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1. Introduction

In the nineteen-sixties I posed myself some questions when searching for a geodetic model
based on the three divisionalgebras, viz. the algebras of real numbers, complex numbers and
quaternions. In the present more or less sketchy treatise the answers, found in recent years,
are formulated. The division algebras had proved necessary in order to define dimensionless
quantities which were instrumental in the coupling between dimensioned measurable quan-
tities and fictitious mathematical quantities. The term "dimensionless" is here to be inter-
preted in a narrower sense than in everyday language, namely such that dimensional units
which are eliminated are defined with a comparable sharpness by the process of measurement
or computation; an example is the unit of length in the quotient of two distances measured
under similar circumstances.

Division algebras are associative and commutative, except quaternionalgebra, which is non-
commutative with respect to multiplication. The latter fact is no objection, in fact it is even
an advantage because one is forced to be more careful when establishing relationships. It is
more awkward that there is no Analysis applicable to quaternions, contrary to the case for
real numbers and complex numbers (the theory of functions).

In three-dimensional geodesy one therefore usually prefers to use vectors and tensors with
their vector- and tensoranalysis respectively. But vector- and tensoralgebra are no division
algebras, which makes the formation of dimensionless quantities difficult, if not impossible.

The objection to quaternions can, however, be circumvented by linearizing non-linear
relations, using difference-quantities or -variates, such as Q - Q°, the difference of a
quaternion-variate O and its approximate value Q0. Then one can artificially define e.g. the
logarithm of a quaternion via a difference quantity, in analogy with the difference quantity
of the logarithm of a vector in the complex plane. In the complex plane one finds for the
relation between rectangular and polar coordinates (i, j, k are point numbers):

= x. +ey, =s.(cosg, + e sin ST Ge = -1
z; = X ey = s,(cos ey ®;) ’
— Azij
A, = Inz; =lIns; +eq; sy = —
def Z..
ij
M. - A, -A =% +g(p, -
jik = ik ij - <(pik ‘Pij)
def sij

S.
in which ~% and (q) w (p..) are dimensionless (and estimable) quantities. In the complex

Y
sij



number theory II ik is invariant with respect to a similarity transformation and can therefore

be called a form element. In our quaternion theory the following is analogically introduced
(Section 3.2.2.1 ff.):

AA

0\-1
ik (qik) ady 5 ally = aly, - aA,

def Y
but here alIl ik is not completely invariant with respect to a similarity transformation.

This invariance can, however, be attained by applying a so-called S-transformation to co-
ordinate variates, whereby also the coordinate system is defined. But there appears a typical
difference between the two- and the three-dimensional situations. Whereas for coordinate
variates in the complex plane an S-transformation does not affect the property of circularity
of point- and relative standard ellipses, the analogous property of sphericity in the three-
dimensional situation is lost when an S-transformation is applied. This had already been
shown by numerical computations, the theoretical proof has now been given in connection
with the formulation of a Criterion Matrix for coordinate variates.

Because in the application of quaternion theory one is practically compelled to work with
difference quantities, the choice of approximate values must be carefully considered. In this
context I remember being puzzled when first working on the S-transformationin the complex
plane in 1944. The approximate values chosen for coordinates were those resulting from an
adjusted network. All a-values were zero and remained zero, and yet the covariance matrix
of the coordinate variates was transformed. Of course the explanation was that the a-values
were indeed zero, but the a-variates were not. [ was an "isoparametric mapping" avant la
lettre, later so well-known in physical geodesy, although there the distinction between values
and variates was not always observed, to the detriment of conclusions drawn.

Following up [Baarda 1979] U, the present publication once more pays attention to the
coupling and interaction between geometric and gravimetric or physical geodesy, with some
further conclusions. Aspects of physical theory are elaborated on the basis of real numbers.
A further developmentof "corrections" to the Stokes-type integral formulas in [Baarda 1979]
has been taken over from [Baarda 1989]; the results deviate from the customary form. It is
regretted that neither the line of thought nor the results have so far drawn the attention of
the geodetic community.

In the present state of geodesy it is logical to devote attention to the coupling between on
one hand terrestrial geometric and physical geodesy and on the other hand the much more
spatially oriented satellite geodesy. Here also, the search is for dimensionless quantities and
the application of quaternion theory, so that a similar testing theory for errors and a similar
criterion theory for the precision of coordinates can be applied.

Since 1963, when I contributed my paper "Modeleffecten in de geodesy" to a discussionin
the Netherlands Geodetic Commission, I am convinced that the origin P,, of a geodetic
coordinate frame (as a part of the set of approximate values) will never exactly coincide with

D See "Notes and References"
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1. Introduction

the centre of mass P, of the earth. In [Baarda 1979] this effect has therefore been accounted
for in the entire system of formulas. In the present study this is also observed in satellite
orbit computationsand in the establishmentof terrestrial control stations by satellite methods.
The results indicate a small, but by no means negligible, deformation in station coordinates
caused by the non-geocentricity of the coordinate frame. Owing to VLBI-methods the
eccentricity appears to be estimable, but it is impossible to reduce it exactly to zero.

Furthermore there is the remarkable possibility of another small effect, viz. a difference in
scale between the computation of (among others) the gravity potential from satellite data and
the computation from terrestrial data.

The author feels obliged to apologize for the lack of homogeneity in this treatise. The cause
is the serious calamity which has fallen upon his family in 1971 and has since seriously
impeded the completion and publication of research. The aggravation of recent years allowed
only short periods for rounding off research and writing down the results, while checking
remained inadequate.

The plan of this essay is based on a contribution to the commemoration of F.A. Vening
Meinesz by the Royal Netherlands Academy of Arts and Sciences in 1987. In this con-
tribution, geodesy had to be explained to non-geodesists, traces of which can still be found
in the present text.

A contribution to the "Festschrift to Torben Krarup”, 1989, entitled "Tentative Remarks on
Adjustment Models in Geodesy" can be seen as a second version. The third version, further
completed, is now presented. In each version parts of a previous one have been included,
after correction of errors and mistakes that inevitably had been made. There can be little
hope that the present version contains no errors, but it is hoped that they do not invalidate

the train of thought developed.
The basis for all three versions is still [Baarda 1979], which publication found its origin in
an unpublished essay for the Festschrift in honour of A. Marussi’s 70th birthday.

The text is restricted to the main lines; various small but necessary corrections have been
omitted in order to avoid disturbance of the essential line of thought. Of course it is acknow-
ledged that the figure of the earth depends on time, but this only enhances the value of a
good momentary computing model.

In order to facilitate reference, short abstracts of the sections are now given:

1. Introduction.

2. A preliminary consideration of the three-dimensional S-coordinate frame preferred
by the author.

3.1 An estimation of the position of the centre of mass of the earth in an S-coordinate
frame according to Section 2, with possible consequences for the linking up of

mathematical models in geodesy.
3.2 An intermezzo treating by means of quaternionsthe mathematical formulation of the

S-coordinate frame chosen, and some consequences.

3.2.0 Introduction
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The similarity transformation including the gravity potential. A form element for
this potential.

The formula for the three-dimensional S-coordinate. The S-transformation as a
connection onto assumed fixed coordinates.

The relation between two- and three-dimensional S-coordinates. An elegant formula
for the three-dimensional S-coordinate as a function of three intrinsic quantities.

Application of the law of propagationof variances by means of isomorphicmatrices.

The constructionof Criterion Matrices. The important theorem stating that sphericity
of three-dimensional point- and relative standard ellipsoids is not conserved in an
S-transformation, contrary to the corresponding property of circularity in the two-
dimensional situation.

Again the connection between gravimetric and geometric theory, treated sketchily
but with concentrationon the fundamentals. The linking up of a mathematical model
by dimensionlessquantities. An objectionableinterpretation of compound quantities
as "free-air reduction to the geoid". A more appropriate definition of "relative sea-
topography".

An analysis of the modified integral formulas of Stokes and Hotine, based on ideas
of Rummel and Teunissen. A choice for the present satellite era. The lasting influen-
ce of the transition from sea to land.

—
The influence of P,,P. # 0, P, being the centre of mass of the earth and P,,
the origin of a quasi-centric S-coordinate frame for terrestrial data.

Once more the integral formula of Hotine. Effects of first degree spherical har-
monics. A suggestion for application. An afterthought.

Supplementary remarks on the linking up of the gravimetric-geometric model.
Correction terms in the modified integral formulas of Stokes, Hotine and Vening
Meinesz, deviating from the terms found in the literature.

Possible consequences of the gravimetric-geometric S-system for (terrestrial) me-
chanics. The corresponding dimensionless time quantity.

A sketch of problems in point positioning on the earth by means of satellite obser-
vations.

-
The effect of P, P, # 0 on launch data of a satellite.
Correction of aIl-quantities (orbit data) for earth rotation.

An alternative way of writing the formulas of the Kepler ellipse for the computation
of a satellite orbit. Difference formulas for dimensionless quantities, such as the
dimensionless time interval.

The linking up of the mathematical model from section 8.1. The influence of

e
P, P.#0.
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Comparison of the S-system in satellite orbit computation with the S-system in
physical geodesy; possible small differences in scale in mass, potential and time.

Questions arising when rewriting the higher-order terms of orbit computations by
means of the dimensionless quantities introduced.

Establishment of control by satellite measurements. The birg’s-tail construction.
Difference formulas with an appraisal of the influence of P, P # 0.

—>
An investigation into possibilities for the estimation of P, P, .
A more realistic process of measurement by means of series of pseudo-distances
(distance measurements from one station with the same but unknown length scale).

Synchronous measurements in several stations, with an estimation of the maximum
distance between stations if a (practically acceptable) elimination of the influence
of orbit errors is to be attained. Measurement of the distance differences.

A short after-consideration. The application of dimensionless quantities in satellite
gradiometry.

Concluding word with remarks concerning relativity theory, a possible influence of
the choice of terrestrial datum points on the precision of the determination of points
of satellite orbits, doubts about the alleged precision of computed quantities in
physical geodesy obtained by satellite gradiometry.

Notes and References.



In order to get out of the tangle of systematic and pseudo-systematicerrors in plane control
networks, I developed around 1960 a system of measurement and computation which was
based on angles and distance ratios, compounded into complex quantities. The aim was to
eliminate uncertainties in instrument orientation and -scale. Consequently, only the form of
a group of terrain points was determined, to be described in a coordinate frame attached to
these points in a precisely defined way, making use of the well-known four degrees of
freedom. A closer analysis shows that this coordinate frame is part of the set of approximate
coordinate values.

In interaction with the theory of complex numbers, the spatial terrestrial method grew, using
quaternions as quotients of vectors. An extra complication is that although a quaternion is
invariant with respect to rotation and stretching in the plane perpendicularto its unit vector,
the direction of this unit vector has to be fixed with respect to a coordinate frame. This
proves to be essential for satellite problems to be considered later.

Here again it is necessary for the definition of coordinates to attach the coordinate frame to
a group of terrain points, for example by considering as non-stochastic the coordinates of
two terrain points and the coordinate component of a third terrain point perpendicular to the
plane of the three points. This is a typical example of the definition of an S-system, in
which to a certain extent the plane of the three datum points takes the place of the plane of
the complex number theory. It is clear that the number of degrees of freedom in the spatial
case is seven. The measurement of vertical angles, astronomical latitude, longitude and
azimuth, determines the direction of the vertical in the terrain stations in the S-system
chosen.

The vertical angles are influenced by refraction, which has an adverse effect on the coor-
dinate component perpendicularto the earth’s surface. The coordinate components along the
earth’s surface are hardly affected by this, as was already experimentally established by
Hotine. No wonder that the classical ellipsoidal network computations could retain their
value, and, be it in different variations, are still being used for terrestrial work.



3.1

The last remark illustrates the fact that part of the terrestrial achievements in geodesy is
always conserved. This will now be gratefully used, namely by the introduction of an earth
model, to begin with having a simplicity adapted to transparent problems, later becoming
more complicated as subsequent problems have a greater complexity.

Begin by considering the earth as a homogeneous sphere with radius R, rotating around a
constant axis with a constant velocity. We have to consider the rotation because of astro-
nomical measurements, but for simplicity we shall ignore centrifugal potential. In this model
the centre of mass P of the earth is the centre of the sphere.

Now imagine this earth model described in a rectangular X', Y’, Z'coordinate system,
whose origin is in P, with the Z'-axis along the axis of rotation.

Suppose that a continental network has been measured on this earth model, so that angles
and distance ratios can be computed between three points P, P,, Py having mutual distan-
ces of 2000 km. The standard deviations of the angles and distance ratios are assumed to be
o = 107, Now measure the astronomical latitude and longitude in P, and P,, as well as
the distance s, (possibly in an indirect way).

Choose: .
¢ =9, (= 52)

P; south of P, and P,

- - . - . 10-5
Oy, = Oy, =059, "0, =05-10

One can then compute estimates for R, ¢; and A ;, with, among others, o . = 2 -1073

which is in reasonable agreement with earlier analyses of the dimensions of reference el-
lipsoids. One can also compute the set of X', Y’, Z'-coordinates of P;, P, and Py with
their covariance matrix. In this system the coordinate variances of P are zero, as well as
the variance of the direction of the axis of rotation.

At this stage P and the axis of rotation still are fictitious mathematical entities; only the
terrain points P, P,, P; are visible and accessible to man. Therefore the problem must be
posed the other way around. In order to do so, execute a similarity transformation preser-
ving the estimated values, but now putting equal to zero the variances of the coordinates of



P, and P, and the coordinate component of P; perpendicular to the plane of the three
points; call this the X, ¥, Z-system. The variances of the coordinates of P and the direction
of the axis of rotation are not zero in this system; these quantities are now estimated with
respect to the datum points P, P, and P; of an S-system as introduced in the quaternion
theory. The X, Y, Z-frame is thus fixed by the terrain points P, P,, P3; now the origin P,
does not in general coincide with P, nor is the Z-axis parallel to the axis of rotation. For
the example computed one finds roughly:

1

—0 ~ 1073
R

coord. P T direction axis

a result in reasonable agreement with the discrepancies found in the connection of classical
continental networks by satellite methods. The only estimate of P, P I know in classical
geodesy is given by Ledersteger in Volume V of the 10th edition of the Jordan Handbuch
der Vermessungskunde. On page 37 he arrives at an estimated 10“R. The appraisal which
was made above thus look reasonable, and its seems possible already to draw some conse-
quences.

Physical geodesy and geometric geodesy are inseparably connected, as was also shown in
my 1979 publication. Consequently, the statement in some textbooks, that one can choose
a reference ellipsoid centred in P, having its minor axis parallel to the axis of rotation of
the earth, cannot be put into practice.

Only form elements are determined, for if the unit of length, in which the distance s, is
expressed, changes, all distance quantities are proportionally reduced or enlarged. Such a
change may be brought about by the stochastic effects of measurement, and/or by more or
less doubtful reductions which are inevitable when a more complicated earth model is
considered. But form alone does not determine volume; therefore a requirement concerning
the volume of a reference ellipsoid, which is often found in the literature, cannot be fulfilled
either.

In fact the unit in which distances are measured is determined by the value (estimated or
without a measurement process) assigned to the distance between the terrain points P; and
P,. This means that the metre loses its role as a unit of measurement. If now a velocity has
been expressed in metres per second, then in our model a function of this velocity must be
introduced, which takes care of the difference between the model unit of measurement and
the metre. Also the unit of time will then have to be subjected to a suitable transformation.
The same applies to accelerations and consequently to gravity. We shall come back to this
later.

For the computation of satellite orbits one thinks it is justified to choose the origin of the
orthogonal coordinate system in P . But when a satellite is launched, the position vector
and the velocity vector are essentially determined via measurement in points on earth whose
coordinates are known in an S-system. This implies that, in computing the orbit, one has to
introduce corrections for the eccentricity of the origin of this S-coordinate frame with
respect to P ; corrections which eventually should make it possible to estimate this
eccentricity. In analogy with terrestrial situations, one meets here form problems that
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inevitable lead to suitable transformations of quantities. This also will be treated in the
sequel.

3.2 Intermezzo

In this Section 3.2. a three-dimensional form element will be developed, which is invariant
with respect to a similarity transformation close to identity. The formula developed may be
called an S-transformation of three-dimensional coordinates. It has already been published
in [M. Molenaar 1981] and [H. Quee 1983], but the present derivation is aimed at the
construction of a Criterion Matrix for three-dimensional coordinates, and shows a funda-
mental difference with the two-dimensional situation. This is relevant for the problems in
satellite geodesy to be treated in the following sections, because in our approach the
terrestrial X, Y, Z -frame in principle also remains valid for satellite orbit computations. The
determination of the coordinates of terrestrial stations from "known" satellite coordinates
may imply the necessity to establish a Criterion Matrix - as a substitute for a "real" covari-
ance matrix - for these satellite coordinates. Such a Criterion Matrix can also be used for
judgingthe covariance matrix of the computed coordinates of a global network of terrestrial
stations. In both cases the third dimension is conspicuously present.

3.2.1

Consider a point P, having coordinates x, , ¥, , z; . Unit vectors on the x, y and z-axes are

e e, respectively D, Then the vector g, is:

X ° ey s
i = X6y * ykey e,
The similarity transformation from g to g 'is then, written in quaternion notation:

!

4 = Apqp + g

in which A = length scale factor
p rotation quaternion with norm 1
gy = constant vector.

Now consider, for simplicity, a differential transformation with approximate values:

Al = 1 0 = qo(appr) =0

) For a summary of quaterniontheory, see "Notes and Refernces, Section 3."



hence qu(appr) =q k(appr)

and put (leaving out the "appr" notation in the sequel):

A=1+2aA , p=1+ap , g, =0 + agq,

: (appr)
k

q =q e

+Aqllc » 4y = 4 t agy

with alp™) = -p - app™ = -ap one obtains:

AGy = g " aA T AP "G, ~ gy AP+ AGg * A,

By subtracting from this formula the corresponding one for a "datum point” P, agj is
eliminated. Or, with g, — g, = q; :

Aqy =y " AA Y AD gy~ Gy APt AGy

It will be clear from the following sections that there is a continuousinteraction between the
gravity potential W and g as a compound of "geocentric” coordinates. The orders of

magnitude and the dimensions are the same if one takes w instead of W, g, being an

(assumed) value of gravity in a datum point P,. &1

Then it is plausit;lé to add a scalar w to g, and we think of:
w Z —
k 3

The three-dimensional case then becomes four-dimensional. Now let us see where the
application of our similarity transformation leads us:

we + 4 ) = ApWwi + qy)p T Wo *+ do)
Since pw, p 1= w, , this equation splits into:
w, = Aw, + W,

Apg,p' +q, (as before)

i

Now introduce the additional approximate values:

10



3.22.1

G I L B

Then one obtains:

' A‘4)0
ka(lnwk) = w,|ah + A(lnwk) +
Wy
or:
' AM)O
A(lnwk) = Ah + A(lnwk) + —
Wi
In analogy for the "datum point" P;:
Inw! A+ a(lnw) + o
allnw)) = a A —
(1) = s+ aftmwy) + 5

Now, calling in mind the introduction of w, the often applied spherical approximation in
coefficients of difference formulas results in:

w k(appr) o wl(appr)
Using this, with:

, , Wy
A(lnwk> - A(lnwl) = alln—

. w
A[IHKI;] - A(ln—k)
Wl Wl

so that for the scalar part of w + g) a separate form element has been found. It must be
noted that the formulation is chosen with a view to the train of thought which will be
developed later in Section 4.1.

one obtains

3.2.2.1

We now continue with the three-dimensional case. From ag;, follows,
with g ag, = aAj :

' -1
alAj = aly + Ak - (AP " G Aquk)

11



Split up a p into two parts a p, and a p, , introducing the datum point P, :

_ 1 -1 1 1
ap = E(Ap ~dn quIZ) + E(AP + 4 Aquz)
ap, aApy
_1 _1
ap, = vector L gy, , hence g, ap, = -ap, 4y,

Ve {Apb} = vector // q,, , hence ‘h_zl apyqy, = 0

Or:
' 1 1 -1
s, = s, + E(AA, - Apa) + '2—‘11k (AA + Apa)qik +
< 1 -1
‘E(Apb G Apbqik)
A, = s, + (A)\. - Apa)
With <Apa)T = - ap, the last equation results in:

aAj, - alhj, = 2k - ap,

/T T
Al - aAj, = ah + ap,

Substitute this into the equation for aA, and transport all quantities with a prime to the
left hand side:

' 1 : -1 AT
Al - E(AAIZ * gy a0y qlk) =
- ahy, - L{aAy, + gt aA] 1 1
T ARy T E(A 12 "9k A8 %k) - E(Apb = ik AP» qlk)
Multiply by g, » quaDix = aqy

t ! T
(Q21k Adyp * Aqyp QZlk) =

B | =

Aqy -
1 T 1
= Ay T E(an Adyp * AquQZIk) - E(qlk Apy ~ APqy)

With g, = gy ~ 4315 912 = ~9u1 ON€ obtains:

12



3.2.2.1

1 T
Ady §<Q21k“112 * A‘112Q21k) =

= AQy ~ ‘;‘[(1 - Qoix )8y * qul<1 - Qlek)] =

1 T
= Ay T —<Q12k gy qulezk) =

Because indices 1 and 2 can be exchanged, and with £ — 1 or 2 one gets:

1,2 1,2
sq? = agf"? <0
Hence:
(1,2 1,2 1
2qi"? = aq{? - S(auop, - Py au)

For the elimination of ap, we use a third "datum point" P; .

Because Ve {Apb} Il q,, we introduce a scalar ¢ and put:

p = Sc{ap,} + ‘11—21 c
or:

1 1 T .
—2'(q1k apy = APydyi) = E(Qzuc - QZlk)c = Vorg SINQypp " €y €

(1,2 1,2 1 T
Aqk( ) = Aqk( ) - _2‘(Q21k - Q21k)c

(1,2 2 1
A‘]a(l ) - A‘13(1 ) E(Qm - Q2{3)C

Since the points P, , P, and P, are assumed to be points on the surface of the earth, ¢ must
be such that no singularity canresult. A safe way is to determine ¢ from the component of Aq 2
perpendicular to the plane through P, , P, and P;, hence parallel to e;;3:

(1, ,(1,2) _
Q3( D €131 Aqa( 3213 =

(1,2) 1,2) ~ T
= 243 * €3 AQs ‘3213 (Q213 Q213)C

After substitution into Aq,’((l’z) this results in:

13



ag? - %(QZIk - Qlek)(Qm - Qz?a)_l (A‘E(l’z) * €3 agy? 32—113) =

= agg"? - %( 2k T szk)(QZB - Q21T3)_1<AQ3(1’2) * €3 A‘I3(1’2)32113) =

by which the form element wanted has been found, which is invariant with respect to a
differential similarity transformation. One may also refer to this as an S-transformation to
the § -system.

1,2;3

Now we have for P; :

1,2;3) 1 1,2 1,2) -1
3( )= —(A‘h( )‘6213MI3( )‘3213)

Ag 2

2)

) {1,
= (component Ag, 4 3213)

or:

(component Aq3(1’2) I 6213) =0

Because Aql(l’z) = qu(l’z) = 0, we have for P, and P, :

1,2;3 1,2;3
27 < 4

The S-transformation consequently is a form-preserving connection to:

(appr) (appr) (appr) (appr) , -1 )
1 4 2 3

and (q *esds s

q q

For a comparison, one can refer back to the discussionon the X, Y, Z -frame in Section 3.1.

3.2.2.2
In order to establish a better connection between the three-dimensional and the two-dimen-

sional S-coordinates, the formulas obtained are written in a different way.
With:

14



3222

0. -0 =2 Sik )
21k 2k = <« — SOyt €y
12

one obtains:

1

B (1’2)
€1k €213 (MIs

1,23 _ 1,2 _ 1 Sy SGyy,
k - k A T

. 1,2) -1
) : €13293 3213)
S13 SINQyy5

Aq Aq

In subsequent derivations repeated use is made of the fact that the following is valid for
orthogonal unit vectors:

eje, = —ee , hence: e -a(e) = - afe) ‘e
With:

-1 -1 _ _
Ok = Qe 912 and gy aqy, = ahy sl - Al = ally,

one obtains:

1,2 1 T
A‘lk( ) = Adyg T '2‘(Q21k adyp * AqleZIk)
or: .
1,2 T
A‘Ik( ) = Ay E(qlkAAu * AA12q1k>
with: ,
T
0 = aqy - 5(‘111:“\11( M AAlkqlk)
results in:
1,2 1 T
A‘]k( ) = E(QUC allye + Aquc‘hk)
With:
II., = ajl Sk + si B’
alloy =& ns_ €1k AQx) *+ SN €4 Aley )€y,
) 2
ol - Al . o« -1
allyy = 4 ns__ €215 8(01) — SNy ep) Aley, )€
12

this becomes:
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+

1,2
A‘Ik( ) = 91k

In Sik)
AN —=1 = €5y A(a2lk)
S12

o

* 3% SinaZIk[A(eZIk)elz - elZA(e21k>]

[\

Making use of ey;3 13 = ~ ¢;3 €53 and 6213A<ez13)"’12 €33 = A(em) €2

this results in:

1,2) 1,2 -1 _
Ag; t €y3443 €33 T

+

- lal1 Si3) _
913 alln—==1 - €53 a(ay3)
12

A(ln ﬁ) - 6213A(a213>
12

lA(em)elz i ele(em)] ' [A(em-")eu B ele(ezw)” i

1 .
+ =5 sina,,
2
= s13sma213[A(6213)e12 - 612A<‘3213>}

It follows that:

. s
1,2:3) _ k| _
Agy = G| a|In—=] — ey afay,)|
12
+ 1 i - -1 +
_2_S1k51na21k [A(ezlk) 621k6213A(6213>]612
_ ~ -1
€12 A(621k> e21ke213A(3213)
With: -1 -1 -1
1th: €134 (€13)€213 = Al€as

one obtains:
-1
Aleyk) ~ €xr€asslers) =
_ 1 -1 -1 _ -1
= A(e21k)e213 €31% €213 8(€213)€213 | €213 = A(eZIkeZIS)eZB

Define the angle v,, between e, and e, ; by means of the quaternion with norm 1:

16



3222

-1 .
€% €213 = P3p = COSVz + €,SIVy,

put
Then:

-1 _ -1 _ I

A(eZIk 3213)3213 = €r €k APxuC23 T €a1p Ak
. _ . -1
with: ally, = - epa(Vy) + sinvyen, alep)ey;s
. . (1,2;3)

The second term in the right hand member of agy now becomes:

ls sina.,,, e, |all,,e.. +e all. | =
5 1k 21k €214 3k612 12843

+

1. . y
= Eslk SINQy 4 €214 [A(Vsk) - sinVy, ey Aeg;)€15€513

. -1 .
+|8(Vay) - Slnv3k821kel2A(elz)e213” = Sy SN0y ey, 8(Vay)

Finally one gets:

1,2;3) _
k +

Aq = 4k

s
[ln%) = €380

12

+ Sy Sinay — ey A(Vyy)

With v,; = 0 we obtain:

1,2;3
A%( ) = 443

i Si3]
alln—==1 — ey3a(ey3)
S12

Which result can also be obtained directly.

The first term in the right hand member is exactly the expression for the two-dimensional
S-coordinate Azk(l’z) in the theory using complex numbers [Baarda 1973, 1981] if

e = € for all k and /. The second term is the addition for the third dimension.

It is clear that Aqk(l’m) is determined by three intrinsic quantities:

17



S1k
n— , a,, and v,
S12
. (1,2;3)
In a certain sense one may therefore call ag; a form element as well.

3.23

Our focus of attention is the analysis of the covariance matrix of the variates Aqk(l’m). It is
remarkable that I had developed the relevant quaternion algebra already 25 years ago, but
then I could not see through the formula system because I stuck too long to a pure
quaternion theory, trying to follow a course similar to the one developed in the theory with
complex numbers at the same time. It was not until the spring of 1991 that I suddenly saw
the possibility of obtaining a practicable solution by an earlier transition to isomorphic
matrices. Therefore we shall first reformulate the S-transformation in matrices, beginning
with a summary of the theory.

If:
Q =d +ai +bj +ck

ii =jj=kk=-1, ijk=-1

then the isomorphic matrix is:

d -a -b -
| d ¢ b o r
@-, © .l eh-©
¢c -b a d

(Q) is a skew symmetric matrix + d I, which in sequel will be called a skew” symmetric

matrix. For d = 0 the quaternion Q becomes a vector, which consequently can be written
as a skew symmetric matrix.

In considering the product (Qy) of two quaternions not all matrices have to be fully writ-

ten out; the first columns of the matrices (Qy) and (y) suffice, other columns provide no
new information.

The sequence of multiplication can be changed as follows:

¥)(©Q) = (Q))
We”n =)
with:

18



3.2.3

d -a -b -
— a d c¢ -b
<Q)=b—c d a )
c b -a d
-1000 -1000
0100 ;10100
= )
0010 0010
0001 0001
Hence:
@) +wR" = + 2N
with:
d 0 0 0
1 -n |0 d < b .
§(Q+Q7>~O c d -a p;t()
0 -b a d
and:
Q@) + Q) =@ + 0)w)
with:
d -a -b -
1 - |a d 0 0| &
300, 0 4 20
c 0 0 d

In general Q_ satisfies the same quaternionrelations as Q, but Q_ and Q belong to different
groups. As soon as they appear in combination, like in the present case, the group properties
are lost. For example neither (Q + Q) nor (Q + Q 7) is the matrix of a quaternion.

Now apply this to the

S-transformation in section 3.2.2.1:

pal"™
@

1.2)
1

(aa

) = (aqy) - (Qa1) (2412)

)T (2q1)" - (Aqlz)T(le)T

Because:

19



1
_( 213~ Q21T3) = Ve{Qys} = o3
2 put

and hence:

12 -1 1,2 -1
€38q93 €313 T 4y34893  qy3

one obtains:

B s 1 - ’ ’ -
sgi" = 0g{"? - “ayuilamaa? + ag5" Vazm)
with:
_ -q .
42311 = 2231 ) 32213 = Ny} = Slnz"‘mN {Q21}
5213
Hence:
: 1 5 ,
(AQI§1’2’3.)) = ag? — @214 (‘1213)(A‘13(1 2))
an S213
1L,230T _ 1,20\T 1 A2\T, 2 \T T
(Aql ) = (“11 ) * T(A% ) (@213)" @21)
5213

Now we have a system of equations to which the law of propagation of variances can be
applied.

Finally we investigate the conditionsunder which a covariance matrix will produce spherical
standard hyperellipsoids for coordinates of each point and for the coordinate differences of
each pair of points of a network.

Let now the symbols a and b successively two of the quantities w, x, y, z, with b # a (a
and b are now arbitrary symbols and not components of a quaternion).

Then the following must hold for each point P, :

2
a,,a =d , a,,b, =0
put

or:

20



T
Wi Wi

Tl M 2 . . .
1 1 ¢ =d, -1 , with I the 4 x 4 unit matrix
Vi Vi

% Z

(@, - ac), (a - a) = 2dkz, , dkz, = d,i

- _ - dk21

(a,—ak),(b,—bk)=0 R a,,b = -a,b,

or:
T
Wil i
e | % dt +d}
() £ >-[__’° L_d2| -1, withdl =0,
Y Y 2
Zk) & is a skew symmetric matrix.

This condition implies the previous one for [ = k .

Now introduce the notation @, - a, = a,, , then:

3.2.3

21



aik’aﬂ:"(aiaai'ak’al)+<ai’at_ak’ai)+(ai’ai_ai’a1):
2 2 2
2 dp +d 2 2 dy +d 2
:—dl_ +kl+d1_ t |t
2 2
2 2
2 4 +d4 2
+|d; - +dy| =
2
- g2 gt . g2

aik’bilzak’bl_ak’bi_ai’bl+ai’bi_
= a,,bk+a,bk+a,,b +a,,b, , a;,b, =0
= i > biy
hence:
T
Wik Wi
X X,
awv) 17k il d? + 42 2) g
[, f‘(‘k:*ki*it)
Yik Yit
Zik Zy is a skew symmetric matrix.

Unfortunately (IV) only provides the possibility to establish a Criterion Matrix for w

(actually for w , see Section 3.2.1). For the vector of coordinates x, y and z we are faced

&1
with products of skew symmetric matrices and these products are not in general skew

symmetric. This necessitates a further assumption:
V) a.,b, =0 , hence a,,b, =0
This is not a very hazardous assumption. It is more important that no assumptlons need to

be made for d d and d,2 and certainly not the assumption that all these d >-values
must be equal. Now it follows from (IV) that:
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3.2.4

T
Wik Wi
X. X
ik il 2 2 2
, = (-dS +dS + d. I
kl ki il
Yik Yit
Zik Zj1

V")

w = 0 gives with (@) = (0,x,y,z)7:

(0-94") = (-t + dic + ) (g (1))

where now I is a 3 x 3 unit matrix.

This results in:

0 0 0 O
00 0 d ¢ b

dZ, =d?
( )(0 I)(Q) 0 ¢ d -a
0 -b a d

wich for brevity will be referred to as a "3 x 3 skew" symmetric matrix".

The final assumption is the adoptionof a function for dkzl. In [Baarda 1973, 1981], the most
simple function was chosen:

LR -

in which ¢ is a constant, s,;, = N l/z{qk,} . This choice was supported by the results of
research by E. Pinkwart and J.E. Alberda 3, Other choices are possible.

3.24

Now the construction of Criterion Matrices can be taken up.

] W,
We start with the one for w, = — .
81

2) See "Notes and References, Section 3.2.3"
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W, r W, r W,
—k=rl—1,A——'5=rl—1Aln—5
81 &

W, r w. r W,
A—k——lA—l=r1—1Aln—k
&1 e \ & T W
or in spherical approximation, R being an average radius of the earth:
Wi

w, )
aAl—=] = Ralln —= | , cf. Section 3.2.1.
& W,

With equation (V) in section 3.2.3 this results in:

I L 1y 2 2 2
D In 1,ln = (dk,+dk1+d1,>

| =
> VI TSN

Then, with (I) in Section 3.2.3:

Qk(l’z) ) QI(I’Z)T) = (qlk ) QUT) - (Chk ) %g) (szl ) *

- (Q21k) (qlz ’ qllT ) + ( 21k) (q12 ’ qlg) (szl)

and with (V) in Section 3.2.3:

(08 0t - (-a - a3 - a2) ) 9) -

- (“dkzz + dk21 + d122) (8 (I)) (Qlel) M

an

0 0),.
- (‘dzi + d221 + d121) (0 I) <Q21k> *

0 0), 5
+ _2d122 (O I) (Q21k) (QZlTl)

Finally, from (II) in Section 3.2.3 follows:
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324

. T T
1 , 27\ /2
t = (CIk(l 2, ‘13(1 ? ) (‘121T3) (‘Ilet) *
5213
(I1I) :
a T
T (21 <421T3) ‘13(1’2) ) ‘II(I’Z) ) +
5213
1 o @y 027 2
* = (42u) a3 ) (‘13(1 D, q? ) (‘szs) (421T1)
5213
Interpretation:
From (I):
W, |14 W, W,
Inok k=242 | @t mol- 242
W, W, R W, W, R

|14
i.e. the form elements ln—n—/k- satisfy (III), Section 3.2.3.
1

In (II) the first terms in the right hand member are 3 x 3 skew® symmetric matrices, but the
character of the fourth term is not immediately clear and will have to be investigated. The
question is if the left hand member is a skew" symmetric matrix and fulfils (III), Section
3.2.3.

At this stage no statement about (III) can be made.

For the analysis of (II) we choose a special x, y and z system whose x-axis is parallel to g,,.

Then:
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_ _ -1 _ €,
9y = 5316 = 5126 > 9y = ——
s
12
- _ -1 €x
Ay = ~Spé > qi = *—
512
Do = Xuly * Yuby * Zu€, e = Xl * Yuby * Zue;
Ay = Xy€, * Vyf, * 2y€, qy = Xue, * Yue, * Zy€;

-1 1
Qi = dudn = s_u (Xu = Zue, * Yue,)

-1 1
Qe = dud2 = S (~Xy * Zye, -~ yue,)
12
Check:

1
Qi * Qo = 5. (%21 ~ 2y, * Yne;) = 1
12

x, 0 0 0 x, 0 0 0

© ):i 0y Yu Zu ( T):i 0 x; -y, 2y
2 sp| 0 I * O St sl 0 yy xy O

0 -z, 0 =y 0 2z, 0 —x

Pt 0 0 0

1 0 [xlkxll MPAT24 TN Zlkzu] [xlkyu - ylkxu] [xlkzll - Zlkxu]
3122 0 [ylkxu - xlkyu] [ylk}’u + xlkxll] [ylkzll]

0 [ZueXu - xlkzll] [211&’11] [zlkzll * xlkxll]

Now for the (3, 4)- and (4,3)-elements the following must be valid:

YuZu = ~Zyyy > or with y. .y, .y, # 0
z z z Z,.
o Tk hence also —% = -Z% |
Yu Yk Yu Yy
Z 24 V4 Z4:
. 1
hence —* = ZY whereas this should be : =% = -4
Yue Yy Y1k Yy
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This contradiction can only be solved if for all points P; we have: z; = 0, and because e

3.2.4

y

and e, are still free to rotate about e, this means that all points P, must lie in one plane

through P, and P,.

Choose e, 1 plane P, P, P, , then (II) becomes, with I a 2 X 2 unit matrix:

@ =0,xy,0"
] 000
000
000
_(_a'k22+dk2l +d122)[0 1o ( 2{1) *
000
000
e o 100
000
000
+2d500 10 (Q21k) (QZITI)
000
with for ex//qu :
P‘lkxu] 0 0 0
() )(QT) _ 1 0 Py * Y] Fuebu = Yue¥u] 0
21k) =21 s122 0 [ylkxll—xmyu] [ylkyu"xlkxll] 0
0 0 0 P‘lkxu]

This is the Criterion Matrix for the coordinates of points in the plane, as derived in [Baarda
1973, 1981] by means of complex numbers.
In the plane we consequently have the nice property of the Criterion Matrix that the circu-
larity of point- and relative standard ellipses is invariant with respect to an S-transformation.

The derivation shows that this is not the case in the three-dimensional situation.

To make sure, (II) will be examined.
In addition to e // g,, , the z-axis is chosen such that e, //e;; , S0 that z\3 = 23 = 0. One

obtains:
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1
Qo = 3—1; (X * 28y ~ Yue;)

0 0 -z, yyu
0 0 yu zy

q = e—
(21k) S| 2w Vi 0 0
Yie T 0 0
Qs = (~%13 ~ Yiz€;)
12
000 y,
1| 0000
@23) = -1 900 o
5,00 0

and hence (II), Section 3.2.3:

0

) 0
) - ) L e

Yk

Using this, (IIT) becomes:

1,2;3 1,2;3)7 1,2 1,2)7
g, g < (g0 | g0V
0 0 0
. 0 0 [zl,xk,z3
+ —

0

['yu Xk ’23]

Y13 |0 [zlkz3,x,J [zllyk’z3 +Zlkz3’le [_yllyk’z3 +Zlkz3’zlJ

28

0 [—ylkzg,,X,j [zllzk’ZB _yuczs’sz [‘y1tyk’z3 —ylkz3’zlJ

(1,2)




324

00 0 0
00 0 o
+_1_ Z(l 2) (1,2)
y123 00 [z [‘Zucyu

] I
{ ylkzll] [ylkyll]

T T
Assume that (q &2 q,(l’z) ) is a skew’ symmetric matrix. As before, it follows from the

third term that for all points P,: z;, = 0.
Then the remaining elements of the matrix in the second term can only comply if for all

points Py:

£ 12

k (L2) _
a2 |’ 23 =0
Yi

This means that the variate Az§"2> has no stochasticity:

WA = 0

But all points of the network can be considered as being P;, so that the conclusion is that
even the variance of point coordinates in the direction perpendicular to the plane of Py, Py,
P; is detrimental to the invariance of spherical standard ellipsoids with respect to an S-
transformation.

In itself this lack of invariance in a Criterion Matrix is not a serious matter, because
computed covariance matrices of networks will probably present the same picture. However,
in applications the interpretation will be more complicated.
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4.1

Now consider the real earth. Having an eccentricity of O (10°), it is almost spherical, and
this motivates to a rather rough development of formulas which clearly illustrate the prin-
ciple of the ideas of my 1979 publication. These formulas lead to further conclusions with-
out much mathematical ballast. Here the proper use of the coordinate frame is extremely
important, which must be reflected in the notation.

For the polar coordinates of a terrain point P, in our X, Y, Z frame with centre P,, we
introduce the radial distance, the latitude and the longitude:

ro, 9, A

and in the parallel coordinate frame with centre P :
Ter s 9cr s A

The gravitational potential 7 is written in condensed form in two different ways with a view
to later use (u is the mass of the earth, R an average radius of the earth): ‘

> (5)” k‘")J

n=2 ‘g

_ M
v, = &
Ter

:ﬂ_(l > Bk(n)]:L(l + £V,)
Tex n=2 Tex

W being the gravity potential and ¥ the centrifugal potential, we obtain:

4
Wk=Vk+Tk=Vk(1+7")=Vk(1+e‘Pk)
k
or:

Analogous:

in which always:

30



4.1

ed = 0 (1073

We now change over to dimensionless quantities having the same order of magnitude viz.
1. Taking again P, as the datum point:

W

W, r,

ko ZL L1 W) = T'“_(1+ eW,)
a1 reg Tk Tei81  roig
r r r
ale . B0t eg) a8 1= B (1e gy
a1 regy Tk Tc181 re18;

The course followed now is aimed at finding for these relationships a uniform way to intro-
duce measured quantities in the form of potential differences (or possibly -ratios), gravity
ratios (possibly regionally derived from gravity differences), and length ratios (as known
from geometric geodesy). Another aim is the elimination of the nuisance quantity u. Since
the right hand members of the relationships are in fact spherical harmonics series, it is
important to introduce differences of functions so that only differences of these series occur.

Denoting the quantities in the left hand members of the relationships by 4, all aims are
attained by the introduction of the new quantity:

r
C

Ak - Al
Ter

By ignoring (eA ¥ = O (107%) , so that:
In(1+e4) =eA , (1 +eA)'=1-¢4

one finds:
~
r2g =1 - eg
c181
W, r W
k_-4a (1+ eW, - egy) L= (1 + W, - egy)
el Tek Tc181
r r r
L
rc181 Tek - T8
so that the new quantities become:
fo W reqe Wi
re ) T e T e T
Chk 181 cx Tc181
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r 2 2
Ck | Tc18y re184

_Ta (TaWe 1] =
rae \TertWs

or also:

Tex o3 I'c181 el
_Ta W, - W In [ck ree “Ta [ Wi 1
Tex r'c18y fa Ter rci81

a1 Tak _ Ter Tair _

— (8 ~ &) =
Ter reil81 T Tabi
2
_Ta (ergk _ ] _
2
r
Ck \re181

These mathematical relationships will now be interpreted as relationships between measured

r W,
quantities or variates. One recognizes the length ratio —<%, the potential ratio —* or the

r

c1 1
potential difference (W) - W) from levelling, and the gravity ratio 8k .

But these relationships are not very useful if no value is known for ;Cl , g and W, . Of
these, only two can be chosen indepently: r¢y is a geometrical quantity which can be
derived from the geometrical S-system X, Y, Z, althoughin this system the origin P,, will
not coincide with the still unknown position of P . Hence the only thing one can do is to
take for r, the distance 17171 in the X, Y, Z-system. If P, is a datum point of the X, ¥,
Z-system, then its coordinates can be chosen (of course as well as possible), from which
will follow P, P, = r;. Then r, actually is part of a consistent choice of approximate
values in the X, Y, Z-system, so that the following notation is chosen:

32



4.1

{rea ™ =r; , hence also raef™> =n. , et

By now choosing a value as good as possible for g, too, one in fact establishes a coupling
between geometric geodesy and terrestrial physical geodesy by extending the geometric S-
system to include g; .

W

Now: fa “Tet _ (107%)
Tex Te181

- 0 (107)

so that in their product one can certainly replace 7, by r, and r., by r,. Consideringthe
limits chosen for neglect, one might even ignore the whole product, but then the transforma-
tion to a different datum point (S-transformation) would be less elegant to execute. One
obtains:

In Klﬁ + In f_C_k_ =
W, For
W - W +"‘_rl(Wl -1)+1nﬁ=eWk-sW1
ré& Ty r8; o
W,
— =1+ eW, - &g,
ré&;

r
ln§£ + 2In £ = €8, ~ €8,
&1 et

It is curious that the "constants" W, and p are largely determined by the choice of the S-
system (in a more complete theory complemented by transforming the respective right hand
members into well-known integral formulas, as re-written in [Baarda 1979], Section 4.4).

The chosen limit of neglect would be acceptable if the sharpness of definition (precision
and reliability) for the measured quantities:

w r
In =X | lngﬁ and In -

W, &1 T'ey

has the order of magnitude 107 to 10 . If this order of magnitude is decreased by new
techniques of measurement to 107 or 10", so that adjustments to measured values are in
the order of 10”7 , then one will have to change over to difference equations. The model of
relationships for computations will then have to be refined to the same sharpness of defi-
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nition, with a set of approximate values again satisfying this model to the same sharpness -
a consistent system of approximate values - and chosen such that in our case, for example:

a(ed) = €A - (AP = O (107,

a value on the safe side in view of the estimate of PM P. in Section 3.

For our approach the relationships then become:

W, r
A[ln ——E) + A(ln ﬂ] =
4 Fel
W, - W - W.
=A[k 1)+rk rIA( 1)+Alnﬁ=
r8 T & Lo

A(EWk) - A(sz)

]

and hence:
- 2A(1n %) ’ A(ln i_:) = [~ 2a(W,) + afegy)] +
- [~ 2a(sW,) + afegy)]

In the coefficients of difference quantities, one may put r,/r; = 1, which means that the
earth may be considered as a sphere. Therefore the term:

- /4
e "N (2] - 0(10%) 0(10) = 0(10°9)
T &

will usually be negligible as well.

In all right hand members of these relationships the influence of the centrifugal potential
practically vanishes so that almost without approximation we have for these members:

n n
(-2
T r

0

A(eWk> - A(sz) = E

n=2

a(egy) - 4(281) = i (n +1) {(?)nﬁ‘yk(n) - (B)HAan)
k

n=2 rl
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4.1

surface of
P ( ) the earth

I:,1 (rC1 ’W1 ’g1) R '(er' ’W1 ’gk' )

Now we "forget" for a moment the physical matter which is present, and continue the
equipotential surface through P, into the earth, choosingon this surface the fictitious point
P, on the plumb line of P, . By combining our "forgetting" with some more sloppiness we
arrive at the well-known interpretations of the left hand members of our relationships:

|14 W, ' '
A(ln—k) + A(lnﬁ) = A(nﬁ k| = A(nﬁ rﬂ) = A(ln el
W, el ree W, Ter Tex Ter

r

or a "free-air reduction” of A(ln —le) to the geoid through P, . If one chooses as the model
Te1

for approximate values the well-known ellipsoidal model from physical geodesy, N being

the height of the geoid above this ellipsoid, then follows:

oyt [ § Al = 7 N/ - N
Ck c' " Tc
alln =] = Alln |1 + &S| - ( ) o N !
o) Ter et Ter

W W\
~oalin 25 4 Al 8k = alm B[ 1Y -
W, 81 g\ W,

Analogous:
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~ alln & Lciz]gAlnﬁgﬁ =Alng—;c ~ 28T 0
81 \ ek 81 8k 5 &

or, a "free air reduction” to the geoid through P, .

A(ln 55] + ZA(II’I ﬁ) =
81 T'ex

Therefore:

- A(ln g—"') . 2A(1n ri")
81 Teq

One recognizes the well-known anomaly-quantities from physical geodesy.

However it must be realized that this unnecessary and improper interpretation of better
defined mixed quantities can never be a good basis for a model theory; it can only lead to
confusing discussions.

But if, along with this interpretation, we also reject the fiction of a geoid, what to do with
sea-topography? To answer this question, reverse the line of thought. For points P, and P,
at sea level:

ale ~ Tad) —A[ln _Ck_) - -A(ln ﬁ)
w.

Tor! Ter 1

with WP = WP one obtains:
. W,
relative sea-topography (er - er:) = -r.In W
1
This means that it suffices to determine potential ratios (or-differences) of points on the
surface of the sea.

In the approach sketched, the important aspect is the inseparable relation between quantities
from physical and geometric geodesy. This aspect is even enhanced if all components of the
gravity vector and of the gravity gradient vector are included in the analysis, the directions
of the vectors being described in the geometric sub-system. This explains why only one
extra piece of datum information, viz. g;, has to be joined to the geometric S-system.

If one also considers the data obtained by satellite methods, as well as the results of com-
putations by various integral formulas such as Stokes’s, than the picture of a four-dimen-
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42

sional geodesy appears (of course at a certain epoch in view of the movements of the
earth’s surface), represented by the quaternion in P;:

W,

— + Xiey + Yiey + 24y

81
with components of the same order of magnitude, viz. R.
This might have consequences for a more general choice of an S-system D, As it is now, the
S-transformation is actually decomposed into a transformation of the scalar part and a
transformation of the vector part, the latter also being directive for the construction of a
criterion matrix (Section 3.2).

Another very important point is that the choice of the dimensionless quantities practically
eliminates, on one hand, the influence of poorly estimable "constants" u and /¥, , and on the
other hand, the influence of instrumental units of length and time (of course supposingthat
the procedure of measurement is aimed at this elimination). This choice, which is not
necessarily uniquely determined for a certain field of study, therefore seems to be satis-
factory, Finally, reference can be made to further considerations in Chapter 2 of [Baarda
1979].

4.2

In order to elucidate some more aspects of the contents of the previous section, and anti-
cipating Section 5, some consequences of the integral formulas of Stokes and Hotine
(without "correction terms") will now be considered. For details, see Chapter 4 of [Baarda
1979].

Use will be made of the elegant line of thought followed in [R. Rummel and P. Teunissen -
Height Datum Definition, Height Datum Connection and the Role of the Geodetic Boundary
Value Problem - Bull. Géod. 62 (1988) pp. 477-498].

r
For our purpose we choose the notation of ratios of potential values, with * -1 in the
coefficients of the difference equations. I
Putting:
Y® = c®Y® | ay? = ac® -y,

) perhaps by using a four-dimensional simularity transformation instead of a three-dimensional one.
In this respect the idea of Grafarend to use a 10 (instead of 7) parameter-datum transformation in 3-D
looks more inviting, but I cannot yet find a place for the special conformal part (3 parameters) in my
model reasoning. See the paper to be published in the Zeitschrift flir Vermessungswesen: E.W.
Grafarend, G. Kampmann- C,, (B): The ten parameter conformal group as a datum transformation in
three-dimensional Euclidean space (communicated by letter of May 24, 1994)
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for "Stokes":

n- N 21+ 1pn o)\ o
Sl(,k;jl) _ E _n‘:—_(Yk( ) _ Yl( ))Yj( )

for "Hotine":

(n+1) _ — 2n +1 o) A\ 1 ()
Sl,k;j Z] n o+ 1 (Yk - Yl )Yj
n=

then three difference equations are obtained, each with the same left hand member:

1 'l n=2

. w. .
= lf s&| - 2aln 2|+ afm & aq,
T 47 g W, 8 /
1 ffS1(nk+1) ( J + 2A[ln ﬁ)
’ Te1

r
Viewed historically, the first equation fits the satellite era with —% and ac ® from satellite
r
for

afin Ze) s afln 78] - 3 (ac® -y - ey
7% k 1

dq};

14
measurements, the second equation fits the pre-satellite era, with —* from levelling and
1
r
8k from gravity measurements, the third equation again fits the satellite era, with % from
8 1 rC]

satellite- and 8k from gravity measurements. The quantities sought are then
81 )

W, r W,

k& —* respectively.

Wy, ra W

It is remarkable that at present the Stokes integral formula is still used almost exclusively.
We shall therefore analyse this formula and apply the height datum connection according to
Rummel and Teunissen, which is a method to evade the connection by tide gauges between
levelling networks and sea level. In this connection I prefer to use the term S-
transformations of "vertical quantities”. In the case of the occurrence in the formulas of
unknown ( or partially unknown) compound quantities, these will be framed.
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4.2

Suppose there are two continental S-systems, and one sea-S-system, with datum points P,
P, and P, respectively. Then we have for P, (with respect to Py ):

4 )
A(ln—k—) + ( er) 1 ffsl(’llc ;1) ZA(ln—) + A(ln—)
Wi W 81
e st 2ot oo 2o e
W, &) | W, 81/

W, [ W. 1
iﬁsf"k‘;ﬁ a0 Ze) s a8 |- 2an=2 | + a[m 22|} a0,
™ ’ W, &) | W, )

dQ+

}dﬂj+

81
Or:
v, 4
A(ln—k—) (m'ﬂ) - Hsf"k]”{ 2A(1n )+ A(ln_) aQ,+
W W &1
[ W,
+ i”Sl‘"k‘.}) ~2allnt) + alm® a0, +
4 ” W2 g,
(1.k) -
[ 14
+ J-”sf’;? = 2alnrz) + alm&}|a0, «
41 | /A g

1 &1

W, 8 1 ff (n-1)
_ o2 | | — [ [8,,.,/dQ
+ ZA(ln ) (ln ] ) 1,k ¥t
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w. 1 -
+| - 2alln=] + & lné 4— fs1(,nk;s1)dﬂs
W, 81 ™

w r
(lm) A ln—m) + A(ln ﬂn_] + | alln KZ. + A ]n_l:g =
W, o) W, ey
= right hand member (1.k.) with k > m
w r
(1.t) A(ln—') + A(lnﬁ) + 1 a 1nE r A ln@ =
W; Tes W, fer

right hand member (1.k) with &k — ¢

1.2) A Inﬁ +a ln@ = right hand member (1.k) with k — 2
W Ter
Ww. r . .

(1.3) alln—21 + alln-& | | = right hand member (1.k) with k — 3
Wi Ter

The first two integrals in the right hand members of these equations do not present any
difficulty, except that in difficult mountainous terrain levelling will only be possible in the
valleys, and gravity measurements will be sparse 2. The third integral does present dif-
ficulties, because one cannot measure ratios or differences of potential at sea, whereas
gravity measurements are sparse there too. Consequently one would have to put

w.
2A[ln—s) equal to zero, which assuming a sea topography of some meters causes errors

3
of the order 2 - 5 - 107 = 10, correspondingto the sharpness of definition of the gravity

measurements at sea. Perhaps one might introduce from satellite data:

w *
- ZA(ansJ + A(lné] = E (n - 1)(Ac(") . st(") -~ ac® . Yé(n))
n=2

D In many respects one therefore meets the same situation as at sea, so that the sea-situation in fact
prevails on by far the greater part of the earth.
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4.2

presumably with a sharpness of definition of 10°%. (An additional advantage is that the index
3 can be replaced by 1, so that in all equations the fifth term vanishes, as well as equations
(1.3). But we shall here leave this aside as a speculation).

The core of the line of thought followed by Rummel and Teunissen is the determination of

r,

e by satellite measurements, whereas & can be measured. From equation (1.2) one

Tl &1 w.

could then solve the height datum connection A(ln —2) ... if there were no third S-system.
1

r
However if one measures by satellite - onland in P,, and via a ship or platform in P,

el W W g
then the equations (1.2) and (1.3) yield both A(IIIWZ) and A(Inﬁ;) because —> can be

measured as well. 1 1 &1

Now one can compute for the continents:

r r r
A(ln—af) from (1.k) and A(lnﬂ) from (1.m), but A(lnﬁ) cannot be
e o) Tes

1

|44
computed from (1.t) unless A(ln#) = 0, hence relative sea topography is
3

assumed to be zero.

r

One is then led to the derivation of A(ln —C—') from satellite altimetry (in principle providing
Tes

ratios of radial distances, see [Baarda 19791), and then compute from (1.t) the relative sea

t h I il
opography - rafln—1| .
pography - r, W,
But then the whole approach by the Stokes formula becomes problematic, for if one enters
the satellite era anyway, we should not one measure directly all ratios of radial distances?

This leads to the logical conclusion that in the satellite era Stokes’s formula should be re-
placed by the Hotine integral formula, with the possibility of measuring gravity ratios and
computing ratios of radial distances from satellite measurements all over the world. Never-
theless, the line of thought of Rummel and Teunissen is once more applicable here, to brid-
ge the transition from land to sea.

To this end the formula will be written out anew, dropping the distinction between the S;-
system and the S,-system (being the simplest case; of course more systems can be intro-
duced both on land and at sea):
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W,
alln—£1| + a n@ = —1—ffSl("k+.jl) dQ +
W ey 4qr o

1

. u[mﬁ) . A(ln )
Ty 81

f Sl(nk+5'l)[ ( ;Q) + A(lng—)
c3 3

1 n+
+ o+ 2A(lnr£) + A(lné ffsl(k:l)
Ter &1

w
A(ln—t) + A(lnra) + | A ]n%
Wy o W,

= right hand member (1.

dQ  +

—_——
1

-
~—

~———
+
>
=
=
~
@] \Qﬁ
- |
~—
1

) with k — ¢

—_
r—ll
W

e

A(ln—%] + A(ln 'cs ) = right hand member (1.k) with k — 3

The determination of & and 8 & _ & is done in one system, as well as the deter-

& & &1 &1

er rcj . . rCs
f — and — for points on land. The latter system, however, differs from —

r r r
c1 cl c3
for points at sea (satellite altimetry). Consequently the crucial step is the determination of

mination o

r w.
. possibly measured by ship. Once this has been solved, one can compute A(ln T/Vi)
Ty 1
— W, W, ) —
from (1.3) , a ln—u—/— and a an and hence relative sea topography from (1.k) and

). 1 3

W,
Regionally a (ln _I/ITk) can be improved via an adjustment by levelling; globally satellite data
1

. W, W,
can improve a|ln——| and a{ln —| :
W W

T'cr

w r
A(ln#) + A(ln—Cp—) = E (Ac(n) . Y’l(:l) — AC(n) . Y’g”))
1
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4.3

4.3

Since we have emphasized the distinction between the origin P,,, of the X, Y, Z-system and
the centre of mass of the earth P , some well-known consequences of this distinction will
be exposed anew.

The discussionwill be linked up with [G.B. Reed - Application of Kinematical Geodesy for
Determining the Short Wave Length Components of the Gravity Field by Satellite
Gradiometry - Report No. 201 of the Department of Geodetic Science, O.S.U., Columbus
1973].

Introduce a local reference frame for the point P, by rotating the X, ¥, Z-system, choosing
the -axis along r, , the &-axis parallel to local North, and the -axis parallel to local East.
P,, remains the origin, the coordinates of P are (¢, &c, &¢ )

The rotation gives:

n -sin A, cosA, 0} (x
E| =|-sing, cosA, -sing, sind, cosq,||Y
¢ COs ¢, COSA, COs@, sinA, sin@, Z

X, COS @, COSA,
Y| =r, |cOs@, sin A,
Z,

sing,

Since P, P is small, simple geometry easily shows:

Aoy COSQ, = A, COSQ, - Te
Tk
Ec
Pcr = O T
k
Cc) 1 1 Cc
‘(1 A 7:7(1 *7)
k Ck k k

In view of the smallness of (kk - ACk), the difference between cos ¢, and cos ¢, is
negligible.
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¢ R |[Xc Y. c
2 - 2| =& cosg, cosA, + — cos@, sinA, + —— si
r. rn\R Py kTR Q. kTR mnQ,
R(X X Y% ZoZ) o
|\ R r R r, R r,
X Y, aB{M
Te _ R ——Esin)uk+—coos)»k)=—————k
e I R R cos @, O A,
X, Y, V4 oBY
E—C— R -—Csin(pk cosAk———Csin(pk sinAk+—Ccos¢k =k
., n R R R 3,

with B,fl) the spherical harmonics term of degree 1.

v, oV ®
With — =V, —* =y etc. and BM =
T I LB -2

one obtains:

V=t 1+5)=-£(1+B"+Z%)

Tek T
) v 0
rka = ____k_ = ,_'L. 0 + __aﬂ___ + E
T cos@ Ok, 1, cos @, A, ko
1
I, % nfy . B oy
k" k,E F) b k,E
P Tk Px
v,
= = - l_L. (1)
g dlnr, r, (1 * 2B+ Ek,C)
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4.3

Vv, av, av,
2
,-ka’m,:—-z—k—z—tan(pk—£+ lk z—&(1+3B’£1)_Eknn)
cos” @, A, d¢, dlnr, I ,
*V, av,
2 - k kB
eV, ,=——<  +tangp, ————— = - = (0+0 -~
k" ke COS(pka)ukatpk P cos(pkakk I ( Ek,nﬁ)
2 3%V, av, " aBk(l)
"eVene = cos@, a4 dlnr, o A 3 .
@04, 0lnr,  cos@,IA, I, cos ¢, IA,
<
*V, oV,
2 _ k kK o_ M a _
e LY ’ dlnr, Tk (1 * 3B Ek,EE)
2 O]
s, Ve W oy, OB >
k7 kEC k,EC
de,dlnr,  Jdo, Iy 0@, ‘
9V,
2 _ kK _ o b )
vV, = =22 (1 +3B 7 +
k7" k, (¢ a<lnrk)2 7 ( k Ek,CC)
For £, , and ¥, ,, see [ Reed 1973] 3

As a preparation for the formation of difference equations the coefficients of a-quantities are
determined from a spherical model of dimensionless quantities:

Wk,,ng_ri

r & Ty

Let (4, v, w) be a coordinate frame obtained by rotation of the X, ¥, Z-frame. Dimen-
sionless differentiation can be done as follows:

For the spherical model follows:

3) A check by P.J.G. Teunissen disclosed a printing error in Reed: formula (3.28)
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aWk _ aWk cos _ uk Suvvk 8uwwk
T ary M) = e
k k k k k
] =1 forv = u
with d,,
=0 for v = u
This gives:
We on
&, Ty
-r.W, r
ka1
= - cos(rk,uk)
r& Ty
2
r., W, r
k" kav 71
= (— 8,, *+ 3cos(rk,uk) cos(rk,vk))
ré& Ty
3
r, W, r
kK "Tkuvw 71
= (38uv cos(rk,wk) + 38, cos(rk,vk) +
g T
+ 36, cos(rk,uk) - 15 cos(rk,uk) cos(rk,vk) cos(rk,wk))

from which all coefficients follow by replacing u , v, w by  and/or £ and/or £,

In table 4.3 an overview of the difference equations is presented; it is to be noted that

ABk(l) = Bk(l) because P,,

made of:

i

P is unknown and its approximate value is zero. Use has been

-rW, -rw, - W,
k k,u) - k" k,u A(Inrk) + rkA I\c,u)
r& 78 &4
2 2
r. W, r. W,
A k "k,uv =92 k" k,uv A(ln rk) + rsz k,uv
78 r& g

These formulas explain the difference between framed and non-framed a-quantities in table
4.3; the deviating coefficients of A(ln rk) in the framed a-quantities are again framed.

There is a remark to be made about the relation with the compound quantities in Section

4.1:
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4.3

8.«“4 ¥ :w%c+ 0 0 T+ ~|.~N . 9] 9
4
. Tho
Vw«w,u)f €- 0 €+ 0 0 0 21 3
Jge
(9]
T4
BN s Jgc- 0o 0 1- e R
1y, o7
. o' soo
V_LN<+ ¥ - ‘- 0 0 ¢+ 0 o 0 51 u
wi® il
L
M4
Ay z
w:.w,u + 0 Afc_v< = J|< 0 0 0 0 0 3l
14 g1, 1, 191,
e — ¥ A
uww< * A—WNMI v\w< 0 0 - >=J~\K dmk 1, - >=.«\R 1, utbtu
T
+ 1y - --
a3 T 0 0 1 s
¥ + A )
Ry gEe | | i1, i 2
—_— |V
L]
&9 ~% 1 M-
i e 4
S | 0 1+ 0 0 0 |
(9]
gl Il
Yy oty 8 34
5”4 _ Xe9se 0 0 I+ 0 T vy 0 =~ wa |- u
QW‘MQ 4 M-
'gh % Y
-0 0 I+ v — ~ -1 -
R+ wd* Ty 1, " Ty
suonenba 9ouaIsfIl uoyeutxoudde apn
W a Teduayds

Table 4.3
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in which 4, are the respective quantities in column 3 of table 4.3.

r

Instead of taking a|A, - i Al), as in Section 4.1, whereby a ZL is directly
T ri g,

eliminated, we consider A4, and aA, separately.

. r r r n e
Then we have, with a| —| = — aAlln—| = - — Alln—=:

Ty Ty " Ty r
r r r Ty
alAd, - —A,| = A(Ak> - ——A(Al) + —Aa In—=
e Ty e r

r r
This formulation is used in [Baarda 1979]. After transporting —IA1 A(ln—'i) to the right
Tk I

r
hand side of the difference equations obtained from Table 4.3 after subtracting -l A(Al) ,
the framed situation in a modified Table 4.3 is obtained: T

W, r W, T
AM—=] - = al—|], e
181 e \n&
2° vector: |0 , 2 _ 2 , ATl , A n2 '
r r r, r r

3° vector: ((Bk(l) - B+ Ak - A ) ) v )T

1° vector: (

A clear influence of P, P #0 is established, although the correspondingterms only make
sense if there is a unique S-system valid for the whole earth. In this case Hotine’s integral
formula is affected by first degree spherical harmonics, so that the lower index C may be
omitted from this formula.

But how to deal with the situation of satellite gradiometry, where radial distances for the
orbit computation are theoretically computed with respect to P (although the effect of
P P #0 indirectly sneaks into the practical computation), whereas the s the gradiometer reacts
to the gravity field of the earth, perhaps under a direct influence of P P, #0 ?In Section
10 a part of the modified table 4.3 is given for this situation, which connects with existing
literature, hence with B =0 . But is this the right choice?

A second remark pertains to the importance of the formulation of compound quantities

- r - .
A, - — A, | with:

T
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4.3

2 2
14— . Wk _rka,c _ rkgk rka,cc _ rka

b b
r& I8 7181 18 r&

under the assumption, made throughoutin this publication, that the rotational velocity of the

earth is sufficiently well known and the small angle between the radial direction and the
plumb line is ignored.

r, —
With —kAk = ] or 2 respectively, one obtains:

r
- r, — r, (r, - r, - r, - |rA
Ad -4 = Al E2A - 24 || = alL4, | 2L -1 =
koo 1 PR r, !
k e\ 1 k r A4,
r, - r A r, - r
= al-L Atk =~ 1 g allnEE
r, ry A4, r riA4,

Or, see also Section 4.1:

W, r Wl] T
A [ —_— — ——— = —_—

g Tk &

8 T &) _ N A
& e &

2 2 _
7T o nonT) onf fin ) s,
"n& Tk N& el r 81

r
One recognizes the coefficients 1, 2 and 6 of a ln—k) from the modified table 4.3. The
r
1
importance of this formulation has only recently become clear to me. Section 4.2 already

presented an example; in Section 11 we will use it 9,

Finally we shall now follow the line of thought of Section 1.8 of [Baarda 1979] for the
Bruns transformation.

Let u be the direction of differentiation, then:

4) Formerly I have been hesitating a long time before choosing between the compound quantities

r r
A, - —lA1 and | % A . — A; |.1finally chose the first form, but now I would prefer the second
T n ,
because then there is now a coefficient -1 in the right hand members.
r
k
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W . r w - . r oW cos(h,u) = - rgcos(h,u)

du oh

lau
r

in which A, is the negative plumb line direction in P, . Transfer all relevant directions to P,
and consider the spherical representation. Provisionally leaving out the index £, one obtains:

cos(h,u) = cos(h,r) cos(r,u) + sin(h,r) sin(r,u) cos(h,r,u)

Choose u =179 : cos(h,r,m) = sin(g,r,h)

hence with the rule of sines:  sin(k,r) cos(h,r,n) = cos® sin(A - 1)
Further: cos(r,m) = 0, sin(r,mn) =1

Choose u =§ : cos(h,r,E) = cos(E,r,h)

and with the results of cosines and cotangents:
sin® = sin¢ cos(h,r) + cos@sin(h,r) cos(&,r,h)

cos(h,r) = sin®Psing + cos® cos@ cos(A - 1)

hence: sin(h,r) cos(§,r,h) = sin®cosp - cos®sing cos(A - 1),
provided cose # 0

Further: cos(r,€) =0, sin(r,§) = 1

Choose u = ¢ : cos(r,() =1, sin(r,{) =0

Summarizing:
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—rka’ .

r&
_rka’E
rg
—rka,c
"8y

T8k

r&

sin®, cos @,

4.3

cos<I>ksin(Ak - Ak)
- cos®, sin @, cos(A, - A,)
cos(hk,rk)

Then the difference equations of compound quantities, complemented with the modified

table 4.3 become:

R TiWen) i -nWi,
81 T &
Te |, Wi _h, Wi _
r ré& Ty &
R W) no -nWie
181 Tk &
cos<pkA(Ak - Ay) - cosga(A - }"1)
_ AP - @) - a(P; -9y) i
,
Aln& + alln £
&1 n
oB{M oM
cos A, - cos A - - - (aX, - aX
(cos @y P1ahy) cosg, 3},  cos@,9h, (8207 = a21,)
B 4B
= - - - —— | - (2%, , - AX
(2@, — 29y) 30, 39, (a2p ¢ — & 1,,5)
r
~alln £ |+ 2(BY - BO) + (aX, , - aX
A( rl) (k 1 ) (22450 — 22¢)

From the third elements of the latter two vectors follows the well-known expansion into

series:
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r o0
A(ln 55] ¥ 2A(1n —") -2(BY - B} + T (n - 1)(aB® - aB{")
g1 rl n=2

The other two elements of these vectors provide, among other things, the influence of
P,P. # 0 on the plumb line deflections (Ak - lk) and (@k = Py)- The formulation
differs from the one given in Section 4 of [Baarda 1989] in the "Festschrift to Torben
Krarup".

4.4

We return once more to Hotine’s integral formula to point out a way of application which
is perhaps feasible.

To begin with it is remarked that in our four-dimensional system, having three geometric
coordinates plus the gravity potential per point, the three coordinates which can be determi-
ned by satellite positioning and satellite altimetry must be supplemented with a fourth
independent measured quantity. For this quantity we choose gravity, which in principle can
be measured everywhere on earth. As a consequence, the computation of gravity at sea with
the aid of satellite altimetry does not fit in this line of thought, because it does not provide
a fourth independent measured quantity per point 3,

This approach makes it possible to apply Hotine’s integral formula. As already remarked in
Section 4.3, any first degree spherical harmonics in left- and right hand member of this
formula cancel each other, so that the application is possible if the origin P,, of the
coordinate frame does not coincide with P, the centre of mass of the earth.

This is significant for practical use, because in Section 9.2 it is shown that P,,P. may be

made small, but it cannot be reduced to zero. In practice the influence 8 of P,P.#0

(but small) on higher degree spherical harmonics can be ignored. For the integral formula
this means that in all quantities the lower index C must be dropped.

A practical difficulty is the measurement of gravity at sea where ships or low-flying aircraft
can be used. For aircraft we assume that the positions lie on a slightly waving surface,
curving with the earth, so that for the outer normal 7 to this surface we can use, see [Baarda
1979, Sections 1.7 and 1.8]:

5} Although this Section is mainly concerned with the situation at sea, the land situation is not
simple either. What is evidently required is a non-reduced gravity observation per stations, whereas
in general the presently available data sets contain reduced measurements or anomalies.

6) See e.g. A. Kleusberg - The Similarity Transformation of the Gravitational Potential Close to the
Identity - Man. Geod. 5 (1980) p.p. 241-256
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o .9 cos(n, r)

on or

If now the sea of the earth are covered by a network of non-overlapping measurements of
gravity by ships and aircraft, then the following line of thought is possible:

Let S denote the surface of the earth, both land and sea, leaving changes with time out of
consideration. Then, to quote [Baarda 1979, p. 17]: "It is still more essential that in practice
measurements are never executed on S itself, but at some distance outside S. Here, a
comparison can be made with the spatial geometric networks, by which one determines
coordinates of points usually situated at some distance from the earth, on towers, pillars,
etc.. For cartographic purposes these points are projected on a reference ellipsoid or on a
plane, but this is not essential for spatial gravimetric geodesy. Similarly, the "reduction” of
observationsin gravimetric geodesy does not belong to the essence of the theory, so that in
principle all reductions should be excluded.

The exclusion of reductions is attained by replacing the surface S by the geosurface S*,
containing the observation points on, or near and connected with, the earth’s surface. S*
may locally coincide with S but it may also deviate from S. §* has to fulfil the same
requirements as S; the surface may contain a finite number of singular points and a finite
number of edges, which divide the surface into a finite number of pieces with continuously
changing normal direction. The equations (1.7.4) and (1.7.5) as well as (1.7.1) remain valid
if S is replaced by the geosurface S*. Points P, connected with the earth are therefore
always situated on S*. "P; inside $*" now assumes a more realistic meaning".

As an example we take the re-written third Green’s integral formula [Baarda 1979, (1 .1.5)]

V:Lff L I A T
! 471'n Y

2 oo ) J
in which: ¥ is the gravitational potential (for points on S replaced by the
gravity potential W minus the centrifugal potential); @ is the surface of a
sphere with unit radius,

P; outside, on or inside $*; P; on §* (P; cannot be a point inside the matter of
the earth).

The integral formulas of Stokes and Hotine are equally valid for $*; in the approach given
it is assumed that the centrifugal potential can be computed with sufficient accuracy from
existing data, so that:

AV, = aW,
The geosurface S* always remains a somewhat vague concept because observations will
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always be made at discrete points. But this applies to S as well, because one may ask what
actually is the surface of seas, marshes, fields with drains and ditches, forests, mountains,
villages and cities? Considering this, the sharpness of definition of § will therefore have to
be appraised at decimetres or metres rather than centimetres, of course with the exception
of well-marked points. So there is not much difference in principle, be it that the enclosed
mass for S and S* may be different if S is taken to be "ground level". It is therefore
important for practice to develop the formula system in such a way that the mass of the
earth is eliminated. According to [Teunissen 1980], the effect of the atmosphere is then
virtually eliminated as well.

Now suppose that modern satellite positioning (also in aircraft) makes it possible to mea-
sure gravity in low-flying aircraft with the same order of sharpness of definition for In g as
by gravity measurement in ships.

Then it is suggested to extend S* to include the aerial stations where gravity is measured,
and then apply Hotine’s integral formula.

In the situation sketched, the points P, P,, P; and P;, P, P lie on S*, whereas P;, P,,, P,
lie on S (there not necessarily coinciding with S*). The data for the kernel of the Hotine
integral formula are derived from the three-dimensional coordinates of these points. For the
analytical expression for the kernel, see [Teunissen 1980]. In the left hand member of
Hotine’s integral formula the length ratios for points P, on the sea surface can be
determined by satellite altimetry. Values for the potential then follow from the integral
formula 7,

r

Alas, there is a big "but" in the question ... The sharpness of definition of In g and In =
8. r,

from measurements by ship or aircraft will not be better than 105, This implies that the
sharpness of definition of the integral will be of the same order of magnitude (perhaps
somewhat better as a result of damping). Even if altimeter measurements are better defined

/4
(in spite of orbit errors), the consequence is that the global sharpness of definition of In W
cannot be much better than 107, This is the cause that relative sea topography can hardly be

W
determined by this means since the influence on In W is of the order 5.107.

Besides it is questionable if ship- and aircraft measurements are worth the trouble now that
the results of satellite gradiometry promise a sharpness of definition of 107 or better. If this
promise comes true, the result may be that Hotine’s integral formula, like Stokes’s, is
relegated to the annuals of the history of geodesy.

) There need not be a special convergence problem, for, first, in the situation sketched above equal
values can be taken for all radial distances r in the coefficients of the integral formula (See Section
5.1 or [Baarda 1979, Section 1.2]) and, second, the difference compound variates can be considered
as being reduced to one and the same equipotential surface (See Section 4.1).
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When by the application of division algebras I had succeeded in formulating geometric
geodesy as a theory of form elements in geodetic networks, I tried in my 1979 publication
to follow the same idea in order to formulate the basic approach of physical geodesy in such
a way that the description could be given in terms of form elements. The aim was to make
possible a better connection with the theory of geometric networks.

For the solution found, two questions require special attention. The first is the introduction
of approximate values for linearization. The theory of adjustment or estimation and the
theory of networks show that approximate values and iteration processes have their place
within the mathematical model and have no physical meaning. Experience from previous
and present measurement processes in observation space leads to the introduction (linking
up) of a mathematical model usually containing non-linear relations between measured
quantities, as well as to the names given to these quantities. The results of deduction within
the mathematical model have to be translated into terms of the observation space, and it is
not before this translation - the "unlinking" of the model - has been made, that a physical
interpretation is possible. To give an example, the geodetic reference ellipsoid is, on one
hand, part of the (mathematical) coordinate system; and on the other hand part of the
(consistent) set of approximate values. The assignment of a point in observationspace to the
approximate coordinates of a physical point, as found in classical derivations, can only lead
to confusion. The consequence would be that the ellipsoid (with the approximate direction
of the non-central axis of rotation and an approximate angular velocity of rotation) would
have to move inside the earth. It is of course correct that this consequence is not drawn in
the literature, but it indicates a lack of understanding of the function and meaning of
approximate values. In the derivation given here it does not matter how one arrives at a set
of approximate values, provided that it is consistent.

The second question concerns the place taken by the introduction of the earth model already
used, viz. the homogeneoussphere. Use is made of the fact that for points on the surface of
the earth the ratios of moduli of radius vectors, as well as the ratios of moduli of gravity
vectors, deviate at most 1/100 from unity V. The spherical model may then be used in a
number of spherical potential-theoretic relations, provided that the relative difference
between the approximate value and the estimate of any computed quantity does not exceed
the same order of magnitude. This requirement improves the possibility of assessing the
reliability of derivations as compared with the usual classical derivations, but it also imposes
very high demands of the quality of the set of approximate values. The use of well-known
gravimetric methods of reduction - such as the isostatic ones - in the reverse direction is not

D In Section 4.1 a somewhat less cautious estimate was in mind, viz. 3.1073,
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sufficient. Only the use of detailed geological and geophysical knowledge of

substructure can provide an adequate answer here.
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The form of Stokes’s integral formula published in 1979 has been pictured in Fig. 5.1 in a
somewhat simplified form, and under the assumption that the angular velocity of the earth
is known with a sufficient accuracy. All quantities relate to form elements, those in potential
theory are one-dimensional. AX denotes the difference measured (or computed) value minus
approximate value of X.

However, the formula was not complete because a small error in the mathematics was
discovered at the last moment. The correction was found but could not be incorporated. The
reader is referred to the treatment of the correction term in the 1979 publication, Section
1.8, in particular formula (1.8.13) in the corrected form by P.J.G. Teunissen (1980).
Recently, recognizable "reduction formulas" were found by incorporatingthe correction term
in the solution of the basic integral equation and by applying the method of appraisal which
was also used in Section 1.8 mentioned before. In Fig. 5.1 the reduction quantities have
been denoted by the symbol 4, and encircled for clarity.

Besides the figure shows examples of the - always somewhat approximative - interpreta-
tion of combinations of estimators or measured quantities as "free air reduction” to the
"geoid" through P,. This possibility of interpretation applies to all integral formulas of
physical geodesy which I came across and brought into an analogous form. Mass and
volume of the earth are eliminated by the introduction of the form elements. It thus appears
that the conditions imposed on quantities in earlier derivations of integral formulas, such as
Stokes’s, are automatically fulfilled in the present formulation. There remains the effect of
the topography which has received so much attention in the literature. The newly added
encircled correction terms now can be interpretated partly as a "topographic reduction" of
gravity ratios, and partly as the so-called "indirect effect" of the omission of the topographic
masses outside the "geoid". The correction terms have been elaborated in a (rather rough)
approximationin order to facilitate the recognition of similar formulas in the literature. The
terms are functions of the slope of the tetrain in Pj, as is clear from the formulas shown,
but this has been lost in the derivation of existing formulas where the terrain slope has been

replaced by the much less harmful slope of P?Pj. The encircled terms, to be introduced in
an iteration process, must consequently have an influence that is much more disturbing than
has been assumed so far. If the approach followed here is acceptable, geodesy has got rid of
the - often mystical - considerations on the treatment of reductions of observations in
physical geodesy.

The encircled disturbing term in the Vening Meinesz-like formula proves to have no
recognizable counterpart in the existing literature. The fourth power in Dy ;, compared with
the third power in Cy ;, makes the effect of the disturbing term much more harmful for short
distances P, Pj

But the present formula meets the difficulty that astronomical quantities ¢ and A are usually
defined in an other system than the geodetic quantities ¢ and A, namely by the introduction
of differences of quantities. However, if from Vening Meinesz’ formula ¢- and A-
differences are estimated, similar to the estimation of radius ratios from Stokes’s formula,
then the question remains if the accuracy of @- and A-differences is not much better when
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taken from geometric networks. Besides, the always awkward computation of the influence
of topography should not be forgotten.

But a more important difficulty is that both formulas provide a determination relative to P,
and not relative to the origin P,, of the operational X, ¥, Z-system, such as for instance:

r r

A(m ﬂ) _ A[In—k) - BO - BY)
e £l

0 @ 0

BM - 2 BO
-0, -0,

8(Pck ~ Pc1) =A@ - 94) +{

with unknown B()- terms.

Now the same basic integral equation yields, apart from "Stokes", another integral formula
which is sometimes named after Hotine, as well as its derivatives. The left hand sides are
identical with "Stokes" and "Vening Meinesz" respectively, but without the B()- terms. The

right hand sides are:
. r.
A lné - lAI. + 2a|ln-L |} dQ),
&1 27 Ty !

1 (n+1)
— S
41 ff Lk {

Q

and their partial derivatives

o ,_20 and 0 . 0
-0Q, -0, -cos@, * 0L, -cos @, ' 0A,

But the difficulty here is that the radius ratios sought appear again on the right hand sides.
In my 1979 publication the Hotine integral formula was therefore introduced for the
determination of potential differences at sea, the radius ratios being taken from satellite
altimetry.

Earlier I indicated already that the B(-terms, too, could only be estimated via satellite
geodesy. Why then should one not be consistent and relegate all vertical determination of
points on earth to satellite geodesy? The same conclusion was already reached in Section
4.2. Summarizing this means that for the estimation of potential differences it then suffices
to use the Hotine approach as follows:

Satellite altimetry, from an approximately circular orbit (in order to eliminate a length scale
error) yields

r r.
A(h’l —k) and A(h‘l —’]
r r

for points of the surface of the sea, the disturbing term 4, ,; being negligible in most cases.
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Satellite positioning provides the same terms on the continents; for this, the choice of the
coordinate system must be carefully heeded.

In this manner one can also establish connections between continental levellings separated
by oceans, including the adjustment of potential differences resulting from the Hotine-type
integral formula and those resulting from spirit levelling. The advantage is that the same
integral formula is valid for the whole earth, the disadvantageremains that the earth has to
be covered by a regular network of gravity measurements, a requirement which on practical
grounds still cannot be met.

In this approach, the geoid occurs only in an indirect way, as the equipotential surface
passing through P, in the analytical continuation of the external potential. It is seen as a
mathematical fiction only. If a realization is desired, this can only be obtained approxi-
mately, e.g. by defining the value of the right hand sides of the Stokes- or Hotine integral

.
formula as the radial determination of the geoid in the form A(ln i), P being the
r
1
projection of P, on the "geoid". The right hand sides of the two forms of the Vening
Meinesz integral formula then yield the relevant deviations of the vertical.
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In the extended S-system the (dimensionless) gravity potential in P, becomes (with
centrifugal potential C and mass of the earth u:

Wk=Ck+“ﬁ(1+§Bk(n)), koo~
& & rlzg1 T n=1 rlzg1

Let a rotated X, Y, Z-system be denoted by the U, ¥, W-system. Then we introduce the
dimensionless quantities:

oW,
—rk% 1 oU,
U,  n&u _ -
& sy & 18,
oW, ow, W,
R -cos@, - dAr, -0¢, -dlar,
& T ong | ng
RN/
oU, oV, ) rkrk’UV,etc.
& say 118y

In order to practically eliminate the quantity ZL, the derivations always contain diffe-
r &,

rences of quantities with respect to the datum point P;, which are approximately zero

(< 0.01 ?). An additional effect is that scale factors of measuring instruments can be largely

eliminated, because of the near-sphericity of the earth. These difference quantities are:

We n W )

ng& e h&

v N rlgl,U)

& e hé

2 2
r,T r,. T
R % 111ov
kv 1 L ], etc.

r&, e T&
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The question now was what other consequences this S-System presented for (terrestrial)
mechanics. To examine this, I considered the mechanization equations for the Local Level
Inertial Surveying System and in these replaced the ellipsoid by a sphere, so that geo-
graphical coordinates were replaced by geocentric ones.

Let v = velocity; v = acceleration; f = specific force; wy = rotation of the earth; E, N, r the
coordinate frame obtained by rotation of the X, Y, Z-frame and parallel to local East, North,
radial; 17k g = 2r, COSQ, *wg + v, p; P, starting point with zero velocity and scale factor
A with Affl = g, (f; and g, being moduli of vectors).

Then we have:

"WV E rJvE _h ’HJCJ

& rifi re nh

TeVen | refin on ’U‘J .

18, rify re nh

& rify re nf
v, v,
KE k,E

0 - tang, + Vk.E
ré& ST
&,E
_ |+ —== tang, 0 + +

1274

R
o
)
o
~ 3:: Y
|y Wz X

e yrig: "8

81 e &
LT T hELN
18 e &
81 Iy &

This equation has been arranged in such a way that the gravity difference quantities
mentioned previously appeared as such.
Hence it appears that new dimensionless quantities fit in this scheme:

61



rv 1%
k" k,u and k,u

7181 \/’1_81

The integration process then requires the introduction of the dimensionless time quantity:

81
(tk - tl)\j;l

It follows that the units of length and time must agree in the realisation of instruments
measuringr, g, v, v and t. The measure of agreement determines the reliability of computed
results, see analogous considerationsin Section 2 of my 1979 publication. The choice of the
S-system is thus shown to have far-reaching consequences.

In the approach presented, the following holds:
Vi = Vv =0

An unanswered question so far is if, more generally, the introduction of difference quantities

r,v r, ry v r, v
Yk, U 1 "MYiu k,U 1 Y1u
(— - — —) and { - J

is meaningful.
We list some orders of magnitude:

R - 64 » 10°%km, % =125 « 103 = 45h-

G =102%km s 2 = 1.3 * 10°kmh 2, yRG = 8km s! = 3.10*kmh
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71

The positioning of points on earth by means of satellite observations is characterized by
three types of vector bundles: radial vectors of points on the surface of the earth, the vectors
of such points to a passing satellite and the radial vectors of points of the satellite orbit. The
first bundle can by means of vector ratios be fitted into the terrestrial quaternion theory. The
second type originally concerned the measurement of directions, and now mainly distance
measurement in various forms, where again the division of vectors can eliminate
instrumental scale uncertainties and in particular scale differences between the measuring
instrument and terrestrial S-systems. The third type proves to have some remarkable
properties which make it desirable to change over to vector ratios.

This explains why an application of the theory of quaternions can clarify many aspects of
this method of positioning.

If an attempt in this direction is made, one is, however, confronted with the difficulty -
already mentioned in Section 2 - that a quaternion is only in a limited way invariant with
respect to the choice of the coordinate frame: the unit vector must be described in an
operationally defined coordinate frame.

For the first type of vector bundle this is no problem, here a terrestrial S-system such as our
X, Y, Z-system is all we need. For the second type there is no problem if only distances are
measured. But for the third type there really is a problem, i.e. the description of inertial
space in an operationally defined coordinate frame.

In an attempt to define the latter frame, we will sketch the main features of the determi-
nation of satellite orbits. The reader is asked to keep in mind that the author is not an expert
in this field, but an attentive spectator who is interested in the connection between methods.
In order to avoid confusion with the foregoing discussion of terrestrial situations, for the
radial distances to points of the satellite orbit the kernel letter » will be replaced by s.

When a satellite is launched, its orbit is determined by two start vectors, the s,-vector and
the v,-vector. Together they are customarily called the initial statevector. In principle it has
to be assumed that both vectors are by measurement determined in a terrestrial S-system,
e.g. our X, ¥, Z-system. The s,-vector is obtained by adding to the radiusvector of the
launch point the vector launch point - satellite start point. But this implies that the s,-vector
has its initial point in P,, and not in the centre of mass of the earth, P.. The consequence
is that, for the computation of the satellite orbit according to the usual methods, the s,-

vector, the angle @, between s,- and v -vectors, as well as the spatial orientation of the
plane of the two vectors must be corrected for the eccentric position of P, (being the origin
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of the terrestrial X, Y, Z-frame) with respect to P.. These corrections are unknown and
consequentlyhave to be introduced into the computation as unknown quantities. It will have
to be investigated to what extent they are estimable.

It is always possible to choose our X, ¥, Z-frame so that it is reasonably parallel to the so-
called terrestrial geocentric conventional frame. Now assume that the earth rotates around
the momentaneous axis with respect to an inertial space.

Denote by (X,Y,Z )t1 the position of the X, Y, Z-frame at the launching time,
XY, Z, )t1 being the components of the r-vector.

Now (X,Y,Z )t1 is subjected to a number of theoretically defined (hence non-stochastic)
rotations, resulting in a X,Y,Z-frame - with (XC,YC,ZC) as the components of the r -
vector - which describes the inertial space. One sees that the coordinate frame remains
defined, because it can be transformed back to the X, Y, Z-frame on account of the
transformations mentioned. It is important to recall our statement that the coordinate frame
is part of the consistent set of approximate values. For in the course of the computation
many stochastic corrections will be introduced, such as the r- vector, the correction of the
momentaneous rotation vector etc.; this does not impair the definition of the frame.

Now assume that the modulus of the r- vector is smaller than 107R, then its influence on
the so-called perturbation terms in the orbit computation will be smaller than 108, which we
will assume to be negligible. However, the computation of the Kepler-ellipse is clearly
influenced, so that the vector bundle of the third type is deformed.

Vector bundles of the second type are invariant with respect to the introduction of a r-
vector. But if (after execution of the necessary rotations) one wishes to fit the three types of
vector bundles together, then the first type of vector bundle, too, has to be corrected for the
rc- vector. For a terrestrial point P, this means the introduction of (X, — Xc, Y, - Y.,
Z, — Zc), so that the whole covariance matrix of the coordinates is changed and we have
lost our S-system. In principle this is the same situation as the one we met in Section 3;
again one will have to apply an S-transformation, e.g. by introducing 7 coordinates
unchanged in numerical value, but non-stochastic. The origin P, of this new coordinate
frame then becomes an estimate of the centre of mass of the earth, P. Just like in Section
3, the estimated position of P is fixed relative to the datum points chosen, as well as the
three types of vector bundles. In this line of thought the earth seemingly shifts because the
frames are held fixed, but this only appears to be so: after appropriate rotation, vector
bundles may be subjected to parallel translations for the purpose of fitting them together;
the only important thing is the relative position with respect to terrestrial datum points.
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7.2

7.2

Let a satellite be launched from the point P, and let it enter its orbit at the point P, at time
t;- The positioning of P, , like the determination of the velocity vector q,, can only be
effected in the local (regional or sub-continental)terrestrial coordinate frame with the origin
P, not coinciding with P , the centre of mass of the earth. Apart from measurements, one
needs at least seven coordinates of three coordinated stations.

Assume that measurements and computations result in the quaternion D,

-1 —>
OQbat = 9190 > i = PiPy
Then the relative positioning of P, with respect to P, is:
9 ~ Qbal "Gap
From coordinates one can compute the quaternion:
B -1
Orab = ap9am

Then follows the computation of the quaternion:

1) See "Notes and References Section 3"
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Ortar = Dot Qtab

By writing out in vectors it is easily verified that in the triangle P, P, P, :

Ovar * Can = 1

-1
hence: Ount = D 9e =1~ Oy

or: 9 = Qv * Iva

However what is wanted is not g, , but g, . Theoretically this is simple:

dc1 = 9 ~ e

or: 9 = qM1(1 - ‘IAX qMC)

Denoting the norm by N one has, see Section 3:
A -1 -
N* {qu qMC} = 107

(according to estimations in the literature, the value for the USA coordinate system is
perhaps = 2.107).
However, since g~ _is unknown one has to work with g, instead of g, . This will also

influence the angle ¢, between q,, and g, (but not q,, itself) and the inclination of the
Kepler-ellipse plane through q,, and g, -

In order to quantify this effect we consider the quaternion:

Qum = 9wyt =
2 - -
= — cos((p1 + '7T) + e, sm(q)1 + w) =
Sim
2 - -
= - — [(cos@; * e,y sin @, )
Sm

Then the following is valid:
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7.2

-1
alliy = G 2quy ~ 9,744,

With: ¢y = - Qi > A1y = ~Apy = dyc > A4, = 0, all,,, provides:
-1 ” SwmM .o -1
“Gduc = 2{Ins,) - eleA((P1> * o Sm(‘Pl + ’“')‘IlMA(ele)qv,
1
orwith| ¢ = T |, s q_1=—e_1 lq =e
P ) s SiMYIM M1 > v, v vy

_qA'_I}qMC = a(lnsyy, ) - eleA((pl) * el\/_liA(ele)evl

From the general solution for components of aIl ,,, follows:

T
-1 amd 94
a(lnsy,) = Sc{—quqMC} = Sci- MIMC L o g ) TMITMC
Swm1Sm Su1Sin

In the special case always assumed here, viz. ‘51 = 1, - hence an almost circular satellite

orbit - we deviate from the general solution. Then we have for the coefficients in the
difference equation:

s
_ -1 M1
Qum = "Iy, = ~—um
V1
or:

-1
e, ~ €y

With this, the difference equation gives:

-1 -1
“endm9mucey, ~ eleA(lnle> - A(‘Pl) * A(ele)

hence:

i ] . 1 _qMqul
A<(p1) = Sc{eMlquqMCevl } SC{ Sm1V1 }

and with:
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. e ol a9y,
o~ e = -
VM M1 6y, )
S,V
Y1
Amc 9y 94,
A€,y = Vel + LY + Ves+ L A(lnle)
Sy V Sy V
M1V1 m V1

The formulas can now be written out in coordinates, during which the index M can be
omitted because the origin of the coordinate system is P, . An index C is added in order to

indicate that the corrections obtained are caused by g,,. # 0. The result, see Section 4.3,
is:

X, X Y. Y Z 7
Ac(lnle) - 1 fc 1 Cc T1TC L _Bl(l)
51 % 5105 S1 8
) - o| e (N¥e A Ze
o Vi 5 Vi § Sy 5
ey €y €y ey €y €,
AC(ele) = Elv_l XC YC ZC —Bl(l) X] Y1 Zl
X1 Y1 Z'1 X1 Yl Z'1
- T
P, E

. . . . . . -1
From the original difference equation follows, again with e,,,, = e, e, = ey e,

Ve{—qA;iqMc} = _%(qA;}qMC - qMc%H) -

eﬁ}i(—A(cpl) + A(evw))ev1

or:
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7.3

1 - 4y -
‘A(<P1) * A(evw) = ’Fem(eMi‘IMc - qMCeMi)evll =

M1

1 “1y -1

= (qMC = € Duc emn )ev1
25,

2(component gy L gy

1 1y -
A€ = Ve{— m:(qMC - eMlqMCeM})evll}

product of a vector L g,, and a vector almost 1 g,

hence: ac(€,1) almost // gy,

In the satellite orbit computations one is all the time dealing with vectors g , although in
fact one computes with g, because g, is unknown. It is therefore convenient to write the
formulas using g, and afterwards make the substitution:

der = D+ Ac(@n) Ac(@m) = ~9mc

der = D1+ i ac (@) = Bl - D)

Sop = s1<1 + Ac(lnsl))
Ins;, = Ins; + ac(Ins;)

E’a = ‘?’1 + AC<(T)1)

€ic = am * Ac(Cam)

7.3

A second problem, which we shall treat in an analogue way by substitution, is the earth
rotation with respect to inertial space. Let g be a vector, defined in the terrestrial X, Y, Z-
frame; then the vector rotated over an angle v in the positive direction is:

pqp’
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in which p is the rotation quaternion with Norm 1:

\J Y
p = COs— + esin—
2 2

e being the unit vector of the momentary axis of rotation of the earth, directed towards the
North Pole.

It is customary to consider the earth as non-rotating, and therefore let inertial space,

described in the X, Y, Z-frame, rotate in the opposite direction.
Let g be the vector, described in the X , )7, zZ -frame, then:
qg=p'qp
with:
1

- v .V
p ' =cos— - esin—
2 2

Let & be the angular velocity of the earth, ¢, the time of launching the satellite, #; and ¢,
the points of time when it passes P; and P, respectively, then:

- 1 -
9er = Pr 9Py » 9c = Pi 9cPi

pk_1 = cos(%(tk - tl)) - e, sin (%(Ik - tl))

p.! = cos (%(t,. - tl)) - ¢, sin (%(t,. - t1>)

The quaternion which can be used for computations in the X, ¥, Z-system is then:

Pi(t
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7.3

QiCk = (Pk_lq_Ckpk) (pi_quipi)_l
= pkwl(q_Ck Cidl)‘ic,-Pk (Pi_lq_cl' pt)_l
- (Pk_lQ—iCk Pk) [(pk_lq_Ci pk) (pi_lq_Cipi)gl]

put Qi(ik)

or, the quaternion Q_iCk computed in inertial space is first rotated about e, over the angle

_ W

> (tk - tz)’ and then postmultiplied by a quaternion having Norm 1, Q; 4, -

It consequently appears that some of the elegance of working with quaternions is lost,
because primarily it is the vectors that rotate and not the quaternions. However, for the
difference equations the effect is small and perhaps negligibleif the terrestrial measurements
concern length ratios.1

Let aA = g lag, then:

-1 -1
allig = alg - sNy = 989 ~ 9ei Ma =

1}

-1 =-1 1 = 1 =1 1 =
Pi 9ck PrPr 29ck Py ~ Pi 9ci PiPi 24P =
1 =1 = 1 =--1 =
=Pr ek 2 Pr ~ Pi 4o 29c Py
or:
-1 1 i
allig = pi aAg, Py - P sl p;
Al bl
=pr sl py - AHi(ik)
1 7 17
AHi(ik) =pr 8 P — P 2N P

= Pi—l (Pi P/;1 A/-\Ci P Pi_l - alg )Pi

Now it follows from the definitions of p; and pk_1 that:

(pepi') = cos(% (t - tl)) - e, sin(%(tk - ti))

or, for small (¢, - ¢;) follows pl.pk‘1 =~ 1 and hence aIl;;, = 0.

It is therefore possible to compute in the X, ¥, Z-system and make substitutions afterwards:

71



_1 el
8, Mg =P alliy py - all; g,
-1 -1
alligy = Py sl Py — P 8N P;

= () for (tk - tl.) small

For completeness we shall also investigate the effect of 4 p.

1= -1 -1
Ao = A(Pk quPk) = "Px APi9ck t 9ekPr APk

or:
alNg = qc_k1 Adey = ‘461:(Pk_1 APk) 9der (pk_l Apk)
ap, = —sin(%(tk - tl)) + €, COs (%(tk - tl)” A(%(tk - t1>) +
. (@
sin[ 2t - 6)]of)
hence:

Pk_l ap, = epA(—(;—(tk - tl)) + sin(ﬁz)—(tk - tl))pk ale,)

This outcome is the sum of the three components of the vector (pk_1 Apk), because

e, A(ep) and ep—1 A(ep) are mutually perpendicular .

Hence also:

algy = 2(component (pk'l Apk) 1 qu)

It follows, with: aIL, = aAy - aA that:
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7.3

e = [(Pk’1 Apk) B qé’:(pkvl Apk) qu] ¥

AAP

o op) - 46 P aP) 4ci]

Now write g in the form:

Ao = Pi_l(pkpi_l)_l q—Ck<PkPi‘1> p;
then:
s = [P o) - acelpi” apy) 4] +

+

P pep)” slpip i - aap T perd ") el )Piga]

with:

(pkpi_l)_l A(Pkpi_l) =e, A(%(tk - ti)) + sin (%(tk - ti))(pkp,-_l)_1 ale,)

For small <tk - ti) we consequently have:

Pkp,-_l =1, (Pkpiq)_l A(PkPi_l) =0
hence:

s, = (P ap:) - 4P op)ac] - (o op)) - g (i api)dci]

= difference of (oomponent (p,fl Api)J_qu) and (component (p,f1 Ap,.)Lin)

or:

8, L =0 for (¢, - ¢;) small
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8.1

If all perturbations are left out of consideraﬁon, the computation of a satellite orbit is
determined by the gravitational potential:

V, = _“_(1 + ¥ B,f”)) in X, Y, Z - frame
Sck n=2

There are no first degree terms in the spherical harmonics expansion because the theory is
geocentric, i.e. in the theory it is assumed that the origin of the coordinate frame coincides
with the centre of mass of the earth P.. As far as the theory itself is concerned this can be
true. Our doubt about this assumption can therefore only concern the linking-up of the
theory, i.e. the coupling of measurements and theory, which will be treated in the next
section.

The theory is classic and will not be questioned, but the formulas will be rewritten in a self-
willed form because the author does not believe in absolute lengths and orientations. The
argumentation is mainly restricted to the zero degree term in V), i.e. we shall investigate
the computation of the first order terms of the satellite orbit from the vectors g, and

q, = 17;) , resulting in the orientation and the shape of the Kepler ellipse.
1
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8.1

Let us here make the reasonable assumption that the relevant seven (component-) quantities
are not very well known to begin with, or cannot be determined very well. In the further
computations, one consequently has to introduce corrections, the questionis: how to do this?

In order to keep the formula system transparent we shall assume the satellite orbit to be
approximately circular, with the same approximation as used when the figure of the earth is
considered as a sphere. This implies that in the difference equations one may put:

T
—, et =0, s =5 =a

2

Py &

The thus simplified difference equations, to be used for later interpretation, are marked by
framing them.

The semi-major axis a of the Kepler ellipse follows from the vis viva integral

vl - ,U«(l B -
5 a
) -
or K ( ——C—l—]—l,hence L for ¢, =
Sai a Sciv1

2
Sc1

A(lni)=—aln K

Sct

It is seen that a dimensionless mass of the earth —&— is introduced; compare the
ScV1
analogous quantity —5’— which was introduced in the terrestrial gravimetric theory. As was
I &

done there, one must here modify the formula for the gravitational potential:

[/k Ky ® _ S0V -

- _ M cl E () Ck" k o o
_2_—2s_[1+-B"J’ — o T lioreg =5
121 SciV1 ¢k n=2

ymbolic notation for the transformation of Bk(") from the (X, Y, Z)-

in which B is the sy
, Z)-frame.

frame to the (.X; , Y
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The difference equation becomes:

Vk
Aln[—z-] = A(ank> - 2A<]IIV1) =

Vi

Sci n=2

- A(ln # 2] - A[ln fC—"] LY aBY)

SoVi

The mean angular velocity (mean motion) # , as a dependent quantity, follows from

va
n = % . Or rewritten as a dimensionless quantity:
a
- 3\t
S h s -
a” . I«‘z a) , < =1 for @
V1 sy \Ba |61
Soqn
1n_C1_)_lA1n £ —3A(1n_“_)=
Vi 2 ScqVi Sa
_3a - sq

A(ln ﬂ] = ZA[IH ~ 2]

Yy SciVi

The (first) eccentricity e follows from:

s s ~ _
—C—I(Z ——Cl—) sin@., =1 -e?, e =0 for g =T
a a 2

or:

-1
i . sin® @ = 21 - e?)
S

Sc1V1
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8.1

a - sg " - -
—— ajln —=—| + cotcpaA(cpCl)
1 Set1

The true anomaly 6., follows from:

2 (1 -¢?) - (1 +ecosb) =0
Sci

2 (1 -e?) cospg - esindy =0

Sar
or:
-1 _
£ sinff@., =1 + ecosf,
Scit1
< -—
sin(2 ¢, _ =
® - <2 ) = esinf;; = (1 + ecosf,) cot@c,
SetY1
afe cosfc,) = (1 + e cos, ) -a|ln B 1+ 2 cot(?)c1 A((Ba)
<
afe sinfey) = (1 + e cosf,) ootcf)c1 —A(ln £ 2] +2 cot(26c1)a((?)a)
Scivi

e sinf,
A(tanOCI) = A e—cos—é;

EA(OCI) = cosHClA(e sin0c1) - sinOCIA(e cosGCl)
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1 +ecosf | .
ea(fp) = ———=—— |sin

Sin @

" T
Oci + (‘pa - 5)} a

ea(le;) = sinf ., A(ln L 2] - cosf, A((?)Cl)

ScetM1

The eccentric anomaly E; follows from:

(2Ea)  20a)) | aled)
| |

sinE.,  sinf, 2(1 - e?)

eA<ECl) = €A(0Cl)

The mean anomaly ]\/—IC1 follows from Kepler’s equation:

M. = E. -e sinE

€A

ey

Ma)

E
: = (1 - e cosE,) e—,A(——CQ - lA(ez)
sinE, sinE 2
- 1 - E,. Y
st - £ eatl
1-e4)”
1 - —e(e + cosEC])
- sinE, ale
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8.1

eA(M,) = eA(6,)

With T the epoch of the passage through perigee:

My = n(t, - T)
or:
- S v
M, = —( - T)
i Sa
- - v t, - T
A(MCI) = M, ZA(III K ] + A(ln—l] + L——)l
2 s t, - T
Scvi c1 1
0c1 5 Ecy s Ma and hence also T are poorly determined because of the factor e of the a-

quantities in the respective left hand members of the difference equations.
The introduction of the dimensionless quantities makes it compulsory to introduce a

dimensionless time interval
12
1
(e~ 1)
kb
Sc1
which is analogous to the dimensionless time quantity introduced in Section 6. In the

v
difference equations A(ln—i) then occurs as a (provisionally unknown) scale factor.
s

c1

For the computation of points of the satellite orbit we use relative quantities; the order of
computation is opposite to the computation just completed. We start with:

Scn Vi

My -Mey = — - — ([t - tl)
Vi Sa
or, more general:
_ - S.n v
_Sal* " B
MCk -My = —— (tk ti)
¢} Sc1

Like before we have:

a0 - bg) = A( ck Ma‘)
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20 — 0g) = Bk - Oc;)

A(lni) + __A(tk _ ti)”
Sc1 P #

24|ln “2 +
Scit

Ratios of radial distances follow from:

2 (1 -e?)=1+ecosb,
Sc1
{2 (1-e?)=1+ecosh,
Sci
2 (1 -e?)=1+ecosb,
Sck
S 1 +ecosbp

Scq 1 +ecosb

1 + oos(OCk - BCI)(e cos 001) - sin(()Ck - 9c1)(e sin 0Cl)

1 + e cosf,

[in Sce) _ afe cos B¢ . ale cos )
1 +ecosf 1 + e cosf,

A(e coSs OCk) =

]

~e c0s 0, sin(0, - Oy) - e sinfe cos(, - Ocy)| 20c - Ocy) +

+

cos(()Ck - 0c1) A(e cos 9c1) - sin(@Ck - GCI)A(e sin 061) =

) 1 +ecosb,
-e sinf, 'A<0Ck - 061) —— *
sin @,

"
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8.1

- - A
* [cos(f, ~ Ocy)|- sin @¢y a|ln # | * sin2 ¢, _((P_Cl) +
Sc1v1 S Qg
- - A
- sin(f, - 6¢;)|~ cOS @y AlIn + cos2@., (Tfl)
Scii SN~ @y

A(e cos 0Ck)

W = —e(l + e cos0c1) sin 6, A(GCk - 0c1) +

A 1— Sin(GCk -0 - (I’a)A In —£ 21
sin @ ScyVs
. NN
- sm(0ck -0 - 2‘Pc1) Sifl (—:1)
c
A(e cos BCk) B A(e cos 0Ck) Scr

1 +ecosby 1-ecosfy so

This results in:

2sin be ~ b 0 0
s - —
A[ln ﬂ] = - ' 2 cos(L—ci - ‘Pc1) alln £+
Sc1 sin @ 2 savl2
" _ o
~ COS(eck C1 _2(‘)01] A(“"fl) +0(e)
2 sin @,
2sin bor ~ bex
0. -6 -
= - ._2 sin(Ck2C1~((PCl—%))Aln “2 +
Sin @ SciVi

6. -0 -
+ cos| -G Cl _ 9 Pop - m A(‘p_cl) + O(e)
2 2)) sin Py
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s 0., -0 6., -6
A(ln ﬂ] ~ -2sin-% " |sin—% €L 4|ln “2 +
Sar 2 2 ScqV1
BCk B 901 -
+cos—— A((pCI)
Analogous:
in Sae) _ afe cosfy) afe cos ;)
5S¢ 1 +ecosfg 1 +ecosb
2sin OCk B 00’
B 2 (O + ¢ = T m
= - — sin —GCI—(pCl—E alln |+
sin @, Sa1
6 g. - o
e 0 off - ) doal |, o)
sin @,
s 0. -86. 9., +80.
alln 2% | = -2 sin =& a sin( Ck G 9c1] alln —# +
Sci 2 2 SC1V12
0. + 0 -
+cos(—g°7—£ - 9c1] A((pa)

s — - -
% and (Bk - Oi) are elements of the quaternion Q,, With e, = €, (the upper score

Sci o
again denotes the X, Y, Z -frame).

Ci

- s
_ Ck
A HiCk = A ln s_
Ci

82
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8.1

If the uni; vector €cp in the plane of the Kepler ellipse is taken in the direction
(Pc - Perigee ), the component vectors are:
dor = Scr(C08bc + €,ic sinfey ) e
Ao = Sci(€osOg; + e,yc Sinfg) ey
< ~-1 —-1 - . -1 =
ANg = 9ok 89ex = A(ll'l ka) - e, A(GCk) + sinf, ec, A(evlc) eco

A/_\Ci = 4o o4 = (alnsg) - ¢ a(0) + sinfg e A(eyic) €co

Now we have, with, in particular, A(OCl) relatively large:

s
a(ln sg) = A(ln s—cﬁ) +aflnse) » a(0g) = a0 ~ Ocr) + A(0c1)
C1

Sci
a(ln sg) = A(ln i) + a(lnsgy) 5 a(0g) = a(8 ~ 6cy) * a(cy)

We see that in the difference:

alli = al\g — Al

the quantities a(ln s..) and a(#.,) vanish, which means that the influence of a-quantities
q c1 1 q

in a quaternion is smaller than their influence in the separate component vectors.
It is therefore important to apply methods of (relative) positioning which (as far as possible)
do not use single vectors but quaternions.

We now treat the remaining Kepler elements i, @ and (o) + 01).
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9,
ascending node

In Section 7.2 we used the quaternion:

[0 —ige_ e__l——sﬂ COS @ + €, SN
vic 1c &, = ( P vic ‘pc1)
Vi Wy

The angle enclosed by ez and e, is i. Denoting the unit vector in the direction
-, - . - . - -
(Pc - ascending node) by e, , with e, perpendicularto e; and e, , we have:

-1

€,1c e-' = cosi + eq sini , e; = -e;
€c € = ~(cosi + eq sini) , e = eg cos{) + ey sin{)
hence:
. - = 1 - = - -
CcoSi = —Sc{evlc ez-} = —E(evlc e; + ez evlc)
e sini = (e_); cos{) + é}sinﬂ) sini =
_ 1 - - - -
= -Vele, ¢ ez_} = _E(enc €z ~ €7 ¢,c)
epy ey = cos(w + O¢;) + €,c sin(w + b)), &y = -e
hence:
- - 1 - = - -
cos(w + ) = -Sclec; eq} = —E(ec1 eq + €q €cy)
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C ir = = = =
sini-a(i) E[A(eﬂc) e; +e; A(evlc)]
A(e_ﬂ) = (—e_i sin{) + e; cosQ) INEY))
= e_Q+£ a(Q)
2
sini.a(eq) + eq cosi.a(i) = _%[A(e_vlc) e; - € A(e_v1C>]
. 1y~ = >
-sin(w + f¢y) A( + Oci) = ‘5[ c1 4(eq) * aleq) €cr *
+ A(Ea) eq + €q A(e_C1>]
_ — - 1 —
€cy = — q¢y » alec) = — [‘qa a(ln sgp) + A(qCI)]
Set c1

A(Eer) = €cr[aNey ~ A(In 5¢y)]

This concludes the theory of the Kepler ellipse. Except for the last equation, it is seen that

all a-quantities depend on a|In ® =1 A((T)Cl) and A(evlc) , the three basic unknowns
SciVi
in the determination of the satellite orbit.

8.2.1

Now the linking-up of the theory of Section 8.1, i.e. the coupling with measurements, has

to be effectuated. This concerns the measurement of g,, and g, in the terrestrial X, Y, Z-
. . . 1

frame with the origin P,, # P .

This implies that in the formulas of Section 8.1 g; must be replaced according to Section
7.2 by

dc1 = D ~ Auc

If, on the analogy of the contents of Sections 4-6, s,,, is replaced by s, this results in:
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Insg =Ins +ac(lns), aglns)=-B

Pcr =0 7 Ac(‘P1)
eic = Cam * Ac(am)

In the coefficients of the difference equations it does not matter whether quantities have and
index M or C, but for the a-quantities the following substitutions have to be made:

A(ln Sc1) = A(ln sl) + Ac(ln 51)

A(‘?’a) = A(‘T’l) + ac(9y)

ale,c) = a(eum) * ac(€um)

Alln —# ~| =2 In Lz
Sc1Vi $1V1

It is now clear why the influence of g,,. # 0 has not been discovered; it is hidden in the
basic unknowns. However there‘is a relationship between the a.-quantities which will
deform the results of computations if it is not taken into account.

the three basic unknowns
hence:

. BO

A good linking-up of the theory therefore requires the introduction of six unknowns

n
A(ln 2] three

$1V1
< and < components
A(‘Pl) of Gy
A(ele)

To effectuate this, the difference formulas of Section 8.1 will be rewritten.

A(ln i) e —Bl(l) - alln __,u_z
Sa LR
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Note that the right hand member contains Bl(l) and not B . For Aln(
Sc1

s
ﬂ) see the sequel.

. 7
A(ln cal «2B® 4 alln £
Vl slv
A(€2> =0
e a(0) = - sinfg; ag(lnsy) - cosf, Ac(‘T’l) "

According to Section 7.2 we have:

Ac(lnsl) = ey

+ sinf,, a|ln —“—2— - cosfc; a(9,)
A%
uc |, Imc :
o o
1 Sq
- Iuc _ 9Imc -
vl sl sl vl

A

Hence:

- |cosl{8,. + | +é, . sinl6. +
C1 2 vlC C1

= (cos(’)c1 + €, sm0c1> €co

)|

= (—smt'n?c1 + €, oosHCl) eco
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ea(fcy) = (_sin20c1 * €0 cos26,,) €co ;

+

1

+ sinf;a|In Lz - cos()ClA((Bl)
StV

Now:

Amc eco(-sin20c; - e, c0s20.) +

Imc

—-1

(-sin28.; + €, c0s28) ey With - e, eq

kig

= 6y COS(ZOCI * %) * ey, sin(2(9c1 "
2

|

- ~ . q_MC
6A<0Cl) o 2S0{6c0~2oa+% T} +

+ sinf,, alln _“_2 - cosgaA(;,l)
SV

a(Mg;) = M, |3B( + 2A(1n b

+
>
—_—
—
=}
]<
—
S———
+
>
——
=~
|
~
~——
—t
e

- eC0+z
2

Cc0+20,, +X
* C1+2

(0 - 0c) = (a ~ 0ai) 331(1) + 2A[1n

+

51

St

7

).

:A(ln ﬁ) . A_(Ek_:ﬂﬂ

Analogous to the derivation of eA(9c1> one obtains:
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| O * b 0y + 0 -
—sm(—z—c’ - BCI) ac(lnsy) + cos(% - 901] AC(‘P1) =
0. +8. _ 9 0. g
= —ZSC{ sin(ié__c‘ - 20CIJ + evlccos(L;_Ci - 20C1) €co M} -
51
= + 28cse Oy + (v ~ea(8 ))%
co+37w_(a‘2 G 29c1) 1 5,
slin f | = _gsin % TG ggele L 4. - dMC
Sci 5 (= ¥%a) 5
6, + 6, g, +80 _
+ sin[ k2. 0c1) A(ln ———'U’Z] + cos( k i c1] A((pl)J
5,V

These formulas show that the coefficients of the three components of g,,. are entirely

different from the coefficients of a|ln —/J'E and A((I)l) .

SiV1
The same applies to the coefficients of a(e,;,,) in the formulas for (i), 2(Q2), and
alw + 9c1)- We here restrict ourselves to the formula:

ale,y) = ‘3_01['4_611 duc * B +

+ A/_\M1 - A(lnsl)]

The (relative) influence of g,,- on the satellite orbit can be read:

along track from (8. - 6)

cross track from a(i)

s
radial from a [ln —Ck ]
Sci
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This influence is clearly not negligible. Even if 1 MC is of the order 2.1077, an appraisal
51

which is sometimes mentioned in relevant literature.

In the computation of a satellite orbit g,,~ remains unknown and consequently must be

taken to be zero. In Section 8.3 possible appraisals for g,,~ will be discussed.

8.2.2

In the second part of the difference equations just treated, i.e. the part which is independent
of g, # 0, there is another problem. This problem concerns the compound quantities,
occurring as such in the computation,

I Vi V1
K E D e -
2 2 s (k [4

A 12! 1

in which u, ¥ and ¢ are scaled by the respective coefficients in the compound.

Splitting up the a-quantities results in:

alln—£ = a(lny) - aflns,) - 2 aflnv)
S1v12
v,
i|ln—=% = a(lnV}) - 2a(lnv,)
V12
t, -t
A lnﬁ(tk -4)| = —A(—k_——1> - a(lns)) + a(lnv,)
5 L -t

If now non-zero quantities a (In s,) and a (In v;) are introduced, this means that the scaling
of u, V and ¢ is changed. It is an arbitrary interference which is not determined by the
computation of the satellite orbit, because only the 4’s of the compound quantities occur in
this computation.

Therefore it seems reasonable to put:

A(lnsl) = A(ll’lvl) =0

This means that the computation of satellite orbit segments between updating epochs is
executed in an Sslvl- system, on the analogy of the Srl 6" system in terrestrial physical
geodesy.
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Figure 8.2.2

Terrestrial gravimetric system

Dimensionless quantities

"9,

W, n W,
rng, h 1o,
M
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Vk, u L V1, u
v g, e Vrg,
MicVic, u _honvy
hg, . n9,
rkgk,u_i r191,u
rl 91 rk r1 91
reliyuv _ 1 n'huy
nhg, N O

(-t V2

Satellite orbit system

$ivy

2
Sk Fk,uv _ i_ s12111.uv

v12 sk V1Z

V,
(tk’t1) ?:

822

If, when updating, the values s, and/or v, are altered, then in principle all the dimensionless
quantities which have been introduced are altered as well. This is a reason to be very
cautious with interpretations.
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There is an interesting similarity between analogous quantities in the two S- systems, as
shown in figure 8.2.2.

But a curious problem remains, for which we return to the situation of measurement and
computation of Section 7.2.

In P, one is dealing with the terrestrial gravimetric r, g- system. Assume that P, is also the
datum point of this system. Then we have:

Wa — ——M——(l + i Ba(n))

2
raga I’aga n=1

In this system the following is valid for the satellite point P;:

Mo Lﬁ(l + i Bl(l))

2
raga raga sl n=1

s
Now according to Section 7.2, —! is determined by measurement and computation in the

rtl

terrestrial geometric S-system. Or:

V o
1__ = ——M (1 + E Bl(n)]
s 2 -
]ga Sl ga n=1
If now one assumes the fiction that g,/g, might be measured, then in the terrestrial system

one can write:

n=1

(terr) ©
Vi _ ptem ( 1+ E Bl(n))

2
5181 5181

By now applying the correction for g,,- # 0 one obtains in the satellite system:

(sat) s
- & )
- (l + ’; B, )

2
12! 5,y

Vl(sat)

If it is to be valid that:

Vl(terr) - Vl(sat) , M(terr) - 'u(sat)

then the following condition must be fulfilled:
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2
5,8 =v;, O — = —

so that also: ¢ (™ = g(sa)

Unfortunately, g,/g, cannot be measured (or it cannot be measured directly). Therefore one
has to be aware of a difference ! in scale between, on one hand plerm | piem) g (terr)
and on the other hand () | @) | (a)

Remark (added in proof)

The choice of the satellite orbit system was made some ten years ago. Since, direct
measurement of the modulus of the velocity vector v~ seems feasible and it is interesting to
look for the consequences. For the modulus v, holds:

2_(2 1)
Vi S l— - —
SCk a

or rewritten:

2 .
(&) B (2 Sc1 MJ
1% 2 s a

1 Sci% Ck

Hence one may conclude that in satellite orbit computations the ratio of moduli of velocity
vectors takes the place of the ratio of moduli of gravity vectors in terrestrial computations.

The other important ratio, the ratio of (radial) distances, forms part of both the satellite orbit
system and the terrestrial system.

2
v
Comparing the denominator of —k2 with the denominators of most 4,- and (A " 1 Al]-
v Sk

v 2
quantities (see Sections 4.1 and 4.3) in the second column of Table 8.2.2 shows that (—k) ,
Y1

) The difference cannot be large for, according to Section 4.1 and 8.1:

2
A | =L2, hence: s,g, = v;
518 LA
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v s
but not —%, is an Aj-quantity. The corresponding (A " =l Al]-quantity becomes (the
2 Sk

equation relates to P as origin):

2 -
(&) S B Sa Sc1 ~ Sck

v s 2 s
1 Ck ScVi Ck

s
so that in the situation of a near-circular orbit the influence of i > [and ﬂ] is almost
negligible. Sci1 a

This is reflected in the difference equation:

which gives a connection with relevant equations in Section 8.1.

2
v
A possible consequence of the quadratic character of [—’5) may be that in Table 8.2.2 one
has to replace: V1

Vk,u i vl,u

V1 Sk V1
by:
ViwVew _ 51 ViuViw
vl S vl

But this means that in the first column of Table 8.2.2 and in Section 6 one has to replace:

Vie,u 1 Vi

by:

in agreement with the rewritten mechanization equations.
Yet the significance of the new quantities remains unclear.
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8.2.3

It is an interesting exercise to rewrite some formulas for higher order terms in satellite orbit
computation by means of the dimensionless quantities used in the foregoing. In doing so,
the difference between P,, and P, can be ignored. For simplicity, the index 1 is left out as
well. The following notation is introduced:

_ _ Mo - _ -
S, =8,V =V, ————5—/&', ¢, =9
5,V
a 14 s,.n _
_=a’ _2=V', I_:n" e =e,
51 12 Y1
- - v
1 . .
=0, E,=E, M =M, —t=¢t,i=i, =0, 0o =0
51
One then obtains:
u a _ sin’e
wa == 2
sves 1-e

dt' dt' av dt
de? _ ed_q
dt dt
Put: v=£.+R
s
in which R is the perturbative or disturbing function, again with:
_R_ = R,
v2

then e.g. the following holds:
2 0R _ 2 JR av _da _dlna' av

na oM @) oM S dt  dt s

or:
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dlna’ 2 OR _ 2(1 - e?)* 3R’

dt'"  n'@'): oM sing oM

Similarly one can write all Lagrange planetary equations in dimensionless quantities. Using
an elegant notation due to J. Kovalevsky, one obtains:

SR’
8lna’
Ina’ 0 0 0 0 0 [2(1 - e?)%] || 3R
Se?
e? 0 0 0 0 [-2(1 - e)] [2(1 - €2
SR’
i i R 0 0 0 [-coseci] [coti] 0 8i
al g sing 0 0 [coseci] O 0 0 SR’
30
@ 0 [2(1 - e?)] [-coti] 0 0 0
SR
M-t [-2(1 - )] [-2(1 - e2?] 0 0 0 0 b
SR’
M

It is seen that a' has been replaced by In @' and e by %, like was done in the difference
equations of the elements of the Kepler ellipse. Note the nice anti-symmetry of the matrix
elements:

(1.6) = - (6.1)
(25) = - (52), (26) = - (6.2)
(34) = - (43), (35) = - (53)

A second example raise questions. They concern the replacement of the set of Kepler
elements by sets of canonical variables, viz. the Delaunay set and the Hill set. We follow
here E.M. Gaposchkin in his "1973 Smithsonian Standard Earth (III). SAO Special Report
No. 353", p. 127. The curious aspect of these sets is that the variables have different
dimensions. Their replacement by dimensionless elements, as literally as possible for
comparison, results in the following:

for Delaunay variables:

I-M , L' =@ay:=-—S0e
(1 -e2)*

g=0 , G =[wa(l -e?)]* =sing

h=Q , H =[wa'(1 - e*)]* cosi = sing cosi
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for Hill variables:

i, =1 -esinE , “dlna’ _ i1 sinE -
a dt'
= _e_l a' sincT) sink
) (1 - ez)/2
P G =G
-0 CH = H

The dimensioning is now in perfect order; it is a question whether this has any practical

significance.
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9.1

We shall now sketch the positioning of points on earth by satellite measurements, in order
to examine the influence of P, P, # 0 on this operation. To begin with, we consider a
single satellite; the indices i and k from Sections 7 and 8 for satellite positions are
maintained as lower indices to the index number of the terrestrial point involved in the
measurements.

Now assume that in P, a series of pseudo-distances (i.e. distances with an unknown scale
factor = 1) has been measured, as well as a series of spatial directions to the same satellite
points. Because nowadays direction measurements are no more practised this is a temporary
assumption, with, for simplicity, the assumption that these directions are defined in the X,
Y, Z-frame. Consequently we in fact assume in P, the measurement of a series of pseudo-
vectors to satellite points P;_; , P;, Piyy s oo 5 Py .

A further assumption is that this series of pseudo-vectors is somehow reduced to two
pseudo-vectors Don, and Qun, > preferably with approximately equal norms, hence

§ =S .
nn; nn,
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9.1

Thus one obtains a bird’s-tail construction (the bird a swallow).

= qcenden, follows from the orbit

n,Cn,

-1
[0) nn, = nn,Dnn, follows from measurements, Q

computation.
Qn,.Cn can be computed, and the position of P, follows from:
dcn = Cncnden,
For the computation of Qn,.Cn one starts from the central condition with centre P, :

annC QninnkQCnni =1

or:

-1
Qn,-nnk QCnn,- = annC = QCnn,( (2)
Then the net-condition in triangle Cn nki

Gon * Gom, * drc =0+ Gundne = 1~ ey dcn
Cn nn, n,C nn,in Cn,1Cn
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or:

Qcnn, =1 = Cuca, (b)
Similarly the net-condition in triangle Cnn, :

Ocun, = 1 = Cacn, (©)
The central condition with centre P gives:

Qn;lc‘n = Qnan = Qn,-anQnCni (d)

Substitution of (d) into (b) and then with (c) into (a) gives:
Qninnk(l - QnCni> =1- QnianQnCni

or:

(Qnian - Qn,-nnk) QnCn,- - (1 - Qninnk) =0

or:

t inst) inst; ?
(0, - 0] - (1 - 00} 02, < 0

This is the basic relation of the bird’s-tail construction.
(sat) means: computed from the satellite orbit,
(instr) means: computed from measurements,
(7) means: sought.

But there is a snake in the grass. If one starts from Qn(sé‘,),k then automatically:

(sat) (sat)

en,-an L1 enin,‘

(instr)

Now Q (instr) may be freely translated, and rotated about e, ., ° . But this is not sufficient

n;nn,
for the spatial connection to Pn(isat) and Pn(iat) . This connection is subject to the condition:

(instr) (sat)
n;nn; n;ny

or:
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instr sat instr sat) !
en(nn) + n(n)en(nn)en(n) =0
nhg Ry nnng Ry

or:

inst sat sat instr 1
D) e enm, = 0
iy Ny iy RNy

With this conditional equation (four real equations having the rank 1), the rank of the above
basic relation is three, exactly enough to compute the three components of g, -
For our purpose we choose a slightly different way:

t instr) .
If the angle enclosed by e,f.sé,ik and e,,(.l:i,;) is v , then one must also have:
! f)
(instr) (sat)! _ (sat) .
n;nny, “n,Cn,  ~ COSV + €, smv
or:
(instr) _ (sat) . (sat)
nnn, cosv + €nn, smv €n.Cn,

It is further assumed that this expression is substituted into the basic relation, with as an

extra (nuisance) parameter the angle v . The basic relation then provides four real equations

with four unknowns. The indices (instr) and (sat) can then be omitted.
Now proceed to the difference equation of the basic relation, with a reduction to all-

quantities:

AQnian - AQninnk(l - Qn,.Cn) - (1 - Qn,-nnk) a n,Cn =0

with:
-1 -1 -1
1 -Q,ca =1 = dcnden, = (dcn, ~ cn) den, = Gnnden,

(1= Cupn) = 1 = Gunon, = (G, ~ Do) G, = Gngn, Grn, Gcn Gn

Premultiply by qc_,llk and postmultiply by g, :

1) When applying quaternion theory to analytical photogrammetry in the sixties we met a similar
problem, in which attention was focused on direction measurement. M. Molenaar finally found the cause.
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(9cn, 2Qncncn,) = (9cnun, )(Drm, Do o) *

_(qéikqnink)(qn;iqcn)(qc_jA n,»quCn> =0

or:

T T T
AHnian B Qann AHninnk - QCn,‘n,- QninC AHnicn =0

Solve for AHnicn :
T T T
AHnicn - QCnni QninkC(AHnian - Qann A1-‘[ninnk)

or:

: T T T
AIIniCn = QCnn,-(QninkC AHnian - Qn,-nkn AHninnk)

As an example we take a GPS-satellite at an altitude of three times the earth radius, in the
zenith of P, .
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T _h . ) .
Qcnn, = [COS 150" - e, c,, Sin150 ]

T _r+h
Qn,-nkC -

[cos(—66°) - (—enian) sin ( —66’)]

AT
- Qninkn

andwith:fl—+r+h=1+ﬁ=4;
r h r

0L O c = 4[-087 - ¢,¢, . 050[041 - ¢, . 091

n

- 4[-081 + ¢, . 059]

Now we have:

I = all “en, 0 0
A n;Cny, = alln - enian A( Cny - Cn,.) +

. -1
+ Slnanian ean Aen,-Cn,c €cn,

i

Combination of the last two formulas gives, with

1 1
en,.an ean Aenian eCni - _ean enian Aenian eCni :
1 an,‘
1o, =|-081aln £ 059 a(0c,, - 0c,)| *
4 ' SC k i
"

SC”k

+
i

+ en Cny OSQA[IU ) + 081 A(Ban B 0Cn,->

SCn,.

. -1
+ sine, ¢, ec,,k[—O.81 - O.59enian] £, cn, €cn, *

+ influence oIT,
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The factor 4 is an extreme case, for e.g. Lageos the factor is 2.
But there is another effect when g, is computed:

-1
AHniCn = 4cn Aan - ani Aan,.

or:

Aan = an AI]:niCn + n,Cn Aan,.

In our example:

Aan = reCn ) A]‘-'[niCn *

(0.91 teucn, 0.41) Aqcy,

B =

i.e. the influence of aq,, is reduced by a factor 4.

However, the example has been elaborated mainly to appraise the influence of P,P. #0.
From Section 8.2.1 follows:

8(6c = 0c) = (6cx ~ i) 3B + ]

0. - O 7
A(ln ﬁ) ~ -2sin i-z—c [ZRe{e_m M} * J

Sci n
with in our example:
(6 - O) = 0.84

6., -6,
2sin% ~ (.81

or:

Lo, = o(r—MEJ -
4 n;Ln

r

The conclusion is that the influence of P, P, # 0 is clearly not negligible.
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9.2

9.2

In this section we shall investigate the possibility of determining g,,- , leaving all other
unknowns and disturbing influences out of consideration.

Fv 9mc

The first method consists of fixing the satellite point P, from a number of terrestrial
points P, , P, , ... whose coordinates are known; this results in the quaternion Q, nn,

QOyynp is computed from the known coordinates. Qn,.Cn follows from the bird’s-tail
construction of Section 9.1. Then we have:

QMnn,» - thn,. Ortnn
a1l

Mnn;

aIl

hnn, t A IIMnh

Then:
-1
QMnni * QniMn =1
-1 -1
AQMnni - Qn‘-Mn AQniMn Qn,-Mn
Premultiply by qn_,,li and postmultiply by g, :

-1 -1 -1
(G, ©Qatnn, D) = Do Goan,(Abtn o pin Dotn,) Gaan Do = O

or:
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T
AHMnni + aniMAHniMn =0

Now we have:

all, \iw = yn 29pn ~ ‘IA'_{;i Aqpmn,

The approximate value of g,,- = 0, hence:
9un = 9cn * Iuc > 29mn = 24cn T duc
Amn, = 9cn, ¥ Iuc > 29mn, = 29cn, + Iuc

In coefficients of aqg-quantities the indices M and C can be interchanged, in fact all
approximate values are computed with respect to P,, anyway. Hence:

-1 -1 -1
Irn Syn = den Bcn * den9uc > ANAIOZOUS Gy 2Gy,

SO:
-1 -1
A]'-‘[niMn = A]‘IniCn * (an - ani) dmc
-1 -1
= AIj[n‘.Cn + ani (ani - an) dcn9mc
N
G,
and with:
T T -1
an,-M = aniC = qnniqnic :
T -1
(y AH?;;:;),. *+ Onnc AHr(tSiaCt‘)n *qenduc = 0

with (terr) = terrestrial and (sat) = computed from satellite data. This is a condition
equation, whose second term contains an indirect influence of g,,- and whose third term
contains a direct influence of g,,~. Both influences have the same order of magnitude
because:

NVZ{Qni-C} =1+ %

Check:
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9.2

1 -1
AI-‘[Mnn,- - qnni Aqnni - an(Aan - qMc)
= AIl _ 1
= A C’nni an qMC
or:
all + Q0 NI =0 correct!
Cnn; nn,C n;Cn ’ .

Yet (I) does not offer a practical possibility for estimating g,,- , because the sharpness of
definition of aIl,,, . is certainly not better than 107 or 10, whereas nowadays the order

r
of magnitude of M€ must be deemed to be the same or smaller.

Pv™ Ave

In the second method a bird’s-tail construction is applied in two terrestrial points P, and

P,, of the same terrestrial network. This provides the quaternions Q and Q

n,Cn m,Cm*

As an example we think of the network of the USA with P, and P,, at about 40" latitude.
The maximum difference in longitude is 40" , so that, with cos 40° = 0.77,
=a,. =077, * 40° = 30°.

Q,1m is computed from the known coordinates of P, and P,, , and compared with Q,,,
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-1 -1
AIIan = qu Aqu - an Aan =
- 1 -1
= dcm(89cm * Auc) ~ den (89 * duc) =
-1 -1
= AHnCm * 9em (an - qu) dcnymce =

——

_qnm
T -
= A]‘InCm - QCmn an qMC
For the quaternions around P we have:

-1
QnCm = Qm,-Cm Qn,-Cmi QnCn,- ’ QnCn,- = Qn,-Cn

with Q

i, Cm and in_C,l from the bird’s-tail constructionand Q from the satellite orbit

n,Cm;

computation. Consequently we have:

ATTEY = (AHmicm - oIl Cn) + AHi

nCm

t T -1
AHS;;?; - AHr(lsz‘r)n + QCmnan qMC = 0

an

(II) is again a condition equation; here all terms containing the index C are influenced by
d)c 1n the same order of magnitude because:

% r = ﬁ = .;I‘_
N/{QCmn} r 2

Alas, the conclusion is the same as the one reached for (I).

For the third method we add a point P, belonging to the same terrestrial network as P, and
P, , with for example P, P, L P, P, and possibly PP, = %P P... The bird’s-tail

m

construction in P; is once more applied.
For the quaternions around P, we than have:

-1
anm = QCnm QCnl ’ AI]:Inm - A]‘—‘[Cnm - A]']:Cnl

with in the triangles P, P- P,, and P, P P, respectively:
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T
QCnm =1- QnCm ’ AHCnm = Ynmc AHnCm

T
Qcni =1 - Cper > allgy = Quic * a1l ¢

or:

anm = (1 - QnCm) (1 - QnCl)_1

(sat) _ T . _ T .
A]Ilnm - QnmC A]:[nCm inC AHnC[

For our USA-example we then have:

N%{annc} = TZr =2 ’ N%{anc} =—— =4

Again there is an evident deformation of AH[(::;B by gc # 0.

(terr)

O} can also be directly computed from the terrestrial network, the result being denoted by Q,,,..,”,
so that the condition equation becomes:

AH(terr) _ AH(sat) =0

Inm Inm

but for the same reason as before with (I) and (II), this is useless.

However it does make sense to determine Q,,, from VLBI-measurements, for which a
sharpness of definition of 107 to 10 can be expected, whereas there is no influence of

dmc # 0.
Then the condition equation takes the form:

(111) AIOVEBD 6™ 2 g

Inm Inm

An advantage of this approach is that one is not restricted to the use of points P, , P, , P,
belongingto the same terrestrial network. Points can be chosen anywhere on earth and their
number can be arbitrarily increased. However, a remaining restriction is that one must
always operate in the X, Y, Z-frame used for the launching of the satellite because otherwise
the definition of g, is lost. One may of course introduce new base points by means of a
similarity transformation, but this also implies a change of P;,, so that in fact a new g,,-
is introduced by the transformation.
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The indiscriminate connection of sets of VLBI-, satellite- and possibly terrestrial coordinates
which is sometimes met in the literature does not seem to make much sense, and as far as
the interpretation of mutual differences is concerned I think it can even be misleading.

Finally it must be noted that there will always be a residual influence of g, , even if the
estimate is corrected for. This residual influence will depend on the variances and
covariances of the many unknowns to be estimated in the total adjustment; the order of
magnitude of the resulting residual deformation cannot be predicted as yet.

9.3.1

In the Sections 9.1 and 9.2 the building stones have been brought together for examining
the influence of g, # 0 (and, naturally, other unknowns) on relevant a-quantities. We
must now focus on more realistic observable quantities, i.e. length ratios or series of
pseudo-distances to satellites, as the case may be.

Nevertheless we adhere the bird’s-tail construction, in which from approximate coordinates

. Snk
approximate values are computed for — , « and A
s i

ninnk
n;
. become extra (nuisance) unknowns in our problem.

n

This implies that ae, , "

. and ae, ,

Now we solve AHn_nnk from the difference equation of the bird’s-tail construction; the

quaternion notation Q will temporarily be used as abbreviation:

T T T oA
ankC AHnian - ankn,-QninCAHniCn B Q - AHn,-nnk

put
Elimination of, first, £€, pn, and, second, Ay, is effected by the computation of
1 i
components of AHni nn,
1 -1 s’mk
'2_(Q + eninn,c Qen,-nnk) = a|ln s B eninnk A<aninnk>

nn;

Sc {Q} + component Ve{Q} Il en-nnk

or:

s
nn;

T T T _
SC{ankc AHnian = Qunn, Cnnc AHn,.Cn} = alln .

nn;
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9.3.2

Besides g,,- and other unknowns, the three components of A g, appear in this equation,
namely via Il ... If one considers only the latter three unknowns, they require the

measurement of three length ratios. The measurement of a number of length ratios to the
same segment of a satellite orbit is useless, because the length ratios will result in difference
equations having practically the same coefficients for each unknown, so that the solution
will be indeterminate. .

One is therefore compelled to measure length ratios to at least three non-parallel satellite
orbits, i.e. one length ratio to each orbit. In the case that different satellites are involved it
is to be assumed that the launching data of all these satellites have been determined in
the same X, ¥, Z- frame, otherwise there is not a unique g,,-. This assumptionis valid e.g.
for GPS-satellites.

The reason for preferring Sun, = Sun, in the bird’s-tail construction can be found in remarks
by P.J.G. Teunissen in his contribution to the Lustrum Book 1990 of the Delft geodetic
students’ association Snellius. The point is that in this case certain (time-dependent)
unknown constants, arising from the measuring procedure, can be eliminated.

Less favourable is the measurement of a series of pseudo-distancesto four satellites, at least

one distance measurement per satellite. From the measurements San, > Snn, » Snn, > Sn,n,, ONE

can form three ratios for the computation. But the points P, , Pnk R Pn, and P, are now

situated on different satellite orbits; this causes an inconvenient mixture of orbit errors and
besides the above mentioned elimination procedure cannot be applied without complications.

9.3.2

Simultaneous measurements in P, and P, result in:
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T T T
lekC A]'-‘[nl.an B ankn,- Qn,-nC A]:In,.Cn - AHninnk

T T T
QmkaAHm,.ka B Qmmkmi Qm,-mCAHmiCm B A]]:m,.mm,c

m;?> " n

with Pni =P P = Pmk , §,,, small compared to Sun, and S, and s, and s, .

In this case a differential approximation can be applied:

qmmi = qnni + Aqnmi 4 Aqnmi =
qmmk = qnm,c * Aqnnk ’ Aqrm,c R S .
qu = an + Aan ’ Aan

T T T .1,
Qmka - ankC ta nn,C > with:

T - T o1 -1 -1 _
A nn,C ~ ann AHnnkC anC - ann Aanc anC Aann ann anC -

_ -1 -1 -1 _
= - ann qnm anC (ann - anC) ann anC =
N —

an

T T T
= - annm anCn ankC
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or:

T T T T
Qmka = (1 B annm anCn> ankC

Similarly with ag,, , = 0:
T T T T T T
A(ankni Qn,nC) = A nnn; Qn,-nC * ankn,- AQn,-nC =

_ -1 -1 -1 T .
- ann Aanni anni Aann ann ann,. annC

T -1 -1 -1
+ Q"”k”i qnn,- (Aqnc dnc ~ Aqnni qnn,-) dnc ©

-1 -1 T
= " bun 9um Inyn anni Qn,»nC *
T -1 -1 -1 -1
- ankn,- 9nn, 9nm 9nc (qnn,. B an) nn; Inc =
_

ani
T T T T T T T
=+ annm ankn,- Qn‘.nC + ankni Qn,.nm QnCn,- QninC

or:

Qmekmi QmT,:mC = (1 * Qn’:nm) an,‘n,. (1 + QniTnm ann,-) QIIZ;IC

Now we have:

1 T T ~ nm _
N 2{Qn,‘nm anCn} o -

rﬂm
NHOL ) = o - i
r
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N%{annm Qﬂz"i} B —h_ r h ___1___

_tim h+r _ r

~
—_——
—
+
~ |
~——

r
The last norm is largest: —— (1 + —;;
r

The difference of the coefficients may be ignored if after choosing a value for o

Tam T *h 2 001 - a
;

and, with r = 64.10> km:

h
r
(rnm)km < | . 64 -«
+ —
’
o
h/r 1 5
1 32 160
2 43 215
3 48 240
Tm km

In this case the difference of the two equations mentioned first in this section is:

T T
- ankni QninC (AHmiCm -

A]‘-In,-Cn) = A-‘[Imimmk - A]'-'[n,-nnk

so that the influence of the orbit computation is practically completely eliminated. Further

we have:
AI-‘[miCm - AHn,-Cn - AI-IniCm B AHniCn = AHnCm =

- A _oA ~ oA

= i AQeym - Aén Men = dcn (8cm = Sdcn) = 9en Anm

Finally the difference of the equations becomes:
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T -1
+ ankn,. nn, Apm = AHmimmk - AHninnk

i.e. a relative positioning of P,, with respect to P,.

For the case that only pseudo-distance measurement is applied, we still have to investigate

whether e, . , may be replaced by e

m ninnk

Put : Qm,-mmk = n.nn, * AQn,-nn,c

-1

AQninnk = qrm,c AHninnk qnn,- -
_ -1 -1 -1
- qnnk (qnnk Aqnnk - qnn,- Aqnni) qnn,. -

-1 -1 -1
= - qnnk qnnk qnn,. - q””k) qnn‘- 9nm qnn,- -
—_—

q"k"i

=" an,-nk annm Qn,-nnk

hence:
Qm,-mmk = (1 - anink annm) Qn,.nnk
with:
rnm
v o= _;_,'_ rnm = _r
N {anink annm} h h —11
r
or, the neglect of AQn_Mk , and consequently of (em.mmk - en.nnk) stays within the limits

previously defined.
Now introduce again the temporary notation:

T '
Q"”k”i qnni Apm = Q

Then we have:
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s

_ m | nm | _

= afln alln €y nn, (Aam_mmk Aa’”mk)
s S 13 13 L3
mmi nn

or.
sc{orl g _ sl Zmm In 2k
C{ankni qnn,- Aqnm} = apln - alin
smmi s’ln

being one real equation in the three components of ag,,, -

The right hand member can also be written as:

s s

mn mn.
alln k- alln i

Snnk snn,—

§ -8 S - S
aln|1 + 2 ™| Alnf1 o+ 2B
snnk snni

N -8 § -
A mn, nn | A mn; nn,
snnk snn‘.

being the difference equation for the measurement of distance-differences.
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10.

Ever since I introduced the distance or length ratio as a basic quantity alongside the
traditional angle quantity, I have been wondering how one could form dimensionless
quantities in mechanics. It seems to me that the quantities found now may provide a good
point of departure.

The length ratio presented the problem that in society one only uses the concept of "length",
but this was easily explained because in daily use one only deals with "carpenter’s length"
in which the finer differences of scale are not felt.

Something similar applies to the concepts of speed, acceleration and time. Admittedly it is

important for the movement of vehicles and aeroplanes that the vectors "follow" the

curvature of the earth, i.e. follow local coordinate frames, but then the conceptual

construction of the quantities can be greatly simplified. This is particularly evident if only
r

small areas are considered. In daily life one can then put -~ and 8k equal to 1, the
r &

difference between local coordinate systems can be ignored and the factors

% %
r
T8 T1& r
can be replaced by some form of calibration. One then arrives at the usual differences of
velocity vectors, acceleration vectors and points of time.

In order to illustrate the importance of the new quantities, an imagined example in satellite
gradiometry is given, by the way a field of which I cannot claim to have any knowledge.

Choose the local x, y, z-coordinate system as identical with the E, N, r-system from Section
6, except for the eccentricity of the origin of the coordinate system.

Assume the possibility for the gradiometer to realize this system, up to a small systematic
rotation error in each of the three axes. Furthermore a small systematic scale error is
permitted, separately for the measurement of each tensor component. It is assumed that the
following quantity is measured (see Section 6):

2
Sk Fk,UV

2
Vi
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If Ek yy Tepresents the spherical harmonics series starting from degree two, then the

following difference equations for measurements in one and the same Ss1 . -system are valid:

2 2
Sk 1-‘k,,\rx Sy 5 Fl,xx 51 Sk 51
A e SN e T . N = (8%, - ok ,,)
2 s 2 s s ) - -
v * vy k 1 k
2 2
R Sk Th sy .5 A 51114 - A (AEk - aX, )
> 2 Xy xY
v, 5, % Sk
2 2
N Sk D e _iAslrl,xz .33 Bl el +ﬁ(AE -k ,,)
> 2 'k, xz 1,xz
v, 5, V) S\ S 51 Sk
2 2
5T 5; |sT s 5 s
& ———'2‘”’ -1 ——% =L 4l = + = (8% ~ 8E1y)
V1 Sk Vi S 5 Sk
2 2
s; T s 5;T s, | &y Ay s
A k I2c,yz _ A ;,)’Z =+3 Al A, (Azkyz - Azl yz)
! 5, v S\ Sk 51 Sk
2 2
Skr s 5 r s s 5
A kzz | _ L |71 bezy o o9 T gy R +—1*(Azk - aX )
> p 2 s s s 22 »22
v k Vi k 1 k

2 2 2
Sk l-‘k,)c,\: Sk 1—‘k Yy 1 Sk Fk,zz 5
2 2 2
v; v 2 Sk
2 2 2
Sk Fk,ch Sk I‘k,xz Sk I.‘k,yz
~ - = ()
2 2 2
Vi Vi Vi

i.e. the influence of scale errors of the supposedly measured quantities in the left hand
members is negligible.

Furthermore it seems to me that the following is valid:
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AX AX L. . )
Tk _ 1| eliminates a Systematic rotation error around y-axes
Sk 5
AV L4 W IRTI . .
—% - 1| eliminates a systematic rotation error around x-axes
Sk P!
2 2
Sk rk,xx Sk Fk,yy S .. . .
el > contains: negligible systematic rotation error around z-axes
v v
1 1

Conclusion : Under the assumptions made it does not seem to be necessary to calibrate the
instrument!

Now it is interesting to compare accuracies with [Rummel, 1986]:
For a near-circular satellite orbit the following holds:

2

I‘Lc-_'l- zzﬁ'Y_zi
y v >

s s2 3

=]

With & = 39 86 00 km s % s = (6400 + 200) km:

2
12— ~ 14 -10%s2 = 1400 - 10 s 2 = 1400 E.U.
s

or:

s? -4 -1
2 =710 (EU)
v2

With these values the amounts in [Rummel, 1986, p. 356] become:

2 2
sl“xxfzsl"yy':_1

v? v?

2
s<T
ZZ=+2

V2

<
N
[

+7 1073

sT s, S
— = 7 -10

<
R
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Now write o SZFUV = S—2 ol and put: o(T = tant
2 y ( UV) p .a( UV) = constan

. s?
If one now requires: )

decimeter, then: v

o(Ty,) < 14 - 10° EU.

o (FUV) < 10°%, which corresponds to an accuracy of half a

This requirement cannot be met by instruments presently in use.
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11.1

Looking back I get the uneasy feeling that the foregoing sounds very much like a voice
from the past. There is little of the dynamism that makes geodesy so different from what it
was in my active years. This generation gap is most clearly illustrated by a comparison with
the deeper and broader treatises in the book "Theory of Satellite Geodesy and Gravity Field
Determination” (F. Sanso and R. Rummel Eds.- Lecture Notes in Earth Sciences Vol. 25,
Springer Verlag, Berlin, Heidelberg 1989), which came to my attention thanks to Rummel.

Nevertheless I venture to make three final observations:

L. I should like to be young again and develop this lines of thought on the basis of the
General Theory of Relativity. As it is now, the study of this theory is made difficult for me
by the loss of invariance of angles and distance ratios in reciprocal observations of systems
moving relative to each other, and by the inevitable tensor theory, whereas tensor algebra is
not a division algebra. On the other hand there are recognizable problems when I read in
Bulletin Géodésique (1992, 66, page 65 1): "the need to define a barocentric coordinate
system with spatial origin at the centre of mass of the solar system and a geocentric
coordinate system with spatial origin at the centre of mass of the Earth, and the desirability
of defining analogous coordinate systems for other planets and for the Moon". How to
execute such things operationally involves questions which have always occupied me in my
work, including the previous Sections, be it in a simpler theoretical framework.

II. A further problem that keeps me occupied is the effect of my idea that in satellite
computations every coordinate system is in fact an S-system with terrestrial base points. I
mention this here in connection with a remark by R. Rummel, observing that the precision
from the distance between a terrestrial point and an orbit point as computed from
coordinates, is considerably worse than the precision of this distance directly measured by
SLR.

As remarked in "Notes and References”, Section 3.2", I would not be surprised if in partial
networks for satellite orbit determination and in subsequent establishment of control by
satellite method, the covariance function dk, = ¢s,, would give a rough approximation.
Therefore this function will be chosen in order to obtain numerical values by means of a

" Recommendations from the Working Group in Reference Systems
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criterion covariance matrix. Since the three-dimensional matrix has not been sufficiently
analysed, the two-dimensional situation will be used.

Assume that P, and P, are terrestrial datum points (and usually also the points from which
the satellite orbit is controlled) and let P, be a point of the satellite orbit.

Now consider the two-dimensional situation in the plane through P, P, P;. If we denote
by o; the standard deviation in each coordinate direction in P, then we have, with some
approximation, according to [Baarda, 1973, p. 161]:

S, km] [sbi km]

(0,em)? = 2[c em? km '] [ oy

We choose ¢ from values found in partial nets of the Netherlands triangulation [Baarda,
1973, pp. 145-147], viz. the round value ¢ = 0.5. In the terrestrial network containing the
datum points this corresponds to a standard deviation of 10 cm for distances of 100 km
between points, being the standard deviation of coordinate differences, or 10 . For Sgp =
100 km and g, = 0; = 0 one then obtains:

s;, km s; km s, km | c cm? km'! g, cm
200 200 100 0.5 20

1000 1000 100 0.5 100

2000 2000 100 0.5 200

The order of magnitude for g, looks about right, although the first value seems too small.
Perhaps this means that the effect of the choice of datum points justifies a closer study.

III. The last problem concerns my doubts about the order of magnitude of the precision in
the determination of quantities in physical geodesy.

As an example the beautiful paper:

R. Rummel and M. van Gelderen - Spectral Analysis of the full gravity tensor - Geophys.
J. Int. (1992), 111, pp. 159-169

incidentally mentions that with the precision of 102 E.U. for I, , I, and T, “the global
gravity field can be determined in six months time with a precision of 2.5 mGal in terms of
gravity anomalies or 5 - 10 cm in terms of geoid heights".

If we take the example of satellite gradiometry from Section 10, restricting ourselves to the
vertical gravity gradient I'; as an abbreviation of T, , then in our dimensionless

formulation, with s; = 5p and nearly circular satellite orbits (see also Section 4.3):
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2
5 h T. P 5
MLy - 22 AT =2alln =L | = 7.10 )
A( ) A( 1) A[n T J

2 2
12} 12} 1

(In fact only the influence of T is taken into account here, but our model requires the
combined influence of I'; and I, , although in the following integral formulas the constant

influence of a possible separate A(F1> vanishes).

If P,. is the projection of P, on the "geoid" through P; , then we have for the other two
quantities mentioned in our model (see Section 4.1):

, W
A(ln g—"] - —2A(1n —") . A(ln ﬂ) ~ 3.5 106
1 g

, W,
A(ln ri) = A(ln J) + A(ln i) ~ 108
r Wi i

(The reader is reminded that P; like P, is a point on the surface of the earth, and that P,
is the datum point of the satellite orbit.)

My doubts now are concerned with the difference between the last two orders of
magnitude. I shall try to illustrate this by applying the line of thought of Section 4.4 to
satellite gradiometry, i.e. by taking for S* a surface through the joint satellite orbits.

We consider the following situation: P, is again a terrestrial point, with an arbitrary
terrestrial datum point P; ; P; is a satellite orbit point, with orbit datum point P, ; P,. is
the projection of P, on the equipotential surface ("geoid") through P; , including first
degree terms B{D so that, as customary in the literature, the count of n can always start at
2.

Then we have (see "Notes and References, Section 11") with:

2 For the planned STEP mission, having the satellite at the height of 550 km and a precision of
gradiometer measurements of 10" E.U. this becomes 8 . 10%,
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>

Lo

-
lii

- (Y - BY)

W,
= A[ln —k] + A(ln T
W'l' rI
AA;T,C Aln& + 2AlnZ
81 A

= T. S,
2 Xy 2a|lln =L | + 6a{ln £
r s,

1

_ W,
2aX, + oK, = -2A(1n Wk] R A(ln Be
&

~—~
R
D>
——
=1
&
~—

1 &1

= 2n + 1 o _ [RY v ) ¥
Xy, ff s {(,] Y,® [:1) Yl()}Yj()Ale aQ,
a 2" v 1 Ri'yw - [R)yool yo %
AXIk ff N n N 2) {( k] Y (rl) Yl YJ Ale d(‘l}
-2aX;, + aX;, = ff (2n + )in - 1) }(R ny'(") -(R ”y.'(n) Y/® AX ™40,
Lk (n+n+2) |lr) * ]! J Y !

From these integral formulas one might compute A(ln —k) and A(ln g_] if beside —-
81

s, r
one also measures . and % , whereas the B()-terms must be known. But there is a
s rs
1 1

1 1

restriction: In the example of Section 10 we assumed R = ro=ry = 6600 km and

r, = r; = 6400 km, hence R.R 600 1.03
6400

r
k
This clearly endangers the convergence of the series in the integral formulas, because this
factor is greater than was assumed in [Baarda 1979].

=3

s, r

Nevertheless we go on and assume that the random influence of L | —~* and the BM-
s,y
1 N

F
terms is small compared with the influence of —- F (too optimistic an assumption if the
1
global situation is considered). Assume that there is no correlation:
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. (=1, =j_ 3)
. T i ’
O,%,, %7 = 028j , O

with:

3

1 W i) ,? . 1=1, n-=
_ffy. vy aa - 7 g
41 s 7 2n +1 =0, n=#

N

and
1 f f 40 - 1
41 /

the law of propagation of variances results in:

2
2 ’ e 21+ 1 RY' _m RY . o
o . R L A IR
i % e op (rk) ‘ (w] !
- 2n + 1 RY" RY" i
2 n + r(n) +(n)
oy = o? —| Y, -|=| Y-
o 2 (n+ 17 (n + 27 (rk) ) (’T) 1
2
2 —~ 2n+1)(n-12 |(R)" y®» (R ,®
NPT I N Tl y” -8}y
U‘ZAXIk* a Xy nE=2 (n + 1)2 (n + 2)2 I k g 1

3 This simple assumption for the variances is not realistic for situations in practice, as is also observed
in the geodetic literature, but it suffices for our present purpose. In this literature it is stated that the
application of the law of propagation of variances to the integral formulas would not give realistic results

because of singularity of the Stokes-like functions. By definition this does not necessarily apply to our
formulation. It is true that the Stokes-like functions increase infinitely for j — 1 (see [Teunissen 1980)),
T 5 =
but in conjunction with this In—L and In- , and consequently aX,; approach zero. In order to
1 51

A
emphasize this we introduce (again ignoring the random influence of A(ln —’) ):
Oyunryy = O20qnry) = Y20 ; no correlation 51

}

Then the variates A)Z. are correlated; their covariance matrix has elements % ¢ on the main diagonal,
the non-diagonal elements are % ¢ . Applying the law of propagation of variances then gives the same
results as the previously mentioned covariance.
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Now take the average of these variances over the whole earth, taking for R and R a
r r;
k 1
constant value 5 Then we have, for example:
r

2 1 2 -
M~ ar ] i

g [z (RS e (B |

A2 (no+ 2P \T (n +2Y

We now continue by considering only the first term in the right-hand member. (If one
wishes to introduce an average value for the second term, this has the same effect as
doubling the first term.) Denoting the first term by m?, we have:

ml =0 i 1 (B)Zn

a2 (m+ 22 \r
2 L@y 1 RY" @
<rn’AXik 02; (n +12(n’ +2)2 (’-)

2 _azi (n - 17 (R)Z"

m° - i
\ -2aXq;+ Xk o (n + 1)2(n + 2)2 r

This follows from our shortened notaticln. Acco_rding to [Baarda 1979, Section 1.4] we have,
with the fully normalized harmonics R and S :

Y'(") Y'(") ) i Ek(nm) R’l(nm) . Sv'k(nm) ST[(nm)
f =
g Jin+1 2n+1 V2n+1 2n+1

m=0
so that the integral formulas actually contain (2n + 1) terms for each n ($™ = 0). This
means that (a) has to be replaced by:

—2_ -2 —~ 2n +1 (5)2”
2 Xk El (n+ 27 \r
- 2 > 2n + 1 (5)2" (b)
| e nE=2 (n + 17 (n + 2P \r
22 _py @nele 1) (5)2"
m‘ZAXik"AXIk Z:z (n + 1)2(n 4 2)2 r
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Whereas the series (a) clearly are convergent for R . 1, for the series (b) this already
becomes doubtful. If one assigns the value 1.03 rto R , then all series are strongly
divergent. This means that the line of thought of Sectionz.4 is not applicable. But we can
use the formulas with R 1 to make an appraisal for the order of magnitude of the

r
influence of » (this would actually imply gradiometer measurements very near the surface
of the earth), see the following table:

R . 1 n <200 P,. projection of Py on "geoid" through P;
r
Concerning mio | mio || 105m | 106m
= F
aXy | 2a|ln £ I O 7
I
- ; 8k
X3, | A ; 0.53 (2.7 || 3.7 19
1

W, e
a Xy, | A In | alln & 0.11 {029 || 0.77 2.0

DaXs, + aXey Aln-”l) 035 |21 25 |15

I do not venture to make a statement about the meaning of these numbers themselves. But
, r,
it is interesting to see the ratio between numbers pertaining to a|In 8k and A(ln *1,
81 n
this ratio is 3 and 7 respectively, which is much smaller than the previously mentioned
value 3.5 * 10° taken from the literature. Hence my doubts.

11.2

Two names are only sporadically mentioned in this treatise, they are H. Moritz whose
publications were constant companions in my development, and E.W. Grafarend, whose
publications I have tried to fathom. I owe much to both, although they will not always find
their ideas back in my train of thought. Perhaps my view on the problems of geodesy is too
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simplistic; it certainly seems so when comparing it with the results of research by the
present staff of the Delft Faculty of Geodesy.

Therefore I am grateful to the Netherlands Geodetic Commission for nevertheless publishing
my essay and giving it a place in the series I initiated when I was the Commission’s

secretary.

I am afraid I would never have rounded off this publication if professor Reiner Rummel had
not put me under great pressure. I gratefully think back to the many discussions we had,
first about matters of university management, later increasingly more about our fields of
science, as witnessed by several themes of this essay. These discussionsmade me forget for
a moment the heavy task waiting for me at home. I regret that the finishing of this essay for
other reasons coincides with an end to the possibilities for further discussions.

I gratefully acknowledge the contributions of M. van Gelderen, who made the computations
for Section 3.1, J.J. Kok, who took care of the computations for Section 11.1 and M.G.G.J.

Jutte who made the drawings.

I am thankful to the staff of the secretariat of the Netherlands Geodetic Commission, who
transformed the manuscript into a well got-up publication.

And finally I express my warm thanks to my former co-worker and colleague J.E. Alberda,
who managed to translate my scribble into readable English and in doing so again continued
a cooperation which by now has almost lasted a lifetime.
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Notes and references

Section 1

The publications mentioned are:

W. Baarda
- A Connection between Geometric and Gravimetric Geodesy, Netherlands Geodetic

Commission 6, No. 4, Delft, 1979.

- Geodetische aspecten van het werk van Vening Meinesz (Geodetic Aspects of the
Work of Vening Meinesz), in: Verslag van de bijzondere zitting van de Afdeling Natuur-
kunde op 18 december 1987 ter eere van de herdenking van de 100ste geboortedag van
F.A. Vening Meinesz, Royal Netherlands Academy of Arts and Sciences, Amsterdam,
1987.

- Some tentative Remarks on Adjustment Models in Geodesy, in: Festschrift to Torben
Krarup, Geodeatisk Institut, Meddelelse No. 58, Kabenhavn, 1989.

A valuable compliment is given by:

P.J.G. Teunissen
- Some Remarks on Gravimetric Geodesy, Reports of the Department of Geodesy, No.

80.2, Delft, 1980.

Complex II-quantities are first mentioned in:

W. Baarda
- A Generalization of the Concept Strength of Figure, Report Special Study Group No

1:14, Delft 1962 (IAG-Assembly Helsinki 1960), Appendix to [Baarda 1967] see notes
Section 2.

For an elegant treatment of isoparametric mapping see:

E.W. Grafarend
- The Bruns Transformation and a Dual Setup of Geodetic Observational Equations,

NOAA Technical Report NOS 85, NGS 16, National Geodetic Survey, Rockville, Md.,
USA, 1980.

Section 2

The principles of the theory using complex numbers can be found in:

W. Baarda
- Statistical Concepts in Geodesy, Netherlands Geodetic Commission, 2, No. 4, Delft,

1967.
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Notes and references

An indication of the quaternion theory is given in:

W. Baarda
- S-Transformations and Criterion Matrices, Netherlands Geodetic Commission, 5, No.
1, Delft, 1973, 1981.

Parts of the theory are included and elaborated in the theses:

M. Molenaar
- A further inquiry into the Theory of S-Transformations and Criterion Matrices,
Netherlands Geodetic Commission, 7, No. 1, Delft, 1981.

H. Quee
- Quaternion Algebra applied to Polygon Theory in Three Dimensional Space, Nether-
lands Geodetic Commission, 7, No. 2, Delft, 1983.

An overview has been published in:

W. Baarda
- Mathematical Models, in: 25 Years of OEEPE, OEEPE Official Publ. No. 11,
Frankfurt a.M., 1979.

The doubts about the value of ellipsoidal computations in geometric geodesy since my
paper:
Some Remarks on the Computation and Adjustment of Large Systems of Geodetic Tran-
gulation, Bull. géod. 1957, No. 43 (IAG-Assembly, Rome, 1954)
have been taken away to a large extent in the thesis:
P.J.G. Teunissen
- The Geometry of Geodetic Inverse Linear Mapping and Non-linear Adjustment,
Netherlands Geodetic Commission, 8, No. 1, Delft, 1985,
and other publications of this author, mentioned in his thesis.

Section 3

For the literature used in the development of an algebra for a geodetic quaternion theory,
reference is made to Chapter 1 of [Baarda 1973, 1981]; for results and a further elaboration
see [Quee, 1983]. A valuable supplement is given in:
E.W. Grafarend and B. Schaffrin
- Vectors, Quaternions and Spinors, A discussion of Algebras Underlying Three-
dimensional geodesy, in: Anniversary Volume on the occasion of Prof. Baarda’s 65
birthdellgl, Vol. 1, p. 111-134, Department of Geodesy, Delft University of Technology,
1982. \

1 1 did not succeed in establishing a relationship between the II-quantity as suggested by Grafarend and
Schaffrin in their contribution and the a II-quantity I am using.
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Section 3

In the present publication it therefore suffices to give some indications on quaternion
algebra regarding the notation used, supplemented by some new findings. We mainly follow
Chapter X of [L. Brand - Vector and Tensor Analysis, Willy, New York, 1947, 1964].

If d, a, b, c are real numbers, the quaternion is defined with the quaternion units:
1-=(,0,0,0) , i=(0,:0,0) , j=(0,0,,0) , k=(0,0,0,k)
Q =dl +ai +bj +ck

with:

1l
|

x

&

ji = -i, ik = -j

The (non-commutative) product Q Q' is then:
QQ' =(d +ai +bj +ck)(d +a'i +b'j+c'k)
=dd -aa -bb -cc' +
+d(a'i +b'j+c'k)+d(ai +bj+ck)+
i j k
+ |a b ¢

a b ¢

i, j, k may be interpreted with a dextral set of orthogonal unit vectors, often using the
notation e, , e, , e; (or other indices) for a right-handed orthogonal set of unit vectors. O is
then composed of a scalar part Sc {Q} = d and a vector part Ve {Q} = ai + bj + ck :

Q = Sc {Q} + Ve {Q}

The conjugate of Q is defined by:
QT =58c{Q)-Ve{Q}=d -ai -bj-ck

hence:

QQT=d2+a2+b2+C2=N{Q}
N {Q} being the norm of Q .

The inverse is:
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4. Q7
¢ N {Q}
Likewise we have:
Q0" =707
sei@) = 2l + Q7
ve(Q) =30 -0

If Sc {Q} = 0 we speak about a vector, denoted by g, hence:

Sci{g)=0,Velqt=q,9" = -q

We put:
N”*{q} = s,

For the division of two vectors ¢’ and g we always choose the order ¢’ g!. Then the
following is valid:

L

q'q = =L (cosh + esinf)

q

with: the angle (g, g') = 0 ; the unit vector e is perpendicular to plane g, g,
q, q', e form a right-handed set of vectors.

It is remarked that any unit quaternion can be written in the form:

unit quaternion «<— (cos + esinf)

Rotation plays an important role.
Let:

p = N” {p} (cosb, + e,sinb,)

Then we have for
Q =p0Op~
Sc {Q'} = Sc {Q} , N{Q'} = N{Q}

Ve {Q'} is obtained by revolving Ve {Q} conically about e, through an angle
24,.
P
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If N {p} = 1, then p will be called a rotation quaternion.

For a vector g with Bq = % we consequently have:

Q' =qQq""
Ve {Q'} is obtained by revolving Ve {Q} conically about e, through an angle
.
Or:
%( Q - qQq ') = component Ve {Q} 1 e (or q)

—12—(Q +qQq ') = Sc {Q} + component Ve {Q} Il e, (or g)

There is practical significance in the isomorphy of quaternions with a matrix group.
The ordering of Q"= QQ'results in:

Q" =d" +a"i +bj +c"k =(dd -aa -bb" -cc')+
+ (ad' +da'-cb" +bc')i +
+(bd +ca +db -ac j+
+ (cd' - ba' +ab' +dc')k
Hence the components of Q" can be computed from a matrix product:

d’ d -a -b -c\(d

Then we also have:
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d -a" -b" -c" d -a -b c\(d -a -b -c

a" d -¢" b a d -c bfl|la d ¢ b

b ¢ d' -a’ b ¢ d -al|lb ¢ d -a

by which the isomorphy has been reached. In an abbreviated notation:
(Q") = (2)(Q")

Now the application to difference quantities.

Q=qq , Q0'=q¢7 , QT =4q""¢

¢ b a d ¢c b a dj\c b a d

r

AHQ =qg''-aQ - q=q""aq - gl aq = AAq - AAq
AQ—I — Aq—l ,ql—l _ qql—l Aq ql—l

— -1 10 _ -1, _ -1, ro_
ally1 =g 2Q7q" = ¢q aq - q aq' = -all,
2Q7=-q" -2qg-q"q +q7 - aq
AIIQT =q - aQ7 gl = -aq g !+ aq’ gl = (AIIQ)T

Rotation:
Q-pQp”
sQ =p-aQ p”
0-pappar™) =4 4q"
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sz =47 6Qq=pq"

'vaQqpl=p-ally -p?

It is seen that AIl is not invariant with respect to a rotation.
Finally it follows for a unit vector e, with ee = — 1, that:

Y

e = -e * ae , hence ne L e

Consider the vectors ¢ = s,e, and g' = s,e, and form the quaternion:

%)

Q=qq'=-*%

(cosOQ *+ e sin()Q)
q

with 6, = angle (¢, g') and e, , e,, ep a right-handed set of unit vectors; e, L e, and e,
Then the difference equation is:

.S, ,
-0 . q 4 _g q .
sQ =Q - aln . + . ( sinf, + chos6Q) a6, + sinf, - ae,

q q 5q
Now:
S, . S .
4 (—smOQ + eQCOSGQ) =4 (erm(JQ + cosOQ) ey =
s
q

q

H

Q, =99 "eg = ~q'egq”

This results in:

s,
AHQ=q'_1'AQ'q=Aln 1

. -1
. - e A0Q+Sll’l0Q€q: sey c €
q

Now we have:

. L -1 S¢
AHQ t e, AHQ eg = (1 + epeg ) aln "~ +
q

“(eQ * “’Q“"Qeél) a8, +

1

+ sin(JQ(eq_,1 Tae, e+ eQeq'. " aey -eqeél)

and with:
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eQeq/ AeQ equ eq eQ AeQ eQ eq =
o o ! -1
= -e, taey tepep e, ey " hey e,
we obtain:
1 -1 S .
2(all, +e, - all, *e, ) = aln L -, - a0
2( o+ eg allg g s, e e
Similarly:
-1 . -1
—(AHQ € AIIQ "eg ) = sm0Q e, ney e,

s,
from which aln -, 46, and ae, can be solved.

N
q

Occasionally, e.g. in the computation of a satellite orbit in the plane of the Kepler ellipse,
it is desirable to develop for aA a form similar to the one for aIl.
Choose a unit vector e, in the plane of g and ¢’, and put:

angle (ey,e,) = @, angle (eg,e,) = ¢,

Then:

Oy ~ 9, = 6, and:

qeo_1 = 5,(cos ¢, + eosing, )
or:

q = s,(cosq@, + erin(pq)eO

q = sq,<coscpq, + erincpq,)e0
Check:

[P S :gi' _ 1 - =
949 [COS<(pq’ q)q) * erm(q)q, (pq)] Q

aq =q - alns, +s.ep(epsing, + COSQley ~ AQ, *+ 5,SINQ, " A€y "€

R _ _ . ; L .
AAq—q aq = alns, - e, 2@, +sing, e, - aey €
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Some elaboration provides the check:

AAq, - s, = (alns, - alns,) - ey(a@, - AQ,) +

. -1
+ sin(@,, - 9,) ey ey e, = AHQ

Section 3.2.3

For me the idea of the covariance function
2
dy =c sy

finds its origin in a series of interesting papers published in the thirties by the German
practical geodesist dr. E. Pinkwart. For example, in the paper "Zur Fehlertheorie der
trigonometrischen Punktbestimmung - Zeitschrift fiir Vermessungswesen 1940, Heft 16, p.
377 f£.", he writes: .."erscheint es mir zweckmissig, den relativen mitleren Punktfehler nach
dem Quadratwurzelgesetz zu definieren.”

First results of my own research, which also used results of Pinkwart, can be found in

Sections 2 and 3 of the report:

W. Baarda and D. de Groot
- Opzet en techniek van kadastrale metingen (Design and technique of cadastral survey
& measurements) - Rapporten 12e Congres van de Nederlandse Landmeetkundige
Federatie, 7 juni 1952.

Further research concerning the introduction of the above mentioned covariance function
was published in [Baarda 1973, 1981], and complemented in:
JE. Alberda
- Planning and Optimization of Networks: Some General Considerations - Bolletino di
Geodesia e Scienze Affini, Anno XXXIII, No. 2, 1974.

In the publication:

W. Baarda
- Measures for the Accuracy of geodetic Networks. Discussion Paper IAG Special
Study Group 4.14 - IAG International Symposium on Optimization of Design and
Computation of Control Networks, 1977, 3-9 July, Sopron, Hungary.

I suggested to combine the results of research by P. Meissl, K. Borre and others into the

more manageable form:
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s

2 _ = ki

dkl =CZSOID 1 + —
So

in which s, is a reference distance.

Meissl later informed me that this was unacceptable to him. For various reasons the
discussionregrettably could not be continued so that a covariance function of this form had
better be put on the shelf. Actually the difference with the previously mentioned function is
minimal.

My own research, and also the applications by others, have shown that the covariance
function first mentioned is practically applicable for all forms of terrestrial networks.
Therefore I would not be surprised if this would also apply to newer types of spatial
networks.

Section 5

A sketch of the derivation of the formulas is given in a close connection with [Baarda,
1979], with the corrections given in [Teunissen, 1980]. The references to formulas concern
my 1979 publication.

Assuming again that the centrifugal potential does not require a correction, we introduce
according to (4.2.3) and (4.2.6):

o (Wu n S . (T8 N
2 X = ol — - —|, aX,, = sl — - =
& T n&

aX, =-2-aX, + A)Elk

Then the integral equation (1.8.13) becomes:
1 _ 1 1 g rl rl rj 1
EAXlk T An ff (-—Z—AXU + Ale) (7,(; - ;; 7}:] dQ, + 5 A1k

with:

o, =2 [[ax e -1 ¢ laa.
k4 1j | <k r, 1 i
2

ij = —(—rl] tan(rj,n].) .sin(r].,rk].)

I
rk j kj
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Section 5

with (rj,nj) the angle of slope §; in P; of the intersection of the terrain with the plane P
t
PyP.

Now solve this integral equation according to Section 4.2, but now including 4. Then the
corrected Hotine integral formula (4.2.9) becomes:

1 1) v 1 -
X = 4o H Stk aXy dQ; - (Alk i ” Siks” 2 )

Now the integral equation, according to (4.1.11), can also be written as follows (with

correction A;):
= r. o 1
ff (—AX +—Ale) L - dfd; + oy
Ty rk rlj 2

The solution of this integral then gives the corrected Stokes integral formula (4.2.10):

2X,, = B® -term + i ff s&D A}:(lj dQ; +

(o [ 5D ey m)

The correction term looks much like the first term in the correction-series of Molodensky,
see [Heiskanen, Moritz - Physical Geodesy - Freeman, 1967, section 8-7]. Our solution also
is in fact the first step in an iteration process.

But a comparison of the two integral formulas turns out to provide the possibility to
interpret the correction terms as corrections to potential differences and gravity ratios as

follows:

]. n+l 1
(aXy = a) = ff Sl(k]) ( - EAU) dQ);
(8Xy, - ay) = BY -term +

n-1 . 1
f_)( Sl(kj) - Alj) + (Ale - EAIJ)} a)

Now we can give an appraisal for a;; by approximating Cy;:
From (1.8.12) follows r,; = < 1300 km ; a reasonable approximation is then:
sm(r ) = 1, = R. Or:

" - (romy), = B

RV
Cy = - (—] tan(r],nl) >
j
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In order to establish a link with formulas from the literature, the line of thought of (1.8.8)
is followed. Replace a mountain range by a prismatic form and consider two points P; and
P;,, one on each side of the intersection with the plane P, P, P; , on equal geoid height 4,

hence AXU, = Ale, tan(rj,,nj,)rkj’ = —tan(rj,nj)rkj.
Put:
rl mrkzr:i zr],zR
(rgptejr) = v > L small on account of (1.8.12)
— — ! - —
(rj,rkj) =W , (rj,,rkj,> w W -V
Using:
R 1 R )
— = —_— = -, COS®' = COSW + L
T, 2cosw 1, 2 cosw
j
we obtain:
R R (R R
C,, +C; = -2— — | — + — ]| v tanf
/ ] r,. r r r /
ki Tk \ Tj '

the combined effect of P; and P;. on 4y, .
Denoting the top of the prism-section by 7; , we have:

hj—th

-v tanBj = R

s rkT,. > rkj

A very rough approximation is then:

_ L (RY W Mg

This approximation is chosen to establish a link with the terrain or topographic correction

from the literature. See [Moritz - Advanced Physical Geodesy - Wichmann, Abacus, 1980,

section 48]. The formulas show much likeness, except that 4, has been replaced by the
J

much more harmless 4.

The Vening Meinesz integral formulas can now be obtained by calculating the partial
derivatives

o ,_2od and 0 N d
-9¢, -0¢, -Cos @, * A, -cos@, - 0A,
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Section 5

of the Hotine and Stokes integral formula respectively, hence also of a,, and consequently
£ I

(o) Ck] - r_k Cl il

Compute as an example

a =
0@, sy

Then we have (again with sin(rj,rkj) = 1)

r o2
alX
D - _) (] 9 cos(r,ur)
k

. tan(r.,n,
/ ;) 9cos(r,r)  -9@, an(r n])rki
(7Y (o ) .
{rk,-) ( " ( sm(rk,rj) cosakj) an(rj,nj)rkj
. . - - . - rkj .
and again with r=r R, sm(rk,rj) R

RY
D, = +2 (——) cosay; tan(rj,n‘)

) Jir,.
rkj kj

Now do the same as was done with Cy; . Then:

= o = — 4 —
rkj rkj rkj, rkj,

In the same rough approximation which applied to C,; one obtains:

4 h, - h
Dk' ~ _ 6(5) cosakj I—L

j
Iy R

Dk_+ij’z4_Ii£_

J cosay,; tan(r.,n.
r,. r,.
ki ki

77 )rkj

a result which does not have a resembling counterpart in the literature.
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Section 6

The author gratefully acknowledges his use of:

K.P. Schwarz
- Introduction to Inertial Surveying - Department of Geodesy, Delft, 1983, and dis-
cussions with Professor Schwarz,

Section 7 - 9

Use was made, among others, of:
- Reports of the Smithsonian Astrophysical Observatory (especially SAO Special Re-
port 353, 1973);
- Reports of the Department of Geodetic Science, O.S.U. (especially the nos. 201,
1973, 284, 1978 and 294, 1979);
- Kaula’s "Theory of Satellite Geodesy" (Blaisdell, 1966);
- Kovalevsky’s"Mécanique céleste" in "Levallois and Kovalevsky - Géodésie Générale,
Tome IV" (Eyrolles, 1971);
- Nagel’s "Die Bezugssysteme der Satellitengeodisie" (DGK, Reihe C, Nr. 223, 1976);
- Proceedings of the IAU Collogium No. 26 (Torun, 1974) and No. 56 (Warsaw,
1980);
- Moritz’s and Muellers’s "Earth Rotation" (Ungar, 1987).

But it appears to me that most of the publications mentioned are more concerned with the
theoretical side of the definition of coordinate systems than with the operational side.

In the sixties, George Veis has on my request at SAO executed computations concerning the
introduction of an r -vector. The result proved to be detrimental to the satellite orbit, and
his comment was not very flattering for my hypothesis. Presumably the reason was that he
introduced a first degree term in the spherical harmonics expansion. After a long reflection
I now propose the procedure presented here.

Section 10

Publications used are:

R. Rummel, O.L. Colombo
- Gravity Field Determination from Satellite Gradiometry - Bulletin Géodésique 59,
1985.

R. Rummel
- Satellite Gradiometry, In: H. Siinkel, ed. - Lecture Notes in Earth Sciences 7. Mathe-
matical and Numerical Techniques in Physical Geodesy - Springer, 1986.
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Section 11

Section 11

The logarithmic notation is chosen. Provisionally, for all radial distances, also for points on
S, the kernel letter s will be used. Then for Hotine’s integral formula, with integration over
S*, the following is valid:

00 h n
=iff£ 2n + 1RV v _(R) yol yow
4ar Scnnon+ 1 |ls, k s, ! !
. S.
Alnﬁ +2alln L dq};
&1 51
Like in all parts of this publication, it is assumed that the rotational velocity of the earth is

sufficiently known, so that AW = AV ; besides, the difference between the radial direction
and the normal direction is ignored.

§
* L

5

A further assumption is that satellite orbits are nearly circular, so that:

s1'=sj=R

Then the Hotine’s formula becomes:

w,
A[ln —kJ+A(ln i)}z
W 5
1 — 2n +1 [(RY' . . )\ v
= — 2 -Y'®Y vy
477'[[,,2:; n+1{(sk)yk ! }’ *
Alnﬂ +2Alni dQ .
8 5 ! @)

s
Now the summation over 7 can be made to start at 2 (a waming for first degree terms!) if a [ln —k)

St
A(ln _k] (B0 - Bl(l))}.

*

is replaced by:
1

In the same way as the so-called integral formula of Hotine is the direct solution of the
integral equation (4.1.8) in [Baarda, 1979], the direct solution of the integral equation
(5.3.4) in [Baarda, 1979] is, after re-writing as Hotine’s integral formula:
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Alngf +2A1n2 =

8y 5
1y 201 (R vy -yl yom
47rff,§ n+2{( )Yk Y, Y

Sy

T. s,
2alln =L | + 6alln L ||dQ.
I 5, / (b)

After changing indices, substitution of (b) into (a) gives:

14
A(ln —k] + A(ln ff” =
8 Sq
1 > 2n + 1 RY'
.1 RY vy _yml yim
4,,7.[_{2 (n+1)(n+2){(sk) k ! } it

I s,
2ailn L | + 6a|ln L || dQ;
I S ! ©

£

)

In these integral formulas 7, , g, and Y,'® are still to be eliminated because these relate
to the datum point of the satellite orbit. Therefore we apply these formulas with
k—1 , P; being the terrestrial datum point. Subtraction then results in the formulas
sought, in which for points on S the kernel letter s can finally be replaced by r .
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