Marine High Density Data Management and Visualization

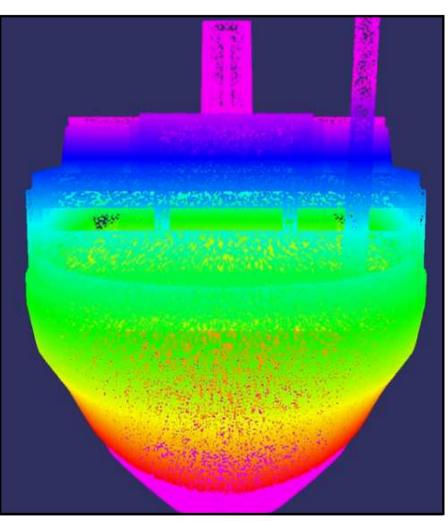
Mark Masry R&D Manager CARIS

Canada Ne

Netherlands

United States

Australia


United Kingdom

Point Clouds

- True 3D volume
- Randomly distributed (X,Y,Z) points
- Applications
 - Modeling vertical surfaces (walls, cliffs)
 - Multibeam
 - Lidar
 - Laserscan

Our Design Goals

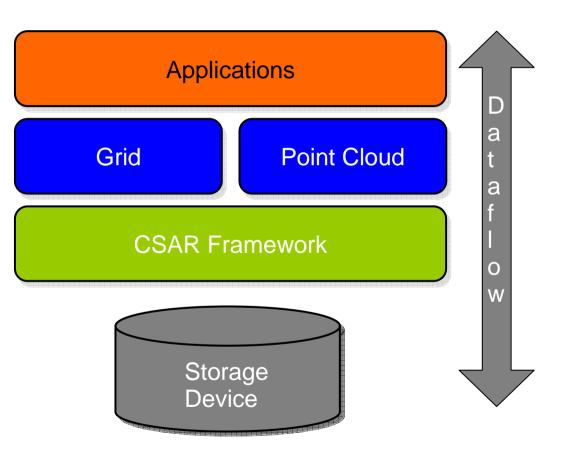
- 3D representation
 - Billions of points
 - High precision
 - Multiple Attributes per point

- Modifiable
 - Add new points or edit existing ones
- Complex Queries – Spatial, attribution

Visualization

 Fast 2D/3D
 Visualization

Data Structure


- Point structure
 - Double precision spatial position
 - Multiple flags per point
 - Multiple returns per point supported (LiDAR)
- Multiple levels of resolution
 - No duplicates
- Multiple Attributes per point
 - Attributes grouped into bands
 - Bands stored independently to minimize IO for unneeded data

Data Storage

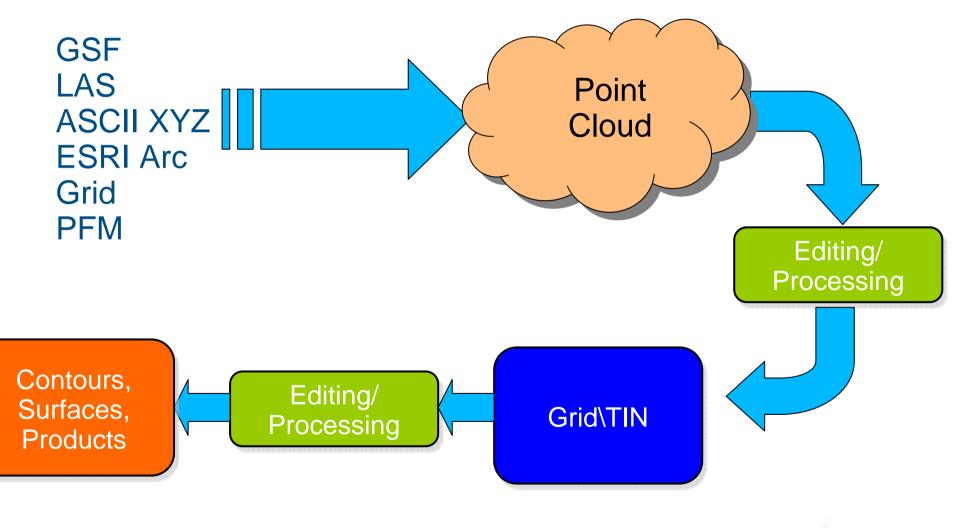
- Implemented using CARIS CSAR system
 - huge data sets (>1 TB)
 - Flexible client-side caching, threaded IO
 - Consistent internal representation
 - Translation to different storage systems
 - Bathy Database
 proprietary
 - RDBMS tables
 - Oracle Spatial Point Cloud

Performance test

- Example
 - Import bathymetric multibeam from GSF (100s of files)
 - Merge into a single cloud
 - 3 attributes per point
- Stats
 - 1.2 Billion points in single cloud
 - 30 GB data file
 - Initial 2D/3D overview: <1.0 sec

Editing and Querying

- Cloud can be modified
 - New points added after initial construction
 - Points can be edited
- Queries using
 - Spatial volumes, Resolution constraints, Attribution
 - Efficient use of spatial organization in cloud
- Selection/Classification using flag word
 - Multiple flags per point


Visualization

Point Cloud Workflows

Grid and Cloud Processing

- Cloud Processing
 - Merge, extract, shift, create TIN, CUBE, Gridding tools
- Grid Processing
 - Stored using CSAR framework (50+ billion nodes)
 - Multiple attributes per node
 - Multiple resolution levels
 - Combine, filter, extract, reproject, shift, contour, generate isolines
 - On-the-fly reprojection and resampling of multiple grids

CARIS Bathy Database

- Visualize or process Grids or Point Clouds from database
 - Efficient client-side caching, processing and visualization
 - Data loaded from database to client on-demand, files don't have to be exported
 - Suitable for low-bandwidth connections
- Version 2.3 (available now)
 - File based storage
- Version 3.0 (Q2 2010)
 - RDBMS/Oracle Spatial storage
 - Will store data as Oracle Spatial GeoRaster, Point Cloud (now being prototyped)

Upcoming work

- Speed Improvements
 - Faster construction
 - Better memory management
- Automatic analysis tools
 - Generate polygons from spatial characteristics
 - Polygon boundary extraction
- Visualization
 - Improve FPS
 - Exploit sub-trees for smooth blending
 - Texture draping

