
 NCG KNAW

 Nederlandse Commissie voor Geodesie Netherlands Geodetic Commission 77	

Variable-scale Geo-information

Martijn Meijers

Variable-scale Geo-information

Publications on Geodesy 77

NCG Nederlandse Commissie voor Geodesie Netherlands Geodetic Commission

Delft, December 2011

Variable-scale Geo-information

Martijn Meijers

Variable-scale Geo-information
Martijn Meijers
Publications on Geodesy 77
ISBN: 978 90 6132 335 8
ISSN 0165 1706

Published by: NCG, Nederlandse Commissie voor Geodesie, Netherlands Geodetic Commission,
Delft, the Netherlands
Cover illustration: Martijn Meijers

NCG, Nederlandse Commissie voor Geodesie, Netherlands Geodetic Commission
P.O. Box 5030, 2600 GA Delft, the Netherlands
T: +31 (0)15 278 21 03
F: +31 (0)15 278 17 75
E: info@ncg.knaw.nl
W: www.ncg.knaw.nl

The NCG, Nederlandse Commissie voor Geodesie, Netherlands Geodetic Commission is part of
the Royal Netherlands Academy of Arts and Sciences (KNAW).

ACKNOWLEDGEMENTS

•

And then suddenly it has gotten this far: you are writing the acknowledgements
section for your PhD thesis in the year in which you become thirty, dad and,
apparently, doctor. . . Some words of thanks are appropriate and although doing
a PhD sometimes feels a bit lonely it is de�nitely not something you can perform
alone. For sure I could not have come this far without the help and support of
numerous people.

First of all, I like to thank Peter van Oosterom, who gave me the chance to
carry out this research at the GIS-technology group. Because of the open and
honest atmosphere, our long, interesting and sometimes diverging discussions
on di�erent topics, and above all his enthusiasm, I look back upon a wonderful
time of 4 years. Years that really have �own by.

Secondly, I like to thank Menno-Jan Kraak, although his role in the project
has been less prominent than Peters, we have had some nice discussions with
input coming from a di�erent, geo-visualisation angle.

¿irdly, I like to thank all committee members, Erik Jansen, Massimo Men-
enti, Sevil Sarıyıldız, Monika Sester and Robert Weibel for taking on the task
of reviewing my manuscript and giving constructive remarks that helped to
improve the manuscript.

Another word of gratitude goes to Rod¿ompson, who read the whole thesis
and gave numerous comments on how to improve the English of the manuscript.
Also thanks to Rien Elling. ¿anks to his course on structuring the writing
process, this went relatively smooth and he was open for giving some last minute
advice.

Furthermore, I feel privileged that my PhD project started as a research
being part of the rgi-233 project ‘Usable (and well scaled) mobile maps for

variable-scale geo-information

consumers’, in which TU Del , ANWB, municipality of Amsterdam, TNO, ITC,
Esri, Leibniz Universität Hannover and 1Spatial collaborated. I have fondmemor-
ies of a great week of collaboration at 1Spatials o�ce, strolling through the old
city of Cambridge and staying in the ‘Fawlty Towers’ hotel. ¿e crowning glory
of the project has been the Geo-Innovation Award 2009, category Science, that
was awarded to the project.

In this respect, also thanks to Jan-Henrik Haunert and Arta Dilo for the
collaboration in an early stage of the research and to Sandro Savino for staying
in Del and being always cheerful, somewhat late and chatty and full of ideas on
how to solve speci�c generalisation problems.

¿anks also to all colleagues of the GIS group. ¿eo Tijssen helped me
starting o� my project and always provided a helping hand either by having an
open door for discussions or installing the newest so ware on casagrande. Hugo
Ledoux introduced me to the wonderful world of triangulations, which I have
not completely unravelled yet. Edward Verbree shared an o�ce with me, which
we both seem to prefer without annoying noises. Also thanks to the rest of the
group members: João Paulo Hespanha, Tjeu Lemmens, Wilko Quak, Jantien
Stoter, Wiebke Tegtmeier, Marian de Vries and Sisi Zlatanova. Elfriede Fendel
has been of help organising the printing of this book. Liu Liu and Ken Arroyo
Ohori as ‘new’ PhDs within our group I wish you all the best with your own
projects. I hope you experience the same ‘wow-factor’, when it is time that you
have �nished your projects.

¿anks to stw and nwo I have the chance to investigate some of the
remaining and open problems and hopefully bring the vario-scale concepts to
the next level.

Another word of thanks is appropriate for all of my friends, who happened
to ask so now and then what the status of my ‘boekje’ was and who were really
interested in the topic. I hope I did not bore you too much with my stories about
‘points’, ‘lines’ and ‘areas’. . .

Lastly, I could not have done this project without the support of my family:
Jaap and Koos, my parents, it is you that have stimulated me to get the best out of
education and have given me all the freedom to become an independent person.
Fieke, the �nal words are for you. No, this paragraph is not 3 pages long, but
from voicing over a promo-video or encouraging me to get back to writing when
I was on a strict deadline (again), you were always there.¿ank you.

Martijn Meijers
11th November 2011

i i

TABLE OF CONTENTS

•

Acknowledgements i

1 Setting the scene 1
1.1 Motivation for maps at variable scale 1
1.2 Objective and Research questions 5
1.3 Research scope 7
1.4 Methodology 10
1.5 ¿esis outline 14

2 Research background 19
2.1 Modelling digital geographic space 20
2.2 From single-scale to multi-scale maps 27
2.3 Multi-scale hierarchies 36
2.4 Vario-scale structures 42
2.5 Progressive data transfer 48
2.6 Starting points for data at variable scale 52

3 Formalising valid vario-scale data 53
3.1 A preference for minimal redundancy 54
3.2 Formalisation of variable-scale partitions 59
3.3 Validation (and repair) of a 2d input partition 72
3.4 Closing remarks 81

variable-scale geo-information

4 Improving variable-scale data structures 83
4.1 Minimally redundant data storage 84
4.2 Simultaneous, topologically-safe line simpli�cation 96
4.3 Collapsing areas: splitting over multiple neighbours 112
4.4 Closing remarks 136

5 Improving vario-scale data dissemination 141
5.1 Quantitative importance-setting approach 142
5.2 2d map for a thin client 149
5.3 Progressive data streaming 156
5.4 A cache-friendly and stateful solution 166
5.5 Closing remarks 170

6 A new era: smooth vario-scale data 173
6.1 Lessons learnt: a synthesis 174
6.2 Smooth data for the space-scale cube 178
6.3 Exploring possible drawbacks 182
6.4 Closing remarks 188

7 Conclusions and Future work 191
7.1 Conclusions 191
7.2 Recommendations for further research 195

Bibliography 205

Summary 227

Samenvatting 231

Curriculum Vitae 235

iv

1SETTING THE SCENE

•

¿is chapter gives an introduction to the thesis by showing the importance of the
problem, the scienti�c gap and it hints at advantages of the proposed solution
(§ 1.1). It puts forward the objective of the research and the research questions,
which follow from the objective, in § 1.2. Furthermore it highlights the research
scope (§ 1.3), the research methodology, the data sets and tools used for testing
and prototype development § 1.4, and gives an overview of how to read the thesis
in § 1.5.

1.1 Motivation for maps at variable scale

Geographic information is more and more applied in main-stream digital con-
sumer products. ¿ese devices, such as personal navigation devices, mobile
phones and tablet pc’s are getting larger and larger screens – recent tablets, like
the Samsung Galaxy Tab, have a screen upto 10.1” providing high resolution
graphics – andmore andmoremobile processing power is available – the recently
introduced Apple iPad 2 has a 1GHz dual-core processor. ¿is is an important
technology driver for being able to publish interactive maps on those devices.
Advanced map user interfaces, making it is easy to navigate seamless 2d maps
and aerial imagery, have seen a large uptake since the introduction of the Google
maps product in 2005 (cf. Figure 1.1). ¿is type of user interface has become
a de facto standard for publishing geo-information online and is the basis for
applications, such as searching for a new house to buy or rent, sharing your loca-
tion with friends (using social network services), exploring your newly planned

variable-scale geo-information

Figure 1.1: Geo-information is used more and more in a network centric environment, e. g. via
smartphones accessing the Internet.

holiday location and playing location-based serious games for secondary school
education.

¿ese examples also illustrate that geo-information is used more and more
in a network centric environment (i. e. via the Internet). Mobile phones and
tablet pc’s can use theWeb viaWiFi or 3g connections and these possibilities are
increasingly used (Jongeneel, 2011). Furthermore, plans to speed up the spread
of wireless broadband networks are on the agenda of the European Parliament
(European Parliament, 2011). Dissemination of geographic information over
such networks o�ers several advantages over other dissemination techniques
(such as distribution by DVD), e. g. it is easier for a user to retrieve up-to-date
information (by means of incremental updates) and fair-pricing mechanisms
can be created, e. g. based on pay-per-view (cf. van Oosterom, 2001).

¿e advances in mobile hardware also have changed the way people can
interact with the geographic information at hand, compared to ‘old-fashioned’
paper maps. Users can zoom in or out to the desired level of detail their tasks
require. Due to these advanced interaction possibilities, in a digital environment
there is not really a need for a �xedmap scale – the scale of a map is de�ned as
the ratio of a distance on the map to the corresponding distance on the ground –
as is the case with papermaps, where the printed, and therefore �xed, portrayal is
prepared by professional cartographers and the physical size of the paper limits

2

chapter 1 . setting the scene

(a) 1:25 000 (b) 1:50 000 (c) 1:100 000

Figure 1.2: Dutch topographic map series. Shown are 3 map fragments at di�erent map scales
around the city of Bunnik, The Netherlands.

the amount of information to be displayed. Even though a �xed scale is not
necessary in a digital environment, it is convenient that a user still has a notion
of the map scale, so that he can make a proper translation of distances between
and sizes of objects on the map to the real world.

However, current state-of-the-art solutions for storing, maintaining and dis-
seminating digital maps still mimic the analogue map-series concept in the sense
that for every map scale in the serie (e. g. 1:25k, 1:50k, 1:100k, such as shown in
Figure 1.2) a di�erent digital copy with independent data is kept and maintained
at the producers site, like national mapping agencies (NMAs) and commercial
parties. Because several of these copies are independently stored andmaintained,
this can cause inconsistencies. With more advanced data management solutions,
these problems could be alleviated and improved solutions o�ered, also to end
users.

A step in the right direction for these inconsistency problems are multi-
representation databases (MRDBs). According to Hampe et al. (2004) there
are ‘two main features that characterise an MRDB: 1. di�erent levels of detail
(LoD) are stored in one database; 2. the objects in the di�erent levels are linked’.
Individual objects are explicitly linked with each other and each object knows
its corresponding objects in other representations which helps when updates
have to be carried out. Although objects are linked, this is still not the most ideal
situation, because data redundancy exists and the �xed levels are still the same as
analoguemap series: Firstly,map content can not be adjusted to scale accordingly,
if the MRDB lacks the appropriate level. Better adjustment of contents could
take place if more granular levels were present, but this would lead to more

3

variable-scale geo-information

redundant levels. Secondly, this has e�ects on using the database for interactive
viewing: while zooming in on a geographic region discontinuities (‘shocks’) will
be visible (discrete jumps from one representation intended for a speci�c map
scale to another). ¿irdly, graphic representations stored for objects are di�erent,
requiring separate geometric descriptions to be transferred, and therefore it is
not easy (or even not possible) to send data in a progressive manner (which
entails sending a coarse representation �rst and incrementally updating already
sent data with additional details).

An alternative solution is the use of variable-scale data structures. In the
context of the net-centric usage scenario an important requirement is that the
digital map data is structured in such a way that redundancy for data storage
is prevented as much as possible (i. e. no duplicate elements are stored), as this
has severe impact on the amount of information to be stored and transmitted
over the network. An example of a variable-scale data structure is the tGAP data
structure (as proposed by van Oosterom, 2005). ¿is data structure consists of
two structures: 1. the face tree that captures the merging of areas as the result of
generalisation via a parent-child relation in a binary tree and 2. the edge forest
that holds the boundary edges of these faces needed for any level of generalisation.
Instead of explicitly duplicating the boundaries of areas at a lower level of detail,
references are stored to the original boundaries and for these a data structure is
provided so that the level of detail can be dynamically adjusted. Data consistency
between di�erent map scales is guaranteed. In addition to the geometry and
references, an importance value for every object is stored and based on this
importance value di�erent representations can be derived on-the-�y from the
structure according to the needed level of detail. ¿ose structures are the key
for representations at arbitrary map-scale and making progressive data transfer
possible. It was shown that those structures have great potential for storing
geographic informationwith little redundancy and that it is possible to implement
them in a main stream geo-enabled database management system (by the initial
implementation of Meijers, 2006). ¿ose structures are still in their infancy (e. g.
vanOosterom et al. (2006) showed that quite some storage spacemay be needed),
and as they will be used as the starting point for this research, they need to be
improved.

Altogether, the challenge of this work is to get to a representation of the real
world with continuous level of detail, instead of representations with discretised
levels of detail (organised in multiple layers, each layer representing only one
resolution level). Advantages of such a model with continuous levels of detail
can be threefold:

4

chapter 1 . setting the scene

1. from a geo-data-producers perspective: there is only one integrated model
from which maps with lower level of detail can be derived on-the-�y
(within relevant and reasonable limits) with fewer inconsistencies than is
the case for separately stored resolution levels,

2. for so ware producers those structures can form the basis for a new gen-
eration of technology for publishing 2d vector map data on the Internet
(improving the already existing smooth map interfaces) and providing
multi- or vario-scale based analysis and algorithms and

3. from an end user point of view it would be possible to bene�t from new
possibilities, like true smooth zoom and progressive transfer.

¿us, it is crucial to investigate the new technological possibilities that variable-
scale data structures can bring to make better digital 2d map solutions possible.

1.2 Objective and Research questions

At this moment it is not exactly known how to create a digital environment
that can accommodate geographic information at variable-scale having minimal
redundancy. ¿e overall aim of this research is therefore to investigate variable-
scale (or vario-scale for short) geo-information, by improving the initial tGAP
structures (as described by van Oosterom, 2005). From this objective follows
that the main question that we1 try to answer in this thesis is:

How can we realise improved vario-scale geo-information having minimal
redundancy?

To reach the main objective the research project, we re�ne the main ques-
tion in eight more speci�c questions (in parentheses the chapter in which the
question will be dealt with). To be able to de�ne starting points for a vario-scale
environment, the �rst question addresses:

1. What is the state-of-the-art in: 1. multi-scale data management and 2.
generalisation of vector data? (Chapter 2)

1In this thesis the pronoun ‘we’ is used, when reference is made to the author, to acknowledge
that co-authors, colleagues and members of the scienti�c community all have in�uenced this
work.

5

variable-scale geo-information

¿en, to lay a theoretical foundation for implementation of vario-scale data
structures and to make it possible to de�ne what is valid vario-scale data, we ask
ourselves:

2. How can we formally describe what is variable-scale geo-information?
(Chapter 3)

Once we have de�ned what is valid data, we need to be able to construct
input data that �ts the de�nition, therefore we will look at validation and creating
input data:

3. How can we create valid 2d input data as much automated as possible?
(Chapter 3)

One of the initial design goals of the tGAP structures was to have minimally
redundant data storage.¿is is important for use of the structures in a networked
environment, because when less data is stored, it is likely that also less data needs
to be transferred. O en this requires a balance between storage and computation.
¿is therefore is the topic of the fourth question:

4. How does minimal geometric redundancy in�uence the design of the data
structures? (Chapter 4)

On a related note, we will investigate possibilities for carrying out line sim-
pli�cation, the consequences for the amount of data that needs to be stored and
how this can be performed such that the resulting boundaries are valid (e. g. do
not have unwanted crossings):

5. Howcanwe simultaneously simplify edges so that the result is topologically
consistent? (Chapter 4)

Initially, the tGAP structures are created by making use of a merge operation
(in which two neighbouring area objects are merged and then form one new
object, cf. § 2.4). However, merging might be not appropriate for all feature
classes (e. g. long and linear features, such as roads). ¿erefore we investigate an
alternative operation, splitting. How to perform this operation is the question
that we answer next:

6. How can we split linear features over their neighbours, instead of merging
to one of their neighbours? (Chapter 4)

6

chapter 1 . setting the scene

Viewing of geographic data is a very important operation for any GIS and
this operation should be supported e�ciently. Furthermore, the tGAP structures
should be able to support progressive data streaming (for which �rst a coarse
map is retrieved and then re�ned with additional details). ¿erefore the last two
questions that we will answer are:

7. How can we query the data structures to retrieve a 2d map from the
structures? (Chapters 3 and 5)

8. How should progressive data streaming in a client-server setup look with
respect to increments, communication and data structures (both at the
client- and at the server-side)? (Chapter 5)

1.3 Research scope

¿is section shows what is considered to be in and out of scope, as well as what
are the starting points for this research.

1.3.1 Starting points

¿e focus that was adopted at the beginning of the research to limit the possible
solution space is as follows:

vector data. Designed data structures will be suitable for storing vector
data only, as vector data brings several advantages over raster data:

• Vector data allows descriptions with arbitrary topology (instead of a num-
ber of �xed direct neighbouring cells);

• It is easier to move, scale and rotate graphical primitives than raster based
data sets (i. e. it is easier to combine data when di�erent map projection
systems are used);

• Such data brings (possibly o�ine) interactivity at client-side, e. g. for query-
ing attributes and interactive editing of features;

• Allows for custom styling in an interactive rendering environment (this
can be comparedwith later binding of presentation style towebdocuments,
with techniques such as css and html, e. g. described in Lie, 2005);

7

variable-scale geo-information

• Rendering is less dependent on resolution, giving a crisper and more
aesthetically pleasing result. Vector descriptions are key for printing tech-
nology, where the fonts are stored in vector format; e. g.making it possible
to scale a print to banner size, while retaining high quality output.

geo-database management system. Prototypes will be implemented
using an extensible, object-oriented database management system (DBMS). A
geo-DBMS provides ‘a single undivided storage system’ (van Oosterom, 1990),
giving integrated access to geometry and thematic attributes (thus a query plan-
ner and optimizer can take advantage of spatial characteristics of geographical
data). ¿is approach solves the problem of keeping separate �les in sync, as is
for example the case with the de facto shape�le format, which physically splits
thematic and geometric attributes in separate �les (ESRI, 1998). Furthermore,
such a system provides access formultiple users at the same time,while supplying
built-in security and authentication models.

design by contract. For engineering prototypes, the paradigm of ‘Design
by Contract’ (Meyer, 1992, 1997) is preferred. So ware modules are assumed to
only accept and output data, that ful�lls a certain contract bymeans of contracted
assertions. For geometrical data this includes that input data is valid, so one
can make assumptions, while processing the data (e. g. that a description of a
polygon follows a certain speci�cation). In contrast, another approach that we
could have taken is to follow the ‘Defensive Programming’ paradigm. In this
paradigm incorrect behaviour of so ware modules is prevented by anticipating
wrong input for every module and dealing with this input, when encountered.
However, this requires detecting errors in the input, which can take a lot of
computation time, or ignoring the input at that moment, which can lead to
unexpected behaviour. Handling degenerate cases for geometric algorithms is
already hard when all input data is valid – not the least because of �oating point
arithmetic, of which cases can be found in, amongst others, Douglas (1974);
Ho�mann (1989); Schirra (1997); Kettner et al. (2008). ¿erefore, we prefer a
system architecture where said validation (and eventually repair) is performed
explicitly and only once, i. e. when ‘foreign’ and unvalidated data enters the
database.

1.3.2 Research scope

¿e following topics are explicitly included within the research scope:

8

chapter 1 . setting the scene

• ¿e research is performed from a GIS technological perspective, i. e. fo-
cusing on low-level data management issues (with ‘technical glasses’ on);

• As the newly proposed approach already brings enough challenges, input
data will be 2d only. 3d data is not considered, although 3d data certainly
has potential and advantages over 2d for certain applications (e. g. noise
modelling);

• Progressive data streaming (in a networked environment, based on a
client-server architecture);

• Building prototypes (to demonstrate and evaluate solutions);

• Giving a precise description (formalisation) of what variable-scale geo-
graphic information is.

1.3.3 Out of scope

¿e following topics are explicitly excluded from this work:

• Raster data approaches (or hybrid approaches, where vector data is raster-
ised at the server-side before sending to the client), as such approaches
loose some of the advantages of ‘raw’ vector data, such as custom styling
and interactivity;

• Implementing a clientwith very smooth display andmorphing capabilities;

• Data compression techniques to further improve performance;

• Performing Human Computer Interaction and Usability Engineering re-
search (i. e. testing and evaluating the proposed solutions by means of
letting end users perform certain tasks, or involving potential users into
the development cycle);

• Concentrating on thematic attributes and object classi�cation for general-
isation (thematic semantics and ontology engineering, as in van Smaalen
(2003); Lüscher et al. (2009));

• Studying cartographers at work to improve their work processes (e. g.
Stoter et al., 2009b);

9

variable-scale geo-information

• Cartography ready for high-quality printing in a form that is hardly change-
able: volatile and easy to change visualisations are the starting-point (i. e.
certain graphical problems can be alleviated by simply zooming in or out
in a digital environment – a printedmap does not o�er these possibilities);

• Dealing with updates and update propagation (i. e. propagating changes
from the real world into the data structures);

• Creating production-ready so ware.

1.4 Methodology

¿is section shows which methodology we followed to get to an answer for
the main question. It also shows which tools and test datasets were used in the
process of building the prototypes.

1.4.1 Design science and Experiments

As exempli�edby the above sketched researchquestions, this research is about the
design of variable scale data structures. In this research thereforewe have adopted
the paradigm of design science. In this paradigm ‘knowledge and understanding
of a problem domain and its solution are achieved in the building and application
of the designed artifact’ (Hevner et al., 2004, p. 75).

In a widely cited paper, March and Smith (1995) propose 4 outcomes of
design research: constructs, the language in which problems and solutions are
de�ned and communicated, i. e. they ‘form the specialized language and shared
knowledge of a discipline or sub-discipline’,models, which are ‘a set of propos-
itions or statements expressing relationships among constructs’,methods, that
de�ne processes and provide guidance on how to solve problems and instanti-
ations, that ‘demonstrate feasibility, enabling concrete assessment of an artifact
suitability to its intended purpose’.

As ‘the realm of Information Systems research is at the con�uence of people,
organizations, and technology’ (Hevner et al., 2004, p. 77), systems can be studied
within their environment in which they are put to work (i. e. studying their applic-
ation within a certain business process) or as one separate entity in a laboratory
setting. Both type of studies contribute to the knowledge base of information
management. However, this research does not attempt to evaluate the application
of the designed artifact within business processes, nor does it evaluate if and
how end users will bene�t from it (performing Human Computer Interaction

10

chapter 1 . setting the scene

Environment Design Science Research Knowledge Base

Application Domain
⋅ People
⋅ Organizational

⋅ Technical

⋅ Problems &
opportunities

⋅Meta-Artifacts
(Design products &
Design processes)

⋅ Experience &
Expertise

⋅ Scienti�c Theories &
Methods

Foundations

Build Design
Artifacts &
Processes

Design
Cycle

Evaluate

Rigor Cycle
⋅ Grounding
⋅ Additions to KB

Relevance Cycle
⋅ Requirements
⋅ Field Testing

Systems

Systems

Figure 1.3: The paradigm of Design Science applied to Information Systems research (taken
from Hevner and Chatterjee, 2010, p. 16).

research, or usability engineering), but is focused on the technical assessment
of the sole system. ¿e research is performed, in an iterative fashion: develop
theory, make a so ware prototype, test prototype with real world data, generalize
results by testing with di�erent datasets, check developed theory, develop new or
improve theory (based on insights from so ware prototype), etcetera. As became
clear in § 1.1, it is necessary to de�ne theoretical underpinnings of variable-scale
geo-information (contributing ‘constructs’ and ‘models’ to the knowledge base,
cf. Figure 1.3). Furthermore, in this research we will develop prototypes (‘instan-
tiations’) by means of which we test our new theories and illustrate our proposed
‘method’ of data management. As �nal remark, the experiments permit us to
show absence of missing elements in the developed theories (in his seminal
paper on experimentation, Tichy (1997) illustrates the importance of this type of
practice-oriented research for computer science).

1.4.2 Tools and Test datasets

Prototypes were built with the following tools and using these test datasets:

python / cython Python is an open source, dynamically typed and inter-
preted programming language, o�ering di�erent programming paradigms,
e. g. object-oriented programming is possible. Rapid prototyping is pos-
sible due to the interpretednature (which is comfortable in an environment
of rapidly changing ideas). Furthermore, it has an extensive library of mod-
ules available also for spatial programming (Westra, 2010), plus a large

11

variable-scale geo-information

user community (it has been marketed as Swiss army knife of scienti�c
computing: functionality is not only available for spatial development,
also for making graphs, automating experiments, building user interfaces,
network communication, etcetera).
Furthermore, it is possible to add highly optimised libraries to the dynamic
scripting environment by using Cython. Cython provides wrapping of
native C and C++ libraries (Seljebotn, 2009). Furthermore it permits
implementation of functionality in a more strongly typed and compiled
language (i. e. Cython is a compiler that compiles an extended subset of
the Python programming language into C source code, which then has to
be compiled with a C compiler into native binary code for the platform
on which the code runs).

postgresql, extended with postgis PostgreSQL is a database man-
agement system, with sub-system for dealing with geographical data. Post-
GIS is a plugin for the database system and PostGIS follows the OpenGIS
‘Simple Features Speci�cation for SQL’ (Herring, 2001, 2006), under an
Open Source license. PostgreSQL provides good insights to which extent
the SQL standards are followed and permits by its open nature diverse
applications to connect to it.

qgis and openjump Quantum GIS is an open source Geographic Informa-
tion Systems (GIS), in this project mostly used as tool in conjunction with
the database for selecting and visualising stored data (visualising data is
very helpful while debugging geometric algorithms).

cgal Computational Geometry Algorithms Library that has as goal to provide
easy access to e�cient and reliable geometric algorithms and data struc-
tures. CGAL o�ers a variety of data structures, like triangulations and
Voronoi diagrams in 2d and 3d, and algorithms, such as computing a
convex hull of a set of n-d points.

test data sets ¿roughout the project a variety of test data sets have been
used. ¿e diversity of data sets guarantees di�erent characteristics with
respect to geometry.
Approximately 20 small data sets were created ‘by hand’, to be able to see
whether functionality in prototypes worked as expected. ¿ese data sets
acted as unit tests, testing correct working of parts of the implemented
algorithms. A complementary data set for this purpose that was used was

12

chapter 1 . setting the scene

a set with cadastral parcels from the Netherlands’ Cadastre – this data
set was directly available as it was used in previous research (Penninga,
2004). Characteristics of the cadastral data: small number of coordinates
per line string (2 intermediate points on average), polygons with holes are
common and the data theme does not really allow one to perform sensible
generalisation in a vario-scale manner. However, because the data was
well-checked with respect to topology (i. e. valid data), this data set was a
suitable candidate for testing the workings of prototypes as no topological
errors are present in the data set.

To validate how the proposed solutions will perform in practice also
real world data sets were used. For example, di�erent parts of the cor-
ine2000 dataset were used. To monitor the land cover changes in the
European Union, the European Environment Agency (eea) collects the
Coordinated Information on the European Environment (corine) Land
Cover (clc) dataset (see Wiggins et al., 1987, for an early description of
the programme). ¿e European member states deliver this data every few
years. ¿is dataset spans the whole of Europe’s member states, and it is
freely available2. Characteristics: polygons with a relatively high number
of vertices per polygon, lots of polygons with holes, intended map scale:
1:100k. In addition, 4 di�erent topographic dataset fragments were used
(containing both rural as well as urban data, intended to be used at map
scales between 1:3k and 1:50k). As topographic maps o en are used as
backdrop map, this type of data can be considered as a common denomin-
ator for a large range of applications, where multiple themes are integrated
(houses, roads, land use, etcetera). ¿e used topographic data sets are:

1. a Dutch topographic data set, obtained via municipality of Amster-
dam, 1:10k (dense urban city center of Amsterdamwith lots of canals
and roads, no individual houses);

2. top10nl data, clip of land use polygons forming a planar partition
around Del , intended for 1:10k, with roads, no individual houses;

3. German atkis data sets, intended for 1:50k, rural area (land use
data without roads and houses), near Hamburg (Buchholz in der
Nordheide);

2More information can be found on http://www.eea.europa.eu/themes/landuse/

clc-download

13

http://www.eea.europa.eu/themes/landuse/clc-download
http://www.eea.europa.eu/themes/landuse/clc-download

variable-scale geo-information

4. British data, from Ordnance Survey, rural area, with roads and indi-
vidual houses near Colchester, intended for 1:5k.

Other relevant data characteristics will be described, when the data sets
are used.

1.5 Thesis outline

¿is section gives an outline of which chapters are based on earlier publications
and how to read the thesis.

1.5.1 Publications on which the chapters are based

Table 1.1 shows an overview of the publications on which the chapters in this
thesis are based.

1.5.2 Guide to the reader

¿is thesis is organised in the following manner, of which Figure 1.4 depicts a
graphical outline.

chapter 1 (this chapter) gives an introduction to the thesis by showing the
importance of the problem and the scienti�c gap. Furthermore it high-
lights the research methodology, the data sets and tools used for testing
and prototype development, suggests advantages of the proposed solu-
tion, gives links to publications on which this work is based and gives an
overview of how to read the thesis.

chapter 2 reviews related work so the reader can put the topic of the thesis
in context. ¿e chapter starts by showing di�erent view points on the
modelling process of geographic space. It gives an overview of the re-
search �eld of map generalisation and issues related to the concept of
map scale. A myriad of data structures have been proposed for storing
the result of generalisation operations (to provide multi-scale data access)
of which some relevant proposals are reviewed. Progressive streaming of
data is described, as this type of networked data retrieval is necessary for
a more e�cient, net-centric way of data transmission and permits smooth
zooming. Finally the chapter concludes with starting points for minimally
redundant, variable scale maps. Chapter 2 is mainly based on literature
review.

14

chapter 1 . setting the scene

Table 1.1: Publications and their relation with the chapters of this thesis.

No. Publication (sequenced by publication date) Ch.

1. Stoter, J., Morales, J., Lemmens, R., Meijers, M., vanOosterom, P., Quak,W., and Uitermark, H.
(2007). Considerations for the design of a semantic data model for a multi-representation
topographical database. In Kremers, H., editor,Proceedingsof the2nd ISGI 2007: International
CODATA symposium on generalization of information, Geneva, Switzerland, 1-3 October 2007,
Lecture notes in Information Sciences, pages 53–71, Berlin. CODATA.

2

2. Meijers, M. (2008). Retrieving tGAP data with a stateless client for visualization. RGI Project
Report 233-03, Delft University of Technology, Delft.

5

3. Stoter, J., Morales, J., Lemmens, R., Meijers, M., van Oosterom, P., Quak, W., Uitermark, H.,
and van den Brink, L. (2008). A data model for multi-scale topographical data. In Ruas,
A. and Gold, C., editors, Headway in Spatial Data Handling: Proceedings of the 13th interna-
tional symposiumon Spatial DataHandling, SDH 2008, Lecture Notes in Geoinformaton and
Cartography, pages 233–254, Berlin. Springer.

2

4. Meijers, M., van Oosterom, P., and Quak, W. (2009). A storage and transfer e�cient data
structure for variable scale vector data. In Sester, M., Bernard, L., and Paelke, V., editors,
Advances in GIScience, Lecture Notes in Geoinformation and Cartography, pages 345–367.
Springer Berlin Heidelberg.

2, 4

5. Meijers, M. and van Oosterom, P. (2009). Applying DLM and DCM concepts in a multi-scale
environment. In Mustière, S., Sester, M., van Harmelen, F., and van Oosterom, P., editors,
Dagstuhl Seminar Proceedings ‘Generalization of Spatial Information (09161)’.

2

6. Stoter, J., Meijers, M., van Oosterom, P., Grünreich, D., and Kraak, M.-J. (2010). Applying DLM
and DCM concepts in a multi-scale data environment. In Butten�eld, B., Brewer, C., Clarke,
K., Finn, M., and Usery, L., editors, Proceedings of GDI 2010: SymposiumonGeneralization and
Data Integration, pages 1–7, Boulder, USA. University of Colorado.

2

7. Ledoux, H. andMeijers, M. (2010). Validation of planar partitions using constrained triangu-
lations. In Proceedings of the 14th Joint International Conference on Theory, Data Handling
andModelling in Geospatial Information Science, pages 51–56, Hong Kong.

3

8. van Oosterom, P. and Meijers, M. (2011a). Method and system for generating maps in an
n-dimensional space. Dutch patent application 2006630, �led April 19, 2011, expected to be
published October 2012.

6

9. van Oosterom, P. and Meijers, M. (2011b). Towards a true vario-scale structure supporting
smooth-zoom. In Proceedings of 14th ICA/ISPRS Workshop on Generalisation and Multiple
Representation, pages 1–19, Paris.

6

10. Meijers, M. (2011a). Cache-friendly progressive data streaming with variable-scale data
structures. In Proceedings of 14th ICA/ISPRS Workshop on Generalisation and Multiple Rep-
resentation, pages 1–19.

5

11. Meijers,M. (2011b). Simultaneous& topologically-safe line simpli�cation for a variable-scale
planar partition. In Geertman, S., Reinhardt, W., and Toppen, F., editors, Advancing Geoin-
formation Science for a ChangingWorld, Lecture Notes in Geoinformation and Cartography,
pages 337–358. Springer Berlin Heidelberg.

4

12. Meijers, M., Savino, S., and van Oosterom, P. (2011). SplitArea: An algorithm for splitting
faces in the context of a hierarchical data structure. Manuscript submitted for review to an
academic journal.

4

13. Meijers, M. and van Oosterom, P. (2011). The space-scale cube: An integrated model for
2D polygonal areas and scale. In 28th Urban Data Management Symposium, volume 38 of
International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,
pages 95–102.

3

15

variable-scale geo-information

chapter 3 �rst stresses that minimal redundancy also has to do with funda-
mental choices: it discusses whether only one or multiple models of reality
have to be maintained. ¿en we formalise variable-scale data from a math-
ematical point of view and describe a conceptual model – the space-scale
cube (ssc) – for vario-scale data storage. To realise the conceptual model
in practice, there is a need to obtain a valid, single-scale input data set that
will be used as starting point to create content for the variable-scale data
structures. ¿erefore, this chapter also proposes an approach to validate
(and automatically repair) this 2d input data.

chapter 4 shows that speci�c generalisation algorithms to create vario-scale
data are needed and that these algorithms bring speci�c requirements for
the storage of this data into the tGAP data structures. Firstly, it shows that
some design changes are necessary to obtain leaner structures compared to
earlier published versions of the data structures in terms of needed storage
space. Secondly, this chapter proposes an algorithm to simultaneously
simplify a set of polylines to obtain a topologically consistent result.¿irdly,
this chapter investigates possibilities to use a triangulation for splitting
polygons. Furthermore, the implications of the proposed algorithms for
the data structures are analysed.

chapter 5 investigates (and improves) the data structures by using them for
streaming transmission of the stored vector data over a network. A de-
scription is given of how a 2d map at a speci�c scale point can be derived.
Further, it is investigated whether the structures make more dynamic map
solutions possible by using the structures for retrieval of data by increment-
ally adding additional details to an already sent map – i. e. progressive
transfer. Next, the chapter proposes an additional data structure, so that
the variable-scale approach can become more cache-friendly.

chapter 6 brings together the insights from chapters 3, 4 and 5. It proposes
a �nal design of the data structures that are minimally redundant and are
suitable for progressive transfer. Due to the progressive transfer demon-
strator and the proposed line simpli�cation we realised that the data struc-
tures are not pushed to their limits in terms of continuous generalisation.
¿erefore this chapter also proposes a new way of obtaining data, leading
to continuously generalised vario-scale data; key to smooth zooming.

16

chapter 1 . setting the scene

chapter 7 highlights the main achievements of this work as well as the in-
sights gained into variable-scale geo-information. It also provides amyriad
of suggestions for future research.

17

variable-scale geo-information

What’s next?

Chapter 2

Problem description & research approach

Chapter 1
Setting the scene (p. 1)

Research background (p. 19)

Minimally redundant structures &

Related work & starting points for vario-scale maps

A formal description of vario-scale data &

Chapter 3
Formalising valid vario-scale data (p. 53)

Chapter 4
Improving variable-scale
data structures (p. 83)

obtaining data at vario-scale

Towards continuously generalised vario-scale data

Chapter 5
Improving variable-scale
data dissemination (p. 141)

Chapter 6
A new era: smooth vario-scale data (p. 173)

Chapter 7
Conclusions & Future work (p. 191)

Using vario-scale data

obtaining valid 2d input data at single scale

Figure 1.4: Schematic outline of the structure of the thesis.

18

2RESEARCH BACKGROUND

•

¿is chapter reviews related work so the reader can put the topic of the thesis in
context. ¿e chapter starts by showing di�erent view points on the modelling
process of geographic space (space-�rst vs. object-�rst, § 2.1). It gives a high
level overview of the �eld of map generalisation and how dealing with map
scale is a central issue in this �eld (§ 2.2). As generalisation is computationally
intensive, a multitude of data structures have been proposed for multi-scale
data access, of which some relevant proposals are brie�y discussed in § 2.3.
Vario-scale structures, a di�erent approach for organising multi-scale data is
discussed in § 2.4. ¿en progressive transmission is described in § 2.5, as this
type of networked data retrieval is necessary for a more e�cient, net-centric way
of working and permits smooth zooming. Finally the chapter concludes with
starting points for minimally redundant, variable scale maps (§ 2.6).

Own publications

¿is chapter is partly based on the following own publications:

• Stoter, J.,Morales, J., Lemmens, R.,Meijers,M., vanOosterom, P.,Quak,W.,
andUitermark,H. (2007). Considerations for the design of a semantic data
model for a multi-representation topographical database. In Kremers, H.,
editor,Proceedings of the 2nd ISGI 2007: International CODATA symposium
on generalization of information, Geneva, Switzerland, 1-3 October 2007,
Lecture notes in Information Sciences, pages 53–71, Berlin. CODATA.

variable-scale geo-information

• Stoter, J., Morales, J., Lemmens, R., Meijers, M., van Oosterom, P., Quak,
W., Uitermark, H., and van den Brink, L. (2008). A data model for multi-
scale topographical data. In Ruas, A. and Gold, C., editors,Headway in
Spatial Data Handling: Proceedings of the 13th international symposium on
Spatial Data Handling, SDH 2008, Lecture Notes in Geoinformaton and
Cartography, pages 233–254, Berlin. Springer.

• Meijers,M., van Oosterom, P., andQuak,W. (2009). A storage and transfer
e�cient data structure for variable scale vector data. In Sester,M., Bernard,
L., and Paelke, V., editors, Advances in GIScience, Lecture Notes in Geoin-
formation and Cartography, pages 345–367. Springer Berlin Heidelberg.

• Meijers, M. and van Oosterom, P. (2009). Applying DLM and DCM
concepts in a multi-scale environment. In Mustière, S., Sester, M., van
Harmelen, F., and van Oosterom, P., editors,Dagstuhl Seminar Proceedings
‘Generalization of Spatial Information (09161)’.

• Stoter, J., Meijers, M., van Oosterom, P., Grünreich, D., and Kraak, M.-J.
(2010). Applying DLM and DCM concepts in a multi-scale data environ-
ment. In Butten�eld, B., Brewer, C., Clarke, K., Finn, M., and Usery, L.,
editors, Proceedings of GDI 2010: Symposium on Generalization and Data
Integration, pages 1–7, Boulder, USA. University of Colorado.

2.1 Modelling digital geographic space

¿is section shows di�erent view points on the modelling process of geographic
space (space-�rst vs. object-�rst) and puts forward why we regard the space-�rst
approach the best approach for modelling variable-scale geo-information.

2.1.1 Space-�rst versus object-�rst modelling

When looking at modelling of geographic features, data model designers view
the data to be modelled at di�erent levels. ¿ese levels progress from reality into
data stored in a machine. Peuquet (1984) distinguishes four di�erent levels:

reality the phenomenon as it actually exists, including all aspects whichmay
or may not be perceived by individuals;

20

chapter 2. research background

data model an abstraction of the real world which incorporates only those
properties thought to be relevant to the application or applications at hand,
usually a human conceptualization of reality;

data structure a representation of the datamodel o en expressed in terms
of diagrams, lists and arrays designed to re�ect the recording of the data
in computer code;

file structure the representation of the data in storage hardware.

At the level of creating a data model, three main approaches can be distin-
guished: 1. space-�rst approach, 2. object-�rst approach, and 3. a hybrid approach
(see Figure 2.1). Because the related models have quite a di�erent starting point,
there is sometimes confusion between modellers.

In the space-�rst approach, the models start from the perspective that the
geometries of objects interact in and subdivide the embedded space (by focus-
ing on the geometrical and topological relationships). Attributes are added to
these geometries in order to classify the objects. ¿e result is typically a set of
tables in a database such as point or symbol table, text or label table, line table
and area table. Within a table all objects (records) will have the same set of
attributes. For example in the area table there may be houses and roads, but
they all have the same set of attributes. In this approach, it is also possible to
explicitly model the topological structure (e. g. linear network, or partition of
space) with well-known advantages (explicit connectivity, avoiding redundancy,
better guarantees for quality under updates). ¿e Dutch cadastral map in lki
(Landmeetkundig Kartogra�sch Informatiesysteem) is a typical example of this
space-�rst approach (van Oosterom and Lemmen, 2001). In this solution objects
may share, via topology, their geometry with other objects. It could be argued
that map representations (on paper or screen) themselves, i. e. the visualization
of the spatial data, is also a space-�rst type of model as all objects are considered
together in a geometric model.

¿e second approach, the object-�rst approach,models �rst the object classes
with added geometry attributes (i. e. there is less focus on the division of space
as a whole, as in the space-�rst approach). Every object class can have its own set
of thematic attributes, which may vary for the di�erent object classes. Also every
object has its own geometric description independent of any other object. ¿e
top10nl model is an example of this approach (Bakker, 2005). Typically the
result is a set of tables in the database such as houses, roads, waterways, which
have among others their own simple object geometry type attribute. Sometimes

21

variable-scale geo-information

additional rules (constraints) are added in order to avoid unwanted situations
(o en topology based); e. g. a polygon representing a house should not overlap
with a road polygon at the same layer. ¿e drawback is that all these constraints
have to be explicitly stated (and checkedwhen updates are performed) and are not
embedded in the main structure of the model. Also the model does not explicitly
contain the topological relationships,whichmay support various types of analysis
(e. g. quality control of updates). It must be noted that topological relationships
are very important for map generalisation; e. g. what are the neighbours of this
object (candidates for aggregation), is the network connectivity damaged when
this road segment is removed, etcetera.

¿e third approach is the hybrid approach which treats the geometries and
object classes equally. It combines the strengths of both approaches: the (them-
atic) attributes are speci�cally designed for every object class, but the model also
enables shared geometry and use of embedded structure. ¿e spatial domain is
partitioned and the result is described using tables for nodes, edges, and faces
(and solids in 3d). ¿e objects are modelled in the same way as in the object-�rst
approach with the exception that the objects do not have their own independent
geometry-attributes, but refer to primitives in the geometry/topology part of the
model (node, edge, face, . . .). ¿is is the approach as described in the Formal
Data Structure (FDS) theory of Molenaar (1989, 1998) and is more recently im-
plemented in products such as 1Spatial Radius Topology (Baars et al., 2004) and
Oracle Spatial Topology (Kothuri et al., 2007).

Peuquet (1984) and de Hoop et al. (1993) discuss the di�erent modelling
approaches and the consequences for realisation and use. It cannot be claimed
that one model is ‘better’ than another model. ¿is depends on the application
context and use. If one speci�es a number of important characteristic of the
application domain and typical use, then it is possible to state which approach is
preferred. Considerations could be: 1. allow exceptional overlapping of objects
in certain cases (e. g. bridge over water), 2. allow modelling of systematically
overlapping sets of object classes (e. g. topographic objects at one hand and
administrative units at the other hand), 3. enable multiple geometry representa-
tions of single objects (e. g. road area polygon and road centre line, or building
footprint polygon, building roo op polygon, and building centroid), 4. support
consistent updating/maintenance, 5. support e�cient querying, analysis and
viewing of data, 6. avoid storage space consuming representations (which might
also be expensive for data transfer), 7. support easy delivery for customers (simple
objects might be easier to receive in another system than a topology structure),
etcetera.

22

chapter 2. research background

(a) Terrain situation (b) ‘Spaghetti’ lines

(c) Object-�rst approach (d) Space-�rst approach

Figure 2.1: Several approaches for representing the geometry of the terrain situation that is
shown in Figure 2.1a. Figure 2.1b does not contain explicit area objects and it is not possible
to link the objects unambiguously to their geometric elements (this in fact is what Peuquet
(1984) and Theobald (2001) term the spaghetti data structure, see § 2.1.2). In Figure 2.1c objects
have their own geometric representation fromwhich it is possible to derive information about
position, shape and size of the individual objects, but it is rather di�cult to analyse topologic
relationships for neighbouring objects. The approach shown in Figure 2.1d allows to link
objects to geometric elements and also allows to derive topologic relationships between the
objects via their geometric elements (taken fromMolenaar, 1998, p. 35).

All three approaches can be extended in one way or another to add multi-
or vario-scale aspects to the model. We regard the space-�rst approach the
best approach for variable-scale geo-information because of the advantages this
approach brings (reduced data storage – and reduced data transfer in a net-
centric environment – and explicitly modelled topological relations, which are
very important to carry out automated generalisation) and, for the time being,
the complexity of the hybrid approach is not needed.

2.1.2 Single-scale data structures

As datamodelling clearly deals with trade o�s, it is impossible to design a general-
purpose data structure that is equally useful for all situations. Some data struc-
tures are e. g. e�cient for producing graphics, but will be very ine�cient for

23

variable-scale geo-information

analytical purposes. ¿erefore, it is no wonder that to date a variety of data
structures have been proposed.

With the �rst advent of digital technology, the most apparent choice for
digitizing paper maps was to represent geographic features with a bunch of
individual points and polylines. A polyline is a sequence of n line segments
with two end points and n − 1 intermediate points. With the analogy of a plate
of tangled pasta, this ‘unstructured’ data structure is o en called the spaghetti
data structure (Peuquet, 1984; ¿eobald, 2001). In the intertwined ‘mess’ of
polylines, boundaries of geographic objects do not necessarily correspond to
the polylines that are stored. ¿is changes for the cartographic data structure
(CDS), in which geographic objects correspond to a meaningful counterpart in
the data structure (¿eobald, 2001): geographic objects are abstracted to points,
polylines and polygons. To capture the semantics of these modelling primitives,
for an unambiguous interpretation that enables interchange of geographic data,
the Open Geospatial Consortium (OGC) and International Organization for
Standardization (ISO) have established standards for structuring the spatial data
(Herring, 2001; ISO/TC 211, 2003). ¿ese standardisation e�orts have also led to
a speci�cation (Simple Features for SQL) that de�nes how to support 0d, 1d
and 2d spatial objects in object-relational DBMS environments (Herring, 2006).
Database vendors have implemented these speci�cations, which has resulted
in a shi towards geographic data being embedded in mainstream information
technology environments.

¿e Simple Features speci�cation is a clear example of using the geometry-
�rst principle for modelling geographic objects. As topological relationships
between objects with this approach are not explicitly stored, it is necessary to
compute these relations ‘on-the-�y’. For the ‘on-the-�y’ approach to work ‘it is
critical that there exists a high performance topology engine that . . . instantiates
the topological primitives for the given collection of features within the topology’
(Hoel et al., 2003). In contrast, Bertolotto (1998) points out that a space-�rst
approach will result in a set of structured geographic entities, for which the topo-
logical relations are persisted and explicitly managed (‘persistent topology’) and
that this is more e�cient for her application (map generalisation). Her argument
for this is that ‘map overlay is a complicated operation and it is expensive from
the computational point of view. ¿us it seems more convenient to compute it
only once, instead of having to recompute it each time such a query is being pro-
cessed.’ Other advantages that are known of such a persistent topology approach
is reducing duplicate storage (boundaries between objects have to be stored only
once and this also applies to shared attributes for boundaries, e. g. date of survey),

24

chapter 2. research background

pvt nvt

nface

pface

nc
cw

pcw

ncw

pc
cw

(a) Winged Edge data structure. Per
edge 2 vertices (pvt, nvt), 2 face ref-
erences (pface, nface) and 4 incident
edge references, the so-called wings
(pcw, pccw, ncw and nccw), are stored.

pvt nvt

nface

pface

(b) Node Edge Face (NEF) data struc-
ture. For each directed edge the source
and target node references (pvt, nvt)
and the left and right face references
(pface, nface) are stored.

Figure 2.2: Data structures (Figure 2.2a taken from Kettner, 1999).

opposite

halfedge
vertex

ccw
facet

cw

(a) Halfedge (FE structure).

halfedge

opposite

vertex

ccw
facet

cw

(b) Halfedge (VE structure).

Figure 2.3: Halfedge data structures (taken from Kettner, 1999). Kettner explains that “there are
two ways of splitting the edge: Either the edge is split along the faces, such that the oriented
halfedges belong to the two facets incident to this edge, see Figure 2.3a, or it is split into two
halfedges belonging to the two vertices incident to this edge, see Figure 2.3b. [. . .] In both
splitting variants a halfedge contains a pointer to an incident vertex, an incident facet and
the opposite halfedge. It is a matter of convention whether the source or target vertex is the
one chosen to be stored in a halfedge or whether the facet to the left or the right is stored.”
(Kettner, 1999, p. 70)

25

variable-scale geo-information

explicit neighbourhood relationships can be derived (speeding up certain types
of queries), possibilities of automated error checking and consistency under edit
operations (see for example ¿eobald, 2001; Penninga, 2004; Matijević et al.,
2008).

For storing persistent topology, diverse structures have been proposed, not
only in the �eld of GIS, but also in associated �elds, such as computer graphics.
Baumgart (1975) proposed the Winged-Edge structure to represent polygonal
models for computer graphics (see Figure 2.2). It stores information on nodes,
edges and faces and for each edge four edge pointers are stored. ¿ese pointers
make it possible to easily navigate in the structure from edge to edge,whichmakes
the structure suitable for editing. ¿is structure is the basis of what has been
standardised in ISO/TC 211 (2003) (topology packages). A somewhat simpler
structure targetted at GIS is the Node-Arc-Area (NAA), also known as the Node-
Edge-Face (NEF) structure, and described in any good GIS textbook (such
as Worboys and Duckham, 2004). It is nearly equivalent to the Winged-Edge
structure, except that the edge to edge pointers are not stored, therefore more
geometric operations might be required when performing edits or updates on
the structure. Another family of structures that also resembles the Winged-Edge
structure is the Halfedge data structure. For this type of data structure, each
edge is decomposed into two directed halfedges with opposite orientations,
cf. Figure 2.3. Both Kettner (1999) and Brönnimann (2001) give an excellent
introduction to deep implementation issues of such structures. ¿e concept
of directed halfedge is also used for the Doubly-Connected-Edge-List (DCEL,
Muller and Preparata, 1978; de Berg et al., 2000), which is at the basis of the
design and implementation of planar maps in CGAL (Flato et al., 1999).

A useful, educational tool for analysing the data structures and their stored
relations is the PAN-graph, as proposed by Gold (1988). Figure 2.4 shows that a
PAN graph has three vertices, denoted P (for polygons), A (for arcs) and N (for
nodes). Each vertex in the PAN graph represents an object class rather than any
speci�c object of that class. Pointers between object classes in the data structure
become edges in the PAN graph, enabling visual comparison of the diverse data
structures. ¿is presents insights into the diverse relationships between object
classes of the data structures that are modelled. However, this tool and the data
structures discussed so far are only suitable for storage of geographic entities at
one level of detail (mono- or single-scale).

26

chapter 2. research background

pvt nvt
nface
pface

(a) Node Edge Face (NEF) data
structure.

P

A N

(b) An illustration of the PAN graph for the NEF data
structure (shown in (a)). Note that the PAN graph also
shows a link from Polygons (face) to Arcs (edge), such
that polygons can be formed out of the data structure.
It depends on the implementation whether for every
edge such a pointer is stored or, for example, only one
pointer per ring.

Figure 2.4: The PAN-graph: an educational tool for analysing data structures (Gold, 1988).

2.2 From single-scale to multi-scale maps

¿is section shows that map scale expressed as representative fraction is always
varying over the mapped domain. ¿erefore, it clari�es terminology and de�nes
what is meant with variable-scale (or for short vario-scale) data. ¿en it reviews
the �eld of map generalisation, that deals with spatial and thematic resolution of
geographic objects under change of map scale.

2.2.1 Map scale

As Goodchild (2001) correctly argues that the term scale is ‘a heavily overloaded
term in English’, with diverse meanings, some clari�cation of terminology is
necessary.

Lam and Quattrochi (1992) discuss that in geography three meanings of
scale exist, along the three dimensions spatial, temporal or spatio-temporal, see
Figure 2.5. As the temporal dimension is out of scope of this thesis, we will
not discuss the latter two here further. For spatial scale Lam and Quattrochi
discriminate three meanings:

27

variable-scale geo-information

scale

spatial spatio-temporal temporal

operationalgeographic
(or observational)

cartographic
(or map)

Figure 2.5: Meaning of scale (taken from Lam and Quattrochi, 1992)

geographic or observational scale denotes the spatial extent of
study, where large-scale means that the study area is large in extent and
small-scale means only a small area is studied;

operational scale is the spatial extent at which a particular phenomenon
functions;

cartographic scale or map scale is de�ned as the ratio of a distance
on a map printed on paper and the corresponding distance on the earth,
where generally a large-scale map covers a small area with more detail and
a small-scale map covers large area, with less detail.

On paper map sheets the map scale is usually expressed with what is called
the representative fraction (RF), e. g. a RF of 1:25 000 indicates that 1 centimeter
on the map relates to 250 meter on the earth (Robinson, 1953). Note that the
RF is dimensionless, assuming that the unit of distance on both sides of the
fraction is the same. From the RF also the meaning of large and small scale maps
is derived. When the number represented by the fraction is ‘large’, a large scale
map is implied, for example 1:25 000≫ 1:5 000 000 viz. 4× 10−5 ≫ 2× 10−7. As
di�erent meanings for large and small scale exist – depending on the context in
which the word scale is used – this terminology o en leads to confusion. Next to
giving the RF also graphical depictions formap scale exist, the so-called scale bars
(Figure 2.6). Advantage of such a graphical depiction is that automatic adjustment
takes place, when a paper map changes size (e. g. due to photo copying), contrary
to a textual representation that for example explicitly states that ‘1 cm on the
map represents 250 m in the terrain’.

Tightly related to map scale is resolution. Resolution concerns the ability to
distinguish closely placed objects. ¿e RF has an impact on the resolution that a
map provides (Töpfer, 1974), a�ecting the minimal object size and the positional

28

chapter 2. research background

1000 0 1000 2000 3000 4000 m
(a)

1000 0 1000 2000 3000 4000 km

(b)

Figure 2.6: Two examples of scale bars. After De Maeyer et al. (2004), p. 98.

accuracy of displayed objects (cf. Figure 2.7). Goodchild (2001) discusses that
it is typical on a paper map to show features not less than 0.5 millimeter apart1
and that together with the RF this for example means for a 1:25 000 map, that
the provided resolution will be 12.5 meters (in the terrain). In this respect, it is
worth to mention the work of Tobler (1987), that posed the same rule: ‘divide
the denominator of the map scale by 1 000 to get the detectable size in meters.
¿e resolution is one half of this amount’ (i. e. 12.5 meters for the 1:25 000 map).

Furthermore, the RF is an approximate measure, as it is not possible to
maintain scale correctly for an entire map, due to that the earth is a 3d sphere, a
map is a 2d planar surface and the spherical surface will rip, while �attening it. A
geographic coordinate system de�nes point locations on the earth (Robinson, 1953;
Kennedy and Kopp, 2001). ¿ese locations are expressed in a coordinate system
with latitude and longitude (i. e. λ and ϕ) which are angles from the center of the
system to its surface. ¿e shape and size of the surface is de�ned by a sphere or
ellipsoid, that approximates the earth its surface. Together with a set of reference
points (that are called the geodetic datum2) the ellipsoid composes the geographic
coordinate system. A projected coordinate system represents coordinates (i. e. x
and y) on a �at, 2d surface. When working with geographic data, ‘a projected
coordinate system is always based on a geographic coordinate system’ (Kennedy
and Kopp, 2001, p. 16). ¿erefore, it is necessary to carry out a map projection. A
map projection relates the spherical coordinates on the sphere or ellipsoid to the
�at, planar coordinates by using mathematical formulas. In symbolic form this
is expressed as: (λ, ϕ) → (x , y). Figure 2.8 shows an example of the distortion

1¿e visual acuity of the human eye is approximately 0.2 mm at a reading distance of 30 cm
(SSC, 2005, p. 26).

2 ¿e term datum is o en used interchangably with geographic coordinate system. In the
strict sense, it only refers to the chosen elements of such a system that de�nes the origin of the
coordinates (Ordnance Survey, 2010).

29

variable-scale geo-information

(a)

(b)

(c)

(d)

Figure 2.7: The need for map generalisation. The maps show loosely scattered farmsteads
and a dense urban core. Both Figure 2.7a and 2.7c show the maps at their correct map scale,
i.e. 1:10 000 (left), 25 000 (middle) and 50 000 (right). The maps at the top row are reduced
(i. e. resized) versions of the 1:10 000 map. These versions are clearly unreadable, while in the
bottom rowmap generalisation has taken place to improve legibility. Furthermore Figure 2.7b
and 2.7d show the generalised 1:25 000 and 1:50 000 maps enlarged to the 1:10 000 map scale
to make the changes that have taken place in the generalisation process more visible. Figures
2.7b and 2.7d taken from Imhof (1972), p. 222.

30

chapter 2. research background

that a map projection causes and that this distortion can be visualised with the
so-called Tissot’s indicatrix (cf. Robinson, 1953, appendix D). In most cases a
few lines on a 2d map will have scale maintained correctly. Some projections
preserve true scale between one or two points and every other point on the map
and sometimes a local scale factor is used to compensate for the variability in
scale.

Figure 2.8: Tissot’s indicatrix with 2 projections where The Netherlands is placed in the centre.
Tissot’s indicatrix, also known as the ellipse of distortion, illustrates the type of distortions a
map projection introduces. The size and shape of the ellipse shows how much the scale is
changed and in what direction. If a projection locally preserves angles (conformal) the ellipse
would remain circular. If a map projection preserves area (equal-area) the projected ellipses
will have the same size. If a projection is neither equal-area nor conformal at a point, both
the shape and area of the ellipse vary. It is clear that for both projections, area distortions are
present and that map scale is not constant.

Although we have shown that the RF is only approximately uniform for
a mapsheet (and thus varies over the map), this is not the intended meaning
of variable-scale (or vario-scale for short) maps in this thesis. ¿e intended
meaning is that when the RF of a map is changed a small amount, the content of
the map is also changed by a small amount (i. e. it must be possible to zoom in or
out on the digital map in a continuous, step less way). Another known meaning
of a ‘variable-scale map’ has been de�ned by Harrie et al. (2002), that proposed a
method to show a map with large-scale data for a circle positioned in the centre
of the map and small-scale data outside this circle. Note that this type of maps is
also known by the name of Fish Eye maps (Misue et al., 1995) and that we term
this type of maps ‘mixed-scale maps’ (see § 6.2 and Figure 6.7).

31

variable-scale geo-information

2.2.2 Generalisation

Traditionally, cartographers have made topographic paper maps for di�erent
map scales. ¿is process in which larger scale maps are reduced to smaller scale
maps is termed cartographic generalisation. Because of resolution aspects (§ 2.2.1,
notably Figure 2.7), it is not possible to just reduce the content of the map only
graphically. ¿erefore, Weibel (1991) de�nes that the aim of this process is to
‘produce maps at coarser levels of detail, while retaining essential characteristics
of the underlying geographic information’.

Figure 2.9 illustrates that since the digital era in the context of GIS, general-
isation can be understood as being composed of three separate processes: object
generalisation deals with product speci�cations and data capture through the
universe of discourse (i. e. the view that de�nes everything of interest in the real
world for a data set and by means of which data quality can be expressed, cf.
Jakobsson, 2002). ¿is object generalisation leads to a highly detailed Digital
Landscape Model (DLM). From this landscape model versions with lower levels
of detail can be produced, mainly targeting data sets with less data for more
e�cient computation (or even making computation possible, when datasets are
huge). ¿is process is termedmodel generalisation. When it is time to make a
visual representation of the digital data, there is a need to carry out a process,
termed cartographic generalisation, leading to specialised models, targeting pro-
duction ofmaps (i. e. geometric representation of objects is adapted to the styling
of the map), the so-called Digital Cartographic Models (DCMs). Note that for
this process either the high quality DLM can be used, or one of the DLMs with
reduced accuracy.

Although the separation between Digital Landscape Model (DLM) and
Digital Cartographic Model (DCM) is theoretically considered as the optimal
way of maintaining data sets at multiple scales, in practice data producers, like
national mapping agencies (NMA), wrestle with the question what to store
explicitly in order to e�ciently maintain their geographic databases and maps
(Stoter et al., 2011) and consequently what operations to apply to obtain DLMs
and DCMS at lower accuracies.

In this respect, Stoter (2005) has shown that di�erent production work�ows
and conceptual architectures have been implemented among diverse NMAs over
Europe. A central question seems to be whether to follow a ladder or star ap-
proach for creating smaller scale data sets. For the ladder approach, in a sequence
of steps a smaller scale dataset is derived from the (previously produced) larger

32

chapter 2. research background

Model generalisation

Cartographic generalisation

Primary Model

Object generalisation

Digital Landscape
Model (DLM)

high resolution

Digital Landscape
Model (DLMs)

lower resolution

Digital Cartographic
Model (DCMs)

visualised models

Secondary Models

Figure 2.9: Generalisation can be understood as being composed of three separate processes.
This terminology has originally been developed for the German ATKIS project (Grünreich, 1985,
1992).

scale dataset. ¿e alternative is the star approach, where every small scale dataset
is generalised from the same (large scale) base dataset (Foerster et al., 2010).

For either approach, to derive datasets with lower levels of detail, so-called
generalisation operators are needed. ¿ese operators express how modelled
geographic objects have to change with respect to the map scale (and thus the
resolution) of the newly derived dataset. Foerster et al. (2007) provide a formal
classi�cation of operators (shown in Table 2.1). Some operators mainly change
the geometric description of the objects (e. g. simpli�cation and displacement),
while others focus more on the thematic attributes (such as class selection, re-
classi�cation) and some on both (e. g. typi�cation and amalgamation).

Algorithms to implement the generalisation operators have been widely
investigated. Without any pretension of being complete, we now will brie�y
mention a few of these algorithms. In the early days of automated cartography
several attempts have been made to provide methods for line generalisation

33

variable-scale geo-information

Table 2.1: Classi�cation of generalisation operators (Foerster et al., 2007)

Model generalisation Cartographic generalisation

Class selection Enhancement
Reclassi�cation Displacement
Collapse Elimination
Combine Typi�cation
Simpli�cation Enlargement
Amalgamation Amalgamation

(Douglas and Peucker, 1973; Dettori and Falcidieno, 1982; McMaster, 1987; Jenks,
1989; Cromley, 1991) of which the Douglas and Peucker algorithm is the most
well-known. Visvalingam andWhyatt (1993) proposed an alternative method for
line simpli�cation, on which context-aware simpli�cation methods have been
built (Zhou and Jones, 2004; Kulik et al., 2005) and which we will employ in
§ 4.2.

In general, for the implementations of generalisation algorithms diverse
spatial data structures will be used. Jones et al. (1995) show that it is possible to
implement diverse generalisation operators using a constrained triangulation.
Also Dyken et al. (2009) use such a triangulation for simplifying a set of curves
simultaneously, cf. Figure 2.10. Haunert and Sester (2008) use the straight skel-
eton for obtaining centre lines for a road network and show that the straight
skeleton also can be used as a collapse operator. McAllister and Snoeyink (2000)
obtain centre lines of a river network. ¿e river in their approach is represen-
ted by separate polylines that are tagged as le and right banks describing the
polygonal river area. Using a robust implementation of the Voronoi diagram
and a topological data structure (the quad-edge data structure) they obtain an
approximation of the medial axis of the river network. More examples of data
structures for generalisation are given in § 2.3.2, p. 38.

As also illustrated by the above mentioned algorithms, Weibel (1997) points
out that it is not su�cient to only have ‘simplistic’ and ‘local’ algorithms (e. g.
not considering objects in the spatial neighbourhood of the objects being gener-
alised) and that for generalisation it is of importance that algorithms:

1. observe the spatial and semantic constraints imposed by map context. As
the resolution aspect is an important geometric constraint for generalisa-
tion for producing paper maps, it is not surprisingly that displacement of
features has been studied in detail. Mackaness (1994) shows how spatial

34

chapter 2. research background

v

p q

r

Figure 2.10: Line simpli�cation using a constrained triangulation. The original part of the line,
formed by the vertices p, q and r is simpli�ed into pr, if the separation distance v between the
new line and the other lines is large enough. The triangulation is used to be able to de�ne
and check this distance v. Taken from Dyken et al. (2009).

con�icts for displacement can be identi�ed and how cluster analysis is of
help. Bader (2001) provides three algorithms, using snakes, elastic beams
and ductile truss for displacement of roads and buildings. Sester (2000)
and Sester (2005) model the displacement of buildings as an optimisation
procedure for which a global optimal solution is found by employing con-
ventional least squares adjustment. In this respect it is important that op-
timisation goals are formalised, so that they can be evaluated (cf. Schmid,
2008; Stoter et al., 2009a; Burghardt and Schmid, 2010).

2. make implicit ‘knowledge’ explicit, as it is needed for the generalisation
process. An example is that of Mackaness and Mackechnie (1999) who
present a method for the detection and simpli�cation of road junctions.
Moreover, Chaudhry and Mackaness (2007) present an approach for ag-
gregation of geographic objects into composite objects at higher level of
abstraction based on partonomic relationships. Another example of such
a method is found in Haunert and Wol� (2010), who �rst presented an
optimisation approach to simplify sets of polygonal building footprints
and where Haunert (2011) extended this work to allow preservation of
symmetries in the footprints in the simpli�cation process (cf. Figure 2.11).

3. be able to draw from rich data models (using a combination of di�erent
data representations and auxiliary data structures). When these are not
available, it is necessary to ‘enrich’ the original data, performing so-called
data enrichment. For example, Neun (2007) investigates this process of

35

variable-scale geo-information

provision of auxiliary data bymaking implicitly contained high level know-
ledge explicit and also Lüscher et al. (2009) employs data enrichment, by
using an ontology-driven approach and supervised Bayesian inference for
inferring complex spatial concepts.

Figure 2.11: Detection of symmetries in building footprints so that these can be taken into
account during simpli�cation. The Figure shows the detected axes in which the building
footprint is symmetrical (taken from Haunert, 2011).

For a complete generalisation work�ow, it is necessary to embed the gen-
eralisation algorithms in some orchestrating, overall framework, such as the
conceptual framework proposed by Brassel and Weibel (1988), or an expert sys-
tem framework (such as described by Forrest, 1993). More recent, other fruitful
alternatives for orchestration have been proposed, such as simulating annealing
(Ware et al., 2003) and multi-agent system (MAS) technology (Lamy et al., 1999).
MAS can nowadays be found in a commercially available implementation (i. e.
1Spatial Radius Clarity).

Independent from these orchestration processes, the output data sets will
have to be stored for later use. For this purpose a multitude of multi-scale data
structures have been proposed. ¿is is the topic of the next section.

2.3 Multi-scale hierarchies

Timpf (1999) investigates the connections between abstraction processes, levels
of details of objects, and hierarchies in more detail and concludes that ‘hierarch-
ies should be used in GIS because they correspond to one way of humans of
structuring the world, thus providing a common conceptual mechanism. Hier-
archies reduce processing time and they increase the stability of the reasoning
system. Hierarchies break down a task into manageable portions, thus allowing
for parallel processing. Finally, they allow for e�cient reasoning at the level of de-
tail required for a certain task’ (Timpf, 1999, p. 137). ¿erefore, in this section we

36

chapter 2. research background

will review what terminology is in use and what type of hierarchical approaches
are state-of-the-art for managing data at multiple scales (§ 2.3.1 and 2.3.2), show
that vario-scale structures take a di�erent approach (§ 2.4) and have potential
for being applied for progressive data transfer (§ 2.5).

2.3.1 Multi-representation, -resolution and -scale terminology

¿e simplest (and most commonly used) approach that comes to mind for struc-
turing data for multiple scales (creating a hierarchy of data sets) is to just store
the data sets for di�erent map scales as separate sets of objects and together with
every data set the scale range for which it is valid. ¿en, during use it is possible
to pick the correct set of objects for the display scale. ¿e advantage of such an
organisation is that it is relatively easy to set up. But when it is time to maintain
the database, this is not so easy, as the sets have been created as independent
copies and there is no explicit knowledge available on which large-scale object
relates to which smaller-scale object in the database (i. e. no hierarchical set up
of relations between objects). ¿is issue of hierarchical, multiple representations
therefore gained attention in a research program of the National Center for
Geographic Information and Analysis (NCGIA, 1989; Butten�eld and DeLotto,
1989) where it was mentioned that: ‘a GIS database must be able to represent ob-
jects at di�erent resolution levels and to support modi�cation across resolution
levels.’ (NCGIA, 1989, p. 125). Since then many researchers have focused on this
issue. However, terminology for maintaining multiple object representations
for the same real world object is not de�ned in a rigorous manner and words
such as multi-representation, multi-resolution and multi-scale are o en used
interchangeably in the prevailing literature.

A general concensus on the terminology seems to be thatmulti-representation
is not solely intended for the purpose of managing datasets at di�erent scales
and thus can be considered a broader, umbrella term. Friis-Christensen et al.
(2002) point out, that ‘o en, the same real-world entity (e. g. a river or a building)
is represented by di�erent objects in the same or di�erent databases. ¿is phe-
nomenon is called multiple representation, and is a key problem in managing
geographic information’ (Friis-Christensen et al., 2002, p. 150).

¿e crux of multiple representation is that the di�erent representations of
the same real world object are linked in the database(s), so that it is clear that
for one object multiple versions exist. Van Oosterom (2009) identi�es that ‘[a]
fundamental question [. . .] is whether or not an object and its identity change.
How one sees the concepts versus the re�ection in the physical model (e.g., using

37

variable-scale geo-information

the same identi�er, or a link to di�erent identi�ers) is important in this instance.’
He distinguishes that ‘several types of multiple representations can be identi�ed
due to: 1. di�erences in scale; 2. DLM-DCM separation; 3. temporal/lifecycle
(plan, realise, modify, remove); and 4. one-object multiple geometric repres-
entations (e. g. , road area/centre-line, or building a 2d footprint/3d detailed
model).’ Herewith the term is thus also used for the fact that two kind of geomet-
ric representations are stored for the same real world object: e. g. for roads one
representation is stored for e�cient route planning, where roads are represented
as polylines representing a graph and one for storage of their physical outline,
based on a polygonal description, but both suitable for the same map scale (as
mentioned in Zlatanova et al., 2004). Furthermore, these representations are not
necessarily targeting visualisation of the information at di�erent map scales, but
also at the same scale, which is for example the case with option 3, modelling
the temporal di�erences in the lifecycle of a geographic object.

Another word that is o en employed in the literature is multi-resolution.
Although this is a term that is o en regarded as suitable for both geometric and
thematic attributes (also thematic attribute values for small scale data sets get a
‘coarser’ meaning), we regard this terminology to be targeted more at geometric
descriptions (common in the �eld of terrain surface simpli�cation, e. g. Hoppe,
1996; Danovaro et al., 2007) and o en to be associated with raster data sets (Aplin
et al., 1997). Moreover, we see this term more suitable for a map with one level of
detail only (where geometric description of the same map objects can be re�ned
or coarsened). Hence, in this respect, we employ the termmulti-scale to make
clear that we intend that there are multiple representations and that these are
intended to be used at multiple scales (both for geometric attributes, as well as
for thematic attributes).

2.3.2 Multi-scale data access

A variety of data structures have been proposed for multi-scale data access.
Early attempts focused on making single (line) objects with di�erent resolution
available from a single data structure, thereby focusing on storing the result of
line simpli�cation. Examples are the Strip-tree (Ballard, 1981), the Multi-Scale
Line tree (Jones and Abraham, 1986), the Arc-tree (Günther, 1988, ch. 6), and
the Binary Line Generalisation (BLG) tree (van Oosterom, 1990), for which an
example is shown in Figure 2.12.

Researchers also started to investigate hierarchical models for feature hier-
archies that are strict with respect to the geometric boundary description (e. g.

38

chapter 2. research background

a b c
d e

f

g
h

i j

(4.4)
a b c

d e
f

g
h

i j

(4.4)
a

b c
d e

f

g
h
i j

(a) First iteration for the Douglas
Peucker algorithm.

g (4.4)
h (1.2)

i (0.9)
f (2.5)

d (1.0)
e (0.3)

b (0.3)
c (0.3)

(b) Corresponding BLG tree, that stores
the result of the line simpli�cation.

Figure 2.12: A polyline and its BLG tree. Note that vertex a and j are not stored in the BLG tree.
Taken from van Oosterom and van den Bos (1990).

the boundary of a country is sharedwith a part of the boundaries of the provinces
and the boundary of the provinces is shared with a part of the boundaries of
municipalities). ¿e geometric information is shared by all levels in the data
structure and no generalisation takes place for the boundaries in this case. Note
that the type of mono-scale data sets where the geometry forms a complete
subdivision of space is also known as planar partitions or categorical coverages.
Filho et al. (1995) introduce the HPS (hierarchical planar subdivision, illustrated
in Figure 2.13) structure, a topological data structure that represents hierarchies
of planar subdivisions, providing e�cient support for this type of aggregations.
Also Rigaux and Scholl (1995) propose a conceptual method to deal with a strict
decomposition of the space at multiple scales and partially implement their
model with the O2 DBMS. Plümer and Gröger (1996, 1997) provide a formal
data model which allows to establish geometrical and topological integrity for
what they term nested maps by the speci�cation of a hierarchical structure. An
axiomatic and checkable characterisation of these nested maps is provided, to
achieve and maintain integrity for the data structures. Moreover, Frank et al.
(2001) show that it is possible to obtain hierarchies from categorical coverages, by
focusing on and formalising thematic aggregation through a re�nement operator,
and that in this way it is possible to produce multi-scale data sets. In current
commercial so ware, the Oracle Spatial Topology product also supports such a

39

variable-scale geo-information

v2 e1 v1

e4e2

v3 e3 v4

f2
f1 f3 f4

e9

e6 e5

e8e7

v5

v6

f1

v2 v1

e4e2

v3 v4

faces: f1 f2

f3 f4
edges: e1 e2 e3 e4 e9

e5 e6 e7 e8

vertices: v1 v2 v3 v4 v5 v6

Figure 2.13: An example of the Hierarchical Planar Subdivision (HPS), taken from Filho et al.
(1995).

hierarchical topology model, where top features are composed of other features
(Kothuri et al., 2007).

Other researchers have looked at descriptions of space at multiple scales, still
storing feature hierarchies, but without strict requirements for sharing geometry
between the levels stored for the di�erent scales, the so-calledMRDBs (where the
meaning indeed varies: multiple representation or multiple resolution database).
For example, Vangenot et al. (1998) propose a conceptual data model with multi-
representation facilities (termed MADS, Modelling of Application Data with
Spatio-temporal features, cf. Figure 2.14). ¿e important factors that Vangenot
(2004) discriminates for multi-representation are a. intended use (which she
terms ‘viewpoint’) and b. resolution. ¿e resolution aspect of data can be sub-
divided in a spatial component (the geometric description of geographic objects)
as well as a semantic component (the desired level of detail, or granularity, for
thematic attribute values of the data set).

Curiosity Building

Castle

Figure 2.14: An example of a MADS diagram (taken from Vangenot et al., 1998). The conceptual
data model supports multiple inheritance: the objects from the class Castle inherit a point
geometry from the Curiosity class and an area geometry from the Building class. This way an
application can choose between multiple geometry representations. Note that the geometry
types are graphically depicted with a small symbol.

A problem with managing several separate representations, stored as inde-
pendent mono-scale datasets, is the missing links between objects with di�erent

40

chapter 2. research background

levels of detail (i. e. hierarchical relationships are not automatically encoded).
Devogele et al. (1996) illustrate how they create these scale-transition relation-
ships between objects by de�ning a process to build multi-scale databases that
consists of three steps: 1. declaring correspondences and con�icts, 2. resolving
con�icts and schema merging and, �nally, 3. data matching. ¿ey tested their
approach on two existing mono-scale data sets of road network data. Hampe
et al. (2004), who build a MRDB for to support visualisation on mobile devices,
acknowledge the approach of linking for building a MRDB, but also show that
it is possible to follow another approach by creating new smaller-scale datasets
from existing larger-scale ones, which then constitute the new datasets in the
MRDB. For this to work, it is necessary that there exists functionality (i. e. a
generalisation process) that allows the creation of smaller-scale datasets and at
the same time immediately establishes the links between the objects for di�erent
scales (see Figure 2.15). A commercial solution for creating a MRDB in this way
is described by Persson (2004), who employs a quadtree organisation for the
di�erent levels of detail.

High LoD / Large scale

Low LoD / Small scale

Medium LoD / Medium scale

Figure 2.15: An example of a MRDB, taken from Hampe et al. (2004).

¿e discussion focused hitherto on strategies that produce databases with
abrupt changes for discrete levels of detail. Ai and Li (2009) terms these data
sets with �xed and discrete levels of detail scale points (i. e. mono-scale data
sets independently stored for every speci�c map scale). A serious weakness
with the approach of datasets for �xed scale points, however, is that these stored
datasets produce abrupt changes during interactive use. ¿is is also pointed
out by Jones and Ware (2005), who state that ‘there are several types of public
access map-based websites that allow a user to zoom in and out of a particular
region, but at present this is usually based on stepping between independent pre-
generalised datasets which may di�er markedly in their degree of generalisation.
It would be desirable to be able to change the level of detail on such systems in

41

variable-scale geo-information

a smooth and progressive manner rather than the quantum-leap changes that
o en characterize the current approach.’

2.4 Vario-scale structures

A totally di�erent approach for organising multi-scale data is described in van
Oosterom (1990). Here, a variety of data structures (amongst others, the BLG
tree and Reactive-tree) for the storage and manipulation of geographic objects at
multiple scales are developed.¿ese structures are termed reactive data structures
and make it possible to perform integrated selections on spatial range and level
of detail components of geographic objects stored in large databases, alleviating
the ‘quantum-leap changes’ providing access to the objects at variable-scale. Van
Oosterom and Schenkelaars (1995) present the development of a system that may
be used to interact with a single dataset at a very large range of scales for di�erent
detail levels, using these structures. ¿eir system, based on the Postgres DBMS
environment, implements three generalisation tools: 1. the BLG-tree for line and
area simpli�cation, 2. the Reactive-tree for selection based on importance and
location, and 3. the Generalised Area Partitioning (GAP)-tree. Although giving
good performance for access, redundancy in this structure is present as the GAP-
tree is based on polygons. ¿e non-topological nature also is re�ected in the fact
that the simpli�cation of the boundaries (obtained by using the BLG-trees) leads
to slivers near the boundary of two neighbours.

Inspired by the GAP tree approach, Vermeij (2003) describes the devel-
opment of a more minimally redundant topological data structure. ¿e data
structure consist of two tables: an edge table stores the boundaries of all faces at
the level of the input data, and a face table stores thematic information regarding
all faces, but holds no geometric description of the objects. Besides the geometric
data in the edge table and the thematic information in the face table, both tables
also store a 3d bounding box for every object. ¿is bounding box has a 2d extent
that encloses the geometric representation of the edge or the geometric repres-
entation of the face. ¿e third dimension is used to store information regarding
the scale at which an object should be visible in a map. A 2d map is made by
taking a slice through this data structure (see Figure 2.16).

Extending this development, van Oosterom (2005) presents an improved
variant of the GAP-tree based on topological data structures (called the ‘tGAP
face tree’). Geometric redundancy between the di�erent levels of detail is avoided
as edges are represented by combining BLG-trees. Which edges have to be
combined follows from the generalisation process and is stored in a separate

42

chapter 2. research background

Figure 2.16: The data structure as proposed by Vermeij treats scale as a third dimension (Figure
5.2 of Vermeij, 2003). The plane represents a requested 2D map, and the intersection with the
3D bounding boxes (darker part) then gives the correct edges and faces to display on themap.

data structure. ¿is data structure turns out to be a collection of BLG trees and
is therefore called the GAP-edge forest.

As for this thesis the variable-scale tGAP structures (van Oosterom, 2005)
are a starting point (see § 1.1), a more detailed explanation follows. ¿e datasets
that are currently supported within the tGAP structure have to be modeled as a
2d planar partition, i. e. it is a partition of the space in a geometric sense, without
gaps and overlaps (the structures are modeled following the space-�rst principle,
§ 2.1.1). ¿e physical storage of the data takes place in a database management
system (DBMS) using an extended topological node-edge-face data structure.
¿e exact table de�nitions are given in Figure 2.17.

Each area object of the map is represented by a topological face (this is a one-
to-one relation). ¿e level of detail (LoD) can be regarded as third dimension
and is represented by the concept of ‘importance’. ¿e importance of objects is
based on their size and feature classi�cation. E. g. a large forest area can have
lower importance than a small city area. A so-called functional spatial index
(that is an index de�ned on the result of a function that runs inside the database
system and is applied to one or more columns of some input tables) on a 3d
bounding box (bbox) is used to e�ciently access the 2d spatial data extended
by the third dimension: the importance (or scale) range for which a certain
representation is valid.

43

variable-scale geo-information

leftFace 1..*1

rightFace 1..*1

0..1

tGAPTopolObject

startNode1..* 1

endNode1..* 1

+ impLow: numeric
+ impHigh: numeric

parentFace

+ faceId: integer
+ impOwn: numeric
+ featureClass: integer
+ area: numeric
+ bbox: box2d

Face

+ getGeometry: polygon

0, 2

+ edgeId: integer
+ geometry: polyline

Edge
+ nodeId: integer
+ geometry: point

Node

(a) UML diagram

CREATE TABLE tgap_faces (

face_id integer,

parent_face_id integer,

imp_low numeric,

imp_high numeric,

imp_own numeric,

feature_class_id integer,

area numeric,

bbox box2d);

(b) Face table

CREATE TABLE tgap_edges (

edge_id integer,

imp_low numeric,

imp_high numeric,

start_node_id integer,

end_node_id integer,

left_face_id integer,

right_face_id integer,

geometry geometry);

(c) Edge table

CREATE TABLE tgap_nodes (

node_id integer,

imp_low numeric,

imp_high numeric,

geometry geometry);

(d) Node table

Figure 2.17: An UML diagram and corresponding table de�nitions in SQL for the classic tGAP
structure.

44

chapter 2. research background

2.4.1 Filling the face table

As we want to reduce the LoD for display at smaller scales, we have to generalise
our original data. A generalisation process reduces the number of polygonal
objects, based on the importance. ¿e object that has the least importance is
removed �rst. Plain removal of the object is not allowed, because a gap would
exist a er this operation. ¿erefore we let the most compatible neighbour take
the space of the object to be removed. Based on the shared boundary length and
the feature class compatibility this neighbour is chosen. ¿e merging operation
creates a new object. ¿is new object then has a new identity and is given the
feature class of the most compatible neighbour. ¿e importance of this object is
recomputed (and several di�erent options have been tested for this: e. g. taking
the sum of the importance of the two merged objects). ¿is process continues
until only one object is le .

During this merging process the importance range for all objects is also
created and stored. ¿is range is intimately related to the importance assigned
to all faces present at the largest scale. ¿e importance is stored with all the faces
as the ‘imp_own’ attribute that clearly de�nes the ordering of the generalisation
process. ¿e importance range (stored with an ‘imp_low’ and an ‘imp_high’
attribute for each face) de�nes the lifespan of objects in the LoD dimension and
allows selection of the right objects at an arbitrary LoD (using an importance
level for selection, ‘imp_sel’).

¿e importance range for the objects is created as follows:¿e objects used as
starting point will be assigned an imp_low value of 0.¿e example in Figure 2.18a
and Table 2.2 shows that the imp_low value of all original faces (1-6) is indeed 0.
¿en, in each generalisation step, two objects their lifespan will be ended and a
new one will be created. In our example, face 1 is the least important face, and
is merged with its most compatible neighbour (face 5), a new object (face 7)
is formed. Both ended objects are assigned the importance own value of the
least important object, named ‘imp_remove’, as their importance high attribute
(face 1 has an imp_own of 150, this is assigned to both face 1 and 5 as imp_high
value). ¿e new object that is formed in the generalisation step will be assigned
the sum of the own importance of the two old objects as imp_own value and the
imp_high value of the removed objects as its imp_low value. ¿e resultant of this
process is that the sum of all own importance of the original objects is equal to
the importance high value of the last remaining object. ¿is means that the sum
of importance for all objects valid at any given scale (LoD) in the complete map
does not change.

45

variable-scale geo-information

f1

f6

f2
f4

f3

f5

n7
n2n6

n8

n9 n1

n3

n4

e9

e3e10

e6

e7 e5
e8

e2e13
e1

e12

e4

n5

(a) The map of the initial con�guration,
with imp_sel = 0 (note that the nodes,
edges, and faces are labeled with their
identity)

f6

f2 f4

f3

f7

(b) 150

f2 f4

f3

f8

(c) 325

f2 f4

f9

(d) 395

f4

f10

(e) 505

f11

(f) 610

Figure 2.18: Example map with 6 polygonal regions. Sub�gures 2.18b – 2.18f show the map at
the imp_sel value mentioned in their caption.

46

chapter 2. research background

Table 2.2: The tGAP face table for the sample data set, which is graphically depicted in Fig-
ure 2.18a (note there is a bbox and an area value stored, but this is not shown).

face_id parent_id imp_low imp_high imp_own feature_class

1 7 0 150 150 corn
5 7 0 150 750 grass
6 8 0 325 325 grass
3 9 0 395 395 forest
2 10 0 505 505 lake
4 11 0 610 610 town
7 8 150 325 900 grass
8 9 325 395 1225 grass
9 10 395 505 1620 grass
10 11 505 610 2125 grass
11 -1 610 2735 2735 grass

2.4.2 Filling the node and edge tables

When merging two faces, the life of the edges between the two old faces is ended
by setting their imp_high value to the imp_own value of the face that is removed
(imp_remove).¿e remaining edges are now adjacent to the newly created object,
so also these edge versions are terminated (their importance high value is set
to imp_remove) and new, updated versions for those edges are created (with
imp_remove as their importance low value). ¿ese updated versions get the
same identity as before, but with a di�erent le or right face pointer and a new
importance low value). In our example edge 10 is removed in the �rst face merge
step, when face 1 is merged to face 5 (the imp_high value of edge 10 is set to 150,
see table 2.4). Edge 11 is an example of an edge that is changed due to the change
of the neighbouring face. ¿is edge was adjacent to face 1, but is a er the merge
adjacent to face 7. So, a new version of this edge is created.

Furthermore, the nodes that are having a relationship with only two edges
a er themerge, are as well ended and the incident edges are merged; see the node
information from Table 2.3. A new version for those incident edges is created,
withmerged geometry based on the geometry of the two old edges.¿is is shown
in our example for the edges 9 and 12 (forming a new edge 14) and the edges
3 and 6 (forming the newly created edge 15). In the classic tGAP structure the
edge geometry is represented by a BLG-tree. For original (leaf) edges this is a
directly stored version. For merged (non-leaf) edges this is a BLG-tree with a
new top and references to the two BLG-trees of the child-edges. So there is no

47

variable-scale geo-information

Table 2.3: The tGAP node table. Note that each node has a point geometry, but this is not
shown.

node_id imp_low imp_high

1 0 2735
2 0 150
3 0 395
4 0 505
5 0 610
6 0 150
7 0 395
8 0 325
9 0 325

redundancy in the storage of geometry, but the result can be having to trace a lot
of references during usage of the structure. An alternative therefore is to create a
new (redundant) geometric representation of the merged edge (a non-BLG-tree
representation). For this new geometry there are two options: 1. keep all original
vertices or 2. keep half of the original vertices (a er applying line simpli�cation).
Both solutions introduce (controlled) geometric redundancy, but will be easier
to use.

2.4.3 Using the structures

¿e structures are put to use by providing a spatial extent (for the viewport) and
an importance value (for the LoD). ¿e importance value can be derived from
a given extent: A smaller extent means more detail to show and �nally a lower
importance value for querying the data structures with (imagine a user zooming
in, more detail can be shown for all objects). Contrary, if a larger extent needs
to be shown, due to a user zooming out, a higher importance value needs to be
used for selecting less objects. ¿e mapping between importance and spatial
extent (map scale) is discussed in detail in § 5.1.

2.5 Progressive data transfer

One of the most important functionalities of a GIS is to view stored geographic
data. ¿us it is important that this interaction type is supported in an e�ective
way and as Shneiderman (1996) states: ‘there are many visual design guidelines,

48

chapter 2. research background

Table 2.4: The classic tGAP edge table with the example content (Note: a. the repeated versions
of edges, due to the left/right reference changes, b. The geometry of the edges is stored, but
this is again not shown)

edge_id imp_low imp_high left_face right_face start_node end_node

1 0 325 -1 6 8 9
2 0 395 3 -1 7 1
3 0 150 3 5 2 7
4 0 150 3 1 1 3
4 150 325 3 7 1 3
4 325 395 3 8 1 3
5 0 395 3 2 3 4
6 0 150 1 3 2 4
7 0 150 1 2 4 3
7 150 325 7 2 4 3
7 325 395 8 2 4 3
8 0 395 4 3 5 5
8 395 505 4 9 5 5
8 505 610 4 10 5 5
9 0 150 5 -1 6 7
10 0 150 5 1 2 6
11 0 150 6 1 8 9
11 150 325 6 7 8 9
12 0 150 -1 1 6 8
13 0 150 -1 1 9 1
13 150 325 -1 7 9 1
14 150 325 7 3 7 4
14 325 395 8 3 7 4
15 150 325 7 -1 8 7
16 325 395 -1 8 7 1
17 395 505 9 -1 1 1
17 505 610 10 -1 1 1
17 610 2735 11 -1 1 1
18 395 505 9 2 4 4

49

variable-scale geo-information

but the basic principle might be summarized as the Visual Information Seeking
Mantra: overview �rst, zoom and �lter, then details-on-demand’.

Timpf and Devogele (1997) make an inventory of what kind of new user
interface tools can be created in a multi-scale environment, which can help
realising this mantra in a geographic viewing setting. An advantage that the
MRDBs with a discrete number of scale points bring, is that users can view data
at multiple scales at the same time. However, in his thought-provoking keynote
held at AutoCarto 2006 Mackaness argues that we have been focusing too much
on mimicking the paper map making process, he suggests: ‘I think we have
built our mapping systems on sand – that sand is the paper map’ (Mackaness,
2006, p. 245) and also according to the research plan of NCGIA, ‘much of the
e�ort in computer-assisted cartography over the past quarter of a century has
been concerned with automating traditional cartographic representations and
techniques; there has been too little concern for cartographic methods that go
beyond what was possible on the static printed map’ (NCGIA, 1989, p. 130).
¿is serious claim is also true for the approach of the MRDBs (with multi-scale
datasets at �xed scale points). During interactive use, only abrupt changes can
be produced and therefore these solutions can not easily ful�ll the criterion of
‘details-on-demand’ in a smooth manner, because each scale interval requires
its own (independent) graphic representation to be transferred. Good examples
of progressive data transfer are raster images. When structured correctly these
images can be presented to a user relatively quickly (but in a coarse manner) and
then can gradually be re�ned as the user waits longer (see e. g. Rauschenbach
and Schumann, 1999, where a decomposition scheme for raster images based on
wavelets is proposed).

Midtbø and Nordvik (2007) present a user study, that exempli�es that users
better preserve their so-called mental map (i. e. the image they have in their
heads from the objects that are present in a space, cf. Misue et al., 1995), when a
map is changed in a continuous manner (as opposed to a step-wise manner). For
this, progressive transfer is a necessary pre-requisite to reduce waiting time in a
distributed environment (such as the Internet). To gain insights in which of these
two approaches is best, test persons were asked to localise a point on a digitalmap
a er both a step-wise as well as a continuous zoom operation, see Figure 2.19.
¿e results show that continuous zooming creates a better understanding of the
geographic space and thus is less confusing for the user.

VanKreveld (2001) andAi andLi (2009) also argue that especially for viewing
in a digital environment it would be bene�cial to have systems supporting multi-
scale access together with continuous changes (leading to smooth visualisations).

50

chapter 2. research background

(a) The point to localise. (b) Recorded locations after the continu-
ous, smooth zoom operations.

(c) Recorded locations after the step-wise
zoom operations.

Figure 2.19: In the experiment presented by Midtbø and Nordvik users were asked to localise a
point after a zoom in and out operation had been performed. In the experiment a zoom-in
action on the location of the point was shown, the location of the point was then revealed
to the user and �nally an automatic zoom-out operation was performed by the system. The
zoom actions were performed both in a smooth and a step-wise manner. The results show
that when a map is changed in a continuous manner, as opposed to changing in a step-wise
manner, users can localise the revealed point more accurately (they better preserve their
mental image of the map, taken fromMidtbø and Nordvik, 2007, p. 295 & 298).

For this to work it is necessary to see generalisation as a process that produces
continuous change instead of as one that produces abrupt changes (e. g. Danciger
et al., 2009). Based on the result of such a process progressive transfer for vector
data could be realised. In this respect, the intermediate map scales rather than
the prede�ned scale points in a MRDB, become more important. Recently, some
attempts have been made to develop solutions that go in this direction, however,
some of them are purely conceptual (e. g. Bertolotto and Egenhofer, 2001), and
some are only focusing on geometric descriptions of the objects where neither
the number of objects nor the type of objects is varied, only the number of
coordinates in the geometry, e. g. Zhou et al. (2004); Sester and Brenner (2004);

5 1

variable-scale geo-information

Yang et al. (2007). ¿is shows that progressive data transfer for vector data is
still in its infancy.

2.6 Starting points for data at variable scale

¿is chapter has dealt with the following research question:

1. What is the state-of-the-art in: 1. multi-scale data management and 2. gen-
eralisation of vector data?

¿e current state-of-the art of multi-scale data management approaches was
reviewed. To summarise the �ndings: MRDBs are the state-of-the art and store
data sets with �xed scale points. ¿at is mono-scale data sets are independently
stored for every speci�c map scale – even when links are used between objects,
geometrical attributes are independent for the di�erent scales. Commonly gener-
alisation algorithms are designed such that they can produce these independent
data sets.

A serious weakness with the independently stored layers of data in a MRDB
is that they produce abrupt changes during interactive use. A totally di�erent
approach of organising multi-scale data is using vario-scale data structures that
make it possible to perform integrated selections on spatial range and level of
detail components of geographic objects, alleviating these abrupt changes and
providing access to the objects at variable scale. For this to work it is necessary
to have a toolbox of generalisation algorithms that outputs the data at variable
scale.

All in all, we can de�ne the starting points for what we see as a vario-scale
geo-information environment; such an environment will be one that works
under these speci�c conditions:

1. Enables real time access,basedon spatial range selection, to geo-information
in a client-server set up in the form of vector data as vector data allows
interactivity and later binding of exact presentation at the client side;

2. Makes it possible to store, maintain and disseminate data at variable scale
— i. e. data sets are not only stored for pre-de�ned scale points, but can
provide levels of detail for a whole scale range, at variable scale;

3. Is stored with minimal (geometric) redundancy;

4. Allows progressive transfer and makes continuous zooming possible.

52

3FORMALISING VALID VARIO-SCALE DATA

•

As the previous chapter demonstrated starting points for variable-scale data, this
chapter �rst stresses that minimal redundancy also has to do with fundamental
choices: it discusses in § 3.1 why for tGAP no speci�c redundant model is created
for creating cartographic output, but that only one model is maintained – the
landscape model. ¿en in § 3.2 we formalise variable-scale data from a math-
ematical point of view and describe a conceptual model for data storage. ¿is
conceptual model paves the way for an implementation of valid variable-scale
data in data structures. Furthermore, to realise the conceptual model in practice,
there is a need to obtain a valid, single-scale input data set that will be used for
starting point to create content for the variable-scale data structures. ¿erefore,
this chapter also proposes a new approach to validate (and automatically repair)
2d input data at the largest available map scale, so that it is suitable as starting
point to create content for the variable-scale data structures (§ 3.3). ¿e �ndings
are summarised in § 3.4.

Own publications

¿is chapter is based on the following own publications:

• Ledoux, H. and Meijers, M. (2010). Validation of planar partitions using
constrained triangulations. In Proceedings of the 14th Joint International
Conference on ¿eory, Data Handling and Modelling in Geospatial Inform-
ation Science, pages 51–56, Hong Kong.

variable-scale geo-information

• Meijers, M. and van Oosterom, P. (2011). ¿e space-scale cube: An in-
tegrated model for 2D polygonal areas and scale. In 28th Urban Data
Management Symposium, volume 38 of International Archives of Photo-
grammetry, Remote Sensing and Spatial Information Sciences, pages 95–102.

3.1 A preference for minimal redundancy

In § 2.2.2 it was mentioned that the separation between Digital LandscapeModel
(DLM) andDigital CartographicModel (DCM) theoretically is considered as the
optimal way of maintaining data sets at multiple scales, but that data producers
in practice wrestle with the question what to store explicitly in order to e�ciently
maintain their geographic databases.¿e argumentwe build in this section is that
a vario-scale approach facilitatesmore e�cient data production andmaintenance,
because just a single source data set has to be maintained (in addition to the
bene�ts for end users, such as smooth interaction).

3.1.1 Four approaches to DLM-DCM

Geographic data producers are dealing with data capture, data management and
visualizations. For creating a digital geographic database (the DLM), objects will
be captured in the real world with certain rules applicable for the data capturing
process. Besides rules for geometry and topology, like minimum size, geometric
accuracy and connectivity of objects, these rules also include object classi�cation
and population of attributes carrying thematic semantics. From this database,
objects can be selected to produce digital maps. ¿e transformation of objects
from theDLM to a visual end-product is described in aDCM.¿eDCMcontains
the drawing rules and can be linked to a particular style sheet. To change the
looks of the map from for instance the Dutch topographic map into the British
or German map style would, in theory, only require a di�erent style sheet. In
practice graphic con�icts might still exist and will require corrective action. ¿is
action can include generalisation operations such as displacement, but is not
directly related to scale change. However, as this transformation process to avoid
graphical con�icts is not in all cases straightforward, data producers face the
problem of what to store and maintain, only the geographic objects or also the
map objects resulting from this transformation? To make the di�erent choices
clear, we evaluate the several alternatives that exist to apply the DLM-DCM
concept in a multi-scale topographic data environment.

54

chapter 3. formalising valid vario-scale data

1. traditional map approach. It is possible to only store the digital
map objects. ¿is is not an optimal solution in the sense that it mixes the repres-
entation of ‘real world’ objects with visualization details and makes it di�cult
to use the objects for geographic analysis. An important disadvantage is also
that because of the major (and also interactive) adjustments required to solve
cartographic con�icts it is hard to maintain datasets at di�erent scales in an integ-
rated manner. In summary, in a multi-scale environment this approach explicitly
stores the DCM at the �xed scales (and there is no DLM or it is somehow ‘lost’).
In practice, there are no explicit links between the corresponding objects in the
various DCM’s at relevant scales.

2. pure dlm/dcm approach. One can store the geographic objects per-
sistently (DLMs) and derive the map objects (DCMs) in an automated way when
needed. In this case, the geographic objects are thus not adapted at all for any
kind of visualization. Although a lot of research has been carried out, a fully
automated solution still has not been reached for such a setup. Operations that
are di�cult to manage in the transformation from geographic objects to map
objects are for example displacement and typi�cation. In the multi-scale en-
vironment this approach explicitly stores the various DLM at the �xed scales
and the DCM are to be dynamically derived at the corresponding scales. It is
attempted to explicitly link the corresponding objects between the various DLMs.
However, this is a non-trivial task with complicated correspondences (1-to-many,
many-to-many). In practice, it is o en omitted making it in turn more di�cult
to manage consistency.

3. pre-fabricated (double) dlm/dcm approach. Another option
is to store the geographic objects (DLMs) as well as the map objects (DCMs)
explicitly. Both models are thus instantiated and made persistent. ¿is allows for
fast access to both the geographic objects and the map objects, but comes with a
price of redundancy. In order to maintain consistency more easily, links can be
created between the counterpart instances in both DLM&DCM representations.
¿e creation of links and the maintenance of links will become a signi�cant task
itself. In the multi-scale environment this results in explicit storage of both
the DLM and DCM versions of objects at all relevant scales. In practice this
is (nearly) always without explicit links (neither between scales nor between
DLM-DCM corresponding objects).

55

variable-scale geo-information

4. improved dlm/dcm approach. ¿e last option is to store the geo-
graphic objects (DLMs) and to adapt them for a default visualization. ¿e map
objects (DCMs) are generated on-the-�y by applying relatively simple visual-
ization rules, i. e. an ‘average’ or typical style. ¿is approach di�ers from the
second solution in that non-straightforward visualization aspects, e. g. displace-
ments and typi�cation, change the geometry of geographic objects and results
of those operations are explicitly stored. ¿is approach has certain in�exibility
because it is pre-cooked and if a requested style is far from the ‘average’ style
visualization con�icts might still occur.¿is change of geographic objects should
however only take place within tolerances, speci�ed in the capturing rules with
respect to the desired quality of the dataset. Our motivation to allow this kind
of distortion is that other geometric distortions take place within smaller scale
datasets anyhow; e. g. simpli�cation, aggregation, or complete removal of objects.
An advantage of this approach is that it is easier to establish links between data
sets at di�erent scales which guarantees the consistency optimally. In a multi-
scale environment this approach results in explicit storage of the DLM (with
controlled DCM in�uence). ¿e complete DCMs are not explicitly stored but
relatively easy derived from corresponding scale DLM. ¿e four options are
schematised (in a single scale environment) in Figure 3.1 and classi�ed according
to the extent they explicitly represent (i. e. store) the DLM and DCM object
instances. It becomes clear that the four approaches are complete in the sense
that the �rst three approaches do perfectly �t in one of the four quadrants. ¿e
fourth quadrant is empty as it is impossible to have both the DLM and the DCM
implicit as there is no data at all. Our fourth option is a kind of balance between
options two and three: DLM explicit and a little bit of explicit DCM storage, but
with more DCM implicit via rules.

In a multi-scale database the choice how to deal with the geographic objects
andmapobjects ismore complicated compared to a single scale only. For example,
when the third method is adopted, both models have to be maintained. In a
multi-scale setup this doubles the need for maintenance of objects (for each
scale, the geographic and the map objects). As storage space tends to become
cheaper and cheaper this is not a major problem. However, there is also a trend
for data producers having to provide higher rates of updates: maintaining more
data means more work, so it would be bene�cial to minimize the amount of
redundancy.

Another problem is that of potential inconsistencies between the di�erent
datasets: ifmaintenance takes place in a not-fully-automated fashion, it is possible
for geographic and map objects to become out of sync with each other (and tell

56

chapter 3. formalising valid vario-scale data

DCM explicit DCM implicit

explicit
DLM

implicit
DLM 1. traditional

map approach

3. double DLM/
DCM approach

2. pure DLM/DCM
approach

4. improved DLM/
DCM approach

Figure 3.1: Overview of the 4 di�erent DLM/DCM approaches

di�erent stories about the same reality). In amultiple representation environment
consistent updating can be easier via the use of explicit links (when present)
between corresponding objects. ¿e drawback is that the explicit links have to
be maintained as well during the updates.

All in all, the fourth solution we sketched above seems more appropriate
for a multi-scale database: Within the quality bounds required for a geographic
dataset, the geographic objects should be adapted to make a default visualization
easily possible. If a user requires higher accuracy (either geometric or thematic),
then the multi-scale setup allows selecting a more detailed and appropriate
representation for the application. ¿erefore to optimally streamline the process
of data production for both analysis and map making purposes, we propose to
maintain only one geometric model, which also includes a limited number of
modi�cations to apply visualization rules easier, and mention explicitly in data
speci�cations which modi�cations are allowed. Next, we take up the discussion
on managing data with variable-scale structures, as started in § 2.4.

3.1.2 Variable-scale: an extreme of multi-scale?

From a data producer’s perspective, the multi-scale setup of the fourth option
might still not be ideal. We can extend this line of reasoning for the collection
of mono-scale data stored in the database: If certain features are present at
multiple scales, then why store these representations redundantly? Variable-
scale data structures, having no �xed scale data organisation, while delivering

57

variable-scale geo-information

optimal data representations (e. g. for visualization) at any requested scale (within
the supported range of scales), have been proposed (van Oosterom, 1990; van
Oosterom and Schenkelaars, 1995; Vermeij, 2003; van Oosterom, 2005) and
tested (Meijers, 2006) to provide an answer to this redundancy problem. Two
advantages of variable-scale data structures are: 1. no, or at least very limited,
redundancy between scales and 2. also the possibility of ‘in-between scales’
representations, not only the �xed, stored representations. ¿is clearly brings
also bene�ts from the perspective of a user interacting with the digital data (as
demonstrated in § 2.5).

Although variable-scale structures might seem to be an optimal solution, it
still can be necessary to include a second representation for certain generalisation
events for which the representation in the structure (and/or selection at the
required scales) will become too complicated. A few examples: 1. it may be
required to store both a road area (at the large scales) and a road centerline (at
the smaller) scales and link these representations in the structure to the same real
world object, 2. certain generalisation operations require contextual information
and are relatively expensive to compute; in these cases it may be more e�ective to
store a second representation, such as a displaced house, and 3. certain types of
concepts occur not at the largest scale, but only at smaller scales (e. g. roundabout
composed by several road areas, or block of buildings composed by individual
houses and optionally gardens).

In current map products these decisions when to add extra representations
are ‘black-white’ and bound to the maintained scales: road areas are present
on 1:1 000 and road areas and roundabouts on 1:10 000, individual houses on
1:1 000, individual houses and building blocks on 1:10 000 and only building
blocks in urban areas on 1:50 000. ¿e classi�cation of objects changes in a
continuous way related to geographic scale, and thus there is no reason to take
only black-white decisions. It may be far more natural to gradually move from
individual houses to building blocks when moving from large to smaller map
scales (and thus being able to provide smooth zooming to end users).

It might still be needed to perform cartographic con�ict solving, and store
the result of such an operation. In this case, a multi-representation database
has representations at every scale, as long as an object (or its ‘successor’) exists,
causing signi�cant redundancy and possible causing inconsistency. ¿is is even
more true for the approach ‘explicit DLM and explicit DCM’ (option 3 in Fig-
ure 3.1). ¿e vario-scale approach is able to deliver these representations, but
without storing them redundantly at all the scales. In fact, the vario-scale ap-
proach minimizes redundancy between the DLM and DCM representations (as

58

chapter 3. formalising valid vario-scale data

in option 4 in Figure 3.1). ¿e vario-scale structure will also have to accomodate
multi-representation as there can be di�erent representations of the same object
(parts) as argued above; e. g. for larger scales a polygon representation and for
medium to smaller scales a polyline representation. However, the di�erence
is that the number of multiple-representations is minimised and does not de-
pend on a given number of �xed mono-scale datasets (i. e. scale points, § 2.3.2).
¿erefore inconsistency problems are avoided as much as possible. Moreover,
note that the tGAP vario-scale structure has explicit links between multiple-
representations; this in contrast to the current practice of most multi-scale and
multi-representation solutions. Once operational, the vario-scale approach facil-
itates most e�cient data production and maintenance, because of the fact that
just a single source data set is maintained (and this serves both DLM and DCM
at all required scales).

3.2 Formalisation of variable-scale partitions

¿is section introduces the concept of a space-scale partition, which we term the
space-scale cube (analogous with the space-time cube proposed by Hägerstrand,
1970). Map generalisation of 2d polygonal regions is seen as extrusion into the
third dimension (similar to Vermeij, 2003, where this idea was introduced �rst;
cf. § 2.4). We formalise what we consider valid data for this cube. To obtain input
for a valid 3d space-scale cube (ssc), we �rst give a formal description of data for
a valid 2d planar partition. It is not the intent to rede�ne the common notion of
what is a valid polygon (cf. van Oosterom et al., 2003), but to give a formal basis
for input data (planar partition) on which we can run a generalisation process
for deriving a valid ssc (and later on, in § 3.2.2, the formal description will be
extended for the 3d ssc).

¿e space-scale cube permits us to obtain a conceptual 3d model, where
both the dimensions of 2d space and 1d scale (or level of detail) are integrated.
From the 3d cube it is possible to extract a consistent 2d map at variable scale
(as the cube is one integrated model of space and scale any derived slice from
the cube must again be a valid 2d planar partition). Based on the formalisation,
we can express what is valid data to be stored in vario-scale data structures.

¿e cube encodes both a description of space at variable map scale as well as
the generalisation process (transitions in the scale dimension). ¿e focus is on
maps of polygonal regions in planar partitions, because for a lot of applications
polygons are a useful building block for modelling, amongst others, administrat-

59

variable-scale geo-information

ive units, land use maps, land cover maps, soil maps, topographic maps, zoning
plans, etcetera.

3.2.1 A valid 2d partition

In the formal description that now follows, we use notions from set theory and
borrow ideas from the formalisation approach that Erwig and Schneider (1997)
describe. Keep in mind that here we aim at a formal and reasonably abstract
model, but that this model later will have to be translated in data structures in a
computer; an implementation of those data structures are not the main purpose
now, but sometimes we will look forward and act if we were already targeting an
implementation of the ssc.

spatial building blocks. We de�ne primitives from which we build a
2d planar partition and a 3d ssc. For the de�nitions and axioms holds that we
only consider cases where the dimension k at maximum is 3 (as we deal with 2d
maps and 1d scale).

De�nition 1. Given a k-dimensional Euclidean space Rk , called X.

De�nition 2. In X, we distinguish k + 1 distinct types of primitives.

De�nition 3. We name a i-dimensional primitive pi , where i is: 0 a node (p0), 1
a edge (p1), 2 a face (p2) and 3 a volume (p3).

De�nition 4. ¿e primitives pi are non-empty subsets of points of M i , that is
pi ⊂ M i . Here M i is a supporting subspace of dimension i with M i ⊂ X and
where for the dimension i holds: 0 ≤ i ≤ k. Primitives pi are connected and
open in M i (or relatively open in X). Open means that for any given point x in a
primitive pi , there exists a real number є > 0, such that, given any other point y in
pi , which has an Euclidean distance smaller than є to x, y also belongs to p (the є
distance de�nes an open ball with in�nitesimal small radius). Connected means
that for every pair of points x , y ∈ pi holds that there is always a path within the
interior of pi that connects the two points.

What needs to be true for all primitivesP in X (note thatP is used to name
the set with all primitives p that cover X):

Axiom 1. X is not empty; X ≠ ∅.

Axiom 2. Every primitive p is part of X; ∀p ∈ P ∶ p ≠ ∅ ∧X ∩ p = p.

60

chapter 3. formalising valid vario-scale data

Axiom 3. All primitives are pairwise disjoint, i. e. no points are shared between
primitives; ∀i , j ∈ P, i ≠ j ∶ i ∩ j = ∅.

Axiom 4. ¿e union of all primitives P totally covers X; ⋃
p∈P

p = X.

Based on de�nitions and axioms, what also has to be true for primitives is
that:

¿eorem 3.2.1. ¿ere is at least one k-dimensional primitive p in X.

Proof. X is totally covered (Axiom 4) and X ≠ ∅ (Axiom 1) and for implementa-
tion �nite primitives are used⇒ ∃pk ∈ X

Remember that k is the highest dimension, that is, the dimension of the
embedding space X. In theory it is possible to cover X with an in�nitely re�ned
space �lling curve (but we are targeting a �nite implementation, so this here is
not relevant).

map objects and labels. To represent real world objects, we now intro-
duce map objects that we term zones. We de�ne the names of the i-dimensional
zones as follows.

De�nition 5. We term a i-dimensional zone ω where i = 0 a vertex (ω0), i = 1 a
polyline (ω1), i = 2 a polygon (ω2) and i = 3 a polyhedron (ω3).

To discriminate a zone from all other zones, we introduce the concept of
labelling zones. A label is meant for giving a proper identity to the zones, i. e. a
label is a globally unique identi�er.

Axiom 5. All zones have a globally unique label λ.

Furthermore, we require that zones form a fully bounded and connected
entity:

De�nition 6. All zones are closed and connected.

Apart from all real world objects that are mapped, we also have a zone that
represents the unmapped domain, a zone that represents the space outside the
mapped domain:

De�nition 7. A zone with label⊥ represents the space ‘outside’ themapped domain.

61

variable-scale geo-information

Note that the ‘outside’ zone is allowed to have multiple parts: exactly one
part that is not completely bounded (in the direction of in�nity) and optionally
other parts that are completely bounded (e. g. this is the case with exclaves of the
‘outside’ zone).

To represent a zone in X, we associate the zones with the primitives in X:

Axiom 6. A zone ω is formed by the union of its associated primitives. ¿ese
primitives have the same and lower dimensions as ωi . A i-dimensional zone ω is
formed by i ∪ i − 1 ∪ . . . ∪ 0-dimensional primitives.

To end up with valid zones, we label all primitivesP based on the labels that
the zones have:

Axiom 7. For a zone ω we require that there is exactly one primitive p with the
same label λ and same dimension as the zone.

And we require that a labeling procedure to give labels to the primitives in
X is carried out as follows:

Axiom 8. All primitives in X have to be labelled following this recipe:

1. All primitives start with an empty label set.

2. For every zone ωi , add its label λ to all associated primitives of dimension i.

3. Add to each remaining primitive p, that has a dimension i smaller than that
of its associated zone(s) and has not been labelled, the set of labels of the
points that are inside an epsilon disc є centered on the points of p.

A er labelling we can derive the interior, exterior and boundary primitives
of an i-dimensional zone ω (Figure 3.2 illustrates these concepts):

De�nition 8. Interior (ω○) of a zone: the associated i-dimensional primitive that
has a label set with exactly one label and which is equal to the label of the zone.

De�nition 9. Boundary (∂ω) of a zone: the set of < i-dimensional primitives that
have the label of the zone in its label set.

De�nition 10. Exterior (ω−) of a zone: all primitives in X not having the label of
the zone in their label set.

62

chapter 3. formalising valid vario-scale data

(a) Boundary, 0D
zone

(b) Interior, 0D zone (c) Exterior, 0D zone

(d) Boundary, 1D
zone

(e) Interior, 1D zone (f) Exterior, 1D zone

(g) Boundary, 2D
zone

(h) Interior, 2D zone (i) Exterior, 2D zone

Figure 3.2: Boundary, interior, exterior for 0D, 1D and 2D zones (intent illustrated in black/dark
grey). Note that a 0D zone does not have a boundary (by de�nition there will not be any
primitives with dimension <0).

However, we have not yet unambiguously labelled all boundary primitives.
For example, what is allowed by the set of axioms and de�nitions is loose-lying
segments inside a polygon, or spikes in the boundary of a polygon. Figure 3.3
illustrates two of those cases. To prevent the degenerate cases, we introduce an
additional axiom to restrict valid zones:

Axiom 9. For a space X where k = 2 the primitives P ∈ X have to be labelled as
follows:

63

variable-scale geo-information

{A}

{⊥}

{A,⊥}

{⊥}

(a) Spike in boundary

{B}

{B,⊥}
{B}

{⊥}

(b) Loose-lying segment in
interior

Figure 3.3: Degenerate cases will be prevented by correct labelling.

• p0: three or more labels

• p1: exactly two labels

• p2: exactly one label

It has been de�ned how a zone is represented and is composed by its associ-
ated, unambiguously labelled primitives. Loose boundary parts and spikes, such
as shown in Figure 3.3, are prevented, as those segments would only have one
distinct label and as these degeneracies do not add any extra information (e. g. it
is already known that that part of the space belongs the polygon) it is useful to
prevent these situations. As a �nal remark, note that this set of statements allows
holes to exist in polygonal regions and multi-part polygons are not allowed
(Axiom 7).

a valid 2d planar partition. For a valid 2d planar partition we will
not allow zones with lower dimension than k to exist, which means that when
k = 2 we only allow polygons.

Axiom 10. For X, we only allow k-dimensional zones.

We also state that zones are not allowed to overlap each other in their interior:

Axiom 11. Zones are only allowed to share associated primitives in their boundary
and not in their interior: ∀ω1,ω2 ∈ Ω,ω1 ≠ ω2 ∶ pk1 ∩ pk2 = ∅ with Ω the set of
all zones.

64

chapter 3. formalising valid vario-scale data

From the de�nitions and axioms, we can now derive that the interiors of
zones are unambiguously labelled.

¿eorem 3.2.2. ¿e interior of a zone, pk primitive, is labelled with exactly one
label.

Proof. Following from that primitives are not allowed to overlap (De�nition 3),
that for every zone there is a labelled primitive having the same dimension
(Axiom 7) and that there are no shared primitives between zones (Axiom 11)
follows that the interior of a zone has to be labelled with exactly one label.

targeting implementation. To make it easier to translate the abstract
model to a suitable data structure for a computer and to be able to de�ne incid-
ence and adjacency (see next subsection), in addition to Axiom 6 where we state
that a zone is a collection of primitives, we add:

Axiom 12. For every dimension i ∈ {0, . . . , k} there is at least one primitive
associated with zone ω.

¿is then translates nicely to data-structures, like DCEL, to encode the
incidence relationships of the boundaries (but where the interior point set is not
represented explicitly). From the topology point of view a closed ring of a single
island zone does not have a node (p0). From the implementation point of view it
is nice if every edge (p1) starts and ends at a node (two p0, possibly equal). We
will have to add nodes where previously this was not the case and it is necessary
to replace Axiom 9 (as such a node has just 2 labels and not 3 or more labels as
for topologically de�ned nodes):

Axiom 13. For a planar partition where k = 2, the primitives P ∈ X have to be
labelled as follows:

• p0: two or more labels (two labels only in case of a closed ring, otherwise
more than 2 labels)

• p1: exactly two labels

• p2: exactly one label

As last requirement, we will de�ne that subsets of points in an edge have to
be straight in geometrical sense (not curved).

De�nition 11. Connected subsets of points in an edge (p1) are on a straight line
(in 2d following the equation: ax + by + c = 0).

65

variable-scale geo-information

incidence and adjacency. From how the primitives are associated with
zones, we can obtain a Directed Acyclic Graph (DAG), termed the incidence
graph (Lévy andMallet, 1999). Figure 3.4c shows the incidence graph for the prim-
itives drawn in Figure 3.4b. ¿e highest dimensional primitives will form the top
nodes of this directed graph. Edges in the graph represent how a k-dimensional
zone is composed of primitives. Primitives having the same dimension are drawn
on the same level in the tree structure. Based on the drawing of the DAG, we can
de�ne incidence relationships of primitives and adjacency relationships of zones.
With respect to incidence, we can also de�ne the term degree of a primitive as
the number of incoming graph edges within the DAG.

(a) Planar partition of four
polygons

f1

f2

f3

f0 e1

e0 e2

e3 e4

e5
e6

e7

e8

n0

n1
n2

n3

n4
n5

(b) Associated primitives of four
2D zones (polygons).

f0

e0 e1 e3

f1

e2 e4

f2

e5 e6 e7

f3

e8

n0 n2 n1 n3 n5 n4

2-dim

1-dim

0-dim

(c) Incidence graph for the primitives representing the four polygons in (a) and the asso-
ciated primitives in (b). The 2 polygons for which their interior is represented by f0 and
f1 are 1-adjacent, as two paths exist that overlap, f0 , e1 , n0 and f1 , e1 , n0 (and the highest
dimensional primitive in the overlap is at the 1-dim level, therefore 1-adjacent).

Figure 3.4: Incidence and adjacency can be de�ned by drawing a graph of how the composing
primitives for zones are related (after Lévy and Mallet (1999)).

incidence Two primitives are said to be incident, when there exists a path
between two primitives in the DAG.

adjacency If two zones have paths in the incidence graph that partly overlap,
and the highest dimensional overlapping primitive is at level i, then the

66

chapter 3. formalising valid vario-scale data

two zones are said to be i-adjacent. Furthermore, these two zones will be
said to be strongly connected when i is exactly one dimension lower than
the zone, that is, i = k − 1.

3.2.2 From 2d space and 1d scale to 3d SSC

As was reviewed in § 2.2.1, map generalisation deals with resolution issues, be-
cause the amount of available space is more limited for portrayal of data with a
smaller map scale. Here we put forward how we see that the result of a general-
isation process of a 2d map can be represented by a description of 3d space and
what statements we need to add to the statements of § 3.2.1 to enforce a valid
partition of space in 3d.

generalisation operations. A generalisation process is o en seen as
a process, that for an input map outputs a completely new and independent
derived map with lower level of detail (cf. Mackaness et al., 2007). To make
such a generalised representation, we de�ne a set of generalisation operations to
derive a representation with less details than the input. For every generalisation
operation holds that both its input as well as its output has to be valid according
to the set of axioms for 2d partitions (i. e. correctly labelled, with no overlaps
between the interior of primitives). For the time being, we discriminate 3 types
of operations: merge, split and simpli�cation of boundaries.

merge Replace the label of a polygonal zone with the label of one other poly-
gonal region that is one of its direct neighbours.¿en relabel all primitives,
that are not correctly labelled any more (e. g. boundary between the two
input polygons).

split Divide a polygonal zone over two or more of its direct neighbours (§ 4.3
gives an example of an algorithm for this operation). Relabel primitives
that are not correctly labelled any more (e. g. boundary between the two
input polygons), introduce new primitives as new boundaries between
the direct neighbours and label the primitives with the label of the correct
neighbour. A split operation is useful in the case of linear features that are
represented at large scale by areas (e. g. re-assign di�erent parts of a road
or water zone to adjacent neighbours, instead of to one neighbour only,
which would have been the case when applying a merge operation).

67

variable-scale geo-information

simplification (of boundaries) Make the geometrical shape of a bound-
ary primitive simpler (i. e. less points in the point set). Simplifying the
shape has to be carefully performed, without introducing any invalidly
labelled primitives, cf. § 4.2.

a step-wise sequence of generalisation operations. Research
into multi-representation databases has changed the notion that map general-
isation produces independent maps at di�erent scales. With derived and stored
links between the objects with di�erent levels of detail the maps are not com-
pletely independent. ¿is notion of linking multiple representations is taken a
step further by variable-scale data structures by the introduction of a step-wise
generalisation process,where amerge operation is iteratively applied and a binary
tree structure stores the result of those generalisation operations, cf. § 2.3.2 and
§ 2.4. Storing the sequence of generalisation steps leads to variable-scale data: at
every step a progressive reduction of the number of objects to be displayed on
the map takes place.

Figures 3.5a to 3.5d show a sequence of generalisation operations. First, a
road object is split over its 3 neighbours, then the forest area is merged into
neighbouring farmland and �nally the boundary between farmland and water
area is simpli�ed. Note that the simpli�cation could have taken place as a post-
processing of either the merge or split operation, but for clarity this operation is
applied on its own. To cope with the results of the split operation we modify the
original binary tree structure into a Directed Acyclic Graph (DAG) structure for
storing the result. Figure 3.5e illustrates the resulting DAG.

the ssc as resulting 3d planar partition. We realised that we
conceptually can ‘stack’ all the derived partitions with their primitives on top of
each other in a 3d space. We can say that this stacking takes place in an extra 1d
dimension, orthogonal to the 2d space, i. e. this 1d level-of-detail-dimension
describes how 2d map content is reduced, by storing the result of a generalisation
process step-by-step. ¿is generalisation process then can be seen as extrusion
into the scale dimension: via extrusion the 2d zones in the partition become
3d zones (prisms) living in 3d space. Figure 3.5f gives an illustration of the 3d
resulting zones. We can fully describe the resulting ssc with a 3d geometrical
approach (where dimension k will become 3) and therefore it is necessary to now
replace Axiom 13 for how we label (as this is the only Axiom that is dependent
on k):

68

chapter 3. formalising valid vario-scale data

Axiom 14. For a planar partition where k = 3, the primitives P ∈ X have to be
labeled as follows:

• p0: two or more labels

• p1: two or more labels

• p2: exactly two labels

• p3: exactly one label

Note that normally in a purely 3d topological setting an edge (p1) should
have three or more labels (and a node four or more). In our case, this is two or
more, because we want to preserve the shape of the cube both at the boundary
of the domain (e. g. corner point of the cube) or at corners of holes (modelled as
island shells), extending the reasoning for 2d as mentioned before Axiom 13, p.
65.

Furthermore, in our implementation setting, the labelling is based on the
fact that we also want faces in the resulting ssc to be �at (similar to straight
subsets in the 2d case):

De�nition 12. Points in a face (p2) are planar (in 3d following the equation:
ax + by + cz + d = 0).

incidence and adjacency revisited. ¿e de�nitions and axioms de-
scribe what we term a valid space-scale cube in 3d. ¿is cube captures the result
of the generalisation process, but from this cube we can also determine what gen-
eralisation operations were applied. ¿e split, merge and simplify generalisation
operations introduce horizontal and vertical polygons (orthogonal to the space
dimension) in the space-scale cube: Extruded boundaries between polygons in
2d (line segments) become vertical (planar) polygons in 3d. As the polyhedrons
will have to have a boundary, a ‘roof ’ primitive has to be put on top of a volume –
these polygons de�ne the end of the scale range for a polyhedron and will be
parallel with the bottom plane of the space-scale cube (see Figure 3.5f). Note
that for a single zone, there will be one polyhedron; e. g. the water zone extends
from top to bottom in the ssc of Figure 3.5f, but for orientation purpose some
non-existing interior horizontal faces are depicted.

¿ese parallel polygons de�ne that two volumes are incident with each other
in the scale dimension. ¿is means that the top-most volume is the result of

69

variable-scale geo-information

farmland

road

water

forest

(a) Original map

farmland’

water’

forest’

(b) Result of split

farmland”

water’

(c) Result of merge

farmland”’

water”

(d) Result of simplify

water”

forest’ water’farmland’

forestfarmland waterroad

farmland”

farmland”’

(e) Generalisation operations applied, describing the
lineage of polygons on every map

(a)

(b)

(c)

(d)

(f) Space-Scale Cube (ssc). Letters
at the right indicate the position of
the maps from 3.5a – 3.5d.

Figure 3.5: Illustration of generalisation process and the resulting ssc.

applying a generalisation operation to the other, lower volume. ¿us the incid-
ence relationship via horizontal polygons records what generalisation operations
were applied, i. e. this relationship captures the generalisation process. Based on
the incidence relationships duality of the volumes can be de�ned. In the vertical
direction, the scale dimension, the duality really re�ects the generalisation pro-
cess (‘scale neighbours’), while horizontally ‘normal’ space neighbours can be
obtained.

3.2.3 Obtaining valid 2d maps from a SSC

¿e axioms we have given in § 3.2.1 and 3.2.2 de�ne what we consider a valid 3d
space-scale cube. We described the generalisation process as extrusion of a 2d
planar partition into a third dimension (the level-of-detail-dimension) leading
to a 3d partition of space. Now we want the inverse of this process: deriving a 2d
map from the 3d partition. Obtaining this map means to derive a cross-section

70

chapter 3. formalising valid vario-scale data

of the 3d cube that is parallel with the bottom plane of the space-scale cube
(Figure 3.6a illustrates taking such a slice).

¿eorem 3.2.3. A derived 2d cross-section from a ssc will conform to the axioms
for a valid 2d map.

¿e proof for horizontal slices is straightforward:

Proof. At the bottom of the cube (�nest detail, largest scale) the input was already
a valid planar partition, every generalisation operation makes sure that the next
representation is again a valid planar partition, and in between only simple
extrusion in the scale dimension takes place and then slicing is equal to the
planar partition just below the slice plane.

When the cross-section is exactly co-planar with horizontal primitives in the
cube, it will be important to be careful when ‘slicing’ horizontally through the
cube at a speci�c scale. ¿en the question arises, which of the 2 labels to display
in the 2d map. ¿e label to be shown would be the label of the top-most volume
(as this then generates a consistent set of 2d maps, i. e. also at the bottom plane
of the cube data will be shown).

(a) Normal cross-section, parallel to bottom
of cube.

(b) Set of cross-sections (moving cross-
section up is less detailed data, moving
downmeans more details): replaying steps
of the generalisation process.

Figure 3.6: Possible cross-sections.

Figure 3.6b shows another use of the cube: by obtaining a sequence of cross-
sections – by moving the plane that de�nes a cross-section up or down in the
cube – it is possible to replay the steps of the generalisation process and thus
show how the map changes in the scale dimension. ¿is can be bene�cial for

7 1

variable-scale geo-information

progressive data transfer or smooth display purposes. To e�ciently encode
di�erences between two cross-sections might however need di�erent techniques,
as data between the �rst and second cross-section will be mostly similar (this
will be investigated in-depth in § 5.3).

3.3 Validation (and repair) of a 2d input partition

¿is section discusses how to validate an input planar partition (i. e. make a
data set follow the rules given in § 3.2.1 and 3.2.2, so that it is suitable to process
with an automated generalisation process to �ll the tGAP data structures) and
shows that an extension of the approach can be used to automatically repair
the data set without manual intervention (see Arroyo Ohori, 2010; Ledoux and
Arroyo Ohori, 2011).

Figure 3.7: Part of the CORINE 2000 dataset for a part of the Netherlands.

As formalised in § 3.2, Figure 3.7 shows that a planar partition is a full tessel-
lation of the plane into non-overlapping zones, which are uniquely labelled. ¿e
spatial extent of the mapped domain is thus partitioned into polygons and every
location must be covered by one and only one polygon (for certain applications
even gaps are not allowed).

¿e partitions are o en represented and stored in a computer as a set of indi-
vidual polygons to which one ormore attributes are attached, and the topological
relationships between polygons are not stored (i. e. the object-�rst approach is
followed, § 2.1.1). ¿is preferred method of storage follows the Simple Features
paradigm, which is an international standard (Herring, 2001, 2006); most data-
bases supporting geometry types (e. g. PostGIS) are based on this standard. If a
planar partition is modelled via the object-�rst approach (as a set of individual

72

chapter 3. formalising valid vario-scale data

polygons), then in practice errors, mistakes and inconsistencies will o en be
introduced when the planar partition is constructed, updated or exchanged. ¿e
inconsistencies most likely to occur are: 1. overlapping polygons (e. g. slivers)
and 2. gaps between polygons (either in such a way that neighbouring polygons
of the gap still touch or that polygons are not connected to the others at all).
To validate a partition (and be able to automatically repair it), it is necessary to
make a conversion to a model that follows the space-�rst approach.

Di�erent solutions currently exist, which are based on the construction of
the planar graph of the polygons and on the use of geometrical and topological
validation rules. ¿e solution we propose, i. e. using a constrained triangulation
as a supporting structure for validation, is described in § 3.3.1 and has in our
opinion several advantages over existing methods. We report in § 3.3.2 on our
implementation of the algorithm and on the experiments we have performed.
Finally, we discuss the advantages of our method in § 3.3.3.

3.3.1 Validation with a constrained triangulation

Our approach to validation of planar partitions uses a constrained triangulation
(CT) as a supporting structure because CTs are by de�nition planar partitions
(cf. Bern and Eppstein, 1992). ¿e work�ow of our approach is as follows:

1. the CT of the input segments forming the polygons is constructed;

2. each triangle in the CT is �agged with the globally unique identi�er (ID)
of the polygon inside which it is located;

3. problems are detected by identifying triangles having no or multiple IDs,
and by verifying the connectivity between triangles.

¿e �agging and the veri�cation of the connectivity of the input polygons is
performed by using graph-based algorithms on the dual graph of the CT.

constrained triangulation. A triangulation decomposes an area into
triangles that are non-overlapping. As shown in Figure 3.8a and 3.8b, given a
set S of points in the plane, a triangulation of S will decompose its convex hull,
denoted conv(S). It is also possible to decompose the convex hull of a set T where
points and straight-line segments are present, with a constrained triangulation
(CT). In CT(T) every input segment of T appears as an edge in the triangulation
(see Figure 3.8c-3.8d).

73

variable-scale geo-information

(a) A set S of points in the plane. (b) A triangulation of S; the union of all the
triangles forms conv(S).

(c) The set S with 3 constrained segments. (d) The constrained triangulation of the set
of points and segments. The dashed lines are
the edges of the triangulation of S that are
removed since they are not conform to the
input segments.

Figure 3.8: Example of a constrained triangulation (CT)

If T contains segments forming a loop (which de�nes a polygon), it permits
us to triangulate the interior of this loop (i. e. a triangulation of the polygon). It
is known that any polygon (also with holes) can be triangulated without adding
extra vertices (de Berg et al., 2000; Shewchuk, 1997). Figure 3.9 shows an example.

In our approach, the triangulation is performed by constructing a CT of all
the segments representing the boundaries (outer + inner) of each polygon. If the
set of input polygons forms a planar partition, then each segment will be inserted
twice, except those forming the outer boundary of the set of input polygons. ¿is
is usually not a problem for triangulation libraries because they ignore points
and segments exactly at the same location (as is the case with the solution we
use, see § 3.3.2).

74

chapter 3. formalising valid vario-scale data

(a) A polygon with 4 holes. (b) The constrained triangulation
of the segments of this polygon.

Figure 3.9: A polygon and a possible triangulation. Observe that polygons in GIS can contain
holes (many for certain applications) and that one hole touches the outer boundary of the
polygon.

flagging triangles. Flagging triangles means assigning the ID of each
polygon to the triangles inside that polygon (the triangles that decompose the
polygon). To assign this ID, we �rst compute one point inside each polygon.
¿is point is what we subsequently call the ‘centroid’ – observe here that this
cannot be always the centre of gravity of the polygon as this could be outside
the polygon. Our algorithm therefore �nds a location inside the polygon and
makes sure that this location is not inside one of the holes of the polygon. ¿is is
performed by shooting a virtual ray half way through the polygon – which parts
of the ray are inside can be derived by counting the number of intersections of
the ray with the segments that form the boundary of the polygon and taking
care of rings of the polygon that can touch in one point. ¿e mid point of the
largest part of the ray determined to be inside the polygon can now be used as
the point on surface (‘centroid’). ¿en for each centroid c we identify the triangle
that contains c, and we start a ‘walk’ on the dual graph of the triangulation, as
shown in Figure 3.10.

¿e walk is a depth-�rst search (DFS) on the dual graph, and observe that
constrained edges in the triangulation will act as blockers for the walk. Observe
also that islands are not a problem (see Figure 3.12c).

big triangle. To appropriately �ag all the triangles of the CT (those inside
the convex hull of the input points/segments but not inside an input polygon)
we exploit one particularity of libraries to compute triangulation: the so-called

75

variable-scale geo-information

Figure 3.10: One polygon (thick lines) with its triangulation (normal black lines). The dual graph
of the triangulation is drawnwith dashed lines, and the �lled black point is the point on surface
(‘centroid’) of the polygon from where the walk starts.

‘big triangle’, which is also being called the ‘far-away point’ (Liu and Snoeyink,
2005). Many implementations indeed assume that the set S of points is entirely
contained in a big triangle τbig several times larger than the range of S. Figure 3.11
illustrates the idea.

big triangle (τbi g)

Figure 3.11: The 4 input polygons are triangulated and are inside the big triangle. A walk from
one location outside the 4 polygons would appropriately �ag as ‘universe’ the 4 triangles
inside the convex hull of the 4 polygons.

With this technique the construction of the CT is always initialised by �rst
constructing τbig , and then the points/segments are inserted. Doing this has
many advantages, and is being used by several implementations (Facello, 1995;
Mücke, 1998; Boissonnat et al., 2002). To assign an ID ‘universe’ to the triangles,
we simply start at one triangle incident to one vertex of τbig and perform the
same walk as for the other polygons.

identifying problems. If the set of input polygons forms a planar par-
tition then all the triangles will be �agged with one and only one ID. Notice

76

chapter 3. formalising valid vario-scale data

that because of the big triangle, triangles outside the spatial extent of the planar
partitions will be �agged as ‘universe’. Notice also that if a polygon contains a
hole, then for the planar partition to be valid this hole must be �lled completely
by another polygon (an island).

If there are gaps and/or overlaps in the input planar partition then some
triangles will not be �agged. We can detect these easily by verifying the IDs.
Figure 3.12 illustrates one input planar partition that contains 6 polygons; notice
that one has an island and that some polygons overlap and that there are also gaps.
¿e walk starting from each centroid is shown in Figure 3.12c, and the resulting
�agging of triangles is shown in Figure 3.12d (the grey shadings represent the
IDs). When 2 or more polygons overlap then depending on the location of the
centroids some triangles will not be �agged (because the constrained edges block
the walks) and some triangles can have more than one ID.

Another problem that could arise is when the union of the input polygons
forms more than one polygon (i. e. the mapped domain is then disconnected).
Figure 3.13 shows one example with 5 input polygons: 4 of them form a valid
planar partition but one is not connected to the others (thus the 5 polygons do
not form a planar partition, strictly speaking). We solve that problem by starting
a walk from any centroid, but that walk is not stopped by the constrained, only by
the triangles �agged as ‘universe’. ¿e connectivity problem simply boils down
to ensuring that all the triangles �agged with an ID other than ‘universe’ can be
reached.

3.3.2 Implementation and experiments

We implemented the described algorithm.¿e implementation reads as input
either a shape�le (ESRI, 1998) or geometries in well-known text representation
(Herring, 2006), and tells the user what problems are present in the input poly-
gons (if any).

For the constrained triangulation, we rely entirely on the implementation of
CGAL (to be more precise, we used the Python language bindings of CGAL1).
Each segment of the input polygons is inserted incrementally in the CT. When
2 segments are identical, the second one is simply ignored. Since the input is
formed of individual polygons, it is faster (and simpler) to rely on the spatial
indexing scheme of CGAL to detect the duplicate edges than to pre-process
them with an auxiliary data structure. We also rely on CGAL for ensuring that

1http://cgal-python.gforge.inria.fr

77

http://cgal-python.gforge.inria.fr

variable-scale geo-information

(a) (b)

(c) (d)

Figure 3.12: (a) Six polygons form the input planar partition. (b) The constrained triangulation
of the boundaries of the input polygons. (c) The dual graph of the triangles is drawn with
dashed lines; the dark points are the points fromwhich thewalk in each polygon starts. (d) The
result contains triangles that are not �agged (white triangles). The white triangle on the right
is not a problem since it is a ‘universe’ triangle.

78

chapter 3. formalising valid vario-scale data

Figure 3.13: Five polygons, with one unconnected to the other ones. The dual graph for the
�agged triangles is shown in with dashed lines.

a valid triangulation is formed when 2 or more polygons overlap. As shown in
Figure 3.14, if 2 polygons overlap their segments will intersect (which would not
be a valid planar graph). However, CGAL has built-in operations to calculate
the intersection of 2 segments and to create new sub-segments.

We have tested our implementation with di�erent parts of the corine2000
dataset. ¿e dataset is divided into tiles and each tile can be downloaded as a
shape�le. Although the speci�cations of corine2000 state that the polygons
form a planar partition and that validation rules are used, we found several errors.
One example that we found is a case where a polygon had been obviously ‘shi ed’
manually by a user (see Figure 3.15).

(a) Two overlapping polygons. (b) Constrained triangulation of
the polygons.

Figure 3.14: Ensuring a valid triangulation means creating new sub-segments in case of inter-
secting segments.

79

variable-scale geo-information

Figure 3.15: A polygon manually shifted (from CORINE2000 tile E41 N27) – it is overlapping with
neighbours on one side and gaps are present on the opposite side (the size of the width of
these gaps and overlaps is in the order of approximately 10 to 15 centimeter).

3.3.3 Advantages (and automated repair)

¿e problem of validating a planar partition modelled via the object-�rst ap-
proach is theoretically a simple one: construct the planar graph of the input, and
de�ne a set of geometric and topological validation rules. Unfortunately, the
implementation of a planar graph construction algorithm and of the validation
rules is far from being trivial (especially when the input polygons contain holes)
plus no tools exist that automatically try to repair found errors. ¿is section has
presented a new algorithm and a successful implementation of it. ¿e approach
solves most of the current problems and has in our opinion several advantages:

1. ¿e algorithm is simple and can be implemented easily over a CT library
such as CGAL. ¿e only things needed are: 1. to be able to add attributes
to triangles (for the IDs); 2. having access to the internal data structure
of the triangulation. All the validation rules simply boil down to �agging
triangles and graph-based searches.

80

chapter 3. formalising valid vario-scale data

2. ¿e holes/islands inside polygons are easily handled by the CT. No addi-
tional data structure or special mechanisms are necessary, as is the case
with planar graph approaches.

3. ¿e implementation can be built over well-known and optimised CT
implementations, which are fast and can handle millions of objects. It is
known that triangulations of several millions points can be managed in
main memory (Amenta et al., 2003; Blandford et al., 2005).

Next to these 3 advantages,ArroyoOhori (2010) andLedoux andArroyoOhori
(2011) show as an extension to this work that if problems are present in the input,
the CT can also be used to automatically repair the planar partition: di�erent
repair operations can be de�ned to successfully �x gaps and overlaps, which
simply involves re-�agging the IDs of problematic triangles (based on some
user-de�ned rules). By ‘following’ the boundaries between zones with di�erent
IDs in the triangulation, it is straightforward to reconstruct the polygons and
give them back to a user following the object-�rst approach (e. g. simple features),
or to obtain a description encoded in a graph based data structure (such as the
node-edge-face structure).

3.4 Closing remarks

In this chapter we have studied the following research questions:

2. How can we formally describe what is variable-scale geo-information?

3. How can we create valid 2d input data as much automated as possible?

For the formal description we have introduced in § 3.2 the concept of a
space-scale partition, termed the space-scale cube (ssc), for which minimal
redundancy and consistency are starting points (§ 3.1). We have taken a view of
‘map generalisation is extrusion of 2d data into a third, orthogonal dimension’.
With an axiomatic approach we have formalised the validity of the partition of
space in three dimensions (2d space plus 1d scale). Insights were provided into
how to:

1. obtain initial valid data to create the cube representation (by means of a
constrained triangulation, cf. § 3.3);

81

variable-scale geo-information

2. perform a step-wise generalisation process extruding features into the
scale dimension (leading to non-overlapping prism-shaped vario-scale
objects);

3. get a valid 2d polygonal map at variable scale from the cube.

¿e space-scale cube acts as a conceptual and formal framework, guarantee-
ing valid data at any level of detail present in the cube. As the 3d representations
are non-overlapping inconsistencies in the derived 2d maps are also prevented.
¿e space-scale cube thus provides provable consistent representations.

82

4IMPROVING VARIABLE-SCALE DATA STRUCTURES

•

To this chapter the generalisation algorithms to create vario-scale data and the
storage of this data into the data structures are central. Firstly, it shows in § 4.1
that some changes in the design are necessary to obtain leaner structures in
terms of needed storage space, i. e. the theoretical worst case performance of the
structures is greatly improved for a merge operation.

Secondly, for the initial tGAP data structures it was proposed to use the BLG-
tree to represent edge geometry. No topological consistency guarantees were
given, as the BLG-tree is based on the standard Douglas Peucker algorithm and
this algorithm does not provide out-of-the-box topological guarantees.¿erefore,
§ 4.2 proposes an algorithm to simultaneously simplify a set of polylines to obtain
a topologically consistent result and keep the ‘weight’ of edge geometry under
control (in terms of the number of vertices to be stored in amerged and simpli�ed
edge version).

¿irdly, this chapter investigates possibilities to use a triangulation for split-
ting polygons (§ 4.3) – merging as the only generalisation operator is suboptimal
in some cases. Merging is an all or nothing decision (not really fair) and is less
suited for certain types of geographical feature classes, e. g. elongated features,
such as roads and canals.¿e devisedmethod allows to specify which neighbours
get a share of the object to be split, by introducing a weighted split, where also
�xed boundaries can be speci�ed, e. g. at the outer boundary of the domain. ¿e
chapter also proposes a way of evaluating the result of the split operation, to
obtain ameasure for evaluating the result.¿ismeasure can also be used nicely in
the implementation of the algorithm to steer the generalisation process (i. e. such
measures give a goal and are a good tool to formalise the generalisation problem).

variable-scale geo-information

¿emeasure reveals weaknesses of the possible solution space imposed by the
triangulation. Furthermore, the implications of the proposed algorithms for the
data structures (e. g. the theoretical worst case of number of edges to be stored
and a need for a separate face hierarchy table) are analysed.

Finally, § 4.4 provides an answer to the relevant subquestions and closes with
a summary of the results.

Own publications

¿is chapter is based on the following own publications:

• Meijers,M., van Oosterom, P., andQuak,W. (2009). A storage and transfer
e�cient data structure for variable scale vector data. In Sester,M., Bernard,
L., and Paelke, V., editors, Advances in GIScience, Lecture Notes in Geoin-
formation and Cartography, pages 345–367. Springer Berlin Heidelberg.

• Meijers, M. (2011b). Simultaneous & topologically-safe line simpli�cation
for a variable-scale planar partition. In Geertman, S., Reinhardt, W., and
Toppen, F., editors, Advancing Geoinformation Science for a Changing
World, Lecture Notes in Geoinformation and Cartography, pages 337–358.
Springer Berlin Heidelberg.

• Meijers, M., Savino, S., and van Oosterom, P. (2011). SplitArea: An al-
gorithm for splitting faces in the context of a hierarchical data structure.
Manuscript submitted for review to an academic journal.

4.1 Minimally redundant data storage

¿is section studies how minimal geometry redundancy in�uences the layout of
the tGAP data structures. It shows that some design changes are necessary to
obtain leaner structures in terms of needed storage space, and that the theoret-
ical worst case storage performance of the structures in this respect is greatly
improved. It provides empirical evidence that this indeed is the case for real
world data.

4.1.1 Design alternatives for a lean structure

Here we explore a number of di�erent alternatives for the design of a more data
storage and transfer e�cient version of the tGAP structure. In van Oosterom

84

chapter 4. improving variable-scale data structures

(2005) it wasmentioned that fewer columns in the table structure directly implies
less storage (a column less to store), but also indirectly saves additional storage
space. If scale changes are re�ected only in a column that is removed then there
is no need for a new row with the new value. ¿is was explained by showing how
the tGAP edge table which has four edge-to-edge references (wings) could be
reduced in size by removing two edge-to-edge references and only keeping 2 of
those references (edge_lr and edge_fl). In the example data sets this resulted in
fewer columns and fewer rows. In the implementation reported in (vanOosterom
et al., 2006) all edge-to-edge references were removed, but even in that case the
tGAP edge table for a realistic data set still did have up to 15 times more rows
than the original edge table (and the theoretic worst case is even O(n2) with n
the number of edges at the largest scale, cf. § 4.1.2 – a ‘row explosion of edges’).
¿is was mainly due to the changing references to the le and right faces a er
merging two neighbor faces (and not so much due to merging two existing edges
into one new edge or edge-edge references). One of the approaches followed was
splitting the edge table into two parts: one part with attributes that do not change
in the tGAP structure (e. g. geometry, and references to start node and end node)
and attributes that do change for di�erent scales/importance values (e. g. le and
right face references). However, for the changing part of the edges the number of
rows is still the same factor higher, only the �xed part is not repeated, saving some
storage space. So the aim is to further reduce the required storage, but without
loosing performance during the most relevant operations. ¿e most important
operation is spatial range selection and visualising a part of the data set at a
certain scale. Another important operation is selecting re�nement di�erences
between two scales (for a given part of the map) – realising progressive transfer,
see § 5.3.

¿e selection and visualisation of a part of the map at a certain scale, called
imp_sel, functions as follows: select all faces and edges that overlap the selection
rectangle and that have their imp_low to imp_high range containing imp_sel.
Note that these are e�cient queries (assuming proper 3d spatial clustering and
indexing) and this is all the interaction needed with the database server. ¿en at
the client side some topology processing is done: for every face the relevant edges
are selected (based on the le /right face references they contain) and rings are
created (and if needed inner-rings are properly included in the outer ring). Due
to the fact that the edges are selected based on their bbox overlap, not all edges
needed to complete the rings of faces partly included in the search rectangle may
be present. ¿is is solved by �rst clipping the selected edges against the selection
rectangle (and also splitting the selection rectangle at the intersection points

85

variable-scale geo-information

and creating temporary edges). Together, the clipped edges and the temporary
edges created from the selection rectangle are su�cient for forming closed loops,
which together cover the whole selected area. For sure every ring contains at least
a part of an original edge. ¿e le /right information of such an edge provides a
reference to the face which can then be colored according to its classi�cation.
¿is is the setting of the use of the tGAP structure and it is clear that the le and
right references are used (for classifying and colouring the faces) despite the fact
that it is storage expensive; the ‘row explosion of edges’. Now we are going to
discuss our three alternatives, no_lr, abox and use_tree, to make the structure
more storage e�cient.

no_lr. We started out with a very lean topology data structure: no le /right
references (as these causedmost of the storage overhead),only edge geometry and
a point inside a face region (’spaghetti with meatballs’-approach, cf. Figure 4.1);
Tables that are stored:

• Nodes (id, location, imp_low, imp_high)

• Edges (id, geometry, imp_low, imp_high)

• Faces (id, mbr, point_on_surface, imp_low, imp_high)

¿e rings are formedbasedon topology processingwithout le /right information.
¿ere are three steps: 1. clipping and creating rings, 2. assigning island rings to
their parent and 3. association of the right identi�er with the area (outer ring).
Step 1: First edges are clipped against the bounding box of the area that is retrieved
(as described for the standard approach above). ¿en the procedure starts with
an arbitrary edge and then starts forming rings by �nding all edges incident with
the end (node) coordinates (using the geometry of edges), sorting all incident
edges based on angle and then takes the �rst edge le (for counter-clockwise
orientation), this process is repeated until the start edge is reached again and
the ring is closed. ¿is procedure is then repeated with the next unused edge
and a new ring is formed. ¿e ring production terminates when all edges are
used twice (once in forward and once in backward direction). Step 2: some of
the rings do not have the expected counter-clockwise orientation, and these
correspond to islands in the face. ¿e parent outer-ring can be found by a point-
in-polygon test (use arbitrary point from inner-ring and �nding the smallest
outer ring that contains this point). Step 3: Now all faces with holes are created
and have to be assigned an identi�er. ¿is is done again with a point-in-polygon

86

chapter 4. improving variable-scale data structures

test (the point now being the point on surface from the Faces table). For both
step 2 and 3 the use of an R-tree (or other type of spatial index) will speed up the
point-in-polygon test, building the R-tree once takes O(n log n) time and then
the repeated searches take O(log n) time.

Figure 4.1: The ‘spaghetti with meatballs’ approach. The retrieved edges (overlapping with the
selection rectangle in dashed lines) are given with the thickest lines. After clipping, 3 rings are
formed, but the two rings at the top of the selection rectangle can not be labelled with the
correct face information as the point on surface for these faces is outside the formed ring.

¿is approach does work for having a complete extent of area partition within
the viewport while visualising. It does not work well when clipping the data:
areas can not be reconstructed any more, without having a complete set of edges.
An option is to clip the selected edges again (as described above). ¿e result is
that now areas can be created covering the selection rectangle. However, faces
crossing the boundary might have their point on surface outside the rectangle
(and therefore the area can not be identi�ed).¿eremight be some solution to go
back to the database server for each unidenti�ed area (e. g. by sending the union
of the boxes of the unidenti�ed edges to the server, at the server retrieve all faces
for which the minimum bounding box overlaps the union of these boxes, then
query for all edges inside the bounding boxes of these faces and form polygons
based on the retrieved edges and then communicate back which edges belong to
which polygon), but this is both a non-trivial query and time expensive.

abox. In an attempt to solve the identi�cation of the clipped areas, the adja-
cency box (van Oosterom and Vijlbrief, 1994), or abox for short, instead of the
bbox of edges was proposed for selection. ¿e abox of an edge is the union of

87

variable-scale geo-information

the bbox of the faces le and right of the edge, as illustrated in Figure 4.2. ¿e
result is that more edges are selected based on the abox, but for sure these are
enough to completely reconstruct all faces in the selected rectangle. However, in
order to have the aboxes available in the edge table they have to be maintained
(stored). Due to merging of faces in the tGAP structure also the aboxes have
to be updated. Actually this is then exactly the same increase in rows as what
would be obtained by maintaining the le and right face references. So, there is
no real storage reduction, rather the opposite as the abox will take more storage
space than the le and right reference. Another drawback is that in some cases
the selection based on the abox will retrieve a lot of additional data that is not
visible within the retrieved extent at all, e. g. long road or river polygons with a
large extent for which the abox does overlap with the selection rectangle, but no
part of the objects is inside the rectangle. ¿is then will have a negative impact
on performance (more data needs to be retrieved, as well as processed client
side). ¿e advantage of the abox solution is that it allows easier reconstruction
of faces at the client side resulting in full unclipped areas. In theory the explicit
storage of aboxes might be avoided by introducing them in a view which uses a
function to compute the abox. But again this is non-trivial without the le and
right references. ¿erefore we concluded that this was also not the ideal solution
and continued investigating another alternative with fewer drawbacks.

bbox e12 bbox f1
bbox f2abox e12

f1

f2

e12

Figure 4.2: Adjacency box (abox)

88

chapter 4. improving variable-scale data structures

use_tree. Looking at edges that are changed due to changes in the le
and right side information (and not in the edge geometry), we might consider
merging the rows related to the same edge in one row.¿is results in no change for
the geometry, start and end nodes, and id attributes. ¿e imp_low and imp_high
attributes contain the union of all imp ranges of the edge (which are per de�nition
adjacent ranges). ¿e next question is what to do with the di�erences in le
and right references? Store the le /right reference corresponding to the lowest
imp range or to the highest imp range? Take for example edge 4 in Table 2.4
(p. 49) and 4.1 (p. 92): storing the right face reference corresponding to the lowest
imp range [0 − 150) would imply a reference to face 1, and storing it related to
the highest imp range [325 − 395) would result in a reference to face 8. It was
decided to store the le and right face references related to the lowest imp-range,
for reasons that will be explained below when assigning the proper identity to
the created areas. Anyhow, just storing only rows for edges that are really new
(because these edges are merged) saves a lot of storage (rows) as will be explained
in § 4.1.2 (the number of rows is for sure always below a factor 2 as edges are
merged pairwise). ¿e le /right information and the tGAP face-tree can then
be exploited to properly identify the areas at a certain importance level (scale).
With this solution we have combined both the requirement to be storage e�cient
(as the factor 15 of records, as found in earlier tests with real world data, in the
edge table is solved), while still having an e�cient solution for the most relevant
operation (visualisation).

¿e identi�cation of areas in a given search rectangle of a speci�ed import-
ance level imp_sel proceeds as follows. All edges are retrieved a. based on a
selection rectangle and b. having an imp range that includes imp_sel. ¿e faces
are also selected based on these two criteria. ¿en the clipping is applied to the
edges and rings are created as described above and inner-rings are again assigned
to outer-rings. During the creation of rings the le /right information is used to
�nd the identity of the face. As the edges carry the le /right information of the
lowest imp-range (which may be below the requested imp_sel) not all edges dir-
ectly have a pointer to the correct face (that is at the requested imp_sel level). In
many cases however there will be at least one edge with the proper (with respect
to imp_sel) le /right information and this is then indeed the identity of the area.
In some cases this information is not present (1. when this edge is outside the
selection rectangle, 2. when an island is not yet merged with its parent). In these
cases the referred face (and the corresponding edge) with the highest imp_low
level is used as start in the tGAP face-tree and the tree is traversed upwards until

89

variable-scale geo-information

!f1

f2

f3

f1
!

e4

e7
e5

Figure 4.3: Rewriting of face-id’s with the use_tree variant. Edges are retrieved, at imp_sel =
330, based on their bounding box and the selection rectangle (dashed). After clipping, only
the thickest lines are used for forming rings. The most-left ring is formed based on edge 4,
7 and temporary edges stemming from the selection rectangle. Both edges 4 and 7 do not
point to the correct neighboring face and rewriting has to take place (face 1 is rewritten using
the tGAP face tree as face 8).

the face identi�er at the right imp level is found. Figure 4.3 show an example of
a case for which it is necessary to lookup the correct face identi�er.

¿e �nal layout of data structure is (again) based on topology and has the
following tables:

• Nodes (id, geometry, imp_low, imp_high)

• Edges (id, start_node, end_node, left_face_lowest_imp,
right_face_lowest_imp, geometry, imp_low, imp_high)

• Faces (id, feature_class, mbr, imp_low, imp_high, imp_own)

See Table 2.2, 2.3 (see p. 48) and 4.1 (p. 92) for the sample data set in Fig-
ure 2.18a (p. 46), the sample map, and Figure 4.4 (p. 91), a visual representation
of the tGAP face-tree. Note that already for this simple ‘toy’ example the number
of rows in the edge table was reduced from 29 to 18 (in § 4.1.3 real world data is
used).

¿e drawback of using the tGAP face-tree is that this tree is not present at the
client side (a er the two face and edge selection queries). An e�cient solution is
to send a third query to the server requesting the ‘rewriting’ of the face-id’s which

90

chapter 4. improving variable-scale data structures

5, 0-150 (750) 1, 0-150 (150)6, 0-325 (325)3, 0-395 (395)2, 0-505 (505)4, 0-610 (610)

7, 150-325 (900)

9, 395-505 (1620)

10, 505-610 (2125)

11, 610-2735 (2735)

-1

8, 325-395 (1225)

Figure 4.4: The tGAP face-tree, corresponding to the data set of Figure 2.18a, encoding how
area features are progressively merged.

correspond to a too low imp level and get back face-id’s that correspond with
imp_sel. An easier solution is not to draw these faces at all: the drawback is of
course that white spots will occur on the map (most o en near the boundaries of
the selection rectangle). A more di�cult solution could be to build the relevant
parts of the tGAP face tree gradually at client side, and when enough data has
been retrieved, colour the white spots.

4.1.2 ¿eoretical numbers for faces and edges

In the previous section we sketched a more optimal solution for storing data in
the edge table. Here, we continue our investigations by �nding the theoretical
upper bounds a er �lling the data structures for both the classic and the lean
variant. ¿ese bounds are expressed in numbers of edges (e) and faces1 (f)
present in the original dataset.

Lemma 4.1.1. ¿e number of total faces stored in the tGAP structure is, a er the
generalisation process, equal to:

2 ⋅ f − 1
1Numbers for faces here do not include the concept of a universal face

91

variable-scale geo-information

Table 4.1: The lean tGAP edge table with the example content (note the geometry/line is not
displayed but present in the structure)

edge_id imp_low imp_high lf_low_imp rf_low_imp start_node end_node

1 0 325 -1 6 8 9
2 0 395 3 -1 7 1
3 0 150 3 5 2 7
4 0 395 3 1 1 3
5 0 395 3 2 3 4
6 0 150 1 3 2 4
7 0 395 1 2 4 3
8 0 610 4 3 5 5
9 0 150 5 -1 6 7
10 0 150 5 1 2 6
11 0 325 6 1 8 9
12 0 150 -1 1 6 8
13 0 325 -1 1 9 1
14 150 395 7 3 7 4
15 150 325 7 -1 8 7
16 325 395 -1 8 7 1
17 395 2735 9 -1 1 1
18 395 505 9 2 4 4

Proof. ¿e generalisation process starts with f original faces. Merging can be
executed until we have only one face le . ¿is means we can merge u times, with
u = f − 1. Each time we merge two faces, we add 1 new face to f . In total we add
u times a face to f . ¿e total number of faces will thus be u + f , or, expressed
di�erently:

2 ⋅ f − 1

Lemma 4.1.2. ¿e total number of edges in the classic tGAP structure, that is,
�lled with the original method (generating all intermediate edge versions), is at
most:

f−1

∑
i=0

e − i

Proof. Faces are merged in f − 1 steps. Faces that are neighbors are adjacent in,
at least, one edge (due to the planar map criterion). With each merge step thus at
least one edge will disappear. ¿e worst case is that in every generalisation step

92

chapter 4. improving variable-scale data structures

all remaining edges will be duplicated due to new le /right references. ¿ese
observation lead to Lemma 4.1.2.

Corollary 4.1.3. ¿e total number of edges in the classic tGAP structure, that is,
�lled with the original method (generating all intermediate edge versions), can be
quadratic:

O(e2)

Proof. Assume a con�guration (similar to the one shown in Figure 4.5) with one
big face (described by one big edge) containing many small islands (small faces,
each one described by one edge). ¿en in the summation of Lemma 4.1.2 it is
clear that f = e and this results in a total of e ⋅ (e + 1)/2 = O(e2) edges.

Figure 4.5: A worst case initial con�guration

Our new, lean approach performs signi�cantly better in this respect:

Lemma 4.1.4. ¿e total number of edges stored in the tGAP structure, �lled with
the new ‘use_tree’ method, is dependent on the number of original edges and faces
and is at most:

2 ⋅ e − f

Proof. All original edges will be present once in the output. ¿e merging of
edges is what brings new edge versions.

Suppose this edge merging is performed with all start edges as input, as
follows: two edges will be merged at a time, until 1 edge is le . ¿e resultant of
this process is then one large polyline with self-intersections. ¿e total number
of edges in the output will then be at most two times the original number of
edges minus 1 (cf. Lemma 4.1.1).

However, in each generalisation step, to merge two faces, at least one edge
has to be removed, i. e. the number of edges to be removed is the number of
faces minus 1 (as that is the amount of merges that will take place). Taking both
steps into account, results in a number of edges that is equal to:

93

variable-scale geo-information

(2 ⋅ e − 1) − (f − 1) = 2 ⋅ e − f

¿is is a worst case estimate, as in eachmerge step more than one edge might
be removed.

4.1.3 Experiment and results

To judge whether our theoretical investigations described above would yield
valid results in practice, we implemented both variants (classic and lean) of �lling
the tGAP structures. Table 4.2 highlights the number of faces and edges for the
original data, the amount of data a er using the classic variant and for the lean
variant of �lling the structures.

Table 4.2: Number of faces and edges for the di�erent test data sets. Numbers are shown for
the original data, the data after using the classic variant of �lling (i. e. edge version duplication)
and for the lean variant (only each �rst edge version is stored). Both the Sample data set and
the Archipelago set with 2 500 islands were created arti�cially. The other data sets contain real
world data. The Buchholz data set contains land cover data. The Cadastral data set consists of
parcels and the Amsterdam data set contains topographical data.

data set original tGAP original tGAP tGAP
faces faces edges edges edges

classic lean

Arti�cial data
1. Sample 6 11 13 29 2.2× 18 1.4×
2. Islands 2 501 5 001 2 501 3 128 751 1251× 2 501 1.0×
Real world data
3. Buchholz 5 537 11 073 16 592 77 585 4.7× 26 787 1.6×
4. Parcels 50 238 100 475 178 815 2 663 338 15×* 264 950 1.5×
5. Amsterdam 173 187 346 373 426 917 3 544 232 8.3× 630 944 1.5×
* The factor 15 as mentioned at the start of § 4.1.1.

To verify the lemma’s from § 4.1.2, we started by creating two arti�cial test
data sets (1 and 2). It is clear that the number of faces follows Lemma 4.1.1 in
all cases, independently from which �lling variant is used. Further, it is also
clear that our concerns with respect to the duplication of edge rows are valid: To
see whether the upper bound for the number of edges could exist in practice,
we created a data set (set 2) consisting of one polygon containing 2 500 islands
polygons. Each polygon was described with one line, resulting in 2 501 faces and
2 501 edges. In practice, this data set can occur when an archipelago is mapped
and in which all islands are merged to the surrounding ocean. ¿e factor for

94

chapter 4. improving variable-scale data structures

the classic variant of �lling is an abominable result (on average each edge is
duplicated 1 251 times, that indeed is O(e2)), especially compared to the lean
version (in which only the original edge versions are present once).

(a) (b)

(c) (d)

Figure 4.6: A clip of the Buchholz data set, visualised with di�erent imp_sel values.

Besides arti�cial data sets we also used some data sets containing real world
data. ¿at the factors are higher for the sets 4 and 5 compared to the factor for 3,
is explainable by the fact that set 3, shown in Figure 4.6, does contain only few
island polygons, while set 4 and 5 do contain some polygons with a few hundred
islands (although these datasets are still relatively small); Filling the structures
in the classic way leads then to even more duplicated edge rows. Although the
theoretical upper bounds are, by far, not met by these data sets, the factors of the
classic �lling variant are still high (and we suspect that this will even be worse
for larger data sets), while our new variant signi�cantly performs better (clearly
below the theoretical upper bound of factor 2).

95

variable-scale geo-information

4.2 Simultaneous, topologically-safe line simplification

¿is section introduces a line simpli�cation method, based on the method pro-
posed by Kulik et al. (2005), that does not introduce any topological errors for a
valid input planar partition.

4.2.1 A brief review of known methods

In literature a multiplicity of methods is known to simplify (cartographic) lines.
Saalfeld (1999) gives a classi�cation of polyline simpli�cation methods:

in vacuo modify one polyline in isolation, possibly leading to topological
con�icts that have to be resolved by post-processing;

en suite modify a single polyline in context (looking at topological relation-
ships with nearby features);

en mass modify the complete collection of polylines and all other features
of a map, taking the topological relationships into consideration during
adjustment.

Apart from the classi�cation given by Saalfeld, the algorithms can be divided
in two main groups: 1. using re�nement (i. e. an approach from coarse to �ne,
starting with a minimal approximation of a polyline and then adding the most
signi�cant points, until a prescribed tolerance is met) or 2. using decimation (i. e.
an approach which starts with the most detailed version of a polyline and then
eliminates the least important points �rst, thus going from �ne to coarse).

¿e best known algorithm for simplifying lines, in vacuo using a re�nement
approach, is the Douglas-Peucker line simpli�cation (Ramer, 1972; Douglas and
Peucker, 1973). It was modi�ed by Saalfeld (1999) to work on a polyline en suite.
Da Silva and Wu (2006) argued that topological errors could still occur and
gave an extension to the suggested approach. However, their approach is not
explicitly designed for keeping a planar partition valid as they cannot ensure
that polygonal areas keep size (i. e. do not collapse so that their area becomes 0).
Another en suite algorithm was developed by de Berg et al. (1998). ¿e core of
the algorithm is also used for simplifying polylines in a planar subdivision (en
mass), but each polyline in the main loop of their algorithm is still simpli�ed
en suite (so the simpli�cation outcome depends on the order of processing the
polygonal chains).

96

chapter 4. improving variable-scale data structures

A better approach in this respect is the one given by Kulik et al. (2005), which
simplify the polylines simultaneously (thus not one a er the other). ¿e basis
for their recipe is the algorithm described by Visvalingam and Whyatt (1993). It
uses decimation for simplifying lines in vacuo. ¿e algorithm of Visvalingam
and Whyatt was extended by Barkowsky et al. (2000) using di�erent criteria for
the order in which points will be removed (leading to di�erent shapes as output).
Kulik et al. (2005) developed the approach for simplifying polylines en mass, but
they consider only a connected graph for the topology aware simpli�cation (the
algorithm described in this section also deals with an unconnected graph, in
case of islands in the polygonal areas). Furthermore, in their description of the
algorithm they show that it is necessary to check a er every simpli�cation step
whetherpoints that couldnot be removedbefore, are nowallowed to be simpli�ed.
It appears that their algorithm in this case can lead to quadratic running times.
Also, it is not clear in their description how near points that might in�uence the
simpli�cation can be obtained e�ciently in an implementation.

As a last remark, it must be noted that none of the methods described above
discuss line generalization in a stepwise generalization process, thus intermingled
with other generalization operations, such as merging and splitting of polygonal
areas (aggregation) in a planar partition for a variable-scale context.

4.2.2 ¿e need for line simpli�cation

To generate generalised data for the tGAP structures, we employ a stepwise map
generalisation process: this process records all states of the planar partition a er
applying a generalisation operator in the tGAP face tree structure. With the
obtained hierarchy the average number of polygonal areas shown on a user’s
screen can be kept roughly equal, independent of the size of the user’s view port,
by varying the level of detail when a user zooms in or out, thus showing objects
closer to or further from the top of the hierarchical structure. ¿e removal of
area objects (bymerging or splitting them, § 4.3) leads to fewer objects per region.
A user zooming out leads to an enlarged view port and ascending the hierarchy
can supply an equal number of more generalised (thus larger) area objects to an
end user, similar to the number before the zoom action.

However, the related boundaries of the polygonal objects will get more co-
ordinates (per object) if the original boundary geometry is kept and not sim-
pli�ed. As can be observed in Figure 4.7a, a split operation, e. g. implemented
using triangulation, as described in § 4.3, can lead to unnecessary nodes in the
topology graph (nodes where degree = 2). ¿is also happens when an area merge

97

variable-scale geo-information

= exterior points (nodes)
= interior points

A
B

C

B′C′

(a) Splitting of polygonal areas leads to unwanted nodes.

A

B

B′

2

22

4
7

5

6
2

22

14

(b) Unwanted nodes also result from merging two polygonal areas.
Furthermore, the average number of coordinates per boundary in-
creases.

Figure 4.7: Both Figure 4.7a and 4.7b show that unwanted nodes can exist after a split or a
merge operation. Furthermore, it is illustrated that not simplifying merged edges leads to an
increased average number of coordinates per boundary.

98

chapter 4. improving variable-scale data structures

operation is performed (see Figure 4.7b). ¿erefore, we merge the boundaries
that are incident to those nodes. However, this merging leads to boundaries with
more coordinates.

¿e increase in the number of coordinates is illustrated by the example
shown in Figure 4.7b. Polygonal areas A and B are merged. ¿is leads to two
nodes with degree = 2. On average the number of coordinates before the area
merge operation in the boundaries is (2 + 2 + 2 + 4 + 7 + 5 + 6)/7 = 28/7 = 4.
A er the merge, we can remove the two nodes having degree = 2 and thus
merge the boundaries which leads to: 4 + 7 + 5 − 2 = 14 coordinates for this
new boundary. On average the number of coordinates of all the boundaries is:
(14 + 2 + 2 + 2)/4 = 20/4 = 5, which is more than before the merge operation.
¿e polylines thus have to be simpli�ed.

According to our rule of thumb, that we want to keep the amount of inform-
ation (density) shown per viewport on average constant (see �rst paragraph of
this section and, for more details, § 5.1), we also will have to keep the number of
vertices per polyline roughly equal. By merging edges (a er the generalisation
operation on the polygonal areas), we will try to keep the number of vertices in
the new edges approximately the same as in the old edges (before the polyline
merge).

4.2.3 An overview of the simpli�cation approach

We employ a decimation approach for simplifying the selected boundary poly-
lines. ¿e order of removing points is determined by a weight value w, which
we calculate for each interior point of the polylines to be simpli�ed. For calculat-
ing the weight values, we get 3 consecutive points, pi−1, pi , pi+1 from a polyline
forming a triangle τ. In our implementation the weight is calculated based on the
area of the associated triangle τ, i. e.△(pi−1, pi , pi+1), and therefore completely
based on geometry (cf. Visvalingam and Whyatt, 1993). ¿ere could be more
geometrical criteria, like sharpness of turn angle, length of sides, ratio of sides,
etcetera (alternatives are discussed in Barkowsky et al., 2000). Note that Kulik
et al. (2005) also assign a ‘semantic’ weight per point (next to the ‘geometric’
weight), which they base on the feature class of the polyline, where the point
belongs to and is also dependent on the user’s application domain.

¿e exterior points of the polylines (forming a node in the planar partition)
can not be removed. At each step, the interior point pi having the overall lowest
weight value will be removed, leading to a ‘collapse’ of triangle τ into a short cut
pi−1, pi+1. Our simpli�cation strategy has to obey the requirements that we have

99

variable-scale geo-information

given for a planar partition, thus not all short cuts will be allowed. We observed
that a spatial con�guration that leads to a problem at �rst, might be changed
later, because another point has been removed (that was preventing a collapse).
¿e algorithm re-tries removal of the blocked point in this case.

4.2.4 Dynamic and static polylines

Figure 4.8 shows that we distinguish two types of polylines that play a role in the
simpli�cation: 1. dynamic polylines that will be simpli�ed, i. e. interior points can
be removed as long as no intersections or degeneracies in the planar partition
requirements are caused by this removal and 2. static polylines that will not be
simpli�ed and for which all points are �xed (these points can forbid certain short
cuts in lines that are simpli�ed). Points of the �rst type are termeddynamic points
and points of the second type are termed static points. Points that eventually
will be removed by the simpli�cation algorithm have to be interior and dynamic
points.

= exterior points
= interior points

= static (in�uence)

= dynamic (to simplify)

Figure 4.8: Dynamic polylines will be simpli�ed (only one in this Figure), static polylines can
have an in�uence on the simpli�cation. Note that the alternative is illustrated, in which only
the polylines that are incident to a merge boundary will be simpli�ed.

A er a merge or split generalisation operation is �nished we have to chose
which lines to simplify (thus select the dynamic polylines). Two viable alternative
approaches, in which polylines are simpli�ed en mass, are:

1. Simplify the polylines that are (in case of an areamerge operation) incident
to the common merge boundaries, or (in case of an area split operation)
simplify the new boundaries that stem from the split operation;

100

chapter 4. improving variable-scale data structures

2. Simplify all polylines of the resulting new area(s).

As the simpli�cation should be topology-aware, the static polylines in the
neighbourhood also have to be selected as input for our algorithm as these can
in�uence the outcome of the simpli�cation. For this purpose, we can use the
topology structure to select the lines that are in the vicinity of the lines that we
want to simplify. We use the topology structure as an initial spatial �lter (going
from neighbouring areas to their related boundaries), then with a second pass
we can select the related boundaries based on bounding box overlap with the
union of the bounding box of all dynamic polylines. An alternative approach
is to keep an auxiliary data structure (such as an R-tree or quad-tree) for fast
selection of the polylines in the vicinity. ¿e downside of this approach is that
an auxiliary structure needs to be kept, while the topology structure is already
present. However, the initial �ltering step using the topology structure can be
expensive if the new polygonal area is at the border of the domain (leading to a
selection of all edges at the border of the domain that have to be �ltered on their
bounding box).

4.2.5 A stop criterion for the simpli�cation

We iteratively remove points from all dynamic input polylines, until a certain
optimisation goal is reached. We have two main choices for de�ning this optim-
isation goal (to stop the simpli�cation):

eps-stop Use a geometric measure as a threshold є (all points having their
weight w < є should be removed, where w is based on the size of the
triangle of 3 consecutive points in the polyline).

Using this approach, we could use a �xed epsilon throughout the whole
process of building the variable-scale hierarchy. ¿is is a not very realistic
option, as the number of polygonal areas (and thus the level of detail)
decreases when more generalisation operators have been applied (when
more polygonal areas have been merged or split, the remaining bound-
aries should also be simpli�ed more). A better option is to determine
dynamically the value of є with every generalisation step. For this we can:

• Take the average or median value of all weight values as є (all points
having aweight value smaller than this have to be removed, removing
about half of the points);

101

variable-scale geo-information

• Set an є based on other criteria, like the smallest segment length of
all polylines taking part in the simpli�cation. Such an alternative
choice for є also means that the weight valuesw for all interior points
have to be calculated accordingly.

count-stop Use the number of points that we want to see removed.

Using the number of output points as optimisation goal, we can count the
number of points in the input and try to remove a certain percentage. Two
similar, but somewhat di�erent, options in this respect are:

• Take a local approach: e. g. per input polyline try to remove half of
the points (but do not remove more points from a polyline than half
of its original points);

• Take a regional approach: for all polylines being simpli�ed, count
the total number of points and keep removing points, until in total
half of these points have been removed.

Note that both approaches can leave more points as a result than wished for,
as some of the points can be blocked by others (because topological errors must
be prevented), although they ful�l the condition for removal (e. g. w < є). Note
also that, with both approaches we can vary the percentage of points that we
want to remove (instead of half of the points), depending on how far we want to
‘push’ the generalisation. In an extreme case, we could set the percentage to such
a value, that the algorithm will try to remove all points, leading to straight lines
as much as possible (only topological ‘problematic’ points are remaining).

4.2.6 To prevent topological errors

the algorithm. An outline of the procedure is depicted in Algorithm 1.
For all dynamic polylines a doubly-linked list is created (storing the points in the
order in which they are present in the original polyline, cf. Algorithm 1, line 1).
Further, for all interior points of these polylines a weight w is calculated (line 2).
Important points get a higher weight than less important ones.

All dynamic and interior points are inserted in a priority queue Q, ordered
by their weight values w (line 3). In our implementation we use a red-black
tree (Guibas and Sedgewick, 1978) for the priority queue. Points with equal
weights are dealt with in the order of insertion. In-order traversal of the red-
black tree Q allows now to �nd the point with the smallest weight value, which

102

chapter 4. improving variable-scale data structures

Algorithm 1 Simpli�cation, while keeping the planar partition valid
Require: A set of dynamic and a set of static polylines
Ensure: A set of simpli�ed polylines {pre-processing}
1: Create doubly-linked list for each dynamic polyline
2: Compute weights w for all interior points of dynamic polylines
3: Add dynamic, interior points to priority queue Q based on weights
4: Create pointers between points of static polylines with only 2 points
5: Create kd-tree of all points of both dynamic and static polylines {simplifying}
6: while Q not empty do
7: Pop least important p i from Q {stop criterion, see section 4.2.5}
8: if stop criterion met for p i then
9: break
10: allowed← True
11: if p i part of loop edge with 4 points then
12: allowed← False {no more ‘tries’ for this point}
13: Retrieve τ (using p i−1 and p i+1 from linked list)
14: vicinity← search kd-tree for points near p i using box of τ
15: for all b ∈ vicinity do
16: if b ∉ (p i−1 , p i , p i+1) and b part of segment p i−1 , p i+1 then
17: allowed← False {no more ‘tries’ for this point}
18: if allowed then
19: for all b ∈ vicinity do
20: if b ∉ (p i−1 , p i , p i+1) and b on τ then
21: allowed← False
22: Append b to p i .blocked_by list
23: Append p i to b.blocks list
24: if allowed then
25: Remove p i from linked list
26: Adjust weights for p i−1 and p i+1
27: Check whether p i−1 and p i+1 are still blocked, otherwise add to Q
28: Mark p i as removed in kd-tree
29: for all u ∈ p i .blocks do
30: Remove p i from u.blocked_by list
31: if u.blocked_by list empty then
32: Add u to Q

{output}
33: return Simpli�ed polylines (traverse doubly-linked lists)

103

variable-scale geo-information

is then removed from Q. For point pi its neighbours, pi−1 and pi+1, can be
retrieved from the polyline doubly-linked list. ¿e three points together form
the triangle τ (see Figure 4.9).

p i

p i+1p i−1 b

p i .blocked_by = [b]
b.blocks = [p i]

Figure 4.9: As b blocks the removal of p i , the blocks and blocked by lists are �lled accordingly.

¿e short cut that will be taken is pi−1, pi+1. Such a short cut is only allowed if
it does not lead to an invalid planar partition, i. e. violates one of the requirements,
as described in § 3.2.1. Any intersections of the new short cut with other polylines
or another segment of the polyline itself (i. e. a line between two consecutive
points of the polyline) have to be prevented. As the partition is valid to begin
with (which can be ensured by using a constrained triangulation, see § 3.3), the
polylines of the planar partition do not contain any (self-)intersections. An
intersection of the short cut can only be created when a segment σ ‘enters’ τ via
the open side pi−1, pi+1 (as it is not allowed to enter or leave the area of τ via
either pi−1, pi or pi , pi+1; this immediately would lead to an intersection). A
point of σ must thus be interacting with τ for an intersection to happen and it is
su�cient to check whether such a point exists, to prevent this. Points that can
in�uence the collapse are termed blockers. ¿ese blockers stem from:

1. the polyline itself (self-intersection);

2. other polylines in the vicinity of τ (both static and dynamic).

To e�ciently �nd those points,we use a kd-tree (not just a regular kd-tree, but
one following Bentley (1990), for which the tree does not need to be re-organised
a er removal of points, but to which no extra points can be added a er initial
organisation of the tree). All (interior as well as exterior) points of all polylines
taking part in the simpli�cation are inserted in this kd-tree (algorithm 1, line 5).
¿e bounding rectangle around the triangle τ is used to query the kd-tree to �nd

104

chapter 4. improving variable-scale data structures

all points in the neighbourhood of this triangle, to see if there are any blockers
for creating the short cut p−1, pi+1. potential blockers b are checked whether
they lie on the triangle τ. If a blocker is found, the short cut is not taken and as
pi was removed from Q it will not turn up in the next iteration.

As the kd-tree contains the points of all dynamic polylines, a potential blocker
b can be a point that forms the triangle τ. If this happens we do not check
whether b blocks pi (i. e. pi−1, pi+1, nor pi itself can block removal of pi), or no
simpli�cation could take place at all. Since a blocker b can be removed itself later
on and then a short cut for this vertex pi might be allowed, a cross reference is
set up between pi and b (b is registered in the ‘blocked by’-list of pi and pi is
registered in the ‘blocks’-list of b).

If no blockers were found, pi can be removed from the doubly-linkedpolyline
list it belongs to (creating a short cut in this polyline). ¿e point is alsomarked
as removed in the kd-tree. If the removed point pi was a blocker itself (having
one or more points in its ‘blocks’ list), it removes itself from the ‘blocked by’ list
of these particular points. If for a point u its ‘blocked by’ list becomes empty
(because of the removal of pi) u is placed back again in Q, so it has a chance of
being short cut in the next iteration (if then not blocked by any other point and
still not having ful�lled the condition for removal, e. g. having a weight w < є).
¿is is an improvement over the approach suggested by Kulik et al. (2005), who
potentially have to check in every iteration step again whether a point is allowed
to be removed. If one of the two neighbouring points pi−1 or pi+1 was blocked,
it is also checked whether this is still the case (the shape of their related triangle
also has changed, because of the short cut operation).

¿e algorithm ends when the chosen criterion has been met, i. e. there are
no more points that can ful�l the criterion to reach the optimal goal, and the
new polylines are returned.

more cases for validity. Apart from intersection prevention by testing
near points, more speci�c situations have to be taken into account, because of
the validity requirements of the planar partition. Two other conditions also have
to be checked (illustrated in Figure 4.10), to prevent occurrence of zero-sized
polygonal areas:

1. Same polyline (see Algorithm 1, line 11): A special check is performedwhen
pi−1 or pi+1 is the endpoint of a so-called ‘loop’ polyline (a special case
where the 2 exterior points of the polyline are at the exact same location, cf.
Figure 4.10-le). We now have to check whether there will still be enough

105

variable-scale geo-information

p i

p i+1p i−1
p i

p i+1p i−1

= exterior vertex
= interior vertex

two end
points at exact
same location

exterior points at exact
same location for the 2
polylines (one solid, one
dashed)

Figure 4.10: If taking a short cut leads to a polygonal area that has no area, we put the end
points as blockers for p i . The result is that p i is not removed, as the endpoints of the polylines
will never be removed.

points in the polyline when we take away pi (because no zero-size area
is allowed). We can do this, by traversing the linked list and check when
pi−1 is a loop endpoint, whether pi+2 is also such an endpoint (similar
with pi−2 for pi+1). Note that this is a rare case (only the two last interior
points for a triangular face).

2. Di�erent polyline (see Algorithm 1, line 16): Another check is performed
on whether pi−1, pi+1 is already connected by another polyline (by allow-
ing twice such a polyline, a zero-size area would be created, Figure 4.10-
right). To prevent this, it is necessary to check if a potential blocking point
b returned by the kd-tree is part of such a polyline between pi−1 and pi+1:
a. for a dynamic point returned by the kd-tree it is possible to use the
doubly-linked list to navigate to the next vertex and check whether pi−1
and pi+1 are �xed, and b. for a static point returned by the kd-tree we put
an extra pointer to the other endpoint of the static polyline, if the line only
consists of two points. ¿is allows checking whether a static point blocks
the collapse of τ.

106

chapter 4. improving variable-scale data structures

4.2.7 Experiments

We implemented the line simpli�cation algorithm in our tGAP test environment.
With the implementation we tried di�erent alternatives. In total, we tested 7
alternatives – with only merge operations (so not yet the collapse/split operation
of § 4.3) applied to the polygonal areas – for which the symbolic names are shown
in Table 4.3.

Table 4.3: Symbolic names of the alternatives that were tested.

Simplify which edges?

Merged edges only at All edges of new area
Stop criterion? nodes with degree = 2 (including merged ones)

No simpli�cation at all none none
Count stop m_ct a_ct
(regional, half # interior points)
Eps stop m_eps a_eps
(median of all weights)
As far as possible m_full a_full

¿e�rst alternative (labelled ‘none’ in Table 4.3) we tested,wasmerging edges
at nodes with degree = 2, but not applying any simpli�cation. ¿is was meant as
reference test as we already knew that this would lead to too many coordinates
per boundary, but used to measure the improvements. ¿e remaining strategies
come from varying two alternatives: 1. which lines to simplify (only the merged
boundaries, pre�xed with ‘m_’ in Table 4.3, or all boundaries of the new area)
and 2. when to stop the generalisation (based on the median є-value for all
boundaries being simpli�ed – dynamic eps-stop, based on the number of points,
the regional count-stop approach, or simplify as far as possible, respectively
labelled ‘a_eps’, ‘a_ct’ or ‘a_full’).

Table 4.4 shows the number of polylines and their average number of co-
ordinates for the datasets we used in our experiment. We tested with three data
set fragments, representing di�erent types of geographic data. We used 1. a topo-
graphic, urban dataset (Amsterdam, city centre), 2. a topographic, rural dataset
(Colchester), and 3. a land use dataset (Buchholz in der Nordheide). Both topo-
graphic datasets represented infrastructure objects (e. g. roads and waterways),
which were not present in the land use dataset.

Figure 4.11 shows graphically some results of a few of the alternatives tested
for the land use dataset. Figure 4.11a shows the result of keeping all original

107

variable-scale geo-information

(a) No simpli�cation (none) (b) Count stop for all edges of new
area (a_ct)

(c) Epsilon stop, using only
merged edges (m_eps)

(d) Count stop, using only merged
edges (m_ct)

Figure 4.11: From the Buchholz in der Nordheide dataset: ‘Slices’ of variable-scale data that
show the result of the di�erent alternatives for the line simpli�cation, plotted at the samemap
scale (within brackets the symbolic name of the tested alternative). Note that the simpli�cation
of the boundaries changes the size of the areas and in�uences the order in which the areas
are merged, therefore the boundaries on the 4 maps do not exactly correspond to each other.

108

chapter 4. improving variable-scale data structures

Table 4.4: For the datasets used in our experiment, the number of polygonal areas, polylines
and average number of coordinates per polyline at start.

Dataset fragment # of areas # of polylines avg # coords total # coords
(original map scale) at start at start per polyline

Amsterdam, urban (1:10K) 9 381 24 528 4.6 112 828
Colchester, rural (1:5K) 3 286 8 212 10.6 87 047
Buchholz, rural (1:25K) 5 537 16 592 7.2 119 462

coordinates of the boundaries, thus not simplifying them. Tiny details and too
many coordinates in the boundaries are the result. It can be seen in Figure 4.11b,
that the count-stop approach (preserve half the number of points) applied on
all boundaries of the new area leads to a very simpli�ed and coarse version.
Both alternatives in which only the merged boundaries are simpli�ed leave more
details (see Figure 4.11c and 4.11d), where the count-stop approach is a bit more
‘aggressive’ than the eps-stop approach. ¿is is caused by the fact that the epsilon
values of adjacent vertices are changed when a vertex is removed (these adjacent
epsilon values most of the time increase), and therefore the eps-stop approach is
less likely to remove exactly half of the number of the vertices, but somewhat
less (while the count-stop approach is exactly instructed to hold on to the �xed
number).

¿at the eps-approach is more gentle than the ct-approach is also illustrated
by the graphs in Figure 4.12. In each graph, it is shown how many coordinates
there are le for the total map, a er every generalisation step. As expected, the
line at the top of the graph is the reference situation, where no coordinates are
weeded. It is also clear, as already visually illustrated in Figure 4.11, that the
approach where only the merged boundaries play a role in the simpli�cation is
more gentle in removing coordinates, compared to when all edges of the new
area will be simpli�ed. Main cause for this is that if all edges of the new area are
simpli�ed, they will be simpli�ed more o en, compared to the situation where
only the merged edges are simpli�ed (i. e. for every generalisation step in which
a polygonal area is the area to which a neighbour is merged, its boundary edges
will again be simpli�ed).

Table 4.5 illustrates the fact that simplifying the boundaries over-and-over
again also has a negative e�ect on the contents of the hierarchy. Although the
graphs from Figure 4.12 show that there are less coordinates on average on every

109

variable-scale geo-information

0 2 000 4 000 6 000 8 000 10 000
of generalization steps

20 000

40 000

60 000

80 000

100 000

120 000

to
ta
l#

of
co
or
di
na

te
s

none
m_eps
m_ct
m_full
a_eps
a_ct
a_full

0

(a) Topographic, urban (Amsterdam)

0 500 1 000 1 500 2 000 2 500 3 000 3 500
of generalization steps

10 000

20 000

30 000

40 000

50 000

60 000

70 000

80 000

90 000

to
ta
l#

of
co
or
di
na

te
s

none
m_eps
m_ct
m_full
a_eps
a_ct
a_full

0

(b) Topographic, rural (Colchester)

0 1 000 2 000 3 000 4 000 5 000 6 000
of generalization steps

20 000

40 000

60 000

80 000

100 000

120 000

to
ta
l#

of
co
or
di
na

te
s

none
m_eps
m_ct
m_full
a_eps
a_ct
a_full

0

(c) Land use (Buchholz)

Figure 4.12: For eachdataset, the graph shows the total number of coordinates for the complete
map, in each generalisation step (i. e. the number of coordinates in a ‘slice’ of variable-scale
data).

110

chapter 4. improving variable-scale data structures

Table 4.5: Resulting number of polylines and coordinates with varying types of stop criteria
for the simpli�cation. Note that, although the ‘a_’ variants look much more generalised (cf.
Figure 4.11b) these are muchmore expensive to be stored (i. e. there aremanymore rows to be
stored (total # polylines), hence also the bigger total number of coordinates in the hierarchy).

(a) Amsterdam dataset (average # coords: 4.6)

simplify type total avg # coords total # coordinates
polylines per polyline in hierarchy

none 36 447 7.1 256 969

a_ct 60 390 4.3 260 777
a_eps 62 006 4.6 284 289
a_full 55 084 3.7 205 870

m_ct 36 449 4.6 167 431
m_eps 36 438 4.8 176 350
m_full 36 403 3.8 139 187

(b) Colchester dataset (average # coords: 10.6)

simplify type total avg # coords total # coordinates
polylines per polyline in hierarchy

none 12 347 22.4 276 335

a_ct 23 553 8.5 200 860
a_eps 24 539 10.1 247 767
a_full 19 640 6.7 131 538

m_ct 12 345 11.1 136 940
m_eps 12 343 13.0 160 066
m_full 12 349 7.8 96 665

(c) Buchholz dataset (average # coords: 7.2)

simplify type total avg # coords total # coordinates
polylines per polyline in hierarchy

none 26 771 15.4 413 250

a_ct 54 166 5.8 312 394
a_eps 55 603 6.3 348 118
a_full 45 040 4.8 216 174

m_ct 26 770 7.5 200 132
m_eps 26 768 8.4 223 623
m_full 26 769 5.3 141 019

111

variable-scale geo-information

‘slice’ derived from the variable-scale structures when all boundaries of a new
face are simpli�ed, the opposite is true for the contents of the data structures.
More coordinates need to be stored, because for every line that is simpli�ed also a
new version, with the simpli�ed geometry, has to be stored in the data structures
(e. g. compare alternative ‘m_ct’ with ‘a_ct’ – in all cases more coordinates are
stored for the ‘a_ct’ alternative). ¿erefore, as a rule of thumb, simplifying only
the merged edges is to be preferred over simplifying all the edges of a new area.

A er this work was �nished, we realised that the described simpli�cation
approach still leaves room for improvement: When all edges a er a high level
generalisation operation are used for simpli�cation, the edges are over-simpli�ed.
¿is could be �xed by not reducing to half the number of points per edge, but
by reducing the number of vertices by a smaller amount, e. g. by taking the
number of edges and setting up a reduction factor for every edge as 1 / # of edges;
However, it is likely that this still will lead to many edge rows. Fortunately, the
same can also be done, when only merged edges are simpli�ed: also here not
always simplify to half the number of points, but to a factor that is based on the
number of edges that are merged together into one new edge (and set up the
reduction factor per new edge). Eventually the number of edges per polygonal
area (and the average number of coordinates per area) – before the high level
generalisation operation has taken place – could also be taken into account in
setting up the reduction factor. ¿is way the optimisation goal to keep the map
density on average constant might be reached even better (compared to just
taking always half the number of input points): whether this indeed is the case
(and which approach is then best) requires more research. (cf. § 7.2).

4.3 Collapsing areas: splitting over multiple neighbours

¿is section investigates a generalisation operation, by which polygonal areas
are divided over their neighbours and for which the result should �t in the tGAP
data structures. Merging as the only generalisation operator in practice is not
always ‘optimal’ or ‘fair’, as this is an all or nothing decision where one neighbour
‘wins’ and is not su�cient to deal with all di�erent classes of geographical objects.
For example, linear area features, such as roads and canals, deserve di�erent
treatment. ¿e section also proposes a way of evaluating the result of the split
operation, to obtain ameasure for judging results so that the measure is objective,
instead of subjective, as o en the case with generalisation rules. To implement
the split operation, the section investigates possibilities of using a triangulation.
Further, the measure used reveals weaknesses in the possible solution space

112

chapter 4. improving variable-scale data structures

imposed by the triangulation. ¿e section also discusses the implications of the
split operations for the data structures, such as the face hierarchy in a separate
table.

4.3.1 SplitArea: an explanation

¿is section gives an overview of the SplitArea algorithm. ¿e purpose of
the algorithm is to split a face of a planar partition over its neighbouring faces.
Taking into account the tGAP structure, we formulated a set of requirements
that should be present in such a splitting operation:

1. Assign larger pieces of the area object to be split to more compatible
neighbours and smaller pieces of the area to less compatible ones.

2. Prevent certain merges, i. e. completely disallow merges between faces
having extreme incompatible feature classes. A special variant of this
requirement is that the extent of our geographic domain covered by the
data set should not be changed, which means that the objects should not
be merged to the universe (the space surrounding the dataset), otherwise
the domain would become smaller.

3. Generate resulting line work that �ts in with and connects to the rest of
the planar partition.

4. Deal with holes (�lled by one or more island faces, that can also get a share
of the face to be split).

5. Work on vector data stored in a topological data structure (such as the
well-known node-edge-face data structure, cf.Worboys and Duckham
(2004)) and generate the topological references (e. g. incidence relations
between edges and faces) for the edges being outputted.

¿e algorithm uses a constrained Delaunay triangulation to �nd a skeleton –
i. e. an approximation of the medial axis (Blum, 1967) in our case approximated
by straight lines – inside the face to split, prunes parts of this skeleton, and
connects the obtained line work to the rest of the planar partition. ¿e following
de�nitions will be used:

face A polygonal object, possibly with holes, representing one object of the
planar partition. In the tGAP structure the geometry of a face is not

113

variable-scale geo-information

explicitly represented as a polygon, but its geometry has to be obtained
from the set of edges related to it.

topological chain An edge of the planar partition. Every topological
chain lies exactly between a le and right face. Topological chains in the
tGAP structure are modelled as polylines, having a start node and end
node reference as well as two face references (one for the le neighbouring
face and one for the right).

splittee ¿e face F for which the area has to be split over the neighbouring
faces, cf. Figure 4.13a.

perimeter chain A topological chain having the face F as its le or right
face.

external chain A topological chain that is incident with at least one peri-
meter chain of the face F. An external chain is not part of the boundary
of the splittee F (but touches the boundary of F in one or two points).

skeleton edge ¿e skeleton is the collection of line work that is created
inside the splittee. ¿e skeleton consists of a set of edges (line segments
having two points). ¿e new boundaries for the neighbours of the splittee
will be formed by the set of skeleton edges and the connections to the
external chains (see Figure 4.13c).

¿e input of the SplitArea algorithm is:

• ¿e id of the face F, the splittee.

• ¿e set of topological chains forming the boundary of the face F, i. e. the
perimeter chains.

• ¿e set of topological chains incident with the boundary of the face F in
one or two nodes, the external chains.

¿e output of the algorithm consists of a set of new topological chains rep-
resenting the new boundaries of the splittee’s neighbouring faces: some of these
topological chains can be completely new, others are an extended version of the
external chains. Both the input and output topological chains contain their le
and right references; as we will see in § 4.3.2, the input chains may have also a
weight value attached to them.

¿e algorithm performs the following steps:

114

chapter 4. improving variable-scale data structures

Splittee

(a) The splittee: the object that has to be
subdivided over its neighbours.

perimeter chain
external chain

(b) The perimeter chains and the external
chains (chains incident with the perimeter
chains).

skeleton edge
external chain

(c) Inside the splittee skeleton edges will
be created. The new boundaries will be
formed by these edges and the external
chains.

Figure 4.13: An example showing Spl i tArea at work.

1. Triangulation

2. Selection of internal triangles

3. Creation of the skeleton

4. Creating connectors

5. Edge labelling and Skeleton pruning

6. Obtaining the �nal boundaries

115

variable-scale geo-information

A er these steps are described in more detail, we give an overview of how to
handle holes in the splittee (as a more di�cult case).

step 1. triangulation. ¿e �rst step of the algorithm is to build a con-
strained Delaunay triangulation of the perimeter chains of the splittee. A con-
strained triangulation is a triangulation of a set of points that has to include
a given set of segments between these points (Bern and Eppstein, 1992). As
constrained edges are not necessarily Delaunay edges, a constrained Delaunay
triangulation tries to ful�l the empty circumcircle property as much as possible,
but in case a constrained edge is present, the empty circle criterion is weakened.
¿e set of constrained triangulation edges is the boundary between the interior
and the exterior of the splittee.

step 2. selection of internal triangles. ¿e triangulator produces
a mesh of triangles both in the interior and exterior of the splittee, bounded by a
triangle with points at in�nity (Liu and Snoeyink, 2008); to select only the interior
triangles, the algorithm performs a walk on the triangles (see Figure 4.14).

¿e walk starts from one of the triangles having one vertex at in�nity. While
walking from one triangle to an adjacent one, the triangulation edge that the
two triangles have in common is crossed: if this edge is a constrained edge, then
we know that we are on the interior of the splittee. Once inside, we can �ag
the triangles we are looking for as internal – by avoiding to cross a constrained
edge again, the walk stays inside. ¿is search can be done fast (in linear time on
the number of triangles) and reliably using the data structure already existing,
whereas using a point-in-polygon test would require an algorithm to �nd one
internal point robust to the presence of holes in the polygon, a spatial index to
�nd e�ciently the triangle in which the point is and then, again, a walk on the
neighbouring triangles to �ag them.

step 3. creation of the skeleton. ¿e creation of the skeleton edges
is performed individually for each triangle, following the technique described
in Uitermark et al. (1999). Uitermark et al. also use a CDT algorithm in which
they input a graph G = (V , E) where V is a set of vertices, the endpoints of the
input edges, and E is this set of edges, which they termed G-edges (constrained
triangulation edges). Looking at the resulting CDT, two kinds of edges can
be discriminated: G-edges, edges that were already present in the input graph,
and D-edges, created by the CDT algorithm. Triangles in the CDT can now be

116

chapter 4. improving variable-scale data structures

2. Cross a constrained edge

1. Start outside (in�nite triangle)

3. ‘Flood �ll’ interior

(a) Walk on internal triangles.

(b) Triangulation of the splittee, where
all internal triangles have been selec-
ted. Also external chains are shown.

Figure 4.14: Selection of internal triangles.

classi�ed by determining the number of G-edges in the boundary of a triangle.
In this way, four types of triangles can be distinguished: 0-triangles, 1-triangles,
2-triangles and 3-triangles, where the number is the number of G-edges. A
skeleton of the triangulated object can be found by forming new line segments
based on connecting the geometric midpoint of the D-edges for the triangles
(see Figure 4.15 and Figure 4.16a for an illustration).

step 4. creating connectors. To complete the construction of the
skeleton, we need to assure that it is connected with the existing line work outside
the boundary of the splittee, i. e. it has to be connected with the external chains,
see Figure 4.16b.

Every external chain touches the splittee in one or two nodes: if such a node is
not already connected to the skeleton then a special skeleton edge is drawn from
this node to the rest of the skeleton. ¿ese special edges are called connectors
and are generated according to the scheme shown in Figure 4.17a (as this scheme
prevents topology errors). Figure 4.17b shows that by generating the connectors

117

variable-scale geo-information

type 0 type 1 type 2 type 3

skeleton edge constraint edge

Figure 4.15: Four types of triangles can be distinguished by looking at the number of G-edges:
0-triangles, 1-triangles, 2-triangles and 3-triangles. By connecting themidpoints of the D-edges
(unconstrained edges) a skeleton edge can be obtained (skeleton edges are visualised with
dashed lines).

(a) Obtaining skeleton edges using the tri-
angulation.

(b) Adding extra skeleton edges (connect-
ors) to guarantee a connection between the
existing external chains (those need to be
preserved) and the skeleton. Note that a
connector has to be chosen with the node
at the boundary at the top right.

Figure 4.16: Creation of the Skeleton.

only going outward of a node when going counter-clockwise around a triangle,
we can guarantee that this operation is local (so no need to look at neighbouring
triangles, when generating skeleton edges and connectors) and that duplicate
connectors in neighbouring triangles are prevented.

Depending on the triangulation, there can be many unconstrained triangu-
lation edges between the skeleton and the node of an incident external chain: in
such a case the connector to be used has to be chosen. In our implementation
we decided to choose the connector for which the angle is the most collinear
with the direction of the external chain, but other choices could be preferred
(e. g. the longest or the shortest one).

118

chapter 4. improving variable-scale data structures

node incident with external chain connector

(a) The 4 di�erent triangle types and how connectors are generated per type

type 2

type 1

type 0

connector
(b) Connectors and skeleton edges are created locally, i. e. generated for
each triangle individually. Which connectors and skeleton edges are gener-
ated is dependent on the type of triangle. To prevent duplicate connectors
for neighbouring triangles, the connectors are only generated going out-
ward of a node (where an external chain is incident) when going counter-
clockwise around a triangle.

Figure 4.17: Connectors are created if a corner vertex of a triangle also is a node in the planar
partition (skeleton edges are visualised with dashed lines).

step 5. edge labelling and skeleton pruning. ¿e next step of the
algorithm is to propagate the le and right face reference values from the external
chains to the skeleton edges. For this purpose a graph in which all skeleton edges,
chosen connectors and external chains are represented, is built.¿is graph can be
represented by a winged-edged structure (Baumgart, 1975). ¿e labelling starts at
one side of an external chain, propagating the correct neighbour reference value
onto all skeleton edges, until another external chain is encountered. ¿en, the
neighbour reference is switched, propagating the other reference of the external
chain, and the labelling continues, until the external chain where the labelling

119

variable-scale geo-information

started is encountered. An illustration of this labelling procedure is found in
Figure 4.18a.

Neighbour A

Neighbour B
Neighbour C

start labeling
(at side of b)

end labeling
(at side of c)

b
a

switch label
(b→ a)

switch label
(a→ c)

c

(a) Labelling of the skeleton edges (light grey), starting from an ex-
ternal chain (dark grey). Note: edges that have the same neighbouring
reference value on both sides are dashed.

(b) Parts of the graph that have the same labels on
both sides (black) are removed. Short-cuts (dashed) re-
place the two skeleton edges that are incident with the
branches that are removed.

Figure 4.18: Labelling the skeleton edges with the correct neighbour reference and pruning
parts of the skeleton that are enclosed completely by one neighbour.

At the end of the labelling some of the skeleton edges can have the same
neighbour reference on both their sides. ¿is means that in the planar partition
these parts will be completely enclosed by one neighbouring face, therefore these
edges are removed. Removal of these edges can be seen as pruning branches in
the graph.¿ewinged-edge structuremakes it easy to delete those edges from the
graph, while keeping the connectivity between the remaining edges in the graph.
¿e removal of the branches leads to some artifacts (spikes, where the skeleton
makes a sharp turn). To compensate for that, some short-cut edges are – when
possible – introduced, replacing the two skeleton edges that make the sharp turn
and are incident with the branch removed (this is shown in Figure 4.18b). ¿e

120

chapter 4. improving variable-scale data structures

edges that are removed only belong to type-0 triangles, therea er the shortcut
edges that replace them do not a�ect the topology, as they are inside triangles
that already belong to the original area.

step 6. obtaining the final boundaries. As a �nal step, the new
topological chains for use in the tGAP structure are obtained. All skeleton edges
and external chains that have the same neighbour reference values are merged
into one topological chain. When this process has �nished, all the perimeter
edges of the splittee can be removed from the tGAP structure, the newboundaries
have been completely built and will �t in with the remaining part of the line
work of the planar partition, and the area of the splittee F has been subdivided
over its neighbouring faces, cf. Figure 4.19.

(a) All skeleton edges and external
chains are merged into the longest to-
pological chains possible (having the
same neighbour references).

(b) The line work obtained �ts in with the
rest of the planar partition.

Figure 4.19: Result obtained with Spl i tArea.

handling holes in the splittee. One of our requirements was that the
algorithm also should handle holes (i. e. island faces within the outer boundary
of the splittee). Irrespective of whether the input contains holes, all segment
geometry for the skeleton is obtained correctly by our approach from the classi-
�cation of triangles (as described in Section 4.3.1 and illustrated in Figure 4.17).
However, the generation of topological references needs attention when the
input face contains a speci�c type of islands in its interior. For such islands, we
term them ‘lonely’ islands here, one face is completely contained in a hole of the
splittee.

12 1

variable-scale geo-information

Figure 4.20 shows three of such lonely island faces: face B, C and D. As
shown, the resulting skeleton for the splittee, face A, will not be a tree structure,
but will result in a graph having one or more cycles (a cycle per island). ¿is has
consequences for the labelling step described, as not all edges in this graph can be
labelled on both sides— the inside of the cycles can not be reached automatically.
No external edges will be present at the interior side of the cycle of a lonely island.
¿is is only the case for lonely islands, but not for holes containing more than
one island face. In the example, the cycles for face E and F will be automatically
labelled from the boundary edge between the two (as this edge will be inserted
as external edge in the skeleton graph).

F

E

DC

B

A

Figure 4.20: Handling islands. No extra steps have to be taken for label propagation, when
a hole is �lled by more than one face (cf. face E and F). However care has to be taken, when
holes are �lled by only one face (face B), or when island faces are tangent (face C and D).

To solve the labelling problem, one node from a ring around a lonely island
will be attributed with the face identi�er that lies inside the ring. Subsequently,
generated skeleton segments incident at those nodes will be marked as being a
seeding segment and as such will be treated as external segments from where
the label propagation can take o�. Note that only one face pointer will be set on
both sides of these external segments, so that at the end of the labelling step they
will be removed (see face B in the example).

Another typical case that happens in real world datasets is the following:
Islands can be tangent in one point (think of such islands as looking as a bow
tie). In this case this tangent point will be chosen as the node to generate the face
pointers for the cycles from. In this particular case, care has to be taken when
propagating the adjacent face information to the incident seeding segments.¿is
can be solved by taking into account how the original faces are incident to the

122

chapter 4. improving variable-scale data structures

node, thus looking at which face is incident to which sector around the node.
Note that more than two faces can be tangent in one point. An angle comparison
of the new segment with this sector information reveals which face pointers have
to be propagated onto the newly created segment. Two di�erent face pointers
will be set on the two sides of the external segment (see face C and D in the
example, one side of the segment will be labelled with C, the other side with D).

4.3.2 A weighted split

In Ai and van Oosterom (2002) it was mentioned that setting weights could
help to get a fairer split, e. g. objects having a similar feature class can get a larger
share of the splittee than less compatible features. With the normal approach,
the vertices of the skeleton edges to be created are normally positioned exactly at
the middle of an unconstrained edge. ¿is changes with the weighted approach.

introducing weights. To obtain a weighted solution, weight values are
given as input together with the perimeter chains (because the weights are based
on the neighbouring faces). For each vertex that is part of the triangulation at
least one weight value will be present. ¿e vertices of the skeleton edges can be
slided along the unconstrained edges of the triangulation, respecting the weights.
Figure 4.21 illustrates this. ¿e weights make it possible to move the vertices
of the skeleton edges further away from one perimeter chain (and closer to the
opposite one).

weight: 6

weight: 4

Figure 4.21: Weights are set on the perimeter chains and are entered in the triangulation at
the vertices. The new vertices of the skeleton edges are moved along the unconstrained
triangulation edge accordingly. The vertices where the external chains are incident have two
weights set.

¿e weights are determined by the compatibilities of the neighbours. If the
compatibility of a neighbour and the splittee is high, then the neighbouring face
should get a large share of the face to be split. In this case a higher weight is set
on a perimeter chain compared to when the neighbour is less compatible with

123

variable-scale geo-information

the splittee. A higher weight ‘pushes’ the newly created skeleton edge further
away from the original perimeter chain, obtaining a larger share.

In the case that a vertex in the triangulation is also a topological node (an
external chain is incident with the boundary of the splittee at this vertex) more
than one weight will be associated with a vertex. Di�erent choices can now be
made on how to handle this multiplicity of weight values (we take the average,
but also the minimum or maximum of the weight values could be chosen).

handling zero-weights. Putting weights on the perimeter chains in
the input gives more �exibility on how to subdivide the area of the face to be
split. To prevent one of the neighbours from getting a share at all zero-weights
are introduced. ¿is is useful in two cases: 1. prevent a neighbour that is highly
incompatible with respect to the feature class of the splittee from getting a share
and 2. when the feature to be split is at the border of the domain—we can then �x
the border at its position (see Figure 4.22). Zero-weights are in accordance with
how weights are set up in the tGAP structure. If two faces have two incompatible
feature classes, a value of zero will be given in the compatibility matrix.¿erefore
the resulting weight set on the boundary between two such faces will also be
zero (ngbcompatibil ity = 0).

A 0-weight chain can �xate
the border of the mapped domain

Figure 4.22: Fixating the border of the domain can be performed with 0-weights. Note that
there should at least be 1 non-zero weight neighbour, otherwise no split can take place.

When allowing zero-weights as input, care has to be taken, when generating
the skeleton edges based on the classi�cation of the internal triangles. ¿e basic
classi�cation (0- to 3-triangle) has to be extended to deal with one, two or three
vertices having a 0-weight.

124

chapter 4. improving variable-scale data structures

1 vertex 2 vertices 3 vertices

ty
pe

0
ty
pe

2
ty
pe

1
ty
pe

3

on 0-edge
not on 0-edge

Number of 0-weight vertices

Tr
ia
ng

le
ty
pe

(n
um

be
ro

fc
on

st
ra
in
te
dg

es
)

constraint skeleton connector

Figure 4.23: Triangles with zero-weight vertices. Unmovable vertices, having a weight = 0, are
coloured gray. Skeleton segments that will be created are in black, skeleton segments that
will not be created are visualised with gray (e. g. triangle type-0-2-vertices).

125

variable-scale geo-information

Figure 4.23 shows all possible situations that can occur with 0-weight vertices
and Figure 4.24c shows some of these classi�ed triangles in a real world example.
¿ere are 5 cases that need some attention:

1. Sometimes no skeleton edge has to be generated. ¿is is the case with
triangles with two vertices being on a constrained edge and the third vertex
being a zero-weight vertex (Figure 4.23 triangle type-1-1-vertex-top, i. e.
the topmost triangle of the three triangles in the cell belonging to triangle
type-1 – row 1 in the Figure – having one 0-weight vertex – column 1 in
the Figure). See also Figure 4.24c, triangle labelled with ‘t-1-1-v-top’.

2. When two zero-weight vertices are opposite of each other on an uncon-
strained triangulation edge, a skeleton vertex is generated at the middle
of this edge, similar to when two weights are equal and non-zero (e. g.
triangles type-1-3-vertex, type-2-2-vertex-bottom-le).

3. Figure 4.24a shows another case that only happens, when 0-weights are
allowed. When a type-0-2-vertex and a type-1-2-vertex-top triangle are
adjacent, duplicate edges will be generated. To prevent this, only the black
skeleton edges are generated. Here the same reasoning is followed while
adding connectors (going counter-clockwise around a triangle, only the
edges that depart from an incident node are generated).

4. As mentioned before, vertices in the triangulation will have more than 1
weight associated if an external chain is incident (i. e. nodes in the planar
partition topology). In an unweighted situation it is possible to choose
how to deal with the weights in such a situation. In case one of these
weights is zero, this 0-weight has to be set as the weight of this vertex. ¿is
ensures that the vertices of the original perimeter chain are not moved.

5. Introduction of 0-weight vertices can lead to cycles in the skeleton edge
graph (see Figure 4.24b for an illustration). ¿erefore in the labelling step,
when le - and right-references are set, an extra check has to be performed.
If a er labelling skeleton edges are encountered that are only labelled on
one side and which were not entered in the triangulation as a edge with
0-weight, these edges can act as a seeding edge from which the label can
be propagated to the other side (on the side of the edges that are facing the
interior of the cycle). ¿is label propagation continues visiting all cycle
edges until all these edges have been labelled on both sides. Note that

126

chapter 4. improving variable-scale data structures

duplicate segment edges

(a) If not careful with gener-
ating skeleton edges having
0-weight vertices, duplicates
can arise in the resulting skel-
eton edge graph.

seeding edge

cycle

neighbour y

neighbour x

x

y

cycle

cycle cy
cl
e

xy

y

for cycle

�xed p
erimeter ch

ain

(weigh
t = 0 on a

ll vert
ices)

attractiveness = 0

(b) Zero weight edges can lead to cycles in the skel-
eton graph. The labelling step thus should be modi�ed.
In this example x will be propagated onto the edges
between two cycles. These edges then will be labelled
with x on both sides and removed. The result is that
neighbour x gets the complete area of the splittee.

type 2

type 1

type 0

connector

attrac
tivene

ss = 20

a =
20

attractiveness = 10
attractiveness = 0

t-2-3-v

t-2-2-v-top

t-0-2-v

t-1-1-v-top

t-1-1-v-bottom-right

attractiveness = 20

0-weight vertex

(c) Also with zero-weight vertices triangles are processed locally (independent from all
other triangles). Howevermore possibilities have to be taken into account (cf. Figure 4.23).
Note that triangles that have a zero-weight vertex have their constraints visualised in
black and are labelled with their position in Figure 4.23.

Figure 4.24: Fixed perimeter chains (i. e. zero-weight vertices) bring some special implications.

127

variable-scale geo-information

edges that have the same label on both sides will be removed from the
skeleton graph (just as in the unweighted case).

4.3.3 Judging the fairness of a split

In the original GAP tree (van Oosterom, 1993, 1995) the compatibility between a
speci�c face and one of its neighbours, the i-th neighbour – ngbi , is de�ned (at
instance level) by three terms:

1. Type compatibility. ¿is takes into account the semantic distance between
the feature class of the neighbour and the splittee. For example, urban
fabric can be considered more compatible with industrial area than with
grassland. Objects having similar feature classes are thus considered more
compatible.¿is is encoded by a value between 0 and 1, where 0means not
compatible at all, and 1 means very compatible (equal). ¿e compatibility
values can be stored in a square matrix for all feature classes, which is
termed the compatibility matrix.

2. Boundary length between the splittee and ngbi .

3. ¿e relative importance (or weight) of the feature class of ngbi . Dependent
on the use of the dataset, di�erent feature classes can be given a higher
weight, which means they are less considered for being generalised, com-
pared to equal sized features having a lower weight.

Equation 4.1 contains these terms for an attraction value for ngbi of the
splittee s:

attract(ngbi) = compat(s, ngbi) × length(s, ngbi) × imp(ngbi) (4.1)

Instead of assigning the face to the most compatible neighbour (as in the
original GAP-tree) or by splitting the face ‘in the middle’ (as in § 4.3.1), we could
de�ne our ‘ideal split’ as one that assigns areas proportional to the attraction
values of the various neighbours.

¿e objective of de�ning these attraction values is to let each neighbour
obtain a fair share of the splittee and, as described in § 4.3.2, this measure will
in�uence the position of the newly generated skeleton segments. In the same
line of reasoning, we have designed a methodology for the evaluation of the split
algorithm.

128

chapter 4. improving variable-scale data structures

Equation 4.2 shows that we expect a neighbour i to get a share of the splittee
s, that is in accordance with the sum of all attraction values of the n neighbours
around the splittee.

share(ngbi)ideal_target =
attract(ngbi)
n
∑
j=0
attract(ngb j)

× area(s) (4.2)

¿e share that a neighbour i actually obtains is easilymeasured by subtracting
the size of the neighbour from before the split, from the size of the neighbour
a er the split.

share(ngbi)obtained = area(ngbi)post − area(ngbi)pre (4.3)

We now can obtain the absolute di�erence of the share that one neighbour
should obtain in theory and the share that it gets assigned by SplitArea
(Equation 4.4). ¿is di�erence is the error that is made in appointing a share to
one of the neighbours.

errori = abs(share(ngbi)obtained − share(ngbi)ideal_target) (4.4)

Equation 4.5 shows that summing all error values of the neighbours involved
in the split operation, normalized against the size of the splittee s, leads to a value
that expresses the total error made with subdividing the feature.

1
2 ×

n
∑
j=0
error j

area(s) (4.5)

Because for each error the value is recorded twice (what one neighbour gets
too much, is automatically not appointed to any of the others, but also counted)
the total error value is divided by two, resulting in an error value between 0 and
100%. Subsequently, these error values can be visualised in a histogram.

4.3.4 Results and Discussion

To test the behaviour of SplitArea we implemented the algorithm in the
context of the tGAP data structure.¿e algorithm was tested with two land cover
datasets. Table 4.6 shows some characteristics for both datasets and Figure 4.25
gives a graphical impression.

129

variable-scale geo-information

Table 4.6: Characteristics of the test data sets used in the experiments.

Buchholz in der Nordheide (clip) CORINE 2000 (clip)
(intended for 1:50K use) (intended for 1:100K use)

edges 1 564 6 635
faces 525 2 471

neighbours per face
- average 5.6 4.5
- median 5 3
- maximum 27 439*

feature classes 12 29
* In this dataset, some polygons have a relatively large extent (rivers) or have a lot of
islands, which explains the high maximum number of neighbours.

(a) German land cover dataset (b) European land cover dataset

Figure 4.25: Map fragments from both test datasets.

In § 2.4 it was explained that constructing data for the tGAP data structure is
an o�-line process, preparing the data for on-line use, e. g. in a web environment.
In every iteration of this batch process the least important face is replaced by the
result of a generalisation operator (either a merge or, now with the availability
of SplitArea, a split operation). At the end of every iteration the obtained
topological chains are put back into the planar area partitioning. From the
topological chains, the polygon geometry is obtained to calculate the new area
size of the neighbouring faces. In our experiment, no failures were found in
reconstructing the geometry – this is an indication that all topological references
were correctly set by our implementation of SplitArea. Note that we only
performed split operations this experiment (no merge operations).

130

chapter 4. improving variable-scale data structures

evaluating splits and improving fairness. We�rst ran SplitArea
in unweighted mode on the German land cover dataset. In this case, the attrac-
tion values are only determined by the boundary length between the splittee
and its neighbours (cf. Equation 4.1, for which in this case compatibility values
and weights were set to 1, thus e�ectively only taking the length into account).
For each split, the error per neighbour was recorded, according to the methodo-
logy described in § 4.3.3 and post-processed into the total error value per split.
Figure 4.26 shows an histogram and the spatial distribution of the total errors
being made for all splits while building the tGAP structure for this dataset.

(a) Histogram of the errors occuring while
splitting faces. An error is the di�erence
between the expected and actual share ob-
tained by a neighbouring face.

(b) Distribution of the errors over the do-
main. The larger and darker a circle is, the
larger the total error in the outcome of the
performed split is.

Figure 4.26: Results of �rst, unweighted run of Spl i tArea.

¿e errors stored per split allowed us to investigate which input was the basis
for the splits with the highest error (the tail of the histogram which we tried
to analyse). ¿e larger circles on the map in Figure 4.26b show those errors. It
appeared that three types of input resulted in large di�erences between what we
set as ideal target and what the algorithm obtained:

1. ¿e splittee is completely surrounded at one side by another face, which
therefore devours the splittee and leaves no part for the other neighbour
at all (e. g. Figure 4.27a).

2. A splittee having unevenly distributed vertices in its boundary, preventing
one of the neighbours of getting a fair share (thin and long triangles will

131

variable-scale geo-information

appear at one side, preventing a face at this side to get a fair amount of the
triangles on the interior of the splittee). See Figure 4.27c for an example.

3. Faces at the border of the domain will give a share to the universe (as we
did not instruct the algorithm to not extend the universe, i. e. 0-weights
were not used).

A

B

(a) Completely surrounded
splittee, face A gets all of the
splittee.

A

B

(b) Improved split.

C

A

B

(c) Unevenly distributed ver-
tices prevent face A from get-
ting a share.

C

A

B

(d) Improved split.

Figure 4.27: (a) & (b): Face A completely surrounds the splittee and gobbles it up. (c) & (d): On
the boundary of the splittee, the vertices are distributed unevenly, leading to small triangles
in front of face A: these triangles prevent face A from getting its fair share of the splittee.

To improve on the �rst two cases, we came up with the following strategy to
compute the improved split (the edges are only modi�ed as input for the split
algorithm, but as SplitArea will obtain new boundaries, these modi�ed input

132

chapter 4. improving variable-scale data structures

edges are not stored in the tGAP data structure): �rst, delete the vertices that
are unevenly distributed by simplifying the boundaries using a small tolerance
value, and second, densify the boundaries, by placing new vertices regularly into
the simpli�ed boundaries. For simpli�cation we used the approach described in
§ 4.2 (now with a tolerance as stop criterion) and as a tolerance value we used
twice the smallest segment length that is present in all the boundary edges of
the splittee.

(a) Histogram of the errors occuring while
splitting faces.

(b) Distribution of errors over the domain.
Errors remain at the border of the domain.

Figure 4.28: Results of unweighted run of Spl i tArea, using simpli�cation and densi�cation on
the input.

Figure 4.27b and 4.27d show the result of two splits that clearly bene�t from
the strategy of simplifying and densifying. Overall, the total amount of error
has decreased, compare the error distribution of Figure 4.28b with the one in
Figure 4.26b and it is evident that some of the larger errors have gone away.

¿e errors at the boundary of the domain can only be solved by �xing the
borders of the splittee that are incident to the universe. ¿us, to prevent the
universe face from ‘eating’ objects, we placed zero weights on the edges incident
to the universe. ¿e result of this is shown in the third histogram in Figure 4.29,
which is clearly the best result we obtained so far.

¿e problem of the algorithm not being able to get an even fairer split (an
‘error free’ result would result in an histogram with only one bar adjacent to
the y-axis) is to be searched in the limits imposed by the triangulation. Using
a triangulation has clearly advantages: it brings good control over maintaining
correct topology, enables relatively easy computation of an ‘approximate’ skel-
eton, and good and robust (triangulation) implementations are freely available.

133

variable-scale geo-information

(a) Total errors made. (b) Distribution of errors over the domain.
Errors at the border of the domain have
been solved.

Figure 4.29: Results of a weighted run of Spl i tArea, using 0-weights (with simpli�cation and
densi�cation) to �xate the border of the domain.

However, the densi�cation step that was shown to be necessary, also shows that
our solution space for �nding the ideal split is limited by the way the triangles
are placed based on the spatial con�guration of the input (i. e. no better solution
is possible with the way triangles are placed).

effects for the tgap data structure. To compare the number of
topological chains and faces that are the result of SplitArea with the number of
primitives stored in the tGAP structure we ran another experiment. In the classic
set-up of the tGAP structure only a merge operation was available and duplicate
edge rows are avoided as much as possible, cf. § 4.1. For both test datasets a lean
tGAP structure was built, as well as a structure in which we applied SplitArea
as the only generalisation operation (without weights set on the input perimeter
chains) and the structure was �lled with as lean as possible content: only a new
row in the edge table is recorded if an edge has new or changed edge geometry.
Furthermore, we input for the compatibility values a matrix with ones, which
means that the merging and splitting operations are purely driven by geometric
criteria (area and boundary length), but that thematic attributes (i. e. looking
at compatible feature classes) are not taken into account and therefore has little
e�ect on the number of edges and faces to be stored.

Table 4.7 shows the resulting number of topological chains (edges) and
faces that are stored in the tGAP structure, depending on which generalisation

134

chapter 4. improving variable-scale data structures

Table 4.7: Empirical results: comparing merge operation with split operation

Buchholz CORINE 2000
(clip) (clip)

original edges 1 564 6 635
faces 525 2 471

merge edges 2 533 1.6× 9 795 1.5×
faces 1 049 2× 4 941 2×

split edges 4 913 3.1× 15 535 2.3×
faces 2 498 4.8× 8 840 3.5×

operation is applied. ¿e second row in Table 4.7 shows the result of applying
only the merge operation, while the third row shows the results of applying
SplitArea. In the case of applying a merge operation, a new face (having a
new identi�er) was introduced for the face that replaces the two old faces being
merged.¿erefore, the number of face rows is exactly 2 times the original number
of faces minus 1 (total number of nodes in a binary tree). When applying only
the split operation, we also get 1 face less per operation, so we can conclude that
the total number of faces could be equivalent to the number of faces as a result
when merging. However, the di�erence of the number of split and of merged
faces is caused, because faces, which played a role in the split operation of one
of their neighbours (not because they were split themselves), were stored in the
tGAP structure (needed because geometry of the face has changed).

When looking at the number of edges, new edge records are only stored
when these edges are merged (for more details, see § 4.1). In case of applying
SplitArea, the lengthened external chains, together with new edge geometries
as result from the split, are stored in the tGAP structure. All in all, the number of
primitives to be stored has to be higher with SplitArea than when applying a
merge operation, mainly because new boundary geometry is generated.

Figure 4.30 shows 2 map series as result of applying the two generalisation
operations. Although the di�erences between the two map series are subtle, they
give an impression of what can be accomplished with both operations (without
tweaking compatibility values much). Merging leaves original boundaries of
objects untouched, while SplitArea introduces new geometries. Because of
this, the merge result seems to be a more ‘all or nothing approach’, specially
when compared to the split operation, which can operate more subtle (e. g. see
urban areas in the Northwest part of the maps). However, in this experiment the

135

variable-scale geo-information

10km

(a) Most detailed representation of European land cover
dataset.

Figure 4.30: A series of maps derived from the tGAP structure. The series illustrate the (subtly)
di�erences between the merge and split operations (continues on p. 137).

merge operation is hindered by the fact that the compatibility values were not
tweaked much (and only were based on geometric criteria). ¿erefore, in some
cases land features and water features are not prevented frommerging.¿erefore,
when making the generalisation process more optimal, it should in future work
be considered to : 1. tweak the compatibility matrix, and 2. investigate how to
determine when to apply the split and when the merge operation (i. e. take more
thematic attributes of the polygons into account, for example only split linear
infrastructure objects, while using the merge operation for other objects) and 3.
represent linear features explicitly in the structure (linking these features to a set
of edges – then linear networks, as o en found in topographic data, can play a
role in generalising the area partition as input for the tGAP structure).

4.4 Closing remarks

In this chapter we studied 3 generalisation algorithms (area merge, area split
and line simpli�cation) and their impact on the data structures, scrutinising the
following research questions:

4. How does minimal geometric redundancy in�uence the design of the data
structures?

5. How can we simultaneously simplify edges so that the result is topologically
consistent?

136

chapter 4. improving variable-scale data structures

10km

(b) Merge I (360 areas)

10km

(c) Merge II (120 areas)

10km

(d) Merge III (60 areas)

Figure 4.30: A series of maps derived from the tGAP structure. The series illustrate the (subtly)
di�erences between the merge and split operations – merge operations are shown here
(continues on p. 138).

137

variable-scale geo-information

10km

(e) Split I (360 areas)

10km

(f) Split II (120 areas)

10km

(g) Split III (60 areas)

Figure 4.30: A series of maps derived from the tGAP structure. The series illustrate the (subtly)
di�erences between the merge and split operations – split operations are shown here (con-
tinued from p. 137).

138

chapter 4. improving variable-scale data structures

6. How can we split linear features over their neighbours, instead of merging to
one of their neighbours?

During the design of a more data storage (and transfer) e�cient version of
the tGAP structure di�erent alternatives were explored (§ 4.1). It was shown
that the number of elements to be stored not only depends on the schema of the
data structures, but that also choices have to be made when certain elements
are stored in the data structures and when not, i. e. information is implicitly
stored yet can still be derived from the stored information. ¿is leads to a better
trade o� between storage and calculation-when-needed than before (much less
data is to be stored and transferred, but with our lean alternative sometimes it is
necessary to perform a lookup operation of the correct neighbouring face). Note
that le /right references of the lean tGAP structure (references at the lowest
importance value) have di�erent meaning from the classic le /right references
(therefore these attributes are stored in a column with a di�erent name).

Secondly, we described an algorithm, based on the approach by Kulik et al.
(2005), to simplify simultaneously a subset of polylines in a planar partition
in a vario-scale context (§ 4.2). We improved the approach in two ways: better
running time and preventing introduction of any topological error (when using
a planar partition). Furthermore, we gave a description of the options that we
have when employing this algorithm in practice. Another contribution is that
we analysed how much the average number of points in the boundaries of the
polygonal areas would grow without simpli�cation, to choose the best simpli�c-
ation strategy, also from the perspective of the amount of data to be stored in
the data structures.

¿irdly, SplitArea, the algorithm presented in § 4.3, is a useful tool to
divide a polygonal area over its neighbours or to obtain a thinned representation
of a face (i. e. collapse). It was shown that the algorithm can be modi�ed to
handle weighted and unmovable edges as input, making a weighted split possible.
Based on the weights, the attractiveness of individual neighbours can be steered
and measured (beforehand a goal can be set how to fairly divide an area). As a
tool to use in the context of the tGAP data structure, SplitArea opens new
possibilities for �ne tuning the generalisation process: it is now possible to choose
when to split/collapse (e. g. in case of linear road or water features) or to merge
(other features). Note that SplitArea with all neighbours except one having
a zero weight, is again the classic merge of the tGAP so SplitArea is more
generic compared to the merge. In an implementation however this case can be

139

variable-scale geo-information

dealt with more e�ciently by using the classic merge operation, e. g. no need to
triangulate.

140

5IMPROVING VARIO-SCALE DATA DISSEMINATION

•

¿is chapter investigates (and improves) the data structures by using them for
transmission of the stored vector data over a network, such as the Internet.
Where the previous chapter discussed mostly the layout of the data structures,
this chapter tests how and if a 2d map can be derived from data structures
(with the lean design of the data structures from the previous chapter), target-
ing constant number of map objects for delivery, independent from the map
scale chosen for display. As map scale is not explicitly encoded – the level of
generalisation is coded via the concept of ‘importance’ (introduced in § 2.4) – it
is necessary to perform a mapping between map scale (which is dependent on
device characteristics) and importance. ¿is mapping is discussed in § 5.1. ¿en
follows a description of how a map at a speci�c scale point can be derived by a
stateless, thin client (§ 5.2). Further, it is investigated whether the lean structures
make more dynamic map solutions possible by using the structures for retrieval
of data for a thick client by incrementally adding additional details to an already
sent map. As Haunert et al. (2009) described how to use the tGAP structures
for progressive streaming of data, it is tested in § 5.3 whether their method pro-
posed and the way the data structures are now composed (as described in the
previous chapter) are capable of this type of use (by developing and studying a
prototype implementation). Next to the test results, § 5.4 proposes the use of an
additional data structure, so that the variable-scale approach can become more
cache-friendly. ¿is brings then the following bene�ts: less redundant data trans-
fer during interactive use (compared to a stateless approach) and possibilities
for o�ine operation by (partially) priming a cache at client-side. Finally, § 5.5
summarizes the results of this chapter.

variable-scale geo-information

Own publications

¿is chapter is based on the following own publications:

• Meijers, M. (2008). Retrieving tGAP data with a stateless client for visual-
ization. RGI Project Report 233-03, Del University of Technology, Del .

• Meijers, M. (2011a). Cache-friendly progressive data streaming with
variable-scale data structures. In Proceedings of 14th ICA/ISPRS Workshop
on Generalisation and Multiple Representation, pages 1–19.

5.1 Quantitative importance-setting approach

A vario-scale planar partition to be stored with the tGAP structures will be
created by an automatic generalisation process before online use. As shown in
the previous chapters, the tGAP structures use explicit topological data structures
for storage. ¿e input data is validated. When the input data is ‘clean’ and ‘valid’,
it is easier to implement generalisation operations. ¿e three generalisation
operators, that are implemented for the automatic generalisation are merge and
split (of polygons) and simpli�cation (of boundary lines). ¿e merge and split
generalisation operators (§ 4.1 and § 4.3) are applied as ‘global optimisation’:
the least important object (according to some criteria) present in the complete
dataset is being generalised.

A simpli�cation operation (§ 4.2) is performed as post-processing step a er
one of the merge and split operations (i. e. a er a merge or split the boundaries
of the new area feature(s) will be simpli�ed). Furthermore, all operators have
been implemented in such a way that they do not introduce topological errors.

In an online usage scenario where a 2d map is retrieved from the tGAP
structures, the amount of vector information to be processed has an impact on
the processing time for display on the client. ¿erefore, as a rule of thumb, we
strive to show a �xed number of (area) objects on the map, independent from
the level of detail the objects have, in such a way that the optimal number of
objects is displayed (i. e. optimal information density). ¿is number is termed
here the optimal number of map objects and will be used for retrieving data
in such a way, that the amount of objects, i. e. faces and edges (with certain
number of coordinates), to be retrieved on average remains constant per viewport
(independent from which level of detail is retrieved) and thereby the transfer
and processing time stay within limits.

142

chapter 5. improving vario-scale data dissemination

¿e optimal number can be realised, because the generalisation procedures
that create tGAP data incrementally lead to less and less data in the hierarchy, i. e.
less data is stored near the top of the space-scale cube (ssc) and the extent of
area objects near the top of the cube is considerably larger (with a limited number
of coordinates in their boundaries) than at the bottom (with more coordinates
in their boundaries). A cross section in this cube leads to a 2d map, see § 3.2.3.
¿e extent of the viewport (i. e. the window through which the user is looking at
the data) also implies that it is necessary to take a clip of data out of such a slice:
when a user is zoomed out, the viewport of a user will lead to a big extent (the
area to be clipped is large) and when a user is zoomed in this extent will become
considerably smaller. For a user that performs a panning action it is necessary
to move the extent of the clip within the slice. Figure 5.1 gives an illustration.

y
x

scale

(a) Zooming in. (b) Zooming out.

(c) Panning. (d) Panning, with pro-
gressive addition of
details.

Figure 5.1: Zooming&panningwithvario-scaledata explainedwith the ssc (aftervanOosterom
and Meijers, 2011a).

143

variable-scale geo-information

Positioning the height of the slice in the cube, together with taking the clip,
should lead to a constant number of objects to be visualised. To realise the
position of the cross section means that the question to be answered is ‘which
importance value corresponds to the map scale at the client?’ In practice this will
mean that a thin client will only have to report the current extent (plus device
characteristics) to a server and then can be sure to receive the right amount of
data for a speci�c level of detail as the server can translate this extent to a suitable
importance value to query the data structures. Make note that this on average
is the right amount of information, as there may be regions with more dense
content than on average (e. g. rural vs. urban area). For a thick client, that has
more capabilities and where it is possible to perform more advanced processing,
it should be possible to �rst receive a coarse map, and then to incrementally
receive additional details when a user waits longer, leading to a more detailed
map (with additional map objects). ¿e mapping of map scale to importance in
this scenario is necessary to determine when to stop sending additional details.
Independent from whether a thin or thick client is used: it is key to know what
the importance value is that is implied by the current map scale of the client (i. e.
positioning the height of the slice).

We will �rst show that a �lled tGAP data structure will be able to supply data
for a speci�c scale range. As we will see, this range is dependent on the optimal
number of objects we want to show together with device characteristics. Second,
we will show how to translate a map scale into an importance value, with which
it is possible to take a cross section of the ssc, encoded by the tGAP structures.
¿is cross section then leads to a map with the desired amount of detail. ¿e
focus with which the generalisation process is executed makes that this selection
is possible.

valid vario-scale range. Clearly, the cube has a bottom (maximum
scale) and a top (minimum scale) and in between the optimal amount of data can
be supplied: Depending on device characteristics and how the optimal number
is set up, these minimum and maximum scale values will be di�erent. By our
rule of thumb of average constant data density, we set up the optimal number
of objects, Ov as a constant value for a given dataset and viewport1, e. g. 1 000
objects:

1¿is value can, when the characteristics of the viewport on which the dataset is displayed are
also known, be derived from the intended map scale speci�cation of a data set: how many objects
will on average be shown on the given viewport, when the viewport is set to the intended map
scale.

144

chapter 5. improving vario-scale data dissemination

Ov = required optimal number of objects for viewport (5.1)

For the sake of simplicity, in the following discussion let us assume that
the base map (the planar partition that we used as input for creating the tGAP
data), its objects and the viewport are square and that the base map has an
approximately regular distribution of data over its domain. Furthermore, we will
express all units in meters.

First, we de�ne how many objects we have on the base map:

n = total number of objects (5.2)

Together all these objects cover a certain area:

a =
n
∑
i=1

area(oi) = total area of n objects in planar partition (5.3)

As we assume that the area is square, we can get the size of its diagonal:

ad ≈
√
2a = diagonal of area in meters (5.4)

Based on this size we can give an estimate for the average diagonal size of an
object (assuming that all objects are square):

ād ≈
ad
n

= average diagonal size of an object (5.5)

¿e characteristics of the viewport are determined by its size in pixels and
the physical properties of the screen on which the viewport is depicted (i. e.
the number of pixels per inch, PPI, for the underlying raster). ¿e second last
Styled Layer Descriptor (Lalonde, 2002) standard puts this as follows: ‘the “stand-
ardized rendering pixel size” is de�ned to be 0.28mm × 0.28mm (millimeters).
Frequently, the true pixel size of the �nal rendering device is unknown in the
web environment, and 0.28mm is a common actual size for contemporary video
displays’ (Lalonde, 2002, p. 27). ¿is calculation is based on a default PPI of 90,
as 1 inch at 90 PPI means that the size of a raster pixel approximates 0.28 mm.
We now can determine the size of the viewport diagonal in real world units, Vd
(note that we use meters):

Vp = viewport diagonal in pixels (5.6)

145

variable-scale geo-information

¿e real size of the diagonal Vd is then:

Vd = Vp ×
0.0254 m (= 1 inch)

PPI
= viewport diagonal in meters (5.7)

From the viewport diagonal in meters (the screen PPI combined with view-
port size), the applied generalisation process to create tGAP data and a �xed,
optimal number of objects to show on the map we can get to a scale range for
which the tGAP data structure can produce a map (i. e. a clip out of the correctly
positioned slice), that ful�lls having the optimal number of objects Ov .

If a user is viewing the base map, with all the original details, no additional
details can be shown (as the base map is already the most detailed version) –
this data is stored near the bottom of the ssc. ¿ere is thus a minimum scale
denominator, a er which the tGAP structures will not be able to supply Ov
objects (the original objects will just be ‘blown up’ by zooming, which leads to
fewer than Ov objects on the screen). When the user sees exactly Ov objects
with the level of detail of the base map, this means that in this case along the
diagonal of the viewport we will see approximately

√
Ov objects, which have

an average diagonal size ād . ¿erefore an approximation of the minimum scale
denominator in this case will be the ratio of the real world size of the diagonal
of the objects and the real world size of the diagonal of the viewport:

minimum denominator ≈
√
Ov × ād
Vd

(5.8)

On the other side of the ssc (near the top), a similar e�ect takes place. If a
user �ts the whole dataset exactly in the viewport, we can get the denominator
of this situation as follows:

maximum denominator ≈ ad
Vd

(5.9)

¿e user now views the dataset in such a way that the full extent exactly �ts
in the viewport. ¿e tGAP data structures will supply Ov objects for the full
extent. Let us look at what happens when a user will zoom out. ¿e ultimate
generalisation that is present in the tGAP structure is the object in the root node
of the face tree, in which the initial base map is generalised to 1 object. It is thus
clear that if a user zooms out further than the full extent of the dataset, that in the
end only 1 object would be returned by the tGAP data structure, which is clearly
less than the wanted number of Ov objects. Hence the approximation of the

146

chapter 5. improving vario-scale data dissemination

maximum denominator, as this is the denominator for which it still is possible
to supply Ov objects. If a user zooms out more, it is likely that the structures will
not supply Ov objects, but less (i. e. taking a slice between the root of the tGAP
face tree and the place where a slice leads to Ov objects will always generate less
than Ov objects).

All in all, by de�nition outside the scale range de�ned by the minimum
and maximum denominator, less than the optimal number of objects will be
produced (the user is zoomed in or out too much, both leading to less than the
optimal number of objects) and it will be necessary to clamp values between the
minimum and maximum scale.

scale-to-importance mapping. Now that we knowwhat the valid scale
range is for which it is possible to use this tGAP data set and that we want to
retrieve the optimal number of objects Ov on average, we need to carry out a
mapping in which we translate the scale denominator of the current viewport
of a user to an importance value in the tGAP structure (so that we position the
slice at the correct height in the cube). In § 5.2.2 an experiment will be described
that shows that we can query the data with hypothetical viewports and thereby
empirically validate the theoretical mapping function described here.

If we assume that the user wants to seeOv objects, this is the case when a user
is exactly zoomed to full extent (i. e. when the viewport shows exactly the area a
from Equation 5.3). If a user now zooms in, e. g. by reducing the viewport width
to half of this original size (zooming in by powers of two), this means that we
need 22 = 4 times more objects on a complete slice of tGAP data (the reduction
of displayed area follows quadratic relationship). To the user only 1

22 =
1
4 of this

slice will be shown by clipping the relevant area based on the new location of
the viewport. It is thus evident that the ratio of the current viewport size and
the size of the full extent of the data set determines (together with the optimal
number Ov) where a complete slice of data needs to be taken, so that clipping of
this slice then leads to the optimal number for the current viewport.

A complete slice of data with the correct number of total objects present is
relatively straightforward to obtain: ‘replay’ in reversed order from the top of the
data structure this amount of generalisation operations and the imp_low value
of the object that is generalised is the importance value for producing Ov . Here
we use the knowledge of how the generalisation procedure for tGAP produces
stepwise less data (in every step either an area object is mergedwith its neighbour,
or it is split over all its neighbours, which frequently produces a unique imp_low

147

variable-scale geo-information

value for the resulting objects); ordered imp_low values describe the order in
which generalisation operations have been applied.

¿e mapping can thus work as follows:

1. Take the scale denominator d and real world size of the viewport diagonal
Vd ;

2. Clamp d between the minimum and maximum scale denominator, this
leads to d′;

3. Calculate the real world area b of the viewport based on d′ and Vd ;

4. Calculate scaling factor f :
f = a

b

5. Derive the total number of objects that should be on a new and full slice
of data, i. e. the count c to query data structures with: c = Ov × f ;

6. With this count c it is possible to query the face table of the data structures
to get an ordered list of all generalisation events at their importance values
and taking the correct value by looking at how many there should be
skipped (the o�set clause in the following query):

SELECT DISTINCT

imp_low

FROM

<dataset>_face

ORDER BY imp_low DESC

LIMIT 1 OFFSET <c>

¿is query leads to an importance value, with which a slice of tGAP data
can be retrieved and for which the clipped area then – on average – leads
to the Ov optimal number of objects.

Note that clamping based on scale denominators, as shown here, can also be
performed on the count value that is calculated a er applying the scale factor:
this value should lie between Ov (optimal number of objects, Equation 5.1) and
n, being the total number of objects in the base map (Equation 5.2). Also note
that f can be determined based on the current scale denominator d and the
maximum scale denominator (Equation 5.9).

148

chapter 5. improving vario-scale data dissemination

5.2 2d map for a thin client

¿is section provides details on retrieval and transfer of the data from the topo-
logical data structures at a server to a thin client. Communication between the
thin client and a server is here performed in a stateless way, which means that
the client requests data a er each user action (zoom in, out or pan) and does
not maintain state of which part of the data is already retrieved (each request for
data is independent from the other requests).

5.2.1 Retrieving a 2d map

At the client-side a topological structure of a 2d map is kept – the TopoMap object.
¿e TopoMap object contains all retrieved topological primitives.¿ese primitives
will have to be transformed into geometries, which then can be visualised to
an end user. As interaction is stateless, for every new request for data with the
server a new TopoMap object is created (and a previous one is abandoned).

Figure 5.2 shows that the TopoMap object at the client-side is implemented
as a Doubly-Connected Edge List (DCEL, cf. de Berg et al., 2000), extended
with a Ring class to handle Faces that have holes in their interior. Relations
are implemented as memory pointers. From the topological primitives Simple
Feature geometries (polygons) will be formed (when all pointers are set correctly
this means that rings can be formed, and when there are multiple rings for a face
that the rings having the largest bounding box has to be the outer ring of a 2d
polygon).

Face Ringloops HalfEdgestart

face

loop

twin

next

Nodeorigin

Figure 5.2: Structure of the TopoMap – which objects are kept in memory, plus their pointers.
Basically the TopoMap object represents a Doubly-Connected Edge List (DCEL) extended with
Rings to handle Faces that have islands in their interior.

We will discuss 2 possible options for data retrieval for a TopoMap for a thin
client. Common for both options is that they need to: a. perform a mapping
from map scale to an importance value (as discussed previously in § 5.1) and

149

variable-scale geo-information

b. have access to a function (implemented in the database server) to translate
le /right pointers to the correct neighbouring face (as was shown in § 4.1 it is
necessary to encode edges more compactly – preventing excessive numbers of
edge records to be stored). Figure 5.3 illustrates the resulting map of the two
options, a er translating map scale to an importance value:

(a) Retrieval based on faces and administrat-
ively on edges (option 1).

(b) Retrieval based on faces and edges their
bounding box (option 2). Edges are clipped
before face geometries are reconstructed.

Figure 5.3: Data retrieval for a viewport (rectangle). Note that clipping was also discussed in
§ 4.1.

1. Select faces for the correct importance value (based on bounding box over-
lap) and then join edges administratively on a value that is implemented
in the DBMS that returns the translated face pointer. ¿is option leads to
complete areas retrieved (i. e. also edges outside the extent of the viewport
are retrieved).

2. Select faces and edges (both selections are performed on bounding box
overlap, see § 4.1), then translate all face pointers for selected edges to
the correct face pointer. In this option the information that is retrieved
will be incomplete, i. e. implicit edges at the rim of the viewport need
to be found. ¿e relationship that the retrieved edges have with the rim
of the viewport is used to �nd this missing information. A er retrieval
of the edge data, the edges are processed based on their bounding box:
If an edge is completely inside, it is just added, ready to form polygons.
Otherwise an edge likely intersects with the rim that consists of 4 edges,
although an edge still might be completely outside as well (i. e. having

150

chapter 5. improving vario-scale data dissemination

no interaction with the viewport at all). ¿ose edges can be processed
with an extended Liang-Barsky algorithm for line clipping (see e. g. Hearn
and Baker, 2003, chapter 6). Such a clipping algorithm works as follows:
All edges their geometries that possibly intersect the query window, are
processed segmentwise from start node towards end node. During this
process information is gathered on which parts of the geometry of the
edge are inside the query window.

For each part of the geometry that lies inside the query window a com-
pletely new edge is created, with information for the start and end node
and the faces that are adjacent to the edge part, plus the geometric part
that is inside the query window. New start and end nodes are recorded if
this is necessary: an identi�er is created based on the coordinate where the
edge is clipped. ¿ese clipped coordinates are stored in a clipped nodes
list, together with the four corners of the query window, which are also
added. ¿is clipped nodes list is sorted on the angle the nodes have with
respect to the viewport centre. ¿e newly created edges are added to the
TopoMap, as well as all edges that lie between all pairs of clipped nodes on
the rim of the viewport.

5.2.2 Experiment

We conducted a small experiment where we produced a series of viewports for
which we retrieved data via Option 2. A hypothetical viewport size of 640 × 640
pixels at 90 DPI was used (approximately 18 × 18 cm), together with a optimal
number ofOv = 250.We utilised a quadtree-like organisation for creating extents
which mimic a user zooming in on, and for each level panning, the data set.
Figure 5.4 gives an illustration of the viewports (and their position within the
ssc). ¿e viewports were set up as follows: start with full extent of the whole
dataset as initial square, then recursively split the extent of a quadrant in 4 sub-
quadrants, creating hierarchical organisation of quadrants until quadrants will
lead to less than Ov objects. Each quadrant now is used as a viewport by means
of which we will query the tGAP data set. Figure 5.5 illustrates the amount of
data that we want to retrieve for the viewports. To position a level of viewports
at their correct height in the ssc, i. e. perform the mapping from scale to an
importance value, we employed the approach described in § 5.1.

Figure 5.6 highlights the results for the Buchholz data set. For every ‘slice’
(i. e. a level consisting of a set of viewports) both the number of faces and number
of coordinates inside all viewports were aggregated into a boxplot. Although the

15 1

variable-scale geo-information

(a) 1:145K (b) 1:72K (c) 1:36K (d) 1:18K

(e) 1:145K (f) 1:72K (g) 1:36K (h) 1:18K

300 - 400

0 - 100

100 - 200

200 - 300

Number of faces

(i)

(e)

y
x

scale

(h)
(g)

(f)

(j)

Figure 5.4: Viewports used in experiment for retrieving data. Figure 5.4a, 5.4b, 5.4c and 5.4d
show the slices of data (after mapping scale to importance). Figure 5.4e, 5.4f, 5.4g and 5.4h
show the viewports used; the colour of a viewport indicates howmany faces are retrieved
(Figure 5.4i shows the legend). An indication of the position in the ssc of the used viewports
is shown in Figure 5.4j.

152

chapter 5. improving vario-scale data dissemination

1:18K 1:36K 1:72K 1:145K
Map scale

2 000
4 000
6 000
8 000
10 000
12 000
14 000
16 000
18 000

W
an

te
d
nu

m
be

ro
ff
ac
es

(p
er

sl
ic
e,
lo
g
sc
al
e)

0

(a) The numberof faces thatwewill try to retrieve for awhole slice of tGAPdata. The horizontal
lines in the graph depict the minimum (i. e. the lowest line is the optimal number set up for a
viewport = 250) and the maximum number of faces (i. e. the highest line is the total number
of faces present in the dataset = 5587) which will be retrieved (the required number of faces
for a whole slice is clamped between these two values).

1:18K 1:36K 1:72K 1:145K
Map scale

240

245

250

255

260

W
an

te
d
nu

m
be

ro
ff
ac
es

(p
er

vi
ew

po
rt
)

(b) The number of faces that are set up for data retrieval of the maps in our experiment for 4
di�erent map scales.

Figure 5.5: Settings for data retrieval. The number of maps which have been retrieved in the
experiment vary with the map scale: 64 di�erent viewports are used to create maps for the
map scale 1:18k, 16 for 1:36k, 4 for 1:72k and 1 for 1:145k. The expected result is that the obtained
map density is constant on average.

153

variable-scale geo-information

1:18K 1:36K 1:72K 1:145K
Map scale

50
100
150
200
250
300
350
400

N
um

be
ro

ff
ac
es

0

(a) Spread in the retrieved number of tGAP faces. This plot shows that indeed about 250
objects are retrieved per viewport. Note that sometimes more, and sometimes less, data is
retrieved, however, on average – the dot on top of the boxplot – the resulting number of
faces ful�lls the wanted number of 250, except when we are zoomed in too far (namely at
the map scale 1:18k).

1:18K 1:36K 1:72K 1:145K
Map scale

200

400

600

800

1 000

1 200

N
um

be
ro

fe
dg

es

0

(b) Spread in the retrieved number of tGAP edges.

1:18K 1:36K 1:72K 1:145K
Map scale

2 000

4 000

6 000

8 000

10 000

N
um

be
ro

fv
er
tic

es

0

(c) Spread in the retrieved number of tGAP vertices.

Figure 5.6: Spreadof actually retrievednumberofdata elements,when the tGAPdata structures
are used for data retrieval.

154

chapter 5. improving vario-scale data dissemination

1:18K 1:36K 1:72K 1:145K
Map scale

1 000

2 000

3 000

4 000

5 000

6 000
N
um

be
ro

ff
ac
es

0

(a) Spread in the retrieved number of original faces.

1:18K 1:36K 1:72K 1:145K
Map scale

2 000
4 000
6 000
8 000
10 000
12 000
14 000
16 000
18 000

N
um

be
ro

fe
dg

es

0

(b) Spread in the retrieved number of original edges.

1:18K 1:36K 1:72K 1:145K
Map scale

20 000

40 000

60 000

80 000

100 000

120 000

140 000

N
um

be
ro

fv
er
tic

es

0

(c) Spread in the retrieved number of original vertices.

Figure 5.7: Spread of actually retrieved number of data elements, when the original data set is
used for data retrieval (i. e. no generalization takes place and original data set is queried for
retrieval).

155

variable-scale geo-information

number �uctuates, it is shown that the average number – the dot in every boxplot
– approximates fairly well the optimal number that was set (i. e. Ov was set to
250). As reference, Figure 5.7 illustrates what happens when just the original
data is queried in the same way (i. e. when no generalisation is taking place).

¿e boxplots provide empirical evidence that it is indeed possible to keep
the number of objects, but also the number of coordinates, to be retrieved under
control, albeit for a speci�c scale range and depending on the viewport size,
device characteristics and the optimal number of objects set. ¿at the number of
coordinates is not excessive is accomplished by the line simpli�cation procedure
(see § 4.2), that was used to produce output geometries with only a limited
numberof coordinates (i. e. the criterion for resulting output of line simpli�cation
was focused on the amount of reduction of data – only keeping half of the original
amount of vertices for a merged polyline).

5.3 Progressive data streaming

Progressive data streaming can make more dynamic map solutions possible by
using the tGAP structures for incremental data retrieval, i. e. adding additional
details to an already sent map. ¿is way an end user can rapidly get an initial
coarse overview,which is then re�nedwith additional data.¿is section discusses
step by step a possible architecture for progressive data streaming.

Figure 5.8 shows the visualisation pipeline, from pre-processing steps to
the client that processes incremental updates to show �rst a coarse map, then
gradually re�ned with additional detail until the required amount is reached.
Subsequently, we will now discuss every step, highlighted with a number, in the
architecture.

5.3.1 Server-side

¿is section discusses how the data is structured at the server-side and what
steps are needed to transform the data from these structures into data packages
(Figure 5.8, step 1 and 2) that are transferred over the network (Figure 5.8, step 3
and 4, see § 5.3.1).

database tables. Figure 5.9 shows the database tables that are needed
for progressive data transfer. Edges (polylines) have a prominent place in the
database: the edge table is the ‘centre of gravity’ in the structure. ¿e imp_low
and imp_high attributes de�ne the range of map scales for which a topological

156

chapter 5. improving vario-scale data dissemination

Base data
Tables:
- node
- edge
- face

Operations:
- merge
- split
- simplify

tGAP
compiler

1
2

3

4

Tables:
- node
- edge
- face

tGAP
data

Network

+ at_imp
+ faces
+ edges

+imp

Server

Client

5

6

7

8

9

DisplayList
Cache

Visualizer

TopoMap Polygon

TopoMap
Updater

Figure 5.8: Visualisation pipeline for progressive data streaming.

entity is valid and has to be shown. Face references that are stored are limited to
the neighbours that are adjacent at the start of such a scale range (left _face
_lowest _imp and right _face _lowest _imp) andwhich faces are neighbouring
at the end of this range (left _face _highest _imp and right _face _highest
_imp). ¿is way it is prevented that a lot of duplicate edge records have to be
stored, while the only thing that changes (due to a generalisation operation)
is a neighbouring face (see § 4.1). Note that the two extra face pointers (at the
high end of the scale range) are added compared to § 4.1, as this is useful for
replaying generalisation operations progressively, while traversing the tGAP
DAG from top to bottom (in a strict sense, these extra pointers are not necessary,
but this takes away the necessity to perform a translation of the face pointers
using the tGAP face tree hierarchy to the high end of the scale range, before
sending the edge). Because the Collapse/Split operation splits Faces overmultiple
neighbours, the resulting hierarchy is not necessarily a tree structure any more,
but a Directed Acyclic Graph structure (DAG), which is re�ected in the separate
face_hierarchy table, where per parent-child combination a record is stored.

¿e geometry of the edges can be merged a er a merge or a split operation, if
a er application of a generalisation operation nodes are present in the topology
of degree 2. ¿ese merged geometries will then be simpli�ed with the modi�ed
Visvalingham-Whyatt line simpli�cation algorithm, taking into account the

157

variable-scale geo-information

topological correctness of the result (see § 4.2 for more details). Note that the
line simpli�cation leads to a new edge record (as the new geometry has to
be stored). However, the average number of coordinates per edge will remain
constant, as the simpli�cation tries to remove half of the points of the lines that
were merged (therefore edges remain similar in complexity in terms of vertices) –
this is important for transfer over a network, because if all original vertices were
kept, too much unnecessary detail has to be transferred from server to client.

retrieval queries. As tGAP data in our prototype is stored in an object-
relational database, depending on whether standardised features are available in
such a database system, queries for progressive data retrieval can be formulated
in one of the two following ways. Option 1 is to use a hierarchical query for
face record retrieval (using the parent_face_id attribute of the faces) and a
sorted set of edge records. ¿e Structured Query Language (SQL) standard
speci�es hierarchical queries by way of recursive common table expressions
(CTEs). Figure 5.10 shows the CTE for retrieval of faces, using the hierarchical
relationship for faces stored in the face table. Note that the union all part of the
query references itself via a self-join. Option 2, when the database system does
not have CTEs implemented, is both using sorted sets for face records as well as
for edge records. Figure 5.11 illustrates this. Note that the query for retrieval of
edges for both options is the same.

5.3.2 Network

communication channels. A client will need 2 channels for communic-
ating with the server: a communication control and a data channel. Over the
communication control channel the client will give commands to the server:
e. g. start retrieval for zoom-in or zoom-out, pause retrieval and stop retrieval.
Data packages – that contain the incremental updates for the client-side – will
be transferred over the data channel. ¿e data packages and the relationship
with the queries will be explained next.

package layout. Incremental updates are realised by reading the data
packages at the client-side and processing the updates contained in the data
package.¿e whole stream consists of multiple packages, which are send in order
de�ned by the imp value. ¿e structure of one data package is the following:

158

chapter 5. improving vario-scale data dissemination

leftFaceHighestImp 1..*1

rightFaceHighestImp 1..*1

leftFaceLowestImp 1..*1

rightFaceLowestImp 1..*1

0..*

tGAPTopolObject

startNode1..* 1

endNode1..* 1

+ impLow: numeric
+ impHigh: numeric

parentFace

+ faceId: integer
+ impOwn: numeric
+ featureClass: integer
+ area: numeric
+ bbox: box2d

Face

+ getGeometry: polygon

0, 2

+ edgeId: integer
+ geometry: polyline

Edge
+ nodeId: integer
+ geometry: point

Node

(a) UML diagram

CREATE TABLE tgap_faces (

face_id integer,

imp_low numeric,

imp_high numeric,

imp_own numeric,

feature_class_id integer,

area numeric,

bbox box2d);

(b) Face table

CREATE TABLE tgap_face_hierarchy (

face_id integer,

parent_face_id integer,

imp_low numeric,

imp_high numeric);

(c) Face hierarchy table

CREATE TABLE tgap_edges (

edge_id integer,

imp_low numeric,

imp_high numeric,

start_node_id integer,

end_node_id integer,

left_face_lowest_imp integer,

right_face_lowest_imp integer,

left_face_highest_imp integer,

right_face_highest_imp integer,

geometry geometry);

(d) Edge table

Figure 5.9: UML diagram and the database tables at server-side. Note that the DAG is stored in
a separate face hierarchy table: this table holds multiple records per face when it is split, i. e.
for every parent one record is stored.

159

variable-scale geo-information

with recursive hierarchy as (

select

face_id, imp_low, imp_high, parent_face_id

from

<dataset>_face_hierarchy

where parent_face_id = -1

union all

select

t1.face_id, t1.imp_low, t1.imp_high, t1.parent_face_id

from

<dataset>_tgap_face_hierarchy t1

join

hierarchy as h on t1.parent_face_id = h.face_id

) select * from hierarchy;

Figure 5.10: Hierarchical query. This query retrieves faces in the face hierarchy in level-order.

at imp an imp value, that describes the scale point where the change has to be
applied for (imp_high for zoom-in, imp_low for zoom-out).

faces faces to be added and faces to be removed.¿e parent-child relationship
of the faces encodes this, together with the direction of the user action
(zoom-in or out determines how to traverse the relationship).

edges the edges that have to be added: geometry (polyline) plus face- and
node-references.

packages and their relation with queries. Tables 5.1 and 5.2 show
the �rst part of the resultset that is retrieved by the queries. Packages will contain
data from both resultsets, grouped by imp_low (in case of a zoom-out action) or
imp_high (zoom-in) attribute values.

Table 5.1: Set of face records, sorted descending by imp_high – zoom-in. First three records
encode that Face 6756 is split into Faces 6746 and 6646

face_id feature_class parent_id imp_low imp_high

6756 4107 1 1354522168 17421338713

6746 4107 6756 1109020325 1354522168
6646 2101 6756 178039195 1354522168

6736 4107 6746 786370390 1109020325
6576 4107 6746 130670112 1109020325

160

chapter 5. improving vario-scale data dissemination

SELECT

fh.face_id::integer,

f.feature_class::integer,

fh.parent_face_id::integer,

fh.imp_low::bigint,

fh.imp_high::bigint,

ST_AsBinary(f.mbr_geometry::geometry) as mbr_geometry

FROM

<dataset>_tgap_face_hierarchy fh

JOIN

<dataset>_tgap_face f

ON

fh.face_id = f.face_id

ORDER BY

imp_high DESC,

parent_face_id ASC

SELECT

edge_id::integer,

imp_low::bigint,

imp_high::bigint,

start_node_id::integer,

end_node_id::integer,

left_face_lowest_imp::integer,

right_face_lowest_imp::integer,

left_face_highest_imp::integer,

right_face_highest_imp::integer,

ST_ASBINARY(geometry)

FROM

<dataset>_tgap_edge

ORDER BY

imp_high DESC

Figure 5.11: Queries for both edges and faces (sorted sets). Network packages can be realised
by executing these two queries from which the resultsets are ‘intermingled’ by a process at
the server-side into packages per imp value.

161

variable-scale geo-information

Table 5.2: Set of edge records retrieved from database at server-side, sorted descending by
imp_high – zoom-in. Note that each edge record also contains an associated geometry (poly-
line), but that this is not shown. Edge 9183 forms the boundary of Face 6756 (compare imp_high
of Face and Edge records) and when Face 6756 is split in 2 Faces, Edges 9171, 9172 and 8680
form the boundaries of these 2 Faces, replacing the old boundary 9183.

id imp_low imp_high sn en lf_lo rf_lo lf_hi rf_hi

9183 1354522168 17421338713 343 343 6756 1 6756 1

9171 1109020325 1354522168 896 343 6746 6646 6746 6646
9172 1109020325 1354522168 343 896 6746 1 6746 1
8680 44573839 1354522168 896 343 6336 1 6646 1

9147 776041941 1109020325 435 5 6726 6576 6736 6576
9160 786370390 1109020325 5 896 6736 1 6736 1
8968 130670112 1109020325 435 343 6576 6506 6576 6646
8967 130670112 1109020325 343 5 6576 1 6576 1
9159 786370390 1109020325 896 435 6736 6646 6736 6646

Creation of the packages can be realised by opening two cursors to the
database, that query the database and fromwhich the resultsets are ‘intermingled’
by a process at the server-side into packages per imp value. Most of the time,
database cursors can be implemented in such a way that not the whole resultset
needs to be pulled into memory of the server-side process, leading to relatively
low memory requirements at the server-side. ¿e server-side process iterates
over both resultsets at the same time — �rst face records and when a change
in imp value is detected then switch over to edge records. ¿e process outputs
a package when enough relevant content is gathered (e. g. both face and edge
records with same imp_high value in case of zoom-in operation are obtained
from the 2 cursors). Based on this data package, the client will update its local
data structures, which is discussed next.

5.3.3 Client-side

topomap. At the client-side again a topological structure of a 2d map is
kept – the TopoMap. ¿is map here (in contrast with the thin client from § 5.2) is
incrementally being updated when a data package arrives over the network, by
a component called the TopoMapUpdater (Figure 5.8, step 5 and 6). ¿e task of
the TopoMapUpdater is to unpack the data packages arriving from the network
and to perform incremental updates on the TopoMap structure.

162

chapter 5. improving vario-scale data dissemination

topomapupdater. ¿e TopoMapUpdater updates the TopoMap object in-
crementally. It performs updates based on the incoming packages in 5 steps:

step 1 Unpack data package into new faces and edges.

step 2 Remove unneeded Topo primitives: the client can deduct this from
the face hierarchy in the incoming package — which faces are not valid
any more (because these will be replaced by more re�ned faces) is in the
package, navigate from these faces to their edges and remove edges that
are not valid any more, i. e. at-imp does not overlap their imp range. In
the process of removing edges it is necessary to keep track of broken and
orphaned Loops.

step 3 Add new primitives from package to the TopoMap (faces and edges).

step 4 Put back broken and orphaned loops to faces where they belong— geo-
metric searching might be required, as not all intermediate face pointers
are kept explicitly.

step 5 Reconstruct polygon geometries (of new faces, but also of their neigh-
bours if simplify had changed boundaries of neighbours) and put polygons
into the visualization queue together with instructions which polygons to
delete from the Display List cache.

polygon display list cache. Figure 5.8, step 8 and 9 show that in the
client OpenGL display lists are used for caching drawing instructions. Per poly-
gon (identi�ed by the face_id attribute) a Display List is created (Shreiner et al.,
2005). Updates placed in the visualization queue allow Display Lists that are
not active any more to be removed and new drawing instructions for Polygons
have to be placed into the Display List cache. ¿is entails triangulation of the
incoming polygons, as OpenGL can only handle convex objects. Once placed in
the Display List cache the visualization loop will execute the drawing instruc-
tions. ¿e planar partition that will be drawn (with a certain frame rate) is at
this stage in the visualization pipeline only a set of low-level OpenGL drawing
instructions.

5.3.4 Experiments

¿is section gives details about 2 experiments that were run: a demonstrator
for progressive data streaming was built and an analysis was performed on how

163

variable-scale geo-information

much data a progressive scenario requires compared to a map requested with
the highest level of detail.

a demonstrator for progressive data streaming. A demon-
strator has been implemented, as example of a fat client that retrieves the tGAP
data from the database incrementally (Figure 5.12). However, this retrieval is not
bound by the current viewport, i. e. the process starts at the top of the tGAP struc-
tures and traverses these downwards (thus zooming in), progressively streaming
additional data to the user interface. Also, the process does not automatically
stop when enough data is retrieved (although this can be realised by performing
a mapping from the display scale to an importance value). WxPython2 is used
for creating the user interface, together with PyOpenGL3 and a wrapper to the
OpenGL triangulation library, created with Cython4. ¿e client processes the
received packages and visualises the result. ¿e decoupled components (data
retrieval and visualization are running in two separate processes) keep the cli-
ent responsive (i. e. the map can be moved while data is streaming in) and the
demonstrator gives a good initial idea of what progressive data streaming entails.

Furthermore, from the implementation exercise the following was learned:

• ¿e initial data model that Haunert et al. (2009) used at the server-side has
to be modi�ed to support both zoom-in as well as zoom-out operations:
the data structures also need le and right face pointers at the imp_high
level (at the end of the scale range for which an edge is valid) – these
two attributes can either be provided at the server-side by dynamically
translating the face pointers when needed or by adding them explicitly to
the edge table – then these are rich enough to be used for progressive data
streaming, i. e. to perform incremental updates to the TopoMap object.

• Holes in polygons can be dealt with, but it is sometimes only possible
to know where islands (holes) belong by using a geometrical check (e. g.
by using a bounding box check). ¿is is due to the e�cient encoding of
the edge records (only �rst scale and last scale, but no intermediate face
pointers stored for edges).

• With the incremental updating approach, it is necessary to address to-
pological primitives explicitly (based on their identi�er in the TopoMap

2http://www.wxpython.org/
3http://pyopengl.sourceforge.net/
4http://www.cython.org/

164

http://www.wxpython.org/
http://pyopengl.sourceforge.net/
http://www.cython.org/

chapter 5. improving vario-scale data dissemination

(a) Screenshot I (b) Screenshot II

(c) Screenshot III (d) Screenshot IV

(e) Screenshot V

Figure 5.12: Progressive data streaming demonstrator user interface.

165

variable-scale geo-information

structure), a dictionary data structure has been used for that (in the C++
programming language one could use the map type from the standard
template library for this).

size of original 2d map versus progressive packages. Another
experiment was conducted to see how much data needs to be transferred in
the progressive scenario, compared with a 2d map having the original amount
of detail (formed by topological primitives). ¿e di�erence between the two is
the price that has to be paid for additional network tra�c of progressive data
streaming with the tGAP structures (in exchange for the advantage that a coarse
overview can rapidly be provided).

Table 5.3 shows the sizes of the 2d maps (that is, their topological primitives
serialized into a text format) that were used as input for the tGAP structure
versus the total size of all packages to be transferred over the network for the
complete tGAP structure in a progressive streaming scenario (i. e. for all scales,
all packages containing updates from coarse to detailed, serialized into a plain
text format). From the table it is clearly visible that progressive data streaming
with the tGAP structures can be realised within less than 2 times the size of the
original dataset (which is in line with our theoretical analysis of § 4.1).

It must be said that the data for the tGAPs has been created with line simpli-
�cation where the optimal number of points that should be preserved (in the
polylines beingmerged) was set to half of the original input vertices at maximum.
As illustration that it is important to perform this line simpli�cation, Table 5.3
also shows the size of packages when no line simpli�cation is performed in the
compilation of the tGAP data. It is evident that this leads to more data that needs
to be streamed (in our tests around a factor 3).

5.4 A cache-friendly and stateful solution

¿is section explores an alternative for making the progressive data streaming
more cache-friendly as in the demonstrator the data were just streamed without
taking into account a bounding box for requests (i. e. no spatial range selection
based on the viewport was performed); this is not very realistic for larger datasets.
Furthermore, the advantages of a cache-friendly solution are two-fold: 1. it leads
to a faster user experience when the same area is visited again – no need to
stream the same data again, as it already is available at the client-side and 2. it
leads to possibilities to operate the solution even when no network access is

166

chapter 5. improving vario-scale data dissemination

Table 5.3: Size of the original 2D map (serialization to text of topological primitives, i. e. edges
and faces, that form themap) comparedwith size for full hierarchy, progressive data streaming
(serialization to text of packages). The table shows that within a factor of 2 of the original size
progressive data streaming can be realised with the tGAP structures. To reach this factor, it is
necessary to perform line simpli�cation; This is illustrated by the last column, which shows
howmuch space the edge records take when they are not simpli�ed.

Dataset + Size Size Increase Size Progressive Increase
type of data 2D map Progressive (non-simpli�ed)

(kB) (kB) (factor) (kB) (factor)

Hamburg (rural) 477 822 1.72× 1 515 3.17×
Colchester (rural) 3 377 5 366 1.59× 9 722 2.88×
Buchholz (rural) 5 044 8 597 1.70× 15 257 3.02×
Delft (urban) 8 369 13 802 1.65× 19 582 2.34×

available by priming the cache, i. e. placing the data (partly) in the cache on the
client beforehand. With ‘plain’ tGAP structures it is di�cult to communicate in
a client-server environment which parts of the tree structures (that store free
form vector objects with arbitrary shapes and geographic extents) have been
already retrieved and is complex to administer.

Haunert et al. mentioned in their list of future work to investigate the use of
a more regular block pattern for data retrieval. To obtain a regular block pattern,
here the use of a Fieldtree (Frank and Barrera, 1990) is explored. ¿e Fieldtree
exists in di�erent forms, but we will use the so-called Partition Fieldtree. ¿is
tree is a hierarchical data structure, composed of Fields (actually a Directed
Acylcic Graph, a DAG, as each Field can have up to 4 parents). Fields are grid
cells with a certain width and height. Each level of Fields covers the whole
domain, has a di�erent resolution (coarser Fields to the top of the hierarchy)
and a di�erent displacement which is a nice property for our problem. In this
case the Fieldtree is not used as usual, where all features of one 2d map at one
map scale are distributed over di�erent Fields based on the smallest Field which
totally contains an object’s geographic extent. Here the Fields of the tree are used
as the more regular blocks suggested by Haunert et al. (2009). Figure 5.13 shows
that the Fields will get a height in the scale dimension and will therefore become
‘real’ 3d blocks.

¿e normal approach of creating tGAP data is to search for the least import-
ant object over the complete domain and apply a generalisation operation to this
object. Here we modify this approach to limit the search within the extents of
one Field (as suggested in van Putten and van Oosterom, 1998, § 5.2). A Field is

167

variable-scale geo-information

Level 1

Level 2

Level 3

(a) Fieldtree in 2D

y
x

scale

Level 1

Level 2

Level 3

(b) Fieldtree in 3D

Figure 5.13: Fieldtree with 3 levels in 2D and 3D. Note that extents of Fields at a level higher in
the hierarchy are twice the size of previous level and shifted.

generalised enough if a certain percentage of the objects that are falling within
it have been generalised. Objects in a Field that do not completely �t (i. e. their
bounding box overlaps with the border of a Field) can not be touched – i. e. these
objects are ‘locked’ and can not be merged, will not get a share of a split/collapse
operation and their boundaries will not be simpli�ed, in short, they will not be
candidates for generalisation this round. When all data for the Fields of the most
detailed level in the Fieldtree have been generalised enough, the next level in the
Fieldtree will be used for continuing the generalisation process: Fields for this
next level will be displaced and their extents will be larger this round. Because
each level of Fields has a di�erent displacement, the boundaries of the Fields
are not �xed at one location in space. ¿is also means that it is not very likely
that objects that are locked at one level will also be locked at the next round of
processing (i. e. objects that could not be generalised the �rst time, will most
likely be generalised the next time, or when the Fields are large enough for the
object to �t in).

When tGAP data is obtained with the help of the Fieldtree and the �elds
are also recorded (in the structure), the �elds can also be used in a progressive
data streaming scenario as initial �lter step to obtain only a part of the tGAP
data from the server-side. ¿e characteristics of the Fieldtree (as it is a very
regular structure) can be coded compactly. ¿ese Fieldtree characteristics are
�rstly transmitted from server to client. In subsequent steps, the client can then
progressively retrieve data from the server by requesting the Fields. A client will
have to start with a slice of data at the top or bottom of one (or more) Field(s). It

168

chapter 5. improving vario-scale data dissemination

is therefore necessary to map scale to a level of the Fieldtree. Once the slice of
data is retrieved, both ‘locked’ and not locked polygons for this slice are available
at the client. As each Field is associated to a part of the tGAP structure, this
part of the tGAP structure can now progressively be transferred from server
to client. With this approach there is thus no need to split the polygons that
form a polygonal coverage of the whole domain into parts, as polygons that are
interacting with the boundary of a Field are valid for the whole scale range, i. e.
the height of the Fields at this level. It is enough to only retrieve once a slice of
data and then data for every Field can be streamed independently from the other
Fields.

Fields also allow to purge retrieved data frommemory,which is usefulwhen a
user is navigating somewhere else (e. g. zooming in to complete di�erent region).
To appreciate the e�ects, it is necessary to test the tGAP-Fieldtree approach with
a real large data set (having many faces and preferably large in geographic extent)
and a small amount of memory available at client (which can be ‘faked’ by setting
a constraint how much data may be cached at client-side). Experiments should
be conducted in which not only zooming is supported, but also panning.

A di�erent cache ‘solution’ to compare to the Fieldtree solution can be to
implement a cache with only a limited amount of available memory, i. e. only
cache X previous requests: when formulating a new request specify not only 1. a
new request (a spatial range for which tGAP data needs to be retrieved from the
ssc) but also 2. send together with this new request a �xed number X of previous
requests (i. e. selections of tGAP data that have been retrieved and remembered
by the client already). As the client has remembered the data that is retrieved for
these X requests, this data does not need to be retrieved again (this can be done
by putting the X previous requests as not to be retrieved into the where clause
of the query which retrieves edges and faces, this way saving on data transfer).
Tuning of the number of previous requests (X) can take place and question then
is how large X should be so that a server will still be responsive (so that it does
not lead to too complex queries, again back to free form vector objects with
arbitrary shapes and geographic extents, which are complex to administrate).

To obtain tGAPdata for a very large dataset (thus generalising a large dataset),
it may be possible to use the same approach with the Fieldtree: Fields at the
same level in the tree can be processed into a part of the whole tGAP structure,
and only objects that are completely inside a Field its extent are allowed to be
‘touched’ by the generalisation process (this can also be bene�cial to perform the
generalisation work on the whole dataset in parallel, speeding up the process).
Probably it is also possible to partly retrieve the associated tGAP data of a Field.

169

variable-scale geo-information

When the client remembers how much data in which direction (zoom-in or
zoom-out) for a Field is already retrieved, the progressive data streaming of a
Field can be paused and later continued. Other advantages that the Fieldtree
might bring: Now we are no longer looking for the globally least important
object, but this search is more local (within one Field only). ¿is makes more
local updates possible (and could lead to a dynamic structure that can be edited).
¿e structure will most-likely have somewhat di�erent data content, but the
expectation is that this content will not be of noticeably lower quality.

5.5 Closing remarks

In this chapter an attempt was made to answer these research questions:

7. How can we query the data structures to retrieve a 2d map from the struc-
tures?

8. How should progressive data streaming in a client-server setup look with
respect to increments, communication and data structures (both at the client-
and at the server-side)?

As this chapter has shown, a �lled tGAP data structure is able to supply vario-
scale data for a speci�c scale range (§ 5.1).¿is range is dependent on the optimal
number of objects that is set up to be shown on a map, the viewport size in pixels
and the device characteristics (pixels per inch). To determine where to take a
cross-section of tGAP data as basis for a 2d map, it was demonstrated how to
carry out a mapping in which a scale denominator is translated to an importance
value to query the tGAP structures. It was also shown that for making a map
it is necessary to translate the edge-to-face pointers by using the hierarchy of
faces (because intermediate edge records are not stored as a consequence of the
design decisions in § 4.1).

An experiment provided empirical evidence that it is indeed possible to
keep the number of faces to be retrieved under control (§ 5.2). ¿is is the main
accomplishment of the preceding generalisation process that generates the tGAP
data which is stored within a factor of 2 of the original size of the dataset. For this
process, the very focus has been on the ‘weight’ of the amount of data to be stored
(mainly the number of edges and the number of vertices in the edge geometry).
¿is is thus not only bene�cial for lean data storage, but more important for
the topic in this chapter, also has a severe impact on the amount of data to be
transferred in a client-server set-up.

170

chapter 5. improving vario-scale data dissemination

Further, this chapter has presented an experiment with regards to progressive
data streaming (§ 5.3).¿e goalwas to seewhether the theory sketched inHaunert
et al. (2009) was complete. ¿e demonstrator that was built has shown that with
somemodi�cations this indeed is the casewith explicit storage of 2 additional face
pointers at the imp_high scale point of every edge (again this is needed as a result
of leaving out the intermediate edge records in the lean tGAP implementation,
§ 4.1). Moreover, the following was learned:

• With the designed data structures, it is possible to transmit packages
containing additional topological primitives (faces and edges) that allow
updating and reconstruction of the polygonal geometry of a 2d map at
the client-side at vario-scale, leading to a more, or less, detailed map at a
di�erent map scale.

• It is an absolute requirement to output valid and clean topological update
packages: when processing incrementally updates for data in the scale
dimension all earlier updates have to be correct. Validity of tGAP data
becomes very important to realise progressive data streaming (e. g. all
topological references have to be stored correctly, otherwise errors may
occur).

• It is necessary to simplify the geometry of the edges (the polylines) – oth-
erwise more than a factor 2 for storage size is needed.

• In case of a larger dataset, the streaming of all updates from top to bottom
can lead to information overload; a er some time too many details will be
shown if the transmission of additional data is not stopped. However, this
is not really a valid scenario – increments should be requested, �ltered and
streamed by using a geographic extent and scale range, i. e. linked to the
zoom and pan action of a user (employing mapping from importance to
map scale) and using Fields of the proposed, additional Fieldtree structure
(§ 5.4).

• Moreover, the proposed cache friendly approach may both be helpful
to process big data sets with the tGAP compiler, even in parallel (i. e.
providing a divide-and-conquer approach to the generalisation process
by using the Field tree as a way to partition the data set in manageable
chunks) as well as making the structure dynamic and more suitable for
‘local’ updates.

17 1

variable-scale geo-information

172

6A NEW ERA: SMOOTH VARIO-SCALE DATA

•

¿is chapter �rst brings together the insights in § 6.1 from Chapters 3, 4 and 5.
By doing that, it re-examines the �nal design of the data structures that are
minimally redundant, can store simpli�ed edge geometry, support merge as well
as split operations and are suitable for progressive transfer. Due to the proposed
progressive demonstrator and the line simpli�cation algorithm we realised that
the data structures are not pushed to their limits in terms of continuous gener-
alisation, such that morphing between representations at di�erent map scales
can take place as the key to smooth zooming. ¿erefore this chapter proposes in
§ 6.2 a new way of obtaining data for the exact same conceptual model proposed
in Chapter 3 (the space-scale cube, ssc), but where horizontal planes are re-
moved as much as possible from the ssc. ¿is leads to continuously generalised
vario-scale data and makes true smooth zooming possible, such that during use
a delta change in the map scale represents a small change (delta) in the map. In
addition, taking a di�erent type of cross-section (by modifying the slice plane)
leads to radial generalisation (cf. Figure 6.7), which is performed automatically
and is useful for application in 3d virtual worlds. ¿en, § 6.3 discusses some
drawbacks of the proposed solution and § 6.4 summarises the introduction of
the smooth ssc.

Own publications

¿is chapter is based on the following own publications:

• van Oosterom, P. and Meijers, M. (2011a). Method and system for generat-
ing maps in an n-dimensional space. Dutch patent application 2006630,
�led April 19, 2011, expected to be published October 2012.

variable-scale geo-information

• van Oosterom, P. and Meijers, M. (2011b). Towards a true vario-scale
structure supporting smooth-zoom. In Proceedings of 14th ICA/ISPRS
Workshop on Generalisation and Multiple Representation, pages 1–19, Paris.

6.1 Lessons learnt: a synthesis

Recall the list of requirements for a variable-scale environment (p. 52), that
concluded Chapter 2:

1. Enables real time access to geo-information in the form of vector data;

2. Makes it possible to store, maintain and disseminate data at variable scale;

3. Is stored with minimal redundancy;

4. Allows progressive transfer and makes smooth zooming possible.

In the foregoing chapters we have scrutinised di�erent aspects that are im-
portant for creating such an environment. Now, we will summarise the main
results per chapter in relation to these requirements.

Chapter 3, by following an axiomatic approach, has formalised the validity
of a vario-scale partition (in three dimensions) where we have combined 2d
space plus 1d scale, leading to the space-scale cube (ssc) that can store vario-
scale data. We have shown how to obtain input data for a generalisation process
that can create the data for the ssc. ¿e conceptual model establishes what
a vario-scale partition entails. As an important starting point of a vario-scale
environment is that data is stored with minimal redundancy, therefore we have
opted to not store an additional, separate and speci�cmodel (DCM) for drawing a
2d map (as is sometimes the case in work�ows formaking papermaps, where the
derived and improved geometric attributes are very important in the production
process).

¿e proposed ssc concept does not enforce the way in which it is encoded
in data structures and how the structure is populated with ‘good quality’ general-
ised content. ¿erefore, Chapter 4 has focused on 3 specialised generalisation
operations, area merge, area split and line simpli�cation, and their impact on the
tGAP data structures, which store 2d geometry plus 1d importance attributes,
encoding the ssc. ¿e very focus of this chapter was: 1. data volume – limiting
the number of composing elements for map objects to be stored, leading to a
better balance between calculation and storage and 2. operations that focus on

174

chapter 6. a new era: smooth vario-scale data

topological consistency. It was proven that it is possible to prevent an excessive
amount of edge records when a merge operation is applied. ¿is was accom-
plished by storing some of the information implicitly (face pointers). Based on
this result, the lean �lling variant of the data structures was proposed, leading to
a better trade o� between storage and computation, i. e. information is more im-
plicitly stored, meaning that attributes need to be derived on the �y (translation
of face pointers for edges). ¿is has shown to be a balancing act whether correct
working functionality can indeed be provided or that additional elements need
to be stored. ¿is is not immediately evident; e. g. the clipping operation for
making a 2d map has thrown a spanner in the works for the leanest investigated
alternative (the no_lr or ‘spaghetti-with-meatballs’ alternative), where it was
not always possible to associate the thematic attributes to all the map objects
on the 2d map. ¿e solution was to rewrite the edge-to-face pointers using the
tGAP face tree.

It was also shown that once data is topologically valid, it is necessary to
guarantee topological consistency under generalisation operations. For example,
the developed line simpli�cation algorithm (which simultaneously simpli�es
multiple input polylines) is aware not to introduce any topological errors. Ini-
tially, for storing the geometry of the boundaries the use of a forest of Binary
Line Generalisation (BLG) trees was proposed (van Oosterom, 2005), with the
advantage that the data structure would contain as little geometric redundancy as
possible. However, the Douglas-Peucker algorithm does not give any guarantees
on topological correctness and we noted that the use of the BLG trees would
create communication overhead in a situation where a client application retrieves
the data from a server, when the trees are only partially transmitted to obtain
the right amount of vertices in the polylines. An alternative we investigated was
not to simplify the boundaries at all, but to keep the original geometry of the
boundaries we started with. We quickly noticed that during use of the result-
ing variable-scale planar partition in a network context, the number of vertices
in the boundaries was too high, especially for the smaller map scales, leading
to a slow performing user interface. ¿erefore, we turned back to simplify the
boundaries, but now store the result of the simpli�cation explicitly (thus not
deriving the geometry dynamically from a special reactive data structure, as
with the BLG trees, as this lead to administrative overhead), and allow some
redundancy in the data structure (but preferably as little as possible). ¿e line
simpli�cation has to be performed without violating any of the requirements
for a valid variable-scale planar partition. ¿e use of explicit topological data
structures can be ‘exploited’ to de�ne in�uence regions where topological errors

175

variable-scale geo-information

might occur, so that these can be prevented. ¿e stored relations have provided
handholds for technical implementation of the algorithms. Moreover, as paper
map making o en relies on a geometry-�rst way of modelling, together with
a painter’s algorithm, these topological relations have not always been on the
priority list for designing generalisation algorithms. For the usage of maps the
topological relations might however be more important than exact geometrical
descriptions – as also argued by Mackaness (2006): humans tend to deal very
well with abstract graphic conceptualisations of space (e. g. illustrated by the
route maps generated by the LineDrive system, described in Agrawala and Stolte,
2001).

With the SplitArea algorithm it is possible to split polygons over their
neighbours. ¿e result of this operation clearly has an impact on the face tree
structure, as a split introduces the need to model this structure as a Directed
Acyclic Graph (DAG). ¿is change is re�ected by storing a separate face hier-
archy table, so that the one-to-many relationship for parent faces can be stored.
¿e resulting empirical evidence from the experiments, in which only a split
operation was performed for creating vario-scale data, does not suggest that split-
ting leads to an excessive amount of records to be stored, although it leads to new
geometries to be stored. However, no theoretical investigation was performed
that proves that excessive edge records are prevented in all cases by this operation.
From the minimal redundancy perspective however it would be good to have
guarantees on a worst case bound of the number of resulting edge geometries.

Furthermore, the split operation is useful for di�erentiating in the gener-
alisation process between types of feature classes, for example paving the way
for representing linear features (polygons collapsed to line representations can
be represented in the scale dimension of the ssc by vertical faces). In a sense,
even a merge operation can be seen as a split with only one possible neighbour,
while keeping the rest of the boundaries �xed, thus when a client can process
the result of a split operation with weighted and zero weight edges (e. g. while
incrementally processing additional data), a merge operation is automatically
supported. Furthermore, the split operation can be a building block for other
generalisation operations performed in a gradual way: e. g. typi�cation, ‘trans-
forming a group of features without defacing the group’s appearance’ (Hangouët
and Lamy, 1999), can be expressed as a series of splits and merges, whereby the
individual members of the group will be changing gradually.

Chapter 5 has �rst focused on the relationship between scale and the
concept of importance, which is associated with every face and also drives the
order in which map objects are generalised. Mapping a map scale to a correct

176

chapter 6. a new era: smooth vario-scale data

importance value is key for obtaining a 2d map with the desired amount of
map objects (following our rule of thumb to keep the average number of map
objects the same – independent from the map scale for which the information is
retrieved). ¿is mapping has made clear that this rule of thumb together with
physical device constraints (i. e. viewport size in pixels and pixels per inch of the
underlying display) de�nes reasonable limits in the scale dimension, i. e. a valid
vario-scale range, for which the data structures can indeed supply the desired
amount of data. An experiment has delivered empirical evidence that a correct
mapping can deliver the desired number of objects, while working with real
world data sets.

Secondly, the architecture of a thin client was discussed, with which it is
possible to obtain via stateless communication a 2d map for the correct spatial
range andmap scale from the structures.¿euse in the online scenario shows that
taking a minimal redundant approach for data storage is a good basic principle.
¿is might seem strange at �rst, as generalisation not necessarily deals with
creating less, but certainly also di�erent information for smaller map scales,
especially when making large steps in the scale dimension, going from large
scale to very small scale (Mackaness, 2006). However, this minimal redundancy
is a critical aspect in times where bandwidth for mobile devices still can be
considered a limited asset (for example, even while 3g mobile networks are
present, using amobile device abroad can be relatively expensive). Next to the fact
that less data needs to be transferred, this frequently means faster performance
(as data serialization is o en an expensive step in network communication).

¿irdly, it was shown that progressive data streaming is driven by the data
organisation that the tGAP data structures provide (both the ordering of data,
as well as the number of data elements is important from a progressive transfer
perspective). Both topics have been the focus of the generalisation process that
was performed beforehand. Moreover, the structures de�ne a hierarchical format
that is very suitable for progressive data streaming, such that data can be retrieved
in a progressive manner – coarse overview �rst, more details later. However,
additional data structures may be needed for e�cient caching and making it
possible to quickly check which part of the data structures in a client server set
up already have been retrieved. To summarise, the structuring of the information
as a pre-process is the key to making progressive transfer possible.

All in all, the design of the structures as shown in Figure 5.9 (p. 159) is the
�nal design of the tGAP structures to encode a ssc. ¿is design allows for
storing the merge, split and simpli�cation results and is suitable for progressive
transfer. However, we realised that the data that we store is still not optimal,

17 7

variable-scale geo-information

as the approach can be made more smooth. We did realise this due to the pro-
gressive streaming demonstrator and the line simpli�cation approach that were
implemented: objects that replace other objects still lead to popping e�ects, i. e.
discrete changes (jumps), similar to the popping e�ects from the layers in a
MRDB, but with a more local e�ect. How smooth vario-scale data should be
obtained in a way that it alleviates also these remaining popping e�ects leading
to smooth display capabilities (cf. van Kreveld, 2001; Nöllenburg et al., 2008;
Danciger et al., 2009) is the topic of the next section.

6.2 Smooth data for the space-scale cube

Recall Figure 3.5 (p. 70), which shows 4 maps fragments and the corresponding
tGAP structure. ¿e tGAP structure shown is a DAG, as the split operation
(introduced in § 4.3) causes the road object to have several parents; see Figure 3.5e.
In our current implementation the simplify operation on the relevant boundaries
is combined with the remove or collapse/split operators and is not a separate
step (although illustrated this way to visualise these operators separately). ¿e
scale has been depicted as third dimension – the integrated space-scale cube
(ssc) representation, which has been formalised in § 3.2. Figure 6.1a repeats this
3d representation for the example scene of Figure 3.5e.

(a) ssc for the classic tGAP structure (b) ssc for the smooth tGAP structure

Figure 6.1: The space-scale cube (ssc) representation in 3D

178

chapter 6. a new era: smooth vario-scale data

¿ough many small steps (from most detailed to most coarse representation
– in the classic tGAP n − 1 steps exist, if the base map contains n objects), this
could still be considered as many discrete generalisation actions approaching
vario-scale, but not true smooth vario-scale. Split and merge operations do cause
a sudden local ‘shock’: a small scale change results in a not so small geometry
change; e. g. leading to complete objects disappearing at once and a small delta
in scale thus does not lead to a small delta in the map; see Figure 6.2. In the
space-scale cube this is represented by a horizontal face; a sudden end or start of
the corresponding object. Furthermore, polygon boundaries de�ne faces that
are all vertical in the cube, i. e. the geometry does not change at all within the
corresponding scale range (resulting in the collection of �tting prism shapes,
together forming a full partition of the space-scale cube).

(a) Wireframe of (clas-
sic) space-scale cube

(b) Slices for Step 1 (c) Slices for Step 2 (d) Slices for Step 3

Figure 6.2: The map slices of the classic tGAP structure: (b) step 1 (collapse), (c) step 2 (merge)
and (d) step 3 (simplify). Note that nothing changes until a true tGAP event has happened (i. e.
a generalisation operation has been applied).

In order to obtain more gradual changes when zooming, i. e. in a morphing
style, we �rst realised that the line simpli�cation operation could also output
non-vertical faces for the space-scale cube and that this has a more true smooth
vario-scale character; e. g. when replacing two neighbouring line segments by a
single new line segment (omitting the shared node), this can be represented by
three triangular faces in the space-scale cube; see Figure 6.3. Note that both the
sudden-change line simpli�cation and the gradual-change line simpli�cation
have both 3 faces in the ssc: sudden-change has 2 rectangles and 1 triangle and

179

variable-scale geo-information

gradual-change has 3 triangles. When slicing a map (to ‘slice’ means taking a
cross-section of the cube) at a certain scale, a delta in scale leads to a delta in
the derived map. ¿at is, a small change in the geometry of the depicted map
objects and no sudden change any more, as was the case with the horizontal
faces parallel with the bottom of the cube, which were the results of the merge or
split operations. Note that the more general line simpli�cation (removing more
than one vertex of a polyline) can be considered to consist of several smaller
sub-steps: one step for the removal of each of the intermediate vertices.

y
x

scale

(a) Sudden-change line simpli�ca-
tion: 2 rectangles and 1 triangle

(b) Gradual-change line simpli�ca-
tion: 3 triangles

Figure 6.3: Line simpli�cation in the ssc: (a) sudden removal of node, (b) gradual change. The
dashed lines in (b) only illustrate the di�erence with the sudden-change variant.

supporting smooth zoom. ¿e split and merge operations can, similar
to the gradual line simpli�cation operation as sketched above, also be rede�ned
as gradual actions supporting smooth zoom. For example in case of the merge
of two objects: one object gradually grows and the other shrinks – in a space-
scale cube this corresponds to non-vertical faces (and there is no more need
for a horizontal face, i. e. a suddenly disappearing feature); see Figure 6.1b. All
horizontal faces in the cube are now gone, except the bottom and top faces of the
cube. Note that faces belonging to the same object are merged into one larger
face if they can, e. g. the big front-right face in Figure 6.1b corresponds to four
faces in Figure 6.1a. ¿e same is true for the involved edges, several smaller edges
on straight lines are merged, and the shared nodes are removed.¿is can be done
because they carry no extra information. Perhaps themost important and elegant
consequence is that the merging of the di�erent polyhedral volumes belonging
to the same real world object is that also the number of volumes is reduced:
there is a one-to-one correspondence between a single object and its smooth

180

chapter 6. a new era: smooth vario-scale data

tGAP polyhedral representation, valid for all relevant map scales. ¿e bene�t of
a smaller number of primitives, the nodes, edges, faces and volumes, is that there
are also less topology references needed to represent the whole structure. In
previous investigations it was reported that the storage requirements for topology
structure may be as high, or even higher, than the storage requirements for plain
geometry (see previous tests, described in Louwsma et al., 2003; Baars et al.,
2004; Penninga, 2004). ¿is is even more true for topology based vario-scale
data structures (cf. § 4.1): lighter structures are more suitable for (progressive)
data transfer and high(er) performance (§ 5.3).

(a) Wireframe of
(smooth) space-scale
cube

(b) Slices for Step 1 (c) Slices for Step 2 (d) Slices for Step 3

Figure 6.4: The map slices of the smooth tGAP structure: (b) step 1 (collapse), (c) step 2 (merge)
and (d) step 3 (simplify). Note the continuous changes, also in between the ‘true’ tGAP events.

Figure 6.4 illustrates the resulting smooth vario-scale structure: small deltas
in scale will give small deltas for map areas. Figure 6.5 shows that if all slices
of the classic tGAP and the smooth tGAP space-scale cubes are compared, the
di�erences and the bene�ts of the latter become clear.

So far, only horizontal slices parallel to the bottom and top of the cube were
discussed and used for creating 2d maps. It is not strictly necessary to do parallel
slices, nothing prevents taking non-horizontal slices. Figure 6.6 illustrates a
mixed-scale map derived as a non-horizontal slice from the ssc. What does
such a non-horizontal slice mean? More detail is shown at the side where the
slice is closer to bottom of the cube and less detail at the side where slice is closer
to the top. Note that the slice plane in this case is still �at (planar), but tilted.

181

variable-scale geo-information

(a) Slices for the classic tGAP
structure

(b) Slices for the smooth
tGAP structure

Figure 6.5: The maps – slices of (a) the classic and (b) the smooth tGAP structure – compared.

Compare to 3d visualizations, where close to the eye of the observer lots of detail
is needed, while further away not so much detail. Such a slice leads to amixed-
scale map, as the map contains more generalised features far away (intended
for display on small scale) and less generalised features close to observer (large
scale). ¿is type of map generalisation has been implemented by Harrie et al.
(2002) (Figure 6.7 shows an example) and is termed radial generalisation by
Reichenbacher: ‘radial generalisation will radially simplify the map from the
centre . . . towards the edges’ (Reichenbacher, 2004, p. 51). Note that the slicing
surface here will not be planar.

6.3 Exploring possible drawbacks

¿is section explores possible drawbacks of the presented smooth tGAP. Four
potential issues are presented in the subsections below: 1. will slivers occur
when slicing for a 2d map (§ 6.3.1), 2. can use of a sequence of non-horizontal
delta-slices lead to less gradual changes than expected (§ 6.3.2), 3. can multiple
generalisation operations be performed in parallel (§ 6.3.3) and 4. can square
split and merge operations (horizontal faces) always be transformed into their
smooth counterparts with non-horizontal faces (§ 6.3.4)?

182

chapter 6. a new era: smooth vario-scale data

(a) A set of
smooth slices
derived from
the ssc.

y
x

scale

(b) How the non-
horizontal slice of (c) is
taken.

(c) Corresponding mixed-scale map
(non-horizontal slice): the imaginary
eye of the viewer is at front right side,
where most detail is, further away less
detail is shown.

Figure 6.6: Checkerboard data as input: each rectangular feature is smoothly merged to a
neighbour. Note that all merge operations have been executed in parallel, see § 6.3.3. Figure
6.6a: a stack of horizontal slices, 6.6b: taking a non-horizontal slice leads to a ‘mixed-scale’
map and 6.6c: one mixed scale slice (non-horizontal slice plane).

6.3.1 Slivers

¿e �rst possible drawback of the smooth tGAP structure might be that if at
certain scale a slice is taken, then one could get a sliver: just before a object to be
merged is disappearing. If this tGAP structure is used for static 2d maps (and
not smooth zoom), then such a sliver should be removed; either by �nishing
the operation or going back to the start state of the operation. ¿e correct state
before or a er the operation works like a magnet in this case: ¿is corresponds
to moving the slice slightly up or down in the cube. So, this is no real problem.

6.3.2 Bad luck can happen. . .

Imagine that we have a smooth tGAP structure (so non-horizontal faces), then
horizontal slices and their movement, up or down the scale-dimension, will give
delta map changes. Now for the same structure imagine that we want to have a

183

variable-scale geo-information

(a) (b) (c)

Figure 6.7: A ‘mixed-scale’ map. Note that Harrie et al. term this type ofmap a ‘vario-scale’ map,
while we term this a ‘mixed-scale’ map. Furthermore it is clear that there is a need for extra
generalisation closer to the borders of the map, which is not applied in 6.7b, but is applied
in 6.7c. With our solution, this generalisation would be automatically applied by taking the
corresponding slice (bell-shaped, curved suface) from the ssc. Illustrations 6.7a and 6.7b taken
from Harrie et al. (2002) and 6.7c from Hampe et al. (2004).

mixed-scale map using a non-horizontal slice plane and we also want smooth
mixed-scale zoom (whatever this may be, doubtful if useful). If the slice plane
has the same angle as one of the object faces, then a delta slice plane movement
could result in a sudden big map change: a complete object disappearing at once
and other objects reappearing. As this is an exotic use case and unlikely that
exact same angles will ever occur (probability near 0% if there is no systematic
preference for angles of object faces and/or slice plane), this drawback is not
really considered a problem.

6.3.3 Parallel execution, instead of 1 by 1

Despite the fact that the proposed solution results in a true vario-scale struc-
ture, it has still an (old) tGAP drawback and that is the 1 by 1 sequencing of
all generalisation operations. ¿is has the positive e�ect that it can be proven
that all operations are validly represented in the ssc (giving a good topological
structure): both a start and end scale of an operation, but also in between. But
all gradual changes are local when looking at the big picture: �rst one operation
is (gradually) �nished and then the next local operation is started, and so on.
¿is might give a suboptimal smooth-zoom e�ect – more experiments with end
users are needed to verify whether this is indeed suboptimal.

A solution for the 1 by 1 sequencing is not implementing the steps in the
structure in a sequential manner, but to group them (to group size Ng) and

184

chapter 6. a new era: smooth vario-scale data

then let all members in the group transform in parallel. Danger is now that
neighbouring actions (each creating a valid part of the structure when executed
alone), may together result in an invalid representation, that is, intersecting
planes. ¿is can be e�ciently detected: prepare resulting faces of this gradual
group step and put a 3d R-tree on the new faces. For every new face check for
con�icts, that is, intersection with faces already present in the group. ¿rough
the use of the R-tree this takes O(log n) time with n the number of faces in the
R-tree group). In case of any con�ict, then undo the action that belongs to the last
(smaller scale) action of the sequence. In total this takes this takes O(n log n)
time, the time needed for the creation of the R-tree for the faces in the group.
If no intersection is found, then the total result is correct, in next group of Ng
actions, the undone actions gets a new change and then have highest priority, so
will not be undone this time.

An alternative approach, not based on spatial searching (3d R-tree) is to
exploit the topology structure when creating the parallel groups. ¿e normal
tGAP creation approach is followed: select the least important object, process this
object, then select the next least important object, process this object and so on
until enough objects in the group are found. However, when an object is selected,
then it will be temporarily marked and also the neighbours will be marked. If a to
be removed object or one of its neighbours is already in the set of marked objects,
then skip this object and continue with next least important object (and in next
grouping the skipped object will be �rst in line). By �nding non-neighbouring
objects, the local smooth zoom actions (faces) will not interfere.

Below a list of related research questions:

• With one of the approaches, can deadlocks occur in undoing intersections
of the Ng actions?

• What is a good group size Ng? Too small approaches the normal tGAP,
while too big Ng might result in a number of discrete stages (end of many
non-vertical walls) at the same time. Also a too bigNg increases the change
on con�icts between neighbour actions. Having a larger group size Ng
might also give a strange arti�cial e�ect during the smooth zoom: if many
disappearing features are visible in the image, then some kind of arti�cial
climax moment is introduced, when they all disappear together. Tests
should be conducted whether this is noticeable (because only very few
actions will be visible at same time in one window; e. g. 1 or 2; and others
are outside display window).

185

variable-scale geo-information

• Should the size of Ng vary due to: 1. stage in process (more to the top,
smaller Ng ; e. g. always be a percentage of the total number of objects at a
given scale stage) or 2. relative to accumulated area change by actions in
group?

6.3.4 Smooth zoom with real data

¿e example data set (Figure 3.5) only shows very simplistic shapes. It is easy to
imagine that when there are two neighbouring equal rectangles, how one rect-
angle gradually has to take the space of the other rectangle and that the resulting
non-horizontal faces in the smooth tGAP structure will be �at. ¿e question
that arises: Is this always possible for any pair of strangely shaped neighbours or
con�gurations with island polygons included? Answer: Yes. Proof: it is possible
for strictly convex parts1 to be ‘removed’, using the following algorithm (see
Figure 6.8):

(a) Top-view

y
x

scale

(b) Space-scale view

Figure 6.8: The simple neighbour merge: one more or less rectangular feature is smoothly
merged into neighbour feature. Note that the plane that forms the boundary between the
two features is composed of 2 triangular and 1 quadrilateral faces (these faces can be dissolved
by post-processing into 1 face, as they are planar).

• Count the number of interior nodes on the boundary to be removed andon
the boundary to bemoved to (minimum number is 1, otherwise neighbour
to be removed would have no area).

1A simple polygon is strictly convex if every internal angle is strictly less than 180 degrees (so
not equal to 180 degrees).

186

chapter 6. a new era: smooth vario-scale data

• If unequal, add themissing number of (fake) nodes fairly distributed along
the boundary with the smaller number.¿e number of intermediate nodes
is called I and is equal in both boundaries.

• Now both boundaries have an equal number of nodes and add edges
between pair of corresponding intermediate nodes (note – at least one
edge is added).

• ¿is results in two faces with three nodes and I − 1 faces with four nodes
(and also four) edges. If a face is not �at add an additional diagonal edge
and the resulting two triangles are per de�nition �at.

Note that this ‘simple’ algorithmmay add some unneeded (temporary) nodes.
Imagine two equal shaped neighbour rectangles, then a single diagonal face is
su�cient. However, our algorithm would add two intermediate nodes (on the
shared boundary) and create two triangles and one 4-node face. In a planarity
check it may be detected that these faces are co-planar and can be merged (and
same for split edges and added node may be removed). So, the �nal result is
equal a er this post-processing.

(a) The processing of a m-shape neigh-
bour, with growing area attached to
middle leg of ‘M’

(b) The example of neighbour with
island: decompose in strictly convex
parts.

Figure 6.9: The processing of complex shapes into vario-scale representations. Note that
quadrilaterals will not be planar and will have to be decomposed into triangular faces by
adding an extra diagional.

Because of the convex shape, there will never be intersecting edges or faces.
If the to be merged shape is concave, then decompose it in convex parts and

187

variable-scale geo-information

treat the convex parts one by one. ¿e order in which this should be done is
to start with a direct neighbour part of the growing area (and repeat until all
parts are processed); see Figure 6.9a. Note that this algorithm also works when
the to be merged neighbour has an island: creating the strictly convex parts and
processing these with the algorithm above will give correct results in the ssc;
see Figure 6.9b. Furthermore, this approach will also work as post-processing of
a split operation: the split operation delivers boundaries to move to. Each part
of a split polygon can, following the sketched recipe, result in a gradual merge
with its neighbour.

segment at scale s2
segment from s1 to s2
segment at scale s1

opposite boundary – n2 = 5 segments

boundary to be removed (shared boundary) – n1 = 7 segments

Figure 6.10: Alternative way of constructing non-horizontal faces. In this example 7 triangles
have their base in the shared boundary and 5 − 2 = 3 triangles have their base in the opposite
boundary.

A second approach, which does not require the 1-to-1 connection between in-
termediate nodes (but still requires convex parts), to construct the faces between
the boundary to be removed (shared boundary) and the boundary to bemoved to
(opposite boundary) is as follows (illustrated in Figure 6.10): Count the number
of segments in the shared (n1) and the opposite boundary (n2). Now there will
be n1 triangles constructed, which will have their base in the shared boundary
(and the remaining vertex on the opposite boundary) and n2−2 triangles which
will have their base in the opposite boundary (and the remaining vertex on the
shared boundary). ¿is approach does not require post-processing.

6.4 Closing remarks

First, this chapter has brought in § 6.1 a synthesis of results obtained. ¿is syn-
thesis has shown that the vario-scale concept needs some specialised generalisa-
tion operations, but that these are feasible to implement in practice. One di�culty

188

chapter 6. a new era: smooth vario-scale data

is that not all generalisation operations devised for paper maps can directly be
used, as vario-scale has a di�erent perspective, viz. topological consistency is
very important. It is possible to progressively stream the vario-scale data and
for this functionality the ordering imposed by the generalisation process, but
certainly also the minimal redundancy, is key. However, we realised that the
continuous generalisation aspects are not optimal yet, i. e. a delta in scale can
lead to a ‘jump’ in the map, so the concept of vario-scale data can be improved
in this respect.

¿erefore, this chapter introduced the smooth ssc for geographic informa-
tion in § 6.2: a delta in scale leads to a delta in the map (and smaller scale deltas
lead to smaller map deltas until and including the in�nitesimal small delta) for
all scales. ¿e smoothness is accomplished by removing all horizontal faces of
the classic tGAP structure. Recipes were given how to obtain data for the smooth
tGAP structure: 1. performing generalisation operations in such a way that the
output given gradually changes the boundaries between the features being gen-
eralised and 2. grouping generalisation operations for parallel execution while
still guarding topological consistency. ¿e resulting smooth tGAP structure
then delivers true vario-scale data and can be used for smooth zoom. It is one
integrated space-scale partition, and when using a non-horizontal slice plane for
taking a cross-section the resulting 2d maps will be a valid, mixed-scale planar
partition: this is useful for use in 3d computer graphics; radial generalisation is
thereby automatically performed – just choosing the correct surface for slicing
is enough.

189

variable-scale geo-information

190

7CONCLUSIONS AND FUTURE WORK

•

¿is chapter highlights the main achievements of the thesis as well as the insights
gained into variable-scale geo-information and provides an answer to the main
research question (§ 7.1). It also gives a number of suggestions for future research
(§ 7.2).

7.1 Conclusions

¿e use of digital maps is changing by the advent of new mobile devices (such as
tablets), that harness a lot of computing power, cf. § 1.1. It is therefore crucial to
investigate the new technological possibilities that variable-scale data structures
can bring, to make better digital 2d map solutions possible. By taking a step back
from the regular map generalisation process, which reduces the information on
a map for a smaller map scale for a whole map in one go and using a step wise
generalisation process at its heart, as proposed by vanOosterom (1993, 2005), this
work has clearly contributed to the technological foundations for data structures
for producing 2d maps at variable-scale (e. g. for use on the Internet).

7.1.1 Answer to the research question

¿e objective we had with this research is expressed in the main question, which
was formulated as:

How can we realise improved vario-scale geo-information having minimal
redundancy?

variable-scale geo-information

To answer this main question the following 8 subquestions were de�ned:

1. What is the state-of-the-art in: 1. multi-scale data management and 2.
generalisation of vector data?

2. How can we formally describe what is variable-scale geo-information?

3. How can we create valid 2d input data as much automated as possible?

4. How does minimal geometric redundancy in�uence the design of the data
structures?

5. Howcanwe simultaneously simplify edges so that the result is topologically
consistent?

6. How can we split linear features over their neighbours, instead of merging
to one of their neighbours?

7. How can we query the data structures to retrieve a 2d map from the
structures?

8. How should progressive data streaming in a client-server setup look with
respect to increments, communication and data structures (both at the
client- and at the server-side)?

Within the concluding sections of the foregoing chapters answers were given
to the subquestions, leading to the synthesis performed in § 6.1, a er which a
recipe was given for obtaining smooth vario-scale data (§ 6.2). In summary, we
have identi�ed in our design the following key factors extending the current
state-of-the-art (subquestion 1) for realising vario-scale geo-information:

1. With the concept of the proposed space-scale cube (ssc) we have formal-
ised what vario-scale vector data entails (subquestion 2). In a sense, the
improved design of the tGAP data structures can be seen as a lossless
encoding of the data that is captured for a ssc.

2. Tomake vario-scale geo-information operational,we need speci�c general-
isation operations. ¿ese vario-scale generalisation operations need valid
input (subquestion 3) and should be designed carefully to be able to give
guarantees on the amount of data to be stored and output topologically
consistent vario-scale data (subquestions 4, 5, 6). Empirical evidence was

192

chapter 7. conclusions and future work

provided that the tGAP structures are able to store the result of area merge,
area split and line simpli�cation operations, while keeping the amount of
data to be stored under control. Moreover, a lot of the other cartographic
operations (such as displacement and typi�cation) can be expressed in a
continuous way by �rst splitting the geometric description of an object
and secondly merging the parts to neighbours, this way it is then possible
to gradually change from one situation to the next in a continuous form.

¿roughout this thesis, speci�c measures have surfaced as an important
concept to steer the generalisation process, mostly with respect to the
weight of the geometric description, but for example also to evaluate the
result of the split operation. Where normally the generalisation process is
seen as a subjective matter, these measures give control over the general-
isation process from an algorithmic point of view (giving an optimisation
goal). In a sense, the cartometric analysis that we have performed every
time in this thesis – keeping the information density on average constant
a er every generalisation step – works well; the number of objects and
vertices to be retrieved can be guaranteed during use. ¿ese measures
also exemplify that cartography is still changing (Kraak, 1998) and that
such measures should be evaluated for given solutions, as they are giving
guarantees on the amount of resulting data and thus in a sense also on
how fast a user can interact with a system. All in all, when these measures
are correctly evaluated in the generalisation stage, end users will bene�t
later.

3. ¿e design of the tGAP data structures a er this research is such that
2d maps can be e�ciently derived from the structures and progressive
transfer is possible (subquestions 7 and 8).¿e resulting ordering of output
data, which is imposed by the step-wise generalisation process, is key to
this type of transfer. ¿us, it is important that the generalisation process is
delivering output that is broken up in small steps, which can be replayed
so that a 2d vector map can be gradually re�ned, �rst providing a coarse
overview, to a more detailed one.

Also in this respect having lean structures is bene�cial, and therefore the
focus onminimal redundancy during design is a satisfactory one. However,
minimal redundancy is not automatically obtained, this certainly means
performing trade o�s and also testing with real world datasets, which can
reveal cases not thought of earlier.

193

variable-scale geo-information

4. Although we have criticised the MRDB approach for not being able to
supply data at vario-scale, the progressive demonstrator and the proposed
line simpli�cation approachmade us realise thatwe still store discrete steps
– albeit smaller andmore local. ¿erefore we proposed how smoothness of
the vario-scale data can be improved.¿is �ts within the very same formal
model of the ssc, but leading to a smooth ssc. Next to the fact that this
ssc can supply true and e�cient smooth zoom, also mixed-scale maps
can be derived and gradual changes in the level of detail for data, based
on the observer’s viewpoint, can automatically obtained. ¿is means that
the only prerequisite for obtaining radially generalised data during use is
a vario-scale generalisation process that provides smooth data.

7.1.2 Contributions

Over the course of this research, we have made the following contributions to
the design of a vario-scale geo-information environment. In the longer run
these contributions can help to realise a paradigm shi from managing data
at (multiple) �xed map scales towards true vario-scale geo-information with
minimal redundancy. We have:

• formalised the concept of variable-scale data as a conceptual, 3d geomet-
ric model (the space-scale cube, ssc), where 2d space and 1d scale is
integrated (§ 3.2);

• shown how to obtain valid 2d input data for the generalisation process
that creates data for the tGAP structures (§ 3.3);

• shown how minimal data redundancy can be obtained when applying a
merge operation (§ 4.1);

• shown how to perform a parallel simpli�cation of lines, without introdu-
cing unwanted intersections and other topological errors (§ 4.2);

• proposed a split operation and have shown what are the impacts on the
designed data structures (§ 4.3);

• shown how to solve the mapping of map scale to an importance value
(§ 5.1);

194

chapter 7. conclusions and future work

• described two possible approaches for creating both a thin and a thick cli-
ent, in which the thick client can bene�t from the way the data is correctly
ordered, so that progressive data transfer can take place (§ 5.2 and 5.3);

• proposed a method in § 5.4 to deal with retrieval of very large data sets
by means of partitioning the input – i. e. a divide-and-conquer approach
(without introducing explicitly stored or visible arti�cial boundaries in
the dataset);

• proposed an improved way of generating data so that even smoother
graphic transitions can be derived for visualisation (§ 6.2).

7.2 Recommendations for further research

Although this work has made a contribution to further the development of
variable-scale geo-information (now beyond the doubt that it is useful and feas-
ible), still many avenues for future research remain. ¿e following topics seem
interesting to explore in future research and can form a (partial) road map for
the 2 research projects – the stw project ‘Vario-scale geo-information’ and the
nwo vidi project ‘Modelling geographic information in 5d’ – that are being
carried out at the GIS technology group of Del University of Technology (some
of these were already mentioned as being out of scope for this thesis, cf. § 1.3):

optimal number. We have shown, that we can keep the average amount of
data per viewport to be constant,but: what is an optimal number that users prefer?
How is this in�uenced by the physical screen size (i. e. what is the in�uence of
the type of the device, �at screen monitor or cell phone screen) and the map scale
(should this indeed be a constant number)? What in�uence has data delivery
speed (e. g. determined through network speed)) on this choice? Is a map derived
with this amount of data still clearly readable and does this depend on the type
of application? In this respect user testing is needed.

the impact of the split operation. No empirical evidence was found
that the split operation, as introduced in § 4.3, generates a very large amount of
edges. However, as the operation introduces new geometry, it is less minimal
redundant than only applying a merge operation. ¿erefore the split operation
deserves to be investigated into its worst case behaviour, similar to the analysis
of § 4.1.2.

195

variable-scale geo-information

Another aspect of the split operation is that a er the collapse of an area object
to a line (or point) object, the same object can live on in the scale dimension.
In the ssc this object is then represented by a polyhedral volume to which a
vertical surface is connected at the top (in case of collapse to a point object then
in the ssc the polyhedral object is extended with a vertical line). All attributes
are attached to the same object, which is represented in the ssc by connected
multiple parts of respectively dimension 3, 2 in case of collapse to a line and 1 in
case of collapse to a point. However, storage of objects not equal to the highest
dimension of the ssc, i. e. line/edge and point/node objects in 2d, requires
additions (a place to store these objects) to the data structures that should be
researched.

tuning the line simplification approach. ¿e line simpli�cation
approach can be tuned further by specifying di�erently howmany vertices should
be kept, cf. end of § 4.2.7.

more advanced generalisation process. To create amore advanced
generalisation process it should be considered with the current approach to: 1.
tweak the compatibility matrix, 2. investigate how to determine when to apply
the split and when the merge operation (i. e. take more thematic attributes of the
polygons into account, for example only split linear infrastructure objects, while
using the merge operation for other objects) and 3. represent linear features
explicitly in the structure (linking these features to a set of edges – then linear
networks, as o en found in topographic data, can play a role in generalising the
area partition as input for the tGAP structure).

A possible alternative where map speci�cations are expressed as geometric
and topological constraints could also be used to generate vario-scale data, i. e.
using constraint-based techniques, such as also used in the AGENT project
(Lamy et al., 1999). ¿ese techniques require less explicit speci�cation and make
intelligent solutions possible. Problems with these techniques can be that a com-
plete and formal description of all constraints is lacking, that the combination
of constraints is sometimes too restrictive and that the importance of certain
constraints di�ers per speci�c geographic location (Stoter et al., 2009a) or that
obtaining a solution is computationally expensive (Neun et al., 2009). Alternat-
ively, it may be an idea to generate vario-scale data with the current approach,
retrieve a dataset at arbitrary map scale and then use constraints together with a
solver for placement of cartographic symbols, texts and so on (following a hybrid

196

chapter 7. conclusions and future work

approach to dynamically style the resulting map, but for which the content is
already reduced).

grouping of generalisation operations. Is it possible to replace the
1-by-1 sequence of generalisation operations to obtain a more optimal smooth-
zoom e�ect, as described in § 6.3.3: How to form groups of objects to perform
a generalisation operation on? What would be a good group size? Should the
group size change during the generalisation process?

best route for creating vario-scale data. What is the best route
to create vario-scale data content (cf. Figure 7.1)? Two options come to mind: 1.
integrate all themes at the base scale, then build a vario-scale data set, or 2. build
a vario-scale data set per theme, and integrate the themes when used. Do these
2 routes lead to the same result in the end?

single theme
single scale

multiple theme
single scale

single theme
multiple scale

multiple theme
multiple scale

=
?

multiple theme
multiple scale

Figure 7.1: Two routes for creating vario-scale data: 1. First perform an integration step of data,
then generalise all data for the integrated themes all at the same time (left), or 2. First gener-
alise data separately for di�erent themes (e. g. only roads or only buildings), then integrate
generalised data sets (right).

necessity of all generalisation operations and the influence
of visualisation. As demonstrated in § 2.2.2, there is a divide of operators

197

variable-scale geo-information

in model and cartographic generalisation. From these operators (such as mer-
ging, splitting/collapsing, typi�cation, displacement, amalgamation, etcetera)
it would be useful to know which are crucial for map making with tGAP data
on a digital user interface. Cartographic quality of paper maps has focused on
geometric resolution, e. g. the displacement operation is very important for paper
maps, but problems herewith can to some extent – as a last resort when data
is reasonably generalised – be alleviated in a digital environment by zooming
in; ¿is also depends on the styling rules that are applied to the data, e. g. sym-
bolising roads with very thick lines might lead to problems again. Question are:
to which extent can a default visualisation be applied without problems to the
tGAP data (i. e. when will a certain set of styling rules again cause problems for
display) and how can you be sure to alleviate all these problems when creating
tGAP data? Hypothesis: the diverse generalisation operations have di�erent
importance for digital map making than for making paper maps and the result
of other generalisation operations, such as displacement will also �t in the tGAP
structures.

large data sets. Dealing with very large data sets that do not �t in main
memory – not during the generalisation process and, retrieved as vario-scale
data, not during visualisation – deserves attention. First, these large data sets
need to be generalised. When such a data set does not �t in main memory, it
needs to be split up in smaller, more managable chuncks of data. Question here
is whether the Fieldtree approach (§ 5.4) is useful and whether the use of such a
chunking approach brings noticeable – i. e. visible for an end user – side-e�ects
when using the resulting vario-scale data set. Secondly, large data sets result in
large cubes and for visualising a complete slice near the bottom will contain a lot
of data (takes time) and is not what a user wants. So slicing should be combined
with other (spatial) selection criteria; e. g. the bounding box (bbox). ¿e bbox is
most likely smaller at the bottom and larger near the top for ‘sane’ applications.
For non-horizontal slices the lower edges of the bbox should be shorter than
the higher edges of the bbox. ¿is can be compared to the use of frustums in
3d computer graphics for perspective views. Techniques to page in some parts
of the dataset into memory, while removing others become then essential. Test
datasets that could be worked with are: corine, with land cover data for the
whole of Europe (not only clips) and large scale datasets for a speci�c country,
e. g. imgeo or top10nl data sets in ¿e Netherlands.

198

chapter 7. conclusions and future work

dynamic structures. Make the structures dynamic: currently the tGAP
structure (including the new smooth tGAP) is a static structure. When an update
of the most detailed data takes place, the structure has to be recomputed. Due
to global optimisation criteria (globally �nd the least important object at every
step of creation), the impact of a local change is not guaranteed to have a local
e�ect. ¿e grouping approach of § 6.3.3 might be helpful for making more local
updates possible. Also techniques for viewing large data sets e�ciently might be
helpful for controlling the locality.

improved generalisation operations. Improved generalisation op-
erations that contribute to 3 elements: a. smooth transitions, b. provide big steps
in the scale dimension (such that the de�nition of phenomena – or put di�er-
ently, the set of classes in the legend – changes), c. also work for linear features
(e. g. start with topographic data as an integrated theme, where everything is
represented by a polygonal area, but gradually move towards line based repres-
entations for feature classes such as rivers and roads – this type of features are
o en represented on topographic, smaller scale maps – challenge is to keep the
connectivity of these networks in tact, while generalising): thus integration of
diverse themes (houses, land use, but also linear networks, such as river and
road networks) and how to generalise these at the same time for a vario-scale
partition is another relevant question here.

implementing the smooth ssc. ¿e smooth tGAP has the same build-
ing challenge as the classic tGAP with respect to applying the right sequence of
generalisation operators (remove or merge, collapse or split, simplify) to obtain
cartographic quality. ¿is has to be well tuned, otherwise the maps will be of
(too) low cartographic quality despite the fact that they are perfect in topological
sense and 100% consistent between scales. One option for this might be the
constrained tGAP (cf. Haunert et al., 2009; Dilo et al., 2009). It is also clear
that this requires ‘understanding’ (semantics) of the di�erent types of object
classes involved (and the map needs of the end-users). Questions to be answered:
What is a good series of small scale steps, will it be the same as a big scale step
performed at once (e. g. comparing with current available data sets)? Do these
steps need to be performed one by one, or can we bundle set of operations to be
performed at once (proposed grouping approach)? Moreover, this type of modi-
�cations may also have an impact on the mapping of map scale to importance,
so this mapping should be taken into account here as well.

199

variable-scale geo-information

interacting with true smooth data. A user interface should be
developedwhere data retrieval is linked to user actions andmemorymanagement
(e. g. purge data from memory that is not needed any more) is automatically
performed. Progressive streaming capabilities (either directly to database, or over
network) should be used and interaction should be giving a very smooth feeling
(where consistency of stored data is emphasised). How should these techniques
for interacting with the data look like? Having a big data set at hand is a pre-
requisite to test the scalability of such a system. Another interesting question in
this respect is whether the simple operations (SOs) as proposed by Sester and
Brenner (2009) can be used as a wire format for serialization of vario-scale data
into progressive data streaming packages for network transmission.

caching at client-side. Related to interaction: Explore caching tech-
niques for retrieval of vario-scale data, e. g. using a Field tree based approach
vs. keeping the results of a number of previous requests in cache memory of
the client and communicate that these do not need to be transferred again (as
described in § 5.4).

opportunities from new web technologies. Newweb technologies
are being implemented in the new generation of mainstream Internet browser
engines – WebGL, WebSocket, Web Workers and the html5 Canvas element
are potentially very useful technologies for implementation of variable-scale
structures in a mainstream it environment, client-side (a possible bene�t can be
that a large user group, e. g.without the need to install additional plugins, can use
vario-scale data). It is worth to test this, also to see whether these emerging main-
stream it standards are rich enough to implement this type of geo-applications
(or that speci�c geo-extensions to these standards are necessary).

smooth interactions. It is of importance to know how users perceive
the smooth interactions: is it indeed bene�cial in the way tGAP can provide
them (extending the work of Midtbø and Nordvik, 2007) and how fast should
these smooth actions be displayed? ¿is could be tested as follows: Suppose we
have focused on a large city in Europe, say Amsterdam, and we want to pan to
another European city, e. g. Rome. If the system performs combined zooming
and panning between the points, a pre-de�ned path can be followed, leading to a
zoom out �rst, then a pan across all intermediate countries and a zoom in on the
destination city. Van Wijk and Nuij (2003; 2004) give a mathematical recipe for

200

chapter 7. conclusions and future work

how such a combined zooming and panning action should look and perform a
user evaluation in which they let users vary properties of how to set up the path
followed by the system. ¿e integrated zooming-panning action is automatically
performed by the system between the two �xed points. ¿e result should be a
smooth animation, where the frame rate is high enough to show interactively the
map between the two points at various levels of details at di�erent locations (i. e.
variable-scale data can be used). Such an implementation can then be used to: 1.
technically evaluate the system (can a client-server architecture with variable-
scale data keep up with data requests, while visualising at a speci�c frame rate,
e. g. while increasing the number of clients that request data) and 2. perform a
user study in which the vario-scale approach (perhaps combined with computer
graphics ‘tricks’, such as fade-in, out or ease e�ects) is compared against the
current state-of-the-art MRDB, e. g. a tile and raster based solution, where an
equivalent path can also be created: which of the two approaches is found to be
better from the end user perspective? Note that for such an experiment to work,
cartographic quality of the generalisation should be under control �rst, i. e. at
least comparable to graphic quality of the MRDB solution.

same source data, different applications. Build di�erent tGAP
data structures based on same source data, but making the resulting data sets
suitable for di�erent user groups and applications (by taking di�erent decision
in the generalisation process when creating the vario-scale data; this can be
compared to having multiple indices on the same database table). A useful tool
in this respect could be a viewer that has synchronised views, so that a person
that creates the tGAP structures can compare and inspect visually the results of
the di�erent generalisation processes.

analysis performed at vario-scale. Focus of this research has been
on viewing data. Analysis with vario-scale data is another interesting aspect.
For example, vario-scale data could be of help to data integration. For this it is
necessary to test overlay processing with two (or more) independent space-scale
cubes – this 3d overlay resembles data integration: it is possible to geometrically
overlay the two space-scale cubes and carry over the attribute information to the
newly segmented space-scale partition. Note that before the actual overlay, the
scale-dimension has to be �rst well aligned: only intersect the corresponding
representations. However, for data integration this will not be enough, e. g. one
of the di�culties will be to harmonise semantically the attribute values. Using

201

variable-scale geo-information

space-scale cubes might give more clues for a data integration process than
integrating just two separate 2d map sheets (e. g. which do not have the same
reference scale) and can be helpful for performing both horizontal as well as
vertical con�ation at the same time. An example application could be creating a
smooth tGAP based on a soil map 1:50k and a land cover map 1:100k. Intersect
the two ssc and use the result to answer the request to �nd the areas that are
forest on sandy soils at scale 1:250k. Another aspect is that progressive streaming
can also be used for progressively �nding an answer (�rst coarse approximation,
then later more detailed answer). Speci�c types of querying (e. g. route planning
using di�erent levels of detail as described by van Bemmelen et al., 1993) might
bene�t from this.

investigate mixed-scale slices. Cross-sections for mixed-scale data
retrieval are non-planar; e. g. supporting radial generalisation and �sh-eye type
of visualizations (see Figure 6.7, p. 184). What are in this case useful slicing
surface shapes? Folding back surfaces seem to be non-sense as this will give two
representations of the same object on the same location in one visualisation.

higher dimensionality of smooth, vario-scale data. If instead
of a 2d base map we start with a 3d base map (model) and then create in a
similar manner a 4d space-scale hypercube, then this might be used for good
perspective view visualizations by taking non-horizontal scale slices: near a lot of
detail (low in scale) far not so much detail (high in scale). ¿e intersection of this
4d hypercubewith the hyperplane gives a perfect 3d topology: all representations
do �t without gaps or overlaps. ¿is solves a big problem as o en the case in
the transition from one Level of Detail (LoD) to the next LoD in computer
graphics. Interesting ‘implementation’ issues will arise: How can the slicing in
the 4d hypercube be done e�ciently? Is this e�cient enough for interactive
performance (100 times per second)? ¿e slice is a 3d model and still has to be
rendered on a 2d display (or 3d stereo device). How o en to reslice (every frame
or re-use a taken hyperslice formultiple frames)?Would it be possible to combine
the above two steps in a single operation on the 4d hypercube (selection and
transformation for display). What steps can be done in hardware and what needs
to be done in so ware? Making the structure dynamic also might result in a 5d
hypercube (van Oosterom and Stoter, 2010). Again slicing issues arise when we
want to create visualizations: slice from 5d to 4d with hyperplane (e. g. select a
speci�c moment in time or alternatively select a speci�c scale).

202

chapter 7. conclusions and future work

full 3d (or even 4 or 5d) versus 2d plus 1d. As the conceptualmodel
does not mandate 2d vario-scale data to be strictly stored as 3d information
and we started our research investigations from the classic tGAP structures, we
serialised the ssc as 2d topological primitives (faces and edges) together with
1d scale attributes (importance). ¿is is useful for storing a vario-scale structure
in a current state-of-the-art DBMS (PostGIS in our case), which does not o�er
full 3d capabilities: the choice for this ‘split implementation’ is thus both practical
– many implementations allow storage of 2d geometry – as well as su�cient, i. e.
no explicit need for real 3d storage for the applications we tested: viewing a 2d
map slice, either single slices, or a progressive set up of retrieving 2d data is
possible. However, this might change for other types of applications (e. g. 3d
computer graphics with 2d vario-scale data in a 3d environment). Here it may
be more e�cient when selections can be made on all dimensions integrated, with
speci�c indexing methods capable of this task. Question remains how to encode
the space-scale (hyper)cube in an e�cient manner? What is more e�cient:
an implementation with a split implementation, but then with speci�c data
structures for encoding smoothness of the boundaries (e. g. a slightly modi�ed
BLG tree structure in which the importance range for vertices is also stored)
or an implementation based on full 3d primitives, e. g. using 3d nodes, edges,
faces and volumes (a polyhedral 3d topology structure), or using for example a
Tetrahedronized Irregular Network (TEN) or regular polytopes? Note that for
progressive streaming being able to get a sensible ordering is important (which
is provided by the importance values in the tGAP face structure, where these
values are increasing near the top of the structure) and that minimal redundancy
has been a crucial aspect for the structures that are based on 2d space plus
1d scale. Hypothesis is that these aspects are equally important for going to
higher dimensions, although it is more di�cult – or even impossible – to directly
visualise this 4d and 5d information.

203

variable-scale geo-information

204

BIBLIOGRAPHY

•

Agrawala, M. and Stolte, C. (2001). Rendering e�ective route maps: improving
usability through generalization. In Proceedings of the 28th annual conference
on Computer graphics and interactive techniques, SIGGRAPH ’01, pages 241–
249, New York, NY, USA. ACM. (Cited on page 176).

Ai, T. and Li, J. (2009). ¿e lifespan model of GIS data representation over scale
space. In 17th International Conference on Geoinformatics, pages 1–6. (Cited
on pages 41 and 50).

Ai, T. and van Oosterom, P. (2002). GAP-tree extensions based on skeletons.
In Richardson, D. and van Oosterom, P., editors, Advances in Spatial Data
Handling, 10th International Symposium on Spatial Data Handling, pages 501–
513. (Cited on page 123).

Amenta, N., Choi, S., and Rote, G. (2003). Incremental constructions con BRIO.
In Proceedings 19th Annual Symposium on Computational Geometry, pages
211–219, San Diego, USA. ACM Press. (Cited on page 81).

Aplin, P., Atkinson, P. M., and Curran, P. J. (1997). Fine spatial resolution satellite
sensors for the next decade. International Journal ofRemote Sensing, 18(18):3873–
3881. (Cited on page 38).

Arroyo Ohori, K. (2010). Validation and automatic repair of planar partitions us-
ing a constrained triangulation. Master’s thesis,Del University of Technology,
¿e Netherlands. (Cited on pages 72 and 81).

variable-scale geo-information

Baars, M., Stoter, J., van Oosterom, P., and Verbree, E. (2004). Rule-Based or
Explicit Storage of Topology Structure: a Comparison Case Study. In Toppen,
F. and Prastacos, P., editors, Proceedings of the 7th Conference on Geographic
Information Science (CD-ROM), pages 765–769. Heraclion: Crete University
Press. (Cited on pages 22 and 181).

Bader, M. (2001). Energy Minimization Methods for Feature Displacement in
Map Generalization. PhD thesis, University of Zürich, Switzerland. (Cited on
page 35).

Bakker, N. J. (2005). Developing a new geographical object database. experi-
ences from idea to delivering datasets. In ICC 2005: Proceedings of the 22nd
International Cartographic Conference: Mapping approaches into a changing
world, A Coruña, Spain. International Cartographic Association (ICA). (Cited
on page 21).

Ballard, D. H. (1981). Strip trees: a hierarchical representation for curves. Com-
munications of the ACM, 24(5):310–321. (Cited on page 38).

Barkowsky, T., Latecki, L. J., and Richter, K. F. (2000). Schematizing maps:
Simpli�cation of geographic shape by discrete curve evolution. In Spatial
Cognition II, volume 1849 of Lecture Notes in Computer Science, pages 41–53.
Springer Berlin Heidelberg. (Cited on pages 97 and 99).

Baumgart, B. G. (1975). A polyhedron representation for computer vision. In
AFIPS ’75: Proceedings of the May 19-22, 1975, National computer conference
and exposition, pages 589–596, New York, NY, USA. ACM. (Cited on pages 26
and 119).

Bentley, J. L. (1990). K-d trees for semidynamic point sets. In SCG ’90: Proceedings
of the sixth annual symposium on Computational Geometry, pages 187–197,New
York, NY, USA. ACM. (Cited on page 104).

Bern,M. and Eppstein, D. (1992). Mesh generation and optimal triangulation. In
Du, D.-Z. and Hwang, F., editors, Computing in Euclidean Geometry, volume 4
of Lecture Notes Series on Computing, pages 23–90. World Scienti�c, Singapore,
2nd edition. (Cited on pages 73 and 116).

Bertolotto, M. (1998). Geometric Modeling of Spatial Entities at Multiple Levels
of Resolution. PhD thesis, Department of Computer Science, University of
Genova. (Cited on page 24).

206

bibliography 207

Bertolotto, M. and Egenhofer, M. J. (2001). Progressive Transmission of Vector
Map Data over the World Wide Web. GeoInformatica, 5(4):345–373. (Cited
on page 51).

Blandford, D. K., Blelloch, G. E., Cardoze, D. E., and Kadow, C. (2005). Compact
representations of simplicial meshes in two and three dimensions. Interna-
tional Journal of Computational Geometry and Applications, 15(1):3–24. (Cited
on page 81).

Blum, H. (1967). A transformation for extracting new descriptors of shape.
Models for the perception of speech and visual form, 19(5):362–380. (Cited on
page 113).

Boissonnat, J.-D., Devillers, O., Pion, S., Teillaud, M., and Yvinec, M. (2002).
Triangulations in CGAL. Computational Geometry—¿eory and Applications,
22:5–19. (Cited on page 76).

Brassel, K. and Weibel, R. (1988). A review and conceptual framework of auto-
mated map generalization. International Journal of Geographical Information
Systems, 2(3):229–244. (Cited on page 36).

Brönnimann,H. (2001). Designing and implementing a general purpose halfedge
data structure. In Brodal, G., Frigioni, D., and Marchetti-Spaccamela, A.,
editors, Algorithm Engineering, volume 2141 of Lecture Notes in Computer
Science, pages 51–66. Springer Berlin Heidelberg. (Cited on page 26).

Burghardt, D. and Schmid, S. (2010). Constraint-based evaluation of automated
and manual generalised topographic maps. In Gartner, G. and Ortag, F.,
editors, Cartography in Central and Eastern Europe, Lecture Notes in Geoin-
formation andCartography, pages 147–162. Springer Berlin Heidelberg. (Cited
on page 35).

Butten�eld, B. P. and DeLotto, J. S. (1989). Multiple representations: Scienti�c
report for the specialist meeting. Technical report, National Center for Geo-
graphic Information and Analysis. (Cited on page 37).

Chaudhry, O. andMackaness,W. A. (2007). Utilising partonomic information in
the creation of hierarchical geographies. In Proceedings of 10th ICA Workshop
on Generalisation and Multiple Representation, Moscow. (Cited on page 35).

Cromley, R. G. (1991). Hierarchical methods of line simpli�cation. Cartography
and Geographic Information Science, 18:125–131. (Cited on page 34).

207

variable-scale geo-information

da Silva, A. C. G. and Wu, S. T. (2006). A robust strategy for handling linear
features in topologically consistent polyline simpli�cation. In Monteiro, A.
M. V. and Davis, C. A., editors, GeoInfo, VIII Brazilian Symposium on Geoin-
formatics, 19-22 November, Campos do Jordão, São Paulo, Brazil, pages 19–34.
(Cited on page 96).

Danciger, J., Devadoss, S. L., Mugno, J., Sheehy, D., and Ward, R. (2009). Shape
deformation in continuous map generalization. Geoinformatica, 13(2):203–221.
(Cited on pages 51 and 178).

Danovaro, E., De Floriani, L., Puppo, E., and Samet, H. (2007). Out-of-core
multiresolution terrain modeling. In Belussi, A., Catania, B., Clementini, E.,
and Ferrari, E., editors, Spatial Data on the Web: Modeling and Management,
pages 43–64. Springer. (Cited on page 38).

de Berg, M., van Kreveld, M., Overmars, M., and Schwarzkopf, O. (2000). Com-
putational geometry: Algorithms and applications. Springer-Verlag, Berlin,
second edition. (Cited on pages 26, 74, and 149).

de Berg, M., van Kreveld, M., and Schirra, S. (1998). Topologically correct
subdivision simpli�cation using the bandwidth criterion. Cartography and
Geographic Information Science, 25:243–257. (Cited on page 96).

de Hoop, S., van Oosterom, P., andMolenaar, M. (1993). Topological querying of
multiple map layers. In Frank, A. and Campari, I., editors, Spatial Information
¿eory: A¿eoretical Basis for GIS, volume 716 of Lecture Notes in Computer
Science, pages 139–157. Springer Berlin Heidelberg. (Cited on page 22).

De Maeyer, P., De Vliegher, B. M., and Brondeel, M. (2004). De spiegel van de
wereld: fundamenten van de cartogra�e. Academia Press. In Dutch. (Cited on
page 29).

Dettori, G. and Falcidieno, B. (1982). An algorithm for selecting main points on
a line. Computers & Geosciences, 8(1):3–10. (Cited on page 34).

Devogele, T., Trevisan, J., and Raynal, L. (1996). Building a multi-scale database
with scale-transition relationships. In Proceedings of the 7th International
Symposium on Spatial DataHandling, pages 337–351,Del ,Netherlands. (Cited
on page 41).

208

bibliography 209

Dilo, A., van Oosterom, P., and Hofman, A. (2009). Constrained tGAP for
generalization between scales:¿e case of Dutch topographic data. Computers,
Environment and Urban Systems, 33(5):388–402. (Cited on page 199).

Douglas, D. (1974). It makes me so CROSS. Unpublished manuscript from the
Harvard Laboratory for Computer Graphics and Spatial Analysis. Reprinted
in Peuquet D. J. andMarble, D. F., editors, Introductory Readings in Geographic
Information System, pages 303–307. Taylor & Francis, London. (Cited on
page 8).

Douglas,D.H. andPeucker,T. K. (1973). Algorithms for the reduction of the num-
ber of points required to represent a digitized line or its caricature. Cartograph-
ica: ¿e International Journal for Geographic Information and Geovisualization,
10(2):112–122. (Cited on pages 34 and 96).

Dyken, C., Dæhlen, M., and Sevaldrud, T. (2009). Simultaneous curve simpli-
�cation. Journal of Geographical Systems, 11(3):273–289. (Cited on pages 34
and 35).

Erwig, M. and Schneider, M. (1997). Partition and conquer. In Hirtle, S. and
Frank, A., editors, Spatial Information ¿eory A ¿eoretical Basis for GIS,
volume 1329 of Lecture Notes in Computer Science, pages 389–407. Springer
Berlin Heidelberg. (Cited on page 60).

ESRI (1998). ESRI shape�le technical description white paper. Technical report,
Environmental Systems Research Institute. (Cited on pages 8 and 77).

European Parliament (2011). More frequencies for mobile
internet by 2013. Press release. http://www.europarl.

europa.eu/en/pressroom/content/20110510IPR19123/html/

More-frequencies-for-mobile-internet-by-2013. (Cited on page 2).

Facello, M. A. (1995). Implementation of a randomized algorithm for Delaunay
and regular triangulations in three dimensions. Computer Aided Geometric
Design, 12:349–370. (Cited on page 76).

Filho, W. C., de Figueiredo, L. H., Carvalho, P. C., and Gattass, M. (1995). A
topological data structure for hierarchical planar subdivisions. Technical
Report CS-95-53, University of Waterloo. (Cited on pages 39 and 40).

209

http://www.europarl.europa.eu/en/pressroom/content/20110510IPR19123/html/More-frequencies-for-mobile-internet-by-2013
http://www.europarl.europa.eu/en/pressroom/content/20110510IPR19123/html/More-frequencies-for-mobile-internet-by-2013
http://www.europarl.europa.eu/en/pressroom/content/20110510IPR19123/html/More-frequencies-for-mobile-internet-by-2013

variable-scale geo-information

Flato, E., Halperin, D., Hanniel, I., and Nechushtan, O. (1999). ¿e Design and
Implementation of Planar Maps in CGAL. In Vitter, J. and Zaroliagis, C.,
editors,WAE’99, volume 1668 of Lecture Notes in Computer Science, pages
154–168. Springer-Verlag Berlin Heidelberg. (Cited on page 26).

Foerster, T., Stoter, J., and Köbben, B. (2007). Towards a formal classi�cation of
generalization operators. In ICC 2007: Proceedings of the 23rd International
CartographicConference: Cartography for everyone and for you,Moscow,Russia.
International Cartographic Association (ICA). (Cited on pages 33 and 34).

Foerster, T., Stoter, J., and Kraak, M.-J. (2010). Challenges for Automated Gen-
eralisation at European Mapping Agencies: A Qualitative and Quantitative
Analysis. ¿e Cartographic Journal, 47(1):41–54. (Cited on page 33).

Forrest, D. (1993). Expert systems and cartographic design. ¿e Cartographic
Journal, 30(2):143–148. (Cited on page 36).

Frank, A. and Barrera, R. (1990). ¿e Fieldtree: A data structure for Geographic
Information Systems. In Buchmann, A., Günther, O., Smith, T., and Wang,
Y.-F., editors, Design and Implementation of Large Spatial Databases, pages
29–44. Springer Berlin Heidelberg. (Cited on page 167).

Frank, A., Volta, G. S., and McGranaghan, M. (2001). Formalization of families
of categorical coverages. International Journal of Geographical Information
Science, 11(3):215 – 231. (Cited on page 39).

Friis-Christensen, A., Skogan, D., Jensen, C., Skagestein, G., and Tryfona, N.
(2002). Management of multiply represented geographic entities. In Proceed-
ings of the International Database Engineering and Applications Symposium
(IDEAS’02), pages 150–159. (Cited on page 37).

Gold, C. M. (1988). PAN graphs. An aid to GIS analysis. International Journal of
Geographical Information Systems, 2(1):29–41. (Cited on pages 26 and 27).

Goodchild,M. F. (2001). Metrics of scale in remote sensing andGIS. International
Journal of Applied Earth Observation and Geoinformation, 3(2):114–120. (Cited
on pages 27 and 29).

Grünreich, D. (1985). Computer-assisted generalisation. In CERCO Cartography
Course, Session data Manipulation, pages 1–16, Frankfurt am Main, Germany.
Institut für angewandte Geodäsie. (Cited on page 33).

210

bibliography 211

Grünreich, D. (1992). ATKIS – a topographic information system as a basis for
GIS and digital cartography in Germany. In Vinken, R., editor, From digital
map series to geo-information systems, volume 122 of Geologisches Jahrbuch
Reihe A, pages 207–216. (Cited on page 33).

Guibas, L. J. and Sedgewick, R. (1978). A dichromatic framework for balanced
trees. In 19th Annual Symposium on Foundations of Computer Science, 1978,
pages 8–21. (Cited on page 102).

Günther, O. (1988). E�cient structures for geometric data management. Number
337 in Lecture Notes in Computer Science. Springer-Verlag, Berlin. (Cited on
page 38).

Hägerstrand,T. (1970). What about people in regional science? Papers in Regional
Science, 24(1):6–21. (Cited on page 59).

Hampe, M., Sester, M., and Harrie, L. (2004). Multiple representation databases
to support visualisation on mobile devices. In Proceedings of the XXth ISPRS
Congres, volume 35 of International Archives of Photogrammetry, Remote Sens-
ing and Spatial Information Sciences, pages 135–140. (Cited on pages 3, 41,
and 184).

Hangouët, J.-F. and Lamy, S. (1999). Automated cartographic generalization:
Approach and methods. In ICC 1999: Proceedings of the 19th International
Cartographic Conference, Ottawa, Canada. (Cited on page 176).

Harrie, L., Sarjakoski, L. T., and Lehto, L. (2002). A variable-scale map for
small-display cartography. In Proceedings of Symposium on Geospatial ¿eory,
Processing and Applications, volume 34 of International Archives of Photogram-
metry, Remote Sensing and Spatial Information Sciences, pages 237–242,Ottawa,
Canada. ISPRS. (Cited on pages 31, 182, and 184).

Haunert, J.-H. (2011). Detecting symmetries in building footprints by string
matching. In Geertman, S., Reinhardt, W., and Toppen, F., editors, Advancing
Geoinformation Science for a Changing World, Lecture Notes in Geoinforma-
tion and Cartography, pages 319–336. Springer Berlin Heidelberg. (Cited on
pages 35 and 36).

Haunert, J.-H., Dilo, A., and van Oosterom, P. (2009). Constrained set-up of the
tGAP structure for progressive vector data transfer. Computers & Geosciences,

211

variable-scale geo-information

35(11):2191–2203. Progressive Transmission of Spatial Datasets in the Web
Environment. (Cited on pages 141, 164, 167, 171, and 199).

Haunert, J.-H. and Sester, M. (2008). Area collapse and road centerlines based
on straight skeletons. Geoinformatica, 12(2):169–191. (Cited on page 34).

Haunert, J.-H. andWol�,A. (2010). Optimal and topologically safe simpli�cation
of building footprints. In Abbadi, A. E., Agrawal, D., Mokbel, M., and Zhang,
P., editors, Proceedings of the 18th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems (ACM-GIS’10), pages 192–201.
(Cited on page 35).

Hearn, D. D. and Baker, M. P. (2003). Computer Graphics with OpenGL. Pearson
Prentice Hall. (Cited on page 151).

Herring, J. (2001). ¿e OpenGIS Abstract Speci�cation, Topic 1: Feature Geo-
metry (ISO 19107 Spatial Schema), version 5. (Cited on pages 12, 24, and 72).

Herring, J. (2006). Implementation Speci�cation for Geographic information -
Simple feature access - Part 2: SQL option. (Cited on pages 12, 24, 72, and 77).

Hevner, A. and Chatterjee, S. (2010). Design Research in Information Systems:
Theory and Practice, volume 22 of Integrated Series in Information Systems.
Springer. (Cited on page 11).

Hevner, A. R., March, S., J., P., and Ram, S. (2004). Design science in information
systems research. Management Information Systems Quarterly, 28:75–105.
(Cited on pages 10, 228, and 232).

Hoel, E. G., Menon, S., and Morehouse, S. (2003). Building a robust relational
implementation of topology. In Hadzilacos, T., Manolopoulos, Y., Roddick,
J., and¿eodoridis, Y., editors, Advances in Spatial and Temporal Databases,
volume 2570 of Lecture Notes in Computer Science, pages 508–524. Springer
Berlin Heidelberg. (Cited on page 24).

Ho�mann, C. M. (1989). ¿e problems of accuracy and robustness in geometric
computation. Computer, 22(3):31–39. (Cited on page 8).

Hoppe, H. (1996). Progressive meshes. In Proceedings of the 23rd annual confer-
ence on Computer graphics and interactive techniques, SIGGRAPH ’96, pages
99–108, New York, NY, USA. ACM. (Cited on page 38).

212

bibliography 213

Imhof, E. (1972). Thematische Kartographie. Walter de Gruyter. (Cited on
page 30).

ISO/TC 211 (2003). ISO 19107:2003 Geographic information - Spatial schema.
(Cited on pages 24 and 26).

Jakobsson, A. (2002). Data Quality and Quality Management – Examples of
Quality Evaluation Procedures and Quality Management in European Na-
tional Mapping Agencies. In Shi, W., Fisher, P., and Goodchild, M. F., editors,
Spatial Data Quality, pages 216–229. Taylor & Francis, London, �rst edition.
(Cited on page 32).

Jenks, G. F. (1989). Geographic logic in line generalization. Cartographica:
¿e International Journal for Geographic Information and Geovisualization,
26(1):27–42. (Cited on page 34).

Jones, C. B. and Abraham, I. M. (1986). Design considerations for a scale-
independent cartographic database. InMarble, D., editor, Second International
Symposium on Spatial Data Handling, pages 384–398, Seattle, Washington.
(Cited on page 38).

Jones, C. B., Bundy, G. L., and Ware, J. M. (1995). Map generalization with a
triangulated data structure. Cartography and Geographic Information Science,
22(4):317–331. (Cited on page 34).

Jones, C. B. and Ware, J. M. (2005). Map generalization in the web age. Interna-
tional Journal of Geographical Information Science, 19(8 & 9):859–870. (Cited
on page 41).

Jongeneel, C. (2011). Draadloze datashu�e. Technisch Weekblad, 11:8–9. In
Dutch. (Cited on page 2).

Kennedy, M. and Kopp, S. (2001). Understanding Map Projections. Esri Press.
(Cited on page 29).

Kettner, L. (1999). Using generic programming for designing a data structure for
polyhedral surfaces. Computational Geometry, 13(1):65–90. (Cited on pages 25
and 26).

Kettner, L., Mehlhorn, K., Pion, S., Schirra, S., and Yap, C. (2008). Classroom
examples of robustness problems in geometric computations. Computational
Geometry, 40(1):61–78. (Cited on page 8).

213

variable-scale geo-information

Kothuri, R., Godfrind, A., and Beinat, E. (2007). Pro Oracle Spatial for Oracle
Database 11g. Apress. (Cited on pages 22 and 40).

Kraak, M.-J. (1998). ¿e cartographic visualization process: From presentation
to exploration. ¿e Cartographic Journal, 35(1):11–15. (Cited on page 193).

Kulik, L., Duckham, M., and Egenhofer, M. (2005). Ontology-driven map gener-
alization. Journal of Visual Languages & Computing, 16(3):245–267. (Cited on
pages 34, 96, 97, 99, 105, and 139).

Lalonde, W. (2002). Styled Layer Descriptor Implementation Speci�cation.
(Cited on page 145).

Lam,N. S.-N. andQuattrochi, D. A. (1992). On the issues of scale, resolution, and
fractal analysis in the mapping sciences. Professional Geographer, 44(1):88–98.
(Cited on pages 27 and 28).

Lamy, S., Ruas, A., Demazeu, Y., Jackson, M., Mackaness, W., and Weibel, R.
(1999). ¿e application of agents in automated map generalisation. In ICC
1999: Proceedings of the 19th International Cartographic Conference, Ottawa,
Canada. (Cited on pages 36 and 196).

Ledoux, H. and Arroyo Ohori, K. (2011). Edge-matching polygons with a con-
strained triangulation. In Proceedings of Symposium GIS Ostrava 2011. (Cited
on pages 72 and 81).

Ledoux, H. and Meijers, M. (2010). Validation of planar partitions using con-
strained triangulations. InProceedings of the 14th Joint InternationalConference
on ¿eory, Data Handling and Modelling in Geospatial Information Science,
pages 51–56, Hong Kong. (Cited on pages 15 and 53).

Lévy, B. andMallet, J.-L. (1999). Cellular modelling in arbitrary dimension using
generalized maps. Technical report, Gocad Consortium. (Cited on page 66).

Lie, H.W. (2005). Cascading Style Sheets. PhD thesis, University of Oslo, Norway.
(Cited on page 7).

Liu, Y. and Snoeyink, J. (2005). The “far away point” for Delaunay diagram
computation in Ed . In Proceedings 2nd International Symposium on Voronoi
Diagrams in Science and Engineering, pages 236–243, Seoul, Korea. (Cited on
page 76).

214

bibliography 215

Liu,Y. and Snoeyink, J. (2008). Faraway point: A sentinel point forDelaunay com-
putation. International Journal of Computational Geometry and Applications,
18(4):343–355. (Cited on page 116).

Louwsma, J., Tijssen, T., and van Oosterom, P. (2003). Topology under the
microscope. GeoConnexion. (Cited on page 181).

Lüscher, P., Weibel, R., and Burghardt, D. (2009). Integrating ontological model-
ling and bayesian inference for pattern classi�cation in topographic vector
data. Computers, Environment and Urban Systems, 33(5):363–374. (Cited on
pages 9 and 36).

Mackaness, W. A. (1994). An algorithm for con�ict identi�cation and feature
displacement in automated map generalization. Cartography and Geographic
Information Science, 21(4):219–232. (Cited on page 34).

Mackaness, W. A. (2006). Automated cartography in a bush of ghosts. Carto-
graphy and Geographic Information Science, 33(4):245–256. (Cited on pages 50,
176, and 177).

Mackaness, W. A. and Mackechnie, G. A. (1999). Automating the detection
and simpli�cation of junctions in road networks. GeoInformatica, 3:185–200.
(Cited on page 35).

Mackaness, W. A., Ruas, A., and Sarjakoski, L. T. (2007). Generalisation of
geographic information: cartographic modelling and applications. Elsevier
Science Ltd. (Cited on page 67).

March, S. and Smith, G. (1995). Design and natural science research on informa-
tion technology. Decision Support Systems, 15:251–266. (Cited on page 10).

Matijević,H., Biljecki, Z., Pavičić, S., and Roić,M. (2008). Transaction processing
on planar partition for cadastral application. In Proceedings FIG Working
Week 2008–-Integrating Generations, Stockholm, Sweden. (Cited on page 26).

McAllister, M. and Snoeyink, J. (April 2000). Medial axis generalization of river
networks. Cartography andGeographic Information Science, 27:129–138. (Cited
on page 34).

McMaster, R. B. (1987). Automated line generalization. Cartographica: ¿e Inter-
national Journal for Geographic Information 2and Geovisualization, 24(2):74–
111. (Cited on page 34).

215

variable-scale geo-information

Meijers, M. (2006). Implementation and testing of variable scale topological
data structures: Experiences with the GAP-face tree and GAP-edge forest.
Master’s thesis, Del University of Technology. (Cited on pages 4 and 58).

Meijers, M. (2008). Retrieving tGAP data with a stateless client for visualization.
RGI Project Report 233-03, Del University of Technology, Del . (Cited on
pages 15 and 142).

Meijers, M. (2011a). Cache-friendly progressive data streaming with variable-
scale data structures. In Proceedings of 14th ICA/ISPRS Workshop on General-
isation and Multiple Representation, pages 1–19. (Cited on pages 15 and 142).

Meijers, M. (2011b). Simultaneous & topologically-safe line simpli�cation for a
variable-scale planar partition. In Geertman, S., Reinhardt, W., and Toppen,
F., editors, Advancing Geoinformation Science for a Changing World, Lecture
Notes in Geoinformation and Cartography, pages 337–358. Springer Berlin
Heidelberg. (Cited on pages 15 and 84).

Meijers, M., Savino, S., and van Oosterom, P. (2011). SplitArea: An algorithm
for splitting faces in the context of a hierarchical data structure. Manuscript
submitted for review to an academic journal. (Cited on pages 15 and 84).

Meijers, M. and van Oosterom, P. (2009). Applying DLM and DCM concepts
in a multi-scale environment. In Mustière, S., Sester, M., van Harmelen, F.,
and van Oosterom, P., editors, Dagstuhl Seminar Proceedings ‘Generalization
of Spatial Information (09161)’. (Cited on pages 15 and 20).

Meijers, M. and van Oosterom, P. (2011). ¿e space-scale cube: An integrated
model for 2D polygonal areas and scale. In 28th Urban Data Management
Symposium, volume 38 of International Archives of Photogrammetry, Remote
Sensing and Spatial Information Sciences, pages 95–102. (Cited on pages 15
and 54).

Meijers, M., van Oosterom, P., and Quak, W. (2009). A storage and transfer
e�cient data structure for variable scale vector data. In Sester, M., Bernard,
L., and Paelke, V., editors, Advances in GIScience, Lecture Notes in Geoinform-
ation and Cartography, pages 345–367. Springer Berlin Heidelberg. (Cited on
pages 15, 20, and 84).

Meyer, B. (1992). Applying ‘Design by Contract’. Computer, 25(10):40–51. (Cited
on page 8).

216

bibliography 217

Meyer, B. (1997). Object-oriented so ware construction. Prentice-Hall, second
edition. (Cited on page 8).

Midtbø, T. andNordvik, T. (2007). E�ects of animations in zooming and panning
operations on web maps: a web-based experiment. ¿e Cartographic Journal,
44(4):292–303. (Cited on pages 50, 51, and 200).

Misue, K., Eades, P., Lai, W., and Sugiyama, K. (1995). Layout adjustment and the
mental map. Journal of Visual Languages & Computing, 6(2):183–210. (Cited
on pages 31 and 50).

Molenaar, M. (1989). Single valued vector maps: a concept in Geographic In-
formation Systems. Geo-Informations-Syteme, 2(1):18–26. (Cited on page 22).

Molenaar, M. (1998). An introduction to the theory of spatial object modelling
for GIS. Research Monographs in GIS. Taylor & Francis, London. (Cited on
pages 22 and 23).

Mücke, E. P. (1998). A robust implementation for three-dimensional Delaunay
triangulations. International Journal of Computational Geometry and Applica-
tions, 8(2):255–276. (Cited on page 76).

Muller, D. E. and Preparata, F. P. (1978). Finding the intersection of two convex
polyhedra. ¿eoretical Computer Science, 7(2):217–236. (Cited on page 26).

NCGIA (1989). ¿e research plan of the National Center for Geographic Inform-
ation and Analysis. International Journal of Geographical Information Systems,
3(2):117–136. (Cited on pages 37 and 50).

Neun, M. (2007). Data Enrichment for Adaptive Map Generalization Using Web
Services. PhD thesis, University of Zürich, Switzerland. (Cited on page 35).

Neun, M., Burghardt, D., and Weibel, R. (2009). Automated processing for map
generalization using web services. Geoinformatica, 13:425–452. (Cited on
page 196).

Nöllenburg, M., Merrick, D., Wol�, A., and Benkert, M. (2008). Morphing poly-
lines: A step towards continuous generalization. Computers, Environment and
Urban Systems, 32(4):248–260. Geographical Information Science Research -
United Kingdom. (Cited on page 178).

217

variable-scale geo-information

Ordnance Survey (2010). A guide to coordinate systems inGreat Britain. D00659
v2.1. (Cited on page 29).

Penninga, F. (2004). Oracle 10g Topology: Testing Oracle 10g Topology using
cadastral data. Technical report, Del University of Technology, Del . (Cited
on pages 13, 26, and 181).

Persson, J. (2004). Streaming of compressed multi-resolution geographic vector
data. In Brandt, S. A., editor, Proceedings of 12th International Conference
on Geoinformatics Geospatial Information Research: Bridging the Paci�c and
Atlantic, pages 765–775. University of Gävle. (Cited on page 41).

Peuquet, D. J. (1984). A conceptual framework and comparison of spatial data
models. Cartographica: ¿e International Journal for Geographic Information
and Geovisualization, 21(4):66–113. (Cited on pages 20, 22, 23, and 24).

Plümer, L. andGröger,G. (1996). Nestedmaps—a formal, provably correct object
model for spatial aggregates. In Proceedings of the 4th ACM international
workshop on Advances in geographic information systems, page 83. (Cited on
page 39).

Plümer, L. and Gröger, G. (1997). Achieving integrity in geographic information
systems—maps and nested maps. Geoinformatica, 1(4):345–367. (Cited on
page 39).

Ramer, U. (1972). An iterative procedure for the polygonal approximation of
plane curves. Computer Graphics and Image Processing, 1(3):244–256. (Cited
on page 96).

Rauschenbach, U. and Schumann, H. (1999). Demand-driven image trans-
mission with levels of detail and regions of interest. Computers & Graphics,
23(6):857–866. (Cited on page 50).

Reichenbacher, T. (2004). Mobile Cartography – Adaptive Visualisation of Geo-
graphic Information on Mobile Devices. PhD thesis, University of Technology,
Munich, Germany. (Cited on page 182).

Rigaux, P. and Scholl, M. (1995). Multi-scale partitions: Application to spatial
and statistical databases. In Egenhofer, M. and Herring, J., editors, Advances
in Spatial Databases, volume 951 of Lecture Notes in Computer Science, pages
170–183. Springer Berlin Heidelberg. (Cited on page 39).

218

bibliography 219

Robinson, A. H. (1953). Elements of cartography. Wiley. (Cited on pages 28, 29,
and 31).

Saalfeld, A. (1999). Topologically consistent line simpli�cation with the douglas-
peucker algorithm. Cartography and Geographic Information Science, 26:7–18.
(Cited on page 96).

Schirra, S. (1997). Precision and robustness in geometric computations. In van
Kreveld, M., Nievergelt, J., Roos, T., and Widmayer, P., editors, Algorithmic
Foundations of Geographic Information Systems, volume 1340 of Lecture Notes
in Computer Science, pages 255–287. Springer Berlin Heidelberg. (Cited on
page 8).

Schmid, S. (2008). Automated constraint-based evaluation of cartographic
generalization solutions. Master’s thesis, University of Zürich, Switzerland.
(Cited on page 35).

Seljebotn, D. (2009). Fast numerical computations with Cython. In Varoquaux,
G., van der Walt, S., and Millman, J., editors, Proceedings of the 8th Python in
Science Conference, pages 15–23. (Cited on page 12).

Sester, M. (2000). Generalization based on least squares adjustment. Interna-
tional Archives of Photogrammetry and Remote Sensing, 33:931–938. (Cited on
page 35).

Sester, M. (2005). Optimization approaches for generalization and data abstrac-
tion. International Journal of Geographical Information Science, 19(8):871–897.
(Cited on page 35).

Sester, M. and Brenner, C. (2004). Continuous generalization for visualization
on small mobile devices. In Fisher, P. F., editor, Developments in Spatial Data
Handling: 11th International Symposium on Spatial Data Handling, pages 355–
368. Springer Berlin Heidelberg. (Cited on page 51).

Sester, M. and Brenner, C. (2009). A vocabulary for a multiscale process de-
scription for fast transmission and continuous visualization of spatial data.
Computers & Geosciences, 35(11):2177–2184. (Cited on page 200).

Shewchuk, J. R. (1997). Delaunay Re�nement Mesh Generation. PhD thesis,
School of Computer Science, Carnegie Mellon University, Pittsburg, USA.
(Cited on page 74).

219

variable-scale geo-information

Shneiderman, B. (1996). ¿e eyes have it: A task by data type taxonomy for
information visualizations. In Proceedings IEEE Symposium Visual Languages
’96, pages 336–343, College Park, Maryland 20742, U.S.A. (Cited on page 48).

Shreiner, D., Woo, M., Neider, J., and Davis, T. (2005). OpenGL Programming
Guide: the o�cial guide to learning OpenGL. Addison-Wesley. (Cited on
page 163).

SSC (2005). Topographic Maps - Map Graphics and Generalisation. Swiss Society
of Cartography, Bern. Cartographic Publication Series, volume 17, CD-ROM.
(Cited on page 29).

Stoter, J. (2005). Generalisation within NMA’s in the 21st century. In ICC
2005: Proceedings of the 22nd International Cartographic Conference: mapping
approaches into a changing world, pages 1–11, A Coruña, Spain. International
Cartographic Association (ICA). (Cited on page 32).

Stoter, J., Burghardt, D., Duchêne, C., Baella, B., Bakker, N., Blok, C., Pla, M.,
Regnauld, N., Touya, G., and Schmid, S. (2009a). Methodology for evalu-
ating automated map generalization in commercial so ware. Computers,
Environment and Urban Systems, 33(5):311–324. (Cited on pages 35 and 196).

Stoter, J., Meijers, M., van Oosterom, P., Grünreich, D., and Kraak, M.-J. (2010).
Applying DLM and DCM concepts in a multi-scale data environment. In But-
ten�eld, B., Brewer, C., Clarke, K., Finn, M., and Usery, L., editors, Proceedings
of GDI 2010: Symposium on Generalization and Data Integration, pages 1–7,
Boulder, USA. University of Colorado. (Cited on pages 15 and 20).

Stoter, J., Morales, J., Lemmens, R., Meijers, M., van Oosterom, P., Quak, W.,
and Uitermark, H. (2007). Considerations for the design of a semantic data
model for a multi-representation topographical database. In Kremers, H.,
editor, Proceedings of the 2nd ISGI 2007: International CODATA symposium on
generalization of information, Geneva, Switzerland, 1-3 October 2007, Lecture
notes in Information Sciences, pages 53–71, Berlin. CODATA. (Cited on
pages 15 and 19).

Stoter, J., Morales, J., Lemmens, R., Meijers, M., van Oosterom, P., Quak, W.,
Uitermark, H., and van den Brink, L. (2008). A data model for multi-scale
topographical data. In Ruas, A. and Gold, C., editors, Headway in Spatial
Data Handling: Proceedings of the 13th international symposium on Spatial

220

bibliography 221

Data Handling, SDH 2008, Lecture Notes in Geoinformaton and Cartography,
pages 233–254, Berlin. Springer. (Cited on pages 15 and 20).

Stoter, J., van Smaalen, J., Bakker, N., and Hardy, P. (2009b). Specifying map
requirements for automated generalization of topographic data. ¿e Carto-
graphic Journal, 46(14):214–227. (Cited on page 9).

Stoter, J., Visser, T., vanOosterom,P.,Quak,W., and Bakker,N. (2011). A semantic-
rich multi-scale information model for topography. International Journal of
Geographical Information Science, 25(5):739–763. (Cited on page 32).

¿eobald, D. M. (2001). Topology revisited: representing spatial relations. Inter-
national Journal of Geographical Information Science, 15(8):689–705. (Cited
on pages 23, 24, and 26).

Tichy, W. F. (1997). Should computer scientists experiment more? - 16 excuses
to avoid experimentation. IEEE Computer, 31:32–40. (Cited on page 11).

Timpf, S. (1999). Abstraction, levels of detail, and hierarchies in map series. In
Freksa, C. and Mark, D. M., editors, Spatial Information Theory - cognitive
and computational foundations of Geographic Information Science, volume
1661 of Lecture Notes in Computer Science, pages 125–140, Stade, Germany.
Springer-Verlag. (Cited on page 36).

Timpf, S. and Devogele, T. (1997). New tools for multiple representations. In
Ottoson, L., editor, ICC1997: Proceedings of the 18th International Cartographic
Conference, pages 1381–1386, Stockholm. (Cited on page 50).

Tobler,W. R. (1987). Measuring spatial resolution. In Proceedings, Land Resources
Information Systems Conference, pages 12–16, Beijing. (Cited on page 29).

Töpfer, F. (1974). Kartographische Generalisierung. VEB Hermann Haack,
Geographisch-Kartographische Anstalt Gotha, Leipzig. (Cited on page 28).

Uitermark, H., Vogels, A., and van Oosterom, P. (1999). Semantic and geometric
aspects of integrating road networks. In INTEROP ’99: Proceedings of the
Second International Conference on Interoperating Geographic Information
Systems, volume 1580, pages 177–188, London, UK. Springer-Verlag. (Cited on
page 116).

221

variable-scale geo-information

van Bemmelen, J.,Quak,W., vanHekken,M., and vanOosterom,P. (1993). Vector
vs. raster-based algorithms for cross country movement planning. Auto-Carto,
11:304–317. (Cited on page 202).

van Kreveld, M. (2001). Smooth generalization for continuous zooming. In ICC
2001: Proceedings 20th International Cartographic Conference, pages 2180–2185,
Beijing, China. (Cited on pages 50 and 178).

van Oosterom, P. (1990). Reactive Data Structures for Geographic Information
Systems. PhD thesis, Leiden University. (Cited on pages 8, 38, 42, and 58).

van Oosterom, P. (1993). ¿e GAP-tree, an approach to “on-the-�y” map general-
ization of an area partitioning. In Proceedings of GISDATA Specialist Meeting
on Generalization, pages 1–15,Compiènge, France. (Cited on pages 128 and 191).

van Oosterom, P. (1995). ¿e GAP-tree, an approach to “on-the-�y” map gen-
eralization of an area partitioning. In Müller, J., Lagrange, J., and Weibel,
R., editors, GIS and Generalization, Methodology and Practice, pages 120–132.
Taylor & Francis. (Cited on page 128).

van Oosterom, P. (2001). De geo-database als spin in het web. Del . In Dutch.
(Cited on page 2).

van Oosterom, P. (2005). Variable-scale topological data structures suitable for
progressive data transfer: ¿e GAP-face tree and GAP-edge forest. Carto-
graphy and Geographic Information Science, 32:331–346. (Cited on pages 4, 5,
42, 43, 58, 84, 175, 191, 227, and 231).

van Oosterom, P. (2009). Research and development in geo-information gener-
alisation and multiple representation. Computers, Environment and Urban
Systems, 33(5):303–310. (Cited on page 37).

van Oosterom, P., De Vries, M., and Meijers, M. (2006). Vario-scale data server
in a web service context. In Proceedings of the ICA Workshop on Map General-
isation and Multiple Representation, pages 1–14, Vancouver, USA. (Cited on
pages 4 and 85).

van Oosterom, P. and Lemmen, C. (2001). Spatial data management on a very
large cadastral database. Computers, Environment and Urban Systems, 25(4-
5):509–528. (Cited on page 21).

222

bibliography 223

van Oosterom, P. and Meijers, M. (2011a). Method and system for generating
maps in an n-dimensional space. Dutch patent application 2006630, �led
April 19, 2011, expected to be published October 2012. (Cited on pages 15, 143,
and 173).

van Oosterom, P. and Meijers, M. (2011b). Towards a true vario-scale structure
supporting smooth-zoom. In Proceedings of 14th ICA/ISPRSWorkshop on Gen-
eralisation and Multiple Representation, pages 1–19, Paris. (Cited on pages 15
and 174).

van Oosterom, P., Quak, W., and Tijssen, T. (2003). Polygons: the unstable
foundation of spatial modeling. In Proceedings ISPRS joint workshop on
spatial, temporal and multi-dimensional data modelling and analysis, Quebec,
Canada. ISPRS. (Cited on page 59).

van Oosterom, P. and Schenkelaars, V. (1995). ¿e development of an interactive
multi-scale GIS. International Journal of Geographical Information Science,
9(5):489–507. (Cited on pages 42 and 58).

van Oosterom, P. and Stoter, J. (2010). 5D data modelling: full integration of
2D/3D space, time and scale dimensions. In Fabrikant, S., Reichenbacher, T.,
van Kreveld, M., and Schlieder, C., editors, Geographic Information Science,
volume 6292 of Lecture Notes in Computer Science, pages 310–324. Springer
Berlin Heidelberg. (Cited on page 202).

van Oosterom, P. and van den Bos, J. (1990). An object-oriented approach to
the design of geographic information systems. In Buchmann, A., Günther, O.,
Smith, T., andWang, Y.-F., editors,Design and Implementation of Large Spatial
Databases, volume 409 of Lecture Notes in Computer Science, pages 253–269.
Springer Berlin Heidelberg. 10.1007/3-540-52208-5_31. (Cited on page 39).

van Oosterom, P. and Vijlbrief, T. (1994). Integrating complex spatial analysis
functions in an extensible gis. In Proceedings of the 6th International Sym-
posium on Spatial Data Handling, pages 277–296, Edinburgh, Scotland. (Cited
on page 87).

van Putten, J. and van Oosterom, P. (1998). New results with Generalized Area
Partitionings. In 8th International Symposium on Spatial Data Handling, pages
485–495. (Cited on page 167).

223

variable-scale geo-information

van Smaalen, J. (2003). Automated Aggregation of Geographic Objects: A New
Approach to the Conceptual Generalisation of Geographic Databases. PhD
thesis, Wageningen University. (Cited on page 9).

van Wijk, J. J. and Nuij, W. A. A. (2003). Smooth and e�cient zooming and
panning. In 9th IEEE Symposium on Information Visualization (InfoVis 2003),
20-21 October 2003, Seattle, WA, USA. IEEE Computer Society. (Cited on
page 200).

van Wijk, J. J. and Nuij, W. A. A. (2004). A Model for Smooth Viewing and Nav-
igation of Large 2D Information Spaces. IEEE Transactions on Visualization
and Computer Graphics, 10(4):447–458. (Cited on page 200).

Vangenot, C. (2004). Multi-representation in spatial databases using the MADS
conceptual model. In Proceedings of ICA Workshop on Generalisation and
Multiple representation, Leicester. (Cited on page 40).

Vangenot, C., Parent, C., Spaccapietra, S., Zimanyi, E., Donini, P., and Plazanet, C.
(1998). Modeling spatial data in the MADS conceptual model. In Proceedings
of the International Symposium on Spatial Data Handling, Vancouver, Canada.
(Cited on page 40).

Vermeij, M. (2003). Development of a Topological Data Structure for On-the-
Fly Map Generalization. Master’s thesis, Del University of Technology, ¿e
Netherlands. (Cited on pages 42, 43, 58, and 59).

Visvalingam, M. and Whyatt, J. D. (1993). Line generalisation by repeated elim-
ination of points. ¿e Cartographic Journal, 30(1):46–51. (Cited on pages 34,
97, and 99).

Ware, J. M., Jones, C. B., and¿omas, N. (2003). Automated map generalization
with multiple operators: a simulated annealing approach. Internation Journal
of Geographical Information Science, 17:743–769. (Cited on page 36).

Weibel, R. (1991). Ampli�ed intelligence and knowledge-based systems. In
Butten�eld, B. and McMaster, R., editors,Map Generalization: Making Rules
for Knowledge Representation, pages 172–186. Longman, London. (Cited on
page 32).

Weibel, R. (1997). Generalization of spatial data: Principles and selected al-
gorithms. In van Kreveld,M., Nievergelt, J., Roos, T., andWidmayer, P., editors,

224

bibliography 225

Algorithmic Foundations of Geographic Information Systems, volume 1340 of
Lecture Notes in Computer Science, pages 99–152. Springer Berlin Heidelberg.
(Cited on page 34).

Westra, E. (2010). Python Geospatial Development. Packt Publishing. (Cited on
page 11).

Wiggins, J. C.,Hartley,R. P.,Higgins,M. J., andWhittaker,R. J. (1987). Computing
aspects of a large geographic information system for the EuropeanCommunity.
International Journal of Geographical Information Science, 1(1):77–87. (Cited
on page 13).

Worboys, M. F. and Duckham, M. (2004). GIS: A computing perspective. CRC
Press, second edition. (Cited on pages 26 and 113).

Yang, B., Purves, R., and Weibel, R. (2007). E�cient transmission of vector data
over the internet. International Journal of Geographical Information Science,
21(2):215–237. (Cited on page 52).

Zhou, S. and Jones, C. B. (2004). Shape-aware line generalisation with weighted
e�ective area. In Fisher, P. F., editor, Developments in Spatial Data Hand-
ling: 11th International Symposium on Spatial Data Handling, pages 369–380.
Springer Berlin Heidelberg. (Cited on page 34).

Zhou,X., Prasher, S., Sun, S., andXu,K. (2004). Multiresolution spatial databases:
Making web-based spatial applications faster. In Yu, J., Lin, X., Lu, H., and
Zhang, Y., editors, Advanced Web Technologies and Applications, volume 3007
of Lecture Notes in Computer Science, pages 36–47. Springer Berlin Heidelberg.
(Cited on page 51).

Zlatanova, S., Stoter, J., and Quak, W. (2004). Management of multiple represent-
ations in spatial DBMSs. In Toppen, F. and Prastacos, P., editors, Proceedings of
AGILE 2004: 7th conference on Geographic Information Science, pages 269–278,
Heraklion. Crete University Press. (Cited on page 38).

225

variable-scale geo-information

226

SUMMARY

•

Variable-scale Geo-information

¿e use of geo-information is changing by the advent of newmobile devices, such
as tablet-pc’s that harness a lot of computing power. ¿is type of information
is more and more applied in mainstream digital consumer products, in a net-
centric environment (i. e. dissemination takes place via the Internet) and the
advances in mobile hardware also have changed the way people can interact with
the geographic information at hand, compared to ‘old-fashioned’ paper maps.

However, current state-of-the-art solutions for storing, maintaining and
disseminating digital maps still mimic the analogue map-series concept in the
sense that for every map scale in the serie (e. g. 1:25k, 1:50k, 1:250k) a di�erent
digital copy with independent data is kept and maintained at the producers site.
¿e challenge of this work was to get to a representation of the real world with
gradually changing level of detail, instead of representations with discrete levels
of detail (organised in multiple, independent layers, each layer representing only
one resolution level).

Vario-scale data structures try to avoid this redundancy of the geometric
description of the map by storing references to composing map elements of the
highest level of detail for any other element of a lower level of detail. An example
of variable-scale data structures are the tGAP data structures (van Oosterom,
2005). In addition to the geometry and references, an importance value for every
object is stored and based on this importance value di�erent representations
(where the level of detail is gradually changing) can be derived on the �y from
these structures according to the needed level of detail.

¿e overall aim of this research has been to investigate variable-scale geo-
information,by de�ning theoretical underpinnings of vario-scale geo-information

variable-scale geo-information

and improving the initial tGAP structures. ¿e objective we had with this re-
search is expressed in the main question, which was formulated as:

How can we realise improved vario-scale geo-information having minimal
redundancy?

¿eoverall outline of the research design draws heavily upon the paradigm of
design research (Hevner et al., 2004). In an iterative fashion we performed theory
building, prototype developments and experiments with real world data sets.
Over the course of this research, we have made the following main contributions
to the design of a vario-scale geo-information environment. We have:

• formalised the concept of variable-scale data as a conceptual 3d model
(the space-scale cube, ssc), where 2d space and 1d scale is integrated;

• shown for the tGAP data structures how minimal data redundancy can
be obtained when applying a merge operation, how to perform a parallel
simpli�cation of lines, without introducing unwanted topological errors
and proposed a split operation, for which it was analysed what the impacts
are on the designed data structures;

• shown how to derive a 2d map from the structures with a particular
number of objects, as well as investigated progressive data streaming;

• proposed an improved way of generating data so that even smoother
graphic transitions can be derived for visualisation.

¿e main conclusions that can be drawn from these contributions:

1. With the concept of the proposed space-scale cube (ssc) we have formal-
ised what vario-scale vector data entails. In a sense, the improved design
of the tGAP data structures can be seen as a lossless encoding of the data
that is captured for a ssc.

2. To make vario-scale geo-information operational, we need speci�c gener-
alisation operations. ¿ese vario-scale generalisation operations should
be designed carefully to be able to give guarantees on the amount of data
to be stored and output topologically consistent vario-scale data.

3. Although the improved tGAP structures are capable of providing a smooth
zooming end user experience, we still store and visualise discrete steps –

228

summary

albeit smaller and more local than is common with current state of the art
solutions. ¿erefore we proposed how smoothness of the vario-scale data
can be improved (where the smooth ssc taking a small step in scale leads
to a small change in the 2d derived map). A novelty of this approach is
that, as it is one integrated space-scale partition, using a non-horizontal
slice plane leads to a valid, mixed-scale planar partition: this is useful for
use in 3d computer graphics (far away from an observer having less detail
than close by).

Although this research has generated some knowledge for a vario-scale en-
vironment, it also paves the way for future research. ¿e main recommendations
for future work are:

• Investigate how to deal with very large data sets that do not �t in main
memory (during the generalisation process or during visualisation) de-
serves attention.

• ¿e smooth encoding of the ssc has the same building challenge as the
classic tGAP with respect to applying the right sequence of generalisation
operators (remove or merge, collapse or split, simplify) to obtain maps
with su�cient cartographic quality.
Another point for further research is the smooth interactions: it is of
importance to know how users perceive these. ¿e same holds for mixed-
scale slices (in a 3d world).

• Focus of this research has been mostly on obtaining and viewing vario-
scale data. Performing analysis with vario-scale data is another interesting
aspect that deserves attention, e. g. vario-scale data could be of help in
data integration.

• Investigate how to make the structures dynamic: currently the tGAP struc-
ture (including the new smooth variant) is a static structure and has to
be re-built if the source data changes. Being able to perform incremental
updates (partially re-generalising data for a new situation) would be bene-
�cial if the data volume increases.
Related to this is higher dimensionality of smooth, vario-scale data (e. g. 3d
data) leading to integrated 5d data management (integrating dimensions
of space (2d or 3d), time (updates, 1d) and scale (level of detail, 1d).

229

variable-scale geo-information

230

SAMENVATTING

•

Variabele-schaal Geo-informatie

Het gebruik van geo-informatie is de laatste tijd sterk veranderd door de opkomst
van nieuwe mobiele hardware, zoals tablet pc’s die over veel rekenkracht beschik-
ken. Daarnaast wordt geo-informatie, zoals topogra�sche kaarten, meer en meer
toegepast in consumentenproducten (denk aan mobiele telefoons) binnen een
netwerk-georiënteerde omgeving (i. e. de verspreiding van de informatie vindt
plaats via het internet) en de nieuwe mobiele hardware biedt tevens nieuwe mo-
gelijkheden, ten opzichte van ‘ouderwetse’ papieren kaarten, voor de manieren
waarop mensen interacties kunnen hebben met de geogra�sche informatie.

Echter, de huidige state-of-the-art oplossingen voor het opslaan, onderhou-
den en verspreiden van digitale kaarten bootsen nog steeds de analoge kaartse-
ries na, in de zin dat voor elke kaartschaal in de serie (bijvoorbeeld 1:25k, 1:50k,
1:250k) een aparte digitale kopie met onafhankelijke gegevens wordt bewaard
en onderhouden door de producent. De uitdaging van dit onderzoek is om
tot één representatie van de echte wereld met geleidelijk veranderende mate
van detail te komen, in plaats van meerdere voorstellingen met hun eigen dis-
crete detailniveaus (die ook nog georganiseerd zijn als aparte en onafhankelijke
kaartlagen).

Vario-schaal datastructuren proberen om de redundantie van de geome-
trische beschrijving te vermijden door de kaarten op te slaan als verwijzingen
in een structuur, waarbij elementen van een laag detailniveau verwijzen naar
elementen van het hoogste detailniveau. Een voorbeeld van deze zogenaamde
variabele-schaal datastructuren zijn de tGAP datastructuren (van Oosterom,
2005). In aanvulling op de geometrie en referenties, wordt voor elk element een

variable-scale geo-information

zogenaamde belangrijkheidswaarde opgeslagen en op basis van deze waarde kun-
nen 2d kaarten on-the-�y worden afgeleid (waarbij de mate van detail geleidelijk
verandert).

Het algemene doel van dit onderzoek is het de�niëren van de theoretische
onderbouwing van variabele-schaal geo-informatie en het verbeteren van de
initiële tGAP structuren. Dit doel komt tot uitdrukking in de onderzoeksvraag,
die werd geformuleerd als:

Hoe kunnen we verbeterde vario-schaal geo-informatie realiseren, waarbij
minimaal redundante data-opslag gewaarborgd is?

De onderzoeksopzet leunt op het paradigma van design research (Hevner
et al., 2004). In een iteratieve manier hebben we theorievorming, prototype
ontwikkelingen en experimenten met data sets uit de praktijk afgewisseld. In
de loop van dit onderzoek zijn de volgende bijdragen aan het ontwerp van een
vario-schaal geo-informatie omgeving gerealiseerd. We hebben:

• het concept van variabele-schaal gegevens geformaliseerd als een concep-
tueel 3d model (de ruimte-schaal kubus, Engels: space-scale cube ssc),
waar 2d ruimte en 1d schaal in is geïntegreerd;

• weergegeven hoe voor de tGAP datastructuren een minimale redundante
opslag van gegevens kan worden verkregen na de toepassing van een
samenvoeg-actie, hoe parallel lijnen te versimpelen, zonder dat er onge-
wenste topologische fouten optreden en een splits operatie voorgesteld,
waarvoor werd geanalyseerd wat de e�ecten zijn op de ontworpen data
structuren;

• laten zien hoe een 2d kaart uit de structuren met een ingesteld gemiddeld
aantal objecten kan worden afgeleid, evenals dat we progressieve data
overdracht hebben onderzocht;

• een verbeterde manier van het genereren van vario-schaal gegevens voor-
gesteld, zodat nog geleidelijkere gra�sche overgangen kunnen worden
afgeleid voor visualisatie doeleinden.

De belangrijkste conclusies die getrokken kunnen worden uit deze onder-
zoeksbijdragen:

232

samenvatting

1. Met het concept van de voorgestelde ruimte-schaal cube (ssc) hebben we
geformaliseerd wat vario-schaal vector data inhoudt. In zekere zin kan het
verbeterde ontwerp en vullen van de tGAP data structuren gezien worden
als een exact omkeerbare (Engels: lossless) codering van de gegevens die
worden vastgelegd voor een ssc.

2. Om vario-schaal geo-informatie operationeel te maken is er behoe e
aan speci�eke generalisatie operaties. Deze operaties moeten zorgvul-
dig ontworpen worden om de hoeveelheid van de gegevens die worden
opgeslagen te beperken en de topologische consistentie te waarborgen.

3. Hoewel de verbeterde tGAP data structuren in staat zijn om een geleide-
lijke overdracht van gegevens aan een eindgebruiker aan te bieden (van
grof naar �jn) worden nog steeds discrete stappen opgeslagen – alhoewel
het kleinere en lokalere stappen zijn, dan wat gebruikelijk is voor de hui-
dige state-of-the-art oplossingen (multi-representatie databases, MRDBs).
Daarom hebben we voorgesteld hoe de geleidelijkheid van vario-schaal
gegevens kan worden verbeterd (met de geleidelijke ssc, waarbij het ne-
men van een delta in schaal ook leidt tot een delta in het 2d afgeleide
kaartbeeld).

Het bijzondere van deze aanpak is dat, omdat het een geïntegreerde ruimte-
schaal partitie is, het gebruik van een niet-horizontale doorsnede ook leidt
tot een valide vlakkenpartitie, maar dan met een gemengde kaartschaal
(Engels: mixed-scale): dit is nuttig voor gebruik in 3d computer gra�ek
toepassingen (waarbij ver weg van een waarnemer minder detail nodig is
dan dichtbij).

Hoewel dit onderzoek hee geleid tot nieuwe kennis over een vario-schaal
omgeving, zijn er genoeg vragen onbeantwoord gebleven voor verder toekomstig
onderzoek. Als belangrijkste punten voor toekomstige onderzoek onderscheiden
we:

• Onderzoek hoe om te gaan met zeer grote data sets die niet meer in het
hoofdgeheugen van de computer passen (noch tijdens het generalisatie
proces, noch tijdens de on-the-�y visualisatie).

• De geleidelijke ssc hee dezelfde uitdagingen als de klassieke tGAP data
structuren met betrekking tot de toepassing van de juiste volgorde van

233

variable-scale geo-information

generalisatie operatoren (samenvoegen, splitsen, lijnversimpeling) om
kaarten te verkrijgen met voldoende kartogra�sche kwaliteit.

Een ander punt voor verder onderzoek is de interactie mogelijkheden die
de geleidelijkheid brengt: het is van belang om te weten hoe de gebrui-
kers dit ervaren. Hetzelfde geldt voor afbeeldingen met een gemengde
kaartschaal (mixed-scale, voor toepassing in een virtuele 3d wereld).

• Nadruk van dit onderzoek hee vooral op het verkrijgen en bekijken
van vario-schaal gegevens gelegen. Het uitvoeren van analyses met vario-
schaal gegevens is een ander interressant aspect dat aandacht verdient,
e. g. vario-schaal gegevens zouden kunnen helpen bij het proces van data-
integratie.

• Onderzoek hoe de structuren dynamisch gemaakt kunnen worden: op dit
moment is de tGAP structuur (inclusief de nieuwe geleidelijke variant)
een statische structuur en moet opnieuw worden gebouwd, indien de
brongegevens veranderen. In staat zijn om incrementele wijzigingen uit te
voeren, viz. het gedeeltelijk kunnen hergeneraliseren van de (gewijzigde)
startgegevens voor een nieuwe situatie, is nodig (vanuit praktisch oogpunt)
als het volume van de opgeslagen gegevens toeneemt.

Gerelateerd aan het dynamisch maken is het verhogen van de dimen-
sionaliteit van de geleidelijke, vario-schaal partitie. Geïntegreerd data
management (met de volgende geïntegreerd dimensies: ruimte (2d of 3d),
tijd (updates, 1d) en schaal (niveau van detail, 1d) zou kunnen worden
uitgevoerd op een 5d data model (waarbij gelijktijdig historie bijgehouden
wordt).

234

CURRICULUM VITAE

•

Martijn Meijers was born on September 24, 1981 in Del .
In 1999 he obtained his high school diploma (in Dutch:
gymnasium) from Interconfessionele Scholengemeen-
schap het Westland (ISW) in Naaldwijk. A er this, he
studied Geodesy and Geoinformatics at the University
of Applied Sciences Utrecht (Hogeschool van Utrecht),
where he specialised in Geographic Information Systems
and got a Bachelor’s degree (ing.) in 2003. He continued
his studies at Del University of Technology, where he
obtained his Master’s degree (ir.) in Geomatics in 2006.

Next, he started to work for Royal Dirkzwager, a maritime information provider
in the port of Rotterdam. Here, he worked amongst other ict related topics, on
a web application for tracking seagoing vessels. Since July 2007, Martijn has been
a PhD candidate at Del University of Technology, OTB Research Institute for
the Built Environment, department of GIS technology, researching vario-scale
geo-information, under the supervision of Prof. dr. ir. P. J. M. (Peter) van Oost-
erom and Prof. dr. M. J. (Menno-Jan) Kraak. During his PhD he contributed to
the successful rgi-233 project ‘MobiMaps: usable and well-scaled mobile maps
for consumers’, which won the Dutch Geo-Innovation Award 2009, category
Science. In the summer of 2011 he completed his PhD project and this disserta-
tion. Currently, Martijn is employed as a postdoc at the same group where he
conducted his PhD research. He performs research in the stw project 11185
‘Vario-scale geo-information’ and the nwo vidi project 11300 ‘Modelling geo-
graphic information in 5d’.

variable-scale geo-information

236

	Acknowledgements
	Setting the scene
	Motivation for maps at variable scale
	Objective and Research questions
	Research scope
	Methodology
	Thesis outline

	Research background
	Modelling digital geographic space
	From single-scale to multi-scale maps
	Multi-scale hierarchies
	Vario-scale structures
	Progressive data transfer
	Starting points for data at variable scale

	Formalising valid vario-scale data
	A preference for minimal redundancy
	Formalisation of variable-scale partitions
	Validation (and repair) of a 2d input partition
	Closing remarks

	Improving variable-scale data structures
	Minimally redundant data storage
	Simultaneous, topologically-safe line simplification
	Collapsing areas: splitting over multiple neighbours
	Closing remarks

	Improving vario-scale data dissemination
	Quantitative importance-setting approach
	2d map for a thin client
	Progressive data streaming
	A cache-friendly and stateful solution
	Closing remarks

	A new era: smooth vario-scale data
	Lessons learnt: a synthesis
	Smooth data for the space-scale cube
	Exploring possible drawbacks
	Closing remarks

	Conclusions and Future work
	Conclusions
	Recommendations for further research

	Bibliography
	Summary
	Samenvatting
	Curriculum Vitae

