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1. Introduction

In the nineteen-sixties I posed myself some questions when searching for a geodetic model

based on the three divisionalgebras, viz. the algebras of real numbers, complex numbers and

quatemions.In the present more or less sketchy treatise the answers, found in recent years,

are formulated. The division algebras had proved necessary in order to define dimensionless

quantities which were instrumental in the coupling between dimensioned measurable quan-

tities and fictitious mathematical quantities. The term "dimensionless" is here to be inter-

preted in a narrower sense than in everyday language, namely such that dimensional units

which are eliminated are defined with a comparable sharpnessby the process of measurement

or computation; an example is the unit of length in the quotient of two distances measured

under similar circumstances.

Division algebras are associative and commutative, except quatemion algebra, which is non-

commutative with respect to multiplication. The latter fact is no objection, in fact it is even

an advantage because one is forced to be more careful when establishing relationships. It is

more awkward that there is no Analysis applicable to quaternions, contrary to the case for

real numbers and complex numbers (the theory of functions).

In three-dimensional geodesy one therefore usually prefers to use vectors and tensors with

their vector- and tensoranalysisrespectively. But vector- and tensoralgebraare no division

algebras, which makes the formation of dimensionlessquantities difficult, if not impossible.

The objection to quaternions can, however, be circumvented by linearizing non-linear

relations, using difference-quantities or -variates, such as Q - Qo, the difference of a

quaternion-v ariateQ and its approximate value Q0. Then one can artificially define e.g. the

llgarithm of a quatemion via a difference quantity, in analogy with the difference quantity

olthe logarithm of a vector in the complex plane. In the complex plane one finds for the

relation between rectangular and polar coordinates (i, i, k are point numbers):

z i j  =  * , j  * e y , i  = s u ( c o s r , ,  * A s i n < p u )  - ' t n s " * i e "  ' e i =  - t

Aii lnz,, = lns,, *i<P,, , oL,i = 
4-' 

def z,

[ , *  =  4o 
-  

4 i  =  t t ]  .  e \w,1,  -  a i1)
"^ d" f  

' '  
s i i

s,,-
in which 14 and (e,o - p,) are dimensionless (and estimable) quantities. In the complex

st



I .

numbertheorY n1i* is invariant with respect to a similarity transformationand can therefore
be called a form element. In our quaterniontheory the following is analogically introduced
(Section 3.2.2.1 ff.):

aA. ,
I K

def
(a,oo)- '  oq o, ^n1ir, = oLir, - oA,;

but here aII,o is not completely invariant with respect to a similarity transformation.

This invariance can, however, be attained by applying a so-called S-transformation to co-
ordinate variates, whereby also the coordinate system is defined. But there appears a typical
difference between the two- and the three-dimensional situations. Whereas for coordinate
variates in the complex plane an S-transformation does not affect the property of circularity
of point- and relative standard ellipses, the analogous property of sphericity in the three-
dimensional situation is lost when an S-transformation is applied. This had already been
shown by numerical computations, the theoretical proof has now been given in connection
with the formulation of a Criterion Matrix for coordinate variates.

Because in the application of quaternion theory one is practically compelled to work with
difference quantities, the choice of approximate values must be carefully considered.In this
context I remember beingpuzzled when first working on the S-transformation in the complex
plane in 1944.The approximate values chosen for coordinates were those resulting from an
adjusted network. All a-values were zero and remained zero, andyet the covariance matrix
of the coordinate variates was transformed. Of course the explanationwas that the a-values
were indeedzero, butthe a-variates were not. I was an "isoparametricmapping" avantla
lettre,later so well-known in physicalgeodesy, althoughthere the distinctionbetween values
and variates was not always observed, to the detriment of conclusions drawn.

Following up [Baarda 1979]1), the present publication once more pays attention to the
couplingand interaction between geometric and gravimetric or physical geodesy, with some
further conclusions. Aspects of physical theory are elaborated on the basis of real numbers.
A further developmentof "corrections" to the Stokes-typeintegral formulas in [Baarda 1979]
has been taken over from [Baarda 1989]; the results deviate from the customary form. It is
regretted that neither the line of thought nor the results have so far drawn the attention of
the geodetic community.

In the present state of geodesy it is logical to devote attention to the coupling between on
one hand terrestrial geometric and physical geodesy and on the other hand the much more
spatially oriented satellite geodesy. Here also, the search is for dimensionless quantities and
the application of quaternion theory, so that a similar testing theory for errors and a similar
criterion theory for the precision ofcoordinates can be applied.

Since 1963, when I contributed my paper "Modeleffecten in de geodesy" to a discussion in
the Netherlands Geodetic Commission, I am convincedthat the origin P, of a geodetic
coordinate frame (as a part of the set of approximate values) will never exactly coincide with

l) See "Notes and References"
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L lntroduction

the centre of mass P. of the earth. In [Baarda 1979] this effect has therefore been accounted

for in the entire system of formulas. In the present study this is also observed in satellite
orbit computationsand inthe establishmentofterrestrial control stations by satellite methods.
The results indicate a small, but by no means negligible, deformation in station coordinates
caused by the non-geocentricity of the coordinate frame. Owing to VlBl-methods the
eccentricity appears to be estimable, but it is impossible to reduce it exactly to zero.

Furthermore there is the remarkable possibility of another small effect, viz. a difference in

scale between the computation of (among others) the gravity potential from satellite data and

the computation from terrestrial data.

The author feels obligedto apologize for the lack of homogeneityin this treatise. The cause
is the serious calamity which has fallen upon his family in l97l and has since seriously
impededthe completionand publicationof research. The aggravationof recent years allowed

only short periods for rounding off research and writing down the results, while checking

remained inadequate.

The plan of this essay is based on a contribution to the commemoration of F.A. Vening
Meinesz by the Royal Netherlands Academy of Arts and Sciences in 1987. In this con-

tribution, geodesyhad to be explainedto non-geodesists,traces of which can still be found
in the present text.

A contribution to the "Festschrift to Torben Krarup", 1989, entitled "Tentative Remarks on
Adjustment Models in Geodesy" can be seen as a second version. The third version, further

completed, is now presented. In each version parts ofa previous one have been included,
after correction of errors and mistakes that inevitably had been made. There can be little

hope that the present version contains no erors, but it is hoped that they do not invalidate

the train of thought developed.
The basis for all three versions is still [Baarda 19791, which publication found its origin in

an unpublished essay for the Festschrift in honour of A. Marussi's 70th birthday.

The text is restricted to the main lines; various small but necessary corrections have been

omitted in order to avoid disturbance of the essential line of thought. Of course it is acknow-
ledged that the figure of the earth depends on time, but this only enhances the value of a
good momentary computing model.

In order to facilitate reference, short abstracts ofthe sections are now given:

l. Introduction.

2. A preliminary consideration of the three-dimensional S-coordinate frame preferred

by the author.

3. 1 An estimation of the position of the centre of mass of the earth in an S-coordinate

frame according to Section 2, with possible consequences for the linking up of

mathematical models in geodesY.

3.2 An intermezzo treating by means of quaternionsthe mathematical formulation of the

S-coordinate frame chosen, and some consequences.

3.2.0 Introduction



1.

3.2.1 The similarity transformation includingthe gravity potential. A form element for

this potential.

3.2.2.1 The formula for the three-dimensional S-coordinate. The S-transformation as a

connection onto assumed fixed coordinates.

3.2.2.2 The relation between two- and three-dimensional S-coordinates. An elegant formula

for the three-dimensional S-coordinate as a function of three intrinsic quantities.

3.2.3 Application ofthe law of propagationof variances by means of isomorphicmatrices.

3.2.4 The constructionof Criterion Matrices. The importanttheorem statingthat sphericity

of three-dimensional point- and relative standard ellipsoids is not conserved in an

S-transformation, contrary to the correspondingproperty of circularity in the two-

dimensional situation.

4.1 Again the connection between gravimetric and geometric theory, treated sketchily

but with concentrationonthe fundamentals.The linkingup ofa mathematical model

by dimensionlessquantities. An objectionableinterpretationof compoundquantities

as "free-air reduction to the geoid". A more appropriate definition of "relative sea-

topography".

4.2 An analysis of the modified integral formulas of Stokes and Hotine, based on ideas

of Rummel and Teunissen. A choice for the present satellite era. The lasting influen-

ce ofthe transition from sea to land.

4.3 The influen"eof flf , * 0 , Pc being the centre of mass of the earthand P,

the origin of a quasi-centric S-coordinate frame for terrestrial data.

4.4 Once more the integral formula of Hotine. Effects of first degree spherical har-

monics. A suggestion for application. An afterthought.

5. Supplementary remarks on the linking up of the gravimetric-geometric model.

Correction terms in the modified integral formulas of Stokes, Hotine and Vening

Meinesz, deviating from the terms found in the literature.

6. Possible consequences of the gravimetric-geometric S-system for (terrestrial) me-

chanics. The corresponding dimensionless time quantity.

7 .l A sketch of problems in point positioning on the earth by means of satellite obser-

vations.

7.2 The effect of flf , + O on launch data of a satellite.

7.3 Correction of aII-quantities (orbit data) for earth rotation.

8.1 An alternative way of writing the formulas ofthe Kepler ellipse for the computation

of a satellite orbit. Difference formulas for dimensionless quantities, such as the

dimensionless time interval.
8.2.1 The linking up of the mathematical model from section 8.1. The influence of

P r P r * 0 .



l. Introduction

8.2.2 Comparison of the S-system in satellite orbit computation with the S-system in

physical geodesy;possible small differences in scale in mass, potential and time.

8.2.3 Questions arising when rewriting the higher-order terms of orbit computations by

means of the dimensionless quantities introduced.

g.I Establishment of control by satellite measurements. The bird'stail construction.

Difference formulas with an appraisal of the influence of PMP, * 0.

g.2 An investigation into possibilities for the estimation of flf , .

9.3.1 A more realistic process of measurement by means of series of pseudo-distances

(distance measurements from one station with the same but unknown length scale).

g.3.2 Synchronousmeasurements in several stations, with an estimation of the maximum

distance between stations if a (practically acceptable) elimination of the influence

of orbit errors is to be attained. Measurementof the distance differences.

10. A short after-consideration. The application of dimensionless quantities in satellite

gradiometry.

I l. Concluding word with remarks concerning relativity theory, a possible influence of

the choice of terrestrial datum points on the precision of the determination of points

of satellite orbits, doubts about the alleged precision of computed quantities in

physical geodesy obtained by satellite gradiometry.

Notes and References.
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In order to get out of the tangle of systematic and pseudo-systematic errors in plane control
networks, I developed around 1960 a system of measurement and computation which was
based on angles and distance ratios, compounded into complex quantities. The aim was to
eliminate uncertainties in instrument orientation and -scale. Consequently, only the form of
a group of terrain points was determined, to be described in a coordinate frame attached to
these points in a precisely defined way, making use of the well-known four degrees of
freedom. A closer analysis shows that this coordinate frame is part of the set of approximate
coordinate values.

In interaction with the theory of complex numbers, the spatial terrestrial method grew, using
quaternions as quotients of vectors. An extra complication is that although a quatemion is
invariant with respect to rotation and stretching in the plane perpendicularto its unit vector,
the direction of this unit vector has to be fixed with respect to a coordinate frame. This
proves to be essential for satellite problems to be considered later.

Here again it is necessary for the definition of coordinates to attach the coordinate frame to
a group of terrain points, for example by considering as non-stochastic the coordinates of
two terrain points and the coordinate component of a third terrain point perpendicularto the
plane of the three points. This is a typical example of the definition of an S-system, in
which to a certain extent the plane of the three datum points takes the place of the plane of
the complex number theory. It is clear that the number of degrees of freedom in the spatial
case is seven. The measurement of vertical angles, astronomical latitude, longitude and
azimuth, determines the direction of the vertical in the terrain stations in the S-system
chosen.

The vertical angles are influenced by refraction, which has an adverse effect on the coor-
dinate componentperpendicularto the earth's surface. The coordinate components along the
earth's surface are hardly affected by this, as was already experimentally established by
Hotine. No wonder that the classical ellipsoidal network computations could retain their
value, and, be it in different variations, are still being used for terrestrial work.
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3.1

The last remark illustrates the fact that part of the terrestrial achievements in geodesy is
always conserved. This will now be gratefully used, namely by the introduction of an earth
model, to begin with having a simplicity adapted to transparent problems, later becoming
more complicated as subsequent problems have a greater complexity.

Begin by considering the earth as a homogeneous sphere with radius R, rotating around a
constant axis with a constant velocity. We have to consider the rotation because of astro-
nomical measurements, but for simplicity we shall ignore centrifugal potential. In this model
the centre of mass P" of the earth is the centre of the sphere.

Now imagine this earth model described in a rectangular X', Y', Z' coordinate system,
whose origin is in P6,, with the Z' -axis along the axis of rotation.

Suppose that a continental network has been measured on this earth model, so that angles
and distance ratios can be computed between three points Pp P2, P, having mutual distan-
ces of 2000 km. The standard deviations of the angles and distance ratios are assumed to be
o = 10-s.Nowmeasuretheastronomical lat i tudeandlongitudeinP, andP2, aswel las
the distance s,, (possibly in an indirect way).

Choose:
9 r = e z  ? s z " )

P, south of Pt and P,

o*,  = or,  = cosgl 'o^r,  0.5 '  10-s

o,n 
"r, 

= L0-5

One can then compute estimates for R, <p, and I13, with, among others, otnR = 2.10-s
which is in reasonable agreement with earlier analyses of the dimensions of reference el-
lipsoids. One can also compute the set of X' , Y' , Z '-coordinates of P1, P, and P, with
their covariance matrix. In this system the coordinate variances of Pr" are zero, as well as
the variance ofthe direction ofthe axis ofrotation.

At this stage P. and the axis of rotation still are fictitious mathematical entities; only the
terrain points Pp P2, Pt are visible and accessible to man. Therefore the problem must be
posed the other way around. In order to do so, execute a similarity transformation preser-
ving the estimated values, but now putting equal to zero the variances of the coordinates of
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P, and P, and the coordinate component of P, perpendicular to the plane of the three
points; call this the X, Y, Z-system. The variances of the coordinates of P. and the direction

of the axis of rotation are not zero in this system;these quantities are now estimated with

respectto the datum points Pp P2andP. of an S-system as introducedin the quaternion

theory. The X, Y, Z-frane is thus fixed by the terain points P1, P2, P3l now the origin Pt

does not in general coincide with Pc, nor is the Z-axis parallel to the axis of rotation. For

the example computed one finds roughly:

T

f 
d.ooro. P, 

= o dir""tion *i, 
- 10-5

a result in reasonable agreement with the discrepancies found in the connection of classical

continental networks by satellite methods. The only estimate of P*Pr I know in classical
geodesy is given by Ledersteger in Volume V of the 10th edition of the Jordan Handbuch

der Vermessungskunde.On page 37 he anives at an estimated l0-4R. The appraisal which

was made above thus look reasonable, and its seems possible already to draw some conse-
quences.

Physical geodesy and geometric geodesy are inseparably connected, as was also shown in

my 1979 publication. Consequently, the statement in some textbooks, that one can choose

a reference ellipsoid centred in Pg , having its minor axis parallel to the axis of rotation of

the earth, cannot be put into practice.

Only form elements are determined, for if the unit of length, in which the distance srr is

expressed, changes, all distance quantities are proportionally reduced or enlarged. Such a

change may be brought about by the stochastic effects of measurement, and/or by more or

less doubtful reductions which are inevitable when a more complicated earth model is

considered. But form alone does not determine volume; therefore a requirement concerning

the volume of a reference ellipsoid, which is often found in the literature, cannot be fulfilled

either.

In fact the unit in which distances are measured is determined by the value (estimated or

without a measurement process) assigned to the distance between the terrain points Pt and

Pr. This means that the metre loses its role as a unit of measurement. If now a velocity has

been expressed in metres per second, then in our model a function of this velocity must be

introduced, which takes care of the difference between the model unit of measurement and

the metre. Also the unit of time will then have to be subjected to a suitable transformation.

The same applies to accelerations and consequentlyto gravity. We shall come back to this

later.

For the computation of satellite orbits one thinks it is justified to choose the origin of the

orthogonal coordinate system in Pg . But when a satellite is launched, the position vector

and the velocity vector are essentially determined via measurement in points on earth whose

coordinates are known in an S-system. This implies that, in computing the orbit, one has to

introduce corrections for the eccentricity of the origin of this S-coordinate frame with

respect to Pr; corrections which eventually should make it possible to estimate this

eccentricity. In analogy with terrestrial situations, one meets here form problems that

8



3.2.I

inevitable lead to suitable transformations of quantities. This also will be treated in the

sequel.

3.2lntermezzo

In this Section 3.2. athree-dimensional form element will be developed, which is invariant

with respect to a similarity transformation close to identity. The formula developed may be

called an S-transformationof three-dimensionalcoordinates.It has already been published

in [M. Molenaar l98l] and [H. Quee 1983], but the present derivation is aimed at the

construction of a Criterion Matrix for three-dimensional coordinates, and shows a funda-

mental difference with the two-dimensional situation. This is relevant for the problems in

satellite geodesy to be treated in the following sections, because in our approach the

terrestrial X, Y, Z -frame in principle also remains valid for satellite orbit computations. The

determination of the coordinates of terrestrial stations from "known" satellite coordinates

may imply the necessity to establish a Criterion Matrix - as a substitute for a "real" covari-

ance matrix - for these satellite coordinates. Such a Criterion Matrix can also be used for
judgingthe covariance matrix of the computed coordinates of a global network of terrestrial

stations. In both cases the third dimension is conspicuouslypresent.

3.2.1

Consider a point Po having coordinates xk, lk, zo. Unit vectors on the x, y and z-axes ate

€x , €y , e, respectively l). Then the vector 41 is:

Q P = x o e r * l * y * Z k € "

The similarity transformation from q to q 'is then, written in quatemion notation:

q ' * = ) ' P q * P t * Q o

in which l, : length scale factor
p = rotation quaternion with norm I

4o = constant vector.

Now consider, for simplicity, a differential transformation with approximate values:

1 ( a n R r )  :  l ,  O @ o o r )  :  1 ,  n o ( a n n r )  =  g

1) For a summary of quatemiontheory, se€ "Notes and Refernces, Section 3."
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hence n'o@nnr) : qk(allr)

and put (leaving out the "appr" notation in the sequel):

) " = I + i l "  ,  p = t + t p  ,  Q o = 0 + ^ q o

q 'k  =  q luPq ' )  *  ry ; , ,  Q*  =  r (anv4 +  ae*

with o(p-') = -p ' ^pp-| = -t'P one obtains:

^ q L  =  q o .  o L  *  t p '  e *  -  e * '  a p  +  ̂ e r  *  ^ e o

By subtracting from this formula the corresponding one for a "datum point" Pb dQs is

el iminated. Or,  with Qf Qt= Qrkl

t 4 i r  =  q * '  o L  *  t p  ' e r r  -  Q u , '  t p  +  ̂ Q *

It will be clear from the following sections that there is a continuousinteraction between the

gravity potential W and q as a compound of "geocentric'',coordinates. The orders of

magnitude and the dimensionsare the same if one takes L insteadof W, g, being an

(assumed) value of gravity in a datum point P,. 8t

Then it is plausible to add a scalar w to q, and we think of:

W
W , . -  

k
^ 9 ,

The three-dimensional case then becomes four-dimensional. Now let us see where the

application of our similarity transformation leads us:

V;, . q'o ) 
= ),p\o * 4*)P-1 * ps * 4o)

Since pwop-r - wk, this equation splits into:

w ' o = ) t w ' o + w o

qL = ) tpe*p- l  *  eo (as before)

Now introduce the additional approximate values:

10



3.2.2.1

w t @ p p t )  = * ( a v e r )  ,  w o = 0

Then one obtains:

I nw^l
wot(lnw'o) = wolt)' * a(lnwr) . t-l

t  ' o )
or:

a(lnwi) = al. * a(lnwo) * !'o
wk

In analogy for the "datum point" Pt:

a(lnwi) = t]" + a(lnw,) t 
t

Now, calling in mind the introduction of w, the often applied spherical approximation in
coefficients of difference formulas results in:

w[uwt) - w{aPPr)

Using this, with:

(  wi , \
a(lnwi) - dl lnwi\ = al l t- |\  r /  

\  , i )

one obtains

so that for the scalar part of (w + q) a separate form element has been found. It must be
noted that the formulation is chosen with a view to the train of thought which will be
developed later in Section 4.1.

3.2.2.1

We now continue with the three-dimensional case. From r'q'to follows,
- l  '  ^ '

wfin qtk tQ.tp = al\ lk :

oAir = oArr * il" - ("P - qrl 
"Pq*)

11

^f'"4) = ̂ ft"t)
\  ' i i  t ,  ' , )



Or:

3.

Split up a p into two parts t po and a p6 , introducing the datum point Pr :

7 r  - l  r  1 l  - - 1  \
^p = 

Z\"P 
- Qn-^PQn) .  1\^P 

* Qn ̂ PQn)

aPo tPt

Apo = vector L Qn , hence qr] op, = -^p"qr;

Ve\tpul = vector l l  qn, hence qr]  opuqn = 0

oAir = oArr * 
IC^ 

- opo) * 
)o;i C)" * opo)q,* *

-160, - qrl opuq,o)

oLl rz= oAiz  *  ( t ) "  -  ry" )

With (ap,)z = - l.Po the last equation results in:

[ "L r ,  
-  aArz  =  t ] ,  -  tPo

{
| ̂ ttlT - oLL = t). + aPa

Substitute this into the equation for aAio and transport all quantities with a prime to the

left hand side:

oAi* - 
|l^n;, 

* qr-l oL:$ qro) =

= aArr - 
|l^nr, 

. nr-l ottl, qro) - 
i6o, 

- q;; opu q'o)

Mult iply by q* ,  4*oLlr* = t4t*:

te'u, - 
|{Orrr 

oQ'rz * 
"qirQir,) 

=

=  ̂ Qr* -  
| lorrr ten 

*  oqrrQAo) -  
) \n*tpo 

-  tPf l t )

With qro = Qui - Qzt , Qo = -Qzt one obtains:

12



o;)l =
^4* 

)lorrotQn 
* oqrrerlro) =

= tez* - 
tl1 

- er,,o)oQzr * oqrr(L -

= aez* - 
| lOr*tezr 

* oqrrQrlro) =

( 1 . 2 \
= aQk

put

3.2.2.1

Because indices I and2 can be exchanged, and with k --- I or 2 one gets:

oql' ' t) = oqlt '4 =o

Hence:

q[1'z) = oql'' '\ - lgro tPt - tPt4t*)
L

For the elimination of a,pu we use a third "datum point" P, .

Because Ve ltpul ll q, we introduce a scalar c and put:

t P a =  S c { a P r }  * q l z t ' c

or:

| lnr r tPt  
-  apoQ*)  = 

) lOr*  
-  O;)c  = vztk  s inar to '€ztk  'c

I oq;{r.zt = oqlr,r, _ 
}lo^r 

_ QrTo),

|  ̂ q;rt,zt = oq:',r) _ 
t{0,,, 

_ o;),

Since the points P 1 , P2 and P, are assumed to be points on the surface of the earth, c must

be such that no singulariiy can result. A safe way is to determine c from the component o f qi(d 'zl

perpendicularto the plane throughPl , P2 and P3, hence parallel to e21t:

aq;Q'zl * enr ^4!('4 'ir', =

= oql''" * ezrzolll'z),ir\ - (Qrr, - ait)'

After substitution into qi['z) this results in:

t3



or:

, 0 . 2 \
tQ*'

( 1 . 2 \= ^qi

^ l  
t  r \ t

2 \Qr ro  
-  Qz to ) \Qr "

1 ,  T \  j-  
1 \Qn* 

-  Qno) \Qrn

- QrTr)'(tq;{r 'zt * ezn^Qlt'\ ' ir\) =

- OrTt)'(oq!' '" * ezsoQtl'2)' ir lr) =

put

( l , 2 : 3 )
^qi

by which the form element wanted has been found, which is invariant with respect to a
differential similarity transformation. One may also refer to this as an S-transformation to
the ^S -system.

| , 2 : 3

Now we have for P. :

( 1  . 2 : 3 \  7  t  ( 1 . 2 \  ( 1 . 2 )  - l  \^qi  '=  
t \^q i  

-  ezn  ̂Qi  'eat )

= (component oq:t'') t eztt)

(component ^q;1'2) tt errr) = o

Because oq{t'') = oq;t'') = 0 , we have for P, and Pr:

q { r ,z tz )  =  oq}1 ,2 t3 )  =0

The S-transformation consequently is a form-preserving connection to:

n@wr) , n@pnr) and (q!"ro,l * ,rrrq{uor') rirt )

For a comparison, one can refer back to the discussion on the X, Y, Z -frame in Section 3.1.

3.2.2.2

In order to establish a better connection between the three-dimensional and the two-dimen-
sional S-coordinates. the formulas obtained are written in a different way.
with:

M



3.2.2.2

Qrro - QrTo = 2 
sJL 

sinazrk' e27k

one obtains:

q! | ,z ;z)=oql , , , ) ; f f iez , t ,e i ,1 , (oq} , , , , * " , ' loq! ' ' , )e i , \ )

In subsequent derivations repeated use is made of the fact that the following is valid for

orthogonal unit vectors:

€ r € z  =  -  € z € r ,  h e n c e  :  e '  t ( e )  =  -  t ( e ) '  e

wirh:

Qzt* = au, Qrt and qll oqrr, = AArp AAtt - oLtz = ^nztt,

one obtains:

oqlt ' ' )  = ter* - 
l(Orro^en 

* oqrrQlo)
L

or:
oqlt ' t)  = aQr* - 

l(atroLrz 
* oLTzqr*)

with:

o = tet  -  
) (nro^nr* 

*  oLT*Qr*)

results in:

with:

oqlt'') = 
| (oro onzr* * orrLoqro)

onzr* = ̂ [t"#) - €zrk o(ozro) * sinarroer-l \erro)e*

onLo = ̂ [" 
#) 

* ezu,o(azr*) - sinarroe, d,(erro) er-]

15
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( r .2 \
^ q i ' =

,  ' letz^\en*)]

r,- l"(t" ;) 
- "^r^(",.)]

* 
I 

r rosina^oltprro) e r, -

Makinguse of eznQn: - eBers and ezn^(ez,,)eneir\ = o(ezn)en
this results in:

0 . 2 \  ( 1 . 2 \  - I
^q i  

'  '  *  en t  aQi  '€213 =

=',f f^(''#),,o^(o,u)] l^t'H -,,,,^e,,,)l] .
* lsrrsina rull^{"ro)"r, - erra,(er,r)] . 

l^("r, ,)"r, - "rr^1"ro1)f 
=

= srr sinar,, 
loprrr)r r, 

- e rrt(errr)f

with: elrlrtprrr)elr\ = ̂ P;r\)

one obtains:

^\eztr,) - 
"rro"ir\o("rr.) 

=

= 
ltP^o)err\ 

- 'r,oelr\t(errr)err\l'ru = o(e^oelrlr)er'

Definetheangle vro between erro and eznby meansof thequaternionwithnorm l:

It follows that:

qf'\'z;t) = n,-l^(t'#) - ,,,0o1o,,-)] .

* 1srrsino ^ollop^o) - e^oerrl,tprrr)]rr, *

- errltprro) - 
"rro"irt^(",r)J]

L6



3.2.2.2

ert*eir\ 
olrPto 

= cosv3ft + ertsinvro

Then:

o(errorrtlr)e2l3 = €27keu1o d,proert = ezr*afitx

with: A[r& = - errt(vro) * sinvroerlrot(err)er'

The second term in the right hand member of oq[r'z'') no* becomes:

1 f - I
1s t * srn dzt * e zt * l^ 

LL t *e n + e n a Ltrol

1 l t= 
trro 

sinarroerrol 
l^("ro) 

- sinv roerrlo o(err)errerrr) *

|  - 1  ,  
'

* 
fo(uro) 

- sinvroerr'oerra'(err)enrll = tto sinarroe211,t(v*)

Finally one gets:

With vr, = 0 we obtain:

Which result can also be obtained directly.

The first term in the right hand member is exactly the expression for the two-dimensional

S-coordinate *[1'2) in the theory using complex numbers [Baarda 1973, 1981] if

€ztk = €zrr for all k and l. The second term is the addition for the third dimension.

It is clear that dqll'z;') i, d"t...ined by three intrinsic quantities:

] .

I r .r,,-\
qr* lo l ln ; |  -  enon(ano)

L  \  " 1 2 )

+ sro sincrro - err,rt(v*)

rytr,z;tl _

r,,f^(''H) - ",,,o10,u1]
( 1 . 2 : 3 \

^ q i  ' '  =

17



rr! , d27k and V*
stz

In a certain sense one may therefore call qlr'z;t) a form element as well.

3.2.3

Our focus of attention is the analysis of the covariance matrix of the variates aqo(t'z;r1 t, t,

remarkable that I had developed the relevant quaternion algebra already 25 yearc ago, but

then I could not see through the formula system because I stuck too long to a pure

quaternion theory, trying to follow a course similar to the one developed in the theory with

complex numbers at the same time. It was not until the spring of 1991 that I suddenly saw

the possibility of obtaining a practicable solution by an earlier transition to isomorphic

matrices. Therefore we shall first reformulate the S-transformation in matrices, beginning

with a summary of the theory.

If:
Q = d + a i + b j * c k

i i = j j = k k = - L ,  i j k = - I

then the isomorphic matrix is:

(' 
-a -b

l a  d - c
@ = l b  c  d

I
\ c - b  a

-)

' 1  , e \ = ( e ) '-a l
d)

(Q) is a skew symmetric matrix + d I, which in sequel will be called a skew+ symmetric

matrix. For d :0 the quaternion Q becomes a vector, which consequently can be written

as a skew symmetric matrix.

In consideringthe product (Q y) of two quatemions not all matrices have to be fully writ-

ten out; the first columns of the matrices (Q V) and (y) suffice, other columns provide no

new information.

The sequence of multiplication can be changed as follows:

f t )Q) = (O)tv l

$@' )  =  (0 ) ' f t )

with:

18



3.2.3

;A" l l
-a

d

-c

b

ll, [;: l]
-1.

0

0

0

, ) ^ , ,

I,n ^ lllli]-,,,

0 0

1 0

0 1

0 0

Hence:

with:

and:

with:

Q ) ( v ) . ( i ( Q ' ) = @ . Q \ t v l

d 0 0

0  d - c

0 c d

0 - b  a

Q ) ( v ) . ( v X O )  = @ - 7 ) t v l

+@

In general Q satisfiesthe same quaternionrelationsas Q, but Q and Q belongto different
groups. As soon as they appear.in combination, like in the present case, the group properties

are lost. For example neither \Q . Q) nor (Q . Q 
') is the matrix of a quatemion.

Now apply this to the S-transformation in section 3.2.2.1:

(^ql''',) = Fq,o) 
- (Q,,0) (oq,,1

(oq,Q' ')) '  = 
Fqr,) '  

-  (oqrr) '(Qrr,) '
(r)

Because:

t9



3.

1 ,'lo ,- _ O;r) = ve {eznl = ezn
Zyzr3 put

and hence:
( r . 2 \  - l  ( 1 . 2 \  - 1

er3 dQi ' €zrt = Qut ̂ 4i '4ut

one obtains:

qt'2;t) = oqlt'') - 
)nrro(air\ 

oo!t'') * oq!t'') qrrL)

with:

_1 -o^^ .

Qztr = -#, silt = N{an} = sinzarrrN {Qntl
s2t3

Hence:

(tq[1'z,tt1 = oql', ') . 
*@rro) 

(drrr)(oq'' 'r)

(oqfl,zoy = (oqf,',r)' . 
hlon!'''t)'16rrr), 

(qrr,),

Now we have a system of equations to which the law of propagation of variances can be

applied.

Finally we investigatethe conditionsunderwhich a covariancematrix will producespherical

standard hyperellipsoids for coordinates of each point and for the coordinate differences of
each pair of points of a network.

L e t n o w t h e s y m b o l s a a n d b s u c c e s s i v e l y t w o o f t h e q u a n t i t i e s w , x , ! , z , w i t h b + a ( a
and b are now arbitrary symbols and not components of a quaternion).

Then the following must hold for each point Pp :

" r , " r = a t  ,  a o , \ = o
put

0r)

)A



3.2.3

wk

xk

Ir

zk

wk

xk

l*

zk

= dl 'I , with I the 4 x 4 unit matrix

And for each pair of points Pp , P1 i

@.rf:@.rA =,2d1,, df, = dlo
' put

' 2  r d ?  .
= d :  * d :  - 2 " , , %  ,  o o , o , = o r  l r " '  - o : ,

@ t  
-  a [ : P ; 4 ;  =  o ,  i o , b ,  = - ; 4

or:

wk

X t

Ir

zk

wt

xt

It

zt

(ai . a? ,,'lo i , ) .  I , w i t h d l o = 0 ,

is a skew symmetric matrix.

(III)

This condition implies the previous one for I = k .

Now introduce the notation at - a* = ar, , then:

2 l



3.

o * ,  q ,  =  - ( a t , a t  -  t r * ) . ( q , a t  -  r " * ) .  ( a t , a t  -  q , o r )  =

( al * a, '  ,  ,r) .  (, ,  dl * d, '  ,r)=  - l a , ' -
\ '  2  

* a r a ) * 1 a i  * o ' ' )  *

. (0 ,  4+.0,?)=
\ .

= - d f , * a f , * a , l

a i * ,  b i t  =  ak  ,  b t  -  a *  ,  b i  -  a i i ,  * ; ;F t  =

=  -  
" ; : 4 t T A t  

q , b ,  *  a , , b , ,  q , b , = 0

= _ ,r:b_;

hence:

(IV)

wik

xik

li*

Zi*

wit

xit

lir

Zit

- laf, * dl, * d,?) 'r

is a skew symmetric matrix.

Unfortunately (IV) only provides the possibility to establish a Criterion Matrix for wv/
(actually for ! , see Section 3.2.1). For the vector of coordinatesx, y and z we are faced

8r
with products of skew symmetric matrices and these products are not in general skew
symmetric. This necessitates a further assumption:

( V ' )  a o , b , = 0  ,  h e n c e  a * , \ , = 0

This is not a very hazardous assumption. It is more important that no assumptions need to
be made for di , df and df and certainly not the assumptionthat all these d2-values
must be equal. Now it follows from (IV) that:

22



3.2.4

( 0 0 0 0 )
, " , ( o  o \ . ^ ,  " l o  d - c  b l
(d1)  lo  t ) \o t  

= d: .  
lo  c  d _,1
l o - b  o  d )

wich for brevity will be refened to as a "3 x 3 skew* symmetric matrix".

The final assumptionis the adoptionof a functionfor df,.tn[Baarda lg73,lg8l),the most

simple function was chosen:

(v')

This results in:

(VD

in which c is a constant, so, = N%{Qo,} . This choice was supportedby the results of

research by E. Pinkwart and J.E. Alberda 2). Other choices are possible.

3.2.4

Now the construction of Criterion Matrices can be taken up.

We start with the one for *r = 
+ .
o l

'lllil:f= (-ai, * dl, * oi,) . ,

w = 0 gives with (q) = (0 ,x,y ,z)r:

(q*,q,f) = (-at, * dl, * r,?) (3 ?)
where now I is a 3 x 3 unit matrix.

df1 = c 'so,

23
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3.

'o - ,,', , ^(Yu\ = ,, 7 lr" Yo\
8 r  

' r k  
\ 8 t i  

' r k  
1  s r /

" ( % ) _ \ ^ ( L l  = , ,  1 J , " 3 \
l \ g t /  r k  l g ' /  

' r k  
\  W r )

or in spherical approximation, R being an average radius of the earth:

^(Yu\ = R^(h Y!\ , cr. Section 3.2.1.
\ s ' l  \  w , )

With equation (V) in section 3.2.3 this results in:

W,. W, 1
tn  "k  .  ln  " /  =  ! ( -a3,  *  d?,  *  d7\

w r  w l  R \  ^ r  " r
(D

Then, with (I) in Section 3.2.3:

\qlt''t, q,"'"') = (;;:il) (e,T, ) .

(II)

- (Q,.,0)6=, r,, ) . (8,,0)6,ii1 19,i,1
and with (V) in Section 3.2.3:

Finally, from (II) in Section 3.2.3 follows:

4) (3 ?) .
. a,?,) (3 ?) tn,lt
. oi,) (3 l) Q,,r)

(Q"r) (o,T,)

Fat,. af,

(-a], . a].

'o?rft or)

= (-at, * d:, *(rt-

24



3.2.4

(m)

Interpretation:

From (I):

^# , , "#= io io  ,

i.e. the form element 
" 

r"#satisff (III),

W , W , ) c
l n  ' . l n  ' = a d ;

w r '  w r  R

Section 3.2.3.

In (II) the first terms in the right hand member are 3 x 3 skewt symmetric matrices, but the

character of the fourth term is not immediately clear and will have to be investigated' The

question is if the left hand member is a skew* symmetric matrix and fulfils (III), Section

3.2 .3 .
At this stage no statement about (III) can be made.

For the analysis of (II) we choose a special x, y and z system whose.r-axis is parallel to Qzr.

(rt^ , n!'uf) - (;t", *!,8) .

. + (rl'" ,;P) tan) b,T,) .
s2t3

. +(q,,i(6,T,)@'*F).szt3

. + (qrro) @rrr)\qtD ,;tr) Vn) (r;)
s2tl

Then:

25



3.

Check:

Qy, = X*e, * lZ*ey * Zzk€, 
| 4t* = Xrk€, * lt*€y * Zrk€"

4u = Xu€, + luey * z2t€" I Qu = xlt€" + luey * z1t€,

421  =s21€*=s72€ ,  ,  e i r t  =  -L
stz

e p =  - s r r e "  ,  Q r ]  =  * " *
stz

Qr* = QxQit' = 
*f* 

- zt*ey * !xe,)

Qnr ,=a*a i  =  
f  t - x7k*z tk€y  ! *e , )

Qrx * Qu* = 
lV" 

- zzr€y * yzte,) = |

pd=+

@,ir) (8,T,) =

L

stz

- x u , 0 0 0

0 -*ro !t* zt*

0 -!r* -xrk 0

0 -rro 0 -*ro

, (0"T,\ = L
\  _^, /  stz

- x u 0 0 0

0 -* r ,  - lu  -Zu

0  l u - x u  0

0 
"r, 

0 -*r,

x*xuf 0 0 0

0 fu,*u * lt*lu * z*zu] /t*lu 
- lt*xuf /*zu 

- zr*xuf

0 [y r*xu - xy, lu] p*lu * xu,xuf p*"u]

0 lzkxu 
- xt*zuf lt.tAu] lzt*zu * x*xu)

Now for the (3, 4)- and (4,3)-elements the following must be valid:

l t*zt t  = -zt*! t t  ,  or with !11 ,  lyr ,111 * 0 :

zt t  -  -zt t  ,  hence also 
zt t  -  -zt i  ,

lu l* lu lu

hence 
zt* - zrj 

whereas this should be : 
zt* - - ztj

Ir* lU l* lu

26



This contradiction can
and e" are still free to
through Pt and Pr.

Choose e, I plane P,

3.2,4

only be solved if for all points Po we have: 2,1, = 0, and because e,

rotate about e* this means that all points Pl must lie in one plane

P2 P1, , then (II) becomes, with I a 2 x 2 unit matrix:

with for e"llqr, :

(a,")(o;,) =

This is the Criterion Matrix for the coordinates of points in the plane, as derived in [Baarda

1973, 19811 by means of complex numbers.

In the plane we:consequently have the nice property of the Criterion Matrix that the circu-

larity ;f point- and relative standard ellipses is invariant with respect to an S-transformation'

The derivation shows that this is not the case in the three-dimensional situation.

To make sure, (III) will be examined.

In addition to erll ez, the z-axis is chosen such that erll et , , so that zB: 223 = 0' One

obtains:

( q )  =  ( 0 , x , !  , o  r

0 0 \
t  0 1 .
0 0 /

/ 0 0 0 \

lo ' ol(o;,
\ 0 0 0 /

/ 0 0 0 \

lo  t  o l (0 , ,0)
\ 0 0 0 /

r) @,T,)

(0

; )  l0
\0

d?')

d?,)

l@,,

d

+

0 \
0
0 ,

r-i;- ^;R I

\ql'''t , ql''')') = (- ai' - ai'

) .
-  (-ai , .  ai ,

- (- al, * a],

r 0 0
.  2d?, l0  r' - lo  

o

0 fr ,xu 
*  lu, l r l  (* lu -  ! r { t t )

lurxtt 
- xrlrf rt]

0
l* lr t  

* xt*xu]0

0

0

0

0

t*xnfrv
I

+l""I
o (t{rt

27



3.

Qn* = 
lf** 

* Z*€y - r*e")

ez' = 
* r*,,

0 0 -zr* lt*

0  0  ! * z *

zr* -!* 0 0

-!t* -Zrk 0 0

ne")

0 / r : )

o  o l
o  o l
0 0 /

(Q,,,) *["i I

"Ll] 
(.2!'\2';1

- v

2
s2r3 =

and hence (II), Section 3.2.3:

ffiI

00

0 l"',+71 l - l r+," t1

I""zl,t  ?"yrJt * ,rotutl l-ytyon * zroztTl

(oql''',',) = (^q l''',)

Using this, (III) becomes:

Vtr", u!','\ =

1.

lB

0

0

0

28
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3.2.4

t')
0 l

l-r*vull- - l

l*hl)

r o o
r l o o*  r l o o

l n l
l , 0 0

lt,',".',)

0

0

pu,ztl

l-r*ztl

_( r ,2 )  - (1 ,2 ). 3  , o 3

l -  ^  , t ' t r r \
Assume that \q|t'") , q,"'"' ) is a skew* symmetric matrix. As before, it follows from the
third term thai for all points Po: zro = 0.
Then the remaining elements of the matrix in the second term can only comply if for all
points Po:

tt''4 = 0

This means that the variate ̂ 42 has no stochasticity:

otf'4 = o

But all points of the network can be considered as being Pr, so that the conclusion is that

even the variance of point coordinates in the direction perpendicularto the plane of Pp P2,

P, is detrimental to the invariance of spherical standard ellipsoids with respect to an S-

transformation.

In itself this lack of invariance in a Criterion Matrix is not a serious matter, because

computed covariance matrices of networks will probably present the same picture. However,

in applications the interpretation will be more complicated.
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4.

4.1

Now considerthe real earth. Having an eccentricity of O (10-3), it is almost spherical, and
this motivates to a rather rough development of formulas which clearly illustrate the prin-
ciple of the ideas of my I 979 publication. These foimulas lead to further conclusions with-
out much mathematical ballast. Here the proper use of the coordinate frame is extremely
important, which must be reflected in the notation.

For the polar coordinates of a terrain point Pt in our X, Y, Z frame with centre P, we
introduce the radial distance, the latitude and the longitude:

1 1  , Q 1  , L 1

and in the parallel coordinate frame with centre P. :

r g r Q g l  , L g 1

The gravitational potential V is written in condensed form in two different ways with a view
to later use (p is the mass of the earth, R an average radius of the earth):

|  -  / ^ \ n  I
v ,  =  t r  l r  .  t  l4 lvo@' l* ,ro | /a \rro) 

^ 
.J

= Y(r - i  r , l ' ,1 = !- r t  + ev,\
rc r  \  7u  "  )  rck '  K t

W being the gravity potential and Y the centrifugal potential, we obtain:

/  Y , \
W *  =  V r ,  *  Y r  =  V o l l  * ; l =  V o ( I  +  e Y o )

V k )or:

W, = !  I  *  eV** "Yo) 
= !  t r*  "W*)^ 'ro fc* \ ^/

Analogous:

- 6 w o  -  r L  , i
6rro 

= 8* = 
e(* 

err)

in which always:

JU



4.1

eA = O (L0-3)

We now change over to dimensionless quantities having the same order of magnitude viz.

1. Taking again P, as the datum Point:

wo - +- ? ( + ewo) + = +- (r+ ew,)
rcr9t r[rg, rc* rct9r r68t

rc*8k = +- ? (1 * 
"go) :+ = 1. = * P* esr)

rct9r rt$t ro, ' rct9r rt$t 
'

The course followed now is aimed at finding for these relationships a uniform way to intro-

duce measured quantities in the form of potential differences (or possibly -ratios), gravity

ratios (possibly regionally derived from gravity differences), and length ratios (as known

from geometric geodesy). Another aim is the elimination of the nuisance quantity p. Since

the right hand members of the relationships are in fact spherical harmonics series, it is

important to introduce differences of functions so that only differences of these series occur.

Denoting the quantities in the left hand members of the relationships by l, all aims are

attained by the introductionof the new quantity:

r.
A o  - ' "  A ,

rc*

By ignoring (uA)z = O (10-6) , so that:

l n  ( 1 +  e A )  =  e A ,  ( 1  *  e A ) - r  =  L  -  e A

one finds:

y - = 1 - e l t
2

ra.8t

w o  - b ( t * e w x - e 1 r )  ,  +  = ( 1  +  e w r - e g r )
rc tSt  tck '  '  rc t9t

r c * B *  _ r s t l + e g * _ e g ) ,  r c t S ' t  _ t
rct{t rck ' rctSt

so that the new quantities become:

kL rrw, - ew; - wo -'ct wt -
tck ' ^ r' ,ctgt rc* rct9t
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4.

= " t
rc*

= " t
fck

= " t
rc*

= " t
rck

rctw*
araBr

,rrwr,\
-  - l  =

z lrcSr )

(# , ' )
= k t ( r n w o  * h ! q )

tct I Wt 'rt )

or also:

( r o - * , ( t . w ,  _ r ) ' . m
\ rcrSr \ /cr8r )

( w o - w t  * h l s o  * t c k - r c t ( * t  - t ) )
( rcrSr rc't rc* \ rcrSr ) )

rc.r rc*8* rct rct9t

;= \"so 
- e9t)

,ck ,c,8t rc* rct9t

= ' - ( ' f u - t )  =
'r* \ r3r7, )

These mathematical relationships will now be interpreted as relationships between measured

quantities or variates. One recognizes the length 161is 
rSL 

,the potential ratio ff 
or tne

rct 
B* 

lr I
potential difference (W* - W) from levelling, and the gravity ratio r .

But these relationships are not very useful if no value is known forg)r* g, and Wt ' Of

these, only two can be chosen indepently: 16', is a geometrical quantity which can be

derived from the geometrical S-system X, Y, Z, although in this system the origin Pt will

not coincide with the still unknown position of Ps . Hence the only thing one can do is to

take for rrrthedistance P"-tr, in theX, Y, Z-system.If P, is a datum pointof thex, f,

Z-system,"then its coordinuies'can be chosen (of course as well as possible), from which

witi fottow F;tr, = rr. Then r, actually is part of a consistent choice of approximate

values in the X, Y, Z-system, so that the following notation is chosen:

t  o ' l  -
A ) -

- ,rt (n so . zh'sL\
t o \  &  r c t )
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4.1

Now:

{t r}uoo'* 
= t, hence also {r.o}ueProx 

= rk , etc.

By now choosing a value as good as possible for g, too, one in fact establishes a coupling

between geometric geodesy and terrestrial physical geodesy by extending the geometric S-

system to include gr .

W.'  = o (10- ' )
rct9t

so that in their product one can certainly replace rcr by ro and rcr by rr. Consideringthe

limits chosen for neglect, one might even ignore the whole product, but then the transforma-

tion to a different datum point (S-transformation) would be less elegant to execute. One

obtains:

n Y !  + l y r r c k  =
Wr rct

= W o - W ,  * r k - r l
rt9t rk

w r =
f  , P ,

h 9! * z;rn!9L = EB* - e'r
& rct

p  = 1 _ e g r
2

\ 8 r

It is curious that the "constants" W, and y" are largely determined by the choice of the S-

system (in a more complete theory complemented by transformingthe respective right hand

members into well-known integral formulas, as re-written in [Baarda 19791, Section 4.4).

The chosen limit of neglect would be acceptable if the sharpness of definition (precision

and reliability) for the measured quantities:

n Y !  6 &  a n d  n k L
Wl & rct

has the order of magnitude l0-s to 10-6 . If this order of magnitude is decreased by new

techniques of measurement to 10-7 or l0-8 , so that adjustments to measured values are in

the order of 10-7 , then one will have to change over to difference equations. The model of

relationships for computations will then have to be refined to the same sharpness of defi-

r c * - r c t  = O ( t O r )  ,
tct

( w .
t -
\ rrSr

t )  . t

t * e W r

eWo - eW,
fck 

-

rct

- e9t

J J
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nition, with a set of approximate values again satisfuingthis model to the same sharpness -

a consistent system of approximate values - and chosen such that in our case, for example:

\eA) = eA - (eAluwo* = O (10-5),

a value on the safe side in view of the estimate of ,"r, in Section 3.

For our approach the relationships then become:

Jr"3\ * of,n t*l =
\  w'l  [ ,  ' , ,)

= o(wo 
- w'' l  * 'o - 

" ^(yt\. of,n lq!' l  =
I  t r g t  )  , o  \ t ' s t /  l .  t t /

=  
\eWo) 

-  t (eWr)

/  o . \  / r  \

^ l t "  1 l  -  r ^ l= l=  o (eg* )  -  o ( "g , )
l. 8' ) \'r'' )

and hence:

-  z^(rn 
h).  "("  *)  

= |  2t(ewo) .  o("so) l  *

-  
l -  Z\ewr) .  a(ss1)]

In the coefficients of difference quantities, one may put ro/r, = 1, which means that the

earth may be considered as a sphere. Therefore the term:

rk -  f r  
^(yt \  = o(10-3) o(10-5) = o(10-8)

rk lrls, ,,

will usually be negligible as well.

In all right hand members of these relationships the influence of the centrifugal potential

practically vanishes so that almost without approximation we have for these members:

'  l l .

\ewo) - \ew,) = El(f )'^"*, (+)'^"1',]

^\elk)- o("8,) = i @ + r) ff+J'^"-tr - [l)'^r1'rln = z  
' l \ r o )  ^  

\ r r )  l
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4.1

l- z\ewo; . o(esr)J-  
l -  2n(ewr) .  o("s,)]  =

= f * ,, l(;)"^"_', _ (f )'

Pn (t"n '\
surface of
the earth

Now we "forget" for a moment the physical matter which is present, and continue the
equipotential surface through P, into the earth, choosing on this surface the fictitious point
Po on the plumb line of Pp. By combining our "forgetting" with some more sloppiness we
arrive at the well-known interpretations of the left hand members of our relationships:

Jt^Yu) . ^ftnlq) = ̂ ft' ls %\ = o(rn'-'.0"1 - ^f*itq"l
I  w ' l  l .  ' r , )  l '  ' . 'w ' )  l .  ' . ' ' * )  [ .  ' . ' /

or a "free-air reduction" of ofm 
rct 

I to the geoid throughPl . If one chooses as the model
\  r c r l

for approximate values the well-known ellipsoidal model from physical geodesy, N being
the height of the geoid above this ellipsoid, then follows:

oY )

t ( c | - ' r t )  -  N o ' - N t
^ (t"

Analogous:

rcr' - rcr ))

^  ) ) ="0") 
- ohn (t .

'rt) l, I

s* (w,12 \  -
r ,w) )

- 2^('' #). ̂ ('' *)

fctfcl

= ^ [ ' "

P*'(t"*"W' 'g* ')

35



4.

(  ,  \ t \  /

- olm qu(kuY | = ̂ ftn e q.) = ̂ ftn t;) - afir- arr

I  s ' \ ' * ' ) /  \  & 8 0 )  l .  s ' )  8 '

or, a "free air reduction" to the geoid through Pr '

Therefore:

^(r *) . r^('" 't)=

= {"(," tr),^1" #)} .'{"('" x) . "F h)l =
= ̂('n Y,).'^l"Z)

one recognizes the well-known anomaly-quantities from physical geodesy.

However it must be realized that this unnecessary and improper interpretation of better

defined mixed quantities can never be a good basis for a model theory; it can only lead to

confusing discussions.
But if, along with this interpretation, we also reject the fiction of a geoid, what to do with

sea-topography? To answer this question, reverse the line of thought. For points P, and P p

at sea level:

t'(rro - rro) - - of,n 
tcr' 

) * - 
"ft" 3\

rck '  \  ' ro l  \  wr )

with Wluw) = 147@wr) one obtains:

W,
relative sea-topography (rr* - rc*) = -rkr" 

i.

This means that it suffrces to determine potential ratios (or-differences) of points on the

surface ofthe sea.

In the approach sketched, the important aspect is the inseparable relation between quantities

from physical and geometric geodesy. This aspect is even enhanced if all components of the

gravity vector and ofthe gravity gradient vector are included in the analysis, the directions

ol tt 
" 

vectors being described in the geometric sub-system. This explains why only one

extra piece of datum information, viz. gr, has to be joined to the geometric S-system.

If one also considers the data obtained by satellite methods, as well as the results of com-

putations by various integral formulas such as Stokes's, than the picture of a four-dimen-
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4.2

sional geodesy appears (of course at a certain epoch in view of the movements of the

earth's surface), represented by the quaternion in Pr:

W,.*  + X * e x * Y o e " + Z o e ,
gt

with components of the same order of magnitude,viz. R.

This might have consequencesfor a more general choice of an S-system 1). As it is now, the

S-transformation is actually decomposed into a transformation of the scalar part and a

transformation of the vector part, the latter also being directive for the construction of a

criterion matrix (Section 3.2).

Another very important point is that the choice of the dimensionless quantities practically

eliminates, on one hand, the influence of poorly estimable "constants" p, and W1 , and on the

other hand, the influence of instrumental units of length and time (of course supposingthat

the procedure of measurement is aimed at this elimination). This choice, which is not

necessarily uniquely determined for a certain field of study, therefore seems to be satis-

factory, Finally, reference can be made to further considerations in Chapter 2 of [Baarda
r97el.

4.2

In order to elucidate some more aspects of the contents of the previous section, and anti-

cipating Section 5, some consequences of the integral formulas of Stokes and Hotine

(without "correction terms") will now be considered. For details, see Chapter 4 of [Baarda
reTe).

Use will be made of the elegant line of thought followed in [R. Rummel and P. Teunissen -

Height Datum Definition, Height Datum Connectionand the Role of the Geodetic Boundary

Value Problem - Bull. G6od. 62 (1988) pp.477-4981.

For our purpose we choose the notation of ratios of potential values, with 1 = 1 in the

coefficients ofthe difference equations. 
rr

Putting:

y@ = s(n)yr(n) , oyy) = 69a,) .Yi{nl

l) perhaps by using a four-dimensional simularity transformation instead of a three-dimensional one'

tn this reipect the idea of Grafarend to use a l0 (instead of 7) parameter-datum transformation in 3-D

looks more inviting, but I cannot yet find a place for the special conformal part (3 parameters) in my

model reasoning. See the paper to be published in the Zeitschrift ffir Vermessungswesen: E.W.

Grafarend, G. Kampmann- C1s (B): The ten parameter conformal group as a datum transformation in

three-dimensional Euclidean space (communicated by letter of May 24' 1994)
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for "Stokes":

5ft, ,n * 
=t (t,o@) - y,(n))ytn)

n - l \ *  
r

for "Hotine":

s,,H,= i a:]("1{4 -y,@)yaa
7 t  n * l \ *

then three difference equations are obtained, each with the same left hand member:

i
n = 2

Jr" Yo\ * ol,,
\ w ' l  t 3 l  = i  ( o c ( , r . y , @ ) - t c @ )

' c t  
)  n = 2

Y'r@))

= Lo,ll't;;,1- r^('" #). ̂ (" a)lao,

= +[[st;;,|^('" *) .'^('' +)),r,
Viewed historically, the first equation fits the satellite era with !!L unaoc (') from satellite

rct

measurements, the second equation fits the pre-satellite era, with ! ,ro^levelling and
W,

8o f.o* gravity measurements, the third equation again fits the satellite era, with It from
& a. rct
satellite- and ok from gravity measurements. The quantities sought are then

gr

3, "0  , ! r " " r "c t i very .
W t '  r r r  

'  
W ,

It is remarkable that at present the Stokes integral formula is still used almost exclusively.
We shall therefore analyse this formula and apply the height datum connection according to
Rummel and Teunissen, which is a method to evade the connection by tide gauges between
levelling networks and sea level. In this connection I prefer to use the term S-
transformations of "vertical quantities". In the case of the occurrence in the formulas of
unknown ( or partially unknown) compound quantities, these will be framed.
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+ . 2

C

Pt

o
P3

Suppose there are two continental S-systems, and one sea-S-system, with datum points P1,

P2- andP3 respectively. Then we have for Po (with respect to P1 ):

"Fh)- ^(''ff) = * | ['f']'l'"f"#) . ̂ ('*)]'n' .
. * I ['t''" tl'^(' #).(';)] .l'^("ft)
. * I ['t't' tl'^('" h).^('";)] .l'^l"h)

."(''fi)]1",.

. ̂ ('"3)]1,',

"f"#). ^("*) = fi[lst;i'l'^("#) . ̂ ('"fr)]'n'.
. hl['t,,rl ,^1"#) . "('';)]rn,.
. *il't,,,'l ,"1"h) . ̂ ("fi)]rn".

Or:

(1.k)

f,ll't,,1do, *
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(1 m) "f"3). "(" :: ) .

(,0 ^1"#). ^('";) .
: right hand member (1.k.) with k + m

(r.2)

= right hand member (1.k) with k --+ I

: right hand member (l.k) with k --+ 2

= right hand member (l.k) with k --+ 3

The first two integrals in the right hand members of these equations do not present any
difficulty, except that in difficult mountainous terrain levelling will only be possible in the
valleys, and gravity measurements will be sparse 2). The third integral does present dif-
ficulties, because one cannot measure ratios or differences of potential at sea, whereas
gravity measurements are sparse there too. Consequently one would have to put

/  W \
2 a I ln ;j I equal to zero, which assuming a sea topography of some meters causes errors

\  w ' )
of tire order2 '5 'l0-7 = 10-6, correspondingto the sharpnessof definitionof the gravity
measurements at sea. Perhaps one might introduce from satellite data:

-  z^f tn#-) .  ^ f t "q)  = i r ,  -  1)(ac @) .y '@) -  oc@) .v ; t^ t1
\  wt /  |  8 ' )  i=z

2) In many respects one therefore meets the same situation as at sea, so that the sea-situation in fact
prevails on by far the greater part of the earth.
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4.2

presumably with a sharpness of definition of 10-6. (An additional advantage is that the index

3 can be replaced by l, so that in all equations the fifth term vanishes, as well as equations

(1.3). But we shall here leave this aside as a speculation)'

The core of the line of thought followed by Rummel and Teunissen is the determination of
rcz 

by satellite measurements, whereas 2 
"un 

be measured. From equation (1.2) one
rcr & ( w"\
couldthensolvethe heightdatumconnection alln;j | ... if there were nothird S-system.

I  w ' l

However if one measures by satellite 
"1 

on
rcl

then the equations (1.2) and (1.3) yield both

measured as well.

land in P', and via a sh
( w^\ /  w"\

a l l n  ' l a n d a l l n  ' l

\  w ' l  I  w, )

uut ̂frn?l
Vct)

^1"'::)
^("h)

ip or platform in P,
o

because 91 can be
o
o l

Now one can

from (1.k) and from (1.m), cannot be

computed from (1.t) unless

assumed to be zero.

= 0, hence relative sea topography is

One is then led to the derivation of o fm 3l Oorn satellite altimetry (in principle providing
Vo)

ratios of radial distances, see [Baarda 1979)), and then compute from (1.t) the relative sea

r  W . \
t o p o g r a p h y - r , a l l n -  l .' t  % )
But then the whole approach by the Stokes formula becomes problematic, for if one enters

the satellite era anyway, we should not one measure directly all ratios of radial distances?

This leads to the logical conclusionthat in the satellite era Stokes's formula shouldbe re-

placed by the Hotine integral formula, with the possibility of measuring gravity ratios and

computing ratios of radial distances from satellite measurements all over the world. Never-

theless, the line of thought of Rummel and Teunissen is once more applicable here, to brid-

ge the transition from land to sea.

To this end the formula will be written out anew, droppingthe distinction between the St-

system and the Sr-system (being the simplest case; of course more systems can be intro-

duced both on land and at sea):

compute

^['fi)
for the continents:
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^l"h). ^('"fr) = *lFt;;'1.'^t";) . ̂ (''*)]'n'.
. *[l'Y#'1. '^('" E). ̂ ('"*)]'n" .

(TT)

(il)

(il3)

* I Itl:r',"') df,]"

^("#). ^('"*) +

: right hand membet (Ttr) with k + t

= right hand membe. (17) with k * 3

The determination of L unO & 8t - I' is done in one system, as well as the deter-
'  8 r  & &  8 r

mination of kL una !9L for points on land. The latter system, however, differs Lorn 3
rct tct rcj

for points at sea (satellite altimetry). Consequently the crucial step is the determination of

fr 
, norriUly measured by ship. Once this has been solved, one can compute ^("h)

from (13) , of,n 3\ ^rO lt"!\ and hence relative sea topographyfrom (17) and
, - , '  \  w t i  I  w t )
( 1 . t 1 .

( w,.\
Regionally alln:j I can be improvedvia an adjustmentby levelling; globallysatellite data

I  w ' )

can imorove Jr"Y\uno ofm 
''\

'  
l w , )  \ w ' )

^(^3\.  of ,nbl  = i  (^.  rq .y ' t \  -  ac( ' )  .v '1 ' ) )
\ w'l t 'r,) fr
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4.3

Since we have emphasized the distinction between the origin P , , of the X, )2, Z-system and

the centre of mass of the earth P6, , Som€ well-known consequences of this distinction will

be exposed anew.

The discussionwill be linked up with [G.B. Reed - Application of Kinematical Geodesy for

Determining the Short Wave Length Components of the Gravity Field by Satellite

Gradiometry - Report No. 201 of the Department of Geodetic Science, O.S.U., Columbus

r9731.

Introduce a local reference frame for the point Po by rotatingthe X, Y, Z-system, choosing

the (-axis alongro, the (-axis parallel to local North, and the 4-axis parallel to local East.

P, remains the origin, the coordinates of P. are (4g , Ec , e c ).

The rotation gives:

ffil ttl[ ; ]  [ . : ; :

.+)I'1
rk

1
fck

_ \ c
rk

/
> C

i
: c l

- l  
t

r,- \

- sin l.o

cos lo - sin go

cos l,o cosgft

cos l,o

sin l.o

sinl.o

f"-) fcos,ro 
cosi,rl

l:r) "ffi: ''^-J

Since PrP, is small, simple geometry easily shows:

l..o cos e* = L* cosqe

Qc* = Q r

r c k = r k - C c = n ( t -

In view of the smallness of (i,o - Lro\, the difference between cosqck and costpo is

negligible.
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+ 
= 
I(* 

*.e;. cosr.o . f, "orep sin ^r . +.in'ro)

= r({" Xo * ls Yo * ts tu) = u;',
r o t R  r k  R  r k  R  , o )

? ; = i (  * s i n r o + * - ' ^ - )  = #

+ 
= 
t( * sin<po cosro - 

f,, .e1 sinr,o .? *"--)=#

with Bo(1) the spherical harmonics term of degree 1.

with + = vo.n "'! 
= vo ̂ - , etc. and

on put 
' 

Arf pv' 
k"t't

one obtains:

,o  = 
*(1 

-  to)  = 
i t ,  

* t r* ( ' )  *  Eo)

E a , '  =  E o
n=2 put

,ovo,,=#k=f [ ' . f f | .D,,J
, * v o , E = #  = f  

[ r . # . D , , )
,ovo,c = 

#, 
= 

i(t 
. zn!\ . D,, )
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,tvo,,, = 
#kr- 

tanqo #. h= 
- 
t(t 

* sao(')- I ,0,,,)

?,_ - d'vo dvo
' 'ovo,rr = 

""rgortr,e 

+ t&ngt 
**tsr"

=  
f r ( o . o - E 0 , , , )

,tvo,,, = ̂#M #k = t(,.'## - D,, )
2_, o'vo dvo

r * v * , E e = ^ z * , = -
og*  J ln ro tF 

. 3atu - E0,,, )

,?v0, , ,=#r* ,  #=- t [0 . ,  #  t - , , )

,lvo,,, = 
ffi 

= 2 L (t . znl\. D,,, )

For Eo,u and Eo,, see I Reed l9Bl3)

As a preparation for the formation of difference equationsthe coeffrcients of a-quantities are

determined from a spherical model of dimensionless quantities:

w o  =  v o  * ' ,
rt|t rt9t rk

Let (u, v, w) be a coordinate frame obtained by rotation of the X, Y, Z-ftame. Dimen-

sionless differentiation can be done as follows:

( W , \  ^ ( W o \  ) W o
A l  " l  , o 0 l  " l

l r r s r )  _ " \ t t g t i _ ^ o r o
I  ^-  

-  
A"r  

-  
, r8 ,- out

rk

For the spherical model follows:

3) A check by p.J.G. Teunissen disclosed a printing error in Reed: formula (3.28)
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Y = dlo 

"orYo,ut\ 
= u* - 6u'vk - 6unwk

du* dr* rk rk rk

W *  - r t
rtSt rk

a{* = rJ 
cos(ro,uo)

rtgt rk \

'+y = 
? (- 6,, * 3cos(ro,uo)cos(ro, vo))

rt9t r* \

'4y- = 
? (ru,,cos(ro ,*r,) *30,. coslro ,vr,) *

rt|t rk \

* 36,, cos(ro ,uo) - 15 cos(ro ,uo) cos(ro,vo) cos(ro,wo))

"(=#) = .#a(hro) .,r^(+)

4+)=,+fa(hro) .,,"(?)

t =  1  f o r  v  =  u
with 6. '{

" "  l . =  0  f o r  v  #  u

This gives:

from which all coefficients follow by replacing u, v, w by q and/or \ and/or (.

In table 4.3 an overview of the difference equations is presented; it is to be noted that
aBl\ - Bo(1) becaus e Frf is unknown and its approximate value is zero. Use has been

made of:

These formulas explain the difference between framed and non-framed a-quantities in table
4.3; the deviating coefficients of a(ln ro) in the framed a-quantities are again framed.

There is a remark to be made about the relation with the compound quantities in Section
4 . 1 :
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a
o
o

I
, 9

o

i q * q t f v
i r $ l s t $ o t $
|  <  u  -  l . o  <  t
i  <  - + l  -
i  '  . F  S l +  *  I  l o  *

i  = *  ?  " l F  :  - o * l e  =
i  q  ,  

,  
c 1 -  . d l c  q "

i o 6 6 6 \ 0
l t  t l l +

l : l t

T l  o

+

l - l

=.1^q  i
I  L  I  * l  * t  * l- - = -  

i  5 l ' -  Y l f  Y l r

i -

|  = l  bo

i x=l '-
t -
|  ^ .<

I

L l t

< Y
S . .

r f
- n

t :
-  t ^

A a l g  I  l *  .
o  l o  

- ^ S l 9
t o  \  t ^  c o
l o  G t -  6 i

llt r
l , | |- l
i )

I
I
I

i

i .---:---
i :'l bo'

- - , :  i  s  t i -
s*l bo i '* l r  

i Y
l t

< ! L

+

+

G 6
a c
a x

= v
a *

d

+

. t -
S I  b o
- 1 . -

L I L

N

\ I L

I

a l- " 1 -
r * l  b o

. - t  . *  |
I
I

I

I
I
I
I
I

""1

f t -' I

C V V V V U
I

l r u v i g F F v M V
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1 .

r.
A ' - J A tn 

,o

in which Aoare the respective quantities in column 3 of table 4.3.

Instead of taking ̂ (or - 
;n,

, as in Section 4.1, whereby^[#J "directly

eliminated, we consider nAo and 4,4, separately.

rhen we have, with ̂f  1l = 1 ^ftn1l = - \ ^(n
\ ,0 )  rk  \  ' o )  rk  I

r,
-  -  o ( A t \  *

rk

This formulation is used in [Baarda lgTg].After transporting \nr^(rn1l . the right
r k  \  , , i  

r ,
hand side of the difference equations obtained from Table 4.3 after subtracting J o(Ar\ ,
the framed situation in a modified Table 4.3 is obtained: rk

^?r - +"')= o(Ao)

r k ) .

n)
; " ' " ( ^ ; )

il{#) -+^ffi)l )'
( ' ,

( (u l ' ,  -  B{ ' )  *  oEo -  oE, ) ,  . . . . . . ) '

L o vector:

2o vector:

3 o vector:

A clear influence of P f , * 0 is established, although the correspondingterms only make

sense if there is a unique S-system valid for the whole earth. In this case Hotine's integral
formula is affected by first degree spherical harmonics, so that the lower index C may be

omitted from this formula.

But how to deal with the situation of satellite gradiometry, where radial distances for the

orbit computation are theoretically computed with respect to P, (although the effect of

P;P; * 0 indirectly sneaks into the practical computation), whereas the gradiometer reacts

to the gravity field of the earth, perhaps under a direct influence of P ,P , * 0 ? ln Section

10 a part of the modified table 4.3 is given for this situation, which connects with existing

literature, hence with 3(l) = 0 . But is this the right choice?

A second remark pertains to the importance of the formulation of compound quantities

( -  r ,  - \
l A o - r -  t l * i t h '
t rk )
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: wk -r*w*,c _ r*g* ,lwo,rc _ ,lto
n L  .  -  

)  t  
-  -

" ,rgr. 
' 

rtgt rtSt rt9t rt9t

under the assumption, made throughoutin this publication, that the rotational velocity of the

earth is sufficiently well known and the small angle between the radial direction and the

plumb line is ignored.
r,

With -LAk = I or 2 respectively, one obtains:
rl

="1;,(;^r i^l=^l;^,t*
- "l+^,"#l-';e,^1"#)

' ) ] -

Or. see also Section 4.1:

#) |l"f"h) ."('';)l
'#.)=;l"F*) .,^(''f)]
*)=,;l^('"+) .' "('";)l

One recognizes the coefficients 1,2 and6 of o[n3''| ,rorn the modified table 4.3. The
l .  

" /importance of this formulation has only recently become clear to me. Section 4'2 akeady

presented an example; in Section 1l we will use it a).

Finally we shall now follow the line of thoughtof Section 1.8 of [Baarda 1979] for the

Bruns transformation.

Let u be the direction of differentiation, then:

a) Formerly I have been hesitating a long time before choosing between the compound quantities

(  r ,  \  ( r ,  \
l no - )n r l ana l -LAo-n r l . I f i nanychose the f i r s t f o rm,bu tnow lwou ldp re fe r thesecond
\  

' f t  /  \ ' r  /  , ,
because then there is now a coefficient -j in the right hand members'

( W o  r l

( rrSr rk

1 r,,8* rr
 t  -  -  -

\ rrSr rk

l r * r *  r r
 t  -  -  -

\ rr8r rk
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4.

AW = ,# = ,aY ms(h,u) = - rgc.os(h,u)
1 ^- o u
r

in which h1,is the negative plumb line directionin Pr. Transfer all relevant directions to Po
and considerthe spherical representation. Provisionallyleavingoutthe indexft, one obtains:

cos(h ,u)  =  cos(h , r )cos( r ,  u )  +  s in (h , r )  s in ( r ,  u )  c ,os(h , r ,u )

C h o o s e a = n : cos(f t ,  r ,n)  = s in({ , r , f t )
hence with the rule of sines: sin(ft, r) cos(h,r,q) = cos0 sin(A - ,tr,)
F u r t h e r :  c o s ( r , 4 )  = 0 , s i n ( r , n ) = I

Choose u: E i cos( f t ,  r ,E)  = cos( f , r ,h)
and with the results of cosines and cotangents:

sin<D = sing cos(ft,r) * cosg sin(ft,r) cos(l,r,h)

cos(ft,r) = sinQsing * cosQ costpcos(A - ,1,)

hence:
provided
Further:

C h o o s e u = e i

Summarizing:

s in( f t , r )  cos(E,r ,h)  = s inQcosg -  cosQsing cos(A
cosg *  0
c o s ( r , E )  =  0 ,  s i n ( r , E )  =  1

c o s ( r , ( )  =  1 ,  s i n ( r , ( )  =  0

- ),") ,
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4.3

-r*W*,,

rtBt

-r*W*,8

rt9t

-r*W*,(

rtSt

Then the difference equations of compound quantities, complemented with the modified
table 4.3 become:

- r*s*[r*-cosqft

r18' 
I

cosOosin(Ao - l.o) )

- cosQo sin qo cos(Ao - ^-) |

c.os(ho,ro) )

\+)i\+)
o ( - r o w o , r \  _  \ ^ (  

- r ' w r , r \

I ttSt ) ,o I ttst )

\+)';\+)
cosq la(4 ,  -  l , r )

" (o t  
-e t )

^ ( ' " ; )

(cossoar.o - cosera,r,,; 
tff} ##) -,^t," - ox,,n)

(opo -oqr) - t# T#) -(oEo,r -oE,, ,r)

"[r;) 
* z(n! ' t  - B{')) * (oEo,r - ox,,c)

rk

rl

cos go a(Ao

o(oo

t o )  -

e o ) '

tol .
& )

^ (r'

From the third elements of the latter two vectors follows the well-known expansion into
series:
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The other two elements of these vectors provide, among other things, the influence of

P;4 + 0 on the plumb line deflections (Ao - lo) and (O- - 9;.). The formulation

differs from the one given in Section 4 of [Baarda 1989] in the "Festschrift to Torben

Krarup".

4.4

We return once more to Hotine's integral formula to point out a way of application which

is perhaps feasible.

To begin with it is remarked that in our four-dimensional system, having three geometric

coordinates plus the gravity potential per point, the three coordinates which can be determi-

ned by satellite positioning and satellite altimetry must be supplemented with a fourth

independentmeasured quantity. For this quantity we choose gravity, which in principle can

be measured everywhere on earth. As a consequence, the computation of gravity at sea with

the aid of satellite altimetry does not fit in this line of thought, because it does not provide

a fourth independent measured quantity per point s) .

This approach makes it possible to apply Hotine's integral formula. As already remarked in

Section 4.3, any first degree spherical harmonics in left- and right hand member of this

formula cancel each other, so that the application is possible if the origin P, of the

coordinate frame does not coincide with Pc, the centre of mass of the earth.

This is significant for practical use, because in Section 9.2 it is shown that P*P, may be

made small, but it cannot be reduced to zero. In practice the influence 6) of FrF, * O

(but small) on higher degree spherical harmonics can be ignored. For the integral formula

this means that in all quantities the lower index C must be dropped.

A practical difficulty is the measurement of gravity at sea where ships or low-flying aircraft

can be used. For aircraft we assume that the positions lie on a slightly waving surface,

curving with the earth, so that for the outer normal n to this surface we can use, see [Baarda

1979, Sect ions 1.7 and l .8l :

5) Although this Section is mainly concemed with the situation at sea, the land situation is not

simple eithir. What is evidently required is a non-reduced gravity observation per stations, whereas

in jeneral the presently available data sets contain reduced measurements or anomalies.

6) S"e e.g.A.Kleusberg - The Similarity Transformation of the Gravitational Potential Close to the

Identify - Man. Geod. 5 (1980) p.p' 241-256
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4.4

If now the sea of the earth are covered by a network of non-overlappingmeasurements of

gravity by ships and aircraft, then the following line of thought is possible:

Let ,! denote the surface of the earth, both land and sea, leaving changes with time out of

consideration. Then, to quote [Baarda 1979,p.17]: "It is still more essential that in practige

measurements are never executed on ,S itself, but at some distance outside S. Here, a

comparison can be made with the spatial geometric networks, by which one determines

coordinates of points usually situated at some distance from the earth, on towers, pillars,

etc.. For cartographic purposes these points are projected on a reference ellipsoid or on a

plane, but this is not essential for spatial gravimetric geodesy. Similarly, the "reduction" of

observations in gravimetric geodesy does not belong to the essence of the theory, so that in

principle all reductions should be excluded.
The exclusion of reductions is attained by replacing the surface ̂ S by the geosurface ,S*,

containing the observation points on, or near and connected with, the earth's surface. S*

may locally coincide with ^9 but it may also deviate from S. ,S* has to fulfil the same

requirements as S; the surface may contain a finite number of singular points and a finite

number of edges, which divide the surface into a finite number of pieces with continuously

changingnormal direction. The equations (1.7.4) and (1.7.5) as well as (1.7.1) remain valid

if ^g is replaced by the geosurface,S*. Points P;, connected with the earth are therefore

always situated on S*. "P, inside S*" now assumes a more realistic meaning".

As an example we take the re-written third Green's integral formula [Baarda 1979, (l .7 .5)]

in which: z is the gravitational potential (for points on ,s replaced by the
gravity potential ,r/ minus the centrifugal potential); o is the surface of a

sphere with unit radius,

P, outside, on or inside.s*; P; on,s* (P, cannot be a point inside the matter of

the earth).

The integral formulas of Stokes and Hotine are equally valid for,S*; in the approach given

it is assumed that the centrifugal potential can be computed with sufficient accuracy from

existing data, so that:

tVo = tWo

The geosurface S* always remains a somewhat vague concept because observations will

+ = ]cos(n, r ;dn or

v, = +ul',+.{- x)lton,

' r )
f ;  _ f ;

8 . . = '  '
U 2

ri
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always be made at discrete points. But this applies to S as well, because one may ask what
actually is the surface of seas, marshes, fields with drains and ditches, forests, mountains,
villages and cities? Consideringthis, the sharpness of definition of .9 will therefore have to
be appraised at decimetres or metres rather than centimetres, of course with the exception
of well-marked points. So there is not much difference in principle, be it that the enclosed
mass for S and ,S* may be different if S is taken to be "ground level". It is therefore
important for practice to develop the formula system in such a way that the mass of the
earth is eliminated. Accordingto [Teunissen 1980], the effect of the atmosphere is then
virtually eliminated as well.

Now suppose that modern satellite positioning (also in aircraft) makes it possible to mea-
sure gravity in low-flying aircraft with the same order of sharpness of definition for ln g as
by gravity measurement in ships.

Then it is suggested to extend,S* to include the aerial stations where gravity is measured,
and then apply Hotine's integral formula.
In thes i tua t ionsketched, thepo in tsPpP2,PrandPi ,P l ,P" l ieonS* ,whereasPp,p^ ,p1
lie on ,S (there not necessarily coinciding with S*). The data for the kemel of the Hotine
integral formula are derived from the three-dimensional coordinates of these points. For the
analytical expression for the kemel, see [Teunissen 1980]. In the left hand member of
Hotine's integral formula the length ratios for points P, on the sea surface can be
determin_ed by satellite altimetry. Values for the potential then follow from the integral
formula 7).

A las , there isab ig"bu t " in thequest ion . . .  Thesharpnessof  de f in i t iono f  h l  and h1
8. r.

from measurements by ship or aircraft will not be better than 10-6. This implies that the
sharpness of definition of the integral will be of the same order of magnitude (perhaps
somewhat better as a result of damping). Even if altimeter measurements are better defined

(in spite of orbit errors), the consequence is that the global sharpness of definition of nL
W.

cannot be much better than I 0-6. This is the cause that relative sea topography can hardly b-e

determined by this means since the influence on nY is of the order 5.10-7.
W.

Besides it is questionable if ship- and aircraft measurements are worth the trouble now that
the results of satellite gradiometry promise a sharpness of definition of l0-6 or better. If this
promise comes true, the result may be that Hotine's integral formula, like Stokes's, is
relegated to the annuals ofthe history ofgeodesy.

7) There need not be a special convergence problem, for, first, in the situation sketched above equal
values can be taken for all radial distances r in the coefficients ofthe integral formula (See Section
5.1 or [Baarda 1979, Section 1.2]) and, second, the difference compound variates can be considered
as being reduced to one and the same equipotential surface (See Section 4.1).
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When by the application of division algebras I had succeeded in formulating geometric
geodesy as a theory of form elements in geodetic networks, I tried in my 1979 publication
to follow the same idea in order to formulate the basic approach of physical geodesy in such
a way that the description could be given in terms of form elements. The aim was to make
possible a better connection with the theory of geometric networks.

For the solution found, two questions require special attention. The first is the introduction
of approximate values for linearization. The theory of adjustment or estimation and the
theory of networks show that approximate values and iteration processes have their place
within the mathematical model and have no physical meaning. Experience from previous
and present measurement processes in observation space leads to the introduction (linking
up) of a mathematical model usually containing non-linear relations between measured
quantities, as well as to the names given to these quantities. The results of deduction within
the mathematical model have to be translated into terms of the observation space, and it is
not before this translation - the "unlinking" of the model - has been made, that a physical
interpretation is possible. To give an example, the geodetic reference ellipsoid is, on one
hand, part of the (mathematical) coordinate system; and on the other hand part of the
(consistent) set of approximate values. The assignment of a point in observation space to the
approximate coordinates of a physical point, as found in classical derivations, can only lead
to confusion. The consequence would be that the ellipsoid (with the approximate direction
of the non-central axis of rotation and an approximate angular velocity of rotation) would
have to move inside the earth. It is of course correct that this consequence is not drawn in
the literature, but it indicates a lack of understanding of the function and meaning of
approximate values. In the derivation given here it does not matter how one arrives at a set
of approximate values, provided that it is consistent.

The second question concerns the place taken by the introduction of the earth model already
used, viz. the homogeneous sphere. Use is made of the fact that for points on the surface of
the earth the ratios of moduli of radius vectors, as well as the ratios of moduli of gravity
vectors, deviate at most l/100 from unity l). The spherical model may then be used in a
number of spherical potential-theoretic relations, provided that the relative difference
between the approximate value and the estimate of any computed quantity does not exceed
the same order of magnitude. This requirement improves the possibility of assessing the
reliability of derivations as compared with the usual classical derivations, but it also imposes
very high demands of the quality of the set of approximate values. The use of well-known
gravimetric methods of reduction - such as the isostatic ones - in the reverse direction is not

l) In Section 4.1 a somewhat less cautious estimate was in mind, viz. 3.10-3
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sufficient. Only the use of detailed geological and geophysical knowledge of the

substructure can provide an adequate answer here.

Stokes - type integral  formula

' ' f ree-air  reduct ion 
' f ree'air  reduct lon- l

t o  g e o i d "  t o  " g e o i d '
L - - - -  -  ' i n d i r e c t e l f e c t o f g r a v i t y r e d u c t i o n s "  - - -  

|
' lopogral icreduct ion" i

it,, =,,- 
/u G,, - 

",, ) [a ( T#) .'r (r' f )] ol:,

c* ="(ff)'+" l;'il}

Figure 5.1.a

Vening  Meinesz  -  t ype  in tegra l  fo rmula

[otq-r,r @]- lo@,-r,t* (*n,'l - * n;',] - ' ff cn-, *ts|T,|

@ = astronomic latatude
(,  = geo{ec)centr ic la l i lude

I 
see stotes 

{ 
oO,

I  o,, = * [ ,@.,-o,,) [ ,r(f f  ).  a(r, i) ]  ao,

l n  l i t e r a t u r e

h*  ins tead o l  h r ,  rn  C" ,

N

\q )Pi
v

D -

h , - h ,o-, = re 1frf cosr,*, -r---1- , i ;, li'il I I:; LliS[x'"T?J1"," ",,",.
Analogous integral formula lor ,1": l(|), * cos r/" A Au

Ag.  *  cosqr*  A" l *

c o s a r k i  *  s i n a f k i

Figure 5.1.b

56

ii
ri)'i'r



The form of Stokes's integral formula published in 1979 has been pictured in Fig. 5.1 in a
somewhat simplified form, and under the assumption that the angular velocity of the earth
is known with a sufficient accuracy. All quantities relate to form elements, those in potential
theory are one-dimensional. aXdenotes the difference measured (or computed) value minus
approximate value of X.

However, the formula was not complete because a small error in the mathematics was
discovered at the last moment. The correction was found but could not be incorporated. The
reader is referred to the treatment of the correction term in the 1979 publication, Section
1.8, in particular formula (1.8.13) in the corrected form by P.J.G. Teunissen (1980).
Recently, recognizable "reduction formulas" were found by incorporatingthe correction term
in the solution of the basic integral equation and by applyingthe method of appraisal which
was also used in Section 1.8 mentioned before. In Fig. 5.1 the reduction quantities have
been denoted by the symbol a, and encircled for clarity.

Besides the figure shows examples of the - always somewhat approximative - interpreta-
tion of combinations of estimators or measured quantities as "free air reduction" to the
"geoid" through P,. This possibility of interpretation applies to all integral formulas of
physical geodesy which I came across and brought into an analogous form. Mass and
volume of the earth are eliminated by the introductionof the form elements. It thus appears
that the conditions imposed on quantities in earlier derivations of integral formulas, such as
Stokes's, are automatically fulfilled in the present formulation. There remains the effect of
the topography which has received so much attention in the literature. The newly added
encircled correction terms now can be interpretated partly as a "topographic reduction" of
gravity ratios, and partly as the so-called "indirect effect" of the omission of the topographic
masses outside the "geoid". The correction terms have been elaborated in a (rather rough)
approximation in order to facilitate the recognition of similar formulas in the literature. The
terms are functions of the slope of the terrain in Pr, as is clear from the formulas shown,
but this has been lost in the derivation of existing formulas where the terrain slope has been

replaced by the much less harmful slope of fie,. fn" encircled terms, to be introduced in
an iteration process, must consequentlyhave an ihfluence that is much more disturbingthan
has been assumed so far. Ifthe approach followed here is acceptable, geodesy has got rid of
the - often mystical - considerations on the treatment of reductions of observations in
physical geodesy.

The encircled disturbing term in the Vening Meinesz-like formula proves to have no
recognizable counterpart in the existing literature. The fourth power tn Dpi, compared with
the third power in C1r, makes the effect of the disturbingterm much more harmful for short
distances PoPi

But the present formula meets the difficulty that astronomical quantities @ and A are usually
defined in an other system than the geodetic quantities <p and )", namely by the introduction
of differences of quantities. However, if from Vening Meinesz' formula rp- and l"-
differences are estimated, similar to the estimation of radius ratios from Stokes's formula,
then the question remains if the accuracy of rp- and l.-differences is not much better when
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taken from geometric networks. Besides, the always awkward computation of the influence
of topography should not be forgotten.

But a more important difficulty is that both formulas provide a determination relative to Ps,
and not relative to the origin Prof the operational X, Y, Z-system, such as for instance:

" (9 .0  
-  ec t ;  =  a (e r  -  q , )  *

with unknown 3(t)- terms.

Now the same basic integral equation yields, apart from "Stokes", another integral formula
which is sometimes named after Hotine, as well as its derivatives. The left hand sides are
identical with "Stokes" and "Vening Meinesz" respectively, but without the.B (lL terms. The
right hand sides are:

^( '" ; )  ="( ' ' ; )  -* , ' ,  -Br ' ))

+ fIsti,],4 r  J J()

and their partial derivatives

(  a  *  d  l u n o
[ - a q o  

- a e t )

'^( ' " ; )){l^('"*)1 l
r - l i lL " l

dot

- c o s g o  ' d l . o  - c o s r p ,  ' d 1 , ,

But the difficulty here is that the radius ratios sought appear again on the right hand sides.
In my 1979 publication the Hotine integral formula was therefore introduced for the
determination of potential differences at sea, the radius ratios being taken from satellite
altimetry.

Earlier I indicated already that the B(llterms, too, could only be estimated via satellite
geodesy. Why then should one not be consistent and relegate all vertical determination of
points on earth to satellite geodesy? The same conclusion was already reached in Section
4.2. Summarizingthis means that for the estimation of potential differences it then suffices
to use the Hotine approach as follows:

Satellite altimetry, from an approximately circular orbit (in order to eliminate a length scale
error) yields

for points of the surface of the sea, the disturbingterm r,, being negligible in most cases.
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5.

Satellite positioningprovides the same terms on the continents;for this, the choice of the
coordinate system must be carefully heeded.

In this manner one can also establish connections between continental levellings separated
by oceans, including the adjustment of potential differences resulting from the Hotine-type
integral formula and those resulting from spirit levelling. The advantage is that the same
integral formula is valid for the whole earth, the disadvantageremains that the earth has to
be covered by a regular network of gravity measurements, a requirement which on practical
grounds still cannot be met.

In this approach, the geoid occurs only in an indirect way, as the equipotential surface
passing through P, in the analytical continuation of the external potential. It is seen as a
mathematical fiction only. If a realizarion is desired, this can only be obtained approxi-
mately, e.g. by defining the value of the right hand sides of the Stokes- or Hotine integral

formula as the radial determination of the geoid in the form ^[n? ], r1 ueing the
\  t t l

projection of Pp on the "geoid". The right hand sides of the two forms of the Venine
Meinesz integral formula then yield the relevant deviations of the vertical.
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In the extended S-system the (dimensionless) gravity potential in Po becomes (with

centrifugal potential C and mass of the earth trt":

w o  = C o  *  f  \  l r . i B o r , l  ,  - - E - - t
rt9t rtSr rigr rk \ '=1 I riSr

Let a rotate d X, Y, Z-system be denoted by the (J, V, ll-system. Then we introduce the

dimensionless quantities :

owo

_ owo _! aU,.- r*  
a4 _ r*g*,u = 

-  
n""o __>

rtSt say rtSt rtSt

owo owo owo
- cos rpo 'd l . o  -de*  -? ln ro

rrSr rt9r rrSt

,  &wo
'K 

auogYy = rfl*,w 
. 
"r"., rg ,  

" ,  
r t | t  

'  v r

In order to practically eliminate the quantity --E-, the derivations always contain diffe-
rt 8t

rences of quantities with respect to the datum point P1, which are approximately zero

(S O.Ot ?). An additional effect is that scale factors of measuring instruments can be largely

eliminated, because of the near-sphericity of the earth. These difference quantities are:

( W o  1 1  W t \
- ' = l

l. rrSr rk r8r )

( r1,8*,u 11 rrSr,u )

I ' d '  
- i  

" t r )/ 2 n  2 r  \

l r *L  
* ,w _  r t  r t  L  t ,w  

|  ,  e tc .
\ r,g, rk rr9t )
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The question now was what other consequences this S-System presented for (tenestrial)
mechanics. To examine this, I considered the mechanization equations for the Local Level
Inertial Surveying System and in these replaced the ellipsoid by a sphere, so that geo-
graphical coordinates were replaced by geocentric ones.
Letv: velocity; i = acceleration;f = specific force; c,r6, = rotationof the earth; E, N, rthe
coordinate frame obtained by rotation of the X, Y, Z-frame and parallel to local East, North,
radial; i*.n = ?-ro cns 9* * 6z * vk,E; P, starting pointwith zero velocity and scale factor

1", with )ryfi : gt (ft and gt being moduli of vectors).
Then we have:

v*,n

'lVt8t
vk,N

,Fe
v,

'l*

This equation has been arranged in such a way that the gravity difference quantities

mentioned previously appeared as such.
Hence it appears that new dimensionless quantities fit in this scheme:

r kv k,e,

rtSt

r t i  * ,N

rrSt

r*i*,,

rtSt

'*f*,r
rrft

r*fr,*

rrf r
't f*,,
rtf r

- \ rtfi,B
rk rrft

- \ rtfi,N

rk rrfr

- \ rrfi,,
rk '1f,

_ 
vk,e

,,lrgt
tan Qe * 

io,u

* 
io,'

tan qk ,  
v t , N

tlre
0

vk,N
- vk,r

',lrt8t

r *8*,e
rtSt

r*8t,x

rtEt

r *8*,,
r tBt

_ 
rt rt9t,r

rk rt9t

_ 
rt rt9t,N

rk rt9t

_ 
rt tt9t ,,
rk rtSt
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rkik,, 
und 

'0,,

rtrr fA
The integration process then requires the introduction of the dimensionless time quantity:

(to - tr)

It follows that the units of length and time must agree in the realisation of instruments
measuring r , g, y, i and r. The measure of agreement determines the reliability of computed
results, see analogous considerations in Section 2 of my I 979 publication. The choice of the
S-system is thus shown to have far-reaching consequences.

In the approach presented, the following holds:

i t , u  = v t , u = 0

An unanswered question so far is if, more generally, the introduction of difference quantities

(rono., _ rr rrir.u'l 
*o ffo _ I f-l

l, rrsr rk r8t ) Irf,g, 
rk ,f{)

is meaningful.
We list some orders of masnitude:

R = 6 . 4 x 1 0 3 k m ,

G = 1.0-2km s-2 = L.3 * t}skmh-z,

= I.25 * L0-3s -r = 4.5h-

= 8km s-r  = 3.10akmh-1

l G
\ R

,rc

62



7.

7.1

The positioning of points on earth by means of satellite observations is characterized by

three types of vector bundles: radial vectors of points on the surface of the earth, the vectors

of such points to a passing satellite and the radial vectors of points of the satellite orbit. The

first bundle can by means of vector ratios be fitted into the terrestrial quaterniontheory. The

second type originally concerned the measurement of directions, and now mainly distance
measurement in various forms, where again the division of vectors can eliminate

instrumental scale uncertainties and in particular scale differences between the measuring

instrument and terrestrial S-systems. The third type proves to have some remarkable

properties which make it desirable to change over to vector ratios.
This explains why an application of the theory of quaternions can clarify many aspects of

this method of positioning.
If an attempt in this direction is made, one is, however, confronted with the difficulty -

already mentioned in Section 2 - thal a quaternion is only in a limited way invariant with

respect to the choice of the coordinate frame: the unit vector must be described in an

operationally defi ned coordinate frame.
For the first type of vector bundle this is no problem, here a terrestrial S-system such as our

X, Y, Z-system is all we need. For the second type there is no problem if only distances are

measured. But for the third type there really is a problem, i.e. the description of inertial

space in an operationally defined coordinate frame.

In an attempt to define the latter frame, we will sketch the main features of the determi-

nation of satellite orbits. The reader is asked to keep in mind that the author is not an expert

in this field, but an attentive spectator who is interested in the connection between methods.

In order to avoid confusion with the foregoing discussion of terrestrial situations, for the

radial distances to points of the satellite orbit the kemel letter r will be replaced by s.

When a satellite is launched, its orbit is determined by two start vectors, the s,-vector and

the v,-vector. Together they are customarily called the initial statevector. In principle it has

to be assumed that both vectors are by measurement determined in a terrestrial S-system,

e.g. our X, Y, Z-system. The s,-vector is obtained by adding to the radiusvector of the

launch point the vector launch point - satellite start point. But this implies that the ,st-vector

has its initial point in P, and not in the centre of mass of the earth, P.. The consequence

is that, for the computation of the satellite orbit according to the usual methods, the st-

vector, the angle g1 between s,- and v,-vectors, as well as the spatial orientation of the

plane of the two vectors must be corrected for the eccentric position of P, (being the origin
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of the terrestrial X, Y, Z-frame) with respect to Pr. These corrections are unknown and

consequentlyhave to be introduced into the computation as unknownquantities. It will have

to be investigated to what extent they are estimable'

It is always possible to choose our X, Y, Z-frame so that it is reasonably parallel to the so-

called terrestrial geocentric conventional frame. Now assume that the earth rotates around

the momentaneous axis with respect to an inertial space.

Denote by (x,Y,z)t" the position of the x, Y, z-frame at the launching time,

(X c,Y c, Z c),, being thb components of the rc'- vector.

Now (X,Y ,i1,, i, subjected to a number of theoretically defined (hence non-stochastic)

rotations, resulting ina X,Y,Z-frame - with (Xs,Yg,Z6) as the componentsof the r"-

vector - which describes the inertial space. One sees that the coordinate frame remains

defined, because it can be transformed back to the X, Y, Z-frame on account of the

transformations mentioned. It is important to recall our statement that the coordinate frame

is part of the consistent set of approximate values. For in the course of the computation

many stochastic corrections will be introduced, such as the r.-vector, the correction of the

momentaneous rotation vector etc.; this does not impair the definition of the frame.

Now assume that the modulus of the r.- vector is smaller than l0-5R, then its influence on

the so-called perturbation terms in the orbit computation will be smaller than 1 0-8, which we

will assume to be negligible. However, the computation of the Kepler-ellipse is clearly

influenced, so that the vector bundle of the third type is deformed.

Vector bundles of the second type are invariant with respect to the introduction of a rr-

vector. But if (after execution of the necessary rotations) one wishes to fit the three types of

vector bundlestogether, then the first type ofvector bundle, too, has to be corrected for the

r.-vector.Foraterrestr ialpointP,, thismeanstheintroduct ionof (xr -  xg,Y2 - Yc,

io - Zr), so that the whole covariance matrix of the coordinates is changed and we have

lost our S-system. In principle this is the same situation as the one we met in Section 3;

again one will have to apply an S-transformation, e.g. by introducing 7 coordinates

unchanged in numerical value, but non-stochastic. The origin P, of this new coordinate

frame then becomes an estimate of the centre of mass of the earth, P6'. Just like in Section

3, the estimated position of P6, is fixed relative to the datum points chosen, as well as the

three types of vector bundles. In this line of thought the earth seemingly shifts because the

frames are held fixed, but this only appears to be so: after appropriate rotation, vector

bundles may be subjected to parallel translations for the purpose of fitting them together;

the only important thing is the relative position with respect to terrestrial datum points.
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7.2

7.2

Let a satellite be launched from the point Po and let it enter its orbit at the point Pt at time

/,. The positioningof P1 , like the determination of the velocity vector q,, 
" 

only be

effected in the local (regional or sub-continental)terrestrial coordinate frame with the origin

Prnotcoincidingwith Pc, the centre of mass of the earth. Apart from measurements, one

needs at least seven coordinates ofthree coordinated stations.

Assume that measurements and computations result in the quaternion l) :

Q t o r = Q ' f l ' |  ,  q * = F l P o

Then the relative positioning of P, with respect to Po is:

Q o t = Q o o t ' Q o o

From coordinates one can compute the quaternion:

Qu* = q,tq";,

Then follows the computation of the quatemion:

l) See "Notes and References Section 3"

65



7.

Qr^ = QuorQ*oo

By writing out in vectors it is easily verified that in the triangle P, Po Pt :

Q u o t * Q o m = L

hence: Qout = a*tai, = ! - Quor

or: Qm = Qour 
'4mo

However what is wanted is not q 6 , but qrr. Theoretically this is simple:

Q c t = 4 m - Q u c

or: ecr = aur(l - q;iqMS

Denoting the norm by N one has, see Section 3:

N',.{ai\arr\ = to t

(according to estimations in the literature, the value for the USA coordinate system is

perhaps - 2.10-').
However, since qr. is unknownone has to work with q^ instead of Qct. This will also

influence the angle e1 between n,, unO q^ (butnot 4,, itself) and the inclination of the

Kepler-ellipse plane through 4,, and qno, .

In order to quantiff this effect we consider the quatemion:

Q,w =  QtuQ, r '  =

, r (  \
- ' t  

Icos(e,  
*  t )  +  €v1M s in(or  .  o) )

s rM \

=  
; ( " o t q ,  

+  € , 7 M s i n [ , )

Then the following is valid:
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7.2

olrru = q; tQw - 
Qrrt  ̂ Qr,

With qr ,  = -  
ew,  aQtu = - tQut  = 7uc,  aQu,  = 0,  Lnr tu prov ides:

- l s " ' r - l / \-Qu ieuc  =  a ( l ns r ,1  -  e , , *d \e ) . ;  s i n (e r  +  r r )4w t (enM)qv l

-1 -r 
,uza(lns,ur; 

- o(er) * o(",r*)-enalQulQMc€r, = e

^(e,) = sc{e^qilqrr",l} =r. 
I+tl

-q*lqr, = a(lnsr,) - 
",r*o(er). "i io(e,w)e,,

From the general solution for components of anrru follows:

In the special case always assumed here, viz. q, = 
*, 

- hence an almost circular satellite
/'

orbit - we deviate from the general solution. Then we have for the coefficients in the

difference equation:

- 1  S r '

Q r w =  
- Q y l Q r r ' e  - f " r *

or:

€Ml€u, = €u7M

With this, the difference equation gives:

hence:

and with:
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- .  -1  QutQ, ,
€rlM = €Ml€r, = -;rr\  ,

o(e,,) = r,|.ry+l . v,{.q:' q:,"'} ^ gn,", ;
I  svrvr , |  t  smvt )

The formulas can now be written out in coordinates, during which the index M can be
omitted because the origin of the coordinate system is P, . An index C is added in order to

indicate that the conections obtained are caused by euc I 0. The result, see Section 4.3,

is :

a.( lnsr,)

o. (e r )  =

t
^c\erw) = 

,r r,

I
s1

:_

x t l
,s1

XC

,s1

( t e

(,=-l-

(x,
* l  '

l r ,

" c
s,

* ' ' " '
'tl s1

t, Y"
--1 ---.: +

vr sr

-B{')
) =

ZC

.t1

\
^ l
- l
- l

I
)

-X

z1

s1

Z

s1

,- Z,

.tl

l e

z1
s"

I

-B{')

+

eY ez

XC YC ZC

x\ Yr zr

€v €z

xl Yr z1

xt '\ 21

Tg t =  
2

From the original difference equation follows, again with €vrM = ,rt"rr' = eil"r,

vr{-aiiq,r\ = -*b"leuc - q*,q;l) =
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7.3

-"(e') * o(",w) = 
*;;*r(rilrQuc 

- q*rrir)ri'

= -*Vmc - €urQrr'rl) ' ,-,t
2t*,

2(component euc t qut)

(  I  /  . l \  - , . l
o(e,w) = V"l- 7i\o*, 

- errqrrert)e,il
|  

- "M t  
)

= product of a vector t q^ and a vector almost r q'

hence: ocP,w) almost ll Qmt

In the satellite orbit computations one is all the time dealing with vectors q.o, although in

fact one computes with q,aTbecause qucis unknown. It is therefore convenient to write the

formulas using qao and afterwards make the substitution:

Qct = Qm * ^c(Qur), or(q*t) = -q*,

Qcr = q*r(r * qil 
"r1ar)) 

= arr(r - qi\qMc)

s . ,  = s r ( L  + l . ( l n s r ) )

lns., = lns, * a. (lns, )

q r r =  t l ,  - " t ( O r )

€ v r c = € v r M + o c ( e r t u )

7.3

A second problem, which we shall treat in an analogue way by substitution, is the earth

rotation with respect to inertial space. Let qbe a vector, defined in the terresffial X, Y, Z-

frame; then the vector rotated over an angle v in the positive direction is:

p  q  p - l
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7.

in which p is the rotation quatemion with Norm l:

P = " o t ] * " i n *
L L

e being the unit vector of the momentary axis of rotation of the earth, directed towards the

North Pole.

It is customary t9 consider the earth as non-rotating, and therefore let inertial space,

described in the X, Y, Z -frame, rotate in the opposite direction.

Let Q be the vector, described in the X, 1,7-fru 
", 

then:

q  =  p - t  q p

p-1 = cosi

with:
. v- esln-

2

Let r,l be the angular velocity of the earth, /, the time of launching the satellite, ti and tk

the points of time when it passes P, and Po respectively, then:

Qck = Pil qc*P* , Qci = P,r qciPi

- r  ( a ,  . , \  - , , - ( | o , .  , , \
P k '  =  c o s l ; ( t k  -  t , ) l  -  e P  s m l ; \ t *  -  t r ) l

\ L  /  \ L  /

- r  _ (  @,.  , \  , in  f9rr ,  _ r ,  t " l  
'

p i  = c o s l 7 ( r i - t , ) ) - r o  
l . 2 , ,  , t )

The quatemion which can be used for computations in the X, Y, Z-system is then:

4 t t i l Pi (t r)

-fr(t r)
P--

../ 
-\

Pc

i k )  . /
-:, 

tt/



7.3

Q,ro = (n ; '  a* p o) (r , '  o. n,)- '

l t -  - . 1 \ -  I  - l -  1 - l= P* \Qc*Qci )QciP* \Pi QciPiJ

= (n i' Q,o t r)lb i a' p o) (p ;' q,, p,)''l

pfi e,6*t

or, the quatemion 0,ro "o 
puted in inertial space is first rotated about eo over the angle

- 
*(ro 

- t,), and then postmultiplied by a quaternion having Norm l, Qi (ir,) .

It consequently appears that some of the elegance of working with quaternions is lost,

because primarily it is the vectors that rotate and not the quaternions. However, for the

difference equationsthe effect is small and perhaps negligible if the terrestrial measurements

concem length ratios.l

Let tA = q 
-1aq, 

then:

onic* 
="rnJrr^r^r;,,1i-";: ,'; ;'0,=0,' ^4ciPi =

- l  - - 1  -  - 1  - - l
'  P* '  7c i  ̂ Qc*P* -  P i '  Qci  ̂ Ic iP i

or:

onig = pit oAro po - P,t oAc, P,

= pit ofi,ropo - a4t*i

o[,(*) = p,,t  oA. po - p,t oA. p,

- L t  l  ;  - l  ;  \ , -= Pi \PiP* t/\s; P*Pi - ^t\ci )Pi

Now it follows from the definitions ofp, and por that:

I-  --1'- '  = 
"orf* U* -trf l  -  +. i ' f$1t* - t , ; l\ P * P i  /  

- " " " 1 7 \ ' o  ' t  
/  \ ,  /

or, for small (lo - r,) follows PiPit = 1 and hence aII,,*) - 0.

It is therefore possibleto compute in the X, Y, Z-system and make substitutionsafterwards:
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opnic* = pit ofi,"op* - ^[i1,1

oqt*l = pit oA' p* - p,t oA,, p,

- 0 for (ro - r,) small

For completeness we shall also investigate the effect of t p.

^ec* = o(pit qropo\ = -pit ^P*Qa, * qcr,pil op*

or:
oAcr = qil oqc* = -q;ibi op*) ecr * @;' oro)

,p* = 
l-."(** 

- ',)) . ep cos(*rr - ,,))] "(lrr 
- ',))

.  ( a ,  . , \*  sm[ j ( t r  -  t1 ) )^ \ep)

hence:

( 6 ,  , \  
( -  \= ,ooliVr - t '),| . sin[,<,r(rr - t ')) \eo) .

. , ( a ,  \  - l
* s in '  

l ; ( r  
- , ) )  ro '  o("0)

This outcome is the sum of the three components of the vector (pit opo\, because

ep , o(ep) and eor n(eo) are mutually perpendicular.

Hence also:

AAcr = 2(compone"t (ni' "po) 
t qro)

It follows, with: anic* = o\c* - aA., that:

- l

P* dPr - t'1)nol 4es= 
""(*& 

- 
")) 

. 't'(+(-
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7.3

l t  - 1  \  l /  I  \  I
^opLrick = 

l7r 
aP*) - 

Qc*\P* tP*) Qcr) *

l t  - l  \  - l l  - l  \  I- [ \P,  oP')  Qci  \Pi  
^Pi)  Qci)

Now write qc*in the form:

aro = r , ' (non,t)- t  aro(nor, t )  t ,

then:

aAcr = 
l@,'  ̂n,) - qil(p,' op,) qrol *

* ln,' (r or,-t)-t o(n on,-')0, - q ro p, t (p op ;' )-' o(n ot,' ) n, arll

with:

(pop,')' ^(non,') = ,,  ̂ (trr - ,,)) .t'(+r- - ,))bro;')-' ^F)

For small (to - t,) we consequentlyhave:

p * p , 1  -  r ,  ( r o n , t ) - '  o ( n o n ; ' )  =  o

hence:

oopnic* - 
l(o;' op,) - q;(p,' op,)qrol - 

l(0" "p,) 
- qr!(p'' 

"n,)ac,l
= difference of (component (n,'on,)Lqro) and (component (n,'on,)tor,)

or:

a,ooIl,ro = 0 for (L - r,) small
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8

8.1

P; Vr

Pq (perigee)

If all perturbations are left out of consideration, the computation of a satellite orbit is
determined by the gravitational potential:

in X,Y,Z -frame

There are no first degree terms in the spherical harmonics expansion because the theory is
geocentric, i.e. in the theory it is assumed that the origin of the coordinate frame coincides
with the centre of mass of the earth P" . As far as the theory itself is concerned this can be
true. Our doubt about this assumption can therefore only concern the linking-up of the
theory, i.e. the coupling of measurements and theory, which will be treated in the next
section.

The theory is classic and will not be questioned, but the formulas will be rewritten in a self-
willed form because the author does not believe in absolute lengths and orientations. The
argumentation is mainly restricted to the zero degree term in Vp , i.e. we shall investigate
the computation of the first order terms of the satellite orbit from the vectors qq and
q,, = q , resulting in the orientation and the shape of the Kepler ellipse.
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8.1

Let us here make the reasonable assumptionthat the relevant seven (component-) quantities
are not very well known to begin with, or cannot be determined very well. In the further
computations, one consequently has to introduce corrections, the question is: how to do this?

In order to keep the formula system transparent we shall assume the satellite orbit to be
approximately circular, with the same approximationas used when the figure of the earth is
considered as a sphere. This implies that in the difference equations one may put:

T f i a
Q c 1  

o ; ,  e - d u ,  s k = s 7 o d
L

The thus simplified difference equations, to be used for later interpretation, are marked by
framing them.

The semi-major axis c of the Kepler ellipse follows from the vis viva integral

,t r(+ ;) ='

F - f z  -  t ^ l  =  , ,  n .n . "
t., ' f \ a )

^['*) = t#^f"
L r = !  f o r [ . ,
sctvt

7r
t

lL

sct vt

It is seen that a dimensionless mass of the earth --t-, is introduced; compare the
sctvt

analogous quantity *- whictr was introtluced in the terrestrial gravimetric theory. As was
riBr

done there, one must here modiff the formula for the gravitational potential:

^[ '*) =-^[ '*+)

vo - t, -(,. i  r-,r, ' l  sc*vn = ,
7 1 - l u K l  2v i .s., vr- rck \ ,=2 ) s rrv i

touOr, = 
[

in which El"', )" the symbolic notation for the transformation of Bo(') from the (X, f, Z)-
frame to the (X, Y, Z)-frame.
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8.

The difference equation becomes:

The mean angular velocity (mean motion) i , as a dependent quantity, follows from

, = (y-\" . or rewritten as a dimensionlessquantity:
l a 3  )

' r , i  = ( - "  " f - ) ' ' l '  ,  
' r ,u  =  l  fo r  q r .  =  !

vl  
[ r . , r f  l ' . ,  J  )  

'  v l  'ur  2

ofrn '.,' ' l = 1l^|," -r^l - ,^f' ' "-)l 
=_l  v l  J  , l l  , , , ,1  )  l .  , . , / l

- 3 a - s r ,  ̂ l , n  *  )
sct l, t., rt' j

^lr" l') = zo(n-+l
\  ' '  /  |  sc,r i )

The (first) eccentricity e follows from:

+ ( ,  * l  , , " ' q r , = r - e z ,  e 2 = o t o r e r , = l
4 \  a l

or:

(-+'l 
' 
.,n' q., = !-$ - e2)

l t . , ' i  )  
t"

' .0) . i
t r r )  f u

-  2a( lnv, )v)^,"(2\ =^0"
l ' i  /

= ^['' ^(Fo@))#)-^(''
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8.1

The true anomaly 0", follows from:

[+ I - e') - (r + ecosg.,) = o

l " '  
'

l- tt - e2) cos qr, - e sing., = o
I tct

2e\e) = 4e2) = -z(r ,,)l!::sr^[' 
#) 

. *,*.,^{*.,)]

/  \ - l

l-tnf sin2q., = I + ecnslct
\ scrvr /

(  p  ) - ' s in (2  Qr r )  -  - . , ^o  -  t1  +  o ,

f #l 
-f = esin9r, = (1 + ecos?rr) cots.'

a(e cosa",) = (1 *, -ra",;l-^t" 
*) 

* 2 cot-ect^(*.)]

a(e sina",) = (1 . e cosg.,) cot,pcrl ^[r" 
#) 

* 2 ootQ*",)^(*.,)]

/e sin0-, \
a(tano.t) = ̂ |., 

*.% ,l

e\0rr) = cosO.,a(e sinO.,) - sinO.tn(e cos0.t)
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e ̂ (0 c1)
1 + e cos0ct

srn Qcl

e \Er r )  -  ed(9r r )

( -  r r \ l*  l e . '  
-  

r l l
\  -  / J

n  P , l .
savi )

^ [

)l-.o, fo.,
t " '

o(  9cr  /_
sin q.,

et(orr) - sing.,  ̂ (r" 
*) 

- cosg.,  ̂(e.,)

The eccentric anomaly E t follows from:

Eq (L  -  e \v '  .  oa
t a n  ' '  = l ^  - l  

t a n
2  \ 1  + e )  2

( " ( E r r )  o ( 0 . , ) ) _  
" ( r , )' f  * ' r .  

-  
* '%, )= ,0 -  t )

The mean anomaly M^ follows from Kepler's equation:

- e sinE^

(I - , cos.E.,)

e 
"(urr) 

= (1. - e cosErr)z

(r - , ') '

1 -

e \E r r )  _  l o ; r \
sinE., 2

e t(0 rr)+

i"P 
- cos^E., )
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8.1

en(uo) * eA,(0rr)

With f the epoch of the passage through perigee:

f i r r = n h - r )

or:

^r  _  s^.n v ,
rrrcr - -: -(tt - f)

v r  s c t '

0s1 , Eg1 , M' and hence also Z are poorly determined because of the factor e of the a-

quantities in the respective left hand members of the difference equations.

The introduction of the dimensionless quantities makes it compulsory to introduce a

dimensionlesstime interval

v1

-(t* 
- tt)

5 c r '

which is analogous to the dimensionless time quantity introduced in Section 6. In the
(  v , \

difference equations Alh -1 | then occurs as a (provisionally unknown) scale factor.

\  t c t /

For the computation of points of the satellite orbit we use relative quantities;the order of

computation is opposite to the computation just completed. We start with:

^ ,  s^ .n  v .
w'ck - Mct = 

+l 
-_ (o - tr)

v r  sc t  ' '

or, more general:

-Mr t  -  Mc i  = ;  
; ( t *  

-  t t )

Like before we have:

^(no) = o_?^1"#) . l^('.*) . 1=#]]

o(0ro - 0r,) - o(frro - Ur,)
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8.

Ratios of radial distances follow from:

! - $ - e 2 ) = L + e c o s l c r
sct

3 - $ - e 2 ) = I * e c o s l r ,
sci

3 - 0 - " ' ) = l + e c o s l c *
sc*

t r o  = l * e c o s ? r ,  _
s c r  L + e c n s 9 c t <

_ 1 * cos(g* - gcr)(e cos0cr) - sin(0cr - Ocr)(e singcr)

t + e cos9cr

" ( ' " * )  
=

A

7 + e cos?cr
+

cos 0.0)

e cos9ro
e a(e cos 0., )

a(e cos 0ro) =

I= 
f-e 

cos lrrsin(|ro - 0rr) - e sin |r",cos(|ro - ?rt) o(0ro - 0rr) *

+ cos(gcr - 0rr) a(e cos 0rr) - sin(0.0 - |rr)a(e sin 9rt) =

t  + e c;os?ct
= -e sin 0ro ' t(qro - 0,r) . 

,in %,

o(0ro - 0r,) = (0ro -
,  o(o - t ,) l lu,,1,^["#) .1"['i;)
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8.1

. 

|,*'* 

-

- sin(0.0 -

f -,.,,1 sin s.,

f -,.,,1 cos ecl

^["

^ 

['"

-+) * sin2*., ^(*sJ-l .
savl ) sm gcr 

l

-+l + cos2*., l(ls') ll
scli ) stn'qcl l l

a(e cos 0.0) _ -e(I + e cos|r,) sin0.o o(0ro - ?rt) *
L + e cos9cr

This results in:

^ [ ' ' = ]  =
l .  rcr l sm 9c1

l"o.f "o 
: 
"' 

- *.,.] ^fr' -r-l .
[  \  z )  | .  r . ,u i l

- *"(o,o -g,',-r*.,1 !@l *o@)
\  z  /  s m 9 c l l

z"in9-*;!-,'-
l , in(o* -e" -(r , ,
L r ! \

^ [ " * )r \ )- z))sln (o^,

+ O(e)

- -J- |-r,n1r.o - or, - [.,)^frn --a rl .
srn 9c1 | \ sctvt )

t-  t  
' l

- sin(ocr - or, - zqrr) ]!4 |s m g c l l

1 + e cns?c*

a(e cos 0.0) _
| - e cosflro

a(e cos 0.0) sck

sct

," inoc* - ocr

( o"o - 0., ^(- 
".\) "(,p., )* gosl

\  z  \  z / /  s m 9 c r
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8.

Analogous:

^(r^ tro) _ _ 
a(e cosO.o) 

* 
o(r .otO.,)  

=^f'n 
,o ) 

= - 
r - 

" 
cnsock 1 . 

" 
*"er, 

-

zrinle- lei y= fi=|,''(ry - 0", -(*", - ;)) ̂['' #)
. -"(ry - 0", -,(a^ -;)) #l . on,

" ( ' ' * )
- -2 sin

oro - o'
2 l*(ry-,.,) ^["#) .

.*'(ry l _

e., I o(e.,)
)

19! arra 0o 
- O,\areelementsofthequatemion 0;rowithdic* = e,rrltheupperscore

sc;
again denotes the X, Y, Z -frarne).

- O,o = +[cos(g.o 
- 0r,) + dutc sin(gcr - e.,)]

s c i '

ofi,cr, = ̂ ftr +) 
- d,rc o(0ro - 0r,) * sin(0.0 - 0r,)e] tp^*)v'

\  s c , )

"(t"
t .o )  -
' . , , |

-rrrnt 'o 
, t"

, t * ^["

**-o").

.*"*^(*.,)l
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8.1

If the unit vector er6 in the plane of the Kepler
-->

(P, - Perigee), the componentvectors are:
ellipse is taken in the direction

[Aro 
= s.o(cosO.o + d,tc sinlro) Vro

{
t -

ldr, = s.,(cosO., + E,rc sin0.,) e-

["Aro 
= q;; ^q;; = a(ln s"o) - E,tc o(0"0) * sing* eg] \er.) e.t

(

f oI., = qi,t qr, = (alns.,) - dutc o(0r,) + singci e6l tprr) ero

Now we have, with, in particular, o(O.t) relatively large:

a(ln s.o) = of,r,3) . a(ln s.,) , o(0ro) = o(0ro - 0"r) * o(g.,)'  
\  s c r /

/ o \

a(ln s.,) = oltn :l 
. a(ln sr,) , o(0r,) = o(0r, - 0rr) * 

"(0.,)
\  t c r )

We see that in the difference:

o f t i c * = o l r o - o A .

the quantities a(ln s., ) and o(0", ) vanish, which means that the influence of a-quantities

in a quaternion is smaller than their influence in the separate component vectors.

It is therefore importantto apply methods of (relative) positioningwhich (as far as possible)

do not use single vectors but quaternions.

We now treat the remaining Kepler elements i, O and (<,1 + 0t).
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In Section 7 .2 we used the quaternion:

e,rc = b ,rr 4-,t = -lei 
1"ore., * {,, sin[.,)

vr 
rL 

" ' r ,

The angle enclosed by VZ ffid \rc is i. Denoting the unit vector in the direction

(P, - ^"*-ding node) by ea, with en perpendicularto e2 and drr, we have:

- - 1  - 1
ertC €Z = COS, + €O SIII I  ,  eZ - -eZ

d^, dZ = -(cos i * easini), da = d*cos0 + e; sino

cos i  =  -Sc{errAz l  =  - lF , r rV2 *  d2err )

en sin , = (rucos,f) * 
""-rinlii 

sini =

= -ve{errai l  = -IF,r,  e2 - e2 e^r)

drrdi' = cos( o * ,ct). U,:rsin(<,r * 0rr), A;' = -aa

hence:

hence:

cos(to * 0rr) = -Sc\e' Ao\ = - * do drr)L , -
2\ect  

ea
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8.2.1

s in i 'a( l )

^( 'n)

1  r  , r
2L \e , rc )  

ez  *  ez  ̂ \e , rc ) l

(-ef sinO + e; cos0) a(O)

en . .  a (O)
2

, t-  e Z  ̂ \ e v r c ) )sinl .a(eo) + en cosi .a( i )  = - |1"{U,rr1 U,

-sin(ar * 0rr) a(<,r + 0rr) = -||ar, ^Fn)

* \v") en '

* t (en) er,  *

l

ea o(ect))

1, -  1 r  -  ,  , r
ecr  =  

;4cr  
o \ec t )  =  

sc r  t -461 
a(m scr )  *  t \4c t ) l

r  ;  , ,  , l
o\eq)  =  ec l l ^ t \d  -  A(m sc l ) l

8.2.1

Now the linking-up of the theory of Section 8.1, i.e. the coupling with measurements, has

to be effectuated. This concems the measurement of q ̂  and qu. in the terrestrial X, Y, Z-
frame with the origin PM I Pc .

This implies that in the formulas of Section 8.1 qcr must be replaced according to Section

7.2 by

4 c r = 4 m - Q u c

If, on the analogy of the contents of Sections 4-6, syl is replaced by sr this results in:

This concludes the theory ofthe Kepler ellipse. Except for the last equation, it is seen that

all a-quantities depend on olh -t- 
| , o(e.,) and a(e,,.) , the three basic unknowns

I ttt ui ,l
in the determination of the satellite orbit.
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T

l r -  -  -  r -  -  / r -  ^  \  ^ ( l )
l ln s. ,  = ln s,  + a.( ln s,) ,  a.( ln s,)  = - f i '
I
) -  / -  \
l 9 . t  

=  9 r  *  o c ( 9 r /
I
l ' r " , ,  

=€ r lM*oc (e rw)

In the coefficients of the difference equations it does not matter whether quantities have and
index M or C, but for the a-quantities the following substitutions have to be made:

I
I 

the three basic unknowns

l

scr) = a( ln s,)  + a.( ln s,)

. , )  =  ^ ( q t )  . o . ( q , )

r c )  =  t ( e , w ) * o c ( e , w )

[^ t t

1^1t
Io(",

= ̂[' 
#) 

*B'(')

"["*) = 'B{\ -^[" 
#)

hence:

^l,* -,]
\  scrvf /

It is now clear why the influence of q*, * 0 has not been discovered;it is hidden in the

basic unknowns. However there,is a relationship between the a.-quantities which will

deform the results of computations if it is not taken into account.

A good linking-up of the theory therefore requires the introduction of six unknowns

"f" -".l
\ ,,,i / [tn'""

and lcomPonentsa(er) 
lor n*,

^\e,w)

To effectuate this. the difference formulas of Section 8.1 will be rewritten.
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8.2.1

"[r
vo \  _

n')
{n Vo) - 2a(1n v,) =

_ B{,) . ^('" t L )

t r" l  )
^ [ ' " * ) . i

n=2
^(uT')

Note that the right hand member contains Br(t) una not Bo(1) . for onfl4I see the sequel.
\ sc l  /

^["Y) 'l'r".^["#)]

e \ort) 
= - sing., a.( lnsr) - cos0.,  ̂ .(g,)

sino., "lt +l - coso., o(61
I  t tui , l

According to Section 7.2 we have:

a. ( rns , )  =a*rT.Tu* ,

^.(e,) =-d,,+ Tu,,
Vr, - er, = (coslcr * V,rc sin0.r) e.

"o.(e., - +) . ",r, sin(er, . t)l*,
-sinO., + d,tc cos0.r) e.o

Hence:
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e^(Lc) = (-sin20' + dutc cos2lrr) rroT .

. + erol-sinhlcr - €,tc cosll"r) +
s l  

v v \

* sinocr^lt +l - cosg.,^(.p,)
I  t ' ' i  /

(-sin2lr, + 6utc cos2lrr) ero with - d,rcA;; = drot;

= ero *"(zor, * I) * r"n .- , in(zr'^ o \ -
\  4 )  " u . z  \  

- ' * Z ) = e s s * 2 s ^ t !

Now:

Analogous to the derivation of e \?rt) one obtains:

88

e a(9r r )  -
qrr)

t i -

-  cosg" ,  ^ (g, )

"'f ,0.,,",. t
sing","[ '"#)

. '^[ '#).- u,,ltaf)

. l^ ('"
^(fro)

, , ) *  ̂ ( r ,  -  r ) l l
s , J  t r - T  i l

.'^('"#) .
t \ to -  t r),,,1 *

s r /

e",; 
l:r{')
.l^('"

o(0ro - 0r,) = (0ro -

tt - ti



These formulas show that the coefficients of the three components of euc are entirely
I  t t  l  - '

different from the coefficients of alln -l and a(e1) .

I  t ' ' i  )
The same applies to the coefficients of \qrr) in the formulas for r (i), a ('fl), and

a(co + 0.r). We here restrict ourselves to the formula:

"(d,) 
= ar,l-q;l quc * B{') *

* al,vr - a(lnsr)]

The (relative) influence of Quc on the satellite orbit can be read:

along track from a(0.0 - 0r,)

cross track from a(i)

8.2.1

-rin(0"0;e'' - 0,,) a.(lns,) - *r(ry - g",) o"(e,) =

= -r"{i,* P* - rr^) . a.,"*,(!sz} - r'^)]r^ Tl =

= . zs'{;", .+ - ('* i" -rr^)( '^(t"'D Tl

"(," *) 
- - 2"inoc* ;oc,lr*{"r.* _{,0),,_,,,,1

.,,"(ff - 0.,) ^[', #) . *"(ry

I
Quc I
t t J

-  g . , )  
" ( * , ) ]

radiar o"- "[t't)
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8.

This influence is clearly not negligible. Even 
'tf L Ue is of the order 2.10-7, an appraisal

s1
which is sometimes mentioned in relevant literature.

In the computation of a satellite orbit Q74s remains unknown and consequently must be
taken to be zero.In Section 8.3 possible appraisals for q* will be discussed.

8.2.2

In the second part ofthe difference equationsjust treated, i.e. the part which is independent
of Quc * 0 , there is another problem. This problem concerns the compound quantities,

occurring as such in the computation,

p
- ^ l

L

S '  V '
l r

v,- vl

i '  i ( t r  
-  t ' )

computation of satellite
' system, on the analogy

orbit segments between updating epochs is
ofthe Sr,r,- ryrt.- in terrestrial physical

in which p,

Splitting up

V and t are scaled by the respective coefficients in the compound.

the a-quantities results in:

^ [ " * )  = a 0 n p )  - a ( l n s , )  - 2 t ( n v , )

^(^#) {nvo) - 2a(rnv,)

^[ ' 'a,u- , , ) )  = 
++-af lns,)  

+a(rnv,)

If now non-zero quantities a (ln s,) and a (ln v1) are introduced, this means that the scaling
of p", V and r is changed. It is an arbitrary interference which is not determined by the
computationof the satellite orbit, because only the a's of the compoundquantities occur in
this computation.

Therefore it seems reasonable to put:

a ( l n s , )  = a ( l n v , )  = 0

This means that the
executed in un {,r,
geodesy.
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8.2.2

Dimensionless quantit ies

Terrestrial gravi metric system Satell ite orbit system

Sr,n.,

Wk_ r, ' W
tr 9r rk rr 9r

p
rrt9',

s",r,

vk
v'
p

s, Vr'

Vrt gt

!Y.s
r''9l

r l  9 t , ,
rr 9r

rr'll,u'
lr 9r

w
s, sr '4,uu
sk v,'

vt
s1

vk ,u  r r  V ,u
\4 g, rk

ftVt, u _ Ir

rr 9r rk

rr9k,,  
-  r '

lr 9r rk

rttl-t, ur, - r'
rr 9r rk

( tn-  t ,  )

Figure 8.2.2

If, when updating, the values sl and/or vt
quantities which have been introduced
cautious with interpretations.

v*,, 
- s., vr,u

v l s k V

s*i*,, 
- s' srV,,

vrt sk Yr'

S.'Il, u,, -
V,,

( t *  - t , )

are altered, then in principle all
are altered as well. This is a

the dimensionless
reason to be very

9 l
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There is an interesting similarity between analogous quantities in the two S- systems, as

shown in figure 8.2.2.

But a curious problem remains, for which we return to the situation of measurement and

computation of Section 7.2.
In Po one is dealing with the terrestrial gravimetric r, g- system. Assume that Po is also the

datum point of this system. Then we have:

w o  = - v - h . i r f , )
toro ,3s,\ 7t " )

In this system the following is valid for the satellite point P':

v ,  = - vLh . i r j ' ) ' l
toSo ,igo tr\ 7t 

' 
)

Now according to Sectio n 7.2, \ is determined by measurement and computation in the
fo

terrestrial geometric S-system. Or:

v ,  = - ! -h . ia j , , ' l
stio ,r'S, \ ,1 )

If now one assumes the fiction that grlgo might be measured, then in the terrestrial system

one can write:

v\terr) = -2(,. irJ,,)
srSr r, 's, \ 7=t 

' 
)

By now applyingthe correctionfor q1,ag I 0 one obtains in the satellite system:

vGat) = egf, . irl,,l
2 2 l u - ' l

V l  S t Y l  \  n = L  /

If it is to be valid that:

y(tet) = V[""tr, l"("rr) = *(sat)

then the following condition must be fulfilled:
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8.2.2

s ; , r = v t z ,  o r :  . l q = 1
\ tt 't1

so that also: t(1"") = 1(sat)

Unfortunately, g/go cannot be measured (or it cannot be measured directly). Therefore one
has to be aware of a difference l) in scale between, on one hand pc(t"") , [z(tert1 , t(r"") ,
and on the other hand pc('ut) , VGat) , I 

(sa0

Remark (added in proof)

The choice of the satellite orbit system was made some ten years ago. Since, direct
measurement of the modulus of the velocity vector 7 ....r feasible and it is interesting to
look for the consequences. For the modulus vo holds:

z  ( 2  1 \
v* = Pl ^ 

-  
_ |

\ sc t  a  )

or rewritten:

( r o \ '  _  p  ( n  t r ,  r . ,  \
l _  l -  ^ t L -  - ; l

\ ' r /  s c r v i  \  t . o  o  I

Hence one may conclude that in satellite orbit computations the ratio of moduli of velocity
vectors takes the place of the ratio of moduli of gravity vectors in terrestrial computations.

The other important ratio, the ratio of (radial) distances, forms part of both the satellite orbit
system and the terrestrial system.

2

Comparing the denominator of 
\ 

witnthe denominators of mos t Ap- and 
[Zr 

- 
] 

" 
l

v r  \  to  t )

quantities (see Sections 4.1 and 4.3) in the second column of Table 8.2.2 shows tnut('o)' ,
| t Y r l

t) The difference cannot be large for, according to Section 4.1 and 8.1:

l t  * 1 =  u  .  2
z  z ,  

n e n c e :  s l 8 l  = v l

st gr Jlvr
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but not 3, ,, an Ap-quantity. The correspondin f(nr - ! ,rl-o*ntity becomes (the
vr \ rk )

equation relates to P. as origin):

( Y t \ ' - t t ' . 1 =  t L  s c 1  s c 1  - s c r c

( ' t  , l  sck tcrr? o tck

sothat inthesituat ionofanear-circularorbi t theinf luenceof 
P 

^ f-O U) isalmost

neg l ig ib le .  s r , ' , ' \  a  )

This is reflected in the difference equation:

which gives a connection with relevant equations in Section 8.1.

( v , \ 2

A possible consequence of the quadratic character of I j | .uy be that in Table 8'2.2 one

has to replace: \ vt 
/

vk,u 
_ 

s7 vr ,u

vl ,sk vl

by:
vk ,uvk , *  

-  
s1  v l ,uv1 , .

2 c 2
v l  v l

But this means that in the first column of Table 8.2.2 and in Section 6 one has to replace:

,Ft& 
rk

v 7 , u

tl"8t

by:
vk ,uvk , *  

-  
t l  v l ,uv l , ,

r,t$t rk rrSt

in agreement with the rewritten mechanization equations'

Yet the significance of the new quantities remains unclear.

v, r.
K , U  r

^( ' ' ;)  =-a,ntH)

94



8.2.3

8.2.3

It is an interesting exercise to rewrite some formulas for higher order terms in satellite orbit
computation by means of the dimensionless quantities used in the foregoing. In doing so,
the difference between P, and P" can be ignored. For simplicity, the index I is left out as
well. The following notation is introduced:

s t  = s  r v t  = v ,  - - A t  =  p ' ,  e ,  =  I
srvi

L = a '  I = v ' ,  
t "  = i ' ,  € = € ,

's1 ,? v7

0 t  =  0 ,  E t  =  E ,  f r r =  f r  ,  ? ,  
=  r ,  i  =  i , , f l  = , f } ,  6 )  =  0 )

One then obtains:

.  a -

" l L a _ s m - pP a  = - * r ; =  
L - *

/ \V,

i ' (o ' ) '  = l+: l  = 0r 'a ' ;n '  = $
\ s u - o I  1 L - e "

d l n a '  , d a '  s  d a

d l  
= o  

a r ' =  
" r d t

d" ,  =  z rk
dt 

--  
dt

P u t :  V = L * R
s

in which R is the perturbative or disturbing function, again with:

R n l-  - . 1 {
,,

v -

then e.g. the following holds:

2 AR 2 0R' av da dlna'  av-=--------=
na AM n'(o') ,  aU s dt dt '  s

or:



8.

dlna' gE = z(t - 92)k an-
aM sin <p AMdt ,  n , (o , ) ,

Similarly one can write all Lagrange planetary equations in dimensionlessquantities. Using

an elegant notation due to J. Kovalevsky, one obtains:

d

dt'

lna'

e 2

I

o

o

U  - " ' f

I

sin g

0 0

0 0

0 0

0 l2 ( r  -  e 'z ) l

-2 ( t  -  ez )h)  l -2 (1  -  e2)3n l

0  0  o  l 2 ( 1  - e z ) v ' l

o  o  l - 2 (1  -  e2 ) l  [ 2 ( r  -  e2 )3n )

0 [- msec i ] [coti] 0

[coseci] 0 0 0

[-cot t ]  0 0 0

0 0 0 0

6R
6tt r'

6 R '

6 e z

tR
6 i

6 R ,
to

6 R ,
5 <,r

' R ,

6M

It is seen that a'has been replaced by ln a'and e by 
"2,like 

was done in the difference

equations of the elements of the Kepler ellipse. Note the nice anti-symmetry of the matrix

elements:

( 1 . 6 )  =  -  ( 6 . 1 )

( 2 . s ) =  - ( s . 2 ) ,  ( 2 . 6 ) =  - ( 6 . 2 )

( 3 . 4 ) =  - ( 4 . 3 ) ,  ( 3 . 5 ) =  - ( s . 3 )

A second example raise questions. They concern the replacement of the set of Kepler

elements by sets of canonical variables, viz. the Delaunay set and the Hill set. We follow

here E.M. Gaposchkin in his "1973 Smithsonian Standard Earth (III). SAO Special Report

No. 353", p. 127. The curious aspect of these sets is that the variables have different

dimensions. Their replacement by dimensionless elements, as literally as possible for

comparison, results in the following:
for Delaunay variables:

I  =  M  ,  L '  =  A " ' o ' ) *  =
smq

( r  -  
" ' ) "

g = r,r , G' = lp' o'(1 - 
"t)l '" 

= sin <0

h =  Q,  H '  =  lp '  o '  ( I  -  r ' ) ) "  cos i  =  s in f i  cos l
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8.2.3

for Hill variables:

r  = t - e s i n E  
- d l n a ' = e a ' L '  

s i n . E =
a'  d t '

= --: - a' sinfi sinE
$ -  

" t ) *
p = a + 0 , G ' = G '

h = O  , H ' = H '

The dimensioning is now in perfect order; it is a question whether this has any practical

significance.
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9.

9.1

We shall now sketch the positioning of points on earth by satellite measurements, in order

to examine the influenceof P*P, I 0 on this operation. To beginwith, we considera

single satellite; the indices i and k from Sections 7 and 8 for satellite positions are

maintained as lower indices to the index number of the terrestrial point involved in the

measurements.

Pn 
n'

satel/ite__ Pn,_
--\ tr

h

,t-----
."r '  \

. " i

'rl':"'

Now assume that in P, a series of pseudo-distances(i.e. distances with an unknown scale

factor - I ) has been measured, as well as a series of spatial directions to the same satellite

points. Because nowadays direction measurements are no more practised this is a temporary

assumption, with, for simplicity, the assumption that these directions are defined in the X,

Y, Z-frame. Consequentlywe in fact assume in Prthe measurement of a series of pseudo-

vectors to satellite points Pi-t , Pi , Pi*t , ... , Pk.

A further assumption is that this series of pseudo-vectors is somehow reduced to two

pseudo-vectors 7nni und ennr, , preferably with approximately equal norms, hence

s n n ,  o  s n n o '
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9.1

Thus one obtains a bird's-tail construction (the bird a swallow).

Qn,nn* = q^rrq;:, follows from measurements, Qn,cro = QcnoQcn, follows from the orbit

computation.

Qn,cn cdn be computed, and the position of Pn follows from:

Qcn = Qn cnQcn,

For the computation of Qr,rn one starts from the central condition with centre P, :

QnoncQr,rnoQrnn, = L

or:

Qn,nnr Q,cnn, = O;:,, = Qcn,o (a)

Then the net-condition in triangle Cnni

^ - 1 . - 1
Q c n  

+  4 n n *  +  Q n o c  
=  U '  Q n n r Q n c  

=  r  -  
Q g n o Q c n
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Q c n n o = 1 ' - Q n c n *

Similarly the net-condition in triangle Cnn, :

Q c n n , = ! - Q n c n i  ( c )

The central condition with centre P. gives:

Q^|r, = Qncn* = Qn,cnoQncn, 
(d)

Substitution of (d) into (b) and then with (c) into (a) gives:

Qn,nno(r - Q,c^,) = 1 - Q',cnoQ'cn,

or:

(Qn,rno 
- Qn,n,o) Qnc,, 

- 
(l 

- Q,,^,0) 
-- 0

(ol:flr-a::IYr)) -(r - o:::":r))af), = o

This is the basic relation of the bird's-tail construction.
(sat) means: computed from the satellite orbit,
(instr) means: computed from measurements,
(?) means: sought.

But there is a snake in the grass. If one starts from O::I)r then automatically:

,ffi* ' "f1')
N"* pjlfii) ,nuy be freely translated, and rotated aUout eJll',u) . But this is not sufficient

for the spatial connection to Pj:"' and P$*) . This connection is subject to the condition:

(instr) (sat)
ei,nno r €iinr'

or:

(b)

or:
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9.1

or:

,::;":r) . rf;i, rl::':) rl;l' = o

I - Qn,cn

"lllYr' "lii? * "l'f;) "l'iYr) 
= o

With this conditional equation (four real equations having the rank l), the rank of the above

basic relation is three, exactly enough to compute the three components of qcn -

For our purpose we choose a slightly different way:

If the angle enclosed ay ,ll1)r *O ,j,"i'Jj) is v , then one must also have:

"f,X":r) "::i)r' 
= 

"o.u 
* ei,?sinv

,:::,Yr) = ("oru * 
",[Tl)sinv) "lfl)r

It is further assumed that this expression is substituted into the basic relation, with as an

extra (nuisance) parameter the angle v . The basic relation then provides four real equations

with four unknowns. The indices (instr) and (sat) can then be omitted.

Now proceed to the difference equation of the basic relation, with a reduction to aII-

quantities:

LQr,c,o -  oQ,,nnr(I  -  Q,,c,)  -  
(1 

-  Qn,nno) ^Qn,cn = 0

with:

l )

= 1 - QcnQl*, = (Qc,, 
- Qc,) q;, = qnn,q;,

(! - en,nno) = 1 - q,,oq;:, = (Lnn, - en,r) q;:, = e^rn,e,),er^ei)

Premultiply Ay ql^r and postmultiplyby qrn:

l) When applying quatemion theory to analytical photogrammetry in the sixties we met a similar

problem, in which afiention was focused on direction measurement. M. Molenaar finally found the cause.
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l - r
\Qc"o

- (a i) ro,, r)(a,) o "Q,,, rQ nn,) *

- (a i) ra,,, r)(a,,Ia r,)(a i) r Q n,c,e c,)

^[n,cno - Q{"* onr4no - Qfron,Qnlnc ofin,c, = 0

oQr,cnoQcn,)

= 0

Solve for Lnn,cn :

^[n,cn = eA^,Qnlnrr(onn,cnr 
- Q:,0, onn,nnr)

^nn,cn = Q:,,,(Q"T"r, ̂ nn,cnr - Qrro, onnpno)

As an example we take a GPS-satellite at an altitude of three times the earth radius, in the
zenith of Pn .

Pn,
f lll.lXn'n*"

60"\.// /

/:

//

//
60"/ /
f 7 /

t'7
,ll-/zt"

Y''

r02



9.1

Q:n^, = 
l l**50' 

- e,..,o sin 15o']

Qi , r ,  =  
+fcos(-66 ' )  

-  (  -en,cno)s in( -66") ]

= Qf,,non

a n d w i t h :  L  * '  :  h  =  1  *  L  -  4 :
r h r

Q[, , ,Q^l^r ,  = +[-o 'az -  en,cno'  0 '50] lo '+t  -  e,r ,o '0 '9 l f

= +l-O.Sr + en,cn..  0.59]

Now we have:

/ " \
^[n,cno = 

"[t t) 
en,cno ^(ocno - orn,) *

* sirqn,cno e/no Len,cno ecn,

Combination of the last two formulas gives, with

en,cnr e/ro Ler,cno 'rn, = - e/no en,cnr Le.-,cnu ecn, i

|on*,, 
= l-0.r, ^ft' :t"l * o.5e

L l  sc, , )

| ( t-rl* e,,c,ol.sg "ltr i,,
* sifldnicnr,r.j-;-o.at -

* influence onn,rno

+ 0.81 o( \ rno- , - , ) l  .

059  e  n , c ,  o ]  
^e  n , cno '  r n ,  *
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The factor 4 is an extreme case, for e.g. Lageos the factor is 2.
But there is another effect when q., is computed:

^nn,cn = qil oqr, - ei), oqr^,

or:

^Lcn = Qcn Ann,cn * Qn cn ^Qcn,

In our example:

LQcn = f€cn ' Lnn,c, *
i(o.nt 

+ en,cno ' o.4l) tqr,,

i.e. the influence of tQcni is reduced by a factor 4.

However, the example has been elaborated mainly to appraise the influenc e of Pffi * 0 .
From Section 8.2.1 follows:

o(0ro - 0r,) = (0ro - e.,; lrr{1) - ...]

"lr" +l = - 2rin oc* 
^oci lro"{a !*\ . l( ' . , )  2  L  I  ' ' J  l

with in our example:

[P,o 
- 0,,) = o'84

I

1r, , " ry=0.81
or:

jon,,r,, 
"(T) 

.

The conclusion is that the influence of PrP, * 0 is clearly not negligible.
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9.2

9.2

In this section we shall investigate the possibility of determining qMg, leaving all other

unknowns and disturbing influences out of consideration.

l''
\

P

Q n k

Pil MC
Pc

The first method consists of fixing the satellite point Pr_ from a number of terrestrial

points Pn, Ph, ... whose coordinates are known; this res'ults in the quatemion Qhnn, .

Qrno i" computed from the known coordinates. Qn.r, follows from the bird's-tail

constructionof Section 9.1. Then we have:

Qunn, = Qon, Qrno

onMnn,= Lnhnn,*  Lnunh

Q M n n , * Q r , ' * ^ = I

aQunn, ' Q;,t*^ oQn,4r, Qr,1un

Premultiply bV q,), and postmultiplyby qnr:

Then:

(a,), oQ*^,, en*) Q*,,) Qit,Qnu = o- Qn),er,,\ei'^ oQ,*,
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9.

olMnn, * Qn|,u tlTn,*n = 0

Now we have:

ailr,Mn = eirn ^Qun - Qu1n, Leyn,

The approximate value of euc: 0, hence:

( ^
l 4 u n  

=  Q c n  *  Q u c ,  L Q M ,  =  L Q c n  *  Q u c
{
I

14u", 
= Qgn, + Quc, aQMni = tQcni *  Quc

In coefficients of aq-quantities the indices M and C can be interchanged, in fact all
approximate values are computed with respect to P, anyway. Hence:

- 1 - 1 - 1 , - 1
qu)teun = qiitecn * ei^euc , analogous 7iln,teun,

SO:

An*Mn = afi*c, . (ni - ai),) a*

= ^nn,cn * q;:,(Qc,, - ac) ai)au,

enni

and with:

Q^T,* = Qf,,,c = ai,a,.r'

(r) ^r'Tl, * enT,c^rlt:i) * qi)quc = o

with (terr) : terrestrial and (sat) = computed from satellite data. This is a condition

equation, whose second term contains an indirect influence of Quc and whose third term
contains a direct influence of Quc.Both influences have the same order of magnitude

because:

N " { e , T , , r l = r _ ;

Check:
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9.2

onMnn, = q;:,LQnni a^13q,, - auc)

= ^ncrn, - q/rq*,

oncnn, * QnT,cnlIn,rn = 0 , correct!

Yet (I) does not offer a practical possibility for estimatinE Quc , because the sharpness of

definition of aII*nn, is certainly not better than l0-5 or 10-6, whereas nowadays the order

of magnitud 
" 

of 
'*' 

must be deemed to be the same or smaller.
rl

Pn,

\ '

\ \  I

5'-

Pn\

1 /
ri

\ l i
\ l i

In the second method a bird's-tail construction is applied in two terrestrial points Pn and
P^ of the same terrestrial network. This provides the quaternions Qn,cn dnd Q^,c*.

As an example we think of the network of the USA with P, and P. at about 40" latitude.

The maximum difference in longitude is 40" , so that, with cos 40' = 0.77,

o dnc^ - 0.77, x 40' = 30"

Qnu^ is computed from the known coordinates of Pn and P. , and compared with Qnr^ :

,mi
P,
a
t\
l \
I

fi*

Pm
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(II)

Anru^ = qh ^Qu^ - Qiln ̂eun =

= q;^(Mc* * euc) - alpqr^ * Quc) =

= ^nnc^ . q;t*(Lc, - qr; q;Quc =

-Qn^

= ̂ nnc^ - QJ^,ql,q*,

For the quatemions around P. we have:

Qnc^ = Q^,c^Qn,c^,Qncri, Qngn, = Q^,L^

with Q^ ,^ ^d Qn,rn from the bird's-tail construction and Qn,c^, from the satellite orbit

computation. Consequently we have:

" [ l : ]  
= ( ^n^ ,c^ -  ̂ n , ' n ) *  ^nn ,c^ ,

^nt";) - "rte) * Q:^^qi)q*, = o

(II) is again a condition equation; here all terms containing the index C are influenced by
quc in the same order of magnitude because:

N"{oh , \_+= t

Alas, the conclusion is the same as the one reached for (I).

For the third method we add a pointP, belongingto the same terrestrial network as P, and

P^,withfor example Pr Pn r P,P-and possiblyPn - IpP;. rhe birdi-tait
construction in Py is once more applied. L

For the quaternions around Pn we than have:

Qtn* = Qrr^Qi,, ontn^ = ancn^ - oncnt

with in the triangles Pn Pc P. and Pn Pc P, respectively:
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or:

Qcn* = ! - Qnc^, oncn,. = Q^'^,' annc^

Q c n t  =  1  -  Q n c t ,  a n c n t  =  Q J , '  ^ n n c t

Qtn^ = (1 -  Q,r^) (L -  Q,r,)- t

"tr,$? 
= Q^'^, ' annc^ - QJ"' ^nnct

For our USA-example we then have:

N"\ah, \  -  f i=2,  N"{Q,T,}  -  f i=+

Again there is an evident deformation of rlll$f W q*, * 0.

Qp*canalso be directly comprled from the tenesfiial networlq the result being denoted by Q,fl)'),
so that the condition equation becomes:

onl ' : ' ; ) -"n,$f l=o

but for the same reason as before with (I) and (II), this is useless.

However it does make sense to determine Qn^ from VlBl-measurements, for which a
sharpness of definition of l0-7 to 10-8 can be expected, whereas there is no influence of
quc * o'
Then the condition equation takes the form:

(III) a l , f r e I l - ^ n , t ) ] = O

An advantage of this approach is that one is not restricted to the use of points Pn, P^, P1
belongingto the same terrestrial network. Points can be chosen anywhere on earth and their
number can be arbitrarily increased. However, a remaining restriction is that one must
always operate in the X Y, Z-frame used for the launching of the satellite because otherwise
the definition of qrs is lost. One may of course introduce new base points by means of a
similarity transformation, butthis also implies a change of P*, so that in fact anew qMC

is introduced by the transformation.
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The indiscriminateconnectionof sets of VLBI-, satellite- andpossiblyterrestrial coordinates

which is sometimes met in the literature does not seem to make much sense, and as far as

the interpretation of mutual differences is concemed I think it can even be misleading.

Finally it must be noted that there will always be a residual influence of euc, even if the

estimate is corrected for. This residual influence will depend on the variances and

covariances of the many unknowns to be estimated in the total adjustment; the order of

magnitude of the resulting residual deformation cannot be predicted as yet.

9.3.1

In the Sections 9.1 and 9.2 the building stones have been broughttogether for examining

the influence of qrr l 0 (and, naturally, other unknowns)on relevant a-quantities. We

must now focus on more realistic observable quantities, i.e. length ratios or series of

pseudo-distances to satellites, as the case may be.

Nevertheless we adhere the bird's-tail construction, in which from approximate coordinates
s..

approximate values are computed for -l , an,nro and en,rnr '
sn,

This implie s that tan nnr ffid ^en,nno become extra (nuisance) unknowns in our problem.

Q".)^r)= "(', #)
en,nnr L(n,nno)

or:

Sc\Q\ + comPonent Ve\Q\ l l  en,nno

sr{Q,Tr, ^[n,cnr - QnTo,, Qnr,,c t n, , r , \=  ^ [ t t
snr* 

l
t r " , )

Now we solve alln-rro from the difference equation of the bird's-tail construction; the

quaternion notation Q will temporarily be used as abbreviation:

Qfrr, ^[n,cno - Q:ro^, QnT,nc ^nn,c, 
*rQ 

= onn,nnr

Elimination of, first, ^en,rnoand, SeCondt Ldninnt is effected by the computation of

components of nIIn nn,. :

| (Q 
* '^, ,^r
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9.3.2

Besides quc ffid other unknowns, the three components of a qcn appear in this equation,

namely via tfln rn If one considers only the latter three unknowns, they require the

measurement of three length ratios. The measurement of a number of length ratios to the

same segment of a satellite orbit is useless, because the length ratios will result in difference

equations having practically the same coefficients for each unknown, so that the solution
will be indeterminate.

One is therefore compelled to measure length ratios to at least three non-parallel satellite

orbits, i.e. one length ratio to each orbit. In the case that different satellites are involved it

is to be assumed that the launching data of all these satellites have been determined in

the same X, Y, Z- fra,mq otherwise there is not a unique q rr. This assumption is valid e.g.

for GPS-satellites.

The reason for preferrin g snnk trn, in the bird's-tail construction can be found in remarks

by P.J.G. Teunissen in his contribution to the Lustrum Book 1990 of the Delft geodetic

students' association Snellius. The point is that in this case certain (time-dependent)

unknown constants, arising from the measuring procedure, can be eliminated.

Less favourable is the measurement of a series of pseudo-distancesto four satellites, at least
onedistancemeasurementpersatellite. Fromthemeasurements snn. , snn* , sn,nt , tn,r. on"

can form three ratios for the computation. But the points Pn, , Pno , Pn, and Pn^ ate now

situated on different satellite orbits; this causes an inconvenient mixture of orbit errors and

besides the above mentioned elimination procedure cannot be applied without complications.

9.3.2

Simultaneous measurements in Pn and P, result in:

1 1 1



with P". =

In this case

Q,Toc ofin,cno - Q,Ton,Qfn, onn,rn

QI^r" An^,c^o - QI^*^,QI*, a[^,c^ =

P^, , Pno = P^o , srN,? small comPared to tnn,

a differential approximation can be applied:

4mmi 4nn, * aQn^. ' oQn^, = 
)
I

Q^mt = 4n-o * aQnnr ' aQnn* = 

l- 
A"*

I

Q ^ c = 4 n c + a Q n c  ,  L Q n c = l

snc and ,sm c.

QI-r, = Qf,r, * tQf^oc, with:

oQ,Trc = q;:, ^rtnrc Lnoc = a^)("a^r, Q,|c - ^Q,rn

-1 
, a,|c p,* - 4^rc) Q,|, a^oc == - 

Qr*n Qn, 
__;

= - Qi,,^ Qfr, Q,f,r,

o^)) a,r, =

= afin,nnr

on^,*^r

and s--. and
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9.3.2

Qf*r, = (t - Q^7*^ o;",) Q,To,

Similarly with tqnon. = O :

o(Qf,*, Qf,,r) = ^Qnlon, Qf,, * QJ,rn, ̂Qf,nc =

= q;:'(oQnon, q;:^, - 
"q'r' 

q;:') 4'on' Qfr'c *

* QnTrn, a,), ("a,, q;l - oq,,, q;:,) Qnc =

= q;:, q,^ q;:, Qnon, Qnlnc *

- QnTrn, eJ, a,^ q;l (q;:, - q,r) a,), %, =

;;

= * QJon^ Qnlrn, Q,T, * QnTrn, of"* o1", Qf,,"

or:

QJ^o^, QI,^, = (r . o;,^) QnTon, (, . Q,r^ Q,L,,) Qf,,,

or:

Now we have:

I n *

N"{o,[^^ o;r"\ = + ;; = i; ^- l  r  +  -  |
/ \  r  )

fn^

, rp n l O r  \ = ' n m -  r
l-nkn,n ) h b_

r
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9.

fn*

N"\ef,,^ e^L,,| - + + = h-+-
;  ( J . \

\  r /

The last norm is largest: \t (, - +'lr  \  h )
The difference of the coefficients muy 

'be 
ignored if after choosing a value for a:

r n ^  r  ! - h  <  o . o L  . a
r h

and, with r - 64.102 km

4_
( r ^ ^ ) k m = J  r 6 4 ' o

l * L
r

In this case the difference of the two equationsmentionedfirst in this section is:

- QJo', Qf'" (^n^'c* 
- ^nn'cn) = ^n^'^*o - ofin'nno

so that the influence of the orbit computation is practically completely eliminated' Further

we have:

L[^,c^ - Lnr'n = onn'- - Lnn,cn = Lnnc^ =

= q;t* ^Qc^ - qi) oqr, = ai) 6qr^ 
- ^Qcn) = qi) 

"q,^

Finally the difference of the equations becomes:

ot

hlr 1 5

I
2
-)

32
43
48

160
215
240

kmfn*
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9.3.2

' Qf,nrn, Qn), o4^^ = ^n^,^*r - onn,nnr

i.e. a relative positioningof P* with respect to Pr.

For the case that only pseudo-distance measurement is applied, we still have to investigate

whether e^,^^r may be replaced bY €ninn* '

Put : Q^,^^o = Qn,nnr * aQn,nno

LQninnt = Qnnt Lnn,nnr q;:, =

t  - 1  - 1  ,  \  - - 1= Qnn*\Q"io tQnnr - 
4nni ^Qnn,) Qnni 

=

- 1  ,  - 1  - - 1- - Qnn* n"rr n:, 
3) 

Qnn, Qn^ Q,n, =

4n*n,

= ' 
Qnr,n* Qnrn- Qr,nnr

Q^,^^* = (1 
- Qrrir* Qno,^) Q',nnr

hence:

with:

fn^

** {Qnn,nr Qnrn^\ = 
i't 

= 
+

;

or, the neglect of ^Qn,nnr, and consequently of (e^,^^o 
- en,nnr) stays within the limits

previously defined.

Now introduce again the temporary notation:

Q;rr ,4rn. ^4n^ = Q'

Then we have:
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*(n' 
. en,nnr Q' ,,,1,,r) =

=  ^ [ ' "  
' # )  

^ [ t  

* )  

en 'nn r (oa^ i i l i l k  ^a ' ' nno )

being one real equation in the three components of LQn^ .

The right hand member can also be written as:

/ s \ / s \

" lm - 'u |  -  
" lrn 

"^" ' l  =
I 

tnn* 
/ l, snn, 

)

= ̂ mfr * 
s^nr - snnr'l - ^tf t * 

s", - s",') -
I r,,* / l. t"", J

= o(t^nr 
- tnnrl 

- olt",  
- t", ]

I 
t,,o 

] | 
tnn, 

)

being the difference equation for the measurement of distance-differences.

sr{e,Tr,, a,}, oa,^l= ^[t"'#) ^[t' 
#)

It6



10.

Ever since I introduced the distance or length ratio as a basic quantity alongside the
traditional angle quantity, I have been wondering how one could form dimensionless
quantities in mechanics. It seems to me that the quantities found now may provide a good
point of departure.

The length ratio presented the problem that in society one only uses the concept of "length",
but this was easily explained because in daily use one only deals with "carpenter's length"
in which the finer differences of scale are not felt.

Something similar applies to the concepts of speed, acceleration and time. Admittedly it is
important for the movement of vehicles and aeroplanes that the vectors "follow" the
curvature of the earth, i.e. follow local coordinate frames, but then the conceptual
construction of the quantities can be greatly simplified. This is particularly evident if only

small areas are considered. In daily life one can then put 
'! 

una & 
"quul 

to l, the
rr 8t

difference between local coordinate systems can be ignored and the factors

can be replaced by some form of calibration. One then arrives at the usual differences of
velocity vectors, acceleration vectors and points of time.

In order to illustrate the importance of the new quantities, an imagined example in satellite
gradiometry is given, by the way a field of which I cannot claim to have any knowledge.

Choose the local x, y, z-coordinate system as identical with the E, N, r-system from Section
6, except for the eccentricity of the origin of the coordinate system.

Assume the possibility for the gradiometer to realize this system, up to a small systematic
rotation error in each of the three axes. Furthernore a small systematic scale error is
permitted, separately for the measurement of each tensor component. It is assumed that the
following quantity is measured (see Section 6):

2 rs* | *,uv
2

v7

ftr,#^^(7)"
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10.

If E'rn represents the spherical harmonics series starting from degree two, then the

following difference equations for measurements in one and the same S",r, -system are valid:

^f{}-l 1 ̂ f+l = . r "l' +l * } (oEo,.. - o8,,..)-l 
,! ) 

'r |. ",' ) 
'o |. 

"/ 
sk

^f{k' l  1^f+l = *1(oE**,-o8,,.,)
[ r , ' ) ' o  l " ' '  )  

' r

^f{+*l - 1 ̂ f+=l = . r: f:r +l * } (o'o,., - oE,.,)
|  " i  )  

' r  l ' i  J  
' o \ " 0  r ' /  ' ' t

"f{1-l 1 ̂ f{+l = : ^f' +l * }(oE*,,, - oE,,,,)
l. "tt ) 

to 
| "t' ) 

to I t''/ rt

^f{}*'l 1 ̂ f+l = .,: l+ +l . } (o'o,,, - oE,,,)
l .  ' t '  )  

t o  
|  " t ' J  

t o \ t *  s r /  r I !

^(i:+") \ "(+l = ,: ^f'" +l . ] (o>0,,, - o'-,'")-l 
'r ' ) 

'r 
| '" ) 

'o \ ' '/ s,.

In a rough approximation we have for the earth as a homogeneous sphere:

, t l o , , ,  - r ? f o o ,  - l ' t l o , o  - t ,
,l ,r' ' ,? s&

t E * = r f , 1 0 , , ,  = t f , f o o "  = g
1 ) 7

vl vr v7

i.e. the influence of scale errors of the supposedly measured quantities in the left hand

members is negligible.

Furthermore it seems to me that the following is valid:
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/ \

I 
o'o - ott 

| 
"li.inates 

a systematic rotation error around y-ixes

I t o  t t /

( 
"'o 

o'Y' )-" 
I eliminates a systematic rotation error around -r-iu(es

\ t o  s t )

2 -  2 t
skLk," = s*L:'vv 

contains: negligible systematic rotation error aroundz-rxes
z z

v l  v l

Conclusion: Under the assumptionsmade it does not seem to be necessary to calibrate the

instrument!

Now it is interesting to compare accuracies with [Rummel, 1986]:
For a near-circular satellite orbit the following holds:

l L  * 1  , r 2 o l t r ,  v ' o l "

t r '  
L  '  '  

'  
t  

, '  s 3

With p * 39 86 00 km s 
-2; s * (6400 * 200) km:

v-  -  1 .4 .10-6 s-2 = 1400 '10-e s-2 = 1+00 p.U.
a

s -

or:
^

t l  =  7 . L o - 4  ( g . u . ) - t
v 2

With these values the amounts in [Rummel, 1986, p' 356] become:

s ' l r "  
o t ' 1 ,  o  _ 1

v 2  v 2

s'1"" = + 2
v 2

' : ! -  =  * 7 . L 0 - 3
v 2

: I - - " 1 " "  - 7 . r 0 - 5
v 2  v 2

rt9
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(  . z n  \  ,

Now write olt'':'| = t o(lur) and put: o(lrr) = constant
\  u '  )  , '  

\  v ' '

If one now requirert { o (1,,r\ s L0-8, which corresponds to an accuracy of half a
decimeter, then: v2 \ ul t

o(f  un) < 1,.4 .  10-5 E.U.

This requirement cannot be met by instruments presently in use.
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1 1 . 1

Looking back I get the uneasy feeling that the foregoing sounds very much like a voice
from the past. There is little of the dynamism that makes geodesy so different from what it
was in my active years. This generation gap is most clearly illustrated by a comparisonwith
the deeper and broader treatises in the book "Theory of Satellite Geodesy and Gravity Field
Determination" (F. Sanso and R. Rummel Eds.- Lecture Notes in Earth Sciences Vol. 25,
Springer Verlag, Berlin, Heidelberg 1989), which came to my attention thanks to Rummel.

Nevertheless I venture to make three final observations:

I. I should like to be young again and develop this lines of thought on the basis of the
General Theory of Relativity. As it is now, the study of this theory is made difficult for me
by the loss of invariance of angles and distance ratios in reciprocal observations of systems
moving relative to each other, and by the inevitable tensor theory, whereas tensor algebra is
not a division algebra. On the other hand there are recognizable problems when I read in
Bulletin G6oddsique (1992, 66, page 65 1)): "the need to define a barocentric coordinate
system with spatial origin at the centre of mass of the solar system and a geocentric
coordinate system with spatial origin at the centre of mass of the Earth, and the desirability
of defining analogous coordinate systems for other planets and for the Moon". How to
execute such things operationally involves questions which have always occupied me in my
work, including the previous Sections, be it in a simpler theoretical framework.

II. A further problem that keeps me occupied is the effect of my idea that in satellite
computations every coordinate system is in fact an S-system with terrestrial base points. I
mention this here in connection with a remark by R. Rummel, observingthat the precision
from the distance between a terrestrial point and an orbit point as computed from
coordinates, is considerably worse than the precision of this distance directly measured by
SLR.

As remarked in "Notes and References", Section 3.2" ,I would not be surprised if in partial
networks for satellite orbit determination and in subsequent establishment of control by
satellite method, the covariance function df, = cso, would give a rough approximation.
Therefore this function will be chosen in order to obtain numerical values by means of a

l) Recom."ndations from the Working Group in Reference Systems
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criterion covariance matrix. Since the three-dimensional matrix has not been sufficiently
analysed, the two-dimensional situation will be used.

Assume that Po and P6 are terrestrial datum points (and usually also the points from which

the satellite orbit is controlled) and let P, be a point of the satellite orbit.

Now consider the two-dimensional situation in the plane through Po , P 6 , P i. If we denote
by o, the standard deviation in each coordinate direction in P,, then we have, with some

approximation, according to [Baarda, 1973, p. l6l]:

(o,cmf = 2lc cm' km -t] [r,, k-] itu, h]

lt,, k-]

We choose c from values found in partial nets of the Netherlands triangulation [Baarda,
1973,pp. 145-147),viz. the round value c :0.5. In the terrestrial network containingthe

datum points this corresponds to a standard deviation of 10 cm for distances of 100 km

between points, being the standard deviation of coordinate differences, or 10-6 . For so6 :

100 km and oo: ob= 0 one then obtains:

s,o km s,6 km so6 km c cm2 km-l oi cm

200
1000
2000

200
1000
2000

100
100
100

0.5
0.5
0.5

20
100
200

The order of magnitude for o, looks about right, although the first value seems too small.

Perhaps this means that the effect of the choice of datum points justifies a closer study.

III. The last problem concerns my doubts about the order of magnitude of the precision in

the determination of quantities in physical geodesy.

As an example the beautiful paper:
R. Rummel and M. van Gelderen - Spectral Analysis of the full gravity tensor - Geophys.

J . In t .  (1992) ,111,  pp .  159-169
incidentally mentions that with the precision of l0-2 E.U. f,, and 1,, "the globalincidentally mentions that with the precision of l0-' E.U. for | 

"" 
, I y, and lr, "the global

gravity field can be determined in six months time with a precision of 2.5 mGal in terms of

gravity anomalies or 5 - 10 cm in terms of geoid heights"'

If we take the example of satellite gradiometry from Section 10, restricting ourselves to the

vertical gravity gradient ! as an abbreviation of li,o , then in our dimensionless

formulation, with s, = st, aod nearly circular satellite orbits (see also Section 4.3):
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2
S ,
-:- a/f.\ -

2  \  J l
vl

2
.9t
-:- a/f, \

2  \  t l
vl

= z j u -  l ) =  7 . 1 0 - 6
I  r ' J

2\

(In fact only the influence of I is taken into account here, but our model requires the
combined influence of l. and l, , although in the following integral formulas the constant

influence of a possible separate a(fr) vanishes).

If P1. is the projection of Pp on the "geoid" through P1 , then we have for the other two
quantities mentioned in our model (see Section 4.1):

= 3.5 L0-6= -2^(h #,). "(" #)^['' ?)^['' +)= ̂('' #-,). ^('';)= 1,0-8

(The reader is reminded that PT like Po is a point on the surface of the earth, and that Pt
is the datum point of the satellite orbit.)

My doubts now are concerned with the difference between the last two orders of
magnitude. I shall try to illustrate this by applying the line of thought of Section 4.4 to
satellite gradiometry, i.e. by taking for S* a surface through the joint satellite orbits.

We consider the following situation: P1 is again a terrestrial point, with an arbitrary
terrestrial datum point P1 ; P, is a satellite orbit point, with orbit datum pointPt ; Po, is
the projection of Pp on the equipotential surface ("geoid") through P1 , including first
degree terms,B(l) so that, as customary in the literature, the count of n can always start at
2 .
Then we have (see "Notes and References, Section I I ") with:

2) For the planned STEP mission, having the satellite at the height of 550 km and a precision of
gradiometer measurements of 10-a E.U. this becomes 8 . l0-8.
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aXlo =

oilo =

oXtj =

-2 dXTo

o*lo

oXlo

-2 tX1o ,  t i r r

"1" #-,). ^(,. ';) - Pr - u,"') = ̂['' +)
"t" *) . ,^[," +) - 4"r, - a-r,,)
,"F +) . u^[," i) 

- u(u,,'r - atD)

* oilo= -r^[, '  
#,). "[ ' '  *) 

- "[ ' . ?)

= - : l l t
4 r  J J  - * 2

= -L rri
4 r J J f i

=+II2

- ("t' - Brt")

+#{(;)'" (f)""t"'} vvo"';.i,, aa,

' 1#4{(;)"t' (f)"t' '} Yv@) oi', da,

tr:+#{(;)'r'' (f)'"t''} v'<', ot,'{^, 4g2

From these iniegral formulas one might compure Jr" 3)-o oftn st 
) ir ueside !

I  W )  l s r i  r '
one also measures 1 *a \ , *hereas the B(llterms must be known. But there is a

s1 ry
restriction: In the example of Section l0 we assumed R - ,i o rr o 6600 km and

r* * \ = 6400km, hence 4 - 4 = * = 1.03.' 
rk 11 6400

This clearly endangers the convergence of the series in the integral formulas, because this
factor is greater than was assumed in [Baarda 1979].

Nevertheless we go on and assume that the random influence of I , tr anA the B (1)-

terms is small compared with the influenc" or | (too optimisr,"* 
"r 

u-ir".ption if the
t 1

global situation is considered). Assume that there is no correlation:
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with:

ooi, , ,  o*,y = d6t l ,  6t i {= 
I ,

+ il Y,"'Yi"' da,

3)
' ;

J  = J

I t l

t t  
{= 

'o ' , I  
*uu

s^2

+ f f daj = r
4 z r  J l

the law of propagation of variances results in:

2 n * L '

2 n + 1

2
o o*rr

="'E t:+{(;)" Y;'' -(;)"";'}'
,;'l'
";'l'

{(;)"";'' (f)"E
n = 2

a

E
n = 2

= d

2
o oXlo

= d
(n + I)2 1n * 212

z
fi-  -2dX1o*  6Y1o

(2n + 1)  (n  -  r )2  Jra)"  n ; to  _  (nY
( n + I ) 2 ( n * 2 1 2  t l ' - /  

' K  
| . ' i ]

3) This simple assumption for the variances is not realistic for situations in practice, as is also observed
in the geodetic literature, but it suffices for our present purpose. In this literature it is stated that the
application of the law of propagation of variances to the integral formulas would not give realistic results
because of singularity,of the Stokes-like functions. By definition this does not necessarily apply to our
formulation. It is true that the Stokes-like functions increase infinitely for i * 1 (see [Teuiriss6n'19S0]),

but in conjunction with this h| and h9 , and consequently o4, approach zero. In order to
r l s l / \

emphasize this we introduce (again ignoring the random influence of olln 1l ;'
ozopnr; = ozognr,; -- T.o ; no conelation \ Jr /

Then the vari ates oX, are correlated; their covariance matrix has elements % J onthe main diagonal,
the non-diagonal elements are Yo i. Applying the law of propagation of variances then gives the same
results as the previously mentioned covariance.
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Now take the average of these variances over the whole earth, taking for

constant uulu" 4. Then we have, for example:
r

M2, = f -  [ [  ; ,  d0,  =- '- oXl* 4zr J J ^^1* ^

R  . R- a n o - a
r k \

#+(+f {";'rl
We now continue by considering only the first term in the right-hand member. (If one

wishes to introduce an average value for the second term, this has the same effect as

doubling the first term.) Denoiing the first term by m2, we have:

*1*rr = & L (R\ , '

@ . r f \ ; )
L

( n  +  ! 2 ( n  *  2 f

(n - r) '
(n  +  l ) z (n  *  2 f

t
n = 2

E
n * 2

6

t
r = 7

i
n + 2

= &

= O ?

(R\z ' ,
l - l
\ r /

(+r
(a)

This follows from our shortened notation. According to [Baarda I 979, Section I '4] we have,

with the fully normalized harmonics R and S :

Yo'^ 'Y, '^ '=;  {YY-Yg}?. l,tt";t lrn .1 en;I ,En;11

so thatthe integral formulas actually contain (2n * L) terms for each '(5" = 0)' tttis

means that (a) has to be rePlaced bY:

€
- )  t r

r i ' -  =  o-  ) ' ," ' ^ V =  L .- - ^ 1 f  
n = L

@

2
fll ^ v-

"' -2 tX1*+ dXTr

-- eE

= c E

(b)
ffi oxrr

- 2

t26

m-zox1r*o*1u = u 
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I  1.2

Whereas the series (a) clearly are convergent for 4 = 1, for the series (b) this already
r p

becomes doubtful. If one assigns the value 1.03 to 1l , then all series are strongly

divergent. This means that the line of thought of Section 4.4 is not applicable. But we can

use the formulas with 4 = L to make an appraisal for the order of magnitude of the

influence of n (this *outt actually imply gradiometer measurements very near the surface

of the earth), see the following table:

R = t
r

n <200 Pp, projection of Po on "geoid" through P1

Conceming mlo filo L06m L06m

tX,,u

o*to

ox1*

-2 tXlo * oXlo

'^('" +)
^f t 'q)

\  8T l

"1"#,)'^('" ;)
^( ' '  

*)

0.53

0 . 1 I

0.35

2.7

0.29

2.1

7

3 . 1

0.77

2.5

7

t 9

2.0

l 5

I do not venture to make a statement about the meaning of these numbers themselves. But

it is interesting to see the ratio between numbers pertaining,o ̂ [,r, 
3) 

*, 
"(tt f )t

this ratio is 3 and 7 respectively, which is much smaller than the previously mentioned

value 3.5 * 102 taken from the literature. Hence my doubts.

lt.2

Two names are only sporadically mentioned in this treatise, they are H. Moritz whose

publications were constant companions in my development, and E.W. Grafarend, whose

publications I have tried to fathom. I owe much to both, although they will not always find

their ideas back in my train of thought. Perhaps my view on the problems of geodesy is too
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simplistic; it certainly seems so when comparing it with the results of research by the
present staff of the Delft Faculty of Geodesy.

Therefore I am grateful to the Netherlands Geodetic Commission for nevertheless publishing
my essay and giving it a place in the series I initiated when I was the Commission's
secretary.

I am afraid I would never have rounded off this publication if professor Reiner Rummel had
not put me under great pressure. I gratefully think back to the many discussions we had,
first about matters of university management, later increasingly more about our fields of
science, as witnessed by several themes of this essay. These discussionsmade me forget for
a moment the heavy task waiting for me at home. I regret that the finishingof this essay for
other reasons coincides with an end to the possibilities for further discussions.

I gratefully acknowledgethe contributionsof M. van Gelderen, who made the computations
for Section 3. I , J.J. Kok, who took care of the computations for Section I I . I and M.G.G.J.
Jutte who made the drawings.

I am thankful to the staff of the secretariat of the Netherlands Geodetic Commission, who
transformed the manuscript into a well got-up publication.

And finally I express my warm thanks to my former co-worker and colleague J.E. Alberda,
who managed to translate my scribble into readable English and in doing so again continued
a cooperation which by now has almost lasted a lifetime.
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Notes and references

Section I

The publications mentioned are:
W. Baarda

- A Connection between Geometric and Gravimetric Geodesy, Netherlands Geodetic

Commission 6, No. 4,Delft, 1979'
- Geodetische aspecten van het werk van Vening Meinesz (Geodetic Aspects of the

Work of Vening Meinesz), in: Verslag van de bijzondere zitting van de AfdelingNatuur-

kunde op 18 december 1987 ter eere van de herdenkingvan de 100ste geboortedagvan

F.A. Vening Meinesz, Royal Netherlands Academy of Arts and Sciences, Amsterdam,

1987.
- Some tentative Remarks on Adjustment Models in Geodesy, in: Festschrift to Torben

Krarup, Geodeatisk Institut, MeddelelseNo' 58, Kobenhavn, 1989'

A valuable compliment is given bY:

P.J.G. Teunissen
- Some Remarks on Gravimetric Geodesy, Reports of the Department of Geodesy, No.

80.2, Delft, 1980.

Complex Il-quantities are first mentioned in:

W. Baarda
- A General ization of the Concept Strength of Figure, Report Special Study Group No

I : 14, Delft 1962 (IAc-Assembly Helsinki I 960), Appendix to [Baarda I 967] see notes

Section 2.

For an elegant treatment of isoparametric mapping see:

E.W. Grafarend
- The Bruns Transformation and a Dual Setup of Geodetic Observational Equations,

NOAA Technical ReportNOS 85, NGS 16, National Geodetic Survey, Rockville, Md.,

usA. 1980.

Section 2

The principles of the theory using complex numbers can be found in:

W. Baarda
- Statistical Concepts in Geodesy, Netherlands Geodetic Commission,2, No' 4, Delft,

1967.
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Notes and references

An indication of the quatemion theory is given in:
W. Baarda

- S-Transformations and Criterion Matrices, Netherlands Geodetic Commission, 5, No.
1, Delf t ,  1973,1981.

Parts of the theory are included and elaborated in the theses:
M. Molenaar

- A further inquiry into the Theory of S-Transformations and Criterion Matrices,
Netherlands Geodetic Commission, T, No. l, Delft, 1981.

H. Quee
- Quatemion Algebra applied to Polygon Theory in Three Dimensional Space, Nether-
lands Geodetic Commission, T, No. 2, Delft, 1983.

An overview has been published in:
W. Baarda

- Mathematical Models,in:25 Years of oEEpE, oEEpE official publ. No. ll.
Frankfurt a.M., 1979.

The doubts about the value of ellipsoidal computations in geometric geodesy since my
paper:
Some Remarks on the Computation and Adjustment of Large Systems of Geodetic Tran-
gulation, Bull. gdod. 1957, No. 43 (IAG-Assembly, Rome, 1954)
have been taken away to a large extent in the thesis:
P.J.G. Teunissen

- The Geometry of Geodetic Inverse Linear Mapping and Non-linear Adjustment,
Netherlands Geodetic Commission,8, No. l, Delft, 1985,

and other publications of this author, mentioned in his thesis.

Section 3

For the literature used in the development of an algebra for a geodetic quatemion theory,
reference is made to Chapter I of [Baarda 1973,l98l]; for results and a further elaboration
see [Quee, 1983]. A valuable supplement is given in:
E.W. Grafarend and B. Schaffrin

- Vectors, Quaternions and Spinors, A discussion of Algebras Underlying Three-
dimensional geodesy, in: Anniversary Volume on the occasion of Prof. Baarda's 65
birthday, Vol. l, p. I I l-134, Department of Geodesy, Delft University of Technology,
l9gz .  t )

l) t aid not succeed in establishing a relationship between the fl-quantity as suggested by Grafarend and
Schaffiin in their contribution and the aII-quantity I am using.
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Section 3

In the present publication it therefore suffices to give some indications on quatemion
algebra regardingthe notation used, supplementedby some new findings. We mainly follow
Chapter X of [L. Brand - Vector and Tensor Analysis, Willy, New York, 1947,19641.

If d, a, b, c are real numbers, the quatemion is defined with the quatemion units:

1 = ( 1 , 0 , 0 , 0 )  ,  i =  ( 0 , i , 0 , 0 )  ,  j = ( 0 , 0 , j , 0 )  ,  k =  ( 0 , 0 , 0 , k )

Q = d L + a i + b i * c k

with:

The (non-commutative) product Q Q' is then:

Q.Q' = (d + ai * bj * ck) (d' + a' i  + b' j  * c'k)

= d d ' - a a ' - b b ' - c c ' *

+ d(a ' i  *  b ' j  *  c ' k )  +  d ' (a i  +  b j  +  ck )  +

[ i i  = i i  = kk = -t  ,
I

I t j  = t r , j k = i , k i =  j ,
I
l j i = - t , k j = - i , i k = - j

i j k

a b c

a '  b '  c '

i, j, k may be interpreted with a dextral set of orthogonal unit vectors, often using the

notation €1 , €2, q(or other indices) for a right-handedorthogonalset ofunit vectors. p is

then composed of a scalar part,Sc {Q\ : d and avector patt Ve {Q) = ai + bj + ck :

Q = S c l Q \ . V e { Q }

The conjugate ofp is defined by:

Q' = sc {Q) -  ve {Ql = d -  a i  -  b i  -  ck

hence:

Q Q ' = d 2 * a 2 * b 2 + c 2 = N { Q }

N lQ\ being the norm of Q .

The inverse is:
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e_1 =#t_

Likewise we have:

{ Q Q ' \ r  =  Q ' r Q r

sc {Q}  =  l t g  *  Q ' )2 ' , -

v e { Q }  = t r @ - Q ' )
2 ' , -

It Sc {Q\: 0 we speak about a vector, denoted by q, hence:

S c  { q }  =  0 , V e  { q )  =  q , Q r  =  - 4

We put:

Nh lq\ = sq

For the division of two vectors q'and q we always choose the order q'q-\. Then the

following is valid:

q ,q - l  =  
sq ,  

l cosg  +  es ing)
sq

with: the angle (q , Q') = 0 ; the unit vector e is perpendicularto plane q, q';

e , Q', e form a right-handedset ofvectors.

It is remarked that any unit quatemion can be written in the form:

unit quatemion - (cosO + esin0)

Rotation plays an important role.
Let:

P = N% {f } (coseo + eosin9o)

Then we have for

Q '  =  p Q p - t

S c  { Q ' }  =  S c  { O } ,  N  \ Q ' }  =  N  { O }

Ve {Q'} is obtained by revolvingVe {Q} conically about eo through an angle

2  o o '
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Section 3

If N {p} = 1, then p will be called a rotation quaternion'

For a vector q with 0o = !, we consequentlyhave:

Q '  =  q Q q - t

ve {Q, } is obtainedby revolving ve {Q\ conically abouteothroughan angle

t t .

Or:
1

+( a - qQq-l) = component ve {Q\ ' en@r Q)

!@ . qQq-') = S, {Q} + component ve {Q} tl eu @r Q)
2 ' , -

There is practical significance in the isomorphy of quaternions with a matrix group.

The orderin g of 9" : PQ'results in:

e,, = d,, * A,,i * b,,j * C,,k = (dd, _ AA, _ bb, _ CC,) +

*  ( a d '  +  d a ' -  c b '  *  b c ' )  i  +

+ ( b d ' + c a ' + d b ' - a c ' i  +

+  (cd '  -  ba '  *  ab '  *  dc ' )  k

Hence the components of Q" can be computed from a matrix product:

d'\ la -a -b -c d'

a '

b '

c '

a " l  l a  d  - c  b

c " l  l c  - b  a  d

Then we also have:

o " l = 1 ,  ,  d  - a
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d, ,a,, _b, _c,,

a" d' -c" b"

b' c" d' -a"

c" -b' a d'

d -a -b -c\  (d '  -a '  -b '  -c '

a  d  - c  b l l a '  d '  - c '  b '

b  c  d  - a l l b '  c '  d '  - a '

c  - b  a  d l  \ c '  - b '  a '  d '

Now the application to difference quantities.

t -

l g  
=  q ' q  ' l  ,  Q - t  =  q q ' - 1  ,  Q '  =  q - l q '

by which the isomorphy has been reached. In an abbreviated notation:

(Q' , )  = Q) @',)

Rotation:

O  =  p  Q  p - t

" Q = p ' o Q ' p - l

0  =  b  q '  p - l ) (p  q  p - t ) - t  =  q '  q  t

q q - r = !  ,  ^ q . q - t + e  ^ e - 1  = 0  ,  ^ e - 7 = - q - 1  ̂ q

n Q  =  ^ q '  . q - 1  *  e '  ^ q - r  -  ^ q '  '  q - r  -  q ' q - r  '  ^ q  ' q - 1

o [ C  =  q ' - r  o Q ' q  =  q ' - 7  ^ q '  -  q - '  '  o q  =  o A o ,  -  o A o

n I I n ,  =  q - l t Q - t q '  =  q - 1  ' t q  -  q ' - t  t q '  =  - o n g

o Q r  =  - q - 1  '  ^ q  ' q - t  q '  *  q - l  o q '

t n n r  =  q '  ^ Q r  '  n r - 7  
-  - ^ q ' Q - r  *  o q '  ' q ' - r  =  ( o t r n ) '
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o[O =  q ' -1  oQ q  =  p  q ' - t  oQ .  q  p - t  =  p  .  o I I9 ,  .p - t

It is seen that rII is not invariant with respect to a rotation.

Finally it follows for a unit vector e, with ee : - I, that:

a e '  e  - -  - e '  l e  .  h e n c e  ̂e  L  e

Considerthe vectors Q = sqeq and q' = sq,€q,and form the quatemion:

Q = q'q t = 
Y (cosgn * ensin1n)
sq

with do : angle (q, q') and eu t €n, t €g a right-handed set of unit vectors; eg I en and eo,.

Then the difference equation is:

tQ =  Q '  i ln  +  -  ? ( -s ingn +  encos ln )  t ln  +  L  s in ln '  oes
sn sq ' ' sq

Now:

,t-, .c

? t-sing, * encos|nl = -e- lensinln * cos|n) ,o =
sq tq

-  Q"o  =  q 'q - ree  =  -q ' "gQ- t

This results in:

o [ c  =  q ' - t  t Q  ' q = o l n ?
sq

- ee ' ole * sinlneJl ^ee ' eq

Now we have:

one * e, ' til.n ' ,;' = (t * eoejt) oln 14 .
Y Y I  sn

-kn * enenenr) ooo *

* 
" inlg(" i t  

oee 'eq * eeed' oee '"0"e')

and with:

Section 3
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- 1  - 1  - 1 ,  - 1
eQeq,- ^eQ ' eqeQ = eq' eQ ' oeQ ' eQ eq =

-1  -1  -1
-  - e q  o e Q  ' e Q e Q  e q  -  - e q  L e Q  '  e q

we obtain:

j l " n n * € e  o n o ' r n ' ) =  " h ;  
- e n ' t r . n

Similarly:

) l ^ r n  
-  e e '  o f i a ' " a t )  =  s i n g n  '  e n }  '  o e n ' e ,

from which oh ! , ole and ten can be solved.
tq

Occasionally, e.g. in the computation of a satellite orbit in the plane of the Kepler ellipse,

it is desirable to develop for aA a form similar to the one for aII.

Choose a unit vector eo in the plane of q and q ', and put:

angle (eo,er) = en, angle (eo,eu,) = qn,

Then:

Qr' .- 
Qn = 0o and:

qe;' = su(cos Qn + ensinqu)

or:

4 = sn(cos gu + ensinqn)eo

q' = sq,(@tqn, * ensin<Pn,)eo

Check:

q 'q - t  =  
?  f * t (  eu '  -  e )  *  ens in (Qn '  -  q r ) )=  O
t u '

^q = q -  alnsn * to 'epnsin'Q, + cosgo)eo o0n * susinqn ^ee 'eo

o L n  =  q - 1  o q  =  t l n s u  -  e e '  o q n  *  s i n q u  ' " ; '  '  ^ e e ' e o
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Section 3.2.3

Some elaboration provides the check:

o[o, -  oL, = (alnsr,  - a lnsn )  -  
" s (oen ,  

-  o9n )  *

* sin(ps, - an) ri ' '  oee 'eu = trrn

Section 3.2.3

For me the idea of the covariance function

dl1 = c to,

finds its origin in a series of interesting papers published in the thirties by the German

practical geodesist dr. E. Pinkwart. For example, in the paper "Zur Fehlertheorie der

trigonometrischenPunktbestimmung- Zeitschrift fiir Vermessungswesen 1940, Heft 16, p.

377 ff .", he writes: .."erscheint es mir zweckmdssig, den relativen mitleren Punktfehler nach

dem Quadratwurzelgesetz zu defi nieren."

First results of my own research, which also used results of Pinkwart, can be found in

Sections 2 and3 ofthe report:
W. Baarda and D. de Groot

- Opzeten techniek van kadastrale metingen (Design and technique of cadastral survey

& measurements) - Rapporten l2e Congres van de Nederlandse Landmeetkundige

Federatie, 7 iuni 1952.

Further research conceming the introduction of the above mentioned covariance function

was published in [Baarda 1973,1981], and complemented in:

J.E. Alberda
- Planning and Optimization of Networks: Some General Considerations- Bolletino di

Geodesia e Scienze Affini, Anno XXXIII, No. 2, 1974.

In the publication:
W. Baarda

- Measures for the Accuracy of geodetic Networks. Discussion Paper IAG Special

Study Group 4.14 - IAG International Symposium on Optimization of Design and

Computation of Control Networks, 1977 ,3-9 July, Sopron' Hungary'

I suggested to combine the results of research by P. Meissl, K. Borre and others into the

more manageable form:
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in which so is a reference distance.

Meissl later informed me that this was unacceptable to him. For various reasons the
discussionregrettably could not be continued so that a covariance function of this form had
better be put on the shelf. Actually the difference with the previously mentioned function is
minimal.

My own research, and also the applications by others, have shown that the covariance
function first mentioned is practically applicable for all forms of terrestrial networks.
Therefore I would not be surprised if this would also apply to newer types of spatial
networks.

Section 5

A sketch of the derivation of the formulas is given in a close connection with [Baarda,
19791, with the conections given in [Teunissen, 1980]. The references to formulas concern
my 1979 publication.

Assuming again that the centrifugal potential does not require a correction, we introduce
according to (4.2.3) and (4.2.6):

^Xrt

oXt*  =  -2 '  oXro  *  o* ro

Then the integral equation (1.8.13) becomes:

do', = d' r, rn(r . 
+)

- "(#, i),oi,o= ^(f* ';)

= # il ( *o*,,. ^{,) (; 1io*,0 i ) * ' *  lo 'o
with:

ark

co,

=*f i  ^* , , ( r r ,  
; r , , )on,

= (+,1 tan('i'ni),r,sin(r''ro')
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Section 5

with {r,,n,)_ the angle of slope Bi in P, of the intersection of the tenain with the plane Po
\  /  t r f k i

P, Pi.

Now solve this integral equation according to Section 4.2,but now including a rr. Then the

corrected Hotine integral formula (4.2.9) becomes:

^xt* = h tt sf;:l ̂xtiddl * (^,- - #

Now the integral equation, according to (4.1.11), can also be

correction ato):

II ts,:,' o,, do,)

Io*,0 = * il (+ox,j * I^*,,)(; + +)do, 
* |o,o

written as follows (with

The solution of this integral then gives the corrected Stokes integral formula $-2.10):

^xt* = B(r) -term . 
+ [l tS,:'' oi,, ddr, *

/ ? f f ^. 
[",0 

- 
* J] 

t{';",' o',d',)

The correction term looks much like the first term in the correction-series of Molodensky,

see [Heiskanen, Moritz - Physical Geodesy - Freeman, I 967, section 8-7]. Our solution also

is in fact the first step in an iteration process.

But a comparison oi the two integral formulas turns out to provide the possibility to

interpret thl conection terms as corrections to potential differences and gravity ratios as

follows:

(ox,o- ort) = + I I t*i ' (^U,' - 
I^,,) on

( o X r o -  o r r )  =  B ( ) - t e r m  +

* -1- f f s{X;,'t l-z1ox,, - ^ri) * ( o*,,- * ",, ' l l ,n
4r r  J l  r ^ , r  

L  
,  , ,  . i ,  

\  
. t  z  - " ) l

Now we can give an appraisal for a,o by approximatingCto:

From (1.8.12)follows ro, < 1300 km ; a reasonable approximation is then:

sin(r ' ror)  -  1,  r j  = R. Or:

c*j = fAl tan(r,,n,),.,  (r,,r i)- = Bi
\ ' o i )  

1 1  r t r 4  \ /  ' I r k i
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In orderto establisha link with formulas from the literature, the line of thoughtof (1.8.8)
is followed. Replace a mountain range by a prismatic form and consider two points P, and
P, , , one on each side of the intersection with the plane P o P 7a Pi , on equal geoid height ft,

hence aX,r, = oX,ri,tan(r,,,n1,)roi, = -tffiVi,n)ro;

Put:

f ,  o f k o r j o r j , = R

(ro,,ro,,) = v , u small on account of (1.8.12)

( i r o )  =  r ,  ( r i , , r o t , )  =  0 ) '  =  t , l  -  u

Using:

R _  1
r * j  2 c o s r o ' r o , ,  2 c o s c o '

we obtain:

co i *Co j  =  ,+ ,  
; (+ . f )  

v  -nB,

the combined effect of P, and P,' on t to .
Denotingthe top of the prism-sectionby 7,, we have:

h , - h -
- u t a n F r = t ,  r * r , ) r k i

A very rough approximation is then:

c*i =, f 4'f '' -^"' 
,

f t , l  R  '  t k r ' ) rk i

This approximation is chosen to establish a link with the terrain or topographic correction
from the literature. See [Moritz - Advanced Physical Geodesy - Wichmann, Abacus, 1980,
section 48]. The formulas show much likeness, except that h, has been replaced by the

much more harmless &0.

The Vening Meinesz integral formulas can now be obtained by calculating the partial

derivatives

(  a  *  d  ) u n o f  a  .  u  )
[ .  - aqo  -aq r  

)  |  
- cos  qk  '  aLk  - cosq r  '  a l r  )
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Section 5

of the Hotine and Stokes integral formula respectively, hence also of a to and consequently

or(c, . ,  -  1c,,) .
rk

Compute as an example

-+ Coi = Dui
-dq*  say

Then we have (again with sin(r'ro,) - I):

a ('-!i\'

Drj =.(+,)' r;!fth+# t*('i'ni),*'

(L)^ ( , A'l 1-r,n1,0,r,) cosao,) tan(ri,ni),*
\ , o i ) l  ' ; i '

and again with r, = rk o R, sin(r*,1) = 
f, 

,

D * j = . r | , 4 ) ' c o s c o , t a
\roi ) 

^r n\'t' ' i)'r,

Now do the same as was done with Cpt . Then:

L

D*j * D*i, =4 4 r l f4l '  .  : : .  f : l l  cosak,,u t^(, i ,ni),*,Lr '*j r*j lt, +; / r*j r*j' \'ot l l

In the same rough approximation which applied to Co, one obtains:

- / n \ o  h ,  - h r ,

D*j= ' l ; ,J * '"0'?

a result which does not have a resembling counterpart in the literature.
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Section 6

The author gratefully acknowledges his use ofi
K.P. Schwarz

- Introduction to Inertial Surveying - Department of Geodesy, Delft, 1983, and dis-
cussions with Professor Schwarz.

Section 7 - 9

Use was made, among others, of:
- Reports of the Smithsonian Astrophysical Observatory (especially SAO Special Re-
port 353, 1973);
- Reports of the Department of Geodetic Science, O.S.U. (especially the nos. 201,
1973, 284, 1978 and 294, 1979);
- Kaula's "Theory of Satellite Geodesy" (Blaisdell, 1966);
- Kovalevsky's "Mdcanique cdleste" in "Levallois and Kovalevsky - Gdoddsie Gdndrale,
Tome IV" (Eyrolles, l97l);
- Nagel's "Die Bezugssystemeder satellitengeodasie" (DGK, Reihe c, Nr. 223,1976);
- Proceedings of the IAU colloqium No. 26 (Torun, 1974) and No. 56 (warsaw,
I e8o);
- Moritz's and Muellers's "Earth Rotation" (Ungar, 19S7).

But it appears to me that most of the publications mentioned are more concemed with the
theoretical side of the definition of coordinate systems than wlth the operational side.

t '
In the sixties, George Veis has on my request at SAO executed computationsconcemingthe
introduction of an r, -vector. The result proved to be detrimental to the satellite orbit, and
his comment was not very flattering for my hypothesis. Presumably the reason was that he
introduced a first degree term in the spherical harmonics expansion. After a long reflection
I now propose the procedure presented here.

Section 10

Publications used are:
R. Rummel, O.L. Colombo

- Gravity Field Determination from Satellite Gradiometry - Bulletin Gdoddsique 59,
I  985.

R. Rummel
- Satellite Gradiometry, In: H. S{inkel, ed. - Lecture Notes in Earth Sciences 7. Mathe-
matical and Numerical Techniques in Physical Geodesy - Springer, 1986.
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Section I I

Section 11

The logarithmic notation is chosen. Provisionally, for all radial distances, also for points on
,S, the kernel letter s will be used. Then for Hotine's integral formula, with integration over
S*, the following is valid:

; f"('" #,). ^('" +)
+il+,2+#{(+)"yo,@) -(f 

)'r,"r| 
r,,r"r -.

dQ,. ; i^('' *) .'^t" i)
Like in all parts of this publication, it is assumed that the rotational velocity of the earth is
sufficiently known, so that tW: a,Z; besides, the difference between the radial direction
and the normal direction is ignored.

A further assumption is that satellite orbits are nearly circular, so that:

. s ,  o s ,  = R

Then the Hotine's formula becomes:

l^f"#).^[''*)]
+ttn+#lfl'l ' yk,@) -y,,(,,1

[ ' o l  
^  I  

)

|  /  o \  /

l o [ r "  4 l  .  z ^ [ r n  1
t  \  8 ' )  \  s '

Yi@) *

(a)

Now the sunmation over r? can be made to start at 2 (a waming for first degree terms!) if ^ [f" ! ]
|  (  ^ \

is repraced bv: l alh 1l - @P - BI',) 1. 
\ 

" 
/

L  \  
t , )  

'  I )

In the same way as the so-called integral formula of Hotine is the direct solution of the
integral equation (4.1.8) in [Baarda, 1979], the direct solution of the integral equation
(5.3.4) in [Baarda, 1979] is, after re-writing as Hotine's integral formula:
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Finallv we tak

. ' ^ ( ' "  
; )

$  2 n * t
? "  n  + 2

oft,,
t,

_ 1
4rr

e (b) - 2(a):

-2 ̂hn Y!\
I  wr)

+ t t 2

8*
o
o l

It

IIN

{( ; ) '  

Y,@,

l,^('" +) .'
r,,",1 y'@) *

^t" ;)l*,

{(*)' 
Yo'@) - 

"l''l 'y,"('" +) .,^('" +)]

After changing indices, substitutionof (b) into (a) gives:

l"("#)."('" +)

(b)

(c)

(n) *_ 1
4r

do'

2 n + 1
( n + l ) ( n + 2 )

.l

. ̂ f''3ll =
\  o 1 l l

tr+W{(+)" Yk'@) -'""'} Y1@) t'

.1,^('" +) .'^('" +)dQt
(d)

In these integral formulas W1 , gt and Yr'@) are still to be eliminated because these relate

to the_ datum point of the satellite orbit. Therefore we apply these formulas with

k - 1, P1 being the terrestrial datum point. Subtraction then results in the formulas

sought, in which for points on S the kernel letter s can finally be replaced by r .
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