A available (model of observation equations), instead of B. In this section, we will
extend the least-squares method for estimation of (co)variance components to the model of
observation equations. We will again restrict ourselves to the class of normally distributed
data.
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4.7.1 Weighted least-squares estimators

Formulation We consider again the case that the covariance matrix can be split into
a known part Q0 and an unknown (co)variance component model, namely Qy = Q0 +∑p

k=1 σkQk. To apply the deterministic (weighted) least-squares variance component es-
timation to the model of observation equations we shall therefore have to rewrite equa-
tions (4.39) and (4.41) in terms of the design matrix A. Using the trace property, equa-
tion (4.39) can be rewritten as

nkl = tr(QkBWtB
T QlBWtB

T ) . (4.100)

If W is the weight matrix in the model of observation equations and correspondingly Wt

is the weight matrix in the model of condition equations, to obtain identical estimators, it
follows with identity (2.20) that

BWtB
T = W (I − A(AT WA)−1AT W ) = WP⊥

A . (4.101)

The preceding identity with equation (4.100) gives

nkl = tr(QkWP⊥
A QlWP⊥

A ) . (4.102)

Similarly, it follows with

ê = P⊥
A y = W−1BWtB

T y = W−1BWtt , (4.103)

from equation (4.41) that

lk = yT P⊥T
A WQkWP⊥

A y − tr(QkWP⊥
A Q0WP⊥

A ) . (4.104)

In terms of the least-squares residuals ê the preceding equation reads

lk = êT WQkWê − tr(QkWP⊥
A Q0WP⊥

A ) . (4.105)

Strictly speaking, the weighted least-squares estimator is given as σ̂ = N−1l with N and l
given by equations (4.102) and (4.105), respectively.

Covariance matrix As with any weighted least-squares problem, one can compute the
covariance matrix of estimators σ̂, namely Qσ̂ = N−1MN−1, where the p × p matrix M
obtained from equation (4.69) simplifies to

mkl = 2tr(QkWP⊥
A QyWP⊥

A QlWP⊥
A QyWP⊥

A ) . (4.106)

Quadratic form of residuals In a similar manner, in terms of the design matrix A, the
quadratic form of the residuals in the stochastic model reads (see equation (4.77))

êT
vhWvhêvh = (êT Wê)2 − 2êT WQ0Wê + tr(Q0WP⊥

A Q0WP⊥
A ) − lT N−1l , (4.107)

with N and l given by equations (4.102) and (4.105), respectively. If Q0 = 0, it follows
that

êT
vhWvhêvh = (êT Wê)2 − lT N−1l , (4.108)

where lk = êT WQkWê is obtained from equation (4.105).
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4.7.2 Minimum variance estimators

Formulation To obtain the minimum variance estimators, we should choose the weight
matrix as the inverse of the covariance matrix. In an analogous way to equation (4.63),
one can take the symmetric and positive-definite matrix W as

W =
1√
2
Q−1

y . (4.109)

If we now substitute W = 1√
2
Q−1

y into the formulas of the previous subsection, equa-

tions (4.100) and (4.106) read then

nkl = mkl =
1

2
tr(QkQ

−1
y P⊥

A QlQ
−1
y P⊥

A ), (4.110)

with the orthogonal projector P⊥
A = I −A(AT Q−1

y A)−1AT Q−1
y (see chapter 2). Similarly,

from equation (4.104) it follows that

lk =
1

2
yT P⊥T

A Q−1
y QkQ

−1
y P⊥

A y − 1

2
tr(QkQ

−1
y P⊥

A Q0Q
−1
y P⊥

A ) . (4.111)

In terms of the least-squares (BLUE) residuals, one obtains

lk =
1

2
êT Q−1

y QkQ
−1
y ê − 1

2
tr(QkQ

−1
y P⊥

A Q0Q
−1
y P⊥

A ). (4.112)

The minimum variance (co)variance component estimation in terms of the model of ob-
servation equations is therefore formulated as follows:

σ̂ = N−1l , (4.113)

with N and l specified in equation (4.110) and (4.112), respectively. The inverse of the
normal matrix N gives automatically the covariance matrix of estimators

Qσ̂ = N−1. (4.114)

Note that while the inverse of the normal matrix gives the covariance matrix of the
(co)variance components, i.e. Qσ̂ = N−1, the normal matrix itself is the covariance ma-
trix of the p-vector l. From equation (4.107), the quadratic form of the residuals in the
stochastic model reads

êT
vhQ

−1
vh êvh =

1

2
(êT Q−1

y ê)2 − êT Q−1
y Q0Q

−1
y ê +

1

2
tr(Q0Q

−1
y P⊥

A Q0Q
−1
y P⊥

A ) − lT N−1l .

(4.115)

When the known part is zero, i.e. Q0 = 0, the preceding equation simplifies to

êT
vhQ

−1
vh êvh =

1

2
(êT Q−1

y ê)2 − lT N−1l . (4.116)
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Implementation Equations (4.110) and (4.112) with equation (4.113) show that we need
Qy = Q0 +

∑p
k=1 σkQk in order to compute the estimators σ̂k. But the (co)variance com-

ponents σk are unknown apriori! We can therefore perform iterations. We can start with an
initial guess for the σk. Based on these values, we compute with equation (4.113) estimates
for the σk, which in the next iteration are considered the improved values for σk. The pro-
cedure is repeated until the estimated components do not change by further iteration. That
is, convergence is achieved if the guess for σk equals the computed estimate σ̂k. Figure 4.2
gives a straightforward and symbolic iterative algorithm for implementing a least-squares
variance component estimation in terms of the model of observation equations. Note that
when the number of observations m is large, one may employ more efficient procedures
(see e.g. section 3.4).

One point which may be useful to notice is the issue of computing (co)variance compo-
nents. Actually, there are two ways of estimating such unknown parameters. The first way
is to consider the cofactor matrices as a whole and try to estimate unknown unit factors
(scale factors). That is, in each iteration we modify the cofactor matrices by multiplying
them with the estimated (co)variance factors. After a few iterations we expect the factors
to converge to ones. In the second way, we consider the cofactor matrices to be fixed
(constant). In each iteration, the (co)variance components rather than the cofactor ma-
trices are modified. After a few iterations, the modified components converge so that the
maximum absolute difference with their modified previous iteration values does not exceed
a small upper bound. For example consider the covariance matrix as Qy = σ1Q1 + σ2Q2.
At the point of convergence, the above strategies look as follows: In the first way, we
obtain the factors f1 and f2, therefore Qy = f1×σ̂1Q1 + f2×σ̂2Q2 where f1 = f2 = 1 and
in the second way we estimate the components σ1 and σ2, therefore Qy = σ̂1×Q1 + σ̂2×Q2

. The same situation is also valid for the covariance matrix (or precision) of the estimators.
The latter way is used throughout this thesis.

Note 4.7 We need to take good care of the a-priori as well as the estimated values of
the (co)variance components to make sure that the resulting initial and estimated variance
component model Qy is positive definite. For example, consider the following cofactor
matrices for two types of observations:

Q1 =

(
Q 0
0 0

)
; Q2 =

(
0 0
0 Q

)
; Q3 =

(
0 Q
Q 0

)
, (4.117)

with Q a symmetric and positive-definite matrix of appropriate size. Assuming σ1 = σ2 =
σ3 = σ > 0, one obtains

Qy = σ

(
Q Q
Q Q

)
, (4.118)

which is a singular matrix, i.e. rank(Qy) = rank(Q) �= size(Qy). In addition when σ1 =
σ2 = σ and σ3 = σ′ > σ, Qy is not positive definite. One may for instance initiate the
variance components as σ1 = σ2 = σ and the covariance component as σ3 = 0. �

Optimal properties The estimators obtained in each cycle are unbiased estimators of
the σk. But they are not strictly of minimum variance, not even after convergence of the
iterations. Since the computed estimate σ̂k is not necessarily equal to σk, the property
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Implementation of LS-VCE (A model)

Input:
1. design matrix A of observation equations;
2. observation vector y;
3. cofactor matrices Qk, k = 0, ..., p;
4. initial (co)variance components σ = σ0 = [σ0

1, ..., σ
0
p]

T ;
5. small value for ε;

begin
check for presence of gross errors in observations;
set iteration counter i = 0;
begin

evaluate matrix Qy = Q0 +
∑p

k=1 σkQk;
invert covariance matrix Qy;
calculate vector of least-squares residuals ê = P⊥

A y;
compute matrix Q−1

y P⊥
A ;

calculate matrix N and vector l from equations (4.110) and (4.112);
solve for a new σ̂ from normal equations Nσ̂ = l;
increase i by one step;
update vector σi ← σ̂;
while ‖σi − σi−1‖Q−1

σ̂
> ε repeat;

end

obtain σ̂ and its covariance matrix Qσ̂ = N−1.
end

Figure 4.2: Symbolic algorithm for implementation of least-squares variance component estimation
in terms of linear model of observation equations (A-model); σi is the (co)variance components
estimated in iteration i.

of minimum variance may not necessarily be achieved. Therefore, in practice one usually
will have to be satisfied with almost minimum variance unbiased estimators. The amount
in which the computed estimates lack the property of minimum variance, depends on the
initial guess and the number of iterations. There are however special cases where the σk

are not needed apriori. One such case we will meet when discussing the estimator for
the variance of unit weight (see Example 4.7). Another important case where the apriori
values are not needed occurs when one wants to estimate the covariance matrix from a
multivariate linear model (see chapter 6).

Note 4.8 Since we assumed t (or in fact y) to have a normal distribution when deriving
the covariance matrix Qvec, the BLUE (or better say BIQUE) property of the estimator σ̂
is restricted to normally distributed data. It is possible to generalize the ‘best’ property to
a larger class than normal, namely to elliptical distributions. For example, the multivariate
Student t distribution is a special case in this class for which the kurtosis parameter is
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not zero, κ = 2
b−4

. The minimum variance estimators can thus be obtained for the
class of elliptically contoured distributed data (see Teunissen and Amiri-Simkooei, 2006).
Therefore, if κ �= 0, then Nσ̂ = l with equations (4.110) and (4.112) does not strictly
provide minimum variance estimators but only asymptotically ; i.e. when the redundancy
in the functional model is large enough. The unbiasedness property of course still holds in
general. �

Example 4.7 Let us as a simple application of the least-squares variance component estimation
LS-VCE, assume that there is only one variance component in the stochastic model, namely
Qy = σ2Q. If our original observables y are normally distributed, it follows with equations (4.110)
and (4.112) from equation (4.113) that

σ̂2 =
l

n
=

1
2 êT Q−1

y QQ−1
y ê

1
2tr(QQ−1

y P⊥
A QQ−1

y P⊥
A )

, (4.119)

with the expectation and the variance of

E{σ̂2} = σ2 (unbiased) ; D{σ̂2} =
2

tr(QQ−1
y P⊥

A QQ−1
y P⊥

A )
≡ min (best) , (4.120)

respectively. With Qy = σ2Q, P⊥
A P⊥

A = P⊥
A , and tr(P⊥

A ) = rank(P⊥
A ) = m − n = b, the

preceding equations simplify to

σ̂2 =
êT Q−1ê

m − n
; E{σ̂2} = σ2 and D{σ̂2} =

2σ4

m − n
. (4.121)

These are the well-known results for the estimator of the variance of unit weight. This estimator
can thus be obtained from the least-squares residuals without any iteration. The least-squares
approach implies that the above estimator is optimal in the sense that it is unbiased and has
minimum variance. With the least-squares approach we now also have a unified framework in
which the well-known estimator of the variance of unit weight finds its logical place. That is, we
now do not have to introduce the estimator of the variance of unit weight in an ad hoc way! In
addition, the quadratic form of residuals, i.e. equation (4.116) for our model, simplifies to

êT
vhQ

−1
vh êvh =

b − 1

2b
(êT Q−1

y ê)2, (4.122)

with b = m−n the redundancy of the functional model. �

4.7.3 Nonlinear covariance function

Let us now consider a nonlinear (co)variance component model, namely Qy = Q(σ). To
overcome the nonlinearity, one can expand the stochastic model into a Taylor series. For
this purpose we need to know the initial values for the unknown vector σ, namely σ0. The
linear term of the Taylor series expansion reads

Qy = Q(σ0) −
p∑

k=1

∂Q(σ)

∂σk

σk

∣∣∣∣
σ0

+

p∑
k=1

∂Q(σ)

∂σk

∣∣∣∣
σ0

σk . (4.123)

The above equation is in the form of the general (co)variance component model Qy =
Q0 +

∑p
k=1 σkQk with

Q0 = Q(σ0) −
p∑

k=1

∂Q(σ)

∂σk

σk

∣∣∣∣
σ0

; Qk =
∂Q(σ)

∂σk

∣∣∣∣
σ0

. (4.124)
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Implementation of non linear LS-VCE (A model)

Input:
1. design matrix A of observation equations;
2. observation vector y;
3. function Q(σ) and its partial derivatives ∂σk

Q(σ), k = 1, ..., p ;
4. initial (co)variance components σ = σ0 = [σ0

1, ..., σ
0
p]

T ;
5. small value for ε;

begin
check for presence of gross errors in observations;
set iteration counter i = 0;
begin

obtain (modify) matrices Qi
k, k = 0, 1, ..., p, from equation (4.124);

evaluate matrix Qy = Q0 +
∑p

k=1 σkQk;
invert covariance matrix Qy;
calculate vector of least-squares residuals ê = P⊥

A y;
compute matrix Q−1

y P⊥
A ;

calculate matrix N and vector l from equations (4.110) and (4.112);
solve for a new σ̂ from normal equations Nσ̂ = l;
increase i by one step;
update vector σi ← σ̂;
while ‖σi − σi−1‖Q−1

σ̂
> ε repeat;

end

obtain σ̂ and its covariance matrix Qσ̂ = N−1.
end

Figure 4.3: Symbolic algorithm for implementation of nonlinear least-squares variance component
estimation in terms of linear model of observation equations.

We can now apply the least-squares method of the previous subsection to (co)variance
components. What we will estimate is the least-squares estimator for σ . The estimated σ̂
can now be considered as a new update for σ0 and the same procedure can be repeated.
We can iterate until the estimated (co)variance components do not change by further
iterations. The Gauss-Newton iteration has a linear rate of convergence. This convergence
rate is dictated by the normal curvature of the nonlinear manifold Avh(σ). For more
information we refer to Teunissen (1990).

Note 4.9 In the nonlinear LS-VCE, the cofactor matrices Qk, k = 1, ..., p are not fixed.
They are modified from one iteration to the next. It is important to perceive that we have
in fact two sorts of iterations for this model; one to come up with the nonlinearity and
one due to the covariance matrix Qy which is unknown apriori. Because of the Taylor
series expansion, the initial values σ0 should be close enough to their final values. Rough
approximate values can lead to the divergence of the computed (co)variance components.
The implementation algorithm is given in figure 4.3. �
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4.8 Remarks on stochastic model

4.8.1 Negative variance components

Since the LS-VCE method is based on the ’unrestricted’ or ’unconstrained’ least-squares
principle, occurrence of negative variance components is not impossible. Estimated nega-
tive variance components may result in a non-positive definite covariance matrix Qy, which
can not be physically interpreted. Occurrence of negative variances makes sense when
we compare the estimators with their precision (see equation (4.114)); they may not be
precise enough because of insufficient redundancy in the functional model. Though non-
interpretable, a significantly negative variance component can be an important indication
of defects in our variance component model. We can enumerate at least

• an improperly designed (co)variance component model;
The problem occurs when the (co)variance component model is not correct for the
data at hand. In this case one has to look for an appropriate stochastic model.
In chapter 5 we introduce and employ hypotheses testing (e.g. w-test statistic) in
conjunction with the least-squares variance component estimation. The method
provides a powerful tool to look for a realistic stochastic model. The problem of an
improperly designed stochastic model is thus not subject of discussion in this section.

• a low redundancy of our functional model;
Low redundancy b of the functional model (and thereby df of stochastic model) can
give rise to some negative variance components. This also makes sense because the
precision of all parameters of interest directly depends on the number of observations
involved in the model. The more observations we have, the more precision for our
(co)variance components we will obtain, and the less chance for estimators being
inadmissible (e.g. negative) we have.

Note 4.10 If the redundancy is too low, at times, the variance component model
becomes singular. That is, we do not have enough observations for unique determi-
nation of the unknowns in the stochastic model with that special structure. There
might be different ways to handle the problem. One can for instance add more obser-
vations to handle the problem (see next subsection). The other way, if allowed, is to
modify the stochastic model. The observations might be sufficient for estimating the
parameters of a modified stochastic model. Low redundancy may also be interpreted
as a weak functional model. Given the stochastic model, a weak functional model
may lead to a high correlation between (co)variance components. Such estimators
are usually of poor precision and occurrence of negative variances is more probable
(see section 4.8.3). �

• a badly chosen set of apriori (co)variance components (initial weight matrix W ).
To avoid the non-negativity, one may for instance think of a proper set of a priori
values for (co)variance components (a realistic weight matrix). That is, we try to
choose the initial components somewhat close to their actual values. The application
of the so-called almost unbiased estimator must be useful. Since this estimator, as
long as the cofactor matrix Qk is semi-positive-definite, always results in a non-
negative variance component, we can apply this method in the first iteration and
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then apply the least squares method. The almost unbiased estimator for the variance
component is given by Förstner (1979) (see also section 3.4).

Example 4.8 Consider one unknown quantity that is measured with two different instruments
twice, i.e., y1, y2 and s1, s2. In the following, the design matrix, vector of observations, and two
cofactor matrices are given as

A =

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ , y =

⎡
⎢⎢⎣

y1

y2

s1

s2

⎤
⎥⎥⎦ , Q1 =

[
I2 0
0 0

]
, Q2 =

[
0 0
0 I2

]
. (4.125)

Assuming σ0
1 = 1 and σ0

2 = 1, i.e. W = I4 in equations (4.102) and (4.104), after a few simple
mathematical operations, the estimated variance components read⎧⎨
⎩

σ̂1 = 1
6{3(y2

1 + y2
2) + 2(s1s2 − 2y1y2) − (s1 + s2)(y1 + y2)} ;

σ̂2 = 1
6{3(s2

1 + s2
2) + 2(y1y2 − 2s1s2) − (s1 + s2)(y1 + y2)} ,

(4.126)

which are not guaranteed to be positive all the time. Assume for instance observation values
y1 = 10.0016 m, y2 = 10.0009 m, s1 = 9.9991 m, and s2 = 10.0036 m, which lead to a negative
variance component[

σ̂1

σ̂2

]
=

[ −1.48
8.40

]
mm2 . (4.127)

Note that this is an example which leads to a negative variance component. One can find lots
of examples (different y in the above) with the resulting variances both being positive. Also if
one increases the number of observations, e.g. y3, s3, . . ., one will rarely encounter the negative
variance problem.

To see the role of the a-priori (co)variance components let us refer to the preceding results.
For instance, if we choose the a-priori variance components as σ0

1 = 1 and σ0
2 = 10, the following

variance components can be estimated for the aforementioned sample (first iteration):[
σ̂1

σ̂2

]
=

[
0.198
5.463

]
mm2. (4.128)

After a few iterations, the converged solution is given as[
σ̂1

σ̂2

]
=

[
0.235
5.184

]
mm2, (4.129)

which are both positive. Note that the above structure for our model is known as a disjunctive
group model with one variance component for each group. These components are expected to
be positive as the cofactor matrices Q1 and Q2 are both positive semi-definite. �

Non-negativity The (co)variance components are usually estimated in the absence of non-
negative variance constraints. But in order to ensure non negative variance components,
one may also incorporate non-negativity constraints σ ≥ 0 in equation (4.36). This leads
to a non-negative least squares problem. The standard form of the model of observation
equations with non-negativity constraints is as follows: E{y} = Ax, x ≥ 0, D{y} = Qy

(cf. equation (2.4)). There are standard procedures for solving this problem (see e.g.
Lawson and Hanson, 1974; Haskell and Hanson, 1981). One simple method to restore
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the non-negativeness is to reparameterize the variance components as follows (Teunissen,
1988):

σi = eai , i = 1, · · · , p′ , (4.130)

where p′ is the number of variance components. If one solves for ai, namely âi, the
estimated variance components then read

σ̂i = eâi , i = 1, · · · , p′ , (4.131)

which are forcefully and restrictively positive. The above reparameterization will lead us
to a nonlinear (co)variance component model which was explained in section 4.7.3. Note
that estimation of the variance components, subject to non-negativity constraints, conflicts
with unbiasedness property. But such estimators are definitely of lower minimum variance
than those obtained in the absence of the non-negativity constraints because we are using
the additional information in a logical way.

4.8.2 Singular stochastic model

As previously mentioned, the (co)variance component model has a unique solution if and
only if the matrices BT Q1B, ..., BT QpB are linearly independent. If the cofactor matrices
Q1, ..., Qp are linearly dependent, so are matrices BT Q1B, ..., BT QpB (i.e. rank deficient
normal matrix N). But if the cofactor matrices Q1, ..., Qp are linearly independent, there
is no guarantee for the stochastic model to have a unique solution. Therefore, linear
independence of the cofactor matrices Q1, ..., Qp is a necessary condition to have a full
rank normal matrix in the stochastic model. This is not however the sufficient condition,
meaning that matrices BT Q1B, ..., BT QpB can be linearly dependent whereas Q1, ..., Qp

are linearly independent. To see this, we will consider two examples.

Example 4.9 Assume that we have observed an unknown quantity m times, i.e. a repeated
observation. In this case we have the following model of observation equation:

E{y} = ux; D{y} = σ1I + σ2uuT , (4.132)

where u is the m×1 summation vector containing only ones. It is clear that the cofactor matrices
Q1 = I and Q2 = uuT are linearly independent. One can however show that the unknown
covariance component σ2 is not estimable. Given the m× 1 design matrix A = u, it follows that
the m×(m−1) matrix B in the model of condition equations reads B = [um−1 −Im−1]

T . Then
BT Q1B = um−1u

T
m−1+Im−1 and BT Q2B = 0. They are not linearly independent and therefore

σ2 remains inestimable. Note that increasing m can not overcome the singularity. Statistically
this makes sense since strictly speaking a mutually constant covariance between observations,
namely Q2 = uuT , can be interpreted as a systematic effect (constant bias) in the data. Such a
bias can not be estimated from the functional model of an unknown quantity because A = [u u]
is also not of full rank (in fact the estimator x̂ is biased by the systematic effect). Therefore, if
we now try to estimate such a bias in the stochastic model, this also does not help. �

Let us now consider another simple example that the (co)variance components are not
simultaneously estimable.
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Example 4.10 Consider that we are measuring the same set of unknown quantities (e.g. dis-
tances) with two different instruments which are in general of different precision. If we measure
m different unknowns using these two instruments, then the number of unknowns is n = m,
and the total number of observations would be 2m. The functional model which relates the
observations to the unknown parameters reads

E{y} = Ax, with y =

[
y

1
y

2

]
; A =

[
I
I

]
. (4.133)

The redundancy of the functional model is b = 2m − m = m. In this example we have 2 types
of observations for which one needs to estimate a variance component (σ1 and σ2), and also a
covariance component between y

1
and y

2
(σ3). The cofactor matrices may have the following

forms:

Q1 =

[
Q 0
0 0

]
; Q2 =

[
0 0
0 Q

]
; Q3 =

[
0 Q
Q 0

]
, (4.134)

where Q is an arbitrary m×m symmetric and positive-definite matrix. The cofactor matrices Q1,
Q2, and Q3 are linearly independent, but σ1, σ2, and σ3 are not simultaneously estimable. To
show this, we need to obtain the matrix B of the model of condition equations. It is not difficult
to see that B = [I − I]T . After a few simple mathematical operations one gets, BT Q1B = Q,
BT Q2B = Q, and BT Q3B = −2Q. This means that the design matrix of the stochastic
model, namely Avh, is not of full rank. In fact the 3 × 3 normal matrix N suffers from a rank
deficiency of two. Therefore, two out of three (co)variance components are not estimable; only
one (co)variance component is estimable and not three. To handle the singularity of the above,
at least, two ways are recommended.

1. assuming σ3 = 0 and the relative scale between Q1 and Q2 is known (e.g., they are
equal σ1 = σ2), one can try to estimate a common variance component, namely Qy =
σ1(Q1 + Q2);

2. assuming σ1 and σ2 are known, we can try to estimate the only covariance component σ3.
If this is the case, one obtains Qy = Q0 + σ3Q3.

Generalization A third way can be to modify the functional and stochastic model by extending
the observations plan. Let us consider 3 observation types instead of two kinds of observations,
namely y1, y2 and y3. In this case, the VCE model consists of 3 cofactor matrices incorporated
with 3 variance components, namely

A =

⎡
⎣ I

I
I

⎤
⎦ ; Q1 =

⎡
⎣ Q 0 0

0 0 0
0 0 0

⎤
⎦ , Q2 =

⎡
⎣ 0 0 0

0 Q 0
0 0 0

⎤
⎦ , Q3 =

⎡
⎣ 0 0 0

0 0 0
0 0 Q

⎤
⎦ . (4.135)

The matrix B of the condition equations reads

B =

⎡
⎣ I I

−I 0
0 −I

⎤
⎦ , (4.136)

which leads to the matrices

BT Q1B =

[
Q Q
Q Q

]
; BT Q2B =

[
Q 0
0 0

]
; BT Q3B =

[
0 0
0 Q

]
. (4.137)
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The above listed cofactor matrices are linearly independent and therefore the variance compo-
nents σ1, σ2 and σ3 are simultaneously estimable. One can simply show that if a covariance
component σ4 is in addition included between any two observation types, the stochastic model
becomes singular. This shows that only three components out of six (co)variance components
are estimable. To summarize, the above results can be generalized as follows: with r observation
types and the above structure for the functional and stochastic model, we have r(r+1)

2 unknown

(co)variance components in total (r variance and r(r−1)
2 covariance components). In this case

at maximum only r(r−1)
2 out of r(r+1)

2 (co)variance components are estimable and the other r
components remain to be inestimable. �

Note 4.11 The aforementioned singular examples have nothing to do with the least-
squares variance component estimation. This is in fact an intrinsic behavior (property)
of the problem itself and is independent of the estimation principle which one applies to
the (co)variance component model. To handle the problem of the rank-deficient system
of normal equations Nσ̂ = l some remedies were proposed. To handle the singularity one
can also either apply the theory of generalized inverses (see e.g. Rao and Mitra (1971)),
or apply the theory of S-transformations (see Baarda, 1973; Teunissen, 1985). �

4.8.3 Ill-posedness of stochastic model

As mentioned, the normal matrix N of the VCE formulas will become singular if and only
if the matrices BT Q1B, ..., BT QpB are linearly dependent. If the matrix N is strictly rank
deficient then the cofactor matrices are linearly dependent. But practically, N , sometimes,
is nearly rank-deficient (ill-conditioned) rather than strictly rank deficient. This means,
theoretically, that N is of full rank but practically the solution is severely sensitive to
round-off and random errors; so the solution is not stable. In this case, usually, one or
more functions of the estimators may have very poor precision. To handle the problem, we
suggest to compute the condition number of N .

For the positive-definite matrix N , the condition number is defined as the ratio c =
λmax/λmin, with λmax and λmin the maximum and minimum eigenvalues of the matrix,
respectively. For such a matrix, the solution σ = N−1l and the error δσ = N−1δl always
satisfy the inequality (Strang, 1988)

‖δσ‖ ≤ c
‖σ‖
‖l‖ ‖δl‖, or

‖δσ‖
‖σ‖ ≤ c

‖δl‖
‖l‖ , (4.138)

where ‖.‖ denotes the norm of a vector. The above equation, in a relative sense, shows that
any error ‖δl‖ in the observations, both rounding and random errors, is amplified into the
solution (at maximum) by the condition number. Ideally, for a well-conditioned matrix, the
condition number is one, e.g., an identity matrix. This implies that the condition number c
is not directly affected by the size of the matrix; so it is a better measure of ill-conditioning
than the determinant. If c is large, the solution is ill-conditioned and thus the cofactor
matrices BT Q1B, ..., BT QpB are nearly linearly dependent. It is important to perceive,
at times, that the cofactor matrices Q1, ..., Qp are strictly independent but the problem is
ill-posed. This can be the case when combining non-precise observations with precise ones
(e.g. when combining GPS code and phase observations; see chapter 7).

Since the condition number depends on the type of the formulation of the problem, and,
in addition, it is an overall measure, meaning that it does not employ all information in an
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optimal way, it is suggested to evaluate the degree of dependency of the columns of the
design matrix Avh in equation (4.15). For this purpose we consider the following partition
of the design matrix of the stochastic model:

(AJ
...aj); j = 2, 3, . . . , p, J = {1, 2, . . . , j − 1} , (4.139)

where AJ contains the first j − 1 columns of the VCE design matrix Avh and aj is the jth

column of the matrix Avh and its dependency from AJ is to be evaluated. Let θj be the
angle between aj and R(AJ). Then, the degree of dependence θj between aj and R(AJ)
can be obtained from the following equation:

sin2
θj

=
aT

j Q−1
vh aj

aT
j Q−1

vh aj

, j = 2, . . . , p , (4.140)

where

aT
j Q−1

vh aj = aT
j Q−1

vh aj − aT
j Q−1

vh AJ(AT
J Q−1

vh AJ)−1AT
J Q−1

vh aj . (4.141)

The above measure can be simply obtained by some elements of the normal matrix as
follows:

sin2
θj

=
njj − NjJN−1

JJ NJj

njj

; j = 2, . . . , p . (4.142)

The term NJJ = AT
J Q−1

vh AJ is the (j − 1) × (j − 1) normal matrix part corresponding to
AJ , NJj = AT

J Q−1
vh aj is a j−1 vector containing the first j−1 elements of the jth column

of N , and njj = aT
j Q−1

vh aj is the jth diagonal element of N . The above equation can be
simplified to the following:

cos2
θj

=
NjJN−1

JJ NJj

njj

, j = 2, . . . , p . (4.143)

When dealing with two unknown components, p = 2, the above equation is reduced to the
following simple formula:

cosθ =
±n12√
n11 n22

, (4.144)

which represents a correlation coefficient ρ. If θ = π/2, then aj is orthogonal to (fully
independent of) R(AJ); i.e. ρ = 0. On the other hand, if θ = 0, then aj belongs to the
range space of AJ (fully dependent); i.e. ρ = ±1. If θ is small, then aj nearly belongs to
R(AJ) and therefore σj is poorly estimable.

Example 4.11 To see how the preceding measures work, in example 4.10 consider m = 2 and
σ3 = 0. If we now assume that the cofactor matrices Q1 and Q2 have the form

Q1 =

[
I2 0
0 0

]
; Q2 =

[
0 0
0 Q

]
with Q =

[
1 α
α 1

]
, (4.145)

with −1 < α < 1, α �= 0. Taking the above cofactor matrices into account and assuming the
weight matrix as W = (Q1 + Q2)

−1 (i.e. in the first iteration σ0
1 = σ0

2 = 1) and after not so
short mathematical and matrix operations, the normal matrix of the stochastic model reads

N =
1

(4 − α2)2

[
4 + α2 4 − 3α2

4 − 3α2 4 − 3α2 + α4

]
; −1 < α < 1 , (4.146)
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Figure 4.4: Condition number of the normal matrix (4.146), (a), and degree of dependence between
two columns of design matrix Avh, (b), versus modifier factor α.

which is of full rank when α �= 0. When α = 0, it reduces to example 4.10. Since the non-singular
matrix N in equation (4.146) is expressed in terms of parameter α, with −1 < α < 1, α �= 0,
an analytical expression for the condition number of the normal matrix, after simple but not so
short mathematical operations, can be obtained. Figure 4.4a shows the condition number versus
α. As seen, the smaller value for α is, the larger value for condition number would be, and
then the more ill-posed the problem would be. It is important to notice that when α = 0, the
condition number would become infinity and the problem is strictly rank deficient. Another way
of evaluating the ill-posedness of the problem is based on the other criterion, i.e., the degree
of dependency (DoD) of the columns of the design matrix. Applying equation (4.144) to the
elements of the normal matrix, the DoD reads

cos θ =
4 − 3α2√

(4 + α2)(4 − 3α2 + α4)
. (4.147)

Figure 4.4b illustrates the degree of dependency of the columns of design matrix versus parameter
α, where −1 < α < 1. When α = 0, θ would be zero as well. This means that the columns of
the design matrix of the stochastic model are strictly dependent which leaves the problem to be
rank deficient. Also, when α is small, θ would be small too, meaning that the columns of the
design matrix are not seriously independent. This will give poor results. When α = ±1, though
both the cofactor matrix Q2 and the covariance matrix Qy are rank deficient, the columns of the
design matrix Avh are as independent as possible. �

4.9 Summary and concluding remarks

There are various VCE formulas based on optimality properties as unbiasedness, best (mini-
mum variance), minimum norm, and maximum likelihood. In chapters 2 and 3 we reviewed
the principle of all these estimation methods. In this chapter we generalized the method
of least-squares for estimating the stochastic model. In this method any symmetric and
positive-definite weight matrix can be used (weighted least-squares). The derivation given
of the least squares VCE formula is based on the model of condition equations rather
than the model of observation equations. The method is easily understood and very flex-
ible indeed. It can be used for estimation of both variance and covariance components
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Functional model: E{y} = Ax, Qy Stochastic model: E{y
vh
} = Avhσ, Qvh

x̂ = (AT Q−1
y A)−1AT Q−1

y y σ̂ = (AT
vhQ

−1
vh Avh)

−1AT
vhQ

−1
vh y

vh

Qx̂ = (AT Q−1
y A)−1 Qσ̂ = (AT

vhQ
−1
vh Avh)

−1

PA = A(AT Q−1
y A)−1AT Q−1

y PAvh
= Avh(A

T
vhQ

−1
vh Avh)

−1AT
vhQ

−1
vh

P⊥
A = I − PA P⊥

Avh
= I − PAvh

ŷ = PAy ŷ
vh

= PAvh
y

vh

Qŷ = PAQy = QyP
T
A Qŷvh

= PAvh
Qvh = QvhP

T
Avh

ê = P⊥
A y êvh = P⊥

Avh
y

vh

Qê = P⊥
A Qy = QyP

⊥T
A Qêvh

= P⊥
Avh

Qvh = QvhP
⊥T
Avh

T b = êT Q−1
y ê T df = êT

vhQ
−1
vh êvh

with:
y

vh
=vh(t tT−BTQ0B), Avh =[vh(BTQ1B), ..., vh(BTQpB)], Qvh =2D+(Qt⊗Qt)D

+T

Table 4.1: Comparison of least-squares estimators as well as their covariance matrices in functional
and stochastic model; T is the quadratic form of least-squares residuals.

in the Gauss-Markov (A-model), Gauss-Helmert (mixed model) and condition model (B-
model); both for linear and nonlinear stochastic models. Since the approach is based on the
least-squares principle we know without any additional derivation that the estimators are
unbiased. One advantage of this technique over the previous methods of (co)variance com-
ponent estimation is that the least-squares estimators are independent of the distribution
of the data.

We derived the minimum variance estimators (BIQUE) by taking the weight matrix as
the inverse of covariance matrix of observables. These estimators are however restricted
to the class of the multivariate normal distribution. The estimators obtained by this
technique are therefore of minimum variance (in addition to the unbiasedness property).
As it turns out, our results for the (co)variance component estimation are identical to the
MINQUE, BIQUE, RELM (restricted maximum likelihood) results if a normal distribution is
assumed. We have now therefore a more satisfactory derivation of the MINQUE and BIQUE
theories. Though, the solution vector of this method is identical to the results of minimum
variance solution proposed by Koch (1999) and the minimum norm solution proposed by
Rao and Kleffe (1988), the least squares estimators have special and unique properties
that we pointed out. For example, the inverse of the normal matrix gives automatically the
covariance matrix of the estimators. Also, our existing body of knowledge on least-squares
theory is directly applicable to LS-VCE. For instance, LS-VCE has a similar insightful (linear
and nonlinear) geometric interpretation as standard least-squares. Properties of the normal
equations and projector properties are therefore easily established. Table 4.1 summarizes
the results of least-squares both in functional model for estimating the parameter vector x
and in the stochastic model for estimating the (co)variance components σ.
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Since the method is based on the least-squares principle, measures of inconsistency, such
as the quadratic form of residuals and the w-test statistic can directly be given. We can
also apply testing hypotheses with the stochastic model. This, as an important feature of
LS-VCE, is the subject of discussion in the next chapter.



Detection and Validation in Stochastic Model 5
5.1 Introduction

In this chapter we generalize the idea of detection and validation introduced in chapter 2
into the stochastic model. The goal is to find misspecifications in the stochastic model,
or to improve an existing covariance matrix description by including more (or excluding)
(co)variance components. This can be done by introducing the w-test, the v-test, and the
overall model test with the stochastic model. We show that employing the w-test and v-test
in the stochastic model is in fact equivalent to the testing of (co)variance components.

We will point out the limitations of using the proposed formulations. Note that because
the observables, here in the stochastic model, are in a quadratic form of the original
observables y or t, i.e. vh(y yT ) or vh(t tT ), the distribution of the test statistics becomes
(much) more complicated when compared to the functional model. For example, the overall
model test has the most complicated form of the distribution. This chapter is therefore
considered as a first attempt for the detection and validation in the stochastic model.

5.2 The w-test statistic

5.2.1 Introduction

The goal of this section is to generalize the square-root of the 1-dimensional T-test statistic
or the w-test statistic introduced in chapter 2 to the stochastic model. In the functional
model, the w-test statistic is given by equations (2.39) and (2.42). In a similar way to the
functional model, it is also possible, for the stochastic model, to obtain the w-test statistic
and to generalize the idea of datasnooping on the vector vh(t tT ).

The hypotheses that will be considered in this section are all hypotheses on the mean
of the observable vector vh(t tT ) in the stochastic model. Such hypotheses are in fact
equivalent to those considered on the (co)variance components of covariance matrix Qt.
From the explicit form of the observation equations of the VCE model, the following two
hypotheses are put forward:

Ho : E{vh(t tT )} = Avhσ versus Ha : E{vh(t tT )} = Avhσ + cvh∇, ∇ �= 0 , (5.1)

The design matrix Avh is supposed to be of full column rank, i.e. rank(Avh) = p.
Furthermore, vector cvh is independent of the range space of the matrix Avh, i.e.
rank(Avh : cvh) = p + 1. The scalar ∇ is unknown under Ha. Because both vh and
E are linear operators, the above null and alternative hypotheses can be reformulated as
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follows:

Ho : E{t tT} = BT Q0B +

p∑
k=1

σkB
T QkB, (5.2)

versus

Ha : E{t tT} = BT Q0B +

p∑
k=1

σkB
T QkB + Ct∇, ∇ �= 0 , (5.3)

where the b×b symmetric matrix Ct satisfies cvh = vh(Ct). The constant term BT Q0B has
been included to keep the generality of the formulation. When there is no misspecification
in the functional part of the model, namely when E{y} = Ax or E{t} = 0, it follows that

E{t tT} = Qt which yields

Ho : Qt = BT Q0B +

p∑
k=1

σkB
T QkB , (5.4)

versus

Ha : Qt = BT Q0B +

p∑
k=1

σkB
T QkB + Ct∇, ∇ �= 0 . (5.5)

The above formulation can be used for finding misspecifications in the covariance matrix
of the misclosure vector t, i.e. Qt. The preceding hypotheses, in fact, provides us with
a powerful tool to judge whether or not additional (co)variance components are likely
to be included in the stochastic model. Note, however, that in most Geodesy and GPS
applications, one needs to evaluate the misspecification in the covariance matrix of the
original observables y, namely Qy, rather than Qt (see section 5.2.5). From now on, for the

sake of brevity, we will ignore the constant term Qt0 = BT Q0B in our derivations, but when
needed, we will make a few comments on that. Also, the matrices BT Q1B, ..., BT QpB
are simply denoted as Qt1 , ..., Qtp . In addition, the statement ∇ �= 0 in the alternative
hypothesis will be disregarded (simply note that ∇ is always non-zero).

Carrying through the similarity with the functional model, we will just try to obtain
equation (2.42) for the stochastic model and to determine its distribution under Ho as-
suming the original observables y or misclosures t to be normally distributed. The w-test
statistic for the stochastic model reads then (cf. equation (2.42))

w =
〈P⊥

Avh
vh(Ct), P

⊥
Avh

vh(t tT )〉
‖P⊥

Avh
vh(Ct)‖Q−1

vh

= ‖êvh‖Q−1
vh

cos ϕ , (5.6)

where most of the terms are given in table 4.1. Note that ϕ is the angle between two vectors
P⊥

Avh
vh(Ct) and P⊥

Avh
vh(t tT ). In the next subsection, we will give a simple expression for

the preceding formula. The above test statistic has a similar geometrical interpretation to
that introduced in section 2.2.4 with the functional model.
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5.2.2 Formulation in terms of B-model

To obtain a simple expression for the w-test, one needs to reach a simplified formula for
the norm and the inner product (in metric Q−1

vh ) in equation (5.6). For this purpose, let us
consider the following theorem:

Theorem 5.1 Let the b × b matrices Z1 and Z2 be symmetric. Then

〈
P⊥

Avh
vh(Z1) , P⊥

Avh
vh(Z2)

〉
=

1

2
tr(Z1Q

−1
t Z2Q

−1
t ) − g(1)T N−1g(2) , (5.7)

where 〈. , .〉 denotes the inner (scalar) product of two vectors in the metric Q−1
vh and the

p-vector g(1) is given as

g
(1)
k =

1

2
tr(Z1Q

−1
t QtkQ

−1
t ), k = 1, 2, ..., p , (5.8)

and so is g(2) with Z2. When Z2 = Z1, the inner product becomes the squared norm (L2

norm) of P⊥
Avh

vh(Z1). Therefore

‖P⊥
Avh

vh(Z1)‖2
Q−1

vh
=

1

2
tr(Z1Q

−1
t Z1Q

−1
t ) − g(1)T N−1g(1) , (5.9)

where ‖.‖Q−1
vh

denotes the norm of a vector in the metric Q−1
vh . �

Proof. The inner product of vectors P⊥
Avh

vh(Z1) and P⊥
Avh

vh(Z2), in the metric Q−1
vh , is given

as 〈
P⊥

Avh
vh(Z1) , P⊥

Avh
vh(Z2)

〉
= vh(Z1)

T P⊥T
Avh

Q−1
vh P⊥

Avh
vh(Z2) . (5.10)

Since P⊥T
Avh

Q−1
vh P⊥

Avh
= Q−1

vh P⊥
Avh

, the preceding equation reads〈
P⊥

Avh
vh(Z1) , P⊥

Avh
vh(Z2)

〉
= vh(Z1)

T Q−1
vh P⊥

Avh
vh(Z2) . (5.11)

If we now substitute the terms vh(.) = D+vec(.), Q−1
vh = 1

2DT (Q−1
t ⊗ Q−1

t )D, and P⊥
Avh

=

I −AvhN
−1AT

vhQ
−1
vh in the preceding equation, one can leave out, similar to previous derivations

of chapter 4, the duplication matrices D and simply prove the theorem. The second part of the
theorem is trivial. �

Because of the symmetry of the b × b matrices Ct and t tT , if we now substitute Z1 = Ct

and Z2 = t tT , it follows from equation (5.6) with theorem 5.1 that

w =
wn

wd
=

1
2
tr(CtQ

−1
t t tT Q−1

t ) − gT N−1l[
1
2
tr(CtQ

−1
t CtQ

−1
t ) − gT N−1g

]1/2
, (5.12)

with g and l respectively as

gk =
1

2
tr(CtQ

−1
t QtkQ

−1
t ); lk =

1

2
tT Q−1

t QtkQ
−1
t t . (5.13)
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Note 5.1 (Summation convention) In the sequel, summation
∑

, for the sake of
brevity, is sometimes disregarded. This is based on the summation convention which states
that whenever there arises an expression in which an index occurs twice on the same side
of any equation, or term within an equation, it is understood to represent a summation on
these repeated indices. A repeated index is called a summation index, while an unrepeated
index is called a free index. For example, the trace of a matrix S can simply be denoted
as tr(S) = sii while the matrix itself is symbolized as S = sij. �

With the summation convention and substituting ll = 1
2
tT Q−1

t QtlQ
−1
t t, the numerator of

the w-test statistic in equation (5.12) is rewritten as

wn = 1
2
tT Q−1

t CtQ
−1
t t − 1

2
gkn

−1
kl tT Q−1

t QtlQ
−1
t t

= 1
2
tT Q−1

t CtQ
−1
t t − 1

2
tT Q−1

t [gkn
−1
kl Qtl ]Q

−1
t t

= tT Q−1
t

(
1
2
Ct − 1

2
[gkn

−1
kl Qtl ]

)
Q−1

t t .

(5.14)

Substitution of the preceding equation into equation (5.12) yields

w = tT Mt =
tT Q−1

t

(
1
2
Ct − 1

2
[gkn

−1
kl Qtl ]

)
Q−1

t t[
1
2
tr(CtQ

−1
t CtQ

−1
t ) − gT N−1g

]1/2
, (5.15)

with the symmetric matrix M as

M =
Q−1

t

(
1
2
Ct − 1

2
[gkn

−1
kl Qtl ]

)
Q−1

t[
1
2
tr(CtQ

−1
t CtQ

−1
t ) − gT N−1g

]1/2
, (5.16)

Therefore, the w-test statistic of the stochastic model can be written as a quadratic form in
the vector t which is supposed to be normally distributed. This is an important result since
the distribution of quadratic forms can be derived. This can be considered an important
issue if one wants to apply hypotheses testing and to compute the critical values of the test.
Note that, if a constant term Qt0 = BT Q0B is also included in both null and alternative
hypotheses, the numerator of equation (5.15) should be added up with the constant term
−1

2
tr(CtQ

−1
t Qt0Q

−1
t ).

Note 5.2 The symmetric matrix Ct should be linearly independent from the matrices
Qt1 , ..., Qtp . Otherwise, the w-test can not be defined since zero over zero is undefined.
To see this, let us assume that Ct is a linear combination of Qt1 , ..., Qtp

Ct =

p∑
i=1

αiB
T QiB =

p∑
i=1

αiQti = αiQti , (5.17)

with αi some non-zero real numbers. Substituting the preceding equation in equation (5.13)
gives gk = 1

2
tr(αiQtiQ

−1
t QtkQ

−1
t ) = αinik. Substituting Ct = αiQti and gk = αinik into

the numerator of equation (5.15), namely wn, gives

wn =
1

2
αit

T Q−1
t

(
Qti − [nikn

−1
kl Qtl ]

)
Q−1

t t, (5.18)
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in which nikn
−1
kl , multiplication of the ith, i = 1, ..., p row of N with the lth, l = 1, ..., p

column of N−1, is the well-known Kronecker delta, i.e.

nikn
−1
kl = δil =

{
1 if i = l ;
0 if i �= l .

(5.19)

Substituting nikn
−1
kl = δil in equation (5.18) yields

wn =
1

2
αit

T Q−1
t (Qti − Qti) Q−1

t t = 0 . (5.20)

In an analogous way, one can show that the denominator of equation (5.15) simplifies to

wd =
[
αT Nα − αT Nα

]1/2
= 0 , (5.21)

which proves the claim. In the next subsections, we show how to formulate matrix Ct. �

Special case 5.1 (1) In some applications the covariance matrix is known under the null hy-
pothesis, i.e. Ho : Qt = Qt0 versus Ho : Qt = Qt0 + Ct∇. Therefore, there is no unknown
in the stochastic model to estimate. In this case, the normal matrix N is empty. The w-test
statistic can therefore be given from equation (5.15) when the constant term Qt0 is included in
the formulation

w =
1
2

[
tT Q−1

t CtQ
−1
t t − tr(CtQ

−1
t )
]

[
1
2tr(CtQ

−1
t CtQ

−1
t )
]1/2

, (5.22)

which has in fact a very simple form. The above w-test may be written as w = tT Mt−m0 with

M =
1
2Q−1

t CtQ
−1
t[

1
2tr(CtQ

−1
t CtQ

−1
t )
]1/2

; m0 =
1
2tr(CtQ

−1
t )[

1
2tr(CtQ

−1
t CtQ

−1
t )
]1/2

. (5.23)

The constant m0 only changes the mean of the statistic tT Mt (just shifts it into the origin). �

Special case 5.2 (2) Another special case of the w-test occurs when only one variance compo-
nent is involved in the stochastic model, p = 1. The null and alternative hypotheses are given
as

Ho : Qt = σ1Qt1 versus Ha : Qt = σ1Qt1 + Ct∇ , (5.24)

with σ1 = σ2 the variance of unit weight. Under the null hypothesis one obtains

Qy = σ2Q1 and Q−1
t =

1

σ2
(BT Q1B)−1 =

1

σ2
Q−1

t1
. (5.25)

The scalars l, g, and N read then (note that p = 1)

l = l1 = 1
2 tT Q−1

t Qt1Q
−1
t t = 1

2σ2 tT Q−1
t t ;

g = g1 = 1
2tr(CtQ

−1
t Qt1Q

−1
t ) = 1

2σ2 tr(CtQ
−1
t ) ;

N = n11 = 1
2tr(Q−1

t Qt1Q
−1
t Qt1) = b

2σ4 .

(5.26)

Substituting g and N in equation (5.15) yields the w-test as

w = tT Mt =
tT Q−1

t

[
1
2Ct − tr(CtQ

−1
t )

2b Qt

]
Q−1

t t[
1
2tr(CtQ

−1
t CtQ

−1
t ) − 1

2btr(CtQ
−1
t )tr(CtQ

−1
t )
]1/2

. (5.27)

In the sequel, we will refer to these two special cases several times. �
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5.2.3 Distribution of w-test statistic

In order to derive the distribution of the w-test statistic for the stochastic model, we need
the distribution of w = tT Mt given in the previous subsection. It is based on the following
theorem, the distribution of quadratic forms in normal variables. We closely but not exactly
follow Teunissen (1988).

Theorem 5.2 Let the b × 1 vector t be normally distributed with mean E{t} = 0 and
positive definite covariance matrix Qt. Let M be a symmetric matrix of order b. Then
there exists a diagonal matrix Λr = diag(λ1, λ2, · · · , λr) such that

tT Mt = zT Λrz =
r∑

i=1

λiz
2
i , (5.28)

where z has the standard normal distribution, i.e. z ∼ N(0, Ir). The number r is the rank
of M or MQt. The diagonal elements of Λr are the r eigenvalues of MQt or QtM . �

Proof. If we define the random vector x = Q
−1/2
t t, then clearly x has a standard normal distrib-

ution, i.e. x ∼ N(0, Ib). Substitution of t = Q
1/2
t x in tT Mt gives

tT Mt = xT Q
1/2
t MQ

1/2
t x . (5.29)

Since the matrix Q
1/2
t MQ

1/2
t is symmetric, it has real-valued eigenvalues (not necessarily positive)

and corresponding orthonormal eigenvectors. In case M is of full rank (b = r), if we collect the b-
number of non-zero eigenvalues in the b×b diagonal matrix Λ and the corresponding orthonormal
eigenvectors as columns in the b × b matrix U then

Q
1/2
t MQ

1/2
t = UΛUT , (5.30)

with

UT U = UUT = Ib . (5.31)

If rank(Q
1/2
t MQ

1/2
t ) = r < b, then r-number of eigenvalues are non-zero and (b− r)-number of

eigenvalues are zero. We may therefore partition equation (5.30) as

Q
1/2
t MQ

1/2
t = [Ur Ub−r]

[
Λr 0
0 0

] [
UT

r

UT
b−r

]
= UrΛrU

T
r , (5.32)

with

UT
r Ur = Ir (5.33)

Substitution of equation (5.32) into equation (5.29) gives

tT Mt = xT UrΛrU
T
r x = zT Λrz , (5.34)

with

z = UT
r x = UT

r Q
−1/2
t t . (5.35)

Since x is distributed as x ∼ N(0, Ib), and UT
r Ur = Ir, it follows that z = UT

r x is distributed as

z ∼ N(0, Ir). Note that since |Q1/2
t MQ

1/2
t −λIb| = |MQt−λIb| = |QtM−λIb|, the eigenvalues

of Q
1/2
t MQ

1/2
t , MQt and QtM are the same. �
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Corollary 5.1 The above theorem says that tT Mt is distributed as a linear combination
of r independent central χ2-distributions each with 1 degree of freedom, i.e.

tT Mt ∼
r∑

i=1

λiχ
2
i (1, 0) . (5.36)

The mean and variance of a central χ2-distribution with 1 degree of freedom is 1 and 2,
respectively. This means that the mean and variance of tT Mt follow as

E{tT Mt} =
r∑

i=1

λi = tr(MQt); D{tT Mt} = 2
r∑

i=1

λ2
i = 2tr(MQtMQt) , (5.37)

respectively. If all the eigenvalues of MQt equal 1, i.e. if M = Q−1
t , then the quadratic

form is distributed as a central χ2-distribution with b degrees of freedom

tT Mt ∼ χ2(b, 0) if Λr = Ib , (5.38)

with the mean and variance of E{tT Mt} = b and D{tT Mt} = 2b, respectively. �

Note 5.3 It is well-known, in the functional model and under the null hypothesis, that
the mean and variance of the w-test statistic are zero and one, respectively. Under the
alternative hypothesis, however, only the mean changes and not the variance. We will
show that the mean and the variance of the w-test statistic in the stochastic model, under
the null hypothesis and with the normality assumption, is also zero and one, respectively.
This conclusion can however not be drawn when either of these assumptions is violated,
i.e. when the original observables are not normally distributed or when, for instance, the
alternative hypothesis is correct. In the following, for the sake of verification and certainty,
we will derive the first two moments of this statistic under the null hypothesis. In the
sequel, it is assumed that the observable vector y and therefore the residual vector ê as
well as the misclosure vector t are normally distributed. �

Mean For computing the expectation of the w-test statistic in the stochastic model, one
needs to compute the expectation of the numerator in equation (5.15). Using equa-
tion (5.37) in which M is the numerator of equation (5.16), one obtains (see Note 5.1)

E{wn} = 1
2
tr(Q−1

t (Ct − [gkn
−1
kl Qtl ]))

= 1
2
tr(Q−1

t Ct) − 1
2
tr(Q−1

t [gkn
−1
kl Qtl ])

= 1
2
tr(Q−1

t Ct) − 1
2
[gkn

−1
kl ]tr(Q−1

t Qtl)
= 1

2
tr(Q−1

t Ct) − gkn
−1
kl ll ,

(5.39)

where

ll = E{ll} =
1

2
tr(Q−1

t Qtl) . (5.40)

Since σ̂ is as an unbiased estimator of σ, it follows that E{σ̂} = E{N−1l} = N−1l = σ.
This with equation (5.39) yields

E{wn} = 1
2
tr(CtQ

−1
t ) − gkσk

= 1
2
tr(CtQ

−1
t ) − 1

2
tr(CtQ

−1
t QtkQ

−1
t )σk

= 1
2
tr(CtQ

−1
t ) − 1

2
tr(CtQ

−1
t [σkQtk ]Q

−1
t )

= 1
2
tr(CtQ

−1
t ) − 1

2
tr(CtQ

−1
t QtQ

−1
t )

= 1
2
tr(CtQ

−1
t ) − 1

2
tr(CtQ

−1
t ) = 0 .

(5.41)
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Therefore, from equations (5.41) and (5.15), it can simply be concluded that the expecta-
tion of the w-test statistic is zero, namely

E{w} = 0 under Ho . (5.42)

Variance The variance of the w-test statistic in the stochastic model is given as

D{w} =
D{wn}
(wd)2

. (5.43)

Using equation (5.37), the variance of wn reads (note that M here is again the numerator
of equation (5.16))

D{wn} = 1
2
tr(Q−1

t CtQ
−1
t Ct) − tr(Q−1

t CtQ
−1
t [gin

−1
ij Qtj ])

+ 1
2
tr(Q−1

t [gin
−1
ij Qtj ]Q

−1
t [gkn

−1
kl Qtj ]) .

(5.44)

The second term of equation (5.44) can be rewritten as

tr(Q−1
t CtQ

−1
t [gin

−1
ij Qtj ])=gin

−1
ij tr(Q−1

t CtQ
−1
t Qtj)=2gin

−1
ij gj =2gT N−1g . (5.45)

The third term in equation (5.44) reads

1
2
tr(Q−1

t [gin
−1
ij Qtj ]Q

−1
t [gkn

−1
kl Qtl ]) = 1

2
gin

−1
ij gkn

−1
kl tr(Q−1

t QtjQ
−1
t Qtl) , (5.46)

or

1
2
tr(Q−1

t [gin
−1
ij Qtj ]Q

−1
t [gkn

−1
kl Qtl ]) = gin

−1
ij gkn

−1
kl njl = giδilgkn

−1
kl

= gigkn
−1
ki = gT N−1g .

(5.47)

Substitution of equations (5.47) and (5.45) into equation (5.44) gives

D{wn} =
1

2
tr(CtQ

−1
t CtQ

−1
t ) − gT N−1g . (5.48)

From equations (5.48) and (5.15), the equation (5.43) yields

D{w} = 1 under Ho . (5.49)

It is important to perceive that the preceding result on the mean and variance of the w-test
statistic is only valid as long as the true covariance matrix of the observations, namely Qy

or Qt (and therefore the true Qvh) has been used in equation (5.15).

Distribution From theorem 5.2, it can be concluded that the w-test statistic (5.15), under
the null hypothesis Ho, i.e. E{t} = 0 and Qt =

∑p
k=1 σkB

T QkB, is distributed as1

w ∼
r∑

i=1

λiχ
2
i (1, 0) under Ho , (5.50)

1just for notational convenience; one may also write w =
∑r

i=1 λiχ
2
i

where χ2
i
∼ χ2(1, 0).
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where the χ2
i (1, 0) are mutually independent chi-squared distributions with a degree of

freedom of one. The non-zero eigenvalues λi of QtM , with M expressed in equation (5.16),
can be obtained as∣∣∣∣∣

(
1
2
Ct − 1

2
[gkn

−1
kl Qtl ]

)
Q−1

t[
1
2
tr(CtQ

−1
t CtQ

−1
t ) − gT N−1g

]1/2
− λIb

∣∣∣∣∣ = 0 , (5.51)

or ∣∣CtQ
−1
t − [gkn

−1
kl Qtl ]Q

−1
t − 2λwdIb

∣∣ = 0 . (5.52)

where wd is the denominator of equation (5.16). One can show in fact that
∑

k λk = 0
and

∑
k = 2λ2

k = 1 (see equations (5.42) and (5.49), respectively).

Special case 5.3 (1) Let us refer to the case of known covariance matrix under the null hy-
pothesis, i.e. Qt = Qt0 . The w-test, in this case, is given by equation (5.22): w = tT Mt − m0.
From theorem 5.2, one obtains

w ∼
r∑

i=1

λiχ
2
i (1, 0) − m0 , (5.53)

with λi the non-zero eigenvalues of QtM , where M is given by equation (5.23). They can
therefore be obtained from the following equation:∣∣∣CtQ

−1
t − 2λwdIb

∣∣∣ = 0 , (5.54)

with wd the denominator of equation (5.23), namely wd =
[

1
2tr(CtQ

−1
t CtQ

−1
t )
]1/2

. �

Special case 5.4 (2) When dealing only with the variance of unit weight, i.e. when p = 1 or
Qt = σ2Qt1 (under Ho), the w-test statistic is given by equation (5.27). The distribution again
is given by w ∼ ∑r

i=1 λiχ
2
i (1, 0) with λi the non-zero eigenvalues of the QtM , where M is

obtained from equation (5.27). After a few simple mathematical operations it follows that∣∣∣bCtQ
−1
t − [2λbwd + tr(CtQ

−1
t )]Ib

∣∣∣ = 0 . (5.55)

It is important to note that the eigenvalues λ of equation (5.55) are independent of the unknown
variance component σ2 (it can be canceled out from both terms in equation (5.55)). However,
this is not the case for computing the value of the w-test statistic itself. �

5.2.4 Datasnooping on Qt

In this section, we generalize the idea of data snooping for the stochastic model, i.e. data
snooping on vector vh(t tT ) corresponding to the elements of Qt, the (co)variances, since
E{titj} = σtitj . For this purpose, the b× b symmetric matrix Ct takes the following form:

Ct = Cij = cic
T
j + cjc

T
i , i �= j , (5.56)

with ci = (0 ... 1 ... 0)T , as before, the canonical unit vector. The preceding equation refers
to a single couple of entries in vector vec(t tT ) or equivalently just to a single entry in
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vector vh(t tT ). For the sake of unification, the above structure can also be used for i = j,
i.e. Cii = 2cic

T
i . With these in mind, the null and alternative hypotheses are formulated as

Ho : Qt =

p∑
k=1

σkQtk versus Ha : Qt =

p∑
k=1

σkQtk + Cij∇, ∇ �= 0 . (5.57)

Substituting Ct = Cij = cic
T
j + cjc

T
i into equation (5.15), after a few mathematical

operations, yields

wij =
tT Q−1

t

(
1
2
Cij − 1

2
[g

(ij)
k n−1

kl Qtl ]
)

Q−1
t t[

(q−1
ij )2 + q−1

ii q−1
jj − g(ij)T N−1g(ij)

]1/2
, (5.58)

where q−1
ij = q−1

titj = cT
i Q−1

t cj and vector g(ij) is obtained from equation (5.13) as

g
(ij)
k =

1

2
tr(CijQ

−1
t QtkQ

−1
t ) = cT

i Q−1
t QtkQ

−1
t cj . (5.59)

In this case, the non-zero eigenvalues λ associated with the distribution of the w-test
statistic in equation (5.50) follow as

∣∣∣CijQ
−1
t − [g

(ij)
k n−1

kl Qtl ]Q
−1
t − 2λwdIb

∣∣∣ = 0 , (5.60)

where wd is the denominator of w-test in equation (5.58).

5.2.5 Formulation in terms of A-model

In most Geodesy and GPS applications, one needs to evaluate the misspecification in terms
of the covariance matrix of the original observables y, namely Qy, rather than Qt. One

may thus retrieve the formulation in Qy from the one in Qt. For this purpose, t = BT y

implies that Ct = BT CyB. With this, the hypotheses (5.4) and (5.5) then read (note that
the constant term Qt0 = BT Q0B has been left out)

Ho : BT QyB =

p∑
k=1

σkB
T QkB, versus Ha : BT QyB =

p∑
k=1

BT [σkQk + Cy∇]B, (5.61)

The above hypotheses cannot directly be rewritten in terms of Qy. In other words, it is not
allowed to just delete the matrix B from both sides of the above hypotheses, as we deal
with an expansion in dimension of the system in which we need some more information
for that to be uniquely specified. As an example, if Qy is a solution of one of the above
equations, then Qy + AQxA

T would be a solution as well, since BT A = 0, with A the
design matrix of the model of observation equations and Qx an arbitrary symmetric matrix
of size n. In the simplest case, i.e. when Qx = 0, one obtains

Ho : Qy =

p∑
k=1

σkQk, versus Ha : Qy =

p∑
k=1

σkQk + Cy∇. (5.62)
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One can also argue that such a formulation for the above null and alternative hypotheses
could directly be assumed from beginning.

As previously mentioned, the matrix Ct through cvh = vh(Ct) plays the role of cy of
the functional model, in testing the stochastic model (see equations (5.1) and (5.3)). It
is assumed that this matrix is symmetric and its vector, i.e. vh(Ct), is independent of the
columns of the design matrix Avh in the stochastic model. In the previous sections, the
problem was formulated in terms of the model of condition equations (B-model). This
formulation is not always advantageous, since the misspecification in the matrix Qt may
not be properly interpretable. However, for better interpretation of the testing results, it
is possible to formulate the w-test statistic in terms of the model of observation equations
(A-model). To see this, let us rewrite the matrix Ct in equation (5.15) as follows:

Ct = BT CyB , (5.63)

in which the matrix Cy is of order m, the size of observations. A necessary (and not
sufficient) condition that the symmetric matrix Cy should fulfill is its independence from
any linear combination of the cofactor matrices Q1, ..., Qp (cf. Note 4.2)

Cy �=
p∑

k=1

αkQk = αkQk . (5.64)

Substituting t = BT y and Ct from equation (5.63) into equation (5.15) yields

w =
yT BQ−1

t BT
(

1
2
Cy − 1

2
[gkn

−1
kl Ql]

)
BQ−1

t BT y[
1
2
tr(BT CyBQ−1

t BT CyBQ−1
t ) − gT N−1g

]1/2
. (5.65)

Using the identity tr(EF ) = tr(FE) and the orthogonal projector P⊥
A = PQyB =

QyBQ−1
t BT (see equation (2.21)) or equivalently BQ−1

t BT = Q−1
y P⊥

A , one obtains

w =
yT Q−1

y P⊥
A

(
1
2
Cy − 1

2
[gkn

−1
kl Ql]

)
Q−1

y P⊥
A y[

1
2
tr(CyQ−1

y P⊥
A CyQ−1

y P⊥
A ) − gT N−1g

]1/2
. (5.66)

Denoting Q−1
y P⊥

A = P⊥T
A Q−1

y = P⊥T
A Q−1

y P⊥
A = Q−1

y QêQ
−1
y as Q−

ê , the preceding equation
reads

w =
yT Q−

ê

(
1
2
Cy − 1

2
[gkn

−1
kl Ql]

)
Q−

ê y[
1
2
tr(CyQ

−
ê CyQ

−
ê ) − gT N−1g

]1/2
, (5.67)

expressed as a quadratic form of the observation vector y. Note that Q−
ê is in fact the

reflexive inverse of Qê = P⊥
A Qy. Using the least-squares (BLUE) residual vector ê = P⊥

A y,
equation (5.66) yields

w =
êT Q−1

y

(
1
2
Cy − 1

2
[gkn

−1
kl Ql]

)
Q−1

y ê[
1
2
tr(CyQ

−
ê CyQ

−
ê ) − gT N−1g

]1/2
, (5.68)

expressed as a quadratic form of the residual vector ê. In a similar way, the elements of
the vector g, in terms of the model of observation equations, read

gk =
1

2
tr(CyQ

−
ê QkQ

−
ê ) . (5.69)
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As before, the w-test statistic is distributed as w ∼∑r
i=1 λiχ

2
i (1, 0). From equation (5.52),

the eigenvalues λ then read∣∣BT CyBQ−1
t − BT [gkn

−1
kl Ql]BQ−1

t − 2λwdIb

∣∣ = 0 . (5.70)

The preceding equation can be rewritten as

(−λ)b−m
∣∣CyBQ−1

t BT − [gkn
−1
kl Ql]BQ−1

t BT − 2λwdIm

∣∣ = 0 . (5.71)

For λ �= 0, one obtains∣∣CyBQ−1
t BT − [gkn

−1
kl Ql]BQ−1

t BT − 2λwdIm

∣∣ = 0 , (5.72)

or ∣∣CyQ
−
ê − [gkn

−1
kl Ql]Q

−
ê − 2λwdIm

∣∣ = 0 , (5.73)

where

wd =

[
1

2
tr(CyQ

−
ê CyQ

−
ê ) − gT N−1g

]1/2

, (5.74)

is the denominator of the w-test statistic.

Special case 5.5 (1) When the covariance matrix is known under the null hypothesis, i.e. Ho :
Qy = Q0 versus Ha : Qy = Q0 + Cy∇, the w-test statistic simplifies to

w =
1
2yT Q−

ê CyQ
−
ê y − 1

2tr(CyQ
−
ê )[

1
2tr(CyQ

−
ê CyQ

−
ê )
]1/2

=
1
2 êT Q−1

y CyQ
−1
y ê − 1

2tr(CyQ
−
ê )[

1
2tr(CyQ

−
ê CyQ

−
ê )
]1/2

= êT Mê−m0. (5.75)

The preceding w-test is distributed as w ∼ ∑r
i=1 λiχ

2
i (1, 0) − m0, where the eigenvalues λ

associated with the distribution are obtained as∣∣∣CyQ
−
ê − 2λwdIm

∣∣∣ = 0 , (5.76)

where wd is the denominator of equation (5.75). �

Example 5.1 (Known variance) As a simple application of the above special case, let us assume
that we want to test the only variance component of unit weight. For such a simple case, the
following null and alternative hypotheses are put forward:

Ho : Qy = σ2
0Q1 versus Ha : Qy = (σ2

0 + ∇)Q1, (5.77)

with the known variance component σ2
0. This structure is in fact the same as the above special

case when Q0 = σ2
0Q1 and Cy = Q1. After a few simple mathematical operations, the w-test

statistic given by equation (5.75) and its distribution given as w ∼∑r
i=1 λiχ

2
i (1, 0)−m0 simplify

to (note that tr(P⊥
A ) = m − n = b and b-number of eigenvalues of P⊥

A are equal to one)

w =
1√
2b

(
êT Q−1

1 ê

σ2
0

− b

)
and w ∼ 1√

2b

(
χ2(b, 0) − b

)
. (5.78)

Denoting êT Q−1
1 ê = b σ̂2, the above equation reads

σ̂2

σ2
0

∼ χ2(m − n, 0)

m − n
; m − n = b . (5.79)

This is the well-known distribution of the famous variance of unit weight. We will also derive this
expression after introducing the v-test statistic. �
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Special case 5.6 (2) When, under Ho, there is only one variance component in the stochastic
model, i.e. Qy = σ2Q1, equations (5.67) and (5.68) can be simplified to (cf. equation (5.27))

w =
yT Q−

ê

[
1
2Cy − tr(CyQ−

ê
)

2b Qy

]
Q−

ê y[
1
2tr(CyQ

−
ê CyQ

−
ê ) − 1

2btr(CyQ
−
ê )tr(CyQ

−
ê )
]1/2

, (5.80)

and

w =
êT Q−1

y

[
1
2Cy − tr(CyQ−

ê
)

2b Qy

]
Q−1

y ê[
1
2tr(CyQ

−
ê CyQ

−
ê ) − 1

2btr(CyQ
−
ê )tr(CyQ

−
ê )
]1/2

, (5.81)

respectively. The eigenvalues λ corresponding to the distribution of test statistics (5.80) and
(5.81) follows as (cf. equation (5.55))∣∣∣bCyQ

−
ê − [2λbwd + tr(CyQ

−
ê )]Im

∣∣∣ = 0 . (5.82)

It is important to note that the eigenvalues λ of equation (5.82) can be obtained independently
from the unknown parameter σ2. �

Example 5.2 (Known mean) If the actual value of a quantity is known, one may assess the
noise characteristic of the measurements of this quantity (see Note 4.1). For example, we can
assess the noise of a GPS coordinate time series by measuring a zero baseline (two receivers
connected to one antenna). Under Ho, if we assume that the time series has only white noise,
we can test this hypothesis against some alternative hypotheses. For this purpose, one can write

Ho : Qy = σ2I versus Ha : Qy = σ2I + Cy∇ . (5.83)

One can simply show that Q−
ê = σ−2I. After a few mathematical operations, one can obtain the

w-test statistic as

w =
mêT Cy ê − tr(Cy)ê

T ê

σ2 [2m2tr(CyCy) − 2mtr(Cy)tr(Cy)]
1/2

(5.84)

Let us now assume that Cy = uuT , with u the summation vector of size m. Matrix Cy contains all
ones and describes a random constant noise process. A systematic effect (bias) in the observations
has a similar behavior. Note that a random constant noise is assessed in the stochastic model,
but a systematic bias is usually estimated in the functional model. The preceding statistic then
reads

w =
(uT ê)2 − êT ê

σ2 [2m(m − 1)]1/2
. (5.85)

The above statistic is distributed as

w ∼ 1

[2m(m − 1)]1/2

[
(m − 1)χ2

1(1) − χ2
2(m − 1)

]
. (5.86)

If m is large enough, the above statistic and its distribution are approximated by

w =
1√
2

[
(uT ê)2

mσ2
− 1

]
and w ∼ 1√

2
[χ2

1(1) − 1] , (5.87)
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which yields

(uT ê)2

mσ2
∼ χ2

1(1) or
uT ê√
mσ

∼ N(0, 1) . (5.88)

The preceding formula could directly be obtained from the functional model when we include
an unknown bias term, namely bx, in the functional model. In this case, its least-squares solution
reads b̂x = uT ê/m. When testing the hypothesis Ho : bx = 0 versus Ha : bx �= 0 (parameter
significance test, see section 2.2.5), the same formula as above can be obtained. �

5.2.6 Datasnooping on Qy

As with the datasnooping on the elements of the vector vh(t tT ) or correspondingly on the
elements of Qt, suggested in section 5.2.4, one can also apply this idea to the elements of
Qy, the variances and covariances of the observables. In this case, the m × m symmetric
matrix Cy takes the form

Cy = Cij = cic
T
j + cjc

T
i , i, j = 1, 2, ...,m, , (5.89)

with ci and cj the canonical unit vectors of length m, referring to a single couple of entries
in matrix Qy, the ijth and jith element, the (co)variances. Taking the above form for the
matrix Cy, the null and alternative hypotheses read

Ho : Qy =

p∑
k=1

σkQk versus Ha : Qy =

p∑
k=1

σkQk + Cij∇, ∇ �= 0 . (5.90)

Substituting Cy from equation (5.89) into equation (5.67) gives

w =
yT Q−

ê

(
1
2
Cij − 1

2
[gkn

−1
kl Ql]

)
Q−

ê y[
(q−ij)2 + q−ii q

−
jj − g(ij)T N−1g(ij)

]1/2
, (5.91)

with q−ij = ciQ
−
ê cj. The p-vector g(ij) follows from equation (5.69): g

(ij)
k = cT

i Q−
ê QkQ

−
ê cj

(substitute Cy from equation (5.89)). The eigenvalues associated with the distribution of
the preceding w-test statistic follow from equation (5.73)∣∣CijQ

−
ê − [gkn

−1
kl Ql]Q

−
ê − 2λwdIm

∣∣ = 0 (5.92)

with wd the denominator of equation (5.91). In terms of the least-squares residuals ê =
P⊥

A y, a similar formulation can be given for the w-test statistic.

Special case 5.7 (1) In the case that the covariance matrix is known, i.e. Ho : Qy = Q0 versus
Ha : Qy = Q0 + Cij∇, the w-test statistic (5.75) reads

w =
1
2yT Q−

ê CijQ
−
ê y − q−ij[

(q−ij)2 + q−ii q
−
jj

]1/2
=

1
2 êT Q−1

y CijQ
−1
y ê − q−ij[

(q−ij)2 + q−ii q
−
jj

]1/2
= êT Mê − m0. (5.93)

This test statistic is again distributed as w ∼ λkχ
2
k(1, 0)−m0, where the r number of eigenvalues

λ follow from∣∣∣CijQ
−
ê − 2λwdIm

∣∣∣ = 0 , (5.94)

where wd is the denominator of equation (5.93). �
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Special case 5.8 (2) As another special case, let us consider the following. When there is
only one variance component in the stochastic model, i.e. when p = 1, the null and alternative
hypotheses are given as

Ho : Qy = σ2Q1 versus Ha : Qy = σ2Q1 + Cij∇, (5.95)

Substituting for Cy from equation (5.89) into equation (5.80), after a few operations, gives

wij =
yT Q−

ê

(
1
2Cij − 1

b q
−
ijQy

)
Q−

ê y[
b−2

b (q−ij)2 + q−ii q
−
jj

]1/2
. (5.96)

For the purpose of the datasnooping on the elements of Qy (testing the elements of the covariance
matrix Qy), one needs the distribution of wij , i, j = 1, 2, ..., m. Here, the wij is again distributed
as wij ∼ λkχ

2
k(1, 0) with the eigenvalues λ following from∣∣∣bCijQ

−
ê − [2λbwd + 2q−ij ]Im

∣∣∣ = 0 , (5.97)

where wd is the denominator of equation (5.96). �

Note 5.4 Since Cij has a simple form, namely Cij = cic
T
j + cjc

T
i , the eigenvalues λ′ =

2λwd in equation (5.94) and λ′ = 2λwd + 2q−ij/b in equation (5.97) (and therefore λ) can
be analytically computed. For this purpose, one can write

CijQ
−
ê = cic

T
j Q−

ê + cjc
T
i Q−

ê . (5.98)

This is a matrix of order m with zero elements except for its ith and jth row in which,
respectively, the jth and ith row of the Q−

ê have been housed (ith and jth row have been
interchanged). The rank of this matrix is then 2. It has therefore two non-zero eigenvalues
which are given as the eigenvalues of the following matrix:

[CijQ
−
ê ]2×2 =

(
q−ij q−jj
q−ii q−ij

)
. (5.99)

One can simply show that the eigenvalues of the preceding matrix read

λ′
1 = q−ij +

√
q−ii q

−
jj and λ′

2 = q−ij −
√

q−ii q
−
jj . (5.100)

The remaining eigenvalues of CijQ
−
ê are zero, i.e. λ′

3 = ... = λ′
b = 0. Note that when

i = j, the only eigenvalue is given as λ′
1 = 2q−ii . The eigenvalues λ associated with the

distribution of w-test in equations (5.93) and (5.96) then read

λ =
λ′

2wd
; λ =

bλ′ − 2q−ij
2bwd

, (5.101)

respectively. If we now substitute λ′ from equation (5.100) and wd from the denominators
of equations (5.93) and (5.96) we can obtain analytical expressions for λ1, ..., λb. For
example, the eigenvalues associated with the distribution of w-test in equation (5.93) are
given as

λ1 =
q−ij +

√
q−ii q

−
jj

2
[
(q−ij)2 + q−ii q

−
jj

]1/2
; λ2 =

q−ij −
√

q−ii q
−
jj

2
[
(q−ij)2 + q−ii q

−
jj

]1/2
; λ3 = ... = λb = 0. (5.102)
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Note that the eigenvalues can, in general, be both positive and negative. From the pre-
ceding equations, it can simply be verified that

E{wij} =
b∑

k=1

λk − m0 = 0 and D{wij} =
b∑

k=1

2λ2
k = 1 . (5.103)

Because a b − 2 number of the eigenvalues are zero, the distribution of wij is given as

wij ∼ λ1χ
2
1(1, 0) + λ2χ

2
2(1, 0) − m0. (5.104)

In case i = j, when testing the diagonal elements of Qy, the preceding distribution can, to
a greater degree, be simplified to

wii ∼
1√
2

[
χ2

1(1, 0) − 1
]

, (5.105)

which is independent of the elements of the matrix Q−
ê . �

Example 5.3 (Known mean and variance) As a very simple example of the above, let one
functionally known quantity be measured independently and with known variance σ2

0 (under the
null hypothesis) m times (see Note 4.1). In this case, the model of observation equations reads

E{y} = μy with b = m and D{y} = Qy = σ2
0Im. (5.106)

It is not difficult to show that Q−
ê reads q−ij = 1

σ2
0

if i = j and q−ij = 0 if i �= j. Taking the above

circumstances into account, the w-test statistic reads

wij =
êiêj

σ2
0

, if i �= j; wii =
ê2
i − σ2

0

σ2
0

. (5.107)

Accordingly, the eigenvalues (5.102) can be simplified to λ1 = 1
2 and λ2 = −1

2 . Therefore, the
distribution of wij , i �= j is given as

wij ∼
1

2

[
χ2

1(1, 0) − χ2
2(1, 0)

]
. (5.108)

The above distribution can be rewritten as

wij ∼
1

2
[χ1(1) − χ2(1))(χ1(1) + χ2(1)] =

χ1(1) − χ2(1)√
2

.
χ1(1) + χ2(1)√

2
= z1z2, (5.109)

where χ1(1) =
√

χ2
1(1), and z1 = χ1(1)−χ2(1)√

2
and z2 = χ1(1)+χ2(1)√

2
are two independent standard

normal variables. One can show that the distribution of wij reads (see e.g. Ware and Lad, 2003):

wij ∼ f(w) =

∫ ∞

0

1

πx
exp

{
−w2 + x4

2x2

}
dx . (5.110)

This integration can be undertaken numerically (e.g. in mathematical computer package Mat-
lab, see quadl.m). In case i = j, the distribution of wii is given by equation (5.105). Figure 5.1
(a and b) show the histogram of wij and wii on the basis of simulated data according to equa-
tions (5.108) and (5.105), respectively; the standard normal distribution is also included in the
figures, since the w-test statistic has a mean zero and a variance one! Also, in figure 5.1 (a), the
distribution of wij , obtained from numerical evaluation of (5.110), has been illustrated. �
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Figure 5.1: Histogrammed distribution of wij (a) and wii (b) on the basis of a simulated data set of
size 1000 000, according to equations (5.108) and (5.105), respectively, compared with the standard
normal distribution. Real distribution of wij , obtained from numerical evaluation of equation (5.110)
is also included in figure (a).

5.2.7 Two illustrative examples

In the previous section, the idea of data snooping on the elements of the matrix Qy was
introduced. However, it should be noted that this technique (elementwise method) is

neither computationally efficient, since a m(m+1)
2

number of elements should be tested, nor
practically useful, since they can not simply be interpreted. On the other hand, in most
Geodesy and GPS applications, it is possible to divide the observations into different groups
or categories. This may cross our mind to generalize the idea of data snooping groupwise
rather than elementwise. To do so and to illustrate, at the moment, we will present two
simple examples.

Example 5.4 Let us assume that we are measuring one unknown parameter simultaneously with
two different instruments m times. Now we have two different sorts of observations, namely y

1
and y

2
each of size m. In this case we have only one unknown parameter x and the total number

of observations is 2m. Assuming the observations are uncorrelated and with the same precision
(under Ho; p = 1), one obtains

E{
[

y
1

y
2

]
} = Ax =

[
u
u

]
x; Qy = σ2I2m = σ2

[
I 0
0 I

]
(5.111)

with u, as before, the summation vector of size m. If we want now to test whether the covariance
matrix chosen Qy is a realistic one, we may put forward the following two hypotheses:

Ho : Qy = σ2

[
I 0
0 I

]
versus Ha : Qy = σ2

[
I 0
0 I

]
+

[
0 0
0 I

]
∇, (5.112)

where the extra 2m × 2m matrix, under the alternative hypothesis, is the matrix Cy. The
unknown parameter ∇ implies that the second group observations, has a precision different from
the first group. In the following, we derive analytical expressions for the w-test statistic and for
its distribution. For this purpose, strictly speaking, we need to simplify equations (5.81) and
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(5.82), respectively. The w-test statistic simplifies to

w =
êT
2 ê2 − êT

1 ê1

2σ2
√

m − 1
, (5.113)

with ê1 and ê2 the least squares residual vectors of the first and second group of observations,
under Ho, respectively.

Proof. The entries of matrix Q−
ê = Q−1

y P⊥
A , of order 2m, are given as q−ij = 2m−1

2mσ2 if i = j and

q−ij = −1
2mσ2 if i �= j. After a few mathematical operations, one obtains

tr(CyQ
−
ê ) =

2m − 1

2σ2
, tr(CyQ

−
ê CyQ

−
ê ) =

4m − 3

4σ4
(5.114)

from which wd in equation (5.81) follows as wd =
√

m−1
2σ2 . The terms in the numerator of

equation (5.81) simplify to

êT Q−1
y CyQ

−1
y ê =

êT
2 ê2

σ4
, êT Q−1

y ê =
êT
1 ê1 + êT

2 ê2

σ2
(5.115)

Substituting the preceding terms in equation (5.81) completes the proof. �

Note that the σ2 is unknown even under the null hypothesis. In practice, one has to be satisfied

with a least-squares estimate of this variance component, namely σ̂2 =
êT
1 ê1+êT

2 ê2

2m−1 . If ê1 and ê2

are of similar magnitude, the preceding test statistic intuitively says that the w-test value is not
very large, and therefore the null hypothesis is likely to be accepted. One will then obtain ∇̂ ≈ 0
and therefore σ̂2

1 ≈ σ̂2
2.

The w-test statistic is distributed as w ∼ λkχ
2
k(1, 0), where the eigenvalues λ are obtained

from equation (5.82). After not very long derivations, the eigenvalues λ are given, independent
of the unknown variance component σ2, as (see appendix B.1)

λ1 = 0; λ2 = ... = λm =
1

2
√

m − 1
; λm+1 = ... = λ2m−1 =

−1

2
√

m − 1
, (5.116)

from which it can simply be concluded that the w-test statistic (5.113) is distributed as

w ∼ 1

2
√

m − 1

[
χ2

1(m − 1, 0) − χ2
2(m − 1, 0)

]
(5.117)

where χ2
1(m − 1, 0) and χ2

2(m − 1, 0) are two independent chi-squared distributions with m − 1
degrees of freedom. One can simply show that the above distribution has a mean of zero and a
variance of one. Based on the central limit theorem for independent and identically distributed
data, when m is large enough, one can approximate the chi-squared distribution by a normal one,
i.e. χ2

1(m−1, 0) ≈ N(m−1, 2(m−1)). Taking these into account, one can simply show that the
preceding distribution is approximated by the standard normal distribution, namely w � N(0, 1).
To show this, one needs to use the following identity:

α1N1(μ1, σ
2
1) + α2N2(μ2, σ

2
2) = N(α1μ1 + α2μ2, α

2
1σ

2
1 + α2

2σ
2
2) , (5.118)

for two independent normal distributions N1 and N2, and α1 and α2 two real numbers. �

Example 5.5 In previous example, if one wants to test whether the first group of observations is
independent of the second group, one may write the null and alternative hypotheses as follows:

Ho : Qy = σ2

[
I 0
0 I

]
versus Ha : Qy = σ2

[
I 0
0 I

]
+

[
0 I
I 0

]
︸ ︷︷ ︸

Cy

∇, (5.119)
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where ∇ here is a covariance component. In the following, we give formulas for the w-test statistic
and its distribution. After a few mathematical and matrix operations, one can show that (see
appendix B)

w =
(ê2 − ê1)

T (ê2 − ê1) + 4mêT
1 ê2

2σ2
√

2m(2m − 1)(m − 1)
, (5.120)

where ê1 and ê2 are, again, the least squares residuals of the first and second group of observations.

Proof. After a few mathematical and matrix operations, one can show that

tr(CyQ
−
ê ) =

−1

σ2
, tr(CyQ

−
ê CyQ

−
ê ) =

2m − 1

σ4
1

(5.121)

which yields wd = 1
σ2

√
2m(m−1)

2m−1 in equation (5.81). The terms in the numerator of equa-

tion (5.81) then read

êT Q−1
y CyQ

−1
y ê =

2 êT
1 ê2

σ4
1

, êT Q−1
y ê =

êT
1 ê1 + êT

2 ê2

σ2
(5.122)

Substituting the preceding terms in equation (5.81) completes the proof. �

If ê1 and ê2 have similar corresponding values, then the term êT
1 ê2 in the preceding equation

becomes large, and therefore the null hypothesis is likely to be rejected. This implies that the
first and the second observation groups are likely to be correlated.

To see how the distribution looks like, we need the eigenvalues λ from equation (5.82). We can
show that such non-zero eigenvalues (a 2m − 1 number) can be obtained as (see appendix B.2)

λ1 = ... = λm = − m−1√
2m(2m−1)(m−1)

;

λm+1 = ... = λ2m−1 = m√
2m(2m−1)(m−1)

.
(5.123)

With these in mind, the distribution of the w-test statistic, namely λkχ
2
k(1, 0), simplifies to

w ∼ 1√
2m(2m − 1)(m − 1)

[
mχ2

1(m − 1, 0) − (m − 1)χ2
2(m, 0)

]
, (5.124)

where χ2
1(m − 1, 0) and χ2

2(m, 0) are two independent chi-squared distributions with m − 1 and
m degrees of freedom, respectively. One can again show that the preceding distribution has
mean zero and variance one. If m is large enough, again, the chi-squared distributions can be
approximated by normal ones. Therefore, using identity (5.118), the above distribution can be
approximated by the standard normal distribution, i.e. w � N(0, 1). �

Figure (5.2), a and b, respectively, show the histogram distribution of w-test statistic
presented in formulae (5.117) and (5.124), in case of m = 50 and on the basis of a simulated
data set of size 100,000. For a visual comparison with normality, the standard normal
distribution has been plotted on the histograms. In addition, figure 5.2, c and d, illustrate
the normal probability plot for the aforementioned (simulated) data sets. The normal
probability plot is a graphical technique to assess whether or not a data set is approximately
normally distributed. The data is plotted against a theoretical normal distribution in such
a way that the points should form a straight line. Departures from this straight line
indicate departures from normality. These plots may seem curved at the ends (tails) of
the distribution function. However, this minor curvature seems to be not significant at
α = 0.05 or even α = 0.01 significance level tests.
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Figure 5.2: Histogram distribution of w-test statistic given by equation (5.117), (a), and by equa-
tion (5.124), (b), in case of m = 50 and on the basis of a simulated data set of size 100 000 (compared
with the standard normal distribution); plots (c) and (d) show normal probability plot of simulated
data sets corresponding to plots (a) and (b), respectively.

5.3 The v-test statistic

5.3.1 Formulation in terms of B-model

In the following we consider a testing problem that, though from a mathematical aspect
equivalent to the above formulation, occurs when we want to test the significance of the
(co)variance components. For this purpose, the following two hypotheses are considered:

Ho : E{vh(t tT )}=Avhσ, dT σ=co versus Ha : E{vh(t tT )}=Avhσ, dT σ=ca . (5.125)

The two hypotheses Ho and Ha differ in the sense that under Ho it is assumed that the
linear function dT σ is identical to the known scalar co, whereas under Ha, this function is
identical to the unknown scalar ca �= co. In terms of the model of condition equations, the
preceding hypotheses read

Ho : Qt =

p∑
k=1

σkQtk , dT σ = co versus Ha : Qt =

p∑
k=1

σkQtk , dT σ = ca . (5.126)
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In a similar way to the w-test statistic, we can here also obtain (generalize) the v-test
statistic, introduced in chapter 2, for the stochastic model. From equation (2.44), it can
simply be concluded that the v-test statistic reads

v =
dT N−1l − c0√

dT N−1d
=

dkn
−1
kl ll − c0√
dT N−1d

=
1
2
dkn

−1
kl tT Q−1

t QtlQ
−1
t t − c0√

dT N−1d
. (5.127)

The preceding formula can be rewritten as follows:

v =
tT Q−1

t [1
2
dkn

−1
kl Qtl ]Q

−1
t t − c0√

dT N−1d
= tT Mt − m0, (5.128)

where M is a symmetric matrix and m0 a constant as

M =
Q−1

t [1
2
dkn

−1
kl Qtl ]Q

−1
t√

dT N−1d
; m0 =

c0√
dT N−1d

, (5.129)

respectively. Based on the theorem 5.2, the preceding v-test statistic is distributed as (cf.
equation (5.50))

v ∼
r∑

i=1

λiχ
2
i (1, 0) − m0, (5.130)

where the χ2
i are mutually independent and the λi are the non-zero eigenvalues of QtM∣∣[dkn

−1
kl Qtl ]Q

−1
t − 2λvdIb

∣∣ = 0 , (5.131)

where vd =
√

dT N−1d is the denominator of equation (5.128).

5.3.2 Formulation in terms of A-model

In terms of the model of observation equations, the null and alternative hypotheses in
equation (5.126) may be reformulated as

Ho : Qy =

p∑
k=1

σkQk; dT σ = co versus Ha : Qy =

p∑
k=1

σkQk; dT σ = ca. (5.132)

The test statistic v = tT Mt − m0 is reformulated in terms of the model of observation
equations as

v =
êT Q−1

y [1
2
dkn

−1
kl Ql]Q

−1
y ê − c0√

dT N−1d
= êT Mê − m0, (5.133)

which is again distributed as v ∼ λkχ
2
k(1, 0)−m0, and M different from equation (5.129)

obviously. The eigenvalues associated with this distribution are given as∣∣[dkn
−1
kl Ql]Q

−
ê − 2λvdIb

∣∣ = 0 , (5.134)

where vd =
√

dT N−1d is the denominator of equation (5.133).
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Example 5.6 As a simple application, let us assume that we want to test the only variance
component of the stochastic model, namely the variance of unit weight (p = 1). For such a
simple case, the null and alternative hypotheses read

Ho : Qy = σ2Q1; σ2 = σ2
0, versus Ha : Qy = σ2Q1; σ2 = σ2

a �= σ2
0. (5.135)

We can simply see that d = 1. From equation (5.26) follows that vd =
√

dT N−1d =
√

2
bσ

2.

Also, the numerator of M in equation (5.133) reads vn = êT Q−1
1 ê/b−σ2

0 (note that the solution
under Ho has to read: σ2 = σ2

0). The non-zero eigenvalues associated with the distribution of
the v-test read then λ1 = λ2 = ... = λb = 1√

2b
. Therefore, one can simply show that the v-test

statistic and its distribution read

v =
1√
2b

[
b σ̂2

σ2
0

− b

]
; v ∼ 1√

2b

[
χ2(b, 0) − b

]
, (5.136)

where b σ̂2 = êT Q−1
1 ê. Mind that this is the solution of the model without constraints. Comparing

the formulas in equation (5.136) gives the well-known distribution of the famous variance of unit
weight, i.e.

b σ̂2

σ2
0

∼ χ2(b, 0); → σ̂2

σ2
0

∼ χ2(b, 0)

b
; b = m − n. (5.137)

Note that this result has also been obtained with the w-test statistic (see example 5.1); see also
the equivalence of the w-test and v-test statistic in appendix D.3. �

5.4 The overall model test

5.4.1 Quadratic form of residuals

The goal of the present section is, as a first attempt, to generalize, or better say to
introduce, the overall model test for the stochastic model. We are testing the overall
validity of the assumed stochastic model. For this goal, assuming E{t} = 0, the null and
alternative hypotheses are formulated as

Ho : E{vh(t tT )} = Avhσ versus Ha : E{vh(t tT )} = [Avh Cvh]

[
σ
∇
]

, (5.138)

with Cvh a matrix of order b(b+1)
2

× df to imply that in the alternative hypothesis one
leaves the observable vector vh(t tT ) completely free, and ∇ a vector of order df (in fact
[Avh Cvh] is a square and invertible matrix). The above null and alternative hypotheses
can be formulated in terms of the elements of the model of condition equations as

Ho : Qt =

p∑
k=1

σkQtk versus Ha : Qt =

b(b+1)
2∑

k=1

σkCtk , (5.139)

with Ctk and σk under the alternative hypothesis as

Ctk =

⎧⎨
⎩

cic
T
j if σk = σii, i = j ;

cic
T
j + cjc

T
i if σk = σij, i ≤ j ,

(5.140)
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and i and j have to run from 1 through b. We now apply the idea of section 2.2.3 to
the above hypotheses. This will lead us to the the quadratic form of the residuals in the
stochastic model, namely to T df = êT

vhQ
−1
vh êvh. As we saw in chapter 4, this test statistic

can be obtained as (see equation (4.89))

T df =
1

2
(tT Q−1

t t)2 − tT Q−1
t Qt0Q

−1
t t +

1

2
tr(Qt0Q

−1
t Qt0Q

−1
t ) − lT N−1l , (5.141)

where N and l are defined in equations (4.85) and (4.86), respectively. When Q0 = 0, the
preceding equation reads

T df =
1

2
(tT Q−1

t t)2 − lT N−1l . (5.142)

Without loss of generality, we consider the constant term Q0 to be absent. When needed,
we will, however, give a few comments for special cases. It is clear that the quadratic form
is a fourth-degree function of t; multiplication of two quadratic forms in t. In terms of the
A-model, one obtains

T df =
1

2
(êT Q−1

y ê)2 − êT Q−1
y Q0Q

−1
y ê +

1

2
tr(Q0Q

−
ê Q0Q

−
ê ) − lT N−1l , (5.143)

where N and l are evaluated from equations (4.110) and (4.112), respectively. If Q0 = 0,
the preceding equation reads

T df =
1

2
(êT Q−1

y ê)2 − lT N−1l . (5.144)

The distribution of the preceding test statistic is not a trivial one, because of the com-
plicated nature in which it depends on ê or t. For some special cases, it is possible to
determine the exact distribution of equation (5.143). However, in general, one will have
to rely on alternative computer-based techniques such as Monte-Carlo simulation or boot-
strapping, see e.g. Efron and Tibshirani (1993). In the sequel, just the first two moments
of statistic (5.144), namely its expectation and its dispersion are derived. At the end, we
will consider an approximation for this quadratic form. A function of this approximation
will have a well-known distribution, namely the chi-squared distribution.

Example 5.7 Let the covariance matrix Qt = Qt0 be known under the null hypothesis. In this
case, equation (5.143) simplifies to, with N = 0,

T df = 1
2(êT Q−1

y ê)2 − êT Q−1
y ê + b

2 ;

= 1
2(tT Q−1

t t)2 − tT Q−1
t t + b

2 .

(5.145)

The distribution of this statistic is nontrivial. However, if we define T b =
√

2T df − b + 1 + 1 it
follows that

T b = êT Q−1
y ê = tT Q−1

t t (5.146)

which is distributed as T b ∼ χ2(b, 0). This result can also be obtained from the overall model
test in the functional model. �
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5.4.2 Expectation of quadratic form

The usual assumption, from now on, is that the b × 1 misclosure vector t is normally
distributed, i.e. t ∼ N(0, Qt). From equation (C.37), one obtains

E{1

2
(tT Q−1

t t)2} =
1

2
E{(tT Q−1

t t)(tT Q−1
t t)} =

1

2
b(b + 2) . (5.147)

The expectation of the second term in equation (5.142) reads

E{lT N−1l} = E{tr(lT N−1l)} = E{tr(N−1l lT )} = tr(N−1E{l lT}) , (5.148)

where matrix E{l lT} is given as (see equation (4.86))

E{l lT} = E{lilj} =
1

4
E{(tT

A︷ ︸︸ ︷
Q−1

t QtiQ
−1
t t)(tT

B︷ ︸︸ ︷
Q−1

t QtjQ
−1
t t)} , (5.149)

with A and B temporary matrices as in equation (C.33). One then obtains

E{l lT} = 1
4
tr(Q−1

t Qti)tr(Q
−1
t Qtj) + 1

2
tr(Q−1

t QtiQ
−1
t Qtj)

= lilj + nij = l lT + N ,
(5.150)

with li = 1
2
tr(Q−1

t Qti), the expectation of li. Substitution of the preceding equation in
equation (5.148) yields

E{lT N−1l} = tr(N−1[llT + N ]) = p + lT N−1l . (5.151)

The term lT N−1l in the preceding formulas can be simplified to

lT N−1l = lT σ = liσi =
1

2
tr(Q−1

t Qti)σi =
1

2
tr(Q−1

t [σiQti ]) =
b

2
. (5.152)

Taking the expectation of equation (5.142) and substituting the first and second terms
from equations (5.147) and (5.151), respectively, under null-hypothesis Ho, result in the
expectation of the quadratic form as the redundancy of the stochastic model, namely

E{T df} = df , (5.153)

with df = b(b+1)
2

− p, the redundancy of the stochastic model. This is an interesting
result, when compared with the functional model, as the expectation of the quadratic
form in the functional model leads to the redundancy of the functional model b, i.e.
E{T b} = E{tT Q−1

t t} = b. Note however that the result obtained for the functional model
is independent of the distribution of t, but that obtained for the stochastic model takes
the normality assumption into account.

5.4.3 Dispersion of quadratic form

The dispersion of the quadratic form of the residuals reads

D{T df} = E{T 2
df} − (E{T df})2 . (5.154)
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From equation (5.153), the second term of the preceding equation reads

(E{T df})2 =
b2(b + 1)2

4
+ p2 − p b(b + 1) . (5.155)

From equation (5.142), the expectation of T 2
df is given as

E{T 2
df} = E

{
1

4
(tT Q−1

t t)4 − (tT Q−1
t t)2(lT N−1l) + (lT N−1l)2

}
, (5.156)

which consists of three terms. In the following, we will evaluate each of the three terms in
equation (5.156). The results will be given in a compact form. However, more explanation
can be found in appendix C.

First term: From equation (C.51), the expectation of the first term in equation (5.156)
reads:

E{1

4
(tT Q−1

t t)4} = b(b + 2)(b + 4)(b + 6)/4 . (5.157)

Second term: The expectation of the second term in equation (5.156) simplifies to (see
appendix B.3)

E{(tT Q−1
t t)2(lT N−1l)} =

b3

2
+ 5b2 + b2p + 12b + 10bp + 24p . (5.158)

Third term: The expectation of the third term in equation (5.156) simplifies to (see
appendix B.4)

E{(lN−1l)2} =
b2

4
+p b+2b+10p+p2+4N−1 : Z : N−1+2N−1 : Z23 : N−1 . (5.159)

where : denotes the double inner (dot) product of two tensors and the fourth-order tensor
Z is given as zijkl = 1

2
tr(Q−1

t QtiQ
−1
t QtjQ

−1
t QtkQ

−1
t Qtl), i, j, k, l = 1, 2, ..., p. This tensor

satisfies zijkl = zjkli = zklij = zlijk, i, j, k, l = 1, 2, ..., p. Note that here N−1 : Z is a
second order tensor (a matrix), and N−1 : Z : N−1 is a scalar.

Substitution of equations (5.157), (5.158) and (5.159) into equation (5.156) and then
substitution of equations (5.156) and (5.155) into equation (5.154), under the null-
hypothesis Ho, gives the dispersion of the quadratic form as

D{T df} = 2b(b2+3b+1)−(8b+14)p + 4N−1 :Z :N−1 + 2N−1 :Z23 :N−1 . (5.160)

5.4.4 Quadratic form in case p = 1

In a simple case that only one variance component is involved in the stochastic model, i.e.
when Qy = σ2Q1 or Qt = σ2Qt1 , one obtains l and N by equation (5.26). In this case,
the quadratic form expressed in equation (5.142) simplifies to (cf. equation (4.116))

T df =
b − 1

2b
(tT Q−1

t t)2. (5.161)
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Figure 5.3: Expectation and standard deviation of quadratic form of residuals in stochastic model,
i.e. E{T df} and

√
D{T df}, (a), and their ratio, (b), in case p = 1.

Using equation (C.37), one can obtain the expectation of the preceding quadratic form as
(cf. equation (5.153))

E{T df} =
(b − 1)(b + 2)

2
=

b(b + 1)

2
− 1 = df . (5.162)

The variance of the quadratic form is, by definition, given as D{T df} = E{T 2
df}−(E{T df})2.

The second part can be obtained from equation (5.162). Using equation (C.51), one can
also simplify the first part. The variance of the quadratic form then reads

D{T df} =
2(b − 1)2(b + 2)(b + 3)

b
. (5.163)

This result can also be obtained from the general formula (5.160). Therefore, the results
show that the expectation of the quadratic form of residuals, i.e. T df test statistic, in case
p = 1, is a second-order polynomial of b, the redundancy of the functional model, while its
variance, more or less, looks like a third-order polynomial. Figure 5.3 shows the expectation
and the standard deviation of the quadratic form of the residuals versus the redundancy of
the functional model, for the special case p = 1.

It should be noted that the quadratic form (5.161) is exactly (without any approximation)
a quadratic function of tT Q−1

t t, namely b−1
2b

(tT Q−1
t t)2, from which the following function

can be derived explicitly:

T b =

√
2b

b − 1
T df = tT Q−1

t t , (5.164)

which, provided that the vector t is normally distributed, i.e. t ∼ N(0, Qt), has a dis-
tribution of chi-squared with b degrees of freedom. It is possible to construct an exact
confidence interval for the true value of T b, namely Tb, meaning that it has exactly the
stated confidence level, as opposed to so-called an asympotic or a large-sample confidence
interval which only has approximately the stated confidence level and is valid when the
sample size is large. An exact confidence interval is valid for any sample size. An exact
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two-sided confidence interval (1 − α) for Tb reads then

χ2
b,1−α

2
≤ Tb ≤ χ2

b, α
2
, (5.165)

with χ2
b, α

2
, the critical value obtained from the inverse of the chi-square cumulative dis-

tribution function. Substituting for Tb from equation (5.164) and solving for Tdf , i.e.
transforming back from Tb into Tdf , gives a confidence interval for Tdf as follows:

b − 1

2b
χ4

b,1−α
2
≤ Tdf ≤ b − 1

2b
χ4

b, α
2
, (5.166)

with notation χ4
b, α

2
= (χ2

b, α
2
)2. In the case that b is sufficiently large, the chi-square

distribution may be approximated by a normal one, i.e. χ2(b, 0) ≈ N(b, 2b). In this case,
the critical value reads χ2

b, α
2
≈ Xα

2
with

Xα
2

=
√

2bZα
2

+ b . (5.167)

Since the standard normal distribution is a symmetric one about zero, it follows Z1−α
2

=
−Zα

2
. Substitution of the preceding terms in equation (5.166) gives an asymptotic confi-

dence interval for Tdf as

b2

2
−

√
2b

3
2 Zα

2
+ bZ2

α
2
≤ Tdf ≤ b2

2
+
√

2b
3
2 Zα

2
+ bZ2

α
2
. (5.168)

5.4.5 Approximation of quadratic form

What we want to mention here is the complexity of the distribution of the quadratic form
T df . In this subsection an approximation for this quadratic form is derived, and a function
of it for which the distribution is completely known. To reach this goal, let us rewrite the
quadratic form of the residuals for the stochastic model, i.e. equation (5.142) in terms of
t vector, as follows:

T df = 1
2
(tT Q−1

t t)2 − lT σ̂
= 1

2
(tT Q−1

t t)2 − liσ̂i

= 1
2
(tT Q−1

t t)2 − 1
2
tT Q−1

t [σ̂iQti ]Q
−1
t t

= 1
2
(tT Q−1

t t)2 − 1
2
tT Q−1

t Q̂tQ
−1
t t .

(5.169)

Using the approximation Q̂t = Qt, one obtains

T df ≈
1

2
(tT Q−1

t t)2 − 1

2
tT Q−1

t t = T ′
df . (5.170)

This approximation is denoted as T ′
df . Therefore, T df ≈ T ′

df . The distribution of this
approximation is still complicated. It is not however difficult to show that the expectation
and the dispersion of this approximated statistic read

E{T ′
df} =

b(b + 1)

2
= df + p ; D{T ′

df} = 2b3 + 8b2 + 8.5b , (5.171)

respectively. It is now possible to derive a function of this new statistic whose distribution
is completely known. To follow this, equation (5.169) can be rewritten as

T df =
1

2
(tT Q−1

t t)2 − 1

2
tT Q−1

t t − ε = T ′
df − ε , (5.172)
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with

ε =
1

2

(
tT Q−1

t Q̂tQ
−1
t t − tT Q−1

t t
)

. (5.173)

If we now define T b = tT Q−1
t t it then follows that (see appendix B.5)

T ′
b + ε′ ≈ 1

2

(√
8(T df + ε) + 1 + 1

)
≈ T b = tT Q−1

t t (5.174)

where the bias statistic ε′ is approximated as

ε′ ≈ 1

2

[
tT Q−1

t Q̂tQ
−1
t t

tT Q−1
t t

− 1

]
. (5.175)

Neglecting the bias terms ε and ε′ in equation (5.174) yields

T ′
b ≈ T b =

1

2

(√
8T ′

df + 1 + 1

)
= tT Q−1

t t ∼ χ2(b, 0) (5.176)

Note that this approximation gets better and better when b, the redundancy of the func-
tional model, becomes larger and larger (see example 5.8). In fact, the estimator T ′

b is a
consistent estimator of Tb. This is an interesting result as the preceding function (statistic)
is the quadratic form of the residuals for the functional model, denoted as T b. Therefore,
the statistic of the overall model test, both for the functional and the stochastic model,
is identical. That is, the T b test statistic used in the functional model is a good general
indicator of the presence of some blunders (gross errors) in the observations. On the other
hand, with a large enough b, it can be interpreted as a general indication of detecting
misspecifications in the stochastic model as well.

An exact two-sided confidence interval (1 − α) for Tb (or accordingly an asymptotic
confidence interval for T ′

b) reads then

χ2
b,1−α

2
≤ T ′

b ≤ χ2
b, α

2
(5.177)

Substituting Tb and solving for T ′
df , i.e. transforming back to the original function, from

Tb to T ′
df , gives an approximate confidence interval for T ′

df (or an asymptotic approximate
confidence interval for Tdf) as follows:

1

2

(
χ4

b,1−α
2
− χ2

b,1−α
2

)
≤ T ′

df ≤
1

2

(
χ4

b, α
2
− χ2

b, α
2

)
(5.178)

Again, if b is sufficiently large, the chi-square distribution can be approximated by a normal
one for which the critical value reads χ2

b, α
2
≈ √

2bZα
2

+ b.

Example 5.8 Let us consider the simplest case with only one variance component in the sto-
chastic model, namely p = 1. In this case, Qy = σ2Q, which gives

Q̂t = σ̂2BT Q1B, Qt = σ2BT Q1B . (5.179)

Substitution of the preceding terms into equation (5.175) yields

ε′ ≈ 1

2

[
σ̂2

1

σ2
− 1

]
. (5.180)
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Figure 5.4: Distribution of ε introduced in (5.181), i.e. p = 1, for case b = 20, (a), and b = 800,
(b), compared with the standard normal distribution

This (bias) statistic is distributed as

ε′ � 1

2

[
χ2(b, 0)

b
− 1

]
, (5.181)

with the expectation and the dispersion of

E{ε′} = 0; D{ε′} =
1

2b
, (5.182)

respectively. This is an important result since, in general, the statistic ε′ is not a real bias
term as E{ε′} = 0, and the variance gets smaller when b becomes larger. However, for a large
enough redundancy of the functional model b, this variance when compared with the variance
of the statistic tT Q−1

t t, i.e. 2b, can then be considered negligible. To make it clearer, we have
considered an example. Figure (5.4)-a illustrates the distribution of the error statistic ε′, for
case b = 20 and again p = 1, compared to the standard normal distribution. However, this
comparison may not be very much relevant. That is, the distribution of ε′ should be compared
with the distribution of the quadratic form tT Q−1

t t, with the expectation of b and variance of 2b.
The ratio of variances is then

D{ε′}
D{tT Q−1

t t} =
1

4b2
. (5.183)

In other words, the comparison of ε′ and tT Q−1
t t, with b degrees of freedom, is approximately

equivalent to the comparison of ε′, with 2b2 degrees of freedom, and the standard normal distri-
bution. If b = 20, then 2b2 is set to 800. This is what we have deliberately considered in Fig.
(5.4)-b, b = 800. Therefore,

ε′ −→D 0 as b → ∞ , (5.184)

meaning that its distribution is converged to zero. However, as previously mentioned, for the
above example we need not use this approximation as the quadratic form (5.161) is strictly a
quadratic function of tT Q−1

t t. �
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5.5 Summary and concluding remarks

We generalized the idea of detection and validation into the stochastic model. It was aimed
to find misspecifications in the stochastic model, to improve an existing covariance matrix,
and to test the general validity of the stochastic model. This was done by introducing
the w-test, the v-test, and the overall model test with the stochastic model in systematic
analogy with testing in the functional model. We gave expressions for these test statistics
and derived the distributions for the w-test and the v-test statistic based on the normality
assumptions of the original observables y or t. For the examples given, when the redundancy
b of the functional model is large enough, the distributions can be approximated by the
(standard) normal distribution.

The overall model test statistic has in general a complicated form of distribution because
of the complicated nature in which it depends on ŷ or ê. For some special cases, it might
be possible to determine the exact distribution of equation (5.143). We considered an
approximation for this test statistic of which a function of this approximation has the
well-known chi-squared distribution. But, in general, one will have to rely on alternative
computer-based techniques such as Monte-Carlo simulation or bootstrapping to make for
instance bootstrap confidence intervals. One may consider the simplest technique, the
percentile method. This method works well when the statistic used has a symmetric
distribution. The percentile method requires a large number of Monte Carlo replications
for the intervals to be both accurate (i.e. be as small as possible for the given confidence
level) and nearly exact (i.e. if the procedure were repeated many times the percentage of
intervals that would actually include the ’true’ parameter value is approximately the stated
confidence level). For more information we refer to Efron and Tibshirani (1993)



Multivariate Variance-Covariance Analysis 6
6.1 Introduction

The primary purpose of this chapter is to introduce basic concepts of a multivariate statis-
tical analysis which occurs frequently in practice. It may be helpful to think of the ‘analysis’
as involving multiple dependent models. Experiments produce data where measurements
were obtained on one repeated model. In repeated model analysis, the multiple dependent
variables are the same measures (e.g. they are repeated over time). In multivariate models,
the multiple dependent variables are measures of multiple outcomes, usually measured at
the same point in time. For example, a repeated model might be used to analyze the ver-
tical components measured at three successive months while a multivariate analysis might
be used to model three coordinate components (north, east, and vertical) at a single point
in time. The analysis of (co)variance is often applied in a multivariate model, if the effects
of factors can be explained by several characteristics. This is called a multivariate analysis
of (co)variance. Multivariate models can also be set up if observations are repeated at
different times. In this case we can record temporal changes of a phenomenon.

A multivariate linear model, also known as a repeated linear model, is in fact an extension
of the univariate linear model. If for one design matrix in a Gauss-Markov model instead
of one observation vector several observation vectors with identical covariance matrices
are given and the corresponding parameter vectors have to be determined, the model is
referred to as a multivariate Gauss-Markov model. We consider a generalization of the
univariate linear model E{y} = Ax, D{y} = σ2Q, when the variance σ2 of unit weight
is unknown. This is in fact the simplest form of an unknown covariance matrix in a linear
model. One can for instance show that the expressions for the BLUE of x, y, and e are
invariant against a change in the variance σ2 (see chapter 3). We will show in fact that
such an independence of the variance holds true also for a multivariate linear model.

In order to properly understand the estimation and validation of these model parameters,
a foundation in multivariate statistics is needed. In particular, we may think of concepts
such as variances and covariances (or correlations) between different groups (models). We
show how the estimation and validation of (co)variance components can be expressed in
terms of the least-squares residuals. An advantage of the multivariate approach is to allow
for designs of experiments where the resulting parameter estimators will be uncorrelated,
thus making it easier to interpret results. One might approach multivariate outcomes by
examining each outcome separately. There might be dangers with this, however. With
univariate model analysis we may not use the whole observables in an optimal way. One
problem is that we are not doing multiple comparisons on the same data. More importantly,
we usually expect the multiple outcomes to be correlated, and we may wish to determine
if the outcomes are affected by treatment factors independent of other outcomes. We
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can however show, for this special model, that the univariate models can be treated indi-
vidually. The mutual correlation coefficients between different models, obtained from the
least-squares residuals, propagate directly into the correlation between the corresponding
parameters in the functional model.

6.2 Multivariate parameter estimation

The least squares approach can be used to estimate the covariance matrix from repeated
measurements. We can think of having r groups (categories) where each has m observa-
tions. Consider the following linear model consisting of r groups of observations:

E{y
i
} = Axi; D{y

i
, y

j
} = σijQ; i, j = 1, 2, . . . , r , (6.1)

with y
i
the normally distributed m-vector of observables for group i, and correspondingly

xi the n-vector of unknowns; the m×n design matrix A and the m×m cofactor matrix Q
is supposed to be identical for all groups and Q is assumed to be symmetric and positive-
definite. For example, we may have measurements of daily position estimates of permanent
GPS stations (r = 3, north, east, and vertical) for a whole year (m = 365). If for each
time series a simple linear regression model is used then the number of parameters becomes
n = 2 (intercept and slope). Written out in full, the preceding linear models read

E {

⎡
⎢⎢⎢⎣

y
1

y
2

...
y

r

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
mr×1

} =

⎡
⎢⎢⎣

A
A

. . .

A

⎤
⎥⎥⎦

︸ ︷︷ ︸
mr×nr

⎡
⎢⎢⎣

x1

x2
...
xr

⎤
⎥⎥⎦

︸ ︷︷ ︸
nr×1

,
(6.2)

with the mr × mr covariance matrix of the form

D{

⎡
⎢⎢⎢⎣

y
1

y
2

...
y

r

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
mr×1

} =

⎡
⎢⎢⎣

σ2
1 Q σ12Q · · · σ1rQ

σ12Q σ2
2 Q · · · σ2rQ

...
...

. . .
...

σ1rQ σ2rQ · · · σ2
r Q

⎤
⎥⎥⎦

︸ ︷︷ ︸
mr×mr

.
(6.3)

The unknowns in this model are the n r-number of elements of the vector x (those in the
functional part of the model)

x =
[

xT
1 xT

2 · · · xT
r

]T
, (6.4)

and the r(r+1)
2

number of elements σii = σ2
i (variances) and σij (covariances) of the

symmetric matrix (those in the stochastic part of the model)

Σ =

⎡
⎢⎢⎣

σ11 σ12 · · · σ1r

σ12 σ22 · · · σ2r
...

...
. . .

...
σ1r σ2r · · · σrr

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

σ2
1 σ12 · · · σ1r

σ12 σ2
2 · · · σ2r

...
...

. . .
...

σ1r σ2r · · · σ2
r

⎤
⎥⎥⎦ . (6.5)
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If we collect all unknows xi in the n × r matrix X, all observables y
i
in the m × r matrix

Y , and correspondingly all residuals ei in the m × r matrix E, we will then obtain

X = [x1 x2 . . . xr]; Y = [y
1
y

2
. . . y

r
]; E = [e1 e2 . . . er] . (6.6)

With these notations, the functional part of the model in equation (6.2) can simply be
rewritten as E{Y } = AX. Using the properties of vec operator and Kronecker product,
we can write equations (6.2) and (6.3) using equations (6.5) and (6.6) more compactly as

E{vec(Y )} = (I ⊗ A)vec(X) ; Qvec(Y ) = Σ ⊗ Q . (6.7)

We can now apply the least-squares method to estimate both X and Σ. To derive simplified
formulas for the BLUE of X, Y , and E, we need simple expressions for P⊥

I⊗A and PI⊗A.
They follow as

P⊥
I⊗A = I ⊗ P⊥

A ; PI⊗A = I ⊗ PA , (6.8)

where PA = A(AT Q−1A)−1AT Q−1 and P⊥
A = I − PA.

Proof. By definition the orthogonal projector is given as P⊥
I⊗A = I ⊗ Im − PI⊗A where PI⊗A =

(I⊗A)[(I⊗AT )(Σ−1⊗Q−1)(I⊗A)]−1(I⊗AT )(Σ−1⊗Q−1). Simplification of the equation gives
P⊥

I⊗A = I⊗Im−I⊗A(AT Q−1A)−1AT Q−1 = I⊗P⊥
A , where P⊥

A = Im−A(AT Q−1A)−1AT Q−1.
�

One can now simply show that the BLUE of X, Y , and E follows as

X̂ = (AT Q−1A)−1AT Q−1Y ; Ŷ = PAY ; Ê = Y − Ŷ = P⊥
A Y , (6.9)

respectively. Note that the preceding expressions are independent of the unknown matrix
Σ. This can be considered as a generalization of the univariate linear model E{y} =
Ax, D{y} = σ2Q, when the variance σ2 of unit weight is unknown. We can therefore
determine the outcomes of individual models separately.

One can simply show that the covariance matrices of the estimators vec(X̂), vec(Ŷ ),
and vec(Ê) are given as

Qvec(X̂) = Σ ⊗ (AT Q−1A)−1; Qvec(Ŷ ) = Σ ⊗ PAQ; Qvec(Ê) = Σ ⊗ P⊥
A Q . (6.10)

The preceding equations are also very similar to the univariate model. Note that to obtain
the covariance matrix of the estimators, the matrix Σ should be known. If Σ is unknown,
one can rely on an estimate Σ̂ instead. We have, in fact, shown that mutual correlation
between different models propagates directly into the correlation between the corresponding
parameters in the functional model.

6.3 Multivariate variance-covariance estimation

We shall now apply equation (4.113), with equations (4.110) and (4.112), to the model in
equation (6.7) in order to find unbiased and minimum variance estimators for the elements
of the matrix Σ of equation (6.5). The least-squares estimator of σ = vh(Σ) reads

σ̂ = vh(Σ̂) = N−1l. (6.11)
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where the r(r+1)
2

-vector l and the r(r+1)
2

× r(r+1)
2

matrix N−1 are given as

l =
1

2
DT (Σ−1 ⊗ Σ−1)vec(Ê

T
Q−1Ê), (6.12)

and

N−1 =
2

m − n
D+(Σ ⊗ Σ)D+T , (6.13)

respectively, with D the duplication matrix and the m× r matrix of least-squares residuals
Ê given in equation (6.9).

Proof. With appropriate matrices Cα, matrix Σ can be written as Σ =
∑r(r+1)/2

k=1 σαCα where
σα is respectively σ2

1, σ12, . . . , σ2
r and Cα = cic

T
i , for σα := σ2

i , and Cα = cic
T
j + cjc

T
i , for

σα := σij (i �= j). Equation (6.7) then reads

E{vec(Y )} = (I ⊗ A)vec(X) ; Qvec(Y ) =

r(r+1)/2∑
k=1

σα(Cα ⊗ Q) (6.14)

We can now apply LS-VCE to find the minimum variance estimator of σ = [σ1, · · · , σr(r+1)/2]
T =

vh(Σ). We have for multivariate model Q−1
vec(Y ) = Σ−1 ⊗Q−1, Qα = Cα ⊗Q, P⊥

I⊗A = I ⊗ P⊥
A ,

and vec(Ê) = vec(P⊥
A Y ), with P⊥

A = Im − A(AT Q−1A)−1AT Q−1. Substitution into lα =
1
2vec(Ê)T Q−1

vec(Y )QαQ−1
vec(Y )vec(Ê) gives the entries of the right-hand side vector as

lα = 1
2vec(Ê)T Σ−1CαΣ−1 ⊗ Q−1vec(Ê)

= 1
2tr(Σ−1CαΣ−1Ê

T
Q−1Ê)

= 1
2vec(Cα)T (Σ−1 ⊗ Σ−1)vec(Ê

T
Q−1Ê)

= 1
2vh(Cα)T DT (Σ−1 ⊗ Σ−1)vec(Ê

T
Q−1Ê)

(6.15)

Since vh(Cα) is a canonical unit vector, when α runs from 1 to r(r+1)
2 , vh(Cα) will make an

identity matrix and thus the preceding equation reads

l =
1

2
DT (Σ−1 ⊗ Σ−1)Dvh(Ê

T
Q−1Ê) (6.16)

In a similar manner the entries of the normal matrix N are obtained as

nαβ = 1
2tr(CαΣ−1CβΣ−1 ⊗ P⊥

A )
= 1

2tr(CαΣ−1CβΣ−1)tr(P⊥
A )

= 1
2vh(Cα)T DT (Σ−1 ⊗ Σ−1)Dvh(Cβ)tr(P⊥

A )
= m−n

2 vh(Cα)T DT (Σ−1 ⊗ Σ−1)Dvh(Cβ)

(6.17)

since tr(P⊥
A ) = rank(P⊥

A ) = m−n. Since vectors vh(Cα) and vh(Cβ) are canonical unit vectors,
it follows that N = m−n

2 DT (Σ−1 ⊗ Σ−1)D and thus

N−1 =
2

m − n
D+(Σ ⊗ Σ)D+T

� (6.18)

Substitution of N−1 and l into equation (6.11) gives, with D+vec(.) = vh(.) and leaving
out the term D+T DT

σ̂ =
1

m − n
vh(Ê

T
Q−1Ê), (6.19)
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or finally (cf. equation (4.121))

Σ̂ =
Ê

T
Q−1Ê

m − n
. (6.20)

The above formula can therefore be thought of as a generalization of the estimation of
the variance of unit weight. Here, instead of a single variance, we estimate a full matrix
consisting of variance-covariance components. With the above formulation we now have a
straightforward derivation of the estimates for the variance and covariance components in
a multivariate linear model given by e.g. Schaffrin (1981).

The covariance matrix of estimators σ̂ = vh(Σ̂) is given as the inverse of the normal
matrix N expressed by equation (6.13) (see equation (4.114))

Qσ̂ = Qvh(Σ̂) = N−1 =
2

m − n
D+(Σ ⊗ Σ)D+T . (6.21)

In the preceding equation Σ is unknown a-priori and one has to be satisfied with an estimate
Σ̂. This yields an estimate of Qσ̂, namely Q̂σ̂. From the preceding covariance matrix, we
can now evaluate the (co)variance between element α and β (i.e. between σα = σij and
σβ = σkl). In a similar (but in fact reverse) way to what we saw in theorem 4.2, one can
easily show that the (co)variances between the estimated variance-covariance components
are given as

σσασβ
= σσijσkl

=
σikσjl + σilσjk

m − n
. (6.22)

In the case that α = β, i.e. i = k and j = l, the variances of the variance-covariance
components read

σ2
σα

= σ2
σij

=
σ2

i σ
2
j + σ2

ij

m − n
. (6.23)

In a special case that i = j, the variances of the variance components read then (cf.
equation (4.121))

σ2
σα

= σ2
σ2

i
=

2σ4
i

m − n
. (6.24)

From the estimated matrix Σ, one can also compute the mutual correlation coefficient
between different observation groups

ρ̂ij =
σ̂ij√
σ̂iiσ̂jj

=
σ̂ij

σ̂iσ̂j

. (6.25)

This is a nonlinear function of the variables σ̂ij, σ̂ii, and σ̂jj. Based on equations (6.22),
(6.23) and (6.24), the covariance matrix of these three estimators is given by

Qij
σ̂ = D{

⎡
⎣ σ̂ij

σ̂ii

σ̂jj

⎤
⎦} =

1

m − n

⎡
⎣ σiiσjj + σ2

ij 2σiiσij 2σjjσij

2σiiσij 2σ2
ii 2σ2

ij

2σjjσij 2σ2
ij 2σ2

jj

⎤
⎦ (6.26)
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To obtain the variance of the correlation coefficient ρ̂ij, one needs to apply the error
propagation law to the linearized form of equation (6.25). The Jacobian (vector) of ρ̂ij is
given as (take partial derivatives of equation (6.25) with respect to σij, σii, and σjj)

J = ρij

[
1

σij

−1

2σii

−1

2σjj

]
(6.27)

Application of the error propagation law yields σ2
ρ̂ij

= JQij
σ̂ JT . Substituting Qij

σ̂ and J ,

respectively, from equations (6.26) and (6.27) yields

σ2
ρ̂ij

=
(1 − ρij)

2

m − n
(6.28)

If ρij = 0, it follows that σ2
ρ̂ij

= 1
m−n

.

6.4 Multivariate variance-covariance validation

6.4.1 The w-test statistic

Let us consider again the multivariate linear model given in equation (6.7). We are now
going to apply the idea of hypothesis testing to the stochastic part of this model. For the
w-test statistic, the following null and alternative hypotheses are put forward:

Ho : D{vec(Y )} = σ2
0I ⊗ Q versus Ha : D{vec(Y )} = (σ2

0I + ∇Cα) ⊗ Q , (6.29)

where ∇ is an unknown parameter and Cα is an arbitrary r × r matrix. In this section we
will restrict ourselves to the case that σ2

0 is known. This means, under the null hypothesis,
that all groups of observables have the same known variance component σ2

0 and that the
observable groups are uncorrelated. We want now to test this hypothesis using the w-test
statistic. For this purpose we can use the special case introduced in section 5.2.5 (see
equation (5.75)). We just need to substitute the terms from the multivariate model as
ê ← vec(Ê), Qy ← σ2

0I ⊗Q, Cy ← Cα ⊗Q, and P⊥
A ← I ⊗P⊥

A . By doing so and after a
few matrix operations, the following w-test statistic can be given:

w =

1
2σ4

0
tr(CαÊ

T
Q−1Ê) − b

2σ2
0
tr(Cα)[

b
2σ4

0
tr(CαCα)

]1/2
. (6.30)

Under Ho, the preceding test statistic is distributed as w ∼∑k λkχ
2
k(1, 0)−m0, where m0

is the constant term on the right-hand side of equation (6.30) divided by the denominator,
and the eigenvalues λk follow from∣∣Cα ⊗ P⊥

A − λ[2b tr(CαCα)]1/2Irm

∣∣ = 0 . (6.31)

We will now consider two important cases which can frequently be used in practice. They
are related to the testing of variances and covariances.
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Testing of variances

In order to test whether or not the predefined variance components σ2
0 are appropriate, in

equation (6.29), one can take Cα = cic
T
i . Therefore, tr(Cα) = tr(CαCα) = 1. One can

simply show that the w-test statistic (6.30) simplifies to

wii =
1√
2b

(
êT

i Q−1êi

σ2
0

− b

)
. (6.32)

In order to obtain the distribution of the preceding test statistic, we need to compute
λk from equation (6.31). It goes without saying that the only non-zero eigenvalue of
Cα = cic

T
i is one. Therefore, the b-number of non-zero eigenvalues of Cα ⊗ P⊥

A are one.
The eigenvalues λk then read λ1 = λ2 = ... = λb = 1√

2b
. Therefore, under the null

hypothesis, the w-test statistic is distributed as

wii ∼
1√
2b

(
χ2(b, 0) − b

)
. (6.33)

Denoting êT
i Q−1êi = b × σ̂2

i , the preceding equations yield

σ̂2
i

σ2
0

∼ χ2(b, 0)

b
. (6.34)

This is very similar to and in fact a generalization of the distribution of the famous variance
of unit weight (see example 5.1). Here we were concerned about the variance component of
only one group of observables. We may also want to consider a few groups of observables
together. For example one can define Cα = cic

T
i + cjc

T
j (if two groups are assumed to

have an identical variance component) or Cα = I (if we consider all groups together).

Note 6.1 In equation (6.29) we assumed that σ2
0 is known. It is still possible to perform

hypotheses testing even though the variance component σ2 is unknown. In this case equiv-
alent expressions for equations (6.32) and (6.33) can be given as (employ equations (5.81)
and (5.82))

wii =
1√

2br(r − 1)

(
rêT

i Q−1êi −
∑r

k=1 êT
k Q−1êk

σ2

)
; r ≥ 2, (6.35)

and

wii ∼
1√

2br(r − 1)

(
(r − 1)χ2

1(b, 0) − χ2
2(b(r − 1), 0)

)
, (6.36)

respectively. Note that the value of the test statistic (but not its distribution) depends
on the unknown variance component σ2 for which an estimate can be used as σ̂2 =
(
∑r

k=1 êT
k Q−1êk)/br. �

Testing of covariances

We can also test whether or not additional covariance components are needed to be in-
troduced in the stochastic model. For this purpose we may take Cα = cic

T
j + cjc

T
i to see
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if the covariance component between groups i and j is in fact zero. With this structure
we have tr(Cα) = 0 and tr(CαCα) = 2. One can show that the w-test statistic (6.30)
simplifies to

wij =
1√
b

(
êT

i Q−1êj

σ2
0

)
. (6.37)

In order to determine the distribution of the above test statistic, we need to compute λk

from equation (6.31). One can simply show that the two non-zero eigenvalues of Cα are
±1. Therefore, only 2b-number of eigenvalues of Cα ⊗ P⊥

A are non zero. They follow as
λ1 = λ2 = ... = λb = 1

2
√

b
and λb+1 = λb+2 = ... = λ2b = −1

2
√

b
. The preceding w-test

statistic is then distributed as

wij ∼
1

2
√

b

(
χ2

1(b, 0) − χ2
2(b, 0)

)
, (6.38)

where χ2
1(b, 0) and χ2

2(b, 0) are two independent chi-squared distributions with b degrees
of freedom. Denoting êT

i Q−1êj = b × σ̂ij, the preceding equations yield

ρ̂
ij

=
σ̂ij

σ2
0

∼ 1

2b

(
χ2

1(b, 0) − χ2
2(b, 0)

)
, (6.39)

with ρ̂
ij

the correlation coefficient between groups i and j. There are standard procedures

for computing the distribution of quadratic forms in normal variables. The reader is referred
to e.g. Imhof (1961). Based on the central limit theorem for independent and identically
distributed data, when the redundancy b is large enough, one can approximate the chi-
squared distribution by a normal one. Taking these approximations into account, the
preceding equation reads

ρ̂
ij

=
σ̂ij

σ2
0

� N(0, 1/b). (6.40)

Here we were only concerned about the covariance component between two groups of
observables. We may also want to consider a few groups together. For example we can
define Cα = cic

T
j + cjc

T
i + cic

T
k + ckc

T
i (three groups).

6.4.2 The v-test statistic

The idea here is to test whether or not it is possible to reduce the number of covariance
components. To perform the (co)variance significance test (v-test), we can, for instance,
test the following null hypotheses versus the alternative ones:

1. Ho : Qy = Σ ⊗ Q, σii = σ0
ii versus Ha : Qy = Σ ⊗ Q,

2. Ho : Qy = Σ ⊗ Q, σij = σ0
ij versus Ha : Qy = Σ ⊗ Q,

3. Ho : Qy = Σ ⊗ Q, σii = σkk versus Ha : Qy = Σ ⊗ Q,

4. Ho : Qy = Σ ⊗ Q, σij = σik versus Ha : Qy = Σ ⊗ Q,

5. Ho : Qy = Σ ⊗ Q, σij = σkl versus Ha : Qy = Σ ⊗ Q.
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To do the testing we can make use of equations (5.133) and (5.134) for v-test statistic
and the corresponding eigenvalues associated with its distribution, respectively. However,
since the constant terms c0 and dT N−1d do not have any effect on testing results, we will
ignore them both in the test statistic and its distribution. Therefore, equation (5.133) can
now be reformulated as

v = dασ̂α = êQ−1
y [

1

2
dαn−1

αβQβ]Q−1
y ê , (6.41)

which is distributed as v ∼ ∑k λkχ
2
k. The eigenvalues associated with this distribution

can be given by the following equation:∣∣[dαn−1
αβQβ]Q−1

y P⊥
A − 2λI

∣∣ = 0. (6.42)

Note that this new test statistic, in general, is no longer of mean zero and variance one.
To obtain the v-test statistics for the multivariate linear model we just need to substitute

the preceding terms as follows: ê ← vec(Ê), Qy ← Σ ⊗ Q, Qβ ← Cβ ⊗ Q, and P⊥
A ←

I ⊗ P⊥
A . In the following we will make use of the canonical unit vector for dα, e.g.

dα = vh(cic
T
i ) or dα = vh(cic

T
j + cjc

T
i ) if i �= j. When we specify values for α or

correspondingly for i and j, the term dαn−1
αβ simplifies to n−1

αβ where the only free index

is β (it is in fact the αth row of N−1). Note that β becomes a summation index when
multiplied with Qβ. We will first evaluate the term dαn−1

α,βQβ. For this purpose we use the
fixed index as α ≡ i, j and the summation index as β ≡ k, l. Therefore, one obtains

[dαn−1
α,βQβ] = [n−1

ij,klQkl] = [n−1
ij,klckc

T
l ] ⊗ Q =

1

b
[(σikσjl + σilσjk)ckc

T
l ] ⊗ Q . (6.43)

Equation (6.42) can therefore be reformulated for the multivariate model as∣∣[(σikσjl + σilσjk)ckc
T
l ]Σ−1 ⊗ P⊥

A − 2bλIrm

∣∣ = 0 , (6.44)

in which the usth entry of the matrix [(σikσjl + σilσjk)ckc
T
l ], i.e. the element of the uth

row and sth column, is given as

[(σikσjl + σilσjk)ckc
T
l ] = σuiσjs + σujσis . (6.45)

When post-multiplied with Σ−1, it follows that

[(σikσjl + σilσjk)ckc
T
l ]Σ−1 = σuiσjsσ

−1
sv + σujσisσ

−1
sv = σuiδjv + σujδiv , (6.46)

which simplifies to

[(σikσjl + σilσjk)ckc
T
l ]Σ−1 =

⎧⎨
⎩

σuj if v = i;
σui if v = j;
0 if v �= i, j.

(6.47)

Therefore, the matrix [(σikσjl + σilσjk)ckc
T
l ]Σ−1 is a zero matrix except for two columns,

namely i and j, with entries of the jth and ith columns of Σ, respectively (the ith and jth

columns have been interchanged). The two non-zero eigenvalues of this matrix are given
by the eigenvalues of the following matrix:

Λ =

[
σij σii

σjj σij

]
=

[
σij σ2

i

σ2
j σij

]
. (6.48)
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The eigenvalues of the preceding matrix can easily be computed as

λmax = σij + σiσj; λmin = σij − σiσj. (6.49)

Since the matrix P⊥
A is a projector it also has b-number of non-zero eigenvalues i.e. λ′

1 =
... = λ′

b = 1. Equation (6.44) has therefore 2b-number of non-zero eigenvalues. In the
following we will consider different testing hypotheses (different possibilities for i and j)
for which we present test statistics and their corresponding distributions.

Testing of σii = σ0
ii

We consider here the null hypothesis Ho : Qy = Σ ⊗ Q, σii = σ0
ii versus the alternative

one Ha : Qy = Σ ⊗ Q. Under the null hypothesis it is assumed that the value of variance
component σii is to be equal to the known value σ0

ii. To see how the v-test statistic and
its distribution of the above testing hypotheses look like, one can take dα = vh(cic

T
i ). It

goes without saying that the test statistic (6.41) can be written as

v = vh(cic
T
i )vh(Σ̂) = σ̂ii =

êT
i Q−1êi

b
. (6.50)

In order to determine the distribution of the aforementioned statistic, i.e. v = σ̂ii, we need
to compute the eigenvalues λk from equation (6.44) as (note that here dα = vh(cic

T
i ))∣∣[σikσilckc

T
l ]Σ−1 ⊗ P⊥

A − bλIrm

∣∣ = 0. (6.51)

In a similar way to equation (6.47), one can show that

[σikσilckc
T
l ]Σ−1 =

{
σui if v = i;
0 if v �= i.

(6.52)

Therefore, the matrix [σikσilckc
T
l ]Σ−1 is a zero matrix except for its ith column with entries

of the ith column of Σ. The only non-zero eigenvalue of this matrix is σii. The matrix
P⊥

A is a projector with non-zero eigenvalues λ′
1 = ... = λ′

b = 1. With these in mind, the
non-zero eigenvalues λ of equation (6.51) are given as

λ1 = λ2 = .... = λb =
σii

b
. (6.53)

Under the null hypothesis, the distribution of the test statistic σ̂ii then reads

σ̂ii ∼
σ0

ii

b
χ2(b, 0) ⇒ σ̂ii

σ0
ii

∼ χ2(b, 0)

b
. (6.54)

The above result can be thought of as being a generalization of the testing of the variance
of unit weight. This is an interesting result and very simple indeed as the χ2(b, 0) is a
well-known central chi-squared distribution. Note that we have obtained the same results
using the w-test statistic (see equation (6.34)).
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Testing of σij = σ0
ij

We consider here the null hypothesis Ho : Qy = Σ ⊗ Q, σij = σ0
ij versus the alternative

one Ha : Qy = Σ ⊗ Q. Under the null hypothesis the value of covariance component σij

is equal to the known value σ0
ij. To see how the v-test statistic and its distribution of the

above testing hypotheses look like, one can take dα = vh(cic
T
j + cjc

T
i ). One can simply

show that the v-test statistic is written as follows:

v = σ̂ij =
êT

i Q−1êj

b
. (6.55)

In order to determine the distribution of the aforementioned statistic, we need to compute
the eigenvalues of equation (6.44). We have, in fact, obtained these values as those
presented in equation (6.49). When taking into account the projector P⊥

A , one obtains

λ1 = λ2 = .... = λb =
σij + σiσj

2b
; λb+1 = λb+2 = .... = λ2b =

σij − σiσj

2b
. (6.56)

Under the null hypothesis, the test statistic σ̂ij is thus distributed as

σ̂ij ∼
1

2b

[
(σ0

ij + σiσj)χ
2
1(b, 0) + (σ0

ij − σiσj)χ
2
2(b, 0)

]
, (6.57)

where χ2
1(b, 0) and χ2

2(b, 0) are two independent chi-squared distributions with b degrees
of freedom. If the redundancy b is large enough, we may approximate the chi-squared
distributions with normal ones. In this case the preceding distribution approximately yields

σ̂ij � σiσjN

(
ρ0

ij,
1 + ρ0

ij
2

b

)
, (6.58)

or

ρ̂
ij
� N

(
ρ0

ij,
1 + ρ0

ij
2

b

)
, (6.59)

where ρ0
ij =

σ0
ij

σiσj
and ρ̂

ij
=

σ̂ij

σiσj
are the correlation coefficients. If we now want to test

the significance of the correlation coefficient, i.e. under null hypothesis if ρ0
ij = 0, it then

follows that

ρ̂
ij
� N(0, 1/b), (6.60)

which is identical to what we found in equation (6.40).

Testing of σii = σkk

The goal here is to test whether or not the variance component of group i is the same as
that of group k. In a similar way to what was done previously, one can define the vector d
as dα = vh(cic

T
i − ckc

T
k ). The test statistic simplifies to

v = σ̂ii − σ̂kk =
1

b
[êT

i Q−1êi − êT
k Q−1êk]. (6.61)



110 Chapter 6. Multivariate Variance-Covariance Analysis

The eigenvalues associated with the distribution, apart from those of P⊥
A , i.e. b-number of

ones, of v can be obtained from∣∣∣∣
[

σii −σik

σik −σkk

]
−
[

λ 0
0 λ

]∣∣∣∣ = 0, (6.62)

which gives

λmax =
1

2

[
σii − σkk +

√
(σii + σkk)2 − 4σ2

ik

]
, (6.63)

and

λmin =
1

2

[
σii − σkk −

√
(σii + σkk)2 − 4σ2

ik

]
, (6.64)

Under the null hypothesis we have σii = σkk. Therefore, the v-test statistic is distributed
as (take into account the projector P⊥

A )

v ∼
√

σ2
ii − σ2

ik

b

[
χ2

1(b, 0) + χ2
2(b, 0)

]
. (6.65)

If we approximate χ2
1(b, 0) and χ2

2(b, 0) by two independent normal distributions N1(b, 2b)
and N2(b, 2b), we obtain

v � N

(
0,

4(σ2
ii − σ2

ik)

b

)
. (6.66)

The maximum possible variance of the v-test statistic occurs when the covariance com-
ponent between groups i and k is not significant, i.e. when σik = 0. If σii and σik are
unknown a-priori, one can have recourse to estimates of those as σii = 1

2
(σ̂ii + σ̂kk) and

σik = σ̂ik, respectively.

Testing of σij = σik

Here we want to test whether or not the covariance component σij equals σik (i is the
common index). To perform this test, one can define dα = vh(cic

T
j + cjc

T
i − cic

T
k − ckc

T
i )

from which it can be concluded that

v = σ̂ij − σ̂ik =
1

b
[êT

i Q−1êj − êT
i Q−1êk]. (6.67)

The matrix Λ, a matrix whose eigenvalues are associated with the distribution of the v-test
statistic, is then given by

Λ =

⎡
⎣ σij − σik σii −σii

σjj − σjk σij −σij

σjk − σkk σik −σik

⎤
⎦ , (6.68)

in which the third column is a multiple of the second column. Therefore, the preceding
matrix is of rank 2. The eigenvalues of Λ then can be given as

λmax = σij − σik + σi

√
σjj + σkk − 2σjk, (6.69)
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and

λmin = σij − σik − σi

√
σjj + σkk − 2σjk; λ3 = 0. (6.70)

Therefore, under the null hypothesis, the v-test statistic is distributed according to

v ∼ σi

√
σjj + σkk − 2σjk

2b

[
χ2

1(b, 0) − χ2
2(b, 0)

]
. (6.71)

which can be approximated by a normal distribution as

v � N

(
0,

σii(σjj + σkk − 2σjk)

b

)
. (6.72)

If the (co)variance components σii, σjj, σkk, and σjk are unknown a-priori, one can rely
on the estimates σ̂ii, σ̂jj, σ̂kk, and σ̂jk, respectively.

Testing of σij = σkl

The goal here is to see whether or not the covariance component σij equals σkl. To perform
this test, one can define dα = vh(cic

T
j +cjc

T
i −ckc

T
l −clc

T
k ) from which it can be concluded

that

v = σ̂ij − σ̂kl =
1

b
[êT

i Q−1êj − êT
k Q−1êl]. (6.73)

The matrix Λ, a matrix whose eigenvalues are associated with the distribution of the
preceding test statistic reads then

Λ =

⎡
⎢⎢⎣

σij σii −σil −σik

σjj σij −σjl −σjk

σjk σik −σkl −σkk

σjl σil −σll −σkl

⎤
⎥⎥⎦ , (6.74)

which, in general, is of rank 4. Denoting the eigenvalues of Λ as λ1, λ2, λ3 and λ4, the
test statistic v is distributed as

v ∼ 1

2b

[
λ1χ

2
1(b, 0) + λ2χ

2
2(b, 0) + λ3χ

2
3(b, 0) + λ4χ

2
4(b, 0)

]
. (6.75)

Under the null hypothesis and when σil = σjk = σjl = σik = 0 it follows that

λ1 = (σij + σiσj); λ2 = (σij − σiσj);
λ3 = −(σij + σkσl); λ4 = −(σij − σkσl).

(6.76)

Again, if we approximate the chi-squared distributions with normal ones, equation (6.75)
yields

v � N

(
0,

∑4
u=1 λ2

u

2b

)
. (6.77)

If in addition σi = σj = σk = σl, the preceding distribution reads

v � N

(
0,

2(σii + σij)
2

b

)
. (6.78)
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6.4.3 Overall model test

Let us now obtain the overall model test for the multivariate model. Under the null
hypothesis the stochastic model reads Qvec(Y ) = Σ ⊗ Q, in which we only consider that
Σ is known. Under the alternative hypothesis the covariance matrix is fully unknown (see
e.g. equation (5.139)).

Σ = Σ0 known In multivariate model we need to obtain T df where df is defined as

df = rb(rb+1)
2

. We can extend example 5.7 and equation (5.145) for a multivariate model.

We should substitute ê ← vec(Ê), Q−1
y ← Σ−1 ⊗ Q−1, and b ← rb. One will then obtain

T df =
1

2
tr(Σ−1Ê

T
Q−1Ê) tr(Σ−1Ê

T
Q−1Ê) − tr(Σ−1Ê

T
Q−1Ê) +

rb

2
, (6.79)

which can have a complicated distribution. However, if we use the function T rb =√
2T df − rb + 1 + 1, it then follows that

T rb = tr(Σ−1Ê
T
Q−1Ê), (6.80)

which is distributed as T rb ∼ χ2(rb, 0).



GPS Geometry-Free Model 7
7.1 Introduction

The geometry-free observation model is one of the simplest approaches to integer GPS
double differenced ambiguity estimation. This linear model dispenses with geometric a
priori information and parameterizes the GPS observations simply in carrier-phase ambigu-
ities and satellite-receiver ranges. Although simple, this parameterization does imply that
an adjustment according to the geometry-free observation model does not allow a direct
estimation of the baseline coordinates. It is therefore not the common mode of operation
for surveying applications.

Of the two basic GPS observation types, namely carrier-phase and pseudorange observa-
tions, phase observations are greatly the more precise. Although more precise, carrier-phase
observations are inherently biased by unknown integer numbers of carrier wavelengths which
are called carrier-phase ambiguities. Therefore, the favorable precision of the carrier-phase
observations can only be fully exploited for relative positioning if the ambiguities are esti-
mated and kept fixed at their integer values. In this case, the carrier-phase observations
are corrected on the basis of these estimates (see later on).

In spite of the fact that the geometry-free approach is less well suited for surveying
applications, its use does offer some advantages (see next section). Foremost of these
advantages is the ease with which the geometry-free observation model can be implemented
in computer code. This ease stems from the linearity of the observation model and its
independence of satellite orbit information. In addition, the geometry-free observation
model is also very versatile, as it will allow the estimation of ambiguities even if observations
to only two satellites are available and even if both receivers are moving. Moreover,
ambiguities estimated with the geometry-free model are also known to be free from residual
tropospheric delay in the observations, as these delays are automatically lumped with the
satellite-receiver ranges. Therefore, for some applications, like data analysis and ionosphere
monitoring, the geometry-free approach does have its appeal. Because of these advantages,
the GPS geometry-free model will be used in this chapter as a favorable model for estimation
of (co)variance components via the LS-VCE method. In the following section we consider
the geometry-free approach in more detail. We start with a description of the geometry-free
observation model.

7.2 Functional and stochastic models

The geometry-free observation model consists of two parts: the functional model and
the stochastic model. The functional model relates the observations to the parameters of
interest whereas the stochastic model describes the precision and the mutual correlation be-
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tween the observations. The geometry-free functional model is based on the non-linearized
double differenced (DD) dual frequency pseudorange and carrier-phase observation equa-
tions. Consider two receivers r and j simultaneously observing the same satellites s and
k. Neglecting the dispersive DD ionospheric delay, the double differenced dual frequency
pseudorange observation equations read (Jonkman, 1998)

psk

rj,L
(ti) = ρsk

rj,L(ti) + esk
rj,L(ti) , (7.1)

where (.)sk
rj is an abbreviation for (.)k

rj − (.)s
rj = (.)k

j − (.)k
r − ((.)s

j − (.)s
r), p denotes

the ’observed’ DD pseudoranges on the L1 or L2 frequency, e.g. C1 and P2, ρ denotes
the combination of all non-dispersive effects, L is either L1 or L2 frequency, e denotes
the pseudorange measurement errors on the L1 or L2 frequency, and ti indicates the time
instant or epoch to which the observations refer. The most important difference between
the phase and the code observations is the entry of an integer DD carrier-phase ambiguity
in the phase observation equations. Expressed in units of distance (m) rather then in cycles,
the DD carrier-phase observation equations read

φsk

rj,L
(ti) = ρsk

rj,L(ti) + λLask
rj,L + εsk

rj,L(ti) , (7.2)

where φ denotes the ’observed’ DD carrier-phase on the L1 or L2 frequency, a denotes the
integer carrier-phase ambiguities on the L1 or L2 frequency, and ε denotes the carrier-phase
measurement errors on the L1 or L2 frequency. The dual frequency DD pseudorange and
carrier-phase observation equations can be summarized in the following linear system of
equations:

E{

⎡
⎢⎢⎢⎣

psk
rj,1

(ti)

psk
rj,2

(ti)

φsk

rj,1
(ti)

φsk

rj,2
(ti)

⎤
⎥⎥⎥⎦} =

⎡
⎢⎢⎣

1 0 0
1 0 0
1 λ1 0
1 0 λ2

⎤
⎥⎥⎦
⎡
⎢⎢⎢⎢⎣

ρsk
rj (ti)

ask
rj,1

ask
rj,2

⎤
⎥⎥⎥⎥⎦ , (7.3)

where E denotes the expectation operator; the expectation of the measurement errors is
assumed to be zero. This system of observation equations is referred to as the single
epoch geometry-free functional model. It refers to two receivers simultaneously observing
two satellites. It is of course possible to include, in the functional model, the observations
to more than two satellites or even the observations of more than two receivers. In this
study, however, we will restrict ourselves to the observations of two receivers and to more
than two satellites. The above functional model over K epochs can be summarized in a
convenient vector-matrix notation as (still for two satellites)

E{

⎡
⎢⎢⎣

p
1

p
2

φ
1

φ
2

⎤
⎥⎥⎦} =

⎡
⎢⎢⎣

I 0 0
I 0 0
I uλ1 0
I 0 uλ2

⎤
⎥⎥⎦
⎡
⎣ ρ

a1

a2

⎤
⎦ (7.4)

with u = [1, 1, · · · , 1]T . If one, in one step, obtains a least squares solution of the
above, fixes the double differenced carrier-phase ambiguities to their integer values by
using the least-squares ambiguity decorrelation adjustment (LAMBDA) method (see Teu-
nissen (1993, 1995); Verhagen (2005); Odijk (2002)) and ignores the stochastic behavior
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of the integer valued ambiguities, one, in the next step, will be able to simplify the above
observation equations by subtracting from the observation vector a constant vector, namely[

0 0 λ1ǎ1u
T λ2ǎ2u

T
]T

, with ǎ1 and ǎ2 the least squares integer valued ambiguities.
In this case, only the identity matrices of the design matrix will remain on the right hand
side of the preceding equation.

For a single observation epoch and dual frequency undifferenced pseudorange and carrier-
phase observations, a very simple stochastic model reads

D{y} =

⎡
⎢⎢⎣

σ2
p1

0 0 0
0 σ2

p2
0 0

0 0 σ2
φ1

0
0 0 0 σ2

φ2

⎤
⎥⎥⎦ , (7.5)

where σ2
pi

and σ2
φi

, i = 1, 2 denote the variances of the undifferenced pseudorange and
carrier-phase observables. At this moment, mutual correlation between the observations
is assumed to be absent. Moreover, for the sake of simplicity, in some applications, the
observations on the L1 and L2 frequency are assumed to have a constant precision, i.e.
σ2

p1
= σ2

p2
= σ2

p and σ2
φ1

= σ2
φ2

= σ2
φ. This however may not be the case in general (see

next section); with these assumptions the stochastic model is very poor and immature.
The purpose of this chapter is to come up with a realistic and adequate covariance matrix
of GPS observables in case of a linear and simple geometry-free observation model. We
apply the least squares variance component estimation (LS-VCE) method to the stochastic
part of the geometry-free observation model. The construction of the covariance matrix
(for undifferenced observables) starts from a scaled unit matrix per observation type and
takes place in different steps. In this application, the following six suppositions regarding
the noise of the undifferenced observables are considered:

1. to handle the ill-posedness of the VCE model (specifically for geometry-free model),
the precision of the carrier-phase observables on L1 and L2 is assumed to be identical,

2. the precision of the pseudorange observations is assumed to be different for different
observation types (on different frequencies),

3. the observables on the L1 and L2 frequency may or may not be correlated,

4. satellite elevation dependence of the observables precision will in part be considered,

5. time correlation of the observables is assumed to be absent (this may not be true for
some observation types for particular receivers), and

6. the correlation between different channels/satellites is assumed to be absent for all
observation types.

For detailed discussions on the noise characteristics of the GPS observables we refer to
Langley (1997); Tiberius et al. (1999).
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7.3 Sophisticated stochastic models

7.3.1 Satellite elevation dependence

If, in addition to the satellites s and k, we now assume that the receivers r and j are also
simultaneously tracking the satellite l, the other DD pseudorange reads

psl

rj,L
(ti) = ρsl

rj,L(ti) + esl
rj,L(ti) , (7.6)

in which satellite s has been considered as reference. Assuming that the correlation between
channels is absent for each observation type, one can consider different precisions for
different channels. The covariance matrix of the undifferenced pseudorange observables
then reads (two receivers)

Qy = diag(σ2
ps

σ2
ps

σ2
pk

σ2
pk

σ2
pl

σ2
pl
) . (7.7)

Applying the error propagation law to the DD pseudoranges yields

QD
y = JQyJ

T = 2

[
σ2

ps
+ σ2

pk
σ2

ps

σ2
ps

σ2
ps

+ σ2
pl

]
, (7.8)

where

J =

[
1 −1 −1 1 0 0
1 −1 0 0 −1 1

]
. (7.9)

One can simplify the above covariance matrix if one assumes the same precision for different
channels, i.e. σ2

ps
= σ2

pk
= σ2

pl
= σ2

p. Therefore, if one neglects the satellite elevation
dependence of GPS observation precision, one can estimate only one variance component
σ1 (a scale) for each observation type

QD
y =

[
4σ2

p 2σ2
p

2σ2
p 4σ2

p

]
σ1 , (7.10)

when the initial value of the pseudorange precision, σp = 30 cm, has been included in the
cofactor matrix. In general, however, one needs to estimate 3 variance components for
each observation type

QD
y =

[
2σ2

p 2σ2
p

2σ2
p 2σ2

p

]
σs +

[
2σ2

p 0
0 0

]
σk +

[
0 0
0 2σ2

p

]
σl (7.11)

In other words, instead of estimating just one variance component, one can estimate differ-
ent variance components for different satellites (or channels) observed at different elevation
angles. The above structure can be employed for all observation types (e.g. for code and
phase observations on L1 and L2).

7.3.2 Correlation between observation types

We now want to consider the correlation between different observation types. For the sake
of simplicity, one can ignore the satellite elevation dependence of the observables preci-
sion. When dealing with four observation types, one needs to estimate 10 (co)variance
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components, namely 4 variances and 6 covariances. As an example, consider the follow-
ing covariance matrix for two types of undifferenced observations (e.g. single frequency),
namely pseudorange and carrier phase (as before, 2 receivers simultaneously tracking 3
satellites)

Qy =

[
σ2

p I6 σpφI6

σpφI6 σ2
φ I6

]
. (7.12)

From the above 12 observations one can create 4 DD equations; 2 DD pseudorange and 2
DD carrier-phase observation equations. Applying the error propagation law, will give rise
to the following covariance matrix for DD observations:

QD
y =

[
J 0
0 J

] [
σ2

p I6 σpφI6

σpφI6 σ2
φ I6

] [
JT 0
0 JT

]
=

[
σ2

p Q σpφQ
σpφQ σ2

φ Q

]
, (7.13)

where

Q = J JT =

[
4 2
2 4

]
. (7.14)

When we have more satellites, namely k, Q can be generalized as well; qii = 4, qij =
2, i �= j and i, j = 1, 2, . . . , k − 1. Therefore, in general, the following covariance matrix
should be estimated by the LS-VCE method (dual frequency):

QD
y =

⎡
⎢⎢⎣

σ2
p1

Q σp1p2Q σp1φ1Q σp1φ2Q
σp1p2Q σ2

p2
Q σp2φ1Q σp2φ2Q

σp1φ1Q σp2φ1Q σ2
φ1

Q σφ1φ2Q
σp1φ2Q σp2φ2Q σφ1φ2Q σ2

φ2
Q

⎤
⎥⎥⎦ , (7.15)

or

QD
y =

⎡
⎢⎢⎣

σ2
p1

σp1p2 σp1φ1 σp1φ2

σp1p2 σ2
p2

σp2φ1 σp2φ2

σp1φ1 σp2φ1 σ2
φ1

σφ1φ2

σp1φ2 σp2φ2 σφ1φ2 σ2
φ2

⎤
⎥⎥⎦⊗ Q = Σ ⊗ Q , (7.16)

where ⊗ denotes the Kronecker product of two matrices. In our investigations, the initial
values (undifferenced) σφi

= 0.003 m and σpi
= 0.3 m, i = 1, 2 have also been included in

Q matrices. In other words, the Q matrices above have the same structure but, in general,
different scales. Therefore, the above equation is just symbolically correct.

With four observation types, one needs to estimate 10 (co)variance components, namely
4 variances and 6 covariances. Strictly speaking not all unknown components are estimable.
The maximum number of estimable parameters is 6, e.g. 4 variances and 2 covariances or
just 6 covariances, etc (see example 4.10). The other problem as to the estimability is due
to the fact that two observation types are much more precise than the others, namely carrier
phase when compared to the pseudoranges. This will cause the problem to be ill-posed for
the geometry-free model. That is, the estimated components of the precise observations
are highly correlated and poorly estimable. To handle the problem, one can assume the
same variance for both carrier-phase observations on L1 and L2. It should be noted, when
dealing with 4 observation types as with GPS, only 3 components are precisely estimable,
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namely one (co)variance component for carrier-phase observations and two (co)variance
components for pseudorange observations. When we deal with 5 observation types, e.g.
φ1, φ2, C1, P1, and P2, 7 components are precisely estimable, namely 1 (co)variance
component for carrier-phase observations and all 6 (co)variance components of the code
observations.

7.3.3 Time correlation of observables

We concentrate here on the off-diagonal elements (covariances) in the K m × K m co-
variance matrix of one GPS observation type over K epochs, i.e. the covariance between
epochs or time correlation, instead of between observation types. For the reason of con-
venience, assume only two epochs of observations for one observation type (as before,
2 receivers simultaneously tracking 3 satellites). The covariance matrix of undifferenced
observables then reads

Qy =

[
σ2

(1) I6 σ(12)I6

σ(12)I6 σ2
(2) I6

]
, (7.17)

in which σ2
(1) and σ2

(2) are the variance components of the first and second epoch, respec-
tively and σ(12) is the covariance between the two epochs. Applying the error propagation
law will bring about the following covariance matrix for DD observations:

QD
y =

[
J 0
0 J

] [
σ2

(1) I6 σ(12)I6

σ(12)I6 σ2
(2) I6

] [
JT 0
0 JT

]
=

[
σ2

(1) Q σ(12)Q

σ(12)Q σ2
(2) Q

]
, (7.18)

where again

Q = J JT =

[
4 2
2 4

]
. (7.19)

If we have k satellites, Q can be generalized as qii = 4, qij = 2, i �= j and i, j =
1, 2, . . . , k−1. Therefore, in general, for K epochs, the following covariance matrix should
be estimated by the LS-VCE method:

QD
y =

⎡
⎢⎢⎢⎣

σ2
(1) Q σ(12)Q · · · σ(1K)Q

σ(12)Q σ2
(2) Q · · · σ(2K)Q

...
...

. . .
...

σ(1K)Q σ(2K)Q · · · σ2
(K) Q

⎤
⎥⎥⎥⎦ , (7.20)

or

QD
y =

⎡
⎢⎢⎢⎣

σ2
(1) σ(12) · · · σ(1K)

σ(12) σ2
(2) · · · σ(2K)

...
...

. . .
...

σ(1K) σ(2K) · · · σ2
(K)

⎤
⎥⎥⎥⎦⊗ Q . (7.21)

The above structure can be employed for all different observation types. The preced-
ing covariance matrix contains K(K + 1)/2 (co)variance components, K variances and
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K(K − 1)/2 covariances. Since the observations are usually equidistant in time, assum-
ing stationarity of the GPS observations implies that the elements on the negative-sloping
diagonals of the above equation should be equal (a symmetric Toeplitz matrix). In this
case the (co)variance component σ(ij) is a function of the time difference τ = |j − i|,
namely σ(ij) = στ = σ|j−i|. Therefore, the number of auto-(co)variance components will
get reduced to K. The reader is referred to Tiberius and Kenselaar (2003).

7.4 Multivariate linear model

The LS-VCE model is a powerful method for the estimation of the stochastic model para-
meters. However, the computational burden of this method is still a challenging problem.
The procedure proposed in this section aims to reduce the computational load and memory
usage. For the GPS geometry-free model one can estimate the (co)variance components
by using only a few epochs of observations. However, to improve the precision of the es-
timates one usually likes using all available observations. Because of the special structure
of the covariance matrix of observations and the design matrix, the final estimates can be
easily obtained. To this end, consider the following model of observation equations with
unknown (co)variance components:

E{y} = Ax, Q =

p∑
k=1

σkQk (7.22)

with y the m × 1 vector of observables, A the m × n design matrix, x the n × 1 vector
of unknowns, Q the m × m covariance matrix of observables, Qk the m × m cofactor
matrices, and σk the unknown (co)variance components to be estimated. Now this model
is repeated r times α = 1, . . . , r, where the unknown parameters are allowed to vary
between the groups. Moreover, the measurements of different groups are assumed to be
uncorrelated. This model can, for example, be applied to the geometry-free observation
model when first the observations are split into r groups or categories, second the time
correlation of observables is absent, and third the statistical behavior of the integer DD
carrier-phase ambiguities is ignored and they are kept fixed. Such a multivariate model
(repeated model) is of the form

E{

⎡
⎢⎢⎢⎣

y(1)

y(2)

...
y(r)

⎤
⎥⎥⎥⎦} =

⎡
⎢⎢⎣

A 0 · · · 0
0 A · · · 0
...

...
. . .

...
0 0 · · · A

⎤
⎥⎥⎦
⎡
⎢⎢⎢⎣

x(1)

x(2)

...
x(r)

⎤
⎥⎥⎥⎦ , Qy =

⎡
⎢⎢⎣

Q 0 · · · 0
0 Q · · · 0
...

...
. . .

...
0 0 · · · Q

⎤
⎥⎥⎦ (7.23)

with y(i) and x(i) the observable vector and the unknown vector of group i, respectively.
The same design matrix A appears for each group, but the unknowns in x are allowed to
vary from group to group. One can prove that the final estimates are obtained by averaging
the groupwise estimates

σ̂ =
1

r

r∑
i=1

σ̂(i), or σ̂k =
1

r

r∑
i=1

σ̂
(i)
k , k = 1, . . . , p (7.24)

with the covariance matrix

Qσ̂ =
1

r
N−1 (7.25)
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where N is the normal matrix of a single group. Note that if certain (co)variance com-
ponents can not be estimated in a single model (which is sometimes the case for the
geometry-free model), they can never be estimated if the model is repeated r times.

When a model repeats every 1 sec, collecting 10 (10 is arbitrary) secs of these data
in one group (a 10-epoch group) is repeated every 10 secs. For the multivariate model
introduced above, we now assume that the covariance matrix Q is the same for all 10-epoch
groups as in equation (7.23). This is our strategy for handling a full hour of GPS data.

7.5 Presentation and interpretation of results

The estimates obtained should be presented as clearly as possible. For this purpose, usually
visualizing techniques are very appealing. Apart from that, when dealing with numbers,
it is more convenient to demonstrate the numerical estimates in such a way that they
are readily understandable. For example, if our original observations are expressed in unit
of meter (m), then the (co)variance components estimated by LS-VCE will be expressed
in unit of m2 and the variance of these estimators in m4. It may not be convenient to
deal with m2 and m4. In this section it is intended to derive simple formulas for standard
deviation estimators and correlation coefficients as well as their precision only for the reason
of presentation. Let σ̂2

i = σ̂ii and σσ̂2
i

= σσ̂ii
be the variance estimator and its standard

deviation, respectively. They are both expressed in units of m2. To extract the more
convenient indicators, let us apply the square root to the variance estimator which gives
the standard deviation estimator expressed in units of meters. To obtain the precision of
this estimator, consider the following equation:

σ̂i =
√

σ̂2
i =
√

σ̂ii. (7.26)

It is now possible to derive the precision of the variable σ̂i, namely σσ̂i
, using the error

propagation law for non-linear functions. One can simply show that the precision of the
standard deviation estimate can be approximated using the following equation:

σσ̂i
≈ σσ̂2

i

2σ̂i

=
σσ̂ii

2σ̂i

(7.27)

where both σ̂i and σσ̂ii
are given.

For correlation coefficients, assume that we are given the covariance estimate σ̂ij (m2)
and its precision σσ̂ij

(m2) and two variance estimates σ̂ii (m2) and σ̂jj (m2) with their
precision σσ̂ii

(m2) and σσ̂jj
(m2). In addition to the standard deviations of the estimates,

there are also covariances between estimates. The 3×3 matrix Qij
σ̂ denotes the covariance

matrix of the estimates. In practice, it is more convenient to present the correlation
coefficient instead of the covariance estimate

ρ̂ =
σ̂ij

σ̂i σ̂j

=
σ̂ij√

σ̂ii

√
σ̂jj

(7.28)

To obtain the variance of the correlation coefficient ρ̂ij, one needs to apply the error
propagation law to the linearized form of the preceding equation which yields σ2

ρ̂ = JQij
σ̂ JT ,

where J is the Jacobian vector given in equation (6.27). If we assume that the (co)variance
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Figure 7.1: Sky plot (azimuth versus elevation) of ten satellites, indicated by their PRN numbers,
on April 9, 1999 for Delfland, the Netherlands.

estimates are statistically uncorrelated (Qij
σ̂ is diagonal), the precision of the correlation

coefficient simplifies to

σρ̂ ≈ ρ̂

[(
σσ̂i

σ̂i

)2

+

(
σσ̂j

σ̂j

)2

+

(
σσ̂ij

σ̂ij

)2
]1/2

(7.29)

where σσ̂i
is given in equation (7.27), and so is σσ̂j

.

7.6 Numerical results

7.6.1 Experiment description

The goal here is not to measure the performance of a particular GPS receiver but instead
the sole aim is to apply the LS-VCE method to real data and interpret the results. A
data set was obtained from the Delfland 99 campaign, carried out by the MGP group of
TU Delft in an open meadow area near Delft, the Netherlands. A 1 hour Ashtech Z-XII3
and Trimble 4000 SSi zero baseline data set from April 9, 1999 was considered (08:00:00-
08:59:59 UTC), with 10 and 8 satellites, five and four observation types, respectively, i.e.
C1-P1-P2-L1-L2 and C1-P2-L1-L2, and a 1 sec interval. In the sequel, for the reason of
convenience, the receivers are simply called ’Ashtech receiver’ and ’Trimble receiver’. The
total number of epochs is K = 3600. The sky plot for this campaign is given in figure 7.1.
For the Trimble receiver, the satellites PRN 30 and 25 have not been considered in our
evaluations. It is mainly because this receiver has only 9 channels to track the satellites,
and the data for satellite PRN 30 was not complete in the above time span.

The results presented here concern zero baselines. Two receivers were connected to
the same antenna. The antenna amplifier is responsible for a (large) part of the noise,
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and with only one amplifier this noise is common to both receivers, which may cause too
optimistic outcomes concerning the level of measurement noise. In general, when measuring
an ordinary baseline with two receivers and antennas at separate locations, other effects
like atmospheric and multipath effects will also play an important role. For a brief but
comprehensive review see Bona and Tiberius (2000).

The estimated (co)variance components for both receivers over 3600 epochs divided into
360 10-epoch groups will be presented. Five observation types have been processed for
Ashtech receiver, i.e. carriers L1 and L2 and codes C1, P1 and P2. Also, four observation
types have been considered for Trimble receiver, i.e. carriers L1 and L2 and codes C1 and
P2. Our conclusion regarding implementation of LS-VCE is that only 2, 3 or 4 iterations
are needed to obtain converged variance components. The results presented here, for
all observation types, are given for the last iteration (after convergence). In all graphs,
the estimates are given for each of the 360 groups. The mean values are also presented
based on equation (7.24). The final variances can be obtained by multiplying the mean
estimates with their a-priori values 302 cm2 and 32 mm2 for undifferenced code and phase
observations, respectively. These a-priori values turned out to be too large for the data
of this zero baseline, resulting in small unit variance components (less then one). The
estimates that include also the a-priori values are given in the tables.

Because of the special structure of the model, the estimation of two individual variance
components for L1 and L2 carrier-phase data would cause the problem to be ill-posed. The
ill-posedness will be removed if we estimate one single variance component instead (e.g. if
we assume that the precision of L1 and L2 phase observables is the same).

7.6.2 Variances of observation types

Float ambiguity

For each group, in the functional model, the ambiguities have been considered as float
unknown parameters. That is, based on the observation of that group, the float ambiguities
are used to estimate the variance components (the ambiguities have not been kept fixed but
float as estimated). Actually, in this case, the simple averaging of the estimates over 360
groups may not be correct because the structure of the functional model is not identical to
equation (7.23). The design matrix A has a structure similar to equation (7.3). The goal
is to estimate one variance component for each observation type in each group neglecting

Obs. Type σ̂2 (mm2) σσ̂2 (mm2) σ̂ (mm) σσ̂ (mm)

L1/L2 0.10 0.001 0.32 0.001
C1 1336.39 10.07 36.56 0.140
P1 52229.84 374.28 228.54 0.820
P2 56690.70 405.38 238.10 0.850

L1/L2 0.12 0.001 0.34 0.001
C1 4475.55 27.77 66.90 0.210
P1 49637.10 359.94 222.79 0.810
P2 54232.85 395.03 232.88 0.840

Table 7.1: Variance and standard deviation estimates of phase and code observations (all satellites)
as well as their precision for Ashtech receiver; float ambiguities (top); fixed ambiguities (bottom).
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Obs. Type σ̂2 (mm2) σσ̂2 (mm2) σ̂ (mm) σσ̂ (mm)

L1/L2 0.09 0.0006 0.29 0.001
C1 8882.24 77.46 94.25 0.410
P2 24054.40 158.74 155.09 0.510

Table 7.2: Variance and standard deviation estimates of phase and code observations (all satellites)
as well as their precision for Trimble receiver (fixed ambiguities).
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Figure 7.2: Groupwise variance components estimated for two types of GPS observations with
fixed ambiguities (all satellites); Ashtech receiver (top); Trimble receiver (bottom); L1 and L2 phase
(left); and P2 code (right).

the satellite elevation dependence of the observables precision, the time correlation, the
covariance between channels, and the covariance between different observation types. To
overcome the ill-posedness problem, we just estimate one single variance component for
the L1 and L2 carrier-phase data.

Table 7.1 (top) gives the variance σ̂2 and the standard deviation σ̂ estimates as well as
their precision. The results indicate that the noise of GPS observations is at sub-millimeter
level (0.3 mm), centimeter level (3.6 cm) and decimeter level (2.3-2.4 dm) for phase, C1,
and P1 and P2, respectively. The precision of these estimates are at micrometer level,
sub-millimeter level, and millimeter level, respectively. The estimated standard deviation of
phase observations (combined L1 and L2) is about 0.3 mm which may look very optimistic.
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This is only because we are here dealing with a zero baseline in which mainly the receiver
noise is present.

Fixed ambiguity

In the sequel, the ambiguities are kept fixed using the LAMBDA method. The LAMBDA
method is described by Teunissen (1995). Therefore, all our subsequent results will be
presented on the basis of fixed ambiguities. The success rate of the integer least squares
ambiguity estimation is good enough to ignore the randomness of the integer estimators.
Using 300 epochs of observations and taking advantage of LAMBDA method, the DD
carrier-phase ambiguities are kept fixed. Now the same procedure is employed but this
time with fixed ambiguities. The vector of observations has been therefore corrected for
the integer ambiguities. The goal is to estimate one variance component for each obser-
vation type neglecting the satellite elevation dependence of the observables precision, the
time correlation, the covariance between channels, and the covariance between different
observation types.

Figure 7.2 (top) shows the groupwise estimate of variance components using the full
hour of the data for the L1/L2 phase and P2 code observations of the Ashtech receiver; the
estimated components, when multiplied with their initial values in the cofactor matrices,
will give the final estimates. Table 7.1 (bottom) gives the variance and standard deviation
estimates as well as their precision. Again, the results indicate that the noise of GPS
observations is at sub-millimeter level, centimeter level, and decimeter level for phase, C1,
and P1 and P2, respectively. The precision of these estimates are at micrometer level,
sub-millimeter level, and millimeter level, respectively. The only difference with the results
of the float ambiguities is related to the precision of C1 code observables which increases
from 37 mm to 67 mm . The other estimates remain the same approximately.

Figure 7.2 (bottom) shows the groupwise estimate of variance components of the L1/L2
phase and P2 code observations for the Trimble receiver. Note that the estimated variance
components grow up at the end of the graphs. It is likely because satellite PRN 09 is setting
and has a low elevation angle (nearly 10◦). This cannot, however, be seen for the Ashtech
receiver. It is likely due to the antenna pattern, which has a significant influence on the
noise level (e.g. at low elevation angles). Table 7.2 gives the variance and standard deviation
estimates as well as their precision for the Trimble receiver. The noise of observables is at
sub-millimeter level (0.3 mm), centimeter level (9.4 cm) and decimeter level (1.6 dm) for
phase, C1 and P2, respectively. The results show that the P2-code observations are more
precise than those of Ashtech receiver; but this is not the case for the C1-code observations.
The precision of the estimates are at micrometer and millimeter level for phase and code
observations, respectively.

7.6.3 Covariances between code observations

In this subsection, in addition to the variances, the covariances between code observation
types have been estimated, namely 4 variance components and 3 covariance components.
The satellite elevation dependence of the observables precision, the time correlation and
the covariance between channels are disregarded.

Figure 7.3 shows the groupwise estimates of the covariance components between C1 and
P2 using the data from Ashtech receiver. The graph at right shows the groupwise estimate
of correlation coefficients. As can be seen, these coefficients are estimated around zero
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Obs. Type σ̂2 (mm2) σσ̂2 (mm2) σ̂ (mm) σσ̂ (mm)

L1/L2 0.12 0.0008 0.34 0.001
C1 4475.55 26.45 66.90 0.200
P1 49637.11 341.56 222.79 0.770
P2 54232.85 373.62 232.88 0.800

L1/L2 0.11 0.0027 0.34 0.004
C1 4636.20 107.06 68.09 0.790
P1 50109.20 1133.06 223.85 2.530
P2 54547.06 1255.66 233.55 2.690

Table 7.3: Variance and standard deviation estimates as well as their precision for Ashtech receiver
when considering all (co)variance components in stochastic model (all satellites); 1 second interval
(top); 10 second interval (bottom).

Between σ̂ij (mm2) σσ̂ij
(mm2) ρ̂ij σρ̂ij

P1 – P2 324.79 255.31 0.006 0.005
P1 – C1 12.89 69.87 0.001 0.004
P2 – C1 114.84 72.89 0.007 0.005

P1 – P2 -327.77 849.99 -0.006 0.016
P1 – C1 176.32 248.44 0.012 0.016
P2 – C1 59.70 262.08 0.004 0.017

Table 7.4: Covariance and correlation (σ̂ij and ρ̂ij) estimates of code observations with their pre-
cision for Ashtech receiver when considering all (co)variance components in stochastic model (all
satellites); 1 second interval (top); 10 second interval (bottom).

and they will be averaged out. Therefore, the correlation between code observations C1
and P2 for the Ashtech receiver is not significant.

Having averaged over 360 groups, table 7.3 (top) gives the variance and standard de-
viation estimates as well as their precision. The variance components computed by this
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Figure 7.3: Estimated covariances (left) and correlation coefficients (right) between C1 and P2 code
observations for Ashtech receiver.
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Figure 7.4: Estimated covariances (left) and correlation coefficients (right) between C1 and P2 code
observations for Trimble receiver.

Between σ̂ij (mm2) σσ̂ij
(mm2) ρ̂ij σρ̂ij

P2 – C1 5649.11 90.53 0.387 0.007

Table 7.5: Covariance and correlation (σ̂ij and ρ̂ij) estimates between code observations as well as
their precision for Trimble receiver.

method coincide with the results when we do not include the covariances in the model (see
table 7.1 (bottom)). This implies that the estimated correlation may not be significant.
Table 7.4 (top) gives three estimated covariance components and correlation coefficients
along with their precision for different code observation types of the Ashtech receiver. The
estimated correlation coefficients are at the level of their precision and thus not significant.

We now concentrate on the effect of time correlation on the estimates for the Ashtech
receiver. Instead of 1 second intervals, we used 10 second intervals. The 10-epoch groups
are performed using these 10-second interval epochs. Therefore, the number of observations
gets reduced by a factor of 10 (the number of groups is 36 instead of 360). The observations
within these groups are assumed to be relatively uncorrelated in time. Again, satellite
elevation dependence of the observables precision, time correlation and the covariance
between channels are disregarded. The previous structure in which we estimated variance
and covariance components simultaneously, has now been employed here, i.e. 4 variance
components and 3 covariance components. Tables 7.3 and 7.4 (bottom) give the results.
The (co)variance components obtained here nearly coincide with those when we took all
observations into account. This implies that the one-second interval GPS observations for
the Ashtech receiver are not severely correlated in time.

For the Trimble receiver, we have only 4 observation types and not 5. We have therefore
some restrictions for estimation of the (co)variance components. For example, in case of
C1 and P2 code observations, only 2 (co)variance components are precisely estimable
and not 3. To handle this problem, one can consider only one variance component for
C1 and P2 pseudorange observables and try to estimate it in addition to the covariance.
Since the C1 and P2 code observations have different precision (see previous subsection),
the aforementioned estimated components have been also included in the related cofactor
matrix.

Figure 7.4 (left) shows the groupwise estimates σ̂ of the covariances between C1 and P2
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Figure 7.5: Groupwise variance components of satellites PRN 30, 05, and 09 estimated for L1/L2
phase (left) and P2 code (right) observables (Ashtech receiver); 3 individual components (top); 2
components (bottom).

for Trimble receiver. The graph at right shows the corresponding correlation coefficients.
These coefficients are estimated around 0.4 and they will not be averaged out. Therefore,
the correlation between C1 and P2 code observations for the Trimble receiver is significant.
Table 7.5 gives the estimated covariance component and correlation coefficient, as well as
their precision, between C1 and P2 code observations. The correlation coefficient ρ̂ = 0.39
is significant when compared to its precision.

7.6.4 Single channel variances

To evaluate the satellite elevation dependence of the GPS observable precision, we used
the structure introduced in equation (7.11). The observations from 3 satellites have been
employed, namely satellites PRN 30, 05 and 09 for Ashtech receiver and satellites PRN 05,
29 and 09 for Trimble receiver.

The graphs in figure 7.5 (top) show the groupwise estimates of variance components
using the data (L1/L2 phase and P2 code) of the satellites PRN 30, 05 and 09 for Ashtech
receiver. The variance components estimated for satellite PRN 09, which is descending
and has the lowest elevation angle, are larger than those estimated for satellites PRN 30
and 05. Also, when the elevation angle decreases, a positive trend is observed (for the
last groups, on average, the estimated variance components are larger than those of the
first groups). Another point is that the variance components estimated for satellites PRN
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Figure 7.6: Groupwise variance components of satellites PRN 05, 29 and 09 estimated for L1/L2
phase (left) and P2 code (right) observables (Trimble receiver).

Obs. Type Sat. No. σ̂2 (mm2) σσ̂2 (mm2) σ̂ (mm) σσ̂ (mm)

L1/L2 PRN 30 0.01 0.0006 0.12 0.003
L1/L2 PRN 05 0.01 0.0006 0.11 0.003
L1/L2 PRN 09 0.17 0.0017 0.42 0.002
C1 PRN 30 644.89 10.66 25.39 0.210
C1 PRN 05 1044.91 11.52 32.32 0.180
C1 PRN 09 6045.99 27.57 77.76 0.180
P1 PRN 30 2485.71 179.61 49.86 1.800
P1 PRN 05 2389.67 175.77 48.88 1.800
P1 PRN 09 72991.71 706.83 270.17 1.310
P2 PRN 30 2923.95 196.79 54.07 1.820
P2 PRN 05 2683.99 195.72 51.81 1.890
P2 PRN 09 80241.34 798.95 283.27 1.410

Table 7.6: Variance and standard deviation estimates along with their precision for different obser-
vation types of satellites PRN 30, 05, and 09 (Ashtech receiver).

30 and 05 are (highly) negatively correlated. This can also be seen from the correlation
matrix of the estimates since the correlation coefficients of variance components between
satellites PRN 30 and 05 are ρ̂φ = −0.85, ρ̂p1 = −0.93, ρ̂p2 = −0.93 and ρ̂c1 = −0.79.
This implies that the precision of the data of the satellites PRN 30 and 05 is nearly the
same. This makes sense since they both have high elevation angles.

Table 7.6 gives the numerical results. The results indicate that the noise of satellites
PRN 30 and 05 observations is about 0.1 millimeter, 3 centimeters and 5 centimeters
level for phase, C1, and P1 and P2, respectively. The precision of these estimators are
at micrometer level, sub-millimeter level, and millimeter level, respectively. The noise of
satellite PRN 09 observations, with the lowest elevation angle, is about 0.4 millimeter, 8
centimeters, and 27-28 centimeter level for phase, C1, and P1 and P2, respectively. The
precision of these estimators is at micrometer level, sub-millimeter level, and millimeter
level, respectively.

To get rid of the high correlation between the estimates of the variance components,
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Obs. Type Sat. No. σ̂2 (mm2) σσ̂2 (mm2) σ̂ (mm) σσ̂ (mm)

L1/L2 PRN 30, 05 0.01 0.0002 0.11 0.001
L1/L2 PRN 09 0.17 0.0019 0.42 0.002
C1 PRN 30, 05 844.90 5.82 29.07 0.100
C1 PRN 09 6045.99 40.79 77.76 0.260
P1 PRN 30, 05 2437.69 39.34 49.37 0.400
P1 PRN 09 72991.69 829.72 270.17 1.540
P2 PRN 30, 05 2803.97 43.39 52.95 0.410
P2 PRN 09 80241.33 914.21 283.27 1.610

Table 7.7: Variance and standard deviation estimates along with their precision for different obser-
vation types of satellites PRN 30, 05, and 09 (Ashtech receiver).

Obs. Type Sat. No. σ̂2 (mm2) σσ̂2 (mm2) σ̂ (mm) σσ̂ (mm)

L1/L2 PRN 05 0.04 0.0008 0.20 0.002
L1/L2 PRN 29 0.03 0.0008 0.18 0.002
L1/L2 PRN 09 0.68 0.0012 0.83 0.001
C1 PRN 05 2365.62 121.62 48.64 1.250
C1 PRN 29 6181.53 144.74 78.62 0.920
C1 PRN 09 15803.42 206.17 125.71 0.820
P2 PRN 05 1809.15 201.77 42.53 2.370
P2 PRN 29 13308.06 196.41 115.36 0.850
P2 PRN 09 105857.73 394.76 326.36 0.610

Table 7.8: Variance and standard deviation estimates along with their precision for different obser-
vation types of satellites PRN 05, 29, and 09 (Trimble receiver).

one may think of using one variance component for each observation type for high elevation
satellites, i.e. satellites PRN 30 and 05 with the Ashtech receiver. Again, the structure
introduced in equation (7.11) was employed; but the first and second cofactor matrices are
lumped together in one term and so are their variance components.

The graphs at bottom in figure 7.5 show the groupwise estimates of variance components
using the full hour of data (L1/L2 phase and P2 code) of satellites PRN 30, 05 and 09
for the Ashtech receiver. For satellite PRN 09 the same results as before are obtained.
Again, when the elevation angle decreases, a positive trend has been observed. Another
point which can be clearly seen from the figures is that the combined variance components
estimated for satellites PRN 30 and 05 are modestly smoothed. Actually, it seems that the
combined variance component estimates are nothing else but the simple arithmetic mean
of the two previous components (cf. graphs at top).

Table 7.7 gives the numerical results. Again, the same conclusion as above is logical (cf.
table 7.6). The results indicate that the noise of satellites PRN 30 and 05 observations is
about 0.1 millimeter, 3 centimeters and 5 centimeters level for phase, C1, and P1 and P2,
respectively. The noise of satellite PRN 09 observations, with the lowest elevation angle,
is about 0.4 millimeter, 8 centimeters and 27-28 centimeters for phase, C1, and P1 and
P2, respectively.

The same procedure can be done for the Trimble receiver, but with the data of satellites
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PRN 05, 29 and 09. Two graphs in figure 7.6 show the groupwise estimates of variance
components using data (L1/L2 phase and P2 code) of satellites PRN 05, 29 and 09 for
the Trimble receiver. It goes without saying that the variance components computed for
satellite PRN 09, which has the lowest elevation angle, are larger than those estimated for
satellites PRN 05 and 29. Also, when the elevation angle decreases, a positive trend can
be observed. Another point which can be clearly seen from the figures is that the variance
components estimated for satellites PRN 05 and 29 are negatively correlated. This can also
be verified from the correlation matrix of the estimators since the correlation coefficients
between satellites PRN 05 and 29 are ρ̂φ = −0.70, ρ̂p2 = −0.67 and ρ̂c1 = −0.63. This
implies that the precision of the data of the satellites PRN 30 and 05 is nearly the same.
This also makes sense since they both have high elevation angles.

Table 7.8 gives the numerical results. The results indicate that the noise of satellites
PRN 05-29-09 observations is about 0.2-0.2-0.8 millimeter, 5-8-13 centimeters and 4-12-33
centimeters for phase, C1, and P2, respectively. The precision of these estimators are at
micrometer level and millimeter level, respectively.

7.7 Summary and conclusions

This chapter dealt with the application of least squares variance component estimation
(LS-VCE) on real GPS data. The LS-VCE method was applied to the GPS geometry-
free observation model. This model is linear and can be easily implemented in computer
code. Mainly, the satellite elevation dependence of the GPS observables precision and
the correlation between different observation types were considered. On the basis of the
numerical results, it is concluded that the variance of a GPS observable generally depends
on the elevation of the satellite. Also, significant correlation can occur between different
observation types, e.g. between the C1 and P2 codes. This can be a good motivation to
study the GPS stochastic model in more detail.

The huge number of observations in case of GPS is always an advantage when estimat-
ing the stochastic model parameters; the larger the redundancy of the functional model,
the better the precision of the estimates in the stochastic model. Note that, however,
when dealing with large amounts of GPS data, the computation burden will be drastically
increased. One may think of some efficient techniques to do so. For this purpose, the
multivariate observation equation model was used in which the observations are divided
into small groups.

In this chapter we employed the GPS geometry-free observation model. The GPS
geometry-based model rather than the geometry-free model is likely more fruitful. For
example, the redundancy of the geometry-based model is larger than that of the geometry-
free model.
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8.1 Introduction

Continuous GPS measurements have been used now nearly 15 years for estimation of crustal
deformation. Station positions are determined with respect to an earth-fixed terrestrial ref-
erence system. Geophysical studies using geodetic measurements of surface displacement
or strain require not only accurate estimates of these parameters but also accurate error es-
timates. The precision of these estimates is often assessed by their repeatability defined by
the mean squared error of individual coordinate components (i.e. north, east, and vertical)
about a linear trend. Except for the significant episodic deformation, such as large earth-
quakes, a linear trend can be a good representative of the deformation behavior. The site
velocities are usually determined by linear regression of individual coordinate components.
The least-squares technique is used to estimate the line parameters, i.e. the intercept and
the slope (site velocity).

In the ideal case, it is desired that the time series possess only white noise and all
functional effects are fully understood. The noise in GPS coordinate time series turns out
not to be white. Several geodetic data sets have provided evidence for error sources that
introduce large temporal correlations into the data. The ultimate goal of noise-studies
is to come up with a stochastic model which allows one to process the coordinate time
series such that the ’best’ solution (most precise solution together with proper precision
description) of the station positions and site velocities can be determined. An intermediate
goal is therefore to better understand and identify the various noise components of the
stochastic model.

Two techniques have generally been employed to assess the noise characteristics of geo-
detic time series, namely the power spectral method and the maximum likelihood estimation
(MLE) method. The former is aimed to examine the data in the frequency domain while
the latter is used to examine the data covariance matrix in the time (space) domain. The
MLE can estimate the parameters of a noise model effectively in contrast to the classical
power spectra techniques. MLE has generally been used to compute the amount of white
noise, flicker noise and random walk noise in the time series (see e.g. Zhang et al., 1997;
Langbein and Johnson, 1997; Mao et al., 1999; Williams et al., 2004; Langbein, 2004). In
this chapter we employ the least-squares variance component estimation (LS-VCE) method
introduced in chapters 4 and 5.

8.2 Review of previous work

Zhang et al. (1997) processed 19 months of continuous GPS coordinates from 10 sites in
southern California. Using MLE with integer spectral indices, they found that the noise in
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the GPS time series was best described as a combination of white noise and flicker noise.
This combination suggested that the velocity uncertainties should be 3-6 times larger than
those obtained from a pure white noise model. Using the power spectra, the noise was
characterized by a fractal noise process with a spectral index of -0.4. Neglecting this
fractal white noise model, site velocity uncertainties could be underestimated by a factor
of 2-4. In an analogous way, Calais (1999); Mao et al. (1999) processed permanent GPS
coordinates. They found that GPS position time series best fitted a noise model consisting
of both white noise and flicker noise. In global GPS solutions, Williams et al. (2004)
showed that a combination of white and flicker noise is appropriate for all three coordinate
components. In regional GPS solutions, the noise was substantially lower than in global
solutions. Higher-frequency (1–30 s) GPS position time series have also been shown to
contain white plus flicker noise (Bock et al., 2000; Langbein and Bock, 2004).

Several studies have also recognized random walk noise in geodetic data. Random
walk noise was detected in continuous measurements of strainmeters as well as very short
baseline GPS data at Piñon Flat Observatory in southern California (Wyatt, 1982, 1989;
Wyatt et al., 1989; Johnson and Agnew, 2000). Langbein and Johnson (1995, 1997) showed
that the noise in the Electronic Distance Measuring (EDM) data is well characterized by
a combination of white and random walk noise. Random walk noise can be mitigated by
carefully designed monuments. GPS stations deployed in southern California for which the
base is deeply seated and laterally braced can be mentioned as a good sample (Wyatt
et al., 1989; Bock et al., 1997). The random walk amplitude for a very short baseline at
Piñon Flat Observatory is only 0.4 mm/yr1/2 (Johnson and Agnew, 2000). Beavan (2005)
shows that the noise properties of GPS time series for concrete pillar monuments are very
similar to those of deeply drilled braced monuments. Using two-color EDM measurements
in California, Langbein (2004) shows that the random walk noise model is valid for about
30% of the data. In some cases a combination of random walk and band-pass-filtered noise
best characterizes the data.

Site-position time series obtained from continuous GPS arrays show significant seasonal
variations with annual and semiannual periods. Such seasonal deformation is present in
both global and regional GPS coordinate time series (see van Dam et al., 2001; Dong et al.,
2002). The latter examine the nature of the observed annual and semiannual site position
variations using 4.5 years of global continuous GPS time series. Joint contributions from
seasonal surface mass redistribution are the primary causes for the observed annual vertical
variations of site positions. Kusche and Schrama (2005) show that after removing the
atmospheric pressure loading effect, estimated annual variations of continental-scale mass
redistribution exhibit pattern similar to those obtained with GRACE. Ding et al. (2005)
used time series of daily positions of eight co-located GPS and VLBI stations to assess
the seasonal signals using the wavelet transform. Blewitt and Lavallée (2002) showed
that annual signals can significantly bias the site velocity if they are not estimated in the
model. Another important systematic error in GPS time series is the presence of offsets
(jumps). Williams (2003b) discusses offset detection and estimation strategies. The effect
offset estimation has on rate uncertainty depends on the noise characteristics in the series.
Kenyeres and Bruyninx (2004) estimate offsets for coordinate time series in the EUREF
permanent network. Perfetti (2006) applies the Detection Identification Adaptation (DIA)
procedure, suggested by Teunissen (2000b), to permanent GPS time series to detect jumps
and to reject outliers.

This study differs in several ways from previous work. We use the least-squares variance
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component estimation (LS-VCE) method which has attractive and unique features that
we pointed out earlier. First, LS-VCE is generally applicable and can cope with any type
of noise (and with any number of noise components) in the data series. The method
can be implemented in a relatively simple and straightforward manner. Second, using LS-
VCE one can obtain the covariance matrix of the estimators describing the uncertainty of
the (co)variance components. Third, the LS-VCE method is employed to estimate time
correlation assuming that the time series are stationary in time. Fourth, we use the w-test
statistic with which one can simply test the ‘contribution’ of single noise components. One
can thus determine which noise combination is best describing the noise characteristics
of GPS position time series. In the same framework as LS-VCE we then introduce the
least-squares harmonic estimation (LS-HE) method. The goal is to introduce harmonic
functions to capture unmodelled effects in the time series. It is then shown that practically
only white noise remains which is very attractive from the data processing point of view.
Such a duality between the stochastic and functional model is useful to correctly judge on
the amount and behavior of noise.

8.3 Analysis of GPS coordinate time series

This section demonstrates how to estimate the time correlation of GPS coordinate time
series using LS-VCE. We rely on a commonly accepted structure of the functional and
stochastic model. To see an application of LS-VCE, time correlation of a time series is
estimated using a simple expression.

8.3.1 Introduction to noise process

The power spectra, Py, of many geophysical phenomena, including the noise in GPS posi-
tion time series, are well approximated as a power-law process (Mandelbrot, 1983; Agnew,
1992; Mao et al., 1999; Williams, 2003a; Williams et al., 2004). The one dimensional time
behavior of the stochastic process is such that its power spectrum has the form

Py(f) = P0

(
f

f0

)κ

(8.1)

where f is the temporal frequency, P0 and f0 are normalizing constants, and κ is the
spectral index (see e.g. Mandelbrot and van Ness, 1968). Typical spectral index values
lie within [−3, 1]; for stationary processes −1 < κ < 1 and for non-stationary processes
−3 < κ < −1. A smaller spectral index implies a more correlated process and more
relative power at lower frequencies. Special cases within this stochastic process occur at
the integer values for κ. Classical white noise has a spectral index of 0, flicker noise has
a spectral index of -1, and a random walk noise has a spectral index of -2. The power
spectral method can be employed to assess the noise characteristic of GPS time series.

The second way is to use (co)variance component estimation (VCE) methods. The
role of the data series covariance matrix is considered to be an important element with
respect to the quality criteria of the unknown parameters. Therefore, VCE methods are
of great importance. There are many different methods for VCE. For more information
on VCE methods and their applications we refer to chapter 3. The noise components
of GPS coordinate time-series, i.e. white noise, flicker noise and random walk noise, are
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usually estimated by the MLE method which is a well-known estimation principle. The MLE
problem can be solved in several ways (see Kubik, 1970; Koch, 1986; Ou, 1989; Yu, 1996;
Grodecki, 1999, 2001). In time series analysis of GPS coordinates, the MLE is described
by Langbein and Johnson (1997), Zhang et al. (1997), Mao et al. (1999), Calais (1999),
and Williams et al. (2004). They all selected the downhill simplex method developed by
Nelder and Mead (Press et al., 1992). Using expressions given by Sahin et al. (1992), some
authors used a simplified algorithm for VCE (see Davies and Blewitt, 2000; Altamimi et al.,
2002).

In contrast to MLE which gives biased estimators, LS-VCE provides unbiased and min-
imum variance estimators. The unbiasedness property is independent of the (unspecified)
distribution of the data. LS-VCE is also faster than MLE since it iterates in a Newton-
Raphson scheme towards a solution rather than using the downhill simplex which can be
extremely slow (see Press et al., 1992). Another advantage of LS-VCE over downhill sim-
plex method is the possibility of incorporating any number of noise components in the
stochastic model. Using hypothesis testing one can also simply judge in an objective man-
ner which noise components are likely to be present in the series (see sections 8.4.2 and
8.5.4.2).

8.3.2 Functional model

We restrict ourselves to the problem of time correlation estimation for an individual com-
ponent of GPS coordinate time series. In functional model E{y} = Ax, y is the m-vector
of time series observations, e.g. daily GPS positions of one component. Hereinafter it
is denoted by y(t) where t refers to the time instant. When a linear trend describes the
deformation behavior, the functional model will read: E{y(t)} = y0 + r t. When there are
in addition q periodic signals in the data series, the functional model is extended to

E{y(t)} = y0 + r t +

q∑
k=1

ak cos ωkt + bk sin ωkt (8.2)

Two trigonometrical terms cos and sin together represent a sinusoidal wave with in general
a non-zero initial phase. The structure introduced above has the advantage of being linear.
The unknown vector x consists of the intercept y0, the slope r and the coefficients ak and
bk. In case of a linear trend and annual and semiannual signals (q = 2), the design matrix
A is of size m × 6. Its ith row at time instant ti is given as

ai = [1 ti cos 2πti sin 2πti cos 4πti sin 4πti] (8.3)

where ti is expressed in terms of year (yr). In section 8.4.1 we show how to obtain an
appropriate functional model.

8.3.3 Stochastic model

If the time series of GPS coordinates is composed of white noise, flicker noise, and random
walk noise with variances σ2

w, σ2
f , and σ2

rw, respectively, the covariance matrix of the time
series can then be written as (Q0 = 0)

Qy = σ2
wI + σ2

fQf + σ2
rwQrw (8.4)
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where I is the m × m identity matrix, and Qf and Qrw are the cofactor matrices relating
to flicker noise and random walk noise, respectively. The structure of Qy matrix is known
through I, Qf , and Qrw, but the contributions through σw, σf , and σrw are unknown. In
section 8.4.2 we show how to improve an existing stochastic model.

The elements of the flicker noise cofactor matrix Qf can be approximated by (Zhang
et al., 1997)

q
(f)
ij =

{
9
8

if τ = 0
9
8

(
1 − log τ/log 2+2

24

)
if τ �= 0

(8.5)

where τ = |tj − ti|. For evenly spaced data, the matrix Qf is a symmetric Toeplitz matrix
which contains constant values along negative-sloping diagonals. It is important to note
that the Hosking flicker noise covariance matrix which was introduced and used by Williams
(2003a); Langbein (2004); Williams et al. (2004); Beavan (2005) can also be used. The
main difference is a scaling of the amplitudes. Therefore, the flicker noise variances we use
here are roughly one-half the size of those quoted in these papers.

A random walk process is derived by integrating white noise. Random walk noise is
supposed to be zero at initial time t0 . For evenly spaced data, the random walk cofactor
matrix Qrw is expressed as

Qrw = f−1
s

⎡
⎢⎢⎣

1 1 · · · 1
1 2 · · · 2
...

...
. . .

...
1 2 · · · m

⎤
⎥⎥⎦ ; fs =

m − 1

T
(8.6)

where fs is the sampling frequency in yr−1, and T is the total observation span (Johnson
and Wyatt, 1994; Zhang et al., 1997; Mao et al., 1999).

The variance components σ2
w, σ2

f and σ2
rw can now be estimated using the LS-VCE

method.

8.3.4 Misspecification in functional and stochastic model

A discussion on the misspecifications (errors) in the functional and stochastic model is in
place as in practice man’s models of real phenomena will always be misspecified. Concerning
the number of parameters in a model two types of misspecifications can occur: overpara-
metrization and underparameterization. Underparametrization in the functional model will
generally lead to biases in the estimation of x and thus in the results of variance component
estimation (aliasing) for noise assessment. The side effect of underparameterization in the
functional model can also be a misinterpretation in terms of underparameterization in the
stochastic model (see section 8.4.3). Overparametrization in general does not introduce
biases provided the remaining redundancy is such that sufficiently precise estimates of x
(and thus VCE-results) can be obtained. If however overparametrization in the functional
model can seriously affect the noise amplitudes in the stochastic model, this simply means
that the extended part of the functional model is closely related to the stochastic model.
One can therefore expect to see a duality between the functional and stochastic model.

Misspecifications in the stochastic model will not lead to biases in the estimation of x
(after all weighted least-squares is still unbiased). However, underparameterization in the
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stochastic model leads to biases in (co)variance components. This will result in an incorrect
precision description of the estimator x (also losing the ‘best’ property). To discuss the
effect of misspecifications (in fact underparameterization) in the stochastic model, let Qy

be the correct covariance matrix and Q′
y be an incorrect one. If least-squares estimation of

x is done with Q′
y, then x̂ = (AT Q′−1

y A)−1AT Q′−1
y y is still an unbiased estimator of x and

Qx̂ = (AT Q′−1
y A)−1AT Q′−1

y QyQ
′−1
y A(AT Q′−1

y A)−1 (8.7)

is the correct covariance matrix of the estimator x̂. Therefore, if one uses Q′
x =

(AT Q′−1
y A)−1 as the matrix to describe the precision of x̂ one will have an incorrect

precision description which can be too optimistic if Qx̂ ≥ Q′
x, but also too pessimistic if

Qx̂ ≤ Q′
x. Comparisons of precision description of estimates for different stochastic models

are given in section 8.5.6.

8.4 Model identification

8.4.1 Least-squares harmonic estimation (LS-HE)

In this subsection it is aimed to determine an adequate design matrix A for the functional
model through parameter significance testing. For a time series yT = [y

1
, y

2
, ..., y

m
] defined

on R
m, we assume that it can be expressed as a linear trend plus a sum of q individual

trigonometric terms, i.e. E{y(t)} = y0 + r t +
∑q

k=1 ak cos ωkt + bk sin ωkt (see equation
(8.2)). In matrix notation, we may write

E{y} = Ax +

q∑
k=1

Akxk, D{y} = Qy (8.8)

where the design matrix A contains for instance two columns of the linear regression terms
and the matrix Ak consists of two columns corresponding to the frequency ωk of the
sinusoidal function

Ak =

⎡
⎢⎢⎣

cos ωkt1 sin ωkt1
cos ωkt2 sin ωkt2

...
...

cos ωktm sin ωktm

⎤
⎥⎥⎦ and xk =

[
ak

bk

]
(8.9)

with ak, bk and ωk being (un)known real numbers. On the one hand, if the frequencies ωk

are known, one will deal with the most popular (linear) least-squares problem to estimate
amplitudes ak and bk’s. Petrov and Ma (2003) studied harmonic position variations of 40
VLBI stations at 32 known tidal frequencies. They found that the estimates of station
displacements generally agree with the ocean loading computed on the basis of modern
ocean tide models for the main diurnal and semidiurnal tides. On the other hand, if the
frequencies ωk are unknown, the problem of finding these unknown parameters is the task
of least-squares harmonic estimation.

The problem now is to find the set of frequencies ω1, · · · , ωq, and in particular the value
q, in equation (8.8). The following null and alternative hypotheses are put forward (to
start, set i = 1):

Ho : E{y} = Ax +
i−1∑
k=1

Akxk (8.10)
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versus

Ha : E{y} = Ax +
i∑

k=1

Akxk (8.11)

The detection and validation of ωi is completed through the following two steps:

Step I The goal is to find the frequency ωi (and correspondingly Ai) by solving the
following minimization problem:

ωi =arg min
ωj

||P⊥
[A Aj ]

y||2
Q−1

y
=arg min

ωj

||êa||2Q−1
y

(8.12)

where ||.||2
Q−1

y
= (.)T Q−1

y (.), A = [A A1 ... Ai−1] and êa is the least-squares residuals under

the alternative hypothesis. The matrix Aj has the same structure as Ak in equation (8.9);
the one which minimizes the preceding criterion is set to be Ai. The above minimization
problem is equivalent to the following maximization problem (Teunissen, 2000a, p. 96):

ωi = arg max
ωj

||PAj
y||2

Q−1
y

, with Aj = P⊥
A

Aj (8.13)

with PAj
= Aj(A

T

j Q−1
y Aj)

−1A
T

j Q−1
y . The preceding equation simplifies to

ωi =arg max
ωj

êT
0 Q−1

y Aj(A
T
j Q−1

y P⊥
A

Aj)
−1AT

j Q−1
y ê0 (8.14)

with ê0 = P⊥
A

y the least-squares residuals under the null hypothesis. In the case that the
time series contains only white noise, namely Qy = σ2I, it follows that

ωi = arg max
ωj

êT
0 Aj(A

T
j P⊥

A
Aj)

−1AT
j ê0 (8.15)

Analytical evaluation of the above maximization problem is complicated. In practice,
one has to be satisfied with numerical evaluation. A plot of spectral values ||PAj

y||2
Q−1

y

versus a set of discrete values for ωj can be used as a tool to investigate the contribution
of different frequencies in the construction of the original time series. That is, we can
compute the spectral values for different frequencies using equation (8.14) or (8.15). The
frequency at which ||PAj

y||2
Q−1

y
achieves its maximum value is used to construct Ai.

Step II To test Ho against Ha in equation (8.11), we consider Qy = σ2I, with σ2 unknown.
The following test statistic can be used (see Teunissen et al., 2005)

T 2 =
||PAi

y||2
Q−1

y

2σ̂2
a

=
êT
0 Ai(A

T
i P⊥

A
Ai)

−1AT
i ê0

2σ̂2
a

(8.16)

where Ai = P⊥
A

Ai and the estimator for the variance, σ̂2
a, has to be computed under the

alternative hypothesis. Under Ho, the test statistic has a central Fisher distribution

T 2 ∼ F(2,m − n − 2i) (8.17)

The above hypothesis testing is in fact the parameter significance test because the test
statistic T 2 can also be expressed in terms of x̂i in equation (8.11) and its covariance matrix.
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If the null hypothesis is rejected, we can increase i by one step and perform the same
procedure for finding yet another frequency. As a generalization of the Fourier Spectral
Analysis, the method is neither limited to evenly spaced data nor to integer frequencies.

When measuring a functionally known quantity, equation (8.15) reads ωi =
arg maxωj

êT
0 Aj(A

T
j Aj)

−1AT
j ê0 which is identical to the least-squares spectral analysis

(LSSA) method developed by Vańıcek (1969). For some applications refer to Craymer
(1998); Abbasi (1999); Asgari and Harmel (2005); Amiri-Simkooei (2005). Amiri-Simkooei
and Tiberius (2007) assess the noise characteristics of GPS receivers using zero-baseline
time series and arrive at the same conclusions using short-baseline time series when mul-
tipath effects were captured by a set of harmonic functions. With equations (8.8)–(8.11)
and (8.14) we now have a formulation for LSSA even when an initial design matrix A is
present in the model and the covariance matrix Qy, in general, is not a scaled identity
matrix.

Our application of harmonic estimation, in the first place, is to find any potential peri-
odicities in the series. The remaining unmodelled effects (e.g. power-law noise) will also
be interpreted and captured by a set of harmonic functions. Once we compensate for these
effects in the functional model, the remaining noise characteristics of the series will be
assessed. A nearly white noise combined with autoregressive noise can be shown to remain
in the data series. This will bring us to see a duality between the stochastic and functional
model; what is not captured in the functional model is captured in the stochastic model
and vice versa.

8.4.2 The w-test statistic

Here we aim to determine the appropriate covariance matrix Qy through significance testing
on the stochastic model. One advantage of LS-VCE over other methods is that one can use
statistical hypothesis testing in the stochastic model (similar as done with the functional
model). When there is no misspecification in the functional part of the model E{y} = Ax,
the following two hypotheses, as an example, are taken into account:

Ho : Qy = σ2
wI versus Ha : Qy = σ2

wI + Cy∇ (8.18)

where Cy is a known cofactor matrix, for example Qf or Qrw, and ∇ is an unknown
(co)variance parameter. We can use the generalized likelihood ratio test for testing Ho

against Ha. The following w-test statistic can be obtained from equation (5.81), with
Qy = σ2

wI

w =
b êT Cyê − tr(CyP

⊥
A )êT ê

σ2
w

[
2b2 tr(CyP⊥

A CyP⊥
A ) − 2b tr(CyP⊥

A )2
]1/2

(8.19)

with b = m − n the redundancy of the functional model and ê the least-squares residuals
under the null hypothesis.

The expectation and the variance of the w-test statistic are zero and one, respectively
(see equations (5.42) and (5.49)). The distribution of this statistic, for large m, can be
approximated by the standard normal distribution. The goal now is to compute the w-
test statistic values for different alternative hypotheses, i.e. different Cy’s in the preceding
equation, and select the one that gives the maximum value for the w-test. In fact, equation
(8.19) provides us with an objective measure to judge, whether or not (or which), additional
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Figure 8.1: Estimated spectral values, equation (8.15), of simulated data-series to detect annual and
semiannual signals; top gives annual term (364.7 days), bottom semiannual term (182.4 days).

noise processes are likely to be present in the data at hand. Because of the special structure
of the above hypotheses, the numerical evaluation of the preceding test statistic is very
simple. We do not need for instance to invert a full covariance matrix since it is diagonal
under the (assumed) null hypothesis, namely Qy = σ2

wI.

8.4.3 Demonstration using simulated data

To illustrate how the proposed harmonic estimation method and LS-VCE (focusing here on
time correlation) work, we simulated a 10-year time-series (daily samples) containing only
white noise with a standard deviation of 5 mm. Two sinusoidal functions with amplitude
of 2 and 1 mm, respectively, for the annual and semiannual term, have then been added
to the data (periods of 365.25 and 182.625 days, respectively). The goal now is to use the
harmonic estimation method and find the frequencies (or periods) of these signals. The
process has been repeated 100 times and it follows that the empirical standard deviation of
the detected period is 1.4 and 0.7 days for the annual and semiannual term, respectively.
Increasing the amplitude of the harmonic functions or increasing the time-series length gives
more precise results for such periods. Figure 8.1 shows one typical example of application
of the method to find the periods of harmonic functions. In the first step, the annual term
is detected and in the second step the semiannual term.

A correlogram portrays the autocorrelation versus time-lag (the time interval between
samples). The coefficient at lag zero equals one by definition. If a white noise process
describes the stochastic characteristic of the series, then all other coefficients should be
approximately zero. Figure 8.2 shows the typical example of the simulated data corre-
sponding to Figure 8.1. In each graph, the top figure is the time series itself, the middle
shows the running average of the series over one week, one month and one year, and the
bottom gives the autocorrelation coefficients obtained from LS-VCE (see equation (4.46)).
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Figure 8.2: Simulated data-series with their running averages as well as their autocorrelation coef-
ficients for white noise only (top-left); added two sinusoidal functions with annual and semiannual
periods and amplitudes of 2 and 1 mm, respectively (top-right); removed annual term obtained from
LS-HE method (bottom-left); and removed both annual and semiannual terms obtained from LS-HE
method (bottom-right).

In case of pure white noise, the autocorrelation function behaves randomly around zero.
When both annual and semiannual terms are added, the autocorrelation function shows a
periodic behavior which resembles the periodicity of the annual signal. This makes sense
because the autocorrelation function of a sinusoidal wave is again a sinusoidal wave with
the same frequency but its amplitude is proportional to the square of the amplitude of the
original signal (Priestley, 1981). If one includes the annual term in the functional model,
the autocorrelation function will still show a periodicity which is due to the presence of
the semiannual signal. When one also includes this signal in the functional model, the
autocorrelation function becomes very similar to the case of pure white noise; we refer to
duality of functional and stochastic model in section 8.3.4.

One can also compute the values of the w-test statistic using equation (8.19) for the
different cases mentioned above. The cofactor matrix is chosen as that of flicker noise
Cy = Qf . Based on the simulation of 20 data sets, the w-test values on average become:
in presence of annual and semiannual signals w = 15.3, removed annual signal w = 1.9, and
removed both annual and semiannual signals w = 0.3. Using the LS-VCE method white
and flicker noise amplitudes were estimated. The amplitudes on average are: in presence
of both signals σw = 4.85 mm and σf = 2.84 mm, removed annual term σw = 4.98 mm
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and σf = 1.35, mm and removed both terms σw = 5.00 mm and σf = 0.07 mm. These all
together simply express that if there exist unmodelled effects in data, they can mistakenly
be interpreted as time correlation (here flicker noise). One should therefore take care of
these signals in the functional model.

8.5 Numerical results and discussions

8.5.1 Data and model description

Global time series of site positions are supposed to have more noise than those from
a regional solution (Williams et al., 2004). Therefore, the daily GPS global solutions of
different stations processed by the GPS Analysis Center at JPL are adopted. The data were
processed using the precise point positioning method in the GIPSY software (Zumberge
et al., 1997). The satellite orbits, satellite clocks and Earth rotation parameters (ERP) used
for the daily solutions were estimated with data from 42 globally distributed IGS tracking
stations (see Beutler et al., 1999). In addition, corrections for geophysical effects such as
pole and ocean tide effects have been applied. The reader is referred to the JPL website
[http://sideshow.jpl.nasa.gov/mbh/series.html].

The estimated coordinates of a site are uncorrelated with those of the other sites if the
effects of the common errors in the satellite orbits and clocks and ERP on the estimated
coordinates are insignificant. To make a proper statement, one can rely on multivariate
time series analysis methods. The time series are processed component-by-component in
this chapter.

Most of the results given are based on 5 stations, namely KOSG, WSRT, ONSA, GRAZ
and ALGO. Four stations are in Europe of which KOSG and WSRT in the Netherlands,
ONSA in Sweden, and GRAZ in Austria. ALGO is in Canada. We have used 10-years of
daily solutions for all sites except WSRT which covers only 6.5 years. To justify some of the
statements that we will make, 71 globally distributed GPS stations were also processed. Our
point of departure is the original time series and its linear model of observation equations
yt = y0 + r t. In some cases, the annual and semiannual signals have been considered as
well. At times, we have included a set of harmonic functions to compensate for (parts of)
unmodelled effects in the series.

8.5.2 Variance component analysis

Three stochastic models have been chosen to describe the noise characteristics of GPS
coordinate time series. They include the pure white noise model (I), the white plus flicker
noise model (IIa), and the white plus random walk noise model (III). We employed LS-
VCE to estimate the white noise, flicker noise, and random walk noise amplitudes (see
equation (8.4)). Williams investigations (pers. commun.; Williams (2006)) show that LS-
VCE gives the same results as MLE. This holds in fact if m >> n which is usually the
case in time series analysis. Table 8.1 gives the noise amplitudes of different components
for different stochastic models. The table also provides the precision (standard deviation)
of the estimates which is an important feature of LS-VCE. We find, for different noise
components, that the horizontal components are less noisy than the vertical components
by a factor of 2-4. Compared to the white noise model only, the amplitude of white noise
for the white plus flicker noise model is 30% smaller, while this reduction for white plus
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Table 8.1: White noise, flicker noise and random walk noise amplitude estimates σ̂ as well as their
precision σσ̂ for north (N), east (E), and vertical (V) components (C) of site time series in three
different stochastic models (white noise only (model I); white noise plus flicker noise (model IIa);
and white noise plus random walk noise (model III); functional model is linear regression model for
individual time series; WN (mm), FN (mm), RW (mm/yr1/2).

Site code KOSG WSRT ONSA GRAZ ALGO
Model C σ̂ σσ̂ σ̂ σσ̂ σ̂ σσ̂ σ̂ σσ̂ σ̂ σσ̂

N 3.34 0.04 2.76 0.04 3.35 0.04 3.74 0.05 3.62 0.04
I WN E 3.44 0.04 2.82 0.04 3.65 0.04 4.75 0.06 3.60 0.04

V 7.45 0.09 7.12 0.11 7.85 0.10 9.12 0.11 8.22 0.10

N 2.45 0.05 2.12 0.05 2.54 0.05 2.81 0.06 2.32 0.05
IIa WN E 2.54 0.05 2.35 0.05 2.70 0.05 3.62 0.07 2.77 0.06

V 5.21 0.12 5.08 0.14 5.28 0.13 6.53 0.15 5.20 0.13

N 3.41 0.18 2.58 0.18 3.39 0.18 3.62 0.20 3.87 0.17
IIa FN E 3.67 0.18 2.37 0.19 3.45 0.19 4.16 0.25 3.67 0.19

V 8.82 0.40 8.24 0.47 9.62 0.42 9.90 0.49 9.71 0.40

N 2.79 0.04 2.32 0.04 2.85 0.04 3.14 0.04 2.74 0.04
III WN E 2.89 0.04 2.52 0.04 3.02 0.04 3.97 0.05 3.08 0.04

V 6.17 0.08 5.95 0.10 6.29 0.09 7.51 0.10 6.29 0.09

N 7.96 0.51 6.21 0.51 8.25 0.53 8.26 0.55 9.53 0.55
III RW E 9.06 0.56 5.11 0.48 7.50 0.52 9.12 0.65 9.38 0.58

V 23.4 1.31 21.3 1.52 27.6 1.45 25.7 1.52 25.6 1.37

random walk noise model is about 20%.
In a similar manner to Zhang et al. (1997); Williams et al. (2004), we produced the

difference in the log-likelihood values for each site, each component and each error model.
The results are given in Table 8.2. The values given in this table are normalized such that
the pure white noise model has a log-likelihood of zero. These results confirm that the
white noise plus flicker noise model seems to be preferred over the pure white noise model
or the white noise plus random walk noise model which coincide with Williams et al. (2004)
findings for global solutions. We will give the results of the w-test statistic in section 8.5.4.2
and show how they can be different from those obtained by the MLE method.

Figure 8.3 gives typical examples of estimated variance components at each iteration
step for two variance component models. The graphs show that the flicker and random
walk noise variances systematically converge to their final estimates from one side. This
in fact results in overestimated (biased upwards) flicker and random walk noise variances
which coincides with Langbein (2004) findings (conversely white noise is biased downward).
The statement can also be verified when we compute the position errors and compare them
with the scatter of the time series themselves (see section 8.5.6). The overestimation of
random walk noise is more significant than that of flicker noise. This also means that the
white plus flicker noise model is the preferred model in these circumstances. The number
of iterations in VCE methods is in fact an indication of (the lack of) appropriateness of the
selected functional and/or stochastic model.



8.5 Numerical results and discussions 143

Table 8.2: Difference in log-likelihood values for different stochastic models; white noise plus
flicker noise (WN+FN–left) versus white noise plus random walk noise (WN+RW–right), both com-
pared with pure white noise model which is assumed to have Log=0. White noise plus flicker noise
is the preferred model as it provides the largest values.

Model IIa: WN+FN III: WN+RW
Site Code North East Vertical North East Vertical

KOSG 382 326 351 332 277 277
WSRT 229 138 227 213 129 182
ONSA 310 423 396 264 392 328
GRAZ 368 399 376 331 371 320
ALGO 682 290 598 620 253 535
Mean 394 315 390 352 284 328
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Figure 8.3: Estimated variance components at each iteration step for KOSG; combination of white
plus flicker noise (left); and combination of white plus random walk noise (right).

The above discussion essentially means that there are still misspecifications (in fact
underparameterization) in the model. In the functional model for instance one should take
care of any potential periodicities in the series (see section 8.5.3). Also, a better stochastic
model may include in addition to power-law noise other noise models like autoregressive
noise (see section 8.5.4). Langbein (2004) proposed to use a combination of power-law
noise and band-pass-filtered noise. The upward bias of power-law noise and downward bias
of white noise can thus be circumvented by introducing a more sophisticated functional
and stochastic model.

8.5.3 Functional model

8.5.3.1 Simple and intuitive technique

Seasonal variations in site positions consist of signals from various geophysical sources and
systematic modeling errors (Dong et al., 2002). The weekly, monthly and yearly mean
residuals calculated from averaging the daily residuals are shown in Figure 8.4 (left) for
ALGO. Running averages naturally remove the high frequency noise and leave the lower
frequency signals. Annual and seasonal variations can be observed in the running averages.
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Figure 8.4: Weekly, monthly and yearly mean residual series of north, east and vertical compo-
nents for different functional models (site ALGO); linear trend only (left); and linear trend plus 10
harmonic functions (right).

For example, the vertical component shows a clear annual signal. They should be eliminated
from the time series in order to obtain a more realistic assessment of the noise behavior. We
can also see some high and low frequency fluctuations which can likely be captured by flicker
noise and random walk noise, respectively (see east and north components, respectively).
When parts of these variations have a deterministic behavior, they should be compensated
for in the functional rather than the stochastic model. Ding et al. (2005) tried to interpret
this behavior as some inter-annual signals.

We now focus on time correlation in the series and estimate one covariance for each
time-lag τ using equation (4.45). Figure 8.5 (top) shows the autocorrelation coefficients
for the time series of the each component of two sites. The annual and seasonal variations
as well as long term fluctuations can be seen in the correlograms. The variations are clearer
here than those for the running averages in Figure 8.4. For example, the periodic behavior
in the ALGO vertical correlogram shows the annual signal in the series. When the annual
signal was included in the functional model, the annual periodicity of the correlogram
disappeared. However, this was not the case for KOSG and ALGO east components which
show an annual-like signal. This implies that there might still be some hidden periodicities
in the data series.

8.5.3.2 Harmonic estimation

Figure 8.6 (left) shows the test statistic values given by equation (8.16) to find the first
15 frequencies. The step size used for Tj = 2π

ωj
is taken small at high frequencies and gets

larger at lower frequencies. We can see that the value for the test statistic levels off quickly.
With 6–10 harmonic functions it gets close to the critical value. In all subsequent results
the number of harmonic functions q in equation (8.8) was set to 10 starting with just
the offset and slope model. The combination of all 10 harmonic functions included in the
functional model of the series is given in Figure 8.6 (right). The periods of ten harmonic
functions are given in Table 8.3. Our opinion is that the periodic functions detected by the
LS-HE method are due to the following four reasons:

• Unmodelled periodic ground motion: The site is actually moving periodically in this
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Table 8.3: Periods (days) of the first ten harmonic functions obtained from least-squares harmonic
estimation for north, east and vertical components using equation (8.15), i.e. Qy = σ2

wI; for all
series initial functional model is linear regression model.

Number 1 2 3 4 5 6 7 8 9 10

N 2620 1256 315 187 579 145 69.8 175 50.4 24.9
KOSG E 354 384 862 176 116 248 97 70.4 264 14.2

V 885 377 2782 334 94.5 1401 87.5 37.6 503 116

N 1586 354 171 292 841 71 84.2 190 50.2 13.6
WSRT E 349 168 265 533 115 59.3 188 70.2 14.2 1694

V 2035 863 712 210 150 114 37.4 88.7 30.3 66.6

N 3154 1307 235 50.4 145 278 185 173 372 57.4
ONSA E 1418 343 2698 121 756 260 116 70.6 394 237

V 337 1467 522 927 296 215 191 41.5 3627 94.7

N 2349 175 187 1282 361 387 50.4 144 88.6 822
GRAZ E 3651 1274 393 792 171 180 506 148 122 343

V 910 2505 370 325 697 117 278 88 210 37.5

N 2772 378 783 1459 122 13.6 200 86.2 73.2 182
ALGO E 332 177 1483 86.9 108 74.5 762 527 93.4 43.9

V 366 3651 1566 307 161 88.3 43.9 923 466 120

case. Annual and semiannual signals, for instance, can be specified into this category.
Except for a few components, both annual and semiannual signals can be seen in
the series. A good example is the first period obtained for ALGO vertical component
(366 days) which reveals the annual signal.

• Periodic variation of the estimated time series: The site is apparently moving peri-
odically. This is known as the aliasing effect. Unmodelled periodic systematic (e.g.
tidal) errors present at a station will result in spurious longer periodic systematic
effects in the resultant time series (see Penna and Stewart, 2003; Stewart et al.,
2005). A harmonic function with a period of 13.63 days is detected in the north
components of WSRT and ALGO. In the east component of KOSG and WSRT, a
period of 14.2 days is seen.

• Aliased multipath effect (still a challenging problem): We observe periodic patterns
with periods of roughly 350, 175, 117, 88, 70, 59, 50, and 44 days. To justify this,
the time series of 71 GPS stations were processed. Figure 8.7 shows the stacked
(weighted) power spectra for these stations after including the annual and semiannual
signals. The peaks shown in the spectrum coincide well with the number given above.
The set of stations was split into two parts and the same conclusion could again be
drawn. The results also confirm Ray (2006) findings. Two possibilities which may
lead to this effect are as follows: 1) Agnew and Larson (2007) show that the repeat
time of the GPS constellation, through which multipath can repeat at permanent
stations, averages at 247 s less than a solar day (24 h). However, daily GPS position
estimates are based on a full solar day. The difference will alias to a frequency of
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Figure 8.5: Autocorrelation coefficients for time series of north, east and vertical components
before (top) and after (middle) removing 10 harmonic functions; graphs at bottom provide a ’zoom
in’ on the first 100 days for both before (+) and after (o) removing 10 harmonic functions.

0.0028565 cycles/day or 1.04333 cycles/yr (350 days period). The periods found fit
with this frequency and its harmonics. 2) Periodic variations of the range residuals
with maximum at the eclipse seasons indicate orbit modeling deficiencies for the
GPS satellites (Urschl et al., 2005, 2006). The periods found above also coincide
with the period of one draconitic GPS year (about DJ = 351 days) and fractions
DJ/n, n = 1, 2, ..., 8 (see Beutler, 2006).

• Presence of power-law noise: There are still many numbers in the table (about 50%)
which do not fit into the previous categories. The 10 harmonic functions uniformly



8.5 Numerical results and discussions 147

2 4 6 8 10 12 14
0

50

100

150

N
or

th

Iteration

KOSG −− Test statistic values

2 4 6 8 10 12 14
0

50

100

150

E
as

t

Iteration

2 4 6 8 10 12 14
0

50

100

150

V
er

tic
al

Iteration

0 2 4 6 8 10
−10

0

10

Time (year)

N
or

th

KOSG −− Combination of 10 harmonic functions (mm)

0 2 4 6 8 10
−10

0

10

Time (year)

E
as

t

0 2 4 6 8 10
−10

0

10

Time (year)

V
er

tic
al

2 4 6 8 10 12 14
0

50

100

150

N
or

th

Iteration

ALGO −− Test statistic values

2 4 6 8 10 12 14
0

50

100

150

E
as

t

Iteration

2 4 6 8 10 12 14
0

50

100

150

V
er

tic
al

Iteration

0 2 4 6 8 10
−10

0

10

Time (year)
N

or
th

ALGO −− Combination of 10 harmonic functions (mm)

0 2 4 6 8 10
−10

0

10

Time (year)

E
as

t

0 2 4 6 8 10
−10

0

10

Time (year)

V
er

tic
al

Figure 8.6: The first 15 test statistic values obtained from equation (8.16) as well as its critical
value (dashed line) from equation (8.17) with type I error of α = 0.0001 (left); combination of 10
harmonic functions (unmodelled effects) as removed from original coordinate component time series
(right).

distributed in log-frequency space are sufficient to simulate power-law noise. The
higher frequency effects are likely due to flicker noise. Long term period (e.g. larger
than 500 days) effects are observed for most of the series. They can likely be
considered as random walk noise. Note also that undetected offsets in the time series
can mimic random walk noise (Williams, 2003b). We used so far equation (8.15)
based on the pure white noise model to detect the frequencies. Therefore, some
of the detected periods are most likely due to the presence of colored noise in the
data which has been ignored in the results of Table 8.3 and Figure 8.7 (left). The
graph shows that white noise is mainly present at high frequencies, flicker noise at
medium frequencies, and random walk noise at low frequencies. To justify this, in the
harmonic estimation, we used equation (8.14) with a more sophisticated noise model
given by equation (8.20). Almost all the lower frequency effects that were detected
in the white noise model could not be detected here. Figure 8.7 (right) shows the
stacked power spectra of 71 stations using this new stochastic model. The spectrum
looks more or less flat and thus does not contradict our statement.

Therefore, to avoid biases in the estimate of x and also the amplitude of noise com-
ponents (see section 8.3.4) one should take good care of any potential periodicities in the
GPS position time series. We can at least mention the annual and semiannual signals,
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Figure 8.7: Stacked (weighted) power spectra of 71 permanent GPS stations (213 time series) for a
linear regression model with annual and semiannual signals included; pure white noise model (left);
short-memory plus flicker noise model (right).

periods of 13.66, 14.2, and 14.8 days, and most likely periods of 350 days and its fractions.

8.5.4 Stochastic model

8.5.4.1 Simple and intuitive technique

Figure 8.4 (right) shows the weekly, monthly and yearly running average of residuals when
including 10 harmonic functions to describe unmodelled effects (site ALGO). Most of the
signals and fluctuations have now been removed. One can also plot the autocorrelation
coefficients for the corrected functional model. The correlograms of the time series are
given in Figure 8.5 (middle). At first insight, they appear to represent white noise. The
graphs at bottom provides a ’zoom-in’ on the first part of the graphs at the top and in
the middle, i.e. the correlograms over the first 100 days. Unlike the original data, the
autocorrelation coefficients become small already after a few days (max 10 days). Our
impression is that this remaining high-frequency correlation can be caused by common and
well-known sources of errors like atmospheric effects and satellite orbit errors. Table 8.4
provides the numerical results over the first 5 days. The correlation coefficients reduce
approximately exponentially, e.g. by e−ατ which is known as a first order autoregressive
noise process AR(1). More results on this model are presented in the next subsection for
cases α = 1 and α = 0.25.

8.5.4.2 The w-test statistic

The results of the w-test statistic are presented to find the most appropriate noise model
for the global GPS coordinate time series. The larger (absolute value) the w-test statistic
is, the more powerfully the null hypothesis tends to be rejected, and hence, the more likely
the alternative model will be as a candidate for the noise in the time series. Five stochastic
models were tested using the hypotheses as in equation (8.18). The results are given in
Table 8.5. For original data (before removing harmonic functions), the maximum values are
obtained for flicker noise and random walk noise models (columns w2 and w3). In addition,
except for a few components (e.g. ALGO north), flicker noise is preferred to random walk
noise. When the values are very close (e.g. ALGO vertical), both noise components (in
addition to white noise) are likely to be present in the series.
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Table 8.4: Estimated time correlation over the first five time-lags τ (days) for time series of north,
east, and vertical components before (left) and after (right) removing harmonic functions; standard
deviation of all estimates is 0.02; after removing 10 harmonic functions (right) time correlation
presents only at very high frequencies.

Correlation coefficient Correlation coefficient
Site Code Lag τ (day) N E V N E V

1 0.35 0.32 0.37 0.20 0.20 0.26
2 0.28 0.29 0.26 0.12 0.16 0.14

KOSG 3 0.23 0.22 0.23 0.06 0.09 0.10
4 0.22 0.21 0.21 0.05 0.08 0.08
5 0.21 0.19 0.18 0.03 0.06 0.06
1 0.31 0.21 0.36 0.13 0.07 0.25
2 0.27 0.22 0.26 0.09 0.08 0.13

WSRT 3 0.26 0.17 0.23 0.08 0.03 0.09
4 0.24 0.18 0.20 0.06 0.05 0.06
5 0.24 0.18 0.17 0.07 0.06 0.03
1 0.31 0.33 0.37 0.20 0.16 0.27
2 0.25 0.29 0.29 0.13 0.11 0.18

ONSA 3 0.21 0.26 0.25 0.08 0.08 0.13
4 0.20 0.25 0.22 0.07 0.06 0.11
5 0.18 0.23 0.20 0.04 0.04 0.08
1 0.32 0.32 0.35 0.16 0.14 0.23
2 0.27 0.27 0.29 0.10 0.08 0.16

GRAZ 3 0.23 0.28 0.26 0.06 0.09 0.13
4 0.21 0.25 0.22 0.03 0.06 0.08
5 0.23 0.24 0.20 0.06 0.05 0.07
1 0.46 0.28 0.45 0.25 0.18 0.27
2 0.39 0.25 0.33 0.13 0.14 0.12

ALGO 3 0.36 0.23 0.33 0.11 0.12 0.12
4 0.31 0.19 0.30 0.04 0.07 0.07
5 0.32 0.17 0.30 0.07 0.05 0.08

Usually the white noise along with either flicker noise or random walk noise are estimated.
To confirm the w-test results, we included all 3 variances in the stochastic model, namely
white noise, flicker noise, and random walk noise as in equation (8.4). If a variance is
negative, it is an indication that this noise model is most likely not the preferred model and
can be excluded from the stochastic model. Table 8.6 shows the signs of the estimated
variances using LS-VCE. In 53% of the cases the random walk noise variance is negative.
They are correspondingly related to the cases that the w-test values for flicker noise given
in Table 8.5 are significantly larger than those for random walk noise. In 44% of the cases
both flicker and random walk noise variances are positive. They are related to the case
that the w-test values of flicker noise are approximately identical to those of random walk
noise. Only for the north component of ALGO, the flicker noise variance is negative which
is also verified because the w-test value for flicker noise is smaller than that for the random
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Table 8.5: The w-test statistic values for time series of position estimate, before (left) and after
(right) removing 10 harmonic functions using equation (8.15), for different alternative hypotheses
(different Cy’s below). The larger (absolute value) the w-test statistic is, the more likely the alterna-
tive model will be as a candidate for stochastic model of series.

Before removing 10 harmonics After removing 10 harmonics
Site C w1 w2 w3 w4 w5 w1 w2 w3 w4 w5

N -8.1 124 126 27.5 40.0 -10.6 11.1 4.9 14.7 16.8
KOSG E -1.8 32.9 9.3 26.0 37.3 -5.1 12.9 9.1 15.6 18.8

V 0.3 58.1 43.2 27.7 37.6 0.6 10.4 1.1 19.0 21.2

N -11.0 62.1 50.5 20.4 31.7 -12.0 6.4 0.2 8.4 11.0
WSRT E -8.0 25.4 10.9 14.5 22.8 -9.8 6.4 2.4 5.3 7.5

V -8.3 61.2 58.4 22.4 30.8 -8.5 15.1 6.4 14.7 16.6

N -8.2 71.0 66.5 21.3 35.7 -11.1 13.5 6.1 14.9 18.0
ONSA E -8.4 67.7 52.8 17.1 41.4 -11.2 11.3 3.2 12.8 15.5

V -3.1 43.1 32.7 23.4 40.7 -4.5 16.9 4.5 20.8 25.5

N -8.8 120 119 25.5 38.5 -10.6 7.1 0.3 12.2 13.9
GRAZ E -4.5 139 144 26.0 41.0 -10.8 5.2 0.1 10.7 13.5

V -5.9 70.9 50.7 27.8 40.2 -7.0 14.9 3.9 17.4 21.5

N -7.9 285 350 37.6 57.1 - 8.7 13.1 3.3 18.1 20.9
ALGO E -5.4 20.7 11.2 14.4 34.4 -10.4 10.2 4.7 14.2 18.2

V -2.7 99.2 99.3 31.1 52.5 -5.7 14.3 4.6 19.4 22.0

w1: Cy = diag(Qrw), only diagonal elements of Qrw in equation (8.6);
w2: Cy = Qf , flicker noise structure introduced in equation (8.5);
w3: Cy = Qrw, random walk noise structure introduced in equation (8.6);
w4: Cy = cij full matrix extracted from an exponential function of the form e−τ ;
w5: Cy = cij full matrix extracted from an exponential function of the form e−0.25τ .

walk noise.
In columns 4 and 5 we have respectively used the following matrices for Cy: cij = e−τ

and cij = e−0.25τ with i, j = 1, 2, ...,m. The corresponding w-test statistic values are
mostly significantly smaller than those for flicker and random walk noise. However, after
removing 10 harmonic functions (individually per component) from the original data series,
the largest values for w-test statistic are obtained for the e−0.25τ stochastic model (column
5). Note also that the results given in columns 4 and 5 are not much different. This
therefore confirms the existence of remaining correlation at very high-frequencies which is
believed to be due to common sources of errors that last only a couple of successive days
(see Figure 8.5 (bottom)). A relatively large value of the w-test statistic (values on the
right) for flicker and random walk noise is most likely due to this correlation. A significant
decrease in the w-test values for flicker and random walk noise implies that most parts of
the power-law noise have now been captured by the harmonic functions. This statement
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Table 8.6: Sign of white noise, flicker noise, and random walk noise variances for north, east, and
vertical components. A negative variance component indicates that this noise model is most likely
not an appropriate model and can be excluded from stochastic model.

Sign of variance component
Site code Component WN FN RW

N + + +
KOSG E + + -

V + + -
N + + -

WSRT E + + -
V + + +
N + + +

ONSA E + + -
V + + -
N + + +

GRAZ E + + +
V + + -
N + - +

ALGO E + + -
V + + +

was also justified when the white and flicker noise amplitudes were estimated using the
extended functional model (with 10 harmonics) which led to small positive or negative
values for flicker noise amplitudes.

Let us now turn our attention to the first column (w1) in Table 8.5. The goal is to test
stationarity of the white noise amplitude in the series. For this purpose we selected Cy =
diag(Qrw). Most of the w-test values are negative implying that the white noise amplitude
in the daily position estimates gets reduced towards the end of the series as σ2

wi
= σ2

w +ti ∇
(∇ negative). This reflects the improvements in analysis products (e.g. satellite orbits and
Earth orientation parameters) which makes sense, of course, as equipment is improving
and also our knowledge about error sources like atmosphere and orbit is continuously being
improved. Note however that white noise is not the dominating source of error on the
uncertainties of the parameters of interest. Williams et al. (2004) showed that such a
reduction of noise with time holds true also for the flicker noise amplitude.

A large value for the w-test leads to the rejection of the null hypothesis. One can
therefore obtain the w-test values for different alternative hypotheses. The one which gives
the largest absolute value is considered as a superior candidate for describing the noise
characteristics of the data. In our case, in general, the flicker noise model was preferred.
After introducing 10 harmonic functions to the model, the largest values were obtained
for the AR(1) noise process. The w-test statistic is considered to be a powerful tool to
decide on the preferred noise model. Based on simulated data, Williams (pers. commun.)
concludes that the w-test statistic and the difference in the log-likelihood values give very
similar results (e.g. a correlation of 0.94). Note however that the w-test statistic can
simply be used while the MLE method needs successive inversion of the covariance matrix.
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Figure 8.8: Individual as well as mean autocorrelation function (white circles) of 71 permanent GPS
stations (213 time series) for a linear regression model with 10 harmonic functions; light dashed line
represents the estimated short-memory WN+AR(1) noise process.

8.5.5 Remarks and discussions

Although not fully physically justified, we captured unmodelled effects by harmonic func-
tions. We would like to point out here the duality between harmonic functions and the time
correlated noise process. If we can compensate for all unmodelled effects in the functional
model, this would be the best way to do so; refer to section 8.3.4. Otherwise, they will be
interpreted as if the data were time correlated. On the other hand, if these variations can
not be considered as deterministic signals to be compensated for in the functional model
(e.g. by a set of harmonic functions), they can for instance be captured as power-law noise
process (e.g. flicker noise or random walk noise) which need to be taken care of in the
stochastic model.

When unmodelled effects were removed, practically only white noise is left in the series.
The remaining minor time correlation as a short-memory process exponentially vanishes
within a few days and can be expressed for instance as an AR(1) noise process. This
essentially means that to avoid biases in the power-law noise amplitude due to underpara-
meterization, one will have to include also the AR(1) noise process σ2

aQa in equation (8.4),
namely Qy = σ2

wI + σ2
aQa + σ2

fQf (when one ignores random walk noise). This holds
indeed also for any potential periodicities in the functional part of the model.

Our investigations show that the time series are not yet long enough to separately
estimate one variance for each noise component. Therefore, first the LS-HE method was
employed to include a set of harmonic functions to compensate for power-law noise model.
The remaining noise is now expressed as a combination of white and autoregressive noise.
The unknowns in this case are the amplitudes of white and autoregressive noise (σw and
σa), and the time-scale α of the noise process. In other words the short-memory process is
expressed as: Qy = Q(α; σ2

w, σ2
a) = σ2

wI + σ2
aQa where qa

ij = e−ατ and τ = |tj − ti|. This
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Table 8.7: Short-memory (WN plus AR(1)) noise and flicker noise amplitude estimates for north,
east, and vertical components; functional model is linear regression model plus annual and semi-
annual signals as well as signals with period of 13.66 days and 350/n, n=1,...,8; stochastic model
employs the form of equation (8.20).

Short-memory and flicker noise (Model IIb)
WN+AR(1) (mm) FN (mm)

Site code Estimate N E V N E V

KOSG σ̂ 2.85 3.06 6.36 2.23 1.61 5.21
σσ̂ 0.05 0.05 0.12 0.25 0.27 0.57

WSRT σ̂ 2.43 2.67 6.03 1.45 1.03 5.66
σσ̂ 0.05 0.05 0.15 0.28 0.31 0.69

ONSA σ̂ 2.96 3.10 6.32 2.06 2.21 6.99
σσ̂ 0.05 0.06 0.14 0.26 0.27 0.57

GRAZ σ̂ 3.26 4.09 7.75 2.02 2.72 6.07
σσ̂ 0.06 0.07 0.15 0.29 0.34 0.69

ALGO σ̂ 2.76 3.25 6.43 2.69 1.91 5.98
σσ̂ 0.06 0.05 0.13 0.24 0.28 0.57

is in fact a nonlinear stochastic problem that can again be solved by LS-VCE.
The method was applied to 71 globally distributed GPS stations. The average value

for the time-scale is α ≈ 0.25. The mean amplitude of white noise and autoregressive
noise were σw = 2.3, 3.3, 6.3 and σa = 1.3, 1.8, 4.0 (all in mm) for north, east, and
vertical components, respectively. In practice it is more convenient to combine white noise
and autoregressive noise into one short-memory process using the average values obtained
above. For example, based on the results obtained above, if we assume that the time-scale
α and also the relative magnitude of noise components σa/σw is known, the covariance
matrix Qy = σ2

wI + σ2
aQa + σ2

fQf can be reformulated as

Qy = σ2
sQs + σ2

fQf (8.20)

where σ2
s = σ2

a + σ2
w is the variance of the short-memory noise process and Qs is given as

qs
ij =

{
1 if τ = 0
βe−ατ if τ �= 0

(8.21)

with α ≈ 0.25 and β = σ2
a/(σ

2
w + σ2

a) ≈ 0.25. Figure 8.8 shows the weighted mean
autocorrelation function of 71 permanent GPS stations, and its approximation based on
equation (8.21).

Stochastic model (8.20) is referred to as the short-memory noise and flicker noise model
(model IIb), for which two variance components σ2

s and σ2
f need to be estimated by LS-

VCE. We now consider this equation to estimate the magnitude of short-memory (combined
WN and AR(1)) and flicker noise process. A correct functional model consisting of annual
and semiannual signals, a period of 13.66 days, and periods of 350 days and its fractions
350/n (n=1,...,8) was also used. The results are given in Table 8.7. Compared to the
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Table 8.8: Error estimate (formal standard deviation) of slope, intercept and position for different
stochastic models (I: white noise only, IIa: white noise plus flicker noise, IIb: short-memory noise
plus flicker noise with proper functional model, and III: white noise plus random walk noise).

KOSG GRAZ ALGO
Error in Model N E V N E V N E V

Intercept I 0.12 0.12 0.26 0.13 0.17 0.32 0.13 0.13 0.29
(mm) IIa 2.87 3.08 7.41 3.04 3.46 8.35 3.25 3.09 8.15

IIb 1.89 1.37 4.40 1.72 2.16 5.13 2.27 1.62 5.05
III 1.13 1.23 2.90 1.20 1.42 3.32 1.42 1.49 3.58

Slope I 0.02 0.02 0.04 0.02 0.03 0.06 0.02 0.02 0.05
(mm/yr) IIa 0.25 0.27 0.65 0.27 0.31 0.73 0.29 0.27 0.71

IIb 0.17 0.12 0.39 0.15 0.19 0.46 0.20 0.15 0.45
III 2.52 2.87 7.39 2.62 2.89 8.12 3.02 2.97 8.11

Position a I 0.06 0.06 0.13 0.06 0.08 0.16 0.06 0.06 0.14
(mm) IIa 2.58 2.77 6.66 2.73 3.13 7.50 2.92 2.77 7.33

IIb 1.69 1.22 3.94 1.53 1.93 4.59 2.03 1.45 4.52
III 12.6 14.3 37.0 13.1 14.5 40.6 15.1 14.9 40.5

Position b I 0.12 0.12 0.25 0.13 0.16 0.31 0.12 0.12 0.28
(mm) IIa 2.87 3.08 7.41 3.04 3.49 8.35 3.25 3.08 8.15

IIb 1.88 1.37 4.40 1.72 2.16 5.13 2.27 1.62 5.05
III 25.2 28.7 73.9 26.1 28.9 81.2 30.1 29.7 81.0

a Error in the middle of time series; b Error at the end of time series

results given in Table 8.1 for white plus flicker noise model (model IIa) flicker noise shows
a reduction of 40% whereas white (in fact short-memory) noise increases about 20%. The
difference in the log-likelihood values have also been computed which show an increase of
about 10% compared to the values given in Table 8.2 for model IIa. With this strategy
not only one can obtain more precise results for parameters of interest but also one will be
able to increase the log-likelihood values.

Table 8.9: Minimum and maximum error estimate coefficients of slope, intercept and position for
different stochastic models (IIa: white noise plus flicker noise, IIb: short-memory noise plus flicker
noise with proper functional model, and III: white noise plus random walk noise) all compared to
those of white noise only model (I).

Error Model
Error in I IIa IIb III

Intercept 1-1 16-29 7-21 7-12
Slope 1-1 9-16 5-10 67-185
Position a 1-1 31-52 13-38 109-313

Position b 1-1 17-30 8 -22 109-324
a In middle of series, b At end of series
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Figure 8.9: Position error (standard deviation) of different stochastic models as a function of time
for north and vertical component of KOSG caused by rate uncertainty only (dashed lines) and full
covariance matrix of intercept and site velocity (solid lines); WN only (I), WN + FN (IIa), modified
WN + FN (IIb), and WN + RW (III).

8.5.6 Error estimate of parameters

The goal here is to estimate and compare the error of four parameters of interest, namely
the intercept, slope (rate), position in the middle, and position at the far end of the time
series, for different stochastic models. Model I, IIa, IIb, and III are the pure white noise,
white noise plus flicker noise, short-memory (combined white and autoregressive) noise plus
flicker noise, and white noise plus random walk noise, respectively. Model IIb also includes
a few justified harmonic functions (annual and semiannual signals, a period of 13.66 days,
and periods of 350/n days, n=1,...,8) in the functional model. We show how an incorrect
stochastic model will result in a too optimistic (or too pessimistic) precision description
of the parameters of interest. Analytical expressions for the rate uncertainty due to white
noise and random walk noise were derived by Zhang et al. (1997). Langbein and Johnson
(1995) and Williams (2003a) discussed the effects of sampling rate and time series length
on the rate estimates and their error. In this paper however we will rely only on numerical
results.

The results given in Table 8.8 are based on Q′
x = (AT Q′−1

y A)−1 (see section 8.3.4),
where Q′−1

y is an (in)correct covariance matrix. The pure white noise model (I) gives the
most optimistic results and the white plus random walk noise (III) generally gives the least
precise results. The error of parameters for different models compared to those for the
pure white noise model are larger by the coefficients given in Table 8.9. For example, if
a white plus flicker noise model is used instead of a pure white noise model, the velocity
error obtained can be larger by factors of 9-16. The corresponding values for model IIb are
smaller because the estimated flicker noise is smaller. Among different models the error
estimates of site velocity and position for model III are considerably larger (about one order
of magnitude) than those for other models.

Compared to the white noise magnitude in the pure white noise model (see Table 8.1),
the standard deviation of positions in the middle of the time series are 2%, 80%, 50%,
and 400% for models I, IIa, IIb, and III, respectively. These values increase at the end of
the time series to 4%, 90%, 55%, and 800%. For all models, except for model III, the
minimum error estimate of the position is obtained in the middle and the largest values
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are given at both ends of the series. The results of model I are too optimistic. The error
contribution of the intercept and the slope on the position seems to be the same (2% in
the middle and 4% at both ends). The results obtained from models IIa and IIb appear
to be more realistic. In Model IIa the slope error has only a contribution of 10% on the
position error estimate (compare 80% in the middle vs 90% at both ends). The error in
the intercept plays the main role. This holds also for model IIb. When compared with
model IIa, the results with model IIb get improved by a factor of 1.6. The behavior of the
white noise plus random walk noise is somehow different. The results are too pessimistic
and the error in the slope plays the main role.

In geophysical literature, the site velocity uncertainty is usually of interest and not
directly the position error. However, in some geodesy applications (e.g. realization of
ITRF) the final goal of the site velocity is in fact the position and its uncertainty. This
means that so far we have ignored the uncertainty of the intercept. In models IIa and IIb
the intercept plays the main role of error. Figure 8.9 shows the effect of site velocity only
and site velocity plus intercept on the position error for different stochastic models. When
interested in position error and relying only on the site velocity error, it seems that models
IIa and IIb are more appropriate for long-term accuracy but give optimistic results over
short periods. On the other hand, model III is likely suitable for short-term accuracy but
yields pessimistic results over long periods (see Figure 8.9).

8.6 Summary and conclusions

We assessed the noise characteristics in global time series of daily position estimates by LS-
VCE. The method is easily understood, generally applicable and very flexible. The LS-VCE
estimators are unbiased and of minimum variance. This method provides the precision of
the (co)variance estimators. Based on the results given, the following conclusions can be
drawn:

The w-test statistic is a powerful tool to recognize the data noise characteristics in order
to construct an appropriate stochastic model. Using the w-test a combination of short-
memory (white plus autoregressive) noise and flicker noise was in general found to best
describe the noise characteristics of the position components; we hardly observed that the
strict white plus random walk was the preferred noise model. These results have also been
verified using correlograms of the time series, the frequencies of the harmonic functions,
and the signs of the estimated flicker and random walk noise variance components.

The least-squares harmonic estimation method was used to find and consequently re-
move a set of harmonic functions from the data. These harmonic functions captured
unmodelled effects. The results confirm the presence of annual and semiannual signals in
the series. We could also observe other periodic effects; for example a period of 13.66,
14.2, and 14.8 days. We observed also significant periodic patterns with periods of 350
days and its fractions 350/n, n=1,2,...,8 which is likely due to the aliased multipath ef-
fects in permanent stations. When such variations have underlying physical phenomena
(or modeling error), their effects can be considered as systematic periodic signals. It may
not be appropriate to capture their effects by a power-law noise process in the stochastic
model. They may mistakenly mimic flicker or random walk noise if we neglect them in
the functional model. Therefore, neglecting such effects, which may be best described by
a deterministic model rather than a power-law noise model, can seriously affect the error
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estimate of the site velocity and the position.
There are also some effects in the series that are not of periodic nature. They can most

likely be expressed as power-law noise. We however employed the harmonic estimation
method to find more frequencies in the series. A significant decrease in the w-test values
for power-law noise implies that most parts of this noise are captured by the harmonic
functions. This led us to see a duality between the stochastic and functional model; what
is not captured in the functional model is captured in the stochastic model. When we
include the harmonic functions, almost exclusively white noise remains in the data. Only
at very high frequencies a significant time-correlation appeared to be present which can be
expressed as an exponential function (e.g. a first-order autoregressive noise process). This
noise can be caused by common sources of error like atmospheric effects as well as satellite
orbit errors that last over only a few successive days.

The overestimation of the power-law noise was due to the presence of the autoregressive
noise and also the justified hidden periodic effects in the series. This means that neither
the white noise plus flicker noise model nor the white noise plus random walk noise model
is the preferred model. The best model includes in addition to power-law noise also other
noise models like autoregressive noise or as Langbein (2004) used the band-pass-filtered
noise. Instead of strict white noise model a short-memory noise process was introduced
which led to the reduction of the flicker noise magnitude.





Conclusions and Recommendations 9
9.1 Introduction

The least-squares method is one of the leading principles in the estimation of unknown
parameters. In this thesis we introduced and used the least-squares variance component
estimation (LS-VCE) method. The research objective was focused on the theoretical as
well as practical aspects of LS-VCE for which two different applications of LS-VCE to real
data were considered.

To see the analogy with the functional model, we started by reviewing the standard least-
squares theory with a linear model in chapter 2. This chapter consists of the estimation
part which includes the weighted least-squares estimator, the minimum variance estimator
(BLUE), and the maximum likelihood estimator (MLE), but also consists of the validation
part which includes the w-test, v-test, and overall model test. In chapter 3 we reviewed
the many different variance component estimation methods. We can at least mention
the MINQUE, BIQUE, and MLE methods. The underlying assumptions of each method
were discussed. The methods give identical estimators under the normality assumption.
Chapters 4, 5, and 6 form the body of knowledge of our least-squares variance component
estimation and validation theory. Chapters 7 and 8 dealt with applications of LS-VCE to
real GPS data. In the next section we summarize the key points of our achievements and
eventually provide recommendations for further research.

9.2 Summary

Since the LS-VCE method is undeservedly still one of the lesser known VCE-methods, in
chapters 4 and 5, we emphasized that LS-VCE is a simple, flexible, and attractive method.
The method is simple since it formulates the variance component estimation model in terms
of a model of observation equations with the observable vector y

vh
= vh(t tT −BT Q0B),

the design matrix Avh = [vh(BT Q1B), . . . , vh(BT QpB)], and the positive-definite weight
matrix Wvh. The unbiased least-squares estimator of the (co)variance component vector
follows directly as

σ̂ = (AT
vhWvhAvh)

−1AT
vhWvhyvh

= N−1l , (9.1)

where the p× p matrix N and the p-vector l are obtained from t, BT Q1B,...,BT QpB and
Wvh. The unbiasedness property follows directly from the weighted least-squares theory
and is independent of the (un)specified distribution of the observables either y or vh(t tT ).
The method is flexible, since it works with a user-defined weight matrix Wvh. One has
thus the possibility to use different classes of weight matrices, one of which is given as
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Wvh = DT (Wt ⊗ Wt)D with D the duplication matrix and Wt a positive-definite matrix.
Another weight matrix class follows from the class of elliptically contoured distributions.

The LS-VCE method is also attractive, since it allows one to directly apply the existing
body of knowledge of least-squares theory. We addressed measures of inconsistencies in the
stochastic model, the use of a-priori (co)variance component estimation, the estimability
of variance components, robust estimation of variance components, non-negative variance
components, and nonlinear variance component estimation. The precision description of the
(co)variance component estimator easily follows from application of the error propagation
law to equation (9.1), as

Qσ̂ = N−1MN−1 , (9.2)

with N = AT
vhWvhAvh, M = AT

vhWvhQvhWvhAvh and Qvh the covariance matrix of y
vh

.
Being able to perform a rigorous precision analysis is important for many applications, such
as estimability analysis and significance testing.

In an analogous way to chapter 2 we described the weighted least-squares estimator,
the minimum variance estimator, and the maximum likelihood estimator to VCE. To imple-
ment the minimum variance estimators of (co)variance components, iterative step-by-step
procedures were proposed; two equivalent formulation were given. The last part of chap-
ter 4 was focused on inadmissible variance and covariance components. This can be the
case for instance when estimated variance components are negative. Some defects of the
VCE model in which the (co)variance components are inestimable or poorly estimable were
discussed as well. This was achieved by using a few illustrative examples.

We applied hypothesis testing with the stochastic model, which is the subject of discus-
sion in chapter 5. We presented the w-test, v-test, and overall model test for the stochastic
model. The w-test statistic is used to see whether or not a certain noise component is
likely to be present in the data set at hand, which consequently can be included in the
stochastic model. Following the standard least-squares theory, this test statistic is given as

w =
〈P⊥

Avh
vh(Ct), P

⊥
Avh

vh(t tT )〉
‖P⊥

Avh
vh(Ct)‖Q−1

vh

, (9.3)

where Ct is a cofactor matrix under the alternative hypothesis. Based on the normal
distribution of the original observables we determined the mean, variance, and distribution
of the w-test statistic. Under the null hypothesis, the mean is zero and the variance is
one. The distribution is a linear combination of mutually independent central chi-square
distributions each with one degree of freedom.

An equivalent expression was given by introducing the v-test statistic. The goal is to
decrease the number of (co)variance components of the stochastic model by testing the
significance of the (co)variance components. If one (co)variance component is insignificant,
that component can likely be excluded from the stochastic model. The overall model test
was also introduced to generally validate a proposed stochastic model.

In chapters 7 and 8 we applied LS-VCE to real data. The LS-VCE method was applied
to the GPS geometry-free observation model in chapter 7. This model is linear and can
be easily implemented in computer code. We started by formulating the functional and
stochastic model of the GPS observables. Mainly, the variance component of different
observation types, the satellite elevation dependence of GPS observables precision, and the
correlation between different observation types were considered. We showed for instance
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that the precision of the GPS observables depends, to a large extent, upon the elevation
of satellites. Also, significant correlation between observation types was found. In order
to obtain the minimum variance estimators, and for a proper precision description of the
estimates, such important issues should be taken into account in the covariance matrix of
the GPS observables.

In chapter 8 we proposed a methodology to assess the noise characteristics in time series
of daily position estimates for permanent GPS stations in a global reference frame. We
also applied the statistical tests to find an appropriate stochastic model of GPS time series.
Using the w-test statistic values, a combination of white noise and flicker noise turned out
in general to best characterize the noise in all three position components. An interpretation
for the colored noise of the series was given. Unmodelled periodic effects in the data were
captured by a set of harmonic functions for which we relied on the least-squares harmonic
estimation (LS-HE) method and parameter significance testing developed in the same
framework as LS-VCE. Having included harmonic functions into the model, practically only
white noise was observed to remain in the data. Remaining time-correlation was present
only at very high frequencies (spanning a few days only) which was best expressed as a first
order autoregressive noise process. This noise can be caused by common and well-known
sources of error like unmodelled tropospheric and ionospheric effects as well as satellite
orbit errors. The results confirmed the presence of annual and semiannual signals in the
series. We observed also other significant periodic patterns in the series.

9.3 Conclusions

On the basis of the presented theory and the numerical results obtained with real data, the
following conclusions can be drawn:

Unification of methods The LS-VCE method is capable of unifying many of the existing
VCE-methods. These methods can be easily recovered by making appropriate choices for
the weight matrix Wvh. From equation (9.1) one directly obtains the minimum variance
(co)variance component estimator, if the weight matrix is chosen as Wvh = Q−1

vh . The
covariance matrix Qvh and its inverse were worked out for the normal distributions. We also
made some statements for a class of elliptically contoured distributions. Several important
distributions are known to belong to this class, the multivariate normal distribution being
one such example. In case of the normal distribution, the REML and the BIQUE are
recovered. Without any distribution assumption, the MINQUE can also be recovered from
the LS-VCE method by making a particular choice for the weight matrix, namely Wt = Q−1

t

in Wvh = DT (Wt ⊗ Wt)D.

LS-VCE method LS-VCE is a powerful method for the estimation and validation of the
stochastic model parameters. Since the method is based on the least-squares principle,
we can directly apply the existing body of knowledge of least-squares theory to the VCE
problem. For example it allows one to easily obtain the covariance matrix of the estimators,
and also measures of discrepancies such as the quadratic form of the residuals and the w-
test statistics can readily be obtained. This can play an important role if one wants to apply
the standard quality control theory to the stochastic model. The use of a-priori (co)variance
component information, robust estimation of variance components, non-negative variance
components, and nonlinear covariance functions can also be dealt with in LS-VCE. This
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method can thus be introduced as a standard method for estimation and validation of the
(co)variance components of the stochastic model.

Estimability In order for the stochastic model to have a unique solution, the columns
of the design matrix Avh should be linearly independent. The necessary and sufficient
condition, for the stochastic model to have a unique solution, is thus linear independence of
the cofactor matrices BT Q1B, ... , BT QpB. Therefore, linear independence of Q1, ... , Qp

is only a necessary condition, and not a sufficient one. One can apply the idea of the
generalized inverses and the S-transformations to the rank-deficient system of equations in
the stochastic model. Estimability, admissibility, and ill-posedness of the stochastic model
are three key issues that need to be taken care of in practice. Modification of the variance
component model, choosing reasonably good a-priori values for (co)variance components
and increasing the redundancy of the functional model, and thereby the redundancy of the
stochastic model, cure usually such problems.

Distribution In this thesis we introduced hypotheses testing in the stochastic model. The
goal is to come up with an appropriate stochastic model which includes the proper noise
components into the covariance matrix, for which we rely on the w-test and v-test statistic.
In general, the distribution of the w-test and v-test statistic in the stochastic model is not
normal if the original observables are normally distributed. However, based on the central
limit theorem, for some special cases, if the redundancy of the model is large enough,
the distribution can be approximated by the standard normal distribution. Based on the
simulation of a few examples (not included in this thesis) we could draw the same conclusion
for different forms of the functional and stochastic model. To stay on the safe side, for the
rejection of the null hypothesis, one can also use the Chebyschev inequality which is always
independent of the distribution. The Chebyschev inequality does not provide us with a
sharp confidence interval (usually gives an upper bound for a specified level of significance
α). However, there is no danger with using this if our testing results in the rejection of
the null hypothesis. For example, lots of the large values of the w-test statistic given in
table 8.5 can simply results in the rejection of the null hypothesis using the Chebyschev
inequality. We could thereby conclude that the noise in GPS coordinate time series was
best described by a combination of white noise, flicker noise, and autoregressive noise.

Geometry-free model It this thesis we considered the GPS geometry-free (double dif-
ference) observation model to assess the stochastics of the GPS code and carrier phase
observations. As expected, the variance of a GPS observable generally depends on the ele-
vation of the satellite. Also, significant correlation can occur between different observation
types, e.g. between the C1 and P2 codes. For high-precision positioning applications, to
obtain best (minimum variance) estimators, it is necessary to use an appropriate covari-
ance matrix for the observables, since W = Q−1

y . Using the GPS geometry free observation
model, we could only assess the noise behavior of the GPS observables partially. Since the
geometry-based model is stronger than the geometry-free model, the use of this model is
more fruitful for the application of VCE to GPS observables (see next section).

Time series analysis To obtain a realistic precision description of the estimates for the
unknown parameters in the functional model, a proper covariance matrix of the data is
required. This means that if the covariance matrix is being estimated by VCE-methods,
underparameterization in both functional and stochastic model is not allowed. We observed
for instance significant periodic patterns with periods of 350 days and its fractions 350/n,
n=1,2,...,8 in the GPS coordinate time series. Neglecting these harmonic signals in the
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functional model can seriously overestimate the rate uncertainty, with obvious undesired
negative consequences for geophysical research. Their effects are to be considered as
periodic systematic effects which may not be captured as power-law noise in the stochastic
model. We also observed the presence of the high frequency noise in the data series. To
avoid the overestimation (upward bias) of power-law noise, autoregressive noise should be
taken into account in the stochastic model in this application.

9.4 Recommendations

There are still some issues that we did not address in this thesis. The following topics need
more research in the future:

LS-VCE based estimator In case of the linear model E{y} = Ax, the BLUE of x is

given as x̂ = (AT Q−1
y A)−1AT Q−1

y y. We cannot use this estimator if Qy is unknown. If

Qy is unknown, one can use Q̂y obtained from LS-VCE which leads to an estimator x̂′.
The question is then how the randomness of Q̂y propagates into the mean and covariance
matrix of x̂′. For example in order for x̂′ to be an unbiased estimator of x, a symmetric
distribution (e.g. elliptical distributions) of the original observations is required (Teunissen
and Amiri-Simkooei, 2006). However, to make a proper statement on the higher order
moments, and in general its distribution, more research needs to be done in this field.

Nonlinear model Throughout this thesis, we dealt with the linear form of the functional
model. In some practical applications we however deal with nonlinear functional mod-
els. The GPS geometry-based model is an example of the nonlinear functional model.
The nonlinearity needs to be looked into for future plans by applying the LS-VCE to non-
linear problems. Our strategy is of course the linearization and is organized as follows.
One can start with an initial covariance matrix and apply the least-squares theory to the
linearized form of the functional model to estimate the least-squares residuals. Expres-
sion σ̂ = N−1l with equations (4.110) and (4.112) provides us with estimates for the
(co)variance components. Using these estimates one obtains a new covariance matrix and
thus a new least-squares residual vector ê. The double-iterative procedure is repeated until
the estimated residuals and thus the (co)variance components do not change with further
iterations.

Simple methods The large number of observations in case of GPS is always an advan-
tage when estimating the stochastic model parameters; the larger the redundancy in the
functional model is, the better the precision of the (co)variance estimators in the stochastic
model will be. But, on the other hand, when dealing with great amount of GPS data, the
computational burden for VCE will be drastically increased since, in general, one needs
successive inversion of Qy when computing N and l. One may then apply some efficient
techniques to reduce the computational load. For example, the repeated model of ob-
servation equations used in section 7.4 could be helpful. The final estimates were simply
obtained by taking the average of the individual estimates of different groups. The other
alternative is to use the simplified methods introduced in chapter 3. If one for instance
uses a block-diagonal covariance matrix with only some variance components, one can sig-
nificantly decrease the computational load. This model is known as the disjunctive group
model, which always provides positive variance components provided the a-priori variance
components are chosen properly. At the point of convergence, the results also coincide with
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the almost unbiased estimator (AUE). However, for this special structure the estimates are
strictly unbiased. The other alternative, to reduce the computational burden, is to use the
Monte-Carlo simulation (see Kusche, 2003a).

Distribution The distribution of the w-test and v-test statistic in the stochastic model
needs further research. The distribution is a linear combination of mutually independent
central chi-square distributions with one degree of freedom. One should be able to obtain
critical values which are needed for effectively hypotheses testing. Since no practical closed
form expression for the cumulative distribution function of these test statistics is available,
one may use the asymptotic expressions, or some numerical root finding methods instead.
The other alternative would be to use the normal distribution as an approximation. When
many observations are involved in the functional model, the distribution of the w-test and
v-test statistic of the stochastic model tends to become normal. Concerning the overall
model test which was introduced to test the appropriateness of the general structure of the
selected stochastic model, the distribution in general looks complicated. We proposed an
approximation to handle this problem. The other alternative is to rely on some simulation
techniques as bootstrapping or Monte-Carlo. More research needs to be done in this field
in future.

Geometry-based model In this thesis we used the geometry-free model to assess the
stochastics of GPS observables. Because of the special structure of this model we do have
some restrictions to estimate (co)variance components (see example 4.10). Apparently,
the GPS geometry-based model rather than the geometry-free model is more fruitful. For
example, it allows one to estimate the noise components of the carrier phase observations,
L1 separately from L2. Generally, the redundancy of the geometry-based model is larger
than that of the geometry-free model. The geometry-based model can start for instance
from a single difference phase observation which is related to three baseline components,
one receiver clock error, and a single difference ambiguity. Usually the double difference
ambiguities are estimated by the LAMBDA method and kept fixed in the model. If we
have m satellites, for one observation type, the redundancy becomes b = m − 4. But,
the redundancy in the geometry-free model becomes zero in this case. When we have
r observation types, the redundancy of the functional model reads: b = mr − 4 for the
geometry-based model, and b = m(r − 1) for the geometry-free model.

Other applications We finally emphasize that the LS-VCE is generally applicable. One
can find many areas in our field that the LS-VCE can be used. We can at least mention
1) combination of InSAR data and leveling data, 2) weighting of different observations in
gravity field modeling, 3) estimation of covariance functions in geosciences and geostatis-
tics, 4) combination of different height systems, 5) combination of GPS, SLR, and VLBI
observations, and 6) combination of GPS and upcoming Galileo observations.



Mathematical Background A
A.1 Trace, Kronecker product and vec operator

Assuming all matrices and vectors involved have appropriate dimensions, the following properties hold for
the Kronecker product, trace, determinant,rank, and vec-operator:

tr(U) = tr(UT ) (A.1)

tr(UV ) = tr(V U) (A.2)

(U + V ) ⊗ S = U ⊗ S + V ⊗ S (A.3)

U ⊗ (V + S) = U ⊗ V + U ⊗ S (A.4)

(UV ) ⊗ (ST ) = (U ⊗ S)(V ⊗ T ) (A.5)

tr(U ⊗ V ) = tr(U)tr(V ) (A.6)

rank(U ⊗ V ) = rank(U)rank(V ) (A.7)

det(U ⊗ V ) = det(U)n det(V )m, U : m × m V : n × n (A.8)

(U ⊗ V )T = UT ⊗ V T (A.9)

(U ⊗ V )−1 = U−1 ⊗ V −1 (A.10)

vec(uvT ) = v ⊗ u (A.11)

vec(U)T vec(V ) = tr(UT V ) (A.12)

vec(UV S) = (ST ⊗ U)vec(V ) (A.13)

tr(UV ST ) = vec(TT )T (ST ⊗ U)vec(V ) = vec(T )T (U ⊗ ST )vec(V T ) (A.14)

A.2 Duplication and commutation matrices

For symmetric matrix S of size n and arbitrary matrices U and V of size n × n, the following formulas
holds between the duplication matrix D and the commutation matrix K:

vec(S) = Dvh(S), D has full column-rank (A.15)

D+ = (DT D)−1DT (A.16)

vh(S) = D+vec(S) (A.17)

D+D = I, and DD+ = D+T DT a projector (A.18)

vec(S) = DD+vec(S) (A.19)

(D+(S ⊗ S)D)−1 = D+(S−1 ⊗ S−1)D (A.20)

DD+(U ⊗ U)D = (U ⊗ U)D (A.21)
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D+(U ⊗ U)DD+ = D+(U ⊗ U) (A.22)

(DT (U ⊗ U)D)−1 = D+(U−1 ⊗ U−1)D+T (A.23)

K(U ⊗ V ) = (V ⊗ U)K (A.24)

K(U ⊗ V )K = V ⊗ U (A.25)

KD = D, D+K = D+ (A.26)

DD+ =
1

2
(I + K) (A.27)



Derivation of Equations B
B.1 Equation (5.116)

To see how the distribution of the w-test statistic looks like, we need the eigenvalues of CyQ−
ê in equa-

tion (5.82)

CyQ−
ê =

1

σ2

[
0 0
0 Im

] [
Q1 Q2

Q2 Q1

]
=

1

σ2

[
0 0
Q2 Q1

]
(B.1)

with Q1 and Q2 as

q
(1)
ij =

⎧⎨
⎩

2m−1
2m if i = j

−1
2m if i �= j

, and q
(2)
ij =

−1

2m
∀ i, j = 1, ...,m (B.2)

The matrix CyQ−
ê is of rank m, and we just need to compute the eigenvalues of the full rank matrix

1
σ2 Q1; note that 1

σ2 Q1 is the block diagonal of Q−
ê . It can be rewritten as

1

σ2
Q1 =

1

2σ2
P1 +

1

2σ2
Im (B.3)

with P1 an orthogonal projector of rank m − 1 and of the form

pij =

⎧⎨
⎩

m−1
m if i = j

−1
m if i �= j

(B.4)

The eigenvalues of 1
σ2 Q1 then read

∣∣∣∣ 1

σ2
Q1 − γIm

∣∣∣∣ =
∣∣∣∣ 1

2σ2
P1 − (γ − 1

2σ2
)Im

∣∣∣∣ = 0 (B.5)

or |P1 − (2σ2γ − 1)Im| = 0. Since P1 is a projector of rank m − 1, its eigenvalues read 2σ2γ1 − 1 =
0, 2σ2γ2 − 1 = ... = 2σ2γm − 1 = 1, which yields

γ1 =
1

2σ2
, γ2 = ... = γm =

1

σ2
(B.6)

This, with equation (5.82), wd =
√

m−1
2σ2 and tr(CyQ−

ê ) = 2m−1
2σ2 gives the 2m − 2 number of non-zero

eigenvalues λ as

λ1 = 0; λ2 = ... = λm =
1

2
√

m − 1
; λm+1 = ... = λ2m−1 =

−1

2
√

m − 1
(B.7)
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B.2 Equation (5.123)

To see how the distribution looks like, we need the eigenvalues of CyQ−
ê in (5.82)

CyQ−
ê =

1

σ2

[
0 Im

Im 0

] [
Q1 Q2

Q2 Q1

]
=

1

σ2

[
Q2 Q1

Q1 Q2

]
(B.8)

This matrix is of rank 2m − 1 and its eigenvalues follow from |CyQ−
ê − γI2m|, or∣∣∣∣

[
Q2 Q1

Q1 Q2

]
− σ2γ

[
Im 0
0 Im

]∣∣∣∣ = 0 (B.9)

The preceding equation, can be rewritten as follows:∣∣∣∣
[

Q2 + Im Q1 − Im

Q1 − Im Q2 + Im

]
−
[

Im −Im

−Im Im

]
− σ2γ

[
Im 0
0 Im

]∣∣∣∣ = 0 (B.10)

or ∣∣∣∣
[

Q1 Q2

Q2 Q1

]
−
[

(σ2γ + 1)Im −Im

−Im (σ2γ + 1)Im

]∣∣∣∣ = 0 (B.11)

or in terms of Kronecker product ⊗ as∣∣∣∣
[

Q1 Q2

Q2 Q1

]
−
[

(σ2γ + 1) −1
−1 (σ2γ + 1)

]
⊗ Im

∣∣∣∣ = 0 (B.12)

Singular value decomposition for the matrix

[
(σ2γ + 1) −1

−1 (σ2γ + 1)

]
gives

∣∣∣∣
[

Q1 Q2

Q2 Q1

]
−
[ −1/

√
2 1/

√
2

1/
√

2 1/
√

2

] [
σ2γ + 2 0

0 σ2γ

] [ −1/
√

2 1/
√

2

1/
√

2 1/
√

2

]
⊗ Im

∣∣∣∣ = 0 (B.13)

or, using the properties of the Kronecker product, as∣∣∣∣
[

Q1 Q2

Q2 Q1

]
− 1

2

[ −Im Im

Im Im

] [
(σ2γ + 2)Im 0

0 (σ2γ)Im

] [ −Im Im

Im Im

]∣∣∣∣ = 0 (B.14)

or ∣∣∣∣12
[ −Im Im

Im Im

] [
Q1 Q2

Q2 Q1

] [ −Im Im

Im Im

]
−
[

(σ2γ + 2)Im 0
0 (σ2γ)Im

]∣∣∣∣ = 0 (B.15)

which simplifies to∣∣∣∣
[

Q1 − Q2 0
0 Q1 + Q2

]
−
[

(σ2γ + 2)Im 0
0 (σ2γ)Im

]∣∣∣∣ = 0 (B.16)

Since the matrices are in a block-diagonal form, the preceding equation can be split into two parts, i.e.∣∣Q1 − Q2 − (σ2γ + 2)Im

∣∣ = 0 ,
∣∣Q1 + Q2 − (σ2γ)Im

∣∣ = 0 (B.17)

in which Q1 − Q2 = m−1
m Im, and hence its eigenvalues read

σ2γ + 2 = 1 → γ1 = ... = γm = − 1

σ2
(B.18)

and Q1 + Q2 is a projector of rank m − 1, thus

σ2γ = 1 → γm+1 = ... = γ2m−1 =
1

σ2
, γ2m = 0 (B.19)

This, with equation (5.82), wd = 1
σ2

√
2m(m−1)

2m−1 and tr(CyQ−
ê ) = −1

σ2 , gives the 2m − 1 number of

non-zero eigenvalues λ as

λ1 = ... = λm = − m − 1√
2m(2m − 1)(m − 1)

; λm+1 = ... = λ2m−1 =
m√

2m(2m − 1)(m − 1)
(B.20)
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B.3 Equation (5.158)

Second term: The expectation of the second term in equation (5.156) reads:

E{(tT Q−1
t t)2(lT N−1l)} = E{(tT Q−1

t t)(tT Q−1
t t)(lin

−1
ij lj)}

= n−1
ij E{(tT Q−1

t t)(tT Q−1
t t)(li)(lj)} ,

(B.21)

with li = 1
2 tT Q−1

t Qti
Q−1

t t and lj = 1
2 tT Q−1

t Qtj
Q−1

t t. This equation consists of multiplication of four
quadratic forms in t. The expectation of this multiplication, consisting of 24 terms, can be obtained from
equation (C.50). Note that here we have t ∼ N(0, Qt) instead of e ∼ N(0, Qy) used in appendix C.
Also, we have A = B = Q−1

t , C = 1
2Q−1

t Qti
Q−1

t and D = 1
2Q−1

t Qtj
Q−1

t . The terms 1 through 7 in
equation (C.50) then read

F1 = b b liljn
−1
ij = b2(lT N−1l) = b3/2 ;

F2 = 2b liljn
−1
ij = 2b(lT N−1l) = b2 ;

F3 = 2li b ljn
−1
ij = 2b(lT N−1l) = b2 ;

F4 = 2lj b lin
−1
ij = 2b(lT N−1l) = b2 ;

F5 = 2li b ljn
−1
ij = 2b(lT N−1l) = b2 ;

F6 = 2lj b lin
−1
ij = 2b(lT N−1l) = b2 ;

F7 = nij b b n−1
ij = b2δii = b2p ,

(B.22)

in which equation (5.152), i.e. lT N−1l = b
2 , has been used. The terms 8 through 18 in equation (C.50)

then read

F8 = 4lj lin
−1
ij = 4lT N−1l = 2b ;

F9 = 4lj lin
−1
ij = 4lT N−1l = 2b ;

F10 = 4liljn
−1
ij = 4lT N−1l = 2b ;

F11 = 4liljn
−1
ij = 4lT N−1l = 2b ;

F12 = 2b nijn
−1
ij = 2bδii = 2b p ;

F13 = 2b nijn
−1
ij = 2bδii = 2b p ;

F14 = 2b nijn
−1
ij = 2bδii = 2b p ;

F15 = 2b nijn
−1
ij = 2bδii = 2b p ;

F16 = 2b nijn
−1
ij = 2bδii = 2b p ;

F17 = 4liljn
−1
ij = 4lT N−1l = 2b ;

F18 = 4lj lin
−1
ij = 4lT N−1l = 2b .

(B.23)

Similarly, the terms 19 through 24 in equation (C.50) can then be evaluated as

F19 = 4nijn
−1
ij = 4p ;

F20 = 4nijn
−1
ij = 4p ;

F21 = 4nijn
−1
ij = 4p ;

F22 = 4nijn
−1
ij = 4p ;

F23 = 4nijn
−1
ij = 4p ;

F24 = 4nijn
−1
ij = 4p .

(B.24)

Adding up the terms in equations (B.22), (B.23) and (B.24), i.e. F1 through F24, the expectation of the
second term in equation (5.156) can be simplified to

E{(tT Q−1
t t)2(lT N−1l)} =

b3

2
+ 5b2 + b2p + 12b + 10bp + 24p . (B.25)

B.4 Equation (5.159)

Third term: The expectation of the third term in equation (5.156) reads
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E{(lT N−1l)2} = E{lin−1
ij lj lkn−1

kl ll} = n−1
ij n−1

kl E{lilj lkll} , (B.26)

where li = 1
2 tT Q−1

t Qti
Q−1

t t and so are the other terms. The expectation of the term lilj lkll in equa-
tion (B.26), as before, consists of the multiplication of four quadratic forms in t. The expectation of this
multiplication can be obtained from equation (C.50) but this time with Qy = Qt, A = 1

2Q−1
t Qti

Q−1
t ,

B = 1
2Q−1

t Qtj
Q−1

t , C = 1
2Q−1

t Qtk
Q−1

t and D = 1
2Q−1

t Qtl
Q−1

t . The terms 1 through 7 in equa-
tion (C.50) then read

F1 = n−1
ij n−1

kl lilj lkll = lin
−1
ij lj lkn−1

kl ll = (lT N−1l)2 = b2/4 ;

F2 = n−1
ij n−1

kl nij lkll = n−1
ij njilkn−1

kl ll = p lkn−1
kl ll = p b/2 ;

F3 = n−1
ij n−1

kl niklj ll = δiln
−1
ij lj ll = lin

−1
ij lj = b/2 ;

F4 = n−1
ij n−1

kl nillj lk = δikn−1
ij lj lk = lin

−1
ij lj = b/2 ;

F5 = n−1
ij n−1

kl njklill = δikn−1
kl lill = lkn−1

kl ll = b/2 ;

F6 = n−1
ij n−1

kl njllilk = δiln
−1
kl lilk = lkn−1

kl ll = b/2 ;

F7 = n−1
ij n−1

kl nkllilj = n−1
kl nlklin

−1
ij lj = p lin

−1
ij lj = p b/2 .

(B.27)

If we now introduce the third-order tensor V as

vijk =
1

2
tr(Q−1

t Qti
Q−1

t Qtj
Q−1

t Qtk
), i, j, k = 1, 2, ..., p , (B.28)

it is simple to verify that the following equality holds true between the entries of V

vijk = vjki = vkij , i, j, k = 1, 2, ..., p . (B.29)

We will need the term N−1 : V N−1l in the subsequent derivations, in which : denotes the double inner
(dot) product of two tensors. The double dot product between the second order tensor (matrix) N−1 and
the third order tensor V produces a vector s = N−1 : V , with components sk = n−1

ij vjik, k = 1, 2, ..., p

(only one free index k). The term N−1 : V N−1l simplifies to

N−1 : V N−1l = N−1 : V σ = n−1
ij vijkσk

= 1
2n−1

ij tr(Q−1
t Qti

Q−1
t Qtj

Q−1
t Qtk

)σk

= 1
2n−1

ij tr(Q−1
t Qti

Q−1
t Qtj

Q−1
t [σkQtk

])

= 1
2n−1

ij tr(Q−1
t Qti

Q−1
t Qtj

)

= 1
2n−1

ij tr(Q−1
t Qti

Q−1
t Qtj

)

= n−1
ij nij = δii = p .

(B.30)

With these in mind, the terms 8 through 18 in equation (C.50) can now be simplified as follows (see
equation (B.30)):

F8 = n−1
ij n−1

kl llvijk = n−1
ji vijkn−1

kl ll = N−1 : V N−1l = p ;

F9 = n−1
ij n−1

kl llvikj = n−1
ij vjikn−1

kl ll = N−1 : V N−1l = p ;

F10 = n−1
ij n−1

kl lkvijl = n−1
ji vijln

−1
lk lk = N−1 : V N−1l = p ;

F11 = n−1
ij n−1

kl lkvilj = n−1
ij vjiln

−1
lk lk = N−1 : V N−1l = p ;

F12 = n−1
ij n−1

kl ljvikl = n−1
lk vklin

−1
ij lj = N−1 : V N−1l = p ;

F13 = n−1
ij n−1

kl ljvilk = n−1
kl vlkin

−1
ij lj = N−1 : V N−1l = p ;

F14 = n−1
ij n−1

kl livjkl = n−1
lk vkljn

−1
ji li = N−1 : V N−1l = p ;

F15 = n−1
ij n−1

kl livjlk = n−1
kl vlkjn

−1
ji li = N−1 : V N−1l = p ;

F16 = n−1
ij n−1

kl nijnkl = n−1
ij njin

−1
kl nlk = δiiδkk = p2 ;

F17 = n−1
ij n−1

kl niknjl = n−1
ij njln

−1
lk nki = δilδli = p ;

F18 = n−1
ij n−1

kl nilnjk = n−1
ij njkn−1

kl nli = δikδki = p .

(B.31)

Introducing the fourth-order tensor Z as

zijkl =
1

2
tr(Q−1

t Qti
Q−1

t Qtj
Q−1

t Qtk
Q−1

t Qtl
), i, j, k, l = 1, 2, ..., p , (B.32)
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gives zijkl = zjkli = zklij = zlijk, i, j, k, l = 1, 2, ..., p. Note that here N−1 : Z is a second order tensor
(a matrix), and N−1 : Z : N−1 is a scalar. Taking these circumstances into account, the terms 19 through
24 in equation (C.50) read then

F19 = n−1
ij n−1

kl zijkl = n−1
ji zijkln

−1
lk = N−1 : Z : N−1 ;

F20 = n−1
ij n−1

kl zijlk = n−1
ji zijlkn−1

kl = N−1 : Z : N−1 ;

F21 = n−1
ij n−1

kl zikjl = n−1
ji z23

ijkln
−1
lk = N−1 : Z23 : N−1 ;

F22 = n−1
ij n−1

kl ziklj = n−1
ij zjikln

−1
lk = N−1 : Z : N−1 ;

F23 = n−1
ij n−1

kl ziljk = n−1
ji z23

ijlkn−1
kl = N−1 : Z23 : N−1 ;

F24 = n−1
ij n−1

kl zilkj = n−1
ij zjilkn−1

kl = N−1 : Z : N−1 ,

(B.33)

where Z23 denotes the Z matrix in which its columns, notated by 2, and heights, notated by 3, have been
transposed. Unfortunately, the terms N−1 : Z : N−1 and N−1 : Z23 : N−1 can not be simplified any
more. Adding up the terms in equations (B.27), (B.31) and (B.33), i.e. F1 through F24, the expectation
of the third term in equation (5.156) reads

E{(lN−1l)2} =
b2

4
+ p b + 2b + 10p + p2 + 4N−1 : Z : N−1 + 2N−1 : Z23 : N−1 . (B.34)

B.5 Equation (5.174)

Equation (5.172) can be reformulated as

2T df + 2ε =

[
tT Q−1

t t − 1

2

]2
− 1

4
, (B.35)

or after a few simple operations as

1

2

(√
8(T df + ε) + 1 + 1

)
= tT Q−1

t t . (B.36)

The term
√

8(T df + ε) + 1 can be rewritten as

√
8(T df + ε) + 1 =

√
8T df + 1

(
1 +

8ε

8T df + 1

)1/2

. (B.37)

Using the Taylor series expansion of (1 + x)1/2 ≈ 1 + x
2 , the preceding formula can be approximated as√

8(T df + ε) + 1 ≈
√

8T df + 1 +
4ε√

8T df + 1
. (B.38)

Substitution of equation (B.38) into equation (B.36) yields

1

2

(√
8T df + 1 + 1

)
+

2ε√
8T df + 1

≈ tT Q−1
t t (B.39)

Substitution of the second term
√

8T df + 1 in equation (B.39) with the approximation 2(tT Q−1
t t − 1

2 )
gives

T ′
b + ε′ ≈ tT Q−1

t t , (B.40)

with

T ′
b =

1

2

(√
8T df + 1 + 1

)
; ε′ =

ε

tT Q−1
t t − 1

2

. (B.41)

Substituting for ε in equation (B.41) from equation (5.173) yields the (bias) statistic ε′ as

ε′ =
1

2

[
tT Q−1

t Q̂tQ
−1
t t − 1

2

tT Q−1
t t − 1

2

− 1

]
, (B.42)

or approximately

ε′ ≈ 1

2

[
tT Q−1

t Q̂tQ
−1
t t

tT Q−1
t t

− 1

]
. (B.43)





Moments of Normally Distributed Data C
C.1 Moment generating function

Let y be an m × 1 random vector with the multivariate probability density function f(y). Then, the
moment generating function My(s), with s an arbitrary m-vector, of y reads

My(s) = E{esT y} = E{exp(s1y1
+ ... + smy

m
)} , (C.1)

or

My(s) =

∫ +∞

−∞
...

∫ +∞

−∞
es1y1+...+smymf(y1, ..., ym)dy1...dym , (C.2)

from which the kth moment of y, namely E{yk1

1
...ykm

m
} with k =

∑m
i=1 ki, can be obtained by differenti-

ations of My(s) k times with respect to s and setting s equal to zero, since

∂kMy(s)

∂sk1

1 ...∂skm
m

∣∣∣∣∣
s=0

=
∫ +∞
−∞...

∫ +∞
−∞ yk1

1 ...ykm
m esT yf(y)dy1... dym

∣∣∣
s=0

=
∫ +∞
−∞...

∫ +∞
−∞ yk1

1 ...ykm
m f(y)dy1...dym

= E{yk1

1
... ykm

m
} .

(C.3)

C.2 Moment generating function for normal distribution

If the m × 1 stochastic vector y is normally distributed, i.e. y ∼ Nm(μy, Qy), its probability density
function reads

f(y) =
1

(2π)
m
2 (det Qy)

1

2

exp[−1

2
(y − μy)T Q−1

y (y − μy)] (C.4)

The moment generating function of y is then

My(s)=
1

(2π)
m
2 (det Qy)

1

2

∫ +∞

−∞
...

∫ +∞

−∞
exp[sT y− 1

2
(y−μy)T Q−1

y (y−μy)]dy1...dym (C.5)

By rewriting

sT y − 1

2
(y − μy)T Q−1

y (y − μy) = sT μy +
1

2
sT Qys − 1

2
(y − μy − Qys)T Q−1

y (y − μy − Qys) (C.6)

and considering∫ +∞

−∞
...

∫ +∞

−∞
exp[

1

2
(y−μy−Qys)T Q−1

y (y−μy−Qys)]dy1...dym = (2π)
m
2 (det Qy)

1

2 (C.7)

we find that

My(s) = exp[sT μy +
1

2
sT Qys] (C.8)

Note that My(s) only depends on μy and Qy. So all moments of a normally distributed vector y are fully
determined by its expectation (first moment) and dispersion (second central moment).
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C.3 First four moments of normally distributed data

Using the results of the previous subsection, we can now derive the first four moments of a normally
distributed vector. If we write the moment generating function of the m-dimensional normal distribution
as

My(s) = exp

⎡
⎣ m∑

α=1

sαμyα
+

1

2

m∑
α=1

m∑
β=1

sαsβQyαβ

⎤
⎦ (C.9)

and consider that My(s = 0) = 1, we may derive straightforwardly:

E{y
i
} =

∂My(s)

∂si

∣∣∣∣
s=0

=

(
μyi

+

m∑
α

sαQyαi

)
My(s)

∣∣∣∣∣
s=0

= μyi
(C.10)

In the sequel, for the sake of convenience, we denote μyi
= μyi

and Qyij
= qij and in addition we disregard

the summation Σ (see Note 5.1). The second, third, and fourth moments are obtaied as

E{y
i
y

j
} =

∂2My(s)
∂si∂sj

∣∣∣
s=0

= qijMy(s) + (μi + sαqαi) (μj + sαqαj) My(s)|s=0 = qij + μiμj

(C.11)

and

E{y
i
y

j
y

k
} =

∂3My(s)
∂si∂sj∂sk

∣∣∣
s=0

= qijμk + qikμj + qjkμi + μiμjμk (C.12)

and

E{y
i
y

j
y

k
y

k
} =

∂4My(s)
∂si∂sj∂sk∂sl

∣∣∣
s=0

= qijqkl + qijμkμl + qikqjl + qikμjμl + qjkqil

+ qjkμiμl + qilμjμk + qjlμiμk + qklμiμj + μiμjμkμl

(C.13)

respectively. If we now define the residual vector e as (not to be confused with the vector of least-squares
residuals ê)

e = y − μy (C.14)

it can be concluded that ê is also normally distributed. Its shape, expressed by covariance matrix Qy, is
the same as the shape of the distribution of y but its mean has moved to the origin

e ∼ Nm(0, Qy) (C.15)

The preceding first four moments (central moments) become then (set μi = μj = μk = μl = 0)

E{ei} = 0
E{eiej} = qij

E{eiejek} = 0
E{eiejekel} = qijqkl + qikqjl + qilqjk

(C.16)

The aforementioned formulation for the moment generating functions and the moments are usually
given in the literatures. However, in the remainder of this appendix, as an extension, we will derive the
moments of higher orders (six and eight) and consequently to evaluate the expectation of the multiplication
of the quadratic forms, more than two terms, namely three and four terms.
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C.4 Sixth and eighth central moments

As before, let e be normally distributed as e ∼ Nm(0, Qy). The moment generating function of e is then

Me(s) = exp[
1

2
sT Qys] (C.17)

This shows that all central moments of a normally distributed vector e are fully determined by its dispersion
(second central moment)

Me(s) = exp

⎡
⎣1

2

m∑
α=1

m∑
β=1

sαsβqαβ

⎤
⎦ = exp[φ] (C.18)

where

φ =
1

2

m∑
α=1

m∑
β=1

sαsβqαβ =
1

2
sαsβqαβ (C.19)

One can simply show that the partial derivatives of φ read

∂φ

∂si
= φ̇i = sαqαi,

∂2φ

∂si∂sj
= qij ,

∂3φ

∂si∂sj∂sj
= ... = 0 (C.20)

The partial derivatives of the moment generating function read then

First derivative:

∂Me(s)

∂si
=

∂φ

∂si
Me(s) = φ̇iMe(s) (C.21)

Second derivative:

∂2Me(s)

∂si∂sj
=

∂2φ

∂si∂sj
Me(s) +

∂φ

∂si

∂φ

∂sj
Me(s) = qijMe(s) + φ̇iφ̇jMe(s) (C.22)

Third derivative:

∂3Me(s)

∂si∂sj∂sk
= (qij φ̇k + qikφ̇j + qjkφ̇i)Me(s) + φ̇iφ̇j φ̇kMe(s) (C.23)

Fourth derivative:

∂4Me(s)
∂si∂sj∂sk∂sl

= (qijqkl + qikqjl + qjkqil)Me(s) + (qij φ̇kφ̇l + qikφ̇j φ̇l + qjkφ̇iφ̇l+

qilφ̇j φ̇k + qjlφ̇iφ̇k + qklφ̇iφ̇j)Me(s) + φ̇iφ̇j φ̇kφ̇lMe(s)
(C.24)

Fifth derivative: here and later on do not confuse m, the free index, with the size of vector y.

∂5Me(s)
∂si∂sj∂sk∂sl∂sm

=
(
[qijqkl + qikqjl + qjkqil]φ̇m+

[qijqkm + qikqjm + qjkqim]φ̇l + [qijqlm + qilqjm + qjlqim]φ̇k+

[qikqlm + qilqkm + qklqim]φ̇j + [qjkqlm + qjlqkm + qklqjm]φ̇i

)
Me(s) +(

qij φ̇kφ̇lφ̇m + qikφ̇j φ̇lφ̇m + qilφ̇j φ̇kφ̇m + qimφ̇j φ̇kφ̇l+

qjkφ̇iφ̇lφ̇m + qjlφ̇iφ̇kφ̇m + qjmφ̇iφ̇kφ̇l + qklφ̇iφ̇j φ̇m+

qkmφ̇iφ̇j φ̇l + qlmφ̇iφ̇j φ̇k

)
Me(s) + φ̇iφ̇j φ̇kφ̇lφ̇mMe(s)

(C.25)
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Sixth derivative:

∂6Me(s)
∂si∂sj∂sk∂sl∂sm∂sn

= ([qijqkl + qikqjl + qjkqil]qmn+

[qijqkm + qikqjm + qjkqim]qln + [qijqlm + qilqjm + qjlqim]qkn+
[qikqlm + qilqkm + qklqim]qjn + [qjkqlm + qjlqkm + qklqjm]qin) Me(s) +(
[qijqkl + qikqjl + qjkqil]φ̇mφ̇n + [qijqkm + qikqjm + qjkqim]φ̇lφ̇n+

[qijqlm + qilqjm + qjlqim]φ̇kφ̇n + [qikqlm + qilqkm + qklqim]φ̇j φ̇n+

[qjkqlm + qjlqkm + qklqjm]φ̇iφ̇n + [qijqkn + qikqjn + qjkqin]φ̇lφ̇m+

[qijqln + qilqjn + qjlqin]φ̇kφ̇m + [qikqln + qklqin + qilqkn]φ̇j φ̇m+

[qjkqln + qjlqkn + qklqjn]φ̇iφ̇m + [qijqmn + qimqjn + qjmqin]φ̇kφ̇l+

[qikqmn + qimqkn + qkmqin]φ̇j φ̇l + [qjkqmn + qjmqkn + qkmqjn]φ̇iφ̇l+

[qilqmn + qimqln + qlmqin]φ̇j φ̇k + [qjlqmn + qjmqln + qlmqjn]φ̇iφ̇k+

[qklqmn + qkmqln + qlmqkn]φ̇iφ̇j

)
Me(s) +(

qij φ̇kφ̇lφ̇mφ̇n + qikφ̇j φ̇lφ̇mφ̇n + qilφ̇j φ̇kφ̇mφ̇n + qimφ̇j φ̇kφ̇lφ̇n+

qjkφ̇iφ̇lφ̇mφ̇n + qjlφ̇iφ̇kφ̇mφ̇n + qjmφ̇iφ̇kφ̇lφ̇n + qklφ̇iφ̇j φ̇mφ̇n+

qkmφ̇iφ̇j φ̇lφ̇n + qlmφ̇iφ̇j φ̇kφ̇n

)
Me(s) + φ̇iφ̇j φ̇kφ̇lφ̇mφ̇nMe(s)

(C.26)

The seventh and eighth derivatives can be obtained in a similar way. For the sake of convenience, we
will not give these formulas here. To obtain the central moments, we need to set s equal to zero in the
preceding partial derivatives, i.e.

E{ei} = 0
E{eiej} = qij

E{eiejek} = 0
E{eiejekel} = qijqkl + qikqjl + qilqjk

E{eiejekelem} = 0
E{eiejekelemen} = [qijqklqmn + qikqjlqmn + qjkqilqmn]

+ [qijqkmqln + qikqjmqln + qjkqimqln]
+ [qijqlmqkn + qilqjmqkn + qjlqimqkn]
+ [qikqlmqjn + qilqkmqjn + qklqimqjn]
+ [qjkqlmqin + qjlqkmqin + qklqjmqin]

(C.27)

From the above results, the eighth central moment can be predicted. The number of terms for this central
moment is 7×5×3×1 = 105 (24 independent terms, see later on). In terms of the sixth central moment,
it reads

E{eiejekelemeneoep} = E{eiejekelemen} qop + E{eiejekelemeo } qnp

+ E{eiejekeleoen } qmp + E{eiejekeoemen} qlp

+ E{eiejeoelemen} qkp + E{eieoekelemen} qjp

+ E{eoejekelemen} qip

(C.28)

C.5 Quadratic forms in normal variables

A quadratic form of a stochastic m × 1 vector y is defined as yT Ay with A a symmetric m × m matrix.
In the following, the expectation and the (co)variance of quadratic forms of a normally distributed m × 1
vector y ∼ Nm(μy, Qy) are derived.

Expectation If we use the trace operator and the moments of y as derived in the previous section, the
expectation of a quadratic form can be derived as

E{yT Ay} = tr(AE{yT y}) = tr(AQy) + μT
y Aμy (C.29)
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(Co)variance The covariance C{., .} between two quadratic forms in y is defined as

C{yT Ay, yT By} = E{(yT Ay − E{yT Ay})(yT By − E{yT By})} (C.30)

with A and B symmetric m×m matrices (C and D as well in the sequel). With y = μy + e, one obtains

C{yT Ay, yT By} = E{eT AeeT Be} + 2μT
y BE{eeT Ae} + 2μT

y AE{eeT Be}
+ 4μT

y AQyBμy − tr(AQy)tr(BQy)
(C.31)

The m-vector E{eeT Ae} reads

E{eeT Ae} = E{ekeiaijej} = aijE{eiejek} = 0 (C.32)

and so does E{eeT Be} = 0. Furthermore

E{eT AeeT Be} = E{eiaijejekbklel} = aijbklE{eiejekel}
= aijbklqijqkl + aijbklqikqjl + aijbklqilqjk

= aijqjibklqlk + aijqjlblkqki + aijqjkbklqli

= tr(AQy)tr(BQy) + tr(AQyBQy) + tr(AQyBQy)
= tr(AQy)tr(BQy) + 2tr(AQyBQy)

(C.33)

So the covariance between two quadratic forms in y is given as:

C{yT Ay, yT By} = 2tr(AQyBQy) + 4μT
y AQyBμy (C.34)

For special case A = B, i.e. for the variance of a quadratic form, one obtains

D{yT Ay} = 2tr(AQyAQy) + 4μT
y AQyAμy (C.35)

In case A = B = Q−1
y , it follows that

tr(AQy) = m and tr(AQyBQy) = m (C.36)

which with equation (C.33) gives

E{(eT Q−1
y e)2} = m(m + 2) (C.37)

and thus from equation (C.35), it follows

D{eT Q−1
y e} = 2m (C.38)

It is repeated that e ∼ Nm(0, Qy) and is not to be confused with ê, the least-squares residuals.

C.6 Multiplication of four quadratic forms

Sometimes we need to know the expectation of the multiplication of four quadratic forms. This is the
case if one wants to derive the variance of the quadratic form of the residuals in the stochastic model. For
this purpose, the eighth moment (2 × 2 × 2 = 8th) of the residual vector is needed (one 2 for stochastic
model; one 2 for quadratic form; one 2 for variance). For the sake of convenience, let us firstly derive the
expectation of the multiplication of three quadratic forms, and then generalize it to four.

E{eT Ae eT Be eT Ce} = E{eiaijejekbklelemcmnen} (C.39)
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It can be rewritten as

E{eT Ae eT Be eT Ce} = aijbklcmnE{eiejekelemen} (C.40)

Substitution from equation (C.27) yields

E{eT Ae eT Be eT Ce} = aijbklcmn[qijqklqmn + qikqjlqmn + qjkqilqmn]
+ aijbklcmn[qijqkmqln + qikqjmqln + qjkqimqln]
+ aijbklcmn[qijqlmqkn + qilqjmqkn + qjlqimqkn]
+ aijbklcmn[qikqlmqjn + qilqkmqjn + qklqimqjn]
+ aijbklcmn[qjkqlmqin + qjlqkmqin + qklqjmqin]

(C.41)

or, if we denote E = E{eT Ae eT Be eT Ce}

E = aijbklcmnqijqklqmn + aijbklcmnqikqjlqmn + aijbklcmnqjkqilqmn

+ aijbklcmnqijqkmqln + aijbklcmnqikqjmqln + aijbklcmnqjkqimqln

+ aijbklcmnqijqlmqkn + aijbklcmnqilqjmqkn + aijbklcmnqjlqimqkn

+ aijbklcmnqikqlmqjn + aijbklcmnqilqkmqjn + aijbklcmnqklqimqjn

+ aijbklcmnqjkqlmqin + aijbklcmnqjlqkmqin + aijbklcmnqklqjmqin

(C.42)

Rearranging the preceding equation yields

E = aijqjibklqlkcmnqnm + aijqjlblkqkicmnqnm + aijqjkbklqlicmnqnm

+ aijqjibklqlncnmqmk + aijqjmcmnqnlblkqki + aijqjkbklqlncnmqmi

+ aijqjibklqlmcmnqnk + aijqjmcmnqnkbklqli + aijqjlblkqkncnmqmi

+ aijqjncnmqmlblkqki + aijqjncnmqmkbklqli + aijqjncnmqmibklqlk

+ aijqjkbklqlmcmnqni + aijqjlblkqkmcmnqni + aijqjmcmnqnibklqlk

(C.43)

or equivalently

E = tr(AQy)tr(BQy)tr(CQy)+tr(AQyBQy)tr(CQy)+tr(AQyBQy)tr(CQy)
+ tr(AQy)tr(BQyCQy)+tr(AQyCQyBQy)+tr(AQyBQyCQy)
+ tr(AQy)tr(BQyCQy)+tr(AQyCQyBQy)+tr(AQyBQyCQy)
+ tr(AQyCQyBQy)+tr(AQyCQyBQy)+tr(AQyCQy)tr(BQy)
+ tr(AQyBQyCQy)+tr(AQyBQyCQy)+tr(AQyCQy)tr(BQy)

(C.44)

or finally

E{eT Ae eT Be eT Ce} = tr(AQy)tr(BQy)tr(CQy) + 2tr(AQy)tr(BQyCQy)
+ 2tr(BQy)tr(AQyCQy) + 2tr(CQy)tr(AQyBQy)
+ 4tr(AQyBQyCQy) + 4tr(AQyCQyBQy)

(C.45)

In case Qy is of full rank, and A = B = C = Q−1
y one obtains

tr(AQy) = m, tr(AQyBQy) = m and tr(AQyBQyCQy) = m (C.46)

This with equation (C.45) gives

E{(eT Q−1
y e)3} = m(m + 2)(m + 4) (C.47)

To derive the expectation of the multiplication of four quadratic forms, one needs to compute the
following:

E{eT Ae eT Be eT Ce eT De} = E{eiaijejekbklelemcmneneodopep} (C.48)

It can be rewritten as

E{eT Ae eT Be eT Ce eT De} = aijbklcmndopE{eiejekelemeneoep} (C.49)
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In a similar, but very very long, way to what we did for the multiplication of three quadratic forms, one
obtains

E{eT Ae eT Be eT Ce eT De} = tr(AQy)tr(BQy)tr(CQy)tr(DQy) (F1)
+ 2tr(AQyBQy)tr(CQy)tr(DQy) (F2)
+ 2tr(AQyCQy)tr(BQy)tr(DQy) (F3)
+ 2tr(AQyDQy)tr(BQy)tr(CQy) (F4)
+ 2tr(BQyCQy)tr(AQy)tr(DQy) (F5)
+ 2tr(BQyDQy)tr(AQy)tr(CQy) (F6)
+ 2tr(CQyDQy)tr(AQy)tr(BQy) (F7)
+ 4tr(DQy)tr(AQyBQyCQy) (F8)
+ 4tr(DQy)tr(AQyCQyBQy) (F9)
+ 4tr(CQy)tr(AQyBQyDQy) (F10)
+ 4tr(CQy)tr(AQyDQyBQy) (F11)
+ 4tr(BQy)tr(AQyCQyDQy) (F12)
+ 4tr(BQy)tr(AQyDQyCQy) (F13)
+ 4tr(AQy)tr(BQyCQyDQy) (F14)
+ 4tr(AQy)tr(BQyDQyCQy) (F15)
+ 4tr(AQyBQy)tr(CQyDQy) (F16)
+ 4tr(AQyCQy)tr(BQyDQy) (F17)
+ 4tr(AQyDQy)tr(BQyCQy) (F18)
+ 8tr(AQyBQyCQyDQy) (F19)
+ 8tr(AQyBQyDQyCQy) (F20)
+ 8tr(AQyCQyBQyDQy) (F21)
+ 8tr(AQyCQyDQyBQy) (F22)
+ 8tr(AQyDQyBQyCQy) (F23)
+ 8tr(AQyDQyCQyBQy) (F24)

(C.50)

consisting of 24 independent terms. In case A = B = C = D = Q−1
y , the preceding equation simplifies

to

E{(eT Q−1
y e)4} = m(m + 2)(m + 4)(m + 6) (C.51)





Mixed model with hard constraints D
D.1 Model representation E{y} = Ax with BTx = c

Following chapter 5 of Adjustment Theory, our starting point is the representation (Teunissen, 2000a)

E{y} = Ax; BT x = c; D{y} = Qy (D.1)

with c a constant q-vector and the n × q (constraints) matrix B. This representation is in the form of
observation equations with hard constraints on the parameter vector x. In order to derive the least squares
estimators x̂, ŷ and ê, we will first transform equation (D.1) into a form with observation equations only.
This is done by finding the parametric representation for:

BT x = c (D.2)

It is well known that its solution is given as the sum of a particular solution and the homogeneous solution.
A particular solution of the above is given as

xp = B(BT B)−1c (D.3)

In order to find the solution of the homogeneous equation

BT x = 0, (D.4)

we denote the n × (n − q) matrix of which the column vectors are orthogonal to B by B⊥. Then:

BT B⊥ = 0 (D.5)

With this, the parametric representation of the homogeneous equation BT x = 0 becomes:

xh = B⊥λ (D.6)

with λ an (n − q)-vector. The general solution of the inhomogeneous equation, is therefore given by the
sum of the homogeneous and particular solutions, i.e.

x = B⊥λ + B(BT B)−1c (D.7)

Substituting the preceding equation into equation (D.1), yields

E{y} = AB⊥λ + AB(BT B)−1c; D{y} = Qy (D.8)

or equivalently

E{y − AB(BT B)−1c} = AB⊥λ; D{y} = Qy (D.9)

This representation is completely equivalent to the original equation (D.1), and it in the form of observation

equation only. The least squares estimator λ̂ of λ reads

λ̂ = (B⊥T AT Q−1
y AB⊥)−1B⊥T AT Q−1

y

(
y − AB(BT B)−1c

)
(D.10)
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Now let us consider the solution of (D.1) without the constraints on the parameter vector assuming that
the design matrix A is of full rank. This is our standard model of observation equations. As we know, the
solution of equation (D.1) without the constraints on the parameter vector satisfies the normal equations:

AT Q−1
y Ax̂A = AT Q−1

y y (D.11)

We have given x̂A of equation (D.11) the subscript A to emphasize that x̂A is not the solution of
equation (D.1) but of

E{y} = Ax; D{y} = Qy (D.12)

The covariance matrix of x̂A reads

Qx̂A
= (AT Q−1

y A)−1 (D.13)

With equation (D.11) and equation (D.13), equation (D.10) reads

λ̂ = (B⊥T Q−1
x̂A

B⊥)−1B⊥T Q−1
x̂A

x̂A − (B⊥T Q−1
x̂A

B⊥)−1B⊥T Q−1
x̂A

B(BT B)−1c (D.14)

This result together with equation (D.7) gives the estimator of x for model in equation (D.1) as

x̂ = B⊥(B⊥T Q−1
x̂A

B⊥)−1B⊥T Q−1
x̂A

x̂A +
[
I − B⊥(B⊥T Q−1

x̂A
B⊥)−1B⊥T Q−1

x̂A

]
B(BT B)−1c (D.15)

The projector B⊥(B⊥T Q−1
x̂A

B⊥)−1B⊥T Q−1
x̂A

can be rewritten in terms of the matrix B as

B⊥(B⊥T Q−1
x̂A

B⊥)−1B⊥T Q−1
x̂A

= I − Qx̂A
B(BT Qx̂A

B)−1BT (D.16)

Substitution of (D.16) into (D.15) gives

x̂ =
[
I − Qx̂A

B(BT Qx̂A
B)−1BT

]
x̂A + Qx̂A

B(BT Qx̂A
B)−1c (D.17)

with the covariance matrix

Qx̂ =
[
I − Qx̂A

B(BT Qx̂A
B)−1BT

]
Qx̂A

(D.18)

Recalling from adjustment theory, one gets ŷ = Ax̂, or

ŷ = A
[
I − Qx̂A

B(BT Qx̂A
B)−1BT

]
x̂A + AQx̂A

B(BT Qx̂A
B)−1c (D.19)

with the covariance matrix

Qŷ = AQx̂A
AT − AQx̂A

B(BT Qx̂A
B)−1BT Qx̂A

AT (D.20)

and finally the residuals ê = y − ŷ, or as

ê = y − A
[
I − Qx̂A

B(BT Qx̂A
B)−1BT

]
x̂A − AQx̂A

B(BT Qx̂A
B)−1c (D.21)

with the covariance matrix

Qê = Qy − AQx̂A
AT + AQx̂A

B(BT Qx̂A
B)−1BT Qx̂A

AT (D.22)
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D.2 Parameter significance test (v-test)

In this section we will consider a testing problem that, though mathematically equivalent to the well-known
w-test statistic, occurs when we want to test the significance of the parameters. The idea is to test whether
or not it is possible to reduce the number of unknowns (one at a time), e.g. by introducing one hard
constraint on the parameters. We will derive the appropriate simple likelihood ratio test of size α and the
corresponding test statistic. The following two hypotheses are considered (cf. Teunissen (2000b)):

Ho : E{y} = Ax; dT x = c0 versus Ha : E{y} = Ax; dT x = cA �= c0 (D.23)

with d in the bold face to indicate that it is different from scalar b, the redundancy of the functional model.
The preceding two hypotheses differ in the sense that under Ho it is assumed that the linear function of
x, dT x, is identical to c0, whereas under Ha, this function is identical to the unknown parameter cA �= c0.
Thus what we want to find out is whether dT x = c0 or not. Note that the model E{y} = Ax with the

constraint dT x = c is of the form of the mixed model discussed in the previous section. In order to be
able to apply the theory of the w-test statistic, we will write the general solution of the inhomogeneous
equation dT x = c as (see (D.7) in previous section)

x = B⊥λ + d(dT d)−1c (D.24)

with dT B⊥ = 0. Applying the above parametric representation to the null and the alternative hypotheses
gives

Ho : E{y} = AB⊥λ + Ad(dT d)−1c0 versus Ha : E{y} = AB⊥λ + Ad(dT d)−1cA, cA �= c0 (D.25)

or

Ho : E{y − Ad(dT d)−1c0} =

A︷ ︸︸ ︷
AB⊥ λ (D.26)

versus

Ha : E{y − Ad(dT d)−1c0} = AB⊥λ +

cy︷ ︸︸ ︷
Ad(dT d)−1 ∇, ∇ �= 0 (D.27)

with ∇ = cA − c0. Comparison of the preceding hypotheses with those of the w-test statistic shows the
equivalent structure. That is, the matrix AB⊥ plays the role of A in the hypotheses for the w-test statistic,
and the vector Ad(dT d)−1 plays the role of the vector cy. Because of this equivalence in structure of
the hypotheses, the simple likelihood ratio test for the present testing problem have the same structure
as the w-test statistic. The corresponding test statistic, denoted as v, follows then if we replace cy with
Ad(dT d)−1:

v̂ =
(dT d)−1dT AT Q−1

y ê√
(dT d)−1dT AT Q−1

y QêQ
−1
y Ad(dT d)−1

=
dT AT Q−1

y ê√
dT AT Q−1

y QêQ
−1
y Ad

(D.28)

with ê and Qê as those given in the previous section. It is not difficult to show that

AT Q−1
y ê = d(dT Qx̂A

d)−1[dT x̂A − c0] (D.29)

and

AT Q−1
y QêQ

−1
y A = d(dT Qx̂A

d)−1dT (D.30)

which with (D.28) give

v =
dT x̂A − c0√

dT Qx̂A
d

(D.31)

The corresponding simple likelihood ratio test of size α for testing problem (D.23) reads therefore:

reject Ho if |v| > kα/2 (D.32)

with kα/2 the critical value of the test obtained from the standard normal distribution.
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D.3 Derivation of w-test from v-test statistic

Let us consider the following two hypotheses

Ho : E{y} = Ax, versus Ha : E{y} = Ax + cy∇, and ∇ �= 0 (D.33)

In order to obtain the well-known w-test statistic from the v-test presented in the previous section, we
may reformulate equation (D.33) as

Ho : E{y} = [Acy]

[
x
∇
]

, ∇ = 0 versus Ha : E{y} = [Acy]

[
x
∇
]

, ∇ �= 0 (D.34)

This formulation is identical to equation (D.23) with

b = [0, ..., 0, 1]T , c0 = 0 (D.35)

The least squares solution of the model E{y} = [Acy]

[
x
∇
]

read

[
x̂

∇̂
]

=

[
AT Q−1

y A AT Q−1
y cy

cT
y Q−1

y A cT
y Q−1

y cy

]−1 [
AT Q−1

y y
cT
y Q−1

y y

]
(D.36)

The inverse of the normal matrix reads then[
AT Q−1

y A AT Q−1
y cy

cT
y Q−1

y A cT
y Q−1

y cy

]−1

=

[
N−1

11 N−1
12

N−1
21 N−1

22

]
(D.37)

with

N−1
11 = (AT Q−1

y A)−1 − σ2
∇̂(AT Q−1

y A)−1AT Q−1
y cycT

y Q−1
y A(AT Q−1

y A)−1

N−1
12 = −σ2

∇̂.(AT Q−1
y A)−1AT Q−1

y cy

N−1
21 = −σ2

∇̂.cT
y Q−1

y A(AT Q−1
y A)−1

N−1
22 = σ2

∇̂

(D.38)

with

σ2
∇̂ = (cyQ−1

y cy − cyQ−1
y A(AT Q−1

y A)−1AT Q−1
y cy)−1

= (cyQ−1
y (I − A(AT Q−1

y A)−1AT Q−1
y )cy)−1

= (cyQ−1
y P⊥

A cy)−1

=
∥∥P⊥

A cy

∥∥−2

Q−1
y

(D.39)

The estimator ∇̂ can be obtained as

∇̂ = N−1
21 AT Q−1

y y + N−1
22 cT

y Q−1
y y

= σ2
∇̂cT

y Q−1
y y − σ2

∇̂.cT
y Q−1

y A(AT Q−1
y A)−1AT Q−1

y y

= σ2
∇̂cT

y Q−1
y

(
I − A(AT Q−1

y A)−1AT Q−1
y

)
y

= σ2
∇̂cT

y Q−1
y P⊥

A y

(D.40)

The v-test statistic (D.31), denoted here as w-test statistic, with equation (D.35), can be written as

w =
∇̂
σ∇̂

(D.41)

which with equations (D.39) and (D.40) proves the claim

w =
cT
y Q−1

y P⊥
A y∥∥P⊥

A cy

∥∥
Q−1

y

(D.42)
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Kusche J (2003a). A Monte-Carlo technique for weight estimation in satellite geodesy.
Journal of Geodesy , 76: 641–652.

Kusche J (2003b). Noise variance estimation and optimal weight determination for GOCE
gravity recovery. Advances in Geosciences , 1: 81–85.

Kusche J, Schrama JO (2005). Surface mass redistribution inversion from global GPS de-
formation and Gravity Recovery and Climate Experiment (GRACE) gravity data. Journal
of Geophysical Research, 110.

Kusche J, van Loon JP (2005). Statistical assessment of CHAMP data and models using
the energy balance approach. In C. Reigber, H. Lühr, P. Schwintzer, and J. Wickert
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aliased multipath effect, 145
aliasing effect, 145
almost unbiased estimation of VCE, 30,

60
alternative hypothesis, 15
annual and semiannual signals, 132, 134,

139, 145, 147
applications of VCE, 31
AR(1), see autoregressive noise
AUE, see almost unbiased estimation of

VCE
autoregressive noise, 143, 148

Bayesian method to VCE, 27
best estimator, see minimum variance es-

timator
best invariant quadratic unbiased estima-

tor, 25
best linear unbiased estimator, 7, 9, 11,

46
bias of an estimator, 5
biased estimator, 5
BIQUE, see best invariant quadratic un-

biased estimator
BLUE, see best linear unbiased estimator
blunder detection, 17
bootstrapping, 91, 98

canonical unit vector, 17, 39
central limit theorem, 86
chi-squared distribution, 86, 105, 108,

112
cofactor matrix, 16, 21, 23, 35, 100
commutation matrix, 34
composite hypothesis, 13
condition number of a matrix, 64
constrained linear model, 18
correlation coefficient, 103
covariance matrix

known, 14

partially unknown, 14, 33
crustal deformation, 131

data snooping, 17
degrees of freedom, 18
design matrix, 7, 100
direct sum of two subspaces, 12
disjunctive group model, 31, 61
dispersion operator, 7
double inner (dot) product, 93
downhill simplex method, 134
duplication matrix, 35, 102

elliptical distributions, 33, 43, 45
empirical autocorrelation function, 42
error propagation law, 8, 120
estimability analysis for VCE

necessary and sufficient condition, 37,
62

necessary condition, 23, 35
estimate of x, 5
estimation error, 5
estimation principles for VCE, 22
estimator of x, 5
expectation operator, 5

first-order moment, 5, 7
fixed ambiguity, 124
flicker noise, 131, 132, 148

Hosking structure, 135
float ambiguity, 122
FN, see flicker noise
fourth-order moment, 38
fourth-order tensor, 93
functional model, 14, 21, 22, 134
functionally known quantity, 33

Gauss-Helmert model, 22
Gauss-Markov model, 7, 11, 35, 99
generalized likelihood ratio test, 13, 14
generalized maximum likelihood, 28
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geometry-based model, 130
geometry-free model, 113

functional part, 114
stochastic part, 116

GLR-test, see generalized likelihood ratio
test

GML, see generalized maximum likelihood
GPS receiver, 121

harmonic functions, 136, 144
Helmert method to VCE, 26
Hessian matrix, 11

inconsistent system of equations, 6

Kronecker product, 34
kurtosis parameter, 43

L1 norm minimization problem, 49
LAMBDA, see least-squares ambiguity

decorrelation adjustment
least-squares

definition, 7
principle, 6, 33, 45
residuals, 7, 15, 55, 58, 102
solution, 7
variance component estimation, 58

least-squares ambiguity decorrelation ad-
justment, 114, 124

least-squares estimator
covariance matrix, 8
mean, 8
mean squared error, 8
normal distribution, 9
probabilistic, 9

least-squares harmonic estimation, 133,
136

least-squares variance component estima-
tion, 29, 53, 121, 131, 133, 140,
141

likelihood function, 10, 13, 27, 52
likelihood values, 142, 154
linear model

hard constraints, 11
implicit form, 11
parametric form, 11

linear programming problem, 49
linear space, 10

linear unbiased estimator, 8
LS, see least-squares
LS-HE, see least-squares harmonic esti-

mation
LS-VCE, see least-squares variance com-

ponent estimation
LUE, see linear unbiased estimator

MAP, see maximum a posteriori
maximizer, 11
maximum a posteriori, 28
maximum likelihood estimator, 7, 10, 13,

15, 131
to VCE, 26

mean squared error, 6, 9
measurement error vector, 6
metric tensor, 10
minimum norm quadratic unbiased esti-

mators, 23
minimum trace problem, 24
minimum variance estimator, 6, 9, 25, 33,

38, 45, 134
MINQUE, see minimum norm quadratic

unbiased estimators
MLE, see maximum likelihood estimator
MLE principle, 11
model of condition equations, 11, 33, 36,

52, 62
model of observation equations, 7, 33, 35,

37, 49, 53
non-negativity constraints, 61

Monte-Carlo simulation, 91, 98
most powerful test, 13
MSE, see mean squared error
multivariate linear model, 99, 119

overall model test, 112
parameter estimation, 100
v-test statistic, 106
variance-covariance estimation, 101
variance-covariance validation, 104
w-test statistic, 104

natural estimator, 24
negative variance components, 60
Neyman-Pearson principle, 13
non-negative VCE, 28, 61
noncentrality parameter, 15
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normal distribution, 14, 17, 33, 53, 74,
138

approximation, 109–111
normal probability plot, 87
normalized residual, 17
null hypothesis, 15

observation test, 14
observation vector, 5
offsets in time series, 132
orthogonal basis, 10
orthogonal projector, 8
orthonormal basis, 10
overall model test, 15, 16
overall model test in stochastic model, 90

approximation, 95
formulation (A-model), 91
formulation (B-model), 91
mean, 92
variance, 92

overdetermined system of equations, 6
overestimation of noise components, 142

parameter significance test, 14, 18
parameter space, 13
PDF, see probability density function
phase ambiguity, 113
potential periodicity, 138, 143, 147
power spectra technique, 131
power-law noise, 133, 146
precision of GPS observables, 122

correlation between observation
types, 116, 124

satellite elevation dependence, 116,
127

time correlation, 118
probability density function, 5, 26, 33, 52

quadratic form of misclosures, 12
quadratic form of residuals, 8, 10, 30
quadratic forms in normal variables, 74

random vector, 5
random walk noise, 131, 132, 135, 148
redundancy, 15
redundancy of a system, 6
redundancy of functional model, 6, 11, 36
redundancy of stochastic model, 37, 92

reflexive inverse, 79
REML, see restricted maximum likelihood
repeat time of GPS constellation, 145
restricted maximum likelihood, 27, 52
RW, see random walk noise

second-order moment, 6
short-memory noise, 152, 153
simple hypothesis, 13
simple likelihood ratio test, 13
simplified VCE methods, 30
SLR-test, see simple likelihood ratio test
spectral index, 131, 133
stochastic model, 14, 16, 22, 23, 134

admissible weight matrix, 40
covariance matrix of estimators, 46,

54
covariance matrix of observables, 37,

43, 45
datasnooping, 69
degree of dependence analysis, 65
degrees of freedom, 37
design matrix, 37
GPS coordinate time series, 131
ill-posedness analysis, 64
minimum variance estimators, 49, 55
nonlinear covariance function, 58
observables, 37
prior information, 48
quadratic form of residuals, 47, 54
redundancy, 37
robust estimation, 49
weight matrix, 37
weighted LS estimator, 54

summation convention, 72
summation vector, 62

testing of covariances, 105
testing of variances, 105

UMP, see uniformly most powerful
unbiased estimator, 5, 24, 38, 45, 134
underdetermined system of equations, 6
uniformly most powerful, 13

v-test, 15
v-test statistic, 18, 19
v-test statistic in stochastic model, 88
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formulation (A-model), 89
formulation (B-model), 88

variance component estimation, 14, 21
implementation (A-model), 56, 57
implementation (B-model), 51
implementation (nonlinear), 59
minimum variance estimators, 55
weighted least-squares, 33, 54

variance component model, 22, 23
variance of unit weight, 16, 19, 21, 58, 99

generalization, 103, 105, 108
VCE, see variance component estimation
vec-operator, 34
vh-operator, 34

w-test, 15
w-test statistic, 16, 30
w-test statistic in stochastic model, 69,

133, 138, 140, 148
datasnooping, 77, 82
distribution, 74, 76
examples, 85
formulation (A-model), 78
formulation (B-model), 71
mean, 75
variance, 76

weight matrix, 8
weighted least-squares estimator, 7, 12
weighted LS-VCE

estimators, 38, 41
white noise, 131, 132
WLSE, see weighted least-squares estima-

tor
WN, see white noise

zero baseline, 121



Notation and Symbols

Mathematical Notation and Operators

R
m real Euclidean space of dimension m

I ≡ Im identity matrix of order m
ci canonical unit vector which contains zeros except a one at position i
cyi

= ci canonical unit vector ci = [0, ..., 0, 1, 0, ..., 1]T

Ck, or Cα matrix of form Ck = cic
T
i if i = j, and Ck = cic

T
j + cjc

T
i if i �= j

Wt a b × b symmetric and positive definite matrix
W an m × m symmetric and positive definite matrix
Q an m × m symmetric and positive definite matrix
u ≡ um m-vector with ones (summation vector)
δij = cT

i cj Kronecker delta which is one if i = j, and zero elsewhere
D duplication matrix
K commutation matrix K =

∑u
i=1

∑u
k=1 cic

T
k ⊗ ckc

T
i

tr(.) trace of a matrix (sum of the diagonal elements)
rank(.) rank of a matrix (independent columns or rows of a matrix)
det(.) determinant of a matrix
(.)T transpose of a matrix
(.)−1 inverse of a matrix
(.)− reflexive inverse of a matrix
(.)+ pseudo (Moore-Penrose) inverse of a matrix
: double inner (dot) product, e.g. S : T = tr(ST )

for matrices S and T
‖.‖W squared norm of a vector as (.)T W (.)
diag(.) diagonal elements of a matrix
blkdiag(.) block-diagonal operator
R(.) range space of a matrix
N (.) null space of a matrix
⊕ direct sum of two subspaces
⊥ orthogonal complement (is orthogonal to)
⊗ Kronecker product
vec vector operator (vec-operator)
vh vector-half operator (vh-operator)
c condition number of a matrix c = λmax/λmin

λmax maximum eigenvalue of a matrix
λmin minimum eigenvalue of a matrix
λi or λk eigenvalues of a matrix
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Statistical Notation and Operators (Functional Model)

E{.} expectation operator
D{.} dispersion operator
C{.} covariance operator
P{x = xo} probability that x will be equal to xo

N(x,Qx) normal distribution with mean x and covariance matrix Qx

χ2(q, λ) chi-squared distribution with q degrees of freedom and
non-centrality parameter λ

Ho null hypothesis
Ha alternative hypothesis
α type I error probability
β = 1 − γ type II error probability
fy(y|x) probability density function of observables y
fy(y|x) likelihood function of y for a given observed y
L(y; x, σ) likelihood function associated with y
x ∈ Φ0 x belongs to subset Φ0

x ∈ Φ\Φo x belongs to subset Φ that is complementary to Φ0

y m-vector of observables
x n-vector of unknown parameters
b = m − n redundancy of functional model
A m × n design matrix of functional model E{y} = Ax
W m × m weight matrix
Qy m × m covariance matrix of observables
Cx n × d constraint matrix on unknown parameters: CT

x x = co

x̂ n-vector (estimator of x)
x̂ n-vector (estimate of x)
ε̂ n-vector of estimation error ε̂ = x̂ − x
Qx̂ covariance matrix of x̂
t = BT y b-vector of misclosures
B m × b coefficient matrix in condition model BT E{y} = E{t} = 0
Qt b × b covariance matrix of misclosures
PA = P⊥

QyB orthogonal projector–projects to range space of A (R(A))

P⊥
A = PQyB orthogonal projector–projects to R(A)⊥

e m-vector of measurement error
ê least-squares estimator of residuals, ê = P⊥

A y
êo least-squares estimate of residuals under Ho

êa least-squares estimate of residuals under Ha

ŷ least-squares estimator of observables, ŷ = PAy
Qê covariance matrix of ê, Qê = P⊥

A QyP
⊥T
A

Qŷ covariance matrix of ŷ, Qŷ = PAQyP
T
A

T q T-test statistic with q degrees of freedom
w w-test statistic
v v-test statistic
Cy m × q matrix for extension of A to [ACy] under Ha

cy m × 1 vector cy = Cy, where q = 1

σêi
standard deviation of least-squares residual i: σêi

= (Qê)
1/2
ii
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Stochastic Model

σ2 variance of unit weight in Qy = σ2Q, Q is cofactor matrix

σ̂2 estimator of variance of unit weight: σ̂2 = êT Q−1ê
m−n

σ p-vector of (co)variance components σ = [σ1, ..., σp]
T

σi (co)variance components σi = [σi
1, ..., σ

i
p]

T at iteration i
H Helmert matrix to VCE
Ek submatrices for multinomial inverse of Qy

σ̂B
k , σ̂M

k Bayes and MAP estimators of variance components
Qk kth cofactor matrix in: Qy = Q0 +

∑p
k=1 σkQk

Q0 known part of covariance matrix Qy

yT My quadratic form of observable vector y
fT σ linear function of (co)variance components
Λ = λij matrix of Lagrange multipliers
λ = λi vector of Lagrange multipliers
y

vh
vector of observables in stochastic model: y

vh
= vh(t tT − BT Q0B)

êvh least-squares residuals in stochastic model
Avh design matrix in stochastic model
Wvh weight matrix in stochastic model
Qvh covariance matrix of observables y

vh
in stochastic model

N p × p normal matrix in stochastic model: e.g. N = AT
vhWvhAvh

l right-hand side p-vector in Nσ̂ = l
μ2, μ4 second and fourth central moments, respectively
κ kurtosis parameter
σ̂ = N−1l least-squares estimator of σ
Qσ̂ covariance matrix of σ̂: Qσ̂ = N−1MN−1 or Qσ̂ = N−1

df redundancy of stochastic model df = b(b+1)
2

− p
AJ contains the first j − 1 columns of Avh

aj column j of Avh

NJJ normal matrix corresponding to AJ

PAvh
orthogonal projector in stochastic model PAvh

= I − P⊥
Avh

P⊥
Avh

orthogonal projector in stochastic model

cvh a b(b+1)
2

vector given as cvh = vh(Ct)
Ct a b × b symmetric matrix
Cy an m × m symmetric matrix
Qtk transformed cofactor matrices Qtk = BT QkB, k = 0, ..., p
g a b-vector of form gk = 1

2
tr(CtQ

−1
t QtkQ

−1
t )

Q−
ê reflexive inverse of Qê = P⊥

A Qy, Q−
ê = Q−1

y P⊥
A

w w-test statistic in stochastic model
v v-test statistic in stochastic model
T df overall model test in stochastic model
wn, wd numerator and denominator of w-test statistic, respectively
dT σ = co a linear (hard) constraints on (co)variance components
Σ = σij an r × r matrix describing covariances between repeated models
ρ̂ij correlation coefficient between models, or between time instants
σρ̂ standard deviation of correlation coefficient
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GPS and Time Series

psk
rj,L double difference pseudo ranges on L1 or L2

φsk
rj,L double difference carrier phase on L1 or L2

ask
rj,L double difference integer carrier phase ambiguities on L1 or L2

σp standard deviation of pseudo range
σφ standard deviation of carrier phase
σpφ covariance between pseudo range and carrier phase
Py(f) power spectrum of a noise process
f temporal frequency
κ spectral index
y0 intercept in the linear regression model E{y(t)} = y0 + r t
r rate (slope) in the linear regression model E{y(t)} = y0 + r t
s2

w variance of a white noise process
s2

f variance of a flicker noise process
s2

rw variance of a random walk noise process
s2

a variance of an autoregressive noise process
s2

s variance of a short-memory noise process
Qf covariance matrix of a flicker noise process
Qrw covariance matrix of a random walk noise process
Qa covariance matrix of an autoregressive noise process
Qs covariance matrix of a short-memory noise process
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Samenvatting

Gegevensverwerking in geodetische toepassingen vindt doorgaans plaats op basis van de
kleinste kwadraten methode. Hiervoor is een goed stochastisch model van de waarnemings-
grootheden nodig. Met een dergelijke realistische covariantie-matrix wordt ten eerste de
beste (minimum variantie) lineaire zuivere schatter voor de onbekende parameters verkre-
gen, en kan ten tweede een realistische precisiebeschrijving van de parameters gegeven wor-
den, en kan ten derde, op basis van de verdeling van de waarnemingsgrootheden, hypothese
toetsing correct uitgevoerd worden, en kunnen maten voor kwaliteitscontrole bepaald wor-
den, zoals voor betrouwbaarheid. In veel praktische toepassingen is de covariantie-matrix
slechts gedeeltelijk bekend. De covariantie-matrix wordt gewoonlijk uitgedrukt als een on-
bekende lineaire combinatie van een aantal bekende cofactor matrices. Het schatten van
de onbekende (co)variantie componenten wordt in het algemeen variantiecomponenten-
schatting (VCS) genoemd, en ook wel kansmodelschatting.

In dit proefschrift bestuderen we de methode van kleinste kwadraten
variantiecomponenten-schatting (KK-VCS) en werken we theoretische en praktische
aspecten uit. We laten zien dat de KK-VCS methode een eenvoudige, flexibele en
aantrekkelijke methode is voor VCS. De KK-VCS is eenvoudig, daar ze gebaseerd is
op het bekende kleinste kwadraten principe. Met deze methode is de schatting van de
(co)variantiecomponenten gebaseerd op een lineair model van waarnemingsvergelijkingen.
De methode is flexibel omdat ze werkt met een door de gebruiker gedefinieerde gewichts-
matrix. Verschillende klassen van gewichtsmatrices kunnen gedefinieerd worden, die
allemaal automatisch tot zuivere schatters voor de (co)variantie componenten leiden. KK-
VCS is aantrekkelijk omdat men de bestaande kleinste kwadraten theorie kan toepassen op
het probleem van variantie-componenten-schatting. Met deze methode kan men 1) maten
voor discrepantie in het stochastisch model verkrijgen, 2) de covariantie-matrix bepalen
van de (co)variantie componenten, 3) de minimum variantie schatter verkrijgen voor de
(co)variantie componenten door de inverse van de covariantie-matrix als gewichtsmatrix
te nemen, 4) a-priori informatie over de (co)variantie componenten in rekening brengen,
5) een niet-lineair (co)variantie componenten model oplossen, 6) robuuste schatting
toepassen op variantie componenten, 7) de schatbaarheid van (co)variantie componenten
evalueren, en 8) het probleem van negatieve variantie componenten voorkomen.

Met KK-VCS kunnen vele bestaande VCS methoden, zoals MINQUE, BIQUE, en REML
in één raamwerk geplaatst worden. Deze methoden worden verkregen door speciale keuzes
voor de gewichtsmatrix te maken. Een belangrijke eigenschap van de KK-VCS methode
is de mogelijkheid om hypothese toetsing toe te passen op het stochastisch model. We
gebruiken hiervoor de w-toets, de v-toets, en de globale toets. Ons doel is om een geschikte
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structuur te vinden voor het stochastisch model, dat alle relevante ruiscomponenten in de
covariantie-matrix herbergt. De w-toets wordt gëıntroduceerd om te kunnen vaststellen
of een bepaalde ruiscomponent met waarschijnlijkheid aanwezig is in de waarnemingen, en
dientengevolge opgenomen moet worden in het stochastisch model. Gebaseerd op de nor-
male verdeling voor oorspronkelijke waarnemingsgrootheden leiden we de verwachting en
de variantie van de w-toetsgrootheid af, welke nul en één zijn, respectievelijk. De verdeling
is een lineaire combinatie van onderling onafhankelijke centrale chi-kwadraat verdelingen,
elk met één vrijheidsgraad. In een aantal speciale gevallen kan deze verdeling benaderd
worden door een standaard normale verdeling. Als een equivalente uitdrukking voor de
w-toets wordt de v-toetsgrootheid gegeven. Het doel is om het aantal (co)variantie com-
ponenten in het stochastisch model te reduceren, door de significantie van de componenten
te toetsen. De globale toets functioneert als een algemene toets op de geschiktheid van
het aangenomen stochastisch model.

KK-VCS is toegepast op meetgegevens uit twee GPS toepassingen. Als eerste is de
methode toegepast op het GPS geometrievrije model. Daartoe worden het functiemodel
en het stochastisch model opgesteld. De variantiecomponenten van verschillende waarne-
mingstypen, de satelliet-elevatie afhankelijkheid van de precisie van GPS waarnemingsg-
rootheden, en de correlatie tussen verschillende waarnemingstypen worden geschat met
KK-VCS. We laten zien dat de precisie van GPS waarnemingsgrootheden duidelijk afhangt
van de elevatie van de satelliet. Ook is er een significante correlatie tussen de waarne-
mingstypen. Als tweede toepassing worden de ruiskarakteristieken in tijdreeksen van
dagelijkse coördinaten van permanente GPS stations bepaald. De KK-VCS is toegepast
om de amplitudes van witte ruis en power-law ruis (flicker ruis en random walk ruis) in deze
tijdreeksen te schatten. De resultaten bevestigen dat de tijdreeksen behoorlijk gecorreleerd
in de tijd zijn. We hebben ook de w-toetsgrootheid gebruikt om een geschikt stochastisch
model voor de GPS tijdreeksen te vinden. Een combinatie van witte ruis, autoregressieve
ruis, en flicker ruis karakteriseert in het algemeen de ruis in alle drie positie componenten
het beste. Ongemodelleerde periodieke effecten in de metingen worden beschreven door
een stel harmonische functies. Deze worden geschat met behulp van de kleinste kwadraten
methode, in hetzelfde raamwerk als KK-VCS. De resultaten bevestigen de aanwezigheid
van jaarlijkse en halfjaarlijkse signalen in de reeksen, als ook andere significante periodieke
patronen. Om onzuivere schatting van de variantiecomponenten te voorkomen, dienen
dergelijke sinusvormige signalen in het functiemodel opgenomen te worden, alvorens KK-
VCS toe te passen.



Curriculum Vitae

AliReza Amiri-Simkooei was born on 24 March 1971 in Bafgh, Yazd, Iran. He graduated
from high school in 1989 and, at the same time, he was admitted to the University of
Isfahan, Isfahan, Iran. In Spring 1994 he graduated with high honor–first position–with a
Bachelor of Science degree in Surveying Engineering. A few months later, he started his
master study in Geodesy at K.N. Toosi University of Technology, Tehran, Iran. He worked
on ‘analytical methods in optimization and design of geodetic networks’ and graduated as
an outstanding student in 1998. At the same time he was offered a permanent position at
the University of Isfahan, Isfahan, Iran. He worked there for 4 years mainly lecturing for
bachelor students.

In 2002, he was entitled to an overseas PhD scholarship from the Iranian Ministry of
Science, Research and Technology. He worked under supervision of Prof. Peter Teunissen
and Dr. Christian Tiberius at the Delft institute of Earth Observation and Space systems
(DEOS) of Delft University of Technology, the Netherlands. This thesis covers his PhD
study. While finalizing his PhD thesis, in late 2006, he started working as a research
associate at the same institute.

when what where

9.1985 - 6.1989 High school Shariati high school, Kerman

9.1989 - 3.1994 BSc in Surveying The University of Isfahan

9.1994 - 9.1998 MSc in Geodesy K.N. Toosi University of Technology

9.1998 - 9.2002 Lecturer The University of Isfahan

10.2002-4.2007 PhD in Geodesy Delft University of Technology

10.2006- ... Research associate Delft University of Technology





Acknowledgements

This thesis could not be realized without the sincere help and support from many people.
It is difficult to thank all the individuals who really need thanking for making this work
possible.

In the first place, I would like to thank my promotor, Prof. Peter Teunissen, for his
complete scientific support. I was impressed with his theory on least-squares variance
component estimation which was originally developed in 1988. I really enjoyed studying
and elaborating on theoretical and practical aspects of this theory. His valuable suggestions
to improve the early versions of this thesis are gratefully acknowledged.

I would also like to express my deepest thanks to my supervisor, Dr. Christian Tiberius,
for his excellent guidances during the last four years working and studying at the Delft
institute of Earth Observation and Space systems (DEOS) at TU Delft. His open-door
policy, accessibility, continuous supervision, quick feedback, friendly behavior and metic-
ulous reviewing of the earlier versions of my works along with his valuable comments are
kindly appreciated.

I am also very much thankful to all members of the examination committee for their
reviews and useful comments on my thesis.

In this place I would like to thank all of my colleagues at DEOS and specially in MGP
for their support and contribution to a good research environment. A special thanks goes
to the following people: Prof. Dick Simons for his help while Prof. Peter Teunissen was on
sabbatical in Australia; Dr. Hans van der Marel for his satellite positioning course and his
general support on GPS-related topics; Ria Scholtes for the administrative support; Jasper
van Loon for proofreading this thesis; Peter Joosten for the computer support and for his
Matlab scripts; Dr. Sandra Verhagen for lending me her LATEXstyle file adapted for this
thesis and for her general support; Frans Schröder for helping me make the cover of the
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