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Summary

Recursive data processing for kinematic GPS surveying

Through the concept of interferometry and using carrier phase measurements, relative
positions can be determined very precisely with the Global Positioning System GPS.
Carrier phase measurements are made by phase comparison of the generated and received
carrier. Due to this technique, an unknown integer number of cycles (ambiguity) is
involved in these measurements. Resolving the ambiguities is the key to precise GPS
positioning. When the integer (double difference) ambiguities have been successfully
resolved, the precision of the relative position is at the 1 cm level or better.

The ambiguities are dealt with by the LAMBDA method, the lrast-squares AMBiguity
Decorrelation Adjustment method, which was introduced in 1993. It features a strict
extension of standard least-squares to the integer domain and by the decorrelating
reparametrization of the ambiguities, the integer estimation can be made very fast and
efficiently. Ambiguity resolution is possible instantaneously, thus based on only one
epoch of data, and hence truely On-The-Fly.

In kinematic GPS surveying, the roving receiver visits the locations to be surveyed. This
set up allows a high productivity in collecting geometric information. It is convenient to
obtain the results of the data processing already in the field while the survey is run,
instead of at the home office one day later. In case of insufficient qualrty, corrective
actions can then be taken immediately in the field. The data processing must therefore be
recursive. As mechanization the Square Root Information Filter is applied. The SRIF
allows estimation and quality control computations to be made in recursion and thus
possibly in real-time, in close parallel with the gathering of the data. The quality control
comprises the Detection, Identification and Adaptation of errors in the incoming data
(outliers, cycle slips). By the DlA-procedure, the effect of the errors on the estimates for
the unknown parameters of interest, the coordinates of the rover, is directly removed.

The data of three GPS measurement campaigns are processed and analysed. The quality,
in terms of precision and reliability, of the coordinate estimators is considered for
various measurement scenarios. Practical results, the positioning performance and the
capability of resolving the ambiguities, are given for a kinematic experiment. In
conclusion is kinematic GPS, as a measurement technique, very well suited for surveying
applications.

The mathematical model for GPS surveying, or positioning in general, that is curently
in use, turns out to be a rough one, and must be further sophisticated. It limits the
receiver interdistance to the typical short baseline length (-10 km). Shortcomings of the
functional model that show up, when high demands are put on the quality of the
positioning results, are explored. Refinements of the functional model concern differential
atmospheric delay parameters (ionospheric and tropospheric). In addition, (phase)
multipath is still a matter of concern. GPS code and phase observables are extensively
analysed; an inventory of refinements to the stochastic model is made, and includes
elevation dependence, cross-correlation and mutual (channel) correlation.
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Introduction

In this introduction, a sketch of the background of kinemntic surveying with GPS is given,

followed by a brief outline of the research. The introduction is concluded by a bnef
description of the contents of this report.

background
The Global Positioning System (GPS) is a worldwide satellite-based positioning system of
the US Department of Defense (DoD). The primary purpose of the system is single point
positioning with code observations. For a code, or pseudo-range observation, the receiver
determines the travel time of the signal transmitted by the satellite. The position is
determined in the three-dimensional World Geodetic System L984 (WGS84). The
accuracy lies in the order of ten to hundred meters.

Relative positioning with phase observations yields much higher accuracies. For a phase
observation the receiver determines the difference in phase of the carrier received from
the satellite and the carrier generated by the receiver itself. The measurement precision
lies in the order of one tenth of a radian, which corresponds to three millimeters for the
Ll-carrier. Like the code, the phase is a range related observation, but the observation is
complicated by the presence of an ambiguity.

The concept of relative positioning allows the use of the GPS in surveying. Two, or
more, receivers simultaneously make observations to the same satellites. The position of
the second receiver is determined, relative to the position of the first one, the reference
receiver. The precision of the coordinates lies in the order of centimeters.

In kinematic GPS surveying, the reference receiver is stationary and the second receiver
visits the points to be determined. These points are occupied only shortly, i.e. from one
instant to a few minutes. Therefore a high productivity in positioning can be realized with
this technique. The receiver interdistance is usually limited to 10-15 kilometers.
Kinematic GPS surveying can be used for most of the traditional surveying tasks, such as
topographic surveying and control surveying, including the determination of photo control
points. Kinematic GPS thus aims at precise positioning for survey-applications on a local
scale.

research
The purpose of the underlying research is to develop a model and method for the data
processing in kinematic GPS surveying. The data processing consists of two parts:
estimation and quality control.

Based on the observations, estimates are computed for the unknowns, of which
coordinates are of primary interest. The estimation is carried out in recursion and

the
this
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means that the estimation is not held until the survey has been completed, but that
'preliminary' estimates are computed, based on the observations that are already avail-
able.

Quality consists of precision and reliability. Precision describes the spread in the
estimation results. This description is valid as long as the measurement system is
adequately described by the model used in the estimation. When discrepancies between
model and reality occur, estimation results and precision description are invalidated.
Model errors therefore, need to be detected by a statistical testing procedure, that is
executed in combination with the estimation. Subsequently, the estimation should be
accounted for the occurence of the model errors. The nominal performance of the testing
procedure is described by reliability.

The procedure for data processing is recursive, and can therefore be carried out in (near)
real time, parallel to the gathering of the data. In this way, positioning results can be
already available in the field. For a surveyor this is usually not required for the estimation
results, but it is on the contrary for the quality control. When quality turns out to be
insufficient, corrective actions can be taken immediately. A re-survey, caused by
insufficient quality, can then be avoided. The quality of the positioning results is
controlled in the field.

synopsis
Chapter L is a review of some essential parts of the theory on mathematical geodesy. First
the art of modelling is briefly discussed. Once the mathematical model is available, the
data processing can be carried out. The principles of both estimation and quality control
are reviewed. Chapter 2 covers the data processing. The data processing is carried out in
a recursive manner and the mechanization to realize this, the Square Root Information
Filter, is treated.

Theory and mechanization are discussed, in principle independent of any application. The
application - kinematic GPS surveying - is introduced in chapter 3. It is followed by a
general discussion on the modelling of GPS surveying. The mathematical model is set up
and developed further to fit in the procedure for recursive data processing. In chapter 4,
theory, mechanization and mathematical model come together in the implementation of
the data processing for kinematic GPS surveying. The prototype implementation devel-
oped is briefly discussed, together with several practical aspects. A separate section deals
with the aspects of model validation for kinematic GPS surveying.

The implementation is the basis for the computations and analyses discussed in chapter 5.
Three measurement-campaigns are considered, each with a different purpose. The first
campaign is used for an analysis of the quality of the measurement system, the second
one for a closer analysis of the properties of the (raw) GPS observables, especially in
relation to the current mathematical model, and the third one for practical results on
positioning and ambiguity resolution. As such, an overview is provided of the geodetic
quality of the geometric information obtained with GPS surveying.

Chapter 6 finally provides a summary and gives conclusions and recommendations both
for kinematic GPS surveying and further research.

The chapters are written to be self-containing to a high degree. Each chapter is therefore
supplied with an introduction, surlmary, possibly appendices and list of references.



1. Review mathematical geodesy

In this chnpter we will briefly review some essential pans of the theory on mnthematical
geodesy as developed and taught at the 'Delfr school' by professors Tienstra, Baarda and
Teunissen at present. The topics reviewed here, are those that are directly needed in the
data processing for (kinematic) surveying with GPS. This revis,v certainly is not complete
and for a thorough treatment of the topics, frequent references will be mnde to literature.

system of linear equatians
We start by discussing the deterministic modelling y:tr16. A set of unknowns in vector x
are functionnlly (linearly) related to a set of observations in vector y. In this respect the
putpose of estimation is, given a set of observations, to determine the values of the
unknowns in x. Two problems may occur when one tries to solve for the unknowns in an
arbitrary system of linear equations !:Ax. The first problem is that some of the unknowns
can not be determined from the given set of observations; the set is not sfficient. This is
the estimability problem. One could say that there are 'too 

few' obsemations. The second
problem is that there may be 'too many' observations for the determination of (certain)
ur*nowns; these are overdetermined. This is the 'problem' of redundancy.

esfimalion
The first problem is solved by the choice of an S-basis. A number of additional constaints
on the unknowns in x is incorporated in the estimation. The second one is solved by using
an appropriate estimation criterion: given the redundant set of observations, an estimate
for the ur*nowns is determined that is optirwl according to the criterion, The least-
squores criterion and the BLUE-estimation principle, together with their relationship, are
discussed.

extensions to estimation
In section 4, we will make an excursion to integer estimotion. Usually the unknown
parameters in vector x are real valued quantities, but in some case (some ofl the un-
knowns are known to be integers. This calls for an extension of the estimation procedure.
Up to now we also assumed that a linear rel.ation exists between the observations and
unknowns. In practice this is seldom the case. The estimntion procedure is extended as to
handle non-linear models l=A(x) as well. Keywords are linearization and iteration.

quahty
As a result of dnta processing, the estimntes for the ur*nowns should be accompanied by
measures of the quality of the estimator. The quality is described by precision as long as
the model used in the estimation indeed holds ffue. In practice one can never be sure that
the model employed, is completely adequnte, or in other words, there is a chance that the
model is not correct. A statistical testing procedure is used to infer the validity of the
model one is using. The presence of redundant data is crucial for statistical testing. Afrer
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detection and identification of a misspecification of the model, one has to account for this
misspecification in the estimation. The nominal performance of the testing procedure is
described by reliability.

1.1 Modelling y=Ax

This thesis deals with the data processing in a dynamic system. We are interested in some
quantifiable characteristics of the system. These characteristics constitute the state of the
system. As such the state is an abstraction of reality. The state can be mathematically
described by a set of parameters, contained in vector x. The adjective dynamic means that
the system is time-varying and so will be the parameters: r(r). In this chapter we will
consider the state at one instant in time. The time-varying character will be dealt with in
chapter 2.

The state of the dynamic system is not known a-priori and we will try to gain knowledge
about it, by making measurements on its characteristics. The measurement system thus
involves observations in the n-vector y and unknowns in the n-vector x, which are related
via the linear model

! = A x

where ,4 is the rnxn design matrix. The unknowns in vector r are deterministic parame-
ters. They are just a medium to express interrelationships between observables of which
realizations - observations - are made in real world. Based on the model (1.1), we will
compute estimators for the unknowns, and these estimators are linear functions of the
observables; this discussion is pursued in section 6. Empirical data y are thus used to
make inferences (based on the obtained estimators for the unknowns) about physical
reality [Teunissen, 1997].

Model (1.1) is a mathematical description and thus an approximation of the measurement
system embedded in reality. In practice, modelling is not a trivial task, see e.g. [Schwarz,
19941. A thorough knowledge of the measurement system is required. In geodetic
measurement systems this knowledge is usually present (to a large extent) and it can be
assumed that the model set up, adequately describes reality. Model identification is
therefore not of concern: there is no uncertaintv in the coefficients contained in matrix /.

1.2 Solution of y:Ar

In respect of the deterministic model y:Ax, the
purpose of estimation is to obtain values for the
unknowns x, based on the observations y, or in
other words, to find the solution to the set of
linear equations.

The linear operator z4 maps a vector of the space
of unknowns r( onto a vector in the observation
space R', figure 2.1.

Figure 2.1: Mathematical modelling y : Ax,
P parameter space (left) and R'observation
space (right)

A
-t'.|
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In general, the mxn design matrix z4 will have rank r, with rlmin{n,m\. lf r<m, system
(1.1) may be not consistent and it is underdetermined if r<n, see [Teunissen, 1984]. The
system being not consistent means that the vector y can not be written as a linear
combination of the columns of matrix A: yeR(A). Underdeterminancy means that, given
the observations y, it is not possible to determine the unknowns r uniquely, although there
may be redundancy. The redundancy equals (m-r).

1.2.1 Uniqueness

We will first elaborate on the underdeterminancy. To guarantee a unique solution, the
rank of z4 must be r=n<n, with preferably nlm for the reason of quality control. At
this moment the design matrix is rankdeficient: a set of (n-r) linearly independent vectors
s of dimension n can be found that satisfy z{s=O. The vectors s span the null space of
matrix A, N(A). In literature, the system (1.1) is then said to be not observable. Too
many unknowns have been introduced in the model. One has to re-set up the model (with
less unknowns), bring in deterministic information, or introduce additional observables.

The second strategy implies the choice of an S-basis, see [ibid]: (n-r) constraints on the
unknowns are introduced. The S-basis is constructed in the parameter space F by means
of the orthogonal complement S' of matrix S; R(.!ON(,,a):P. The constraints read
S'r.r=0 and x can be written as a linear combination of the columns of matrix S: r=Sa,
with c an r-vector. Model (1.1) then becomes l=ASa. The n columns of matrix u4 are
linearly dependent and the space R(r4) in R' can be spanned with less, i.e. r, columns:
R(,,4):p1r49. Choosing an S-basis does not change anything in the observation space R,,
but it does of course, in the parameter space-rT. Different S-bases Sr, S, will lead to
different estimates for the unknowns: jsf, is'. These different estimates are mutuallv
related by means of an S-transformation, see [ibid].

In practice we can discriminate between two types of rankdeficiencies of the design
matrix A: the strict deficiency ,{s=0, and the near deficiency As=0, for a non-zero
vector s. No unique estimate can be computed for the first case. In the second case an
estimation algorithm may produce results and the quality of these results directly depends
on the numerical accuracy of the algorithm. In practice it is better not to risk numerical
problems and to avoid this second type of rankdeficiency by one of the strategies
mentioned above. With the second strategy of introducing additional constraints, the near
rankdeficient system is actually slightly over-constrained. The case z{s'0 can also occur
with z4s not yet sufficiently close to zero to cause numerical problems. A near rank-
deficiency anyway means that certain (functions of the) unknowns are hardly estimable.
The estimators will have very poor precision.

1.2.2 Consistency

In the sequel we assume that rqnk(A):n3m. In practice, when n<m. the vector of
(realized) observations will not be consistent with the model (1.1). A system that is
inconsistent can be solved routinely by the least-squares algorithm, see p.18 in [ibid]:
least-squares generalized inverses. The inconsistency in the observation space R' is
removed by determining the estimate j for y, such that yeR(,{). This determination is
carried out according to the principle of least distance:
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(2,r) min lly-y1to-, A ieR(z{)

Figure 2.2: kast-squares estimation . 
in the Estimate y is fOund by OrthOgonal prOjection of

observation space R', orthogonal projection of y 
y on the ,pa"" ,pu*ed by thacolumn vectors of

onx('4) matrix,afn].1l\.

with Qfr the weight matrix. Equation (2.1) is the (weighted) least-squares estimation
principle, specifically classic least-squares based on the Ir-norm [Bjdrck, 1996]. When

the inconsistency is significant, one might wonder about the validity of model (1.1). This
topic will be further discussed in the section on model validation.

The geometric interpretation of least-squares
estimation in the observation space R' is that
the vector j is selected such that its end point
has shortest distance to the end point of the
given vector y.

(2.2) f = P e t

The orthogonal projector is represented by the mxm matrix Pr. The estimates for the
unknowns can then be determined from y by 'inversion'of the relation (1.1). The least-
squares criterion can be rewritten as

.3 -itn ;1i-.lxl!tq;, A x:€Rn

with the design matrix having full rank, rar*(A)=n, a unique estimate i for the
unknowns will result.

1.3 BlUB-estimation principle

The parameters contained in vector x are deterministic quantities; an (unknown) parameter
is thought to have one and only one value out of R. The observables, contained in vector
y are random variables. Measurement noise is involved in making observations. The noise
is contained in the random vector g. The description of the state by means of the set of
parameters, the observables as random variables and the relation between the observables
and the state, constitute the mathematical model of the measurement system:

(3 .  1) ! = A x + e

Note that the noise g enters relation (3.1) in an additive fashion. If relation (1.1)
adequately models the measurement system in reality, the remaining (small) effects in
making the observations, are categorized as noise, and therefore random. Per observable,
the effects all together will be zero on the average, so that for the vector of measurement
noise holds:

i L
v
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(3.2) Elel = o

The relations between the observables and the unknowns are expressed in a model of
observation equations [Teunissen, I994a], that define the first and second moment of the
vector of observables, the expectation and dispersion:

ElYl = lx t D{y} = B'

A random vector like y may have many more moments, but only the first and second are
required for the BlUE-estimation principle. The probability density function of y will be
further discussed in section 6. In the sequel the specification of E{.} in (3.3) will be
referred to as functional model and D{.} as stochastic model. Model (3.3) is also known
as the Gauss-Markov model, see [Koch, 1988], or the general univariate linear model, see

[Bjorck, 1996].

Based on the mathematical model an estimator for the state is computed. The Best Linear
Unbiased Estimation (BLUE) principle yields, based on a linear functional model as in
(3.3), a linear and unbiased estimator i, that is best in a statistical sense. Under the
assumption that the inverse variance covariance matrix of the observables is used as the
weight matrix, the least-squares principle, which is a deterministic estimation principle,
leads to an identical estimator. If the observables possess a Gaussian distribution, also the
Maximum Likelihood principle yields the same estimator.

.+)
t=(ArQ;rAl tArQ;'!

,Q=(a:rQt' i)  
l

The equivalent model of (3.3) in terms of condition equations reads

(3.5) BrElyY =g ; D { } } = Q y

with matrix Br an (m-n\xm matrix. It holds that

(3.6) B r A = o

With matrix r4 of full rank n and matrix B of full rarfr- (m-n), the column vectors of these
two matrices together, span the full observation space R'.

(3.7) R(A i  B7= P^

In (3.3) the n unknown parameters in x can be considered as just a medium to express
interrelationships between observables. By the model of condition equations (3.5), (m-n)
constraints (relations) are applied to the (first moment) of the vector of observables in the
observation space R'; no unknown parameters are involved. The inconsistency of
observations and model directly shows up by the vector of misclosures:
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(3.8)

When the observations are substituted in (3.8), the misclosures do in general not equal
zero. The misclosures will be used for model validation in section 7.

Together estimator i and the vector of misclosures I contain the same information as the
vector of observables I does. Model (3.3) is premultiplied by the square mxm full tark

transformation matrix I

, =(i")
with , a nwn matrix and T, a (m-n)wn matrix. Model E{Ty}:77a then reads

(3.e)

where Q,:B'Q.B.All information is preserved by the transformation matrix I in (3.9). It

is just an invertible linear transformation. Design matrix .,4 is transformed such that its

columns TA:{e,,..ren}. The vectors e;, with i:I,.um constitute the natural basis of R'.
The columns of T,' span R(Q;'r{) and those of 7i span R(B). Together the full matrix
7{ provides a basis for the obs6rvation space R'.

1.4 Hybrid parameter estimation

In section 2 the real, real in the sense of element from R, parameter estimation problem

!:Ax with xeR' has been tackled using the least-squares criterion (2.3). The inverse
variance covariance matrix Q"' is the weight matrix and from (2.3) the weighted least-
squares estimate follows: i. ihe variance covariance matrix of the estimators reads Q.
The minimum of the objective function in (2.3) equals the squared norm of the least-
squares residuals A:y-f :

(4.1) i lan1a, = 11y-erli;

In this section we will consider the hybrid estimation problem. The n-vector x and the
zxn design matrix are partitioned as

A = (A* A,)

.rR : nx-vector,
X1 | llyYACtOt,

t =  B ry

A^: mxn^-matrix
Ar: mxnymatrix

= (a'oi't;,'n'o;')

rr(,t)r =('d) ' , or(,t)r =[" 
nJ

'=[ ;J and

with
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The hybrid estimation problem reads

.2) v =,r^ rrl [x* with x^€Rn" ; x,€Zn'

1.4.1 Estimation principle

The difference with (1.1) is that now both real and integer parameters are involved. The
parameters in vector xr ate constrained to be integers. The least-squares criterion is

applied to this hybrid estimation problem [Teunissen, 1995b]:

(4.3) min lly -Ad^-,ll,n?o, with rReRnx ; xrez"I

The objective function can be rewritten in, see [ibid]

lly-A{n-,t,x,ll3o^ = lla(ai * 11i,-x,ll1o, + llf"lr-xall2o-,,,(4.4)

The estimation can be carried out in two steps: the unconstrained solution (also float
solution) and based on the results of this step, the final solution to (4.3).

First the parameters are treated as being all reals. Problem (a.3) is solved withl^eRn*
and x,€Rn' . The (ordinary) least-squares estimates follow:

(4.s) l;, [j; ?J
The first terrn on the right hand side of (4.4) gives the corresponding minimum of the
objective function: ll0ll'^ ,. The second term equals zero as we consider the estimate i, to

wv 
b' be the final estimate: xr=ir. The third term

contains the conditional estimate for x^: inu. It
is the estimate for x^, with the integer para-
meters conditioned on, or constrained to, .x1.
For solution (4.5) we have x^ =i*t,=in and the
third term equals zero. The solution f^,f, is
also referred to as float solution: the estimates

Ar) are all floating point numbers. The geometry of
the float solution is given in figure 4.1.

Figure 4.1: Geometry of float solution in R' The second step is the integer minimization:
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(4.6) min ll ir -", i l1o, with xreZnt

This problem will be dealt with in detail in the next section. The result reads i' the
integer least-squares estimate for x,. The minimum of the objective function (4.4) is
increased to ildil;-r + ll ir-i)\i,. The third term still equals zero with xo=to,,=io, unless
additional constidints are pultrpon the parameters in rp, S€€ also figures"4.2'ind a3.
Vector i^ is the estimate for.r*, computed with.rrconditioned on estimate i,:

(4.7) i^ = i^ -Qrfg;,'(if i)

The estimates i^ and i, constitute the (final) least-squares solution to (4.3) and is
referred to as fixed solution: .r, has been constrained, or fixed, to integer values Z't lbut
not to one particular deterministic value!). The variance covariance matrix of the
estimator for x^ with the vector of integer parameters constrained to some deterministic
value x,

(4.8) Qr",, = Q ̂  *- Qr*rPi,t Qr,r,

is taken as an approximation to Qr,. The stochastics of integer estimator i, are neglec-
ted, see section 6. In practice the afproximation is allowed if sufficient probability mass
is. located at ir. The precision description of Q;"u will be (slightly) too optimistic, see
tibidl.

nanlo , + ili, - i)l2or,

normor r= i lp i l ; ;

norm of i =

Figure 4.2: Hybrid estimation in R'
An&)

AR

Anin

AnXn
The final estimate for y reads_ j =A{n*Alr
with i =y - j . As (y -D eR(,{1) it holds that
llf -rllq-' = llir-irllo:,

A, is A, but onhogonalized with respect to z{"
in general ir6z"' ,but i ,eZn,

Figure 4.3: Hybrid estimation in the sub-space R(A*A) of p

In hybrid estimation the norm of the least-squares objective function (a.4) is increased as
compared with real estimation, by the constraint of part of the parameters being intbgers.
The second term in (4.4) may cause a correction 11i,-x,ll!o, evin for the integ-er est]ma-
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tion case !:Afrr with no redundancy fti:rlf in this
case i:0. The non-consistency of a hybrid system
y:Ax with partly integer parameters, is handled by
the least-squares principle. For !:Afrr estimate i is
a discrete 

-gridpoint 
in R(.,4r) such that i,eZn', see

figure 4.4 and compare with figure 2.2. Non-unique-
ness of the integer estimate is not considered here.
This may occur (in theory) in the case with !:Afrr
even if the rank of the design matrix 24, equals ft1, se,a

[Teunissen, 1993]. Non-uniqueness of the integer
estimate due to a rankdeficient design matrix is dis-
cussed in [Teunissen, 1996b].

Figure 4.4: Geometric interpretation of
integer estimation in iR', the gridpoints are
admissible locations for estimate for v

In the real case, xeR, the value for.r can range through the whole R. Computing an

estimate is a true determination problem as there is an infinite (and uncountable) number

of possible outcomes. In the integer case, xez, the value forx is allowed to take on, as

seen from R, only discrete values from Z. A-priori, all integers are equally likely.
Estimation is now a discrimination problem as based on the observation, one specific

value has to be chosen from a set of an infinite (but countable) number of integer values.
In practice only a finite number of possibilities has to be considered.

1.4.2 lnteger minimization

The second term of the objective function (4.4) needs to be minimized. A vector of

integers x, has to result from

(4.e) minllir-xrilf- = ni@r-x)'Qi,'{i,-rS with xreznl

No direct technique is available for the integer estimation. A search over discrete integer
vectors has to be employed instead. For a gridpoint, it holds that all elements of xr are in
Z: (x),eZ for all i:1,..,n,.In the n-dimensional space, the gridpoint 4 must be f9und,
that ha's least (minimum) distance to estimate f in the metric Qr-'. This gridpoint is the
integer least-squares estimate i, sought for. In practice an approfriate value f is taken
anA onty gridp-oints will be considered, that have a disknce equal to or less than 12:

4.10) @r-QrQ;,r@r-*) rx'

The geometric interpretation of (4.10) is the (hyper) ellipsoid, see figure 4.5, where
nr=2. The ellipsoid is centered at estimate .f its shape and- orientation are governed by
matrix Q. and its size is controlled by X' .The value for 72 can be algebraically related
to the volfime of the ellipsoid and thereby approximately to the number of gridpoints, see

[Jonge et al, 1996] and [Teunissen et al, 1996].

The sequential conditional least-squares adjustment interpretation of the search within the
ellipsoid for the gridpoint that has the least distance to f is given in [Teunissen, 1995b].
The variance covariance matrix Qo_ needs to be decomposed into a lower triangular l, a
diagonal D and an upper triangulal 7r: Qt,=LDLr, see tibidl. The unknown parameters
of x, are successively fixed to integers. based on value X2, the maximum allowable



intcrval forx2 distance, and o2o,,,, the interval with valid inte-
gers for (r), ir obtained. Then (x), is prelimi-
nary kept fixed to one of these integers. A new,
improved estimator is computed for the next
unknown parameter (x)r, as if a new adjust-
ment was carried out with (.r)l known to be
that integer; the conditional estimate for (rr), is
obtained: (i)zt.

;ll-;l intervalforxl Distance 12 isthenreducedbyt(x)r -@)J2l o2a

search is given in figure 4.5. The ellipse is scanned through systematically. All gridpoints
which are inside, are encountered in this way. Afterwards, the gridpoint with the smallest
distance to .f, can be selected easily.

t 
" ^ ro urvrr rvsswv vJ L\ Jrl \r1,t1J / v(Q,

fix xr and together with oirs.,,, the variance of thi
conditional estimator f6i' (x)r, the inrerval for

Figure 4.5: Search for gridpoints inside the (r), i, computed: It is centered at the condi_ellipse' n,:2 and x,:(x"x')' 
tioirir estimate (*)zlr. The process goes on with(e,

etc. It continues until all valid integers for all parameters (Q, through (.r),, have been
treated, see [Jonge et al, 1996]. The two-dimensional geometric interpretdtion of the

witbxr
fixcd

The search described here, will provide the integer least-
squares estimate ir. When the variance covariance matrix
Q, is ill conditioned, the ellipsoid in the Rn' will be very
out-stretched. The ellipsoid is very elongated; it has some
axes which are extremely large, whereas the remaining ones
are very short. Correlation between the estimators causes that
the ellipsoid has its principal axes not parallel with the grid-
lines. Poor precision of the estimators in f,. and high correla-
tion between them, causes typically, i" i$o dimensions, an
ellipse as shown in figure 4.6. If the 2-by-2 matrix is rank-
deficient and has rank I only, the ellipse collapses even to a
single straight line interval [Teunissen, I996al.

Figure 4.6: Search is inefficient
for elongated and rotated ellipse

As in the search, actually intersections of the ellipsoid with the gridlines have to be
computed, the search will be highly inefficient for such an elongated ellipsoid. The
computation of many intervals is not effective as they do not contain any integer. This
phenomena is explained by means of the spectrum of conditional variances in [Teunissen
et al, L994al and [Teunissen et al, I994b] for the sequential conditional adjustment of
GPS double difference ambiguities. The discontinuity in the spectrum causes that the
intervals for the first few parameters are very large, and therefore a lot of integers have
to be tried out, whereas the remaining intervals are all very small. Many of them do not
contain any integer. A lot of incomplete integer-vectors for x, are to be encountered. The
implication for the search is discussed in detail in [Teunissen, 1994c]. The efficiency of
the search can be largely enhanced by a decorrelation of the estimators in i,. This
deconelation is realized by means of an integer reparametrization in the next sectioil.

1.4.3 Integer reparametrization

In [Teunissen, 1993] the decorrelating Z-transformation is introduced: the integer
unknown parameters in x, are reparametrized according to
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4.rL) z, = Zrx,

where matrix 7 is a square nixry full rank transfonnation matrix. The estimate and
variance covariance matrix are transformed accordingly

(4.r2) 4 = Zrir er, = zrer,z

and the minimization problem (4.9) becomes

(4.t3) mln (2,-z)rQ2,'{2,-zS with z,e z''

and will result in ir. The integer least squares estimate for x, is then obtained by
ir=Z-rir.The estimate .t, obtained via i, from (4.13), is identical to the one obtained
from solving minimization (4.9) directly, thanks to the requirements upon the Z-transfor-
mation. In addition to being square and of full rank, this transformation must be integer
and volume preserving, see [Teunissen, 1995c].

The purpose of theZ-transformation is to decorrelate the estimators in .f,. The computati-
on of matrix Zr consists of alternatingly, decorrelation steps (integer Gauss transform-
ation) and interchangings of parameters to allow further decorrelation (re-order-
ing/permutation). With the Qr,=LDLr decomposition, see [Teunissen, 1995b], the
variance covariance matrix of ir'becomes

(4.r4) Qz, = z'LDL'T

In the hypothetical case that full decorrelation is achieved, Z=L-r, matrix (4.I4) reduces
to

(4 .15) q u , = ,

Then the most simple integer estimation scheme can be used: rounding to the nearest
integer, (i),=nint(2), for all j:1,..,n; no search is needed at all.

In general, full decorrelation is ruled out. As matrix 7 has to fulfil the integer and
volume preserving conditions, one has to be satisfied with an integer approximation of
Z=L-r.It turns out that in practice, even under the aforementioned conditions, the Z-
transformation can largely reduce the correlation between the estimators, and thereby
greatly facilitate the search, see e.g. [Teunissen et al, 1994a] and [Teunissen et al,
I994bl. The geometric interpretation of the decorrelating Z-transformation is that the
elongated search ellipsoid of the original parameters x, is transformed into a search
ellipsoid for z, that is much more sphere-like. The intervals for the parameters in z, in the
sequential conditional adjustment, are equalized. The integer estimation for (4.13) can be
carried out much more efficiently than it can for (4.9).

13
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1.4.4 LAMBDA-method

The integer minimization of section I.4.2 and the integer reparametrization of section
L.4.3 are all part of the LAMBDA-method proposed in [Teunissen, 1993]. In summary
the method consists of two steps:

1) the decorrelating Z-transformation
2) the acnral integer estimation (the search)

Both steps are based on the sequential conditional least-squares adjustment of the
unknown integer parameters. Based on the results of the (ordinary) least-squares estimati-
on (4.5), with both x^ and .rr treated as real-valued parameters, the integer minimization
(4.9) is carried out using the LAMBDA-method. The result is i1, the integer least-squares
estimate for the integer parameters in xr.

1.5 Non-linear model y=A(x)

In this section we will review the estimation in case of a non-linear functional model.
Direct non-linear estimation is usually not feasible. We will use the Gauss-Newton
method [Teunissen, 1990a]. The model is linearized and BLUE estimators for the
unknowns of this model are computed; they lead to approximations for the non-linear
estimators. For the linearization, approximate values for the unknown parameters are
needed and these are improved in an iterative process.

1.5.1. NonJinear functional model

In section 3 the model of observation equations was given as (3.3):

(s.1) E l y l = A x ; D t r l  = Q

The expectation value of the vector of observables and the unknowns in vector x are
linearly related. Based on this model, Best Linear Unbiased Estimators could be compu-
ted. They are identical to the weighted least-squares estimators. In practice non-linear
models of observation equations are frequently encountered.

.2) Ely l  =AQe)  ;  D { r }  =Q

We are, however, still looking for the numerical estimate for x and for the probability
density function of the (non-linear) estimator, the latter for the reason of quality control

[Teunissen, 1989]. For the BlUE-estimation principle, the first two moments of the
estimator E{i} and D{i} suffice. With Gaussian distributed observables and a linear
estimator, these two moments completely specify the probability density function of the
estimator, see also section 6.

In dealing with non-linear functional models, two complications arise. First the (non-
linear) estimator must satisfy the least-squares criterion
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(5 .3) min lly-a(x) ll'zo-,

Eryr = A(xo) + *ur 
l,o. 

+ H.o.r.

Ai = lay'@ 
")' 

Q;t al{r")l-t d,,t{x")rQr t ay

Qn = Py'(x,)rQrt oy'(x,))-l

1 5

If the map ,a(.) is non-linear, then generally no direct methods exist for solving (5.3). In

other words we will not succeed in finding the non-linear estimator. We will approximate

the non-linear model with its linearized version and use an iterative algorithm to compute
the estimate. Iterative algorithms to solve (5.3) are discussed in [Teunissen, 1990a].

Secondly, we are not able to propagate the probability density of y into the probability

density of the non-linear estimator i, [Teunissen, 1989]. The non-linearity also causes

that the estimator is biased, i.e. Eltl+x. [n this section, it is reviewed how the non-
linear least-squares problem is usually handled.

1.5.2 Linearization

For varying values of x, A(x) traces an n-dimensional surface or manifold embedded in

the R'. If the manifold ,,4(x) is rather smooth, the linearized model can be a sufficient
approximation of the non-linear model. With xo being a good approximate value for the

estimate sought for, the Taylor expansion of (5.2) reads

(s.4)

and the linearized model becomes

) E{Ar} = ly ' (x,)  Ax ;  D{Ar}  = Q,

with Ay =y-A(x"). The higher order terms are neglected, see also [Teunissen, I994a].

1.5.3 BlljE-estimation

Based on the linearized model (5.5), we will compute, using the BLUE principle, Af and

Qor'

(5.6)

(5.7)

and

(5.8)

then we obtain

x n = x o +  A ^ r t
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(5.e) i = * n  i  Q r = Q r c

which are approximations to the first two moments of the non-linear estimator [Teunissen,
19391. The geometric interpretation of this estimation is, that the observation vector y is
orthogonally projected (metric Qr') on the tangent space of ,,4(x). The tangent space,
plane dy'(x,), is suspended at A(x").

1.5.4 Gauss-Newton method

The approximate value xo will (slightly) deviate from the (nonJinear) estimate sought for.
In order to improve the numerical estimate (5.8), iterations have to be made. The
geometric interpretation is that the tangent plane has to be put into the right (a better)
position. The better the approximate value, the smaller the higher order terms in (5.4),

which are neglected in the current estimation. The linearized model will, on a local scale,
better approximate the non-linear one. As a result, a better numerical estimate for x is
obtained. The Gauss-Newton iteration scheme is employed [Teunissen, 1990a]. The
estimate for r (5.8) is taken as the new approximate value in (5.4) and a new estimate
(5.8) is computed. This procedure is continued until the convergency test (equation (71)
in [ibid]) is passed

(5 .10) llxn-xollo, < e

The criterion (5.10) is invariant under a reparametrization of the unknowns x. The
estimate is finally set to i=xn, (5.9).

The necessary and sufficient conditions for the Gauss-Newton method in order to
converge to a (local) minimum of the sum of squares objective function lly-A(x) lli-', tne
least-squares estimation criterion (5.3), are given by equation (57) in [ibid]. In ptactice

the curvature of the manifold z4(.r) must be small and the norm of the residual vector
A =y -f should not be too large. Furthermore, as the Gauss-Newton method belongs to
the class of iterative descent methods, the initial guess r, should be sufficiently close to
the solution i, that has to result from (5.3), see [ibid]. The closerxo is to the estimate .f ,
the less iterations will be needed to satisfy the criterion (5.10).

The parameters r are involved in a non-linear way in the vector y-A(x) of which the
(squared) norm has to be minimized in (5.3). tn [Teunissen, 1989] two types of non-
linearity are distinguished: intrinsic non-linearity (curvature of the manifold) and non-
linearity of the parameter curves. The non-linearity causes that the estimator obtained
(using the procedure in this section), is biased. The non-linearity should be diagnosed in
order to assure that the linearized model is a sufficient approximation of the non-linear
one. With equation (40) of [ibid], the bias in the estimator can be estimated.

1.6 Estimation with stochastic observations

In the sections 2 and 3, we concentrated on the determination of the values for the
unknowns once a set of observations is given. Now we will take into account the
stochastics of the observables. The observation y is a sample out of the population y. The
vector of observables 1 contains m random variables. The probability density function of 1



Figure 6.1: Two limiting cases of the probability
density function, (left) all values have equal
probability density, (right) one (deterministic)
value has infinitely large probability density
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is given by p"(y lu,) . The kernel p in this specification, denotes that not all parameters of
this function ire known yet. In the model of observation equations E{y\:,qx for instance,
the first moment, the expectation, of I is unknown in .x.

In estimation, a n-vector of values for the unknowns in x is assigned, based on the sample
y. The estimator i for the vector of unknowns, is a linear function of the observables.
The functional relation can also be used to propagate the probability density function of y
into the one for t: pr@lp). Function pr(ilp) describes the probability density of each
value for i and therefore translates into the quality of the estimator under the current
modelling. The quality of the estimator may range from infinitely bad to infinitely good.

|  , *  l T  , r

These cases of no knowledge and perfect know-
ledge concerning the unknowns in vector x,
correspond to a probability density function that
is infinitely wide and to one that has one infi-
nitely narrow peak respectively. These functions
are sketched in figure 6.1 for the case n=1. In
the last case, the estimator is non-stochastic. It
is a deterministic quantity.

In this section we will consider the estimation for a model with observation equations
with real valued parameters and for a model with integer parameters. In both cases we
will elaborate on the probability density function of the estimator. Finally we will discuss
the so-called 'fixing' of parameters. A certain estimator is considered to be a determinis-
tic quantity and this implies an approximation to the probability density function. For a
treatment in depth on probability theory, the reader is referred to [Koch, 1988] and

[Maybeck, 19791.

In the data processing we will carry over the assumption of Gaussian distributed observa-
bles. The justification follows [ibid]. With a functional model that is adequate, the
measurement noise is typically caused by a number of small effects. When a number of
independent random variables are added together, the summed effect can be described
very closely by a Gaussian probability density, regardless of the shape of the individual
densities (central limit theorem). In other words, the Gaussian distribution will serve as a
good approximation in practice. Alternative distributions generally do not yield formulati-
ons of the data processing problem that are mathematically tractable.

1.6.1 Real valued parameters

The Gaussian distribution and the least-squares criterion very well fit together. If the
observables possess a Gaussian distribution, the estimator obtained with the least-squares
criterion, is identical to the Maximum Likelihood estimator. With the probability density
function of the observables as y-NQ{x,Qr), the probability density function of the
estimators is also Gaussian t-N(x,Q^\, as a consequence of the estimator being linearly
related to the observables. The estimator is unbiased and has variance covariance matrix

Qr. With the BlUE-estimation principle only the first two moments of y are considered,
independent of the acual distribution. If y-N, they completely specify the probability
density function.

We start considering the estimation for the following model of observation equations
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(6.1) Elyl = Ax ; Dlyl = Q,

with .re Rn and y Gaussian, or normally distributed, y-N(Ax,Qy)

(6.2) Pr{Clx) = --+- ''irt-n't'o;'<'-*t

Q")'lTQ

The probability density function of the estimator i reads

(6.3) nr@lx)= : e-+6-nra;'(i-n

Qil't[QJ

with
Eltl = x

and
Dl&l = Qt

An example of function (6.3) is given in figure 6.2. The estimate i is a sample out of

this population.

Function (6.3) describes the probability density of obtaining value i, given that r is the

expectation value for i, which is usually not known. The following multiple integral
gives the probability that estimate i lies in the so-called confidence region R:

(6.4) PlfeRl = 
I I nrflx) dxr"dxn= r-a
R

As i can take on values from.(--,->, regions like (6.4) can be applied to, a (finite)

shift over x-.f . In this way one can arrive at a fictitious probability density function of {,
that is centered at i:

(6.s) n"@li)= : ,- la-rfoia-'t

Qil't[QJ

which gives the probability density of x being the expectation value, given the estimate f .
Function (6.5) is used in practice, to set confidence regions for parameters x.

1.6.2 Integer parameters

In this section we start by briefly discussing the discrete probability density function,
proposed in [Blewitt, 1989]. Next we point out how the probability density tunction of the
integer estimator should be obtained. For the reason of readibility we will discuss the
following, very simple, model of observation equations:
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Figure 6.2: Probability density tunction pr(ilx)
for one-dimensional x: x:5 atl.d o:4

Figure 6.3: Probability density tunction fr(ilx) (6.8)
for one-dimensional x: x:5 all.d o:4

Dlyl = a'

l 9

(6.6) E l y l = x ;

with .r eZ andl Gaussian, or normally distributed, y-N(x,oz)

(6.7)

According to [ibid], the probability density function of the integer estimator i=nint@.),
reads

0-x)2

p"(y lx) = +- e 2o'
' 

,/2n a

p , ( i l x ) =  |  
: e- 

it' -(i-x)'

l e  
2 o z

j= -N

_ (r-J)2 iv
'o 'E 6(x-.1)

j=-r'r

(t-x)2 u
'"' 

E 6(j-,
j=-N(6.8)

with N some large integer and 6(.) the Dirac delta function (or impulse function). This
function (6.8) describes the probability density of obtaining value i. The function is
centered at the integer value x, which is usually not known. An example of function (6.8)
is given in figure 6.3. The Dirac delta function was set to 6(r=0):1 and N:20 was
taken. Function (6.8) is a discrete one, pr(ilx)=0 for all i€Z and anywhere outside the
interval t-N,/q. The expectation E{i} and dispersion D{j} of (6.8) canbe given; it will
possess higher order moments as well.

Probability density function (6. 8) can be shown to satisfy the two requiremen ts I n r@lx)dx 
= |

andpr(ilx) > 0 Vi. Ageneralizationof thefunctiontondimensionsis 1- 
-possible.

In a way similar as in section 1.6.1, the following probability density function can be
found

_( i -D2
2o2

N

l e

(6.e)
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which gives the probability density that x is the expectation value, given that the integer
estimate is i. Equation (6.9) is similar to formula (A.4) of tibidl.

It can be seen from (6.8) that, apart from the Dirac d-function and a weighting (the

denominator), the value of p, at some integer i=i just equals the value of the expo-
nential part of the real counterp?ft Pi, (6.7) (here Pi=P), or (6.3) for a one-dimensional
.x, and this may appear strange. The probability density function of the integer estimator
should be obtained by integration upon the function of the real-valued estimator._The
integer estimation criterion prescribes all real valued samples .f in the intervalfx-!,,x+!>
to be mapped onto the integer estimate i, with
ieZ, [Teunissen, 1990b]. The corresponding
operation of this nearest integer rounding
applied to p, yields the probability P[i=il, see
also figure 6.4,

(6'10) piG=I)= [ 
prklx)dz iez

- t'="-;

x+%

The function for the real-valued estimator .f can be readily obtained as described in the
previous section. Integer estimation, however, implies some (non-explicit) non-linear
operation (in this example i=nint{St)) and hence the normal distribution of y can not be
propagated. The second problem is, provided that (6.8) indeed is the probability density
function of the integer estimator, the handling of such a function in further data process-
ing.

We have treated two cases: estimation with real valued parameters and with integer
parameters. Also the hybrid case may occur. Some of the parameters are integers and
therefore still the same difficulties as described in this section are present. In the next
section we will discuss how the problem of the discrete probability density function is
tackled in practice.

1.6.3 Fixing of parameters

In practical data processing, integer parameters need special treatment. Estimates for the
integer parameters can be obtained by rigorous application of the least-squares principle.
This concerns the numerical value for the unknowns and nothing is known yet about the
statistical moments of the estimator. The integer estimator i has a discrete probability
densify function and this hinders model validation by means of statistical tests cunently in
use (see section 7) and causes difficulties in further data processing (precision description
is troublesome). We will discuss the so-called fixing of parameters. This provides a
workable approximation to the stochastics of the estimators for these parameters in further
processing.

fixing of real parameters
For model (6.1), least-squares estimation provides the most likely value forr. We assume
that the model, used in the estimation, has been validated. The value for the estimate can
range through the whole P. The probability density function of the estimator is p$lx).
If we would like to treat i as a deterministic quantity, we have to analyse the variance
covariance matrix Qr. If all elements of Q, are sufficiently small, we are allowed to

Z=x+-
2 L-*

7-V,

Figure 6.4: Probability density function of
integer estimator obtained by integration
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approximate this matrix bV Q=0 and continue data processing with i as a deterministic
quantity: .r :i.

The probability density tunction n"@li), see (6.5), is approximated by a probability
density function with all probability density mass located at the real-valued estimate i.

( 6 . 1 1 ) n"@) = 6(x-f)

with the Dirac delta function generalized to n-dimensions. Function p"(.r) equals zero for
all values x+i. By the definition of the Dirac delta function, (6.11) satisfies the two
requirements for a probability density function in general.

fixing of integer parameters
For model (6.1) with xezn, integer least-squares estimation provides the most likely
integer value for x. Again we assume that the mathematical model has been validated.
The values the estimate i can take on, are restricted to the Z, i.e. discrete points in the
R'. This does, however, not yet imply that the estimator is a deterministic quantity. The
probability density function of the estimator is Oiplx), an n-dimensional generalization of
a discrete function like (6.8). Such a function is not convenient for use in further data
processing and therefore we would like to treat i as a deterministic quantity. The discrete
probability density function, for one dimension depicted in figure 6.3, should sufficiently
resemble the single Dirac delta function; there should be one clear peak, as is the case in
figure 6.1 on the right. This means that the integer estimate should represent clearly more
probability density mass than any other integer vector in 7. Means to certify this
statement will be treated in appendix A.

The probability density function n"@lD is then approximated by a function with all
probability density mass located at the integer estimate i.

(6.r2) P"@)= 6(x-i)

Function p"(x) equals zero for all values x+i. The data processing is now continued with
i as a deterministic quantity x=i. The numerical value of the integer least-squares
estimate, which is integer, is not changed.

1..7 Model validation

In the previous section, the full probability density function of the observables ] was
specified: fr$ltr). This assumed modelling of the measurement system embedded in the
real world, may not be a completely correct, or adequate description. In that case, when
relevant discrepancies between reality and mathematical model occur, the estimates and
probability density function of the estimator, computed with the assumed model, the null
hypothesis, are invalidated. The optimality property of the estimator i, obtained with the
BLUE principle, can be guaranteed only under the null hypothesis H..

Parallel to the estimation, one has to check the validity of the null hypothesis. Therefore a
testing procedure will be carried out. It is based on the theory of hypothesis testing in
linear models and testing is performed with the generalized likelihood ratio test. With a
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good testing procedure, it is guaranteed, to some extent, that the mathematical model used
in the estimation H" is adequate. It is realized that the perfect model simply does not
exist. According to [Teunissen, 1997] the question of the model's validity concerns
whether the mathematical model, given its intended purposes, is sufficiently consistent
with the data observed.

1.7.1 Principle of testing

The purpose of statistical testing is to decide between alternative mathematical models,
hypotheses. A hypothesis H is a specification of the probability density function of y:
fr0lu) and the hypotheses differ inthe parameters p. Giventhe observationsy, a sample
of y, it must be inferred, which out of two models, the null hypothesis Ho or another
hypothesis, is most likely.

reality i
decision

Ho true Ho false

accept Ho OK p

reject Ho ct OK

Table 7.1: Four possibilities in testing

Ideally both o and B equal zero, but this can not be achieved. When the probability of
false alarm o is specified, power 7 is maximized using the Neyman-Pearson testing
principle [Teunissen, 1994b]. This yields the teststatistic f. which is a function of the
vector of observables f(y), and the critical region K for the teststatistic, which is among
other parameters a function of o. The test reads:

(7  . r )

The decision, whether to accept or reject the null
hypothesis H", is made using a teststatistic. Two
possible decisions out of four are incorrect: the prob-
abilities are denoted by e and p in table 7.1. The
power, the probability of rejecting Ho when indeed
Ho is false, is defined as y=l-8.

i f  TeK -
TEK +

reject Ho
accept H, (Ho not rejected)

1.7.2 Generalized Likelihood Ratio Teststatistic

We will check the validity of Ho, the model used in the estimation, by opposing it against
an alternative hypothesis H". Both hypotheses are composite ones, i.e. probability density
function zr0lr) is left partly unspecified. The teststatistic Q is uniformly most powerful
invariant (UMPI). It satisfies the Neyman-Pearson principle under the restriction of
invariance of the critical region for y under orthogonal transformations [Teunissen,
L994bl. Uniformly means that it is most powerful for all alternative values for the
parameters of p in the set O\O,. The set O with values for pc, is divided into iDo for the Ho
and the complementary set iD\Oo for H":

H o :  [ r € @ o
(7.2)

Hu : p e@\O,

The hypotheses Ho and Hu are exclusive. The decision with the generalized likelihood
ratio then becomes
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(7 .3) reject H" if

Q.6 ;

with teststatistic

(7.7)

or

f,31o,r'l*l . o
TrS erolp)

wi th  ae<0,1>.

In this ratio (7.3), the maximum attainable likelihood of the observations y being
produced by model Ho and the maximum attainable likelihood of Hu are compared. When
the ratio leads to rejection of Ho in favour of H", the probability density functionpr(y lp)
under H, is decided not to reflect the random character of y; Hu is found to be a more
adequate description.

In the sequel, hypothesis testing is applied to models of observation equations and
restricted to misspecifications in the linear functional model. As compared with the null
hypothesis, the functional model of the alternative hypothesis is extended with q unknown
parameters in vector V, with t<q<m-n. Based on the observations y, it will be decided
that H" is an adequate model or that additional parameters are needed in the description of
Efu). The stochastic model is assumed to be completely and correctly specified. The
observables y are nonnally distributed.

Ho:  y -N(Ax,Qr ) Elyl =Ax ; Dlyl =Qy
(7.4)

H" : y-N(Ax+CrV,Qr) Elyl =/a+Qrl ; D{yl =Qy

By the set iDo of the null hypothesis Ho, the observation y, in the observation space R', is
restricted to lie in the n-dimensional space R(,4). According to Hu, the observation does
not lie in the R(1), but is allowed to lie in the space R(/4 iC,). In terms of the model with
condition equations we have

H o : BrElyl =o ;  D[y l  =Q,
(7 .s)

Hu : Arn6y =Cy ; Dlyl =Q,

with C,=BrCy. Specification (7.5) is equivalent to (7.4) for the purpose of testing with
the generalized likelihood ratio teststatistic. The hypotheses Ho and H" of (7.4) are
composite hypotheses: the probability density function of y is specified with the parame-
ters x left unknown for Ho and also parameters V for H".

The generalized likelihood ratio test for testing Ho against Hu, see [ibid], leads to

a

reiect H" if T^ , x'o(q,O)
4  ' " t

T n = e'e;' c,tc;ei e ee;' crl' cf o;' e
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.8) T^ = t e,|cr[c,re;tc)-tc,re,tt

To - x'(e,o) under H"

Io - x'(e,l) under Hu, with x=VcfOrtQuQrtcrv or t'=Vc,'q;'cy

with Qft =C,'Q;'C,

The most powerful property of teststatistic (7.8) implies, we cite [Teunissen, 1991], that -

somewhat loosely formulated - the teststatistic has the property of correctly detecting and
identifying model errors with the highest possible probability: in other words, when a
certain model error is present (and specified in the alternative hypothesis) we have 7%
probability of correctly detecting and identifying it by teststatistic (7.8) and no (other)
teststatistic can do better.

Two special forms of teststatistic To arc known:

r the Overall Model teststatistic, with q:4-,

( 7 . 1 1 ) To = e'e;'e = rcil:a r = t'e;tt = llril;-,

r the so-called l4l-teststatistic, with q=1

(7.r2)
gfe;'e)' g,'q,-'t)z

with

(7.e)

and

(7 .10)

"f e;'eue;'r, ",'e,'",

of which the square root is used f In=, and has a l-N(0,1) distribution under Ho (we
use I instead of u).

R(A)

T
q

T
.l

Figtre 7.2: Testing in the
misclosure space R'-', To = nfrp|.lo,Figure 7.1: Testing in the observation space R', = nrrrr|il1o,
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Figure 7.1 clearly shows that hypothesis testing takes place in the observation space Rn.
An orthogonal decomposition of y is made: y=e+i where AeR(A)'and f €R(/), with
A=piy and, j=Pnl. The least-squares principle is used to make ):,4x consistent and the
deviation of y from model R(,'4) is considered and judged in testing. If the deviation is

significant, this indicates (but does not proofl that model Ho is false.

From figure 7.2 it is clear that the presence of redundant data, m-n)O, is crucial for

testing. It is namely the surplus of information which enables us to test whether the data
can be considered to be statistically consistent with the assumed model H" [Teunissen,
199U.

If it is decided that H" holds true instead of H" the model used in the estimation, the
estimator under the alternative hypothesis has to be computed:

. 13 ) * "  =  i " -W
Qr = Qy*xQ#'

where io and V are not correlated, thus Q'9=0 and with the nxq-matrix Xas

x = (Arq;14-t1rQrtc,(7 .r4)

and the estimator for the vector V as

(7 .1s)

or

(7.16)

v = Gfa;' QuQ;' c,)'cfoi e

v = (c,'Q;tcs-'c,'q;'t

Note that rejecting Ho and adopting H", also yields a new vector of misclosures f with
dimension m-n-q (and also a new vector of residuals {).

1.7.3 Model validation with hybrid parameters

The generalized likelihood ratio teststatistic f introduced in the previous section, is
frequently used in geodetic data processing. In some applications, beside real valued
parameters, also integer parameters are involved. This has led to an extension of the
estimation procedure. The presence of integer parameters has implications also for the
testing procedure. The most general hypothesis with both real and integer parameters
concerning misspecifications in the functional model reads

(7.17) H" : Elyl =A*x*+Ap, Hu : Elyl =Ad**A{r*CrI%.Criq

with -r^e Rn^, x,€zn' , V^e Rq" and Yr€Zq'.

In the case with also integer parameters, the generalized likelihood ratio can be applied as
well, but the intricacy is that the distribution of the resulting teststatistic is unknown. The
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hypotheses leave the probability density function p"(ylp) partly unspecified. This function
has then to be maximized in the ratio (7.3) arid yielOs an integer estimator with a
probability density function that is discrete, as discussed in the previous section. The
teststatistic can be derived, but its distribution is unknown. This problem does not occur
with the simple likelihood ratio, as zr@lu) is then completely specified by both Ho and
H".

In appendix A we will treat several special cases of this general case. One should keep in
mind, the distinction between discriminabiliry and model validation with respect to
integerness. For the first, one candidate is to be discriminated from others; a choice
between (equivalent) alternatives is to be made (which gridpoint is most likely). Cases 6
and 7 in appendix A concern discriminability. For model validation concerning the
integerness of parameters, the parameters being integers is opposed against being reals (is
any gridpoint sufficiently likely). This is done by the hypothesis specifications of cases 3
and 4 in appendix A.

1.8 Measures for quality

In the sections 6 and 7, we have discussed the essential aspects of geodetic quality. In
section 6, the stochastic characteristics of the observables were propagated, using the null
hypothesis, into the stochastic characteristics of the estimators for the unknown parame-
ters. These characteristics are described by the probability density function pr(f).

Precise observables do not necessarily yield accurate estimation results. The model used
in the estimation, may not imply an adequate modelling of the measurement system and
therefore the null hypothesis should be validated. Validation is carried out by hypothesis
testing in linear models with the generalized likelihood ratio test.

In order to be able to describe the quality of the results obtained from the data process-
ing, we will consider measures for precision and reliability, sections 1.8.1 and 1.8.2
respectively.

1.8.1 Precision

If we assume that 1-N, then also i-N, as the estimator is a linear function of the
observables. In that case, the probability density function of the estimator i is specified
by the first moment, the expectation E{i} , and the second moment, the dispersion D{i} .
From the population y, of which in general the expectation E{1} is not known, one
sample y is available and from this, estimate .f is computed, which then serves as a best
estimate for the unknown expectation. The dispersion is given by the variance covariance
matrix. Matrix Q is found by propagation of Q, using the null-hypothesis. D{j}
describes the spread in the estimation results. It represents the quality of the estimaror
under the working mathematical model, the null hypothesis y-N(Ax,e).

When design matrix z4 is rankdeficient, an S-basis has to be chosen, see section 2. It
should be realized that estimate -f will depend on the chosen S-basis, and also the
precision description by means of variance covariance matrix Q will. In geodetic
network design, the analysis of precision is based on the use of a criterion matrix. The
actual variance covariance matrix Q is compared with the criterion matrix and this
precision description is S-basis independent [Baarda, 19731.
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1.8.2 Reliability

As one can never be I00% sure about the validity of the null hypothesis, beside precision
also reliability has to be considered. If an alternative hypothesis holds true instead of the
null hypothesis, we have a certain probability of detecting it with the statistical testing
procedure of section 7, and decide accordingly. Usually, when the difference between
null and alternative hypothesis is significant, the probability will be large as well. The
nominal performance of the testing procedure is expressed by reliability.

In section 7, testing was limited to alternative hypotheses, which imply extensions to the
functional model as compared with the null hypothesis. Under the assumption that a
certain alternative hypothesis holds true instead of the null hypothesis, the size of the
model error V can be computed such that it can be found with the testing procedure with
a certain probability. Once the level of significance o has been chosen, the power 7
follows from the q-dimensional X2(q,),)-distribution (7.10). The other way around is that
once 7 has been fixed (to some ?o, e.g. 0.80), the non-centrality parameter \ can be
computed. This reference value is then denoted by \ [Teunissen, 1994b]. The non-
centrality parameter is related to the model error by (7.10):

( 8 . 1 ) l, = {c,r q ;tc,v = llc,vll;-,

With \:Xo, equation (8.1) represents the boundaries of a hyper-ellipsoid in the fiY [ibid].
For a one-dimensional model error, q:t, the ellipsoid collapses to an interval. The size
(not the sign) of the parameter V can be computed from

(8.2)

and describes the nominal performance of the testing procedure in finding a model error
of the type specified in the alternative hypothesis. Measure (8.2) is the Minimal Detecta-
ble Bias (MDB) related to teststatistic (7.I2). The detectable model error in terms of the
vector of observations reads

(8.3) Vy = crv

and allows to analyse internal reliability; it describes to what extent model validation in
the observation space R' is possible. Testing is based on the deviations of the observation
vector y from the model space R(.,4). Measures for internal reliability do not depend on
the S-basis.

In the example below, we consider a two-dimensional misclosure space with two
alternative hypotheses (q=l). For the testing we may write

H^:  El l l  =c l

H^:  E l t l  =c l

H" : E{l} =0 and
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The metric of the R2-space is given by Q, 
t

MDBs are denoted by V and V respectively.

ell ipse: rrqfrr=1, To=r=llp"!l lzo,,

llcJllo-' = llc,vtto , =,/X- io=r=Wqlllo,

Figure 8.1: Testing in two-dimensional misclosure space

If I originates from a realization of y under H" and the size of the model error equals the
MDB V, the probability of rejecting Ho in favour of the Hu equals 7,.

In order to assess the separability between various (one-dimensional) alternative hypothe-
ses, one may compute the angle Q between c, and dr.

The

(8.4)

For Q :0 or 0 =r, one can not distinguish between the hypotheses H" and H.. For
Q:rl2 or S:-o12, therg is optimal separability. The correlation between the test-
statistics (not misclosures) t and t (7.12) equals pi=cos20.

One can go one step further and consider, if a certain alternative hypothesis holds true
and this is not detected, the influence on the estimator; one namely has probability l-y" of
non-detection, if the size of the model error equals the MDB. This propagation is external
reliability and can be regarded as an analysis on sensitivity of the estimator to unmodelled
effects.

With (8.3), the bias in the estimate becomes

(8.5) vi = (A,Q;tl)utrQ;tv,

Equation (8.5) shows how a model error Vy propagates into the estimate i. The
significance of the effect can be judged upon with the bias to noise ratio l.r.

(8.6) r; = vi,e;'v* = 1vril;, = ilp,rvyill;,

The bias in the estimate is compared with the precision of the estimator under H". The
scalar measure (8.6) provides an upperbound for the bias in an individual element of
estimate .f [Teunissen, I994b].

cos26 = G,rQ,rc,)2
' 

E,ll?o-,llc,ll'a,

C 1

(8.7) ,  V i , ,  E-
l-l < ,,1 t',
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The last expression of equation (8.6) shows that 1., can be written in terms of quantities
in the observation space R' and does therefore not depend on the parametrization in P or
on the S-basis. It can be shown that a formula similar to (8.7) also holds when a part of
the vector.r is considered.

1.9 Summary

Some essential theory on data processing - estimation and quality control - has been
reviewed. Once the mathematical model, the null hypothesis, has been set up, the
estimation is carried out. It is followed by the testing procedure, in which the validity of
the model used, is checked. It should be recognized that this validation is of the utmost
importance as estimation results, obtained with a model that is invalid, will be invalid as
well. Finally, measures for precision and reliability were given. They can be used to
describe and analyse the quality of the results.

Appendix 1.A Hypothesis testing: various cases

The most general hypothesis with both real and integer parameters concerning misspecifi-
cations in the functional model, is given by the first item in the list below. In this
appendix we will treat several special cases of this general case; cases 2 through 7. The
list below is certainly not exhaustive as many more variations are possible.

1) Ho

2) Ho

3) Ho

4) Ho

5) Ho

6) Ho

7) Ho

with x^eR

1.A.1 General hybrid case

1) Ho : Elyl =A*x^+Ap, H"

Elyl =A*x^+Ap,

E{r} = A{,

E{r} = At,

E{r} = AF,

Elyl = Atl

e Zq'. unless stated otherwise.

Elyl  = A d n* A y '  r  *  C RY 
n* C jY,

Elyl =A*x^+Ap, Hu

Elyl =Adn H"

E{yl =A^x*+Ap, H"

Elyl = AF, H"

Etr) = Af, Hu

Elyl = Af) Hu

Elyl = At) Hu

n^, xre zn', v^eRq^ and v,

Elyl = A d n* A f r * C RY 
n* CjY,

Elyl =A{n *Cr^V^

with xreR"t

with rreR"'

*clv,

The null hypothesis is the most general case of a hybrid estimation problem. In the
alternative hypothesis, the functional model is extended by both real valued and integer
parameters. The ultimate goal is to derive the teststatistic and its distribution for this
general case. This is not yet achieved and in the sequel we will therefore consider several
special cases of the general case.
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1.A.2 Only real parameters

2) Ho : Elyl =Adn H" : Elyl =Adn *CrRVn

This is the default case, treated in section 1.7.2, with only real valued parameters. The
Ho is extendedby q^ parameters, with I <ep<m-n^.

For a hybrid estimation problem, case 2 can be used for testing the model used for the
computation of the so-called float solution. Once the integer parameters are treated as
deterministic quantities, see section 1.6.3, case 2 can also be used for testing the so-called
fixed model:

Ho i  n0-4i l  =A{n

to check, within the approximation, the validity of this mathematical model. The fixing of
the integer parameters is clearly expressed in the following mixed model, with non-
stochastic conditions:

Ho : Elyl =Arx*+Ap,
xrt i r

The values for the Overall Model teststatistic for the float solution Tpo,and for the fixed
solution Tp"a &te related to the value for the teststatistic (A.4) of case 4:

Ttr rd = T*"r* T(i)

The vectors A=y-j and 0-j) are orthogonal, metric Q;t,"f. figure4.2, ot 6=y-f and
CI-J) do not correlate.

1.A.3 Ho: integer and real parameters vs Ha: only real parameters

In the cases 3 and 4, we have a hybrid and an integer null hypothesis respectively,
whereas the alternative hypothesis allows the integer parameters to be real-valued. It will
be tested whether the model assumption of the parameters being integers is acceptable,
i.e. whether integerness is sufficiently likely as compared to the parameters being reals.

Although the dimension of the parameter space in the alternative hypothesis is not
increased as compared with the Ho, H" implies an extension in the functional model.
According to the Ho of case 4, the vector y is allowed to lie only on discrete gridpoints in
the R(A), whereas under the H" vector y is allowed to lie everywhere else in the R(,,{).
This can be realized by an integer vector x, together with a real valued increment V^.
Thus, an alternative specification of the H" reads:

H" i  E{yl  =Ap,+Afl^

with V^€R", at least one (V)ieZ. The alternative hypothesis equals the null hypothesis
apart from an extension with n, real valued parameters. These V* parameters actually
contain the fractional parts of the values for the unknowns rr.

3) Ho i Elyl =A*x^+Ap, H" i E{yl =A*x^+Ap, with rr€R"
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The probability density function p,(ylp) has to be maximized under both Ho and H" fbr
the generalized likelihood ratio (7.1). Under Hu the ordinary real valued least-squares
estimator results, and under Ho the integer least-squares estimator. The generalized
likelihood ratio test can be shown to be

(A.1) reject Ho if ll4-41:a;:> lna-2

In the next section on case 4, we will elaborate on this expression and neglect the
stochastics of i, to come to a workable teststatistic. Case 3 is the general case of testing
a model with (some) integer parameters against a model with exclusively real valued
parameters.

1.A.4 H,: only integer parameters vs H": only real parameters

4) Ho i E{r} = A{, H" i Elyl = A{,

The generalized likelihood ratio test (7.3) becomes

with rr€Rn'

(A.2) reject Ho if
-lGrq;td -e'o,',\

e '  < a

The exponent is the difference of the integer least-squares norm and ordinary least-
squares norm. The test can be rewritten into

(A.3) reject H" if l l ir-irll:a, > lna-2

With neglecting the stochastics of the integer estimator ir, the teststatistic becomes

(A.4) Ki) = (t;DrQ;:@,-xs

which has a y2(nr0)-distribution under H" with the assumption E{ir} =\.TG)-Xz(npL)

under H" with ,1, =VirQ;,'Vi and Vi=xo-ir. If the stochastics of i, can not be neglec-
ted, the distribution of the teststatistic is unknown.

Note that with (A.4), actually Ho with .xI as a deterministic quantity is tested against Hu
with treRnl, as the stochastics of integer estimator i, are neglected. Ho is a simple
hypothesis, H. : E{y} =41,.

The, n,-1, one-dimensional version of (A.4) reads

(A.s)

which has a N(0,1)-distribution under Ho. The critical region for teststatistic (A.5) is two-
sided.

In practice the test with statistic (A.4) is carried out as an acceptance test for the
parameters in.r, being integers instead of reals. Under the neglect, based on the observati-

*, -i.
t@) = 

--t-:

o r ,
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ons, it is to be found out whether xr=i, as compared to rreR"' is sufficiently likeli. The
geometric interpretation of teststatistic (A.4) is the distance from the real valued estimate

I to n" integer estimate i' with the distance measured in the metri. Qrrt. The distance
being less or equal to some constant X' defines the search ellipsoid in the integer
minimization, section 4.2.

By the discrete search in the nr-dimensional ellipsoid, a list of gridpoints ordered after
distance to i, is returned. For good discriminination, see section 1.6.3, the integer
estimate i, should represent clearly more probability density mass than any other
gridpoint. In [Teunissen, 1995a] it is proposed to infer this by applying test (A.4) also to
the so-called second best candidate ir.

T@) = (t,- iSr q;,L(t,- x'tr

The values T(i) and I(Q together bear information on the distance lli'1-L,llo;'. It holds

ll4 - i llo;) - lli, - i llo;, < 1li' - i'llq;' < lli, - i llo;) + lli, - i,llq;t

For good discrimination the difference T(D-f@) should be large. The distance
Ii,-i)lq;; will play a role in the discrimination, see section A.7.

1.A.5 Only integer parameters

5) Ho : Elyl = Af , Hu : E{f} = Af,

Case 5 is the equivalent with only integer parameters of case 2 with only real valued
parameters. As compared with Ho, H" is extended with integer parameters.

The estimators both under Ho and Hu have discrete probability density functions and
therefore we are not able to derive the distribution of the generalized likelihood ratio
teststatistic. The distribution of the least-squares residuals d is unknown. The test reads

(4.6) reject H. if d"re;r io _4"r9-t io > lna-2

1.A.6 H": simple hypothesis vs H": only integer parameters

6) Ho : Elyl = Al] H" : Elyl = Art,

The Ho, a simple hypothesis, with some deterministic integer vector rrr is tested against a
composite hypothesis with only integer parameters (although H" can be looked upon in the
R' as a set of an infinite number of simple hypotheses). The H" as compared with Ho is
extended in the functional model by integer parameters: Hu : Elyl =Ali+r4rV with
V,€Zn'and Vr*O. We would like to test the discriminability of one specific gridpbint in
the R(z4r), z{p, , with respect to all others.

In practice we would like to test the integer least-squares estimate: ,] =i,.By definition
of the integer least-squares estimate however, both numerator and denominator of the
generalized likelihood ratio (7.3) are maximized by xr=ir. The ratio equals one by

*clv,
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definition and the test always leads to acceptance of Ho. The expectation of y is governed
by the integer vectorxr. As Arx, is closest to y, it never makes sense to reject i,, the Ho,
in favour of any other integer vector, the Hu.

Testing the simple hypothesis Ho against Hu with xreRnl instead of x,eZn', yields the
teststatistic (A.4) discussed under case 4.

1.A.7 H" and Hu both simple hypotheses

7) Ho : Elyl = Al] Hu : Etrl = Al?

Case 7 concerns the testing of two simple hypotheses and yields the simple likelihood
ratio test. This test is most powerful, see [Teunissen, 1994b]. The alternative hypothesis
Hu is not an extension of, but really an alternative to Ho. The values .r, and xi are
constants, deterministic. We will test two integer vectors (gridpoints) against each other.
The derivation below of the simple likelihood ratio test parallels [ibid].

The simple likelihood ratio is defined as

(A.7) p"rcli)
reject H" if --'------ I q

rrrtlxi)

with a some positive constant. The likelihood of sample y being produced by model Ho is
directly compared with the likelihood of model Hu. Test (A.7) can be rewritten into

(A 8)
reject Ho if 2@;-x;fA{a;',o-tf}) > lna-2.A?-r}fefOi't,1r!-r'11

Vector i, is the least-squares solution to the model of observation equationsElyl =A,x,,

with x,e R"' and the unit direction vector c is defined as

"? 
-r|

? - _

l*? -r|lo;:

Vector c is directed from xrl to ,l . The test becomes

reject H" if c'q;,t1i,-xh , - !!:- . 
:nx?-x/l lo,,,.  

i lx i  _xi l lo 
;  

L , . t

or

(A.e)
reject H" if c'q;,'1*,-xl t K,

Testing with (A.9) takes place in the parameter space R". With Ho'. t,-N(r/,Qr,) ttt.
teststatistic

(A.10) p = c'Q;,'{t,-*;1
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is distributed as N(0,1) under Ho and asN(ilxf -t1ilo-',t;

under H". The critical region for the teststatistid is
single sided. The value of the teststatistic actually is the
inner product of the vectors c and (i,-xi). The geo-
metric.interpretation is given in figure A.1. The vector

1.fr-xr')is projected onto the vector c.

I

x , - x r'  '  r K n
o ^

i-xr

The teststatistic p (A.10) can be related to the differ- Fisure A.t: simole likelihood rario tesr
ence in distances of case 4:

^ , , 2  I-zpllxr - xr

The test with the expression above reads

( A . 1 1 )

The test (A.9) withp for the one-dimensional case becomes

reject H" if r@h-r@h . -zK"l lx l  -r ]1o;)*11x1-x' | l l 'o,  = R,

In order to not reject-the null hypothesis, the difference in distance should be larger than
some critical value K . The real valued estimate, computed from the observations y,
should be closer to xr' than to xi . Note that under Ho this teststatistic has a normal
distribution (only linear operations were applied to2):

T@h-T@b - N(llx? -*)n1o, , +11x1-x|111o,,7

(A.12)

with c=o^, and where we assumed that xl>x]. We see that for the one-dimensional
case, the eipression (A.12) of the teststatistic Z equals (A.5) of case 4. Both are standard
normally distributed under Ho. The tests are not identical, as they concern different
alternative hypotheses. Moreover the above test has a single sided critical region, whereas
(A.5) has a two-sided critical region.

Note that the distance between xl and rrt can be computed, once the variance covariance
matrix Qr, is available; the real valued estimate itself is not needed. In the one-dimensio-
nal case, iirith ,r' the so-called second best candidate, we have llxr2-rllor,,=or,t.

In practice, for judging the discriminability between the integer least squares estimate and
the second best integer vector, one constructs the test (A.9) with xi =i, and xi =ij. Both
i, and i, are not non-stochastic however. A consequence is that, as the integer estimate
is the gridpoint that has least distance to the real valued estimate, the teststatistic p will
always
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|  " . 1P < ; l lxr-xt l lo.u
' l

and the standard normal distribution of 2 is violated.

One would like to use test (A.9) to assure that ir represents sufficiently more likelihood
than any other gridpoint. The discrimination test is needed for fixing the integer parame'
ters, see section 6.3. When the stochastics of the integer estimator are neglected, the
integer estimate has to be validated. In theory all (:an infinite number of) gridpoints
should be considered. In practice this can be done one by one with the projection
teststatistic p for only a limited number of them (the gridpoints in the neighbourhood, or
even olly the second best one). We should oppose H" E{l} =Af , against all possible H"'s
with r,'eZ"I in one time. This was done in case 6.

1.A.8 Concluding remark

Validation of models with integer parameters requires special attention. The major
problem is caused by the discrete probability density function of the integer estimator.
Various special cases of the general case of testing in hybrid estimation have been
considered.
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2. Recursive data processing

batch or recursinn
Basically, data processing for a model of obserttation equations E{y}:Ax can be carried
out in batch or in recursion. The recursion stems from a row-wise partitioning of the
model. In the first section we will discuss the concepts of both strategies, together with
their advantages and disadvantages. The conditions imposed by the kinematic GPS
surveying application drive the decision towards the recursive strategy.

implementation
Various implementations of the data processing are possible for the model of observation
equations. We can distinguish between two categories of (direct) methods: those thnt are
based on normal equations and those that involve reduction of the designmntrix to a
canonical form. The methods with normnl equations have already been in use for a long
time. In particular the method of normal equations with Choleslq factorization of the
normal matrix, is very popular in geodetic data processing. The techniques of the second
category have been evolving since the sixties of this century. The reason primarily is
numerical accuracy. In appendix A we will treat an alternative from this second category.
A QR-factorization of the designmntrix is made and the reduction involves orthogonal
transformations. Beside the method of normal equntions, also the method of QR-
factorization turns out to be very well suited for the Delfr approach to data processing
with estimntion and quality control.

SRlr'
Section 2 and 3 deal with the recursive data processing according to the QR-factorization
implementation. This implementation is called the Square Root Informntion Filter and the
data processing in the kinematic GPS surveying application will be carried out with this

filter. In the section on quality control, the implementation of the DlA-procedure in the
SR/F is treated. A review of recursive data processing and the DlA-procedure is given in
appendix B.

mechanization aspects
The last section contains a brief review of implementations of recursive data processing
and the argumentation for the one chosen, the Square Root Informntion Filter.

2.1 Recursive estimation

In this section the concepts of estimation both in batch and in recursion are discussed. We
elaborate on filtering and introduce the time and measurement update. We conclude with
the argumentation for the choice for data processing in recursion.
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2.1.1 Concept of filtering

We are concerned with a dynamic system. The state of the system is mathematically
described by the vector x. The parameters in -r depend on time. Knowledge about the state
of the system is gained by making measurements. As a result we have a measurement
system with observations on one side, and unknown parameters on the other.

We make a division in time and use an index to denote the epoch a quantity is related to.
The system is considered at discrete instants in time from epoch 1 to epoch,t. As such we
have ft vectors, not necessarily of equal dimension, for the state of the system: x1, x2,..,x14
and k vectors with observationsi !1, !2,..,!ta.

observations state
(unknowns)

xL

x2

x
Ĵ

.
x,- ,
xk

Figure l. l: Measurement system

The data processing is carried out according to the principles discussed in chapter 1. We
distinguish between two strategies: batch and recursive.

observations unknowns estimates

xr
t:

x,- ,
x L

Figure 1.2: Estimation in batch

In batch estimation, all observations are taken together. The full model of observation
equations is treated in one go. Therefore estimation can take place only when all
observations have been collected and de facto off-line or in post mission.

In the above figure i,,o is the estimate for the state at epoc.h. i, with I<i<k. The index ft
denotes that all observations from epoch L to k are used. tl't is the vector of misclosures,
it stems from the redundancy in the determination of the estimates. The double lined
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arrow represents a linear transformation that preserves all information contained in the
observations.

Now we restrict ourselves to a special structure of the model of observation equations and
discuss the recursive estimation. The recursion stems from a (blocked) row-wise partitio-
ning of the model. We assume that observation y, is related to x, and possibly to x,-r (for
i:Z,..,k). The observables !t,..,!* are not time correlated (white noise). Matrix Q, is a
block diagonal matrix. The full model of observation equations reads:

Q,,
v

v

) , ,

v

A 1

Ar,. A,
v

v
Q,,

( 1 . 1 ) El ) =

Ao-r,  Ao-r,

Ao' An

o b s e r v a t i o n s

E
" E

" E
L > .

; D l l =

unknowns estimates

xl

x2

i,_,
xi-t

r] v-k-1

v
Qrr-,

Q,,

where y, is a n,-vector and x, is a n,-vector. The matrices At and A,t with i:2,..,k are all
assumed to be of full rank. For all epochs i it holds thatmt>n,.

"El
Figure 1.3: Estimation in recursion

The adjective 'recursive' means that the observations lt to !* are treated in a sequential
manner, thereby using the same procedure in each step.

In figure 1.3 *iti is the estimate for the state at epochT, with 1<i<i-I.v., is the vector of
predicted residirlals, it stems from the redundancy in the determination of the estimates at
epochT Q<j<i-l). The recursion starts with the computation of estimate ir,, from yr.
From this so-called initialization, the misclosures t,. follow.

At epoch i-1 in the recursive estimation, observations y, through y,-, have been processed.
The observations are treated sequentially according to some fixed procedure. The so-
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called predicted estimates are not considered. Here it is physically impossible to compute
estimates i,,,_r,..,iut,_, without any information about these future states.

In the sequel we will concentrate on filtering: estimates for the state are computed parallel
to the data gathering (with possibly a delay). It means going through the data in forward
direction, indicated by the arrows in figure 1.3. At epoch i-1, estimate i,_r,,_, is of
primary interest. The observations of epoch i-l have been processed and yield the
estimate for the state at the current epoch. The double lined arrow again represents a
linear transformation that preserves all information contained in the observations (one-to-
one mapping).

At epoch i, observation y, is added.

observations unknowns estimates

[ ' )  +H

i . i
iI-ri
Figure 1.4: Filtering at epoch i

The estimates for the states in the past .f,,, through i,_rlr_r, are functionally related to.r,
through xi-z by unit matrices and thus without redundancy. The predicted residuals v,
through v,-, (and misclosures lr) in figure I.4 are not functionally related to any of the
unknowns, nor stochastically related to estimate r,_rr,_, or the remaining observations.
The observations to be treated, y, through Jp ate, related only to the states x,-, through.xo.

t i  i

!  ' l  !: :
i v " !
: :
i r :

observations unknowns estimates

: ^  :
l r i - r1i-r i

['J +

Figure 1.5: Filtering at epoch i
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The quantities in the dotted boxes, which are in fact transformed observations, do not
contribute to the estimates of these states and are therefore left out of further considerati-
on in filtering, see figure 1.5.

The predicted residuals v, are the misclosures of the 'local' model in figure 1.5. After
filtering at epoch i, estimate i,_,t,_, and residual vi can be left out and observation yr*,
can be treated similar to observation y,, see figure 1.6. The process continues until
observation yo has been treated and estimate io,o has been obtained.

observations unknowns

Figure 1.6: Filtering at epoch i+1

Filtering starts at epoch 1 and ends at epoch k. We have obtained the estimates f,,,,..,
io,o and predicted residuals v2,..,r11(and 4). They all are (linearly) transformed observa-
tions. Smoothing means going through the data in backward direction. Smoothed
estimates, are estimates r,,o for state.ri with l:\,..,k, computed using (indirectly) all
observations from y, to yo. Although there is no redundancy in iys,..,i1r1p determining
x1,..,x1a (actually a one-to-one relation), improved or smoothed estimates i111,,..,i1,10 can
be computed, due to the correlation between the filtered state estimates and the predicted
residuals. Estimation in batch directly yields these smoothed estimates, figure 1.2.

The predicted residuals become available epochwise in the recursion and represent the
redundant data. They are further used in the model validation. It is namely the surplus of
information which enables one to test whether the data can be considered to be statisti-
cally consistent with the assumed mathematical model, given by equation (1.1). A one-to-
one linear mapping exists from the full set of predicted residuals {rr,..,ro\ (with tr) to the
vector of misclosures tr't obtained with estimation in batch.

2.L.2 Time and measurement update

We will now further detail the model of observation equations (1.1). Observations y, (with
i>2) may originate from 'real' measurements, and from knowledge about the (dynamics
of the) system. The latter will be referred to as pseudo-observations and denoted by d,.
The dimension of x, is n,. In the sequel we assume for the ease of the discussion, that
t t i : t l  for al l  i :L, . .  ,k.

Here, epoch k is the last epoch (with k>2). With new observations becoming available
(in future), the recursion may of course be continued. In the sequel, the recursive data
processing will usually be discussed for this epoch ft.

The observation equation for the pseudo-observation at epoch k reads

E
tr

estimates

ilit:!

f.-l
l^ ,+ l  l i * l  I
: " " " " ' !

i}:T

/ r , \
t ' t
! | -

l l
Fi . t /
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I .2) E{dkl = x*-6.*_{rt i  Dld*l = ear

with O**_1 the nxn transition matrix from epoch k-l to epoch k. The underlying dynamic
models are continuous in time. For a derivation, the reader is referred to [Maybeck,
19791 and [Teunissen, 1995]. Both vector dk and xo have dimension n.

The model for the observation at epoch fr is

1.3) E l y o l  = A { r ;  D { r r l = Qyr

With digital signal processing techniques, sensors provide measurements (samples) at
discrete times. Vector yo has dimension lz*.

With these models (1.2) and (1.3), the observation vectoryo of model (1.1) is split into do
and yo. The elements of the designmatrix are detailed according to

,-, = (-t6o') u. = 
[o- u.)

and matrix Q* is block diagonal as fo and & are assumed to be not correlated.

In appendix B it is reviewed how with (1.2) and (1.3), the recursion of figure 1.3 leads to
the well known Kalman filter. The recursion of figure 1.3 is then made in two steps. First
the pseudo-observation do is incorporated. This yields the Time Update, see figure 1.7. In
the time update, there are 2n unknowns to be determined from 2n observations. The
redundancy in this step equals zero. io,o_, is called the predicted state estimate.

observations unknowns

Figure 1.7: Time Update from epoch /c-l to epoch k

In the second step, observation yo is introduced. This yields the Measurement Update, see
figure 1.8. There are n unknowns to be determined ftom n*mo observations. The
redundancy in the measurement update equals mo. The vector of predicted residuals vo is
mo-dimensional.

Parallel to the recursive estimation, model validation can be carried out with the DIA-
procedure. This procedure, based on the predicted residuals, allows the detection and
identification of, and the subsequent recovery from model errors. The DIA testing
procedure is reviewed in appendix B. In the kinematic GPS surveying application, both

^-=w),r =v)

[ + ' ]
t t =

l 'u ,J

estimates

:";""""""":
l1nt*-ri

l'klk-rl
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estimation and quality control will be carried out in a recursive manner. As a result, the
estimators with accompanying quality measures can be available in (near) real time.
Estimation and quality control together, constitute the data processing.

observations unknowns estimates

v t +

Figure l 8: Measurement Update at epoch k

2.1.3 Argumentation for recursive data processing

In this section we will consider the arguments for the choice between the recursive and
batch data processing strategy. The model of observation equations is assumed to have the
particular structure of (1.1).

Both strategies are capable of incorporating observations stemming from measurements as
well as those from system knowledge. Although the processing strategy differs, the
estimation principle does not. Therefore identical estimators t,,n for the state at epoch ,t
are obtained. Batch estimation directly provides smoothed esfinators i-," with i:I,..,k
for all states. These estimators are more or at least equally precisd''as the filtered
estimators f, ,-, 

symbolically Q,*. Q,,, .

In batch estimation, the complete vector of observations is processed in one go and all
unknowns are estimated together. The realization of the data processing may be hindered
by practical limitations (computer memory). A partitioning of the problem may be the
cure. [n a recursion the system per epoch will have relatively small size. Filtered
estimates are based on the observations already availablE at the particular epoch.
Collected data can be removed once they are processed (and thus need not be stored). The
recursive approach also tends to handle time varying parameters more easily. New
parameters can be introduced when needed and estimators for previous states can be
removed. In order to start the recursion, the state estimate.fr,, need to be available. A
batch type of solution for the first (few) epoch(s) can be used.

Estimation in batch can provide results only with some delay (post processing). The
recursion can run parallel to the data gathering, although also in post-mission the
estimation can be carried out in recursion. With filtering, estimates for the state can be
available in (near) real time. A surveyor usually does not need to have available the
estimation results in real time, but for a navigator this is indispensable. Real time quality
control, however, is beneficial to both. Quality can be monitored in the field and if
quality requirements are not met, corrective actions can be taken immediately (during the
data gathering).

For the kinematic GPS surveying application, the recursive data processing strategy is
chosen. Real time quality control thereby constitutes the primary argument.
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2.2 Square Root Information Filter: estimation

The general form of the full model of observation equations was given by (1.1). Using
the observation equations (1.2) and (1.3), this model was detailed in appendix B (8.1).
The variance covariance matrix was assumed to be symmetric and positive definite.
Normalization of the observables vields
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The designmatrix is of full rank. The number of observations equals E1m7*6-t)2, the
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number of unknowns kn. The observables have unit variance covariance matrix.

Various implementations of the data processing are possible for the model of observation
equations. We can distinguish between two categories of direct methods: those that are
based on normal equations and those that involve a reduction of the designmatrix to a
canonical form [Golub et al, 1989]. In appendix A, estimation via QR-factorization is
treated. This method belongs to the second category. The reduction of the designmatrix is
realized. by orthogonal transformations and the resulting designmatrix is upper-triangular.
Employing this method for recursive estimation leads to the SRlF-implementation, or
Square Root Information Filter [Bierman, 1977]. The argumentation for this choice is
given in section 4.
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Before the time and measurement update of the SRIF are discussed in detail, we will
show how these steps work out in the model of observation equations as a whole. The
underlying sections 2 and 3 closely parallel the treatment of the (standard) Kalman filter
in appendix B. We start with model (2.1) and for the initialization an mrxmt orthogonal
transformation matrix Z is applied to the rrpper mt observation equations. The resulting
model is given in (2.2).

The m, observables y., are transformed into the n-vector of estimators i,,, and the (mrn)-
vector of misclosures ut. The misclosures have all coefficients equal zeio. They will be
put at the bottom of G model. The designmatrix qr,|l2A, has been transformed into an
upper triangular matrix of which the upper nxn part is Sli . The estimator for .r, follows
from i, t, 

= S, t,2, tr with Q, , 
= S, t,Sitt .

The recursion can start once the first state estimator is available. A sequence of
alternatingly time and measurement updates is carried out until all observations have been
rreated. We will consider the time update from epoch k-l to epoch ft. In equation (2.3)
the observations from epoch 1 up to and including epoch ft-l have been treated. The
filtered state estima,or io_rlo_, can be computed fto. io_,lu_r. At epoch ft-l the model
reads (2.3).

s;l s;l
zr
,:

z*-r1*-,

oilqao

xl

x2

(2.3) u'lo;-'or-rl =

srl s',1

so-1ru-,
-Qil?our-, a;:'

QiI''AO
x*-t

xk
u-1

w-2

The transformed observables 4r,..,fu-2 at.. related to the states r/,..,xt-t. By the upper
triangular structure of the designmatrix and together *ift 2o_,,0_,, smoothed estimators
t,,. , ,..,t,. ^,,. , can be determined instead of filtered esiiriiStors. wz,. . ,W-t are the
noffiialized 

-pfedicteo 
residuals.

The time update from epoch k-l to k consists of a 2nx2n orthogonal transformation matrix
Z, applied to i,-,,,_, and Q;.'''d,..After the time update the model reads (2.4). The
transformed oUs6iViUles are zo'_, 

"hd 
i*,0_,. From the latter, the predicted state estimator

iolo_, 
"un 

be computed
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s;j
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7
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:

w-k-L

st,l

(2.4) l =

Then the measurement update at epoch k can be carried out. An (nim)x(n*mo)
orthogonal transformation matrix Z is ipplied to io;u_, and. Qrrtlz!*.

After the measurement update at epoch ft, the model finally becomes (2.5). The resulting
observables ̂r" 2olu and yo, the latter has been transferred to the bottom of the model.
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The filtered state estimatot to,, can now be computed from 2,,,. through upper triangular
matrix so,l. vtooet (2.5) is trfiu comptetely equivalent with flfe model we started with,
equation (2.1). Only orthogonal transformations have been applied.

The lower part of designmatrix (2.5) contains only zeros. This is also the case for the
designmatrix of appendix B, (B.5). The upper knxkn part has a blocked upper-triangular
structure as opposed to the transformed designmatrix (B.5), which contains only ft d unit
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matrices in the upper part. The variance covariance matrix of the observables in (2.5) is a
unit matrix, whereas the variance covariance matrix of (B.7) is a block diagonal one.

As model (2.5) is the result of the full transformation upon (2.1), the structure of (A.12)
applies. The vector of transformed observables can be split into the 'estimation' part, the
vectors z, and the 'redundancy' part, the vectors w (and z). The ftn observables of the
estimation part, with the blocked upper triangular matrix S-1, uniquely determine
(smoothed) estimators for,r1,..,xo. Note that the redundancy part does not play a role in
this as these observables are not functionally related to the states r1,..,r1, Dor stochas-
tically related to the transformed state estimators zt,..,zk_r, irlr. All redundancy has been

k

transferred to the lower part of the model. The redundancy equals 1Em,)-n. The

equivalent model of (2.5) in terms of condition equations reads

z1

\
I^an

(2.6)

The transformed observables u1, w2,..,& are uncorrelated and have all unit variance; they
are normalized. From (2.6) we see that together, they constitute a valid set of misclosures
to model (2.5) (also linear combinations of them can be taken). A linear one-to-one
mapping exists between this set and h, !2,..,& of (8.6), see also (A.16).

The transformed observables 41, Az,..,A* become available.gpochwise; .4 contains the
(normalized) misclosures of the local model with 2,_,1,_1 , Q4,'''d, and Qr,'t'y, as observa-
tions. In conclusion, wz,..,Ware normalized predicteit residdals. These iesiduals are used
for model validation as discussed in section 3.

2.2.1Time update

The part of (2.3) that is of interest for the time update is
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with unit variance covariance matrix. This model has no redundancv. The 2nx2n
orthogonal transformation matrix I is applied to the observabl", io_,lo_ , ana Qa)edo. The
resulting designmatrix is upper triangular:

(2.8)

zu_, is an r?-vector of transformed observables, So-tr*-, is an nxn upper triangular matrix
aiid S*-on is an nxn square full matrix. These quantities are needed for the computation of
smoothed estimators, see also [Park et al, 1995]. The notation'inverse of So-,*_,' is used
as this matrix is part of the upper triangular matrix S-r of the model of 

'observation

equations as a whole. The comma is used in the index instead of the vertical line, to
denote that the matrix So-tr*-, itself is not the factor of Q;,t-,,, ,. The upper n observation
equations of (2.8) do not change anymore in further pfoCe'ssing. The predicted state
estimator follows from the lower n equations

ior*-, = s*lo-,iot*-,

with the variance covariance matrix as

Q'*,*-, = solo-'s*10-'

The observabl"r 2o,u_, and matrix Sol|-, are used in the measurement update.

2.2.2 Measurement update

The part of (2.4) that is of interest for the measurement update is

E{[i'-;,,)] ['?' ;1;J tr;')

(2.e)

(2 .10)

with unit variance covariance matrix. The redundancy equals mo. The (n+m)x(n*m)
orthogonal transformation matrix Z is applied to the observables 2olo-, 

"nd 
Qr*"'!n. The

resulting designmatrix is upper triangular:

,t(;i,r,;r| =[r:[-J ,

"'['ri'= [';f o
The filtered state estimator follows from the upper n equations

io1*=sot41u
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with the variance covariance matrix as

Q'*'* =so'osoi

The observables io,o and matrix So;| are used in the next time update.

2.2.3 Normalized predicted residuals

In appendix B we have seen that the predicted residuals are the cornerstone of the testing
procedure that parallels the recursive estimation. Below (2.6) we concluded that y,,..,yo

are the normalized predicted residuals, or normalized innovations [Park et al, 1995]. The
normalized predicted residuals can be related to the predicted residuals epochwise, by the
square m,xm, and full rank transformation matrix Wr:

u ' = w i w '

for i:2-...k. This relation is used in the next section to rewrite the formula for the
generalized likelihood ratio teststatistic (8.18) in terms of normalized predicted residuals.
The fact that the normalized predicted residuals have unit variance covariance matrix, will
simplify the formulae.

2.3 Square Root Information Filter: quality control

In this section, the quality control in the Square Root Information Filter is discussed. The
emphasis lies on validation of the mathematical model. The DIA testing procedure can be
executed parallel to the recursive estimation that has been discussed in section 2.2. The
DlA-procedure has been reviewed in appendix B, section B.3.

2.3.1 Testing: DlA-procedure

49

The null hypothesis is given by model (2.1).
model is extended by adding the q-vector
matrix is as in (2"1).

In the alternative hypothesis, the functional
of unknowns V. The variance covariance
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In the recursive estimation, the transformations applied to the designmatrix discussed in

the previous section, are applied to the model misspecification matrix in (3'1) as well.

The alternative hypothesis has been propagated into (3.2) at epoch k. Matrix Zoto is the

so-called response matrix: it determines the effect of the model error V on the estimator

2,,,1 Z*to=s*,I Xo,o (the matrices Z, for 4,). The matrices C- ate explicitly used in the

tdsiing irocedure, Cu.=W, Cn,.

z1

\

s;i s',1
sr.l sr.l z1

z2

s;_\,o-, so*t-,
_ t

sori

x1

x2

(3.2) El

c.r-,
C*u

The null and alternative hypothesis, respectively (2.5) and
the purpose of testing with the teststatistic 4 in

(3.2), can be reformulated for

(3 .3) = 0 and H.: E{

or with the normalized predicted residua.ls concatenated in vector w

(3.4) Ho: E{wl = O and Ho: E{wl = C*Y

where the normalized misclosures z, have been left out, cf. (B.17). These misclosures can

however, be treated just like normalized predicted residuals. The general form of the
generalized likelihood ratio teststatistic expressed in terms of normalized predicted

residuals reads
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and has a central ,(2-distribution with q degrees of freedom under the
The null hypothesis is rejected in favour of the alternative hypothesis if
the alternative hypothesis, the non-centrality parameter is given by

5 t

null hypothesis.
Tnu Kn' Under

(3.6) ),. = vrc: c.v

The estimator for the model error then reads

(3.7) v = 1cjc.)"clw

detection
In the detection step the overall validity of the null hypothesis is checked. No particular
alternative hypothesis is specified. The Global Overall Model (GOM) teststatistic reads

(3 .8)

The null hypothesis is rejected in favour of the alternative hypothesis if T>K ; a model
error is said to have occurred. The inner product wrw can be taken epochwise as the
variance covariance matrix Q, is unit. The Overall Model teststatistic is also given on
p.71 of [Bierman, 19771 and termed sum of squares of the residuals. For the alternative
hypothesis with /:k, the Local Overall Model (LOM) teststatistic is obtained.

identification
After an (unspecified) model error has been detected, the identification is performed to
trace the model error. We will consider only alternative hypotheses, which are one-
dimensional, i.e. V is a scalar (q:l\. The matrix C, in the alternative hypothesis reduces
to a vector. It can be computed in the recursion.

The Global Slippage (GS) teststatistic for testing against an alternative hypothesis, in
which the model misspecification concerns the epochs / to k, reads

(3.e) t t *  =

The slippage teststatistic t has a standard normal distribution, i.e. l-N(0,1), under the
null hypothesis. The null hypothesis is rejected in favour of the alternative hypothesis if
Vlrk,; the model error specified by the alternative hypothesis is found to be sufficiently

likely and said to have occurred.

The Local Slippage (LS) teststatistic for epoch k is obtained by substitution of I:k in
(3.e).

k

TI*  = I  wlw
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adaptation
After detection and identification of a model error, the estimator for the state under the
alternative hypothesis needs to be computed. We will compute it, using the results
obtained under the null hypothesis. The n-vector of observables determining the filtered
state estimator is denotedbV 2i,0.

Below, the adaptation is shown for a 4-dimensional local (/:ft) model error with
l<q<m* Model (3.2) then reads

s;l stl
_ l  _ 1

Srj Sr.i

so-1,0-, s#-,

sii' zow

xr
x2

(3 .10) l =

c_.

with unit variance covariance

( 3 . 1  1 )

matrix. The part of interest for the adaptation rs
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where the order of the unknowns has been reversed. The redundancy equals (mr-q).Inthe
(n+m)x(q+n) designmatrix, the nxn block Sift at the right is already uppei tiiangular
(factoriiation-result of the estimation under Ho). The overall upper triangular shape is
realized bv additional orthosonal transformations.

"'['i, =17:r*r'J (;)

"'#'] ol '"' l
t l

nlleinlt =
l w o  I
\-r /

(3.r2)

z- is a q-v.ector, 21,,_ is an n-vector., wl. an (mr-q)-vector, S;' a qxq upper triangular
matrix. Sr) a (qxn\l?natrix and Sfri' th€ nxn upper triangular matrix. The estimator for
the filtered state under H" follows fi:om
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ti,o = st,-

and the variance covariance matrix becomes

Qrf,r = Sttr SiiI

The first 4 equations of (3.12) can be left out, if the estimator for V is not needed in

further data processing.

The alternative hypothesis Hu has become the new null hypothesis. Yet another alternative
hypothesis may be specified and treated similarly. By means of statistical testing, based
on the (updated) normalized predicted residuals w!, one may decide to either accept or
reject the (new) null hypothesis (in favour of the'-specified alternative hypothesis). The
adaptation procedure can be repeated again. In this way the adaptation can handle
multiple (local) model errors recursively. Finally note that in principle the idea can be
carried through to handle also multiple model errors identified by global tests like (3.9).

In that case the normalized predicted residuals X4 through r.rtr have to be updated.

2.3.2 Measures for quality: precision and reliability

Under the null hypothesis the quality of the estimator is described by the precision. The
precision of the filtered state estimator iolo is given by the variance covariance matrix

Qao"

The quality of the estimators, if model errors occur, is described by reliability. After
taking a reference value lo for the non-centrality parameter (3.6), we can compute the
Minimal Detectable Bias, that corresponds to teststatistic (3.9)

(3 .  13)
tw  I , k l  -
l v  l -

The model error in terms of the transformed observations in given by (3.14).

The impact of an undetected model error (3.14) on the filtered estimator for the trans-
formed state reads

(3 .  l5 ) Y2*k = ZotnV'r

with Xo,o =SotoZoto,cf. (B.31), and on the state itself

Yitlr, = Sulovzolo
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(3 .14)

The significance of bias (3.15) can
Noise Ratio (BNR)

(3 .16)

be judged upon by means of the following Bias to
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2.4 Mechanization aspects

A filter mechanization is an implementation of the recursive estimation. Two different
mechanizations have been given already: the Square Root Information Filter, or SRIF
(section 2) and the Kalman, or standard covariance filter (appendix B). Mechanizations
differ in the way the computations are made, but for the same problem they all (should)
come up with identical estimation results.

This section starts with a very brief overview of the various classes of filter mechaniza-
tions. Next, the considerations are given, that lead the decision to the square root
information filter for the kinematic GPS surveying application.

2.4.1 Review of mechanizations

A classification of mechanizations can be made after the propagation of the variance
covariance matrix Q, of the estimator. In information filters Q;' is propagated and in
covariance filters Qr. Beside this division, we will maintain the two categories, men-
tioned in section 2.2: implementations can be based on the normal equations or on the
reduction of the designmatrix to a canonical form. Respectively the full (inverse) variance
covariance matrix or a certain factor of this matrix is propagated. For the latter, the use
of a square root factor S, e.g. the Cholesky factor, is commonplace.

Q, = s st ai = s-r s-r
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We thus distinguish between two categories: standard mechanizations and square root
mechanizations. For the covariance type of filters also the U-D factorization is well
known. Instead of propagating a square root factor, the U- and D-factors of the UDU r-

decomposition of Q are propagated. The factorization filters have been developed for the
reason of numerical stability.

full matrix O" souare root .S

covarrance covanance square root covarrance

information lnlormatlon souare root information

Table 4.1: Major classes of filter mechanizations

Many modifications and variations within the classes mentioned above do exist. The
algorithmic details of these mechanizations will not be discussed; the reader is referred to
the textbooks [Bierman, 19771, [Maybeck, 19791, [Anderson et al, 19791, [Minkler et al,
19931 and [Grewal et al, 1993].

In the remaining of this overview, we will point out the duality between the covariance
and information filters. The duality concerns the limiting cases of the statistical uncer-
tainty of the state estimator: complete uncertainty and no uncertainty (deterministic state),
see also [Morf et al, 1975].

In principle, the information filter can not accomodate problems with perfect (determi-
nistic) knowledge (zero variances), whereas the covariance filter can not accomodate
problems involving no a-priori (zero) knowledge (infinite variances). Perfect knowledge
about the state implies namely Q=0 - a;' =- rnd zero knowledge corresponds to

a; '=0  *  o=- .

zero knowledee perfect knowledge

covarlance Q o = * Q. = 0

mlormatlon Q ; ' = 0 Q r t  =  -

Table 4.2: Limiting cases of knowledge about state

The zero knowledge case may occur at the start up of the recursion. At epoch k:0, no
knowledge about the system is present. With only one epoch of data, it may still be the
case that not all parameters are directly estimable; the (partly) zero knowledge situation
may last for some more epochs. Information filters are in principle, able to accomodate
this situation, see also [Park et al, 1995]. For a covariance filter, a separate initialization
is required to provide an initial state estimator based on the first few epochs and therewith
safely start the recursion.

The perfect knowledge situation on the other hand, may arise in the data processing by
e.g. external non-stochastic information about the state. The covariance filters can simply
incorporate this information. For the information filters, the mathematical model has to be
explicitly reformulated or some numerical approximation (to zero variance) must be
made.
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2.4.2 Argumentation for SRIF

In addition to the initialization and the zero variance case, three more aspects in choosing
the mechanization appropriate for a particular application, are the availability of the
results, the computational efficiency and the numerical accuracy.

availability of results
All mechanizations should come up with identical estimation results. The standard Kalman
filter is the only mechanization in which both the estimate f and the variance covariance
matrix Qi are explicitly available (explaining its numereous use in practice). In the
information filters, the 'inverse' information is propagated. The state estimate i and
matrix Qi are available only at extra computational cost. This propagation of inverse'
information complicates the time update as compared with the covariance filters, but
simplifies on the other hand the measurement update.

Testing in recursive data processing (appendix B.3) is based on the predicted residual y
and its variance covariance matrix Q,. In general they explicitly follow from the
covariance filters at no extra cost. In the U-D covariance factorization filter the predicted
residuals are not directly available. In principle they are not computed in the standard
information filter. Normalized predicted residuals, however, are directly available in the
square root information filter mechanization.

Concerning the availability of estimation results, the standard covariance filter is
preferred. The normalized predicted residuals of the square root information filter are
very convenient for testing.

computational efficiency
Data processing results should be obtained at reasonable computational cost. The number
of arithmetic operations required, should be as small as possible, as this number will
directly translate into the amount of CPU-time the data processing algorithm consumes.
This will be of particular importance in real-time filter applications.

Two general and indicative statements in literature about computational efficiency are first
that the information filters are computationally more demanding than the covariance filters
are and secondly that using a factorization mechanization instead of a standard one,
increases the computational load; this is the price to pay for increased numerical stability.
For comparisons of filter mechanizations on computational efficiency, see [Bierman,
1977) and [Maybeck, 19791.

Three remarks are in order. The statements in literature concern only the estimation, not
the quality control computations. Secondly, the importance of the computational efficiency
aspect of the filter mechanization is limited by the fact that the peripheral computations,
such as administration and I/O, may account for a large part of the total computational
burden of the recursive data processing (and thus largely determine the so-called filter-
cycle time). These peripherial computations are needed, independent of the filter
mechanization. Finally, the actual efficiency will depend very much on the application at
hand. A rigorous comparison between the mechanizations, all applied in kinematic GPS
surveying, has not been made. Such a comparison will be hard to carry out as per
mechanization, a wide variety exists of modifications which may affect the computational
efficiencv.
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In general the conclusion reads that from a computational point of view, the standard
covariance filter is to be preferred. This aspect is however, of little weight.

numerical accuracy
For the data processing we set up a mathematical model that is thought to adequately
describe the measurement system at hand. For the moment we assume this model to be
perfect. Then we have to realize that, the problem we solve with a computer, is an
approximation of the problem formulated in the mathematical model: unknowns,
observations and model matrices are in general continuous quantities. They are, however,
stored in the computer memory using a limited number of bits, as floating numbers.
Arithmetic operations among floating numbers introduce additional fractional errors. They
are called roundoff errors. Usually roundoff errors accumulate with increasing amounts of
calculation. When they play a major role in the computations using a certain mechaniz-
ation, this mechanization is said to be unstable (filter divergence). The reader is referred
to the examples in [Maybeck, 1979].

Numerical inaccuracy may occur in particular in ill-conditioned problems. A 'bad'

measurement scenario enters the numerics via the design matrix. The variance covariance
matrix Q, obtained for the state will be ill-conditioned. This ill-condition shows up in the
spectrum of eigenvalues. The eigenvalues typically range from close to zero to very large
numbers: certain (linear combinations of) unknowns are determined very precisely,
whereas others are nearly unobservable; see also the definition of the condition number

[Golub et al, 1989] and [Marel, 1989].

The numerical problems concentrate around the variance covariance matrix Qi. In
kinematic GPS surveying, the occurrence of ill-conditionedness is unavoidable as
ambiguous range measurements are made in a configuration that hardly changes during
the short observation time span, see also the discussion in [Lichten, 1990]. To avoid
numerical problems as much as possible (computed estimation results must be correct at
any price), we opt for an information type of filter. In an ill-conditioned system some
unknowns can hardly be determined. This was called the zero knowledge case and the
information filter was recommended.

Due to roundoff errors in arithmetic operations, the variance covariance matrix (or its
inverse) may lose its positive definite property during the recursive data processing.
Propagation of a square root instead of the variance covariance matrix itself, guarantees
symmetry and positive (semi-)definiteness. These two properties are enforced by
computing only an upper or lower triangular part. We cite [Maybeck, 1979]: square root
mechanizations exhibit improved numerical precision and stability, particularly in ill-
conditioned problems. The square root approach can yield twice the effective precision of
the conventional mechanization in ill-conditioned problems, see [ibid] and [Lawson et al,
19741. Note that in practice also other factors play a role in this, see [Golub et al, 1989].

For the aspect of numerical accuracy, the use of the square root information filter is
required.

concluding remarks
An ideal mechanization simply does not exist. For the kinematic GPS surveying applica-
tion, the square root information mechanization is thought to be the best candidate. The
two primary considerations are, first that it enables a proper initialization in an ill-condi-
tioned problem (therefore the information type of filter is chosen) and secondly that it is



58

numerically more stable (factorized Kalman filter approaches possess superior numerical
characteristics [Lichten, 1990], and therefore the square root is chosen). An example of
geodetic GPS data processing with a square root information filter is given in [ibid].

Finally we give some additional minor considerations concerning the square root
information filter. In section 2, it was shown that orthogonal transformations, applied to
the full model of observation equations, yield an upper triangular structure for the
designmatrix together with an explicit splitting up of the observations into an estimation
part and a redundancy part. This straightforward procedure easily allows further data
processing, such as the computation of smoothed estimates and the recovery (adaptation)
from (multiple) global model errors. Furthermore the normalized predicted residuals have
unit variance covariance matrix, which yields some simplification in the quality control
computations.

In summary, the Square Root Information Filter (SRIF) turns out to be very well suited
for the 'Delft' approach to recursive estimation and quality control in general, and for
kinematic GPS surveying in particular.

2.5 Summary

In this chapter, the formulae for the recursive data processing using the Square Root
Information Filter have been presented. In each step of the recursion, the designmatrix is
reduced to a canonical form. The square root of the inverse variance covariance matrix of
the state estimator is directly propagated, and this has positive consequences for the
numerical accuracy of the mechanization.

Orthogonal transformations are applied to (a part of) the model of observation equations,
thereby preserving the full information content. The observables are split into the
estimation part (although the estimator for the state vector is not explicitly computed) and
the redundancy part. The redundancy part contains the normalized predicted residuals,
which can conveniently be used in the testing procedure. With the DlA-procedure, model
validation can be carried out parallel to the recursive estimation.

Appendix 2.A Estimation by means of QR-factorization

In this appendix, estimates for the unknowns in a model of observation equations will be
computed by means of the reduction of the designmatrix to a canonical form. In estima-
tion via QR-factorization, the designmatrix is reduced to an upper triangular matrix by
orthogonal transformations. This method is opposed to performing a Cholesky
factorization upon the normal matrix. For the introduction on estimation via QR-
factorization, we will follow the discussion in [Golub et al, 1989], where chapter 5 is
primarily concerned with the least-squares solution of an overdetermined system of
equations.

2.A.1 Introduction

The mxn design matrix u4, with full rank n and m2n, can be factored as

(A.1) A = T r R
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in which ?r is an mxm orthogonal matrix (the column (and row) vectors are orthogonal
unit vectors and thus orthonormal; ?r is therefore better called an orthonormal matrix)

and R an mxn upper triangular matrix. Note that
as opposed to [ibid] where A:QR, we use kernel
f to denote the orthogonal transformation matrix.

For the orthogonal matrix Tr we have, see sec-
t ion 2.5.1. in [ ib idl ,

A T T R (A.z) TTr = I^

Figure A.1: Factorization of the design matrix

From this follows that Tr=Z-1 and TrT=I-. The matrix Z has determinant l?l =tl.

The eigenvalues of T are )",=t1 for i:I,..,m. The orthogonal transformation leaves
invariant, the norm of a vector and the angle between two vectors [Park et al, 1995].
Matrix Z is perfectly conditioned, the condition number equals 1. The condition of the
matrix A can not deteriorate through the application of successive orthogonal transform-
at ions: 7, . . .714 .

The model of observation equations under the null hypothesis reads

(A.3) E l y l = A x ;  D l y l = I ^

We assume for the moment that the observables have a unit variance covariance matrix,
i.e. D{y}:1, (this can be achieved by normalization, see section A.2). With factorization
(A.1) the model can be rewritten into

(A.4) E l y l = T r n x ;  D l y l = I ^

Premultiplication of the functional model of (A.4) by transformation matrix Z, which rs
square mxm and has full rank, yields (A.5). The orthogonal transformation I realizes a
conformal mapping of the columns of .4 onto those of 77 [ibid].

(A.5) E$yl = TAx = TTrRx - Rx ; DlTyl = I^

Note that model (A.5) is equivalent to model (A.3). The BlUE-estimators for x,
computed from (A.5) and (A.3) will be identical. Matrix R is upper triangular and has
full rank n. The estimates can easily be found by backward substitution upon the first n
equations of (A.5). The last (n-n) transformed observables have expectation equal zero.
The estimation via factorization (A.1) will be treated in detail in section A.2.

Matrix Tr can be partitioned as

(4.6) r, = (r{ r{)

in which Zf tras dimensions mxn and T{ mx(m-n). It is important to note that the
column vectors of Ti constitute an orthonormal basis for the space R(,,4) and that the
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column vectors of fl are an orthonormal basis for R(r4)', the orthogonal (under standard
metric) complement of R(,,a). This is verified by noting that the product 1,,4 yields an
(m-n)xn zero matrix. The column vectors of Tr together span the full observational space
R', see also section 5.2.6. in [Golub et al, 1989]. We will come back to these observa-
tions in section A.2.

Several methods exist for the construction of the orthonormal matrix Tr.In chapter 5 of
[ibid] we find the Householder transformation, the Givens rotation and the Gram-Schmidt
orthogonalization, see also chapter 10 of [Lawson et al, 1974]. According to [Golub et al,
19891 the Householder transformation is important because its ability to zero specified
components of a matrix. The Householder transformation is useful for zeroing on a grand
scale, while the Givens rotation is the tool to zero elements more selectively. The
numerical properties of the latter are as favourable as those for the Householder reflec-
tion, sections 5.1.5. and 5.1.10. in [ibid]. kast-squares estimation using Givens rotations
is also discussed in [Blais, 1985]. The classical Gram-Schmidt orthogonalization has very
poor numerical properties and the Modified Gram-Schmidt has no clear advantages
(concerning efficiency and numerical precision) over the Householder transformation,
sections 5.2.9. and 5.3.6. in [Golub et al, 1989]. In the sequel, although not explicitly
stated, we will use the Householder transformation, see also appendix A of chapter 4. It
is presented in full detail in [Bierman, 1977] and the references go back via [Golub,
19651 to [Householder, 1958].

2.A.2 Estimation

In this section estimation for a model of observation equations via QR-factorization is
treated. Only a theoretical description is given; algorithmic aspects are not dealt with.
The estimation consists of normalization of the observables, the orthogonal (Householder)
transformation, the actual estimation and the corresponding model with condition equa-
tions, which leads to the normalized misclosures. We also make a comparison with the
method of normal equations of chapter 1 and treat some aspects of quality control.

normalization
The model of observation equations under the null hypothesis reads

(A.7) Elyl = Ax ; Dlyl = Qy

First the variance covariance matrix of the observables is factorized, e.g. using Cholesky
as the matrix is symmetric and positive definite

q, = ole olt''

Both sides of the functional model are premultiplied by the inverse of this factor. This
transformation matrix is square and has full rank equal m.

(A.8) ElQr't'yl = Qr'l ',1,, ; O{Qr't'yl = I^

The observables y have been normalized, the new variance covariance matrix equals the
mxm unit matrix.
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orthogonal transformation
The estimation is now carried out through an orthogonal transformation. Transformation
matrix

(A'9) E{rertpyl  = Ter ' t 'Ax ;  DITe;t t 'y l  = I^

The purpose of the orthogonal transformation is to reduce the design matrix to an upper
triangular one. With the same partition of the orthogonal matrix Z as in (,4..6)

(A 10) ,  =( i )

where T, is nxm and T, (m-n)xm, model (A.9) becomes

(A.il) 
",(r'o;'.'l"tl, 

= 1,a Q;',,"n]*
'  
\rrer'," t)' \rre;,,. A)

We define the

n-vector z = TrQit''y

(m-n)-vector a = frQr'l'l

estimation
Model (A.12) is still in the form of a model of observation equations. We are, however,
already very close to obtaining the BLUE estimator i. The vector of observables is

1 t a  I  ( .  I

TQr'''y=l;l The estimator for the vector of observables follows from y=Pry, here
\-/

rQi''ti = Pee",,,,tt TQr't'y

The orthogonal projection of vector fQrtt'y onto the range space R(TQ;I|2A)

(r" )
P('Qrt''n'' = 

[ ol

nxnrrpper triangular matrix S-1 = Tr Q;t''l

(m-n)xn zero matrix O : TrQ,rlzA

The model can be rewritten into:

N=NN N=NN
N N  N
; Y x 'a;D, rEfle x

Figure A.2: Model of observation equations,

before (left) and after transformation (right)

"'(i)' =(';')" ; otft)r=+A.12)
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implies maintaining the first. z elements and zeroing the last (n-n) elements. The

estimator becomes re;'Pi=[6) ^r re;'t'i=rq;'t'it, the BLUE esrimator for the

vector of unknowns follows from the first n equations of (A.12):

(A.13) i = S z

The estimator i is a linear combination of only the first n transformed observables: 4.
The system z=S-Ix is namely consistent, zeR(S-l) and yields a unique solution for;r.
The lower part of (A.Lz) will be not consistent as in general a +0.

The variance covariance matrix becomes

(A.14) Q r = s s t

It can not be stated strictly that matrix ^S is the (backward) Cholesky factor of Q, or that
Sr is the Cholesky factor of Q;', as matrix SJ is produced by a sequence of oithogonal
transformations; it may have negative diagonal elements. We cite from [Lawson et al,
I974lp. 125: thus if rank(A):n, the matrix S-1 of the QR-decomposition is identical with
the Cholesky matrix of the normal matrix to within signs of rows.

model with condition equations
The transformed observables 3 of (A.I2) will not appear in the condition equations; all
redundancy has been concentrated in the lower part: u. The equivalent model with
condition equations reads

with D any square (m-n)x(m-n)-matrix of full rank, e.g. D:I__, is a valid choice.

The last (m-n) transformed observables z have expectation value equal zero and seem
therefore to be the misclosures {. Considering the model with condition equations (A.15)
yields the conclusion that they are a set of (m-n) normalized misclosures.

Model Elyl--Ax; D{f} =Q, ir equivalent to BrE1y1=0 ; D{f} =e and therefore:

EITQi't'yl = Teitt2A x ; DlTeruzyl = I.

is equivalent to

prqttzTr Egerrt2yl = o ; Dlrertt'yl = I^

With the definition of the square (m-n)x(m-n) and full rank matrix V

(o D) zrft\ = o ; or(f,)t = +A.15)
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v = BrQ],,rr{

and the notion that the columns of ff span R(Qr t/2r{) and thus Arq]eff =0, the model
with condition equations becomes

Undoing the (invertible) transformations ? and Q-u2 then yields

V u = B ' Y = t

and the important conclusion

t = V u

is that there exists a one-to-one linear relation between the misclosures I and the normal-
ized misclosures ,r. Also the latter can be used in the testing.

comparison
In section 3 of chapter L, a square and full rank transformation matrix was applied to the
observables. The transformed observables were j and 1. The transformation matrix was
based on the normal equations. The estimators become explicitly available.

In this appendix, the orthogonal transformation results in observables e and r. The
transformation preserves the unit variance covariance matrix of the normalized obser-
vables. The estimator is not explicitly available. We actually determine estimators for z; a
reparametrization of the unknowns according to x:Sz has taken place. The estimatorsi
are fully decorrelated (and normalized).

(i\ tr r\ lz.\ /s -t\E{F,1} =lo] ,  E{l; , l }  =[o, l ,

ti\ Q, ) r"t (t \D{fr,)} = 
[-' nl or[Jr = l' I

Estimation with normal equations (left) and QR-factorization (right)

quality control: alternative hypothesis
The alternative hypothesis reads

(A.17) E{y} = Ax + CuV ;  D{l}  = Q"

and normalization vields

ron r t ( i ) r  =o  ;  o r f t ) r=+



64

(A .18)

Teststatistic
freedom.

The alternative hypothesis is transformed into

(A.1e) ElTQrtt'yl = fQrrql,x * TQ;tt'CrV DlTQru2yl = I^

Defining the nxq-matrix C,=frQrrPC, and the (m-n)xq-matrix Cu=frQ;'t'C, yields:

The generalized likelihood ratio teststatistic can be expressed in terms of normalized
misclosures. Relation (A.16) is used, together with C,=VCu and Q,=VQ,Vr, with
Qu=I.-n The teststatistic becomes

(A.2r) T.o = arcu 1c[c,1-1 cfa

ElQr'Pyl = Qr'P,1.* * q;tqcrY ; olQitt'yl = I^

T
q

has a central 2g2-distribution under the null hypothesis with q degrees of

quality control: adaptation
We have already computed the estimator for x under the null hypothesis. Based on the
results of the testing procedure one may decide to reject the null hypothesis in favour of a
specific alternative hypothesis H". This alternative hypothesis is declared to be the new
working (null) hypothesis and the estimator for x under the alternative hypothesis H" has
to be computed.

We apparently start the estimation procedure again, now using the alternative hypothesis
H". We do, however, make use of the factorization results obtained in the estimation
under Ho. Only a few additional orthogonalization steps will be required. The estimation
under Hu can namely be c4rried out very efficiently once one realizes that switching from
the null hypothesis Ho to the alternative hypothesis amounts to only a slight change of the
design matrix:

n.: 1qrlel1

H^: lqrrqcr, Qr'l',1)

mwl

mx(q*n)

where we put the 4-dimensional model error V in top of the vector of unknowns. The
alternative hypothesis (A.18) has been transformed into (A.20).

"t(i)l k:')s

"'(i), 
= ('o')'. (::)" ; or}t = r^.20)

(4.22)
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The mx(q*n)-design matrix is not upper triangular yet: the first q columns are filled. The
design matrix (A.20) is the one of (A.12) to which 4 columns are appended. In the QR-
factorization of design matrix (A.18) we may use the factorization of design matrix (A.8)
as a starting point, see section 12.6 of [Golub et al, 1989]. An additional number of
orthogonalization steps, concatenated in the mxm orthonormal matrix 11, will be carried
out on (4.22).

(4.23)

and the estimators V and io can be retrieved in a way analogously to (A.13). Note that
the dimension of the vector of misclosures has been reduced from (m-n) for u to (m-q-n)
for u".

Equation (A.23), which is still equivalent to (A.17), has become the new null hypothesis.
If desired, an alternative hypothesis, also encompassing the {-dimensional model error
V. can be formulated

(A'24) Eler't 'yl = (er'pcr,er't ',q) [X) . o;"'arv ; Dler't 'yr = r^

Application of the transformation /1I, yields

(A.25)

where Cj is a qxQ-matrix, Ci is a nxQ-matrix and Cf a (m-q-n)x4-matrix. By means
of statistiial testing, based on the (updated) normalized misclosures uo, one can oppose
the null hypothesis (A.18) to the alternative hypothesis (A.24). If necessary the procedure
described can be repeated again, and hence a recursive estimation procedure in case of
multiple model errors becomes feasible.

As in general q, the number of additional model parameters in H", is small, it is recom-
mended to carry out the additional orthogonalization I/ using the Givens rotation [ibid],
instead of full orthogonalization with the Householder transformation. One should exploit
the fact that although the first 4 columns in (4.22) are filled, the last n columns have
already the upper. triangular shape. With Givens rotation the adaptation can be carried out
very efficiently.

2.A.3 Concluding remarks

Estimation based on the model of observation equations E{y} =Ax can be realized
basically (1) via normal equations (and factorization of the normal matrix) or (2) via the

",17),[;*] (9

',?;),[::] m.[;l '
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factorization of the design matrix A. An example of the second option, QR-factorization
with the Householder transformation, has been treated in this appendix.

Beside estimation also the quality control computations can be carried out conveniently.
The generalized likelihood ratio teststatistic can be expressed in terms of normalized
misclosures and switching from the null hypothesis to some alternative hypothesis is
straightforward. We thus described complete data processing based on QR-factorization.

We have seen that in this approach, we are able to compute the estimates .f and the
variance covariance matrix Q, directly, i.e. without constructing normal equations. This
has positive consequences for the numerical accuracy, lGolub et al, 1989]. The approach
is computationally more demanding [ibid], but when both estimation and testing need to
be carried out, the Householder transformation may be a viable alternative to the solution
via normal equations, as all quantities needed in the testing become automatically
available after the transformation, see also the comparison in [Copps et al, 1994]. The
Householder orthogonalization directly provides also an orthonormal basis for the
orthogonal complement R(Q;""A)' .

In [Bierman,I977l we find that solving the model E{y\:lx by means of the Householder
transformation is more elegant than the 'brute force' computation of the estimates via the
normal equations. The vector of observations is transformed and split into a part that
uniquely determines the vector of unknowns x, and another part that expresses the fit of
the model to the observations and vice versa, which can be used for model validation. By
means of the Householder transformations. we actuallv do not solve the svstem of
equations explicitly, but only transform it.

Appendix 2.B Review recursive data processing and DlA-procedure

In this appendix we will briefly review the recursive estimation in a time varying system,
highlight the predicted residual and discuss the procedure for model validation in the
recursion.

2.B.1 Estimation

Model (1.1) of section 2.1 is detailed with observation equations (1.2) and (1.3). In
[Teunissen et al, 1988] it was shown that straightforward application of the BLUE-
estimation principle to the model of observation equations leads to the well known
Kalman filter time- and measurement update. This approach to Kalman filtering is
adopted, but instead of treating time- and measurement update explicitly as in [ibid], we
treat the full model of observation equations and apply linear transformations to (a part
of1 the observables, such that the estimators of time- and measurement update become
available. After that, we will also give the explicit treatment of the well-known time- and
measurement update. They result from considering 'local' models of observation
equations.

The model of observation equations is.given in (B.1). The designmatrix is of full rank.

The number of observations equals (im)*(k-l)n, the number of unknowns ftn. The
i = 1
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variance covariance matrix
symmetric positive definite.

block-diagonal (no time correlation) and assumed
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to be

Q,,
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d-2

v-2

Qd,In

A2

xl

x2 Qr,
(B 1) El

(B.z) nl

) = ; D l l =

-oo.u-,

In the initialization a square mlxmt full rank transformation matrix ? is applied to the
upper m1 observation equations, cf. section 1.3. The resulting model is given in (B.2).

The m, observables y, are transformed into the n-vector of estimators i,,, and the (m,-n)-
vector of misclosures Ir. The misclosures have all coefficients equal zijio. They will be
put at the bottom of the model. The estimator i,,, and misclosures 11 are not correlated,
see again section 3 of chapter 1.

The model of observation equations after the initialization:

Q , ,

do

v

xk-l

xk
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v
In
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I,
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-or,,

x- l  
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Q,,
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The recursion can start once the first state estimator is available. A sequence of so-called
time- and measurement updates is carried out until all observables have been treated. We
will consider the time update from epoch k-l to epoch k. In equation (B.3) all observables
from epoch 1 to k-l have been treated. The filtered state estimator is given bY f,o_,,*_,.

Filtered estimators for previous states are given by r"," through t,_.,,_". The redundancy
at each epoch results in the predicted residuals !r, ,!o'i In the fun0tidnil model they have
all coefficients equal zero. Similar to the misclosures, they will be used for model
validation.

l =
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At epoch k-l the model reads:

In

x- 1  
l 1

x-', t)

In

i-r-l 
l*-l

d- k

v

t- l

v-2

Q,,,

a

,
t n

-@o*-, In

xl

x2

(8.3)

l =

a
Q,,

El
A* t o ,

xk

v-k-l

i
r t r

i- t  t )

x- r - l  
lk- l

d.
k

v

t- l

v-2

Qr*-,,r-,

eat

0 Q

0

Qrr

a,
evz

a
a

a
a

aa

Dl l =

0

a 0

v-t- l

Qur_,

Matrix Q is used to denote any covariance block, i.e. to denote correlation. Note that the
filtered estimator i,,, with i:2,..,k-I, does not correlate with predicted residuals g for
2 < j < i, but does coirelate with future predicted residuals 4 with i < j < k-l . The fact that
the filtered estimator i.,- is not correlated with the present predicted residuals 4 is
explicitly denoted by a z6lo in (B.3).

The time update from epoch k-I to k consists of a 2nx2n square and full rank transform-
ation matrix I, applied to f,o_,,,_, ?trd d,. After the time update the model reads (8.4).
The transformed observable3'Ard i*_,,0_, und i*to-,. The latter is the predicted state
estimator.

ao
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(B.4)

69
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For the measurement update at epock k an (ntm)x(ntmo) square and full rank trans-
formation matrix I is applied to i,-,,- , and I,.. The resulting observables are i,r, and 11,
rhe larrer has been rransferred to ttiii"bbttom oT model (B.5). The filtered estimatdr for the
state at epock k is available. Model (B.5) is completely equivalent with model (8.1), only
square and full rank (and thus invertible) transformation matrices have been applied.

The lower part of designmatrix (B.5) contains only zeros. The upper knxkn part acfually
is a kn unit matrix. The vector of transformed observables can be split into the 'estima-

tion' part, the vectors .r, and the 'redundancy' part, the vectors v (and t). The estimation
part uniquely determines filtered state estimators. For the computation of smoothed
estimators also the redundancy part is needed. see (8.7).

aa
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The measurement update at epoch ft results in:
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The redundancy in (B.5) is concentrated in the lower part of the model. The redundancy
k

equals 1Em,) -n. The equivalent model of (B.5) in terms of condition equations is given
i = 1

by (8.6), with the variance covariance matrix as given in (B.5).

The transformed observables t_t, v2,..,1tr have a blocked diagonal variance covariance
matrix, i.e. they are not time correlated. From (8.6) we see that together they constitute a
valid set of misclosures to model (B.5), but also linear combinations of them can be
taken. Therefore a one-to-one linear relation will exist between this set of transformed

a"
0

a 0
a o
a o
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observables and the vector of misclosures that will result from solving (B.1) in batch.

Note that the latter will in general possess a full variance covariance matrix, instead of a

block-diagonal one as in (B.5).

(B.6)

(B 7)
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The transformed observables 1r, y2,..,yk become available epochwise; 4 contains the

misclosures of the 'local' model with i,-rl,-, , d, and y, as observations, see also

[Teunissen et al, 1988]. !2,..,!* are the predicted residuals'

Finally we give by (8.7) the equivalent of (B.5) in terms of smoothed estimators. These

smoothed estimators and the predicted residuals are not correlated, cf. section 3 of

chapter 1. The variance covariance is block-diagonal. Note that the predicted residuals do

not change in the smoothing. Once they are computed in the filtering, they are left

untouched.
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x
t l K

i- 2 l k
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(B.7) Dl l = o,

o'' 2

o.,' * - l

Q,t

Now we have treated the model of observation equations (B.1) as a whole, we will, in the
remaining of this subsection, give an explicit treatment of the well known Kalman filter
time- and measurement update equations. They result from considering each time a part
only of the full models given so far.

time update
The part of (B.3) that is of interest for the time update is

(B 8) urlrr ),r ,), =( :^ l'l l': ,l , o,(to-,o ,], = fnu ,-, I
\  4o  )  l -oo ,o- ,  1 " /  \ r r l  \  -k  /  \  Qor )

In this model there is no redundancy. The estimator for x, reads

t4r-r = @ ko-rir-rrr-r* do

The variance covariance matrix becomes

Qrrnu = Qo,o-, Qrr-rr-, @[*-r* Qor

The 2nx2n transformation matrix z, applied to the observables .fo_, 
ro_, und 4f,, reads

(B.e) , =( '^ o'l

loo,o-t 1"/
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The resulting model is

(B r0) rrfto^,* ,.l, = ft' I 1'" ,l , or|,tt-,,* ,lr= [Q'- ',- ' n 
I"'lfo,o-, 

,/ ' I t",J l, to J 
' "' lfo,o-, 

,l ' I O Qror )

measurement update
The part of (B.4) that is of interest for the measurement update is

1 i , , . )  / / " )  
t ^  t  t n  

)(B rl) ',|i',J, = [,_,J *, , ,,|. i:'J, = 
l-o.' n.,l

The redundancy equals mo. The estimator for xo reads

73

tolo = tolo_, * Kr, (yr,-Aotolo_r)

with the gain matrix Ko

Ko = QrourA{ {Qrr*AoQr,r-rAf)-r

The variance covariance matrix becomes

Qro, = 1I - KoAl Q;o,,

The (n-tm)x(n*mo) transformation matrix Z, applied to iulo_, and y,o, reads

(8.t2) , =f'*or lr)
|. 

-'o t^')

2.B.2 Predicted residuals

In equation (B" 13) the predicted residuals show up:

The resulting model !s

(B 13) ",['tJ, = ('6,) e, , ",h_-),= [o'. o.J
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v  = v - A . i-  
k  K-k lk- l

with variance covariance matrix

Quo = Qrr*AoQrrr-rA[

The predicted residuals !.2,..,!* or innovations [Kailath, 1968], are the basis of the
statistical testing in dynamic systems [Teunissen et al, 1988].

2.8.3 DlA-procedure

Recursive data processing encompasses recursive estimation and recursive quality control.
Recursion estimation can be realized using a filter, as discussed in sections 2.1 and B.l.
In quality control, the validity of the mathematical model underlying the estimation is
checked. This is important as estimation results obtained with an invalid model, will be
invalid as well (e.g. biased). The DlA-testing procedure, proposed in [Teunissen et al,
19881, realizes recursive quality control. The procedure for Detection, Identification and
Adaptation of model errors can be executed parallel to the recursive estimation. It is
based on the generalized likelihood ratio teststatistic Q of section 1.7.2.

In the detection step, an overall model validation takes place. In the identification step,
the most likely model error, the cause of the detection being positive, must be found.
Finally we must account for this model error. The recovery takes place in the adaptation
step. The estimators, initially computed using the null hypothesis, are corrected.

The null hypothesis is given by model (B.1), and by (B.2) through (8.5) as only one-to-
one linear transformations have been applied. It might occur that instead of the null
hypothesis, some alternative hypothesis is a (more) adequate description of the measure-
ment system. To be able to guarantee the quality of the estimators (described by the
precision), the mathematical model has to be validated. The null hypothesis will be tested
against alternative hypotheses by means of the generalized likelihood ratio test. Below we
give a general specification of the alternative hypothesis. The misspecification in the
mathematical model is restricted to the functional model.

v

d-2

v

A r

-Qr,, In

A2

C,,
J 7

D2

c,.

;o

C.,

(8 .14) l =

- o , , .  r
K,K- r  n

A ,
K

The variance covariance matrix is as in (B.1). The null hypothesis (B.1) is actually
extended by a set of 4 unknown parameters contained in vector V. The parameters are

El

xl

x^

* n ,

x

V

;- k

v
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related to the pseudo-observables d via D, and to the observables I, via C, . Examples

of misspecifications in the functionil model are outliers and slips in-the observations y,,

see [Salzmann, 1993].

v̂t i t

I

v
^ r - l l i - l

I

Xtr i- t  = o,, , - tx,-r1,- t  *  D,

i : : i l  |  +

x- l  
l 1

i- 1 1 1

x-t- l  
l r-r

i-k lk

t- l

v-2

= C. .  -  A ,X, , - ,
t t  '  

"  
t

= X,t,_, * KiC,,

*
C

vi

x,l,

In the recursive estimation, the transformations applied to the designmatrix discussed in

section B.1. are applied to the model misspecification matrix as well. Once Cr, has been
propagated into i,,,, the recursion for the model misspecification can start with i:2, see
(B.15). Matrix X,,, is the so-called response matrix: it determines the effect of the model

error V on the ejstimator i ,-. The matrices C,, will be used explicitly in the testing
procedure. Note that C" =0'for i<1, if Cu =0 ahd Di=0 for allT(l<k. The predicted

iesiduals have expectatioh equal zero until the model eiror starts to occur at epoch /. The
model error is a global one for l<k. A model error with /=k is a local one.

Model (B.14) after the measurement update at epoch k reads

I
n

In
X, l ,
xrl,

xl

,:

x . .
K -  |

xr.

xo-r1o-,
xoro
C,

, l

C
v2

C
v k - t

cnr

The estimators i,,, ,..,t,_,,. are left out. as they do not contribute to the redundancy. The
null and alternatir!'e hyfdthesis can be reformulated for the purpose of testing with the
teststatistic 4 in

In

El l = I
n

v
K - l

v
K
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(B .16) Ho: El ) = 0  a n d  H o :  E l ) =

or with the predicted residuals concatenated in vector y

(B.17) Ho: Elyl  = g and H,:  Elul  = c,V

The misclosures l/ have been left out (we assume that the model error occurs after epoch
1, i.e. Cr, =0 or l>2). This is done for the ease of the discussion and to correspond to
the literature. For model validation concerning epoch 1, the misclosures 1, should be
used.

As discussed below (8.6), a one-to-one mapping exists betweeer, tt, !.2,..,1i and the
misclosures that follow from solving (B.1) in batch. The general likelihood ratio teststa-
tistic Q can thus be expressed also in terms of predicted residuals [Teunissen et al, 1988]:

18) T^ = v.'e,t c" G:e;t cS-t cf q,tu

C,

c..
v2

.
c..

vk- l

c..
vk

t has a central 12-distribution with 4 degrees of freedom under the null hypothesis, in
which we have assumed that the observables are Gaussian distributed. The null hypothesis
is rejected in favour of the alternative hypothesis if To> Kn. Under the alternative
hypothesis, the non-centrality parameter is given by

I I
l - t

t?
l u '
| 
-o-t

t v
\ - r

I t
l - 1

l u

l-:

(B. le) t, = vrcf q;rc"v

The estimator for the model error then reads

(B.20) y = G:a;'cS-'c{q;'u

detection
In the detection step the overall validity of the null hypothesis is checked. No particular
alternative hypothesis is specified. The Global Overall Model (GOM) teststatistic reads

(8.2r)

The upper index lt denotes that the model error as specified in the alternative hypothesis,

concerns the epochs I to k. The degrees of freedom equals imr. tte null hypothesis is
,  - l

rt'k = 
| 

uio,,'u
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rejected in favour of the alternative hypothesis if T>Ko; a model error is said to have
occurred.

The predicted residuals are not time correlated; the variance covariance matrix is block
diagonal, see also [Teunissen et al, 1989]. Therefore the inner product ,'Q,', in (B.21)
can be taken epochwise. For the alternative hypothesis in which l=k, the Local Overall
Model (LOM) teststatistic for epoch k is obtained.

identification
After an (unspecified) model error has been detected, the identification is performed to
trace the model error. We will consider only alternative hypotheses, which are one-
dimensional, i.e. V is a scalar (q:l). The matrix C,, in the alternative hypothesis (8.17)
reduces to a vector. It can be computed recursively according to (8.15).

The Global Slippage (GS) teststatistic for testing against an alternative hypothesis, in
which the model misspecification concerns the epochs / to k, reads

K

2,de",'u,
i = l(8.22)

The slippage teststatistic I acnrally is the 'square root' of the In=, teststatistic and has a
standard normal distribution, i.e. I-N(0,1), under the null hypothesis. The null hypoth-
esis is rejected in favour of the alternative hypothesis if ltl>tn; the alternative hypothesis
(with the model error) is sufficiently more likely than the null hypothesis.

The Local Slippage (LS) teststatistic for epoch k is obtained by substitution of l:k in
(8.22\.

t ' t

In

(8.23)

x- l  
l l

i-)  t )

x- k - l  
l k - l
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El l =
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adaptation
After detection and identification of a model error, the estimator for the state under the
alternative hypothesis needs to be computed. We will compute it, using the results
obtained under the null hypothesis. The filtered state estimator is denoted Uy tiW.

The adaptation is shown for a q-dimensional local model error with l<q<mo.Model
(B.5) after the measurement update under Ho, but now for the alternative hypothesis reads
(8.23), with the variance covariance matrix as in (B.5). The part of (B.23) that is of
interest for the adaptation is

The redundancy equals (m,rd.The adapted estimator for xo reads

tiro = tiro-xot9

The variance covariance matrix becomes

Q*ir = Q4,r* Xr,p,Q#dw

The adaptation can be realized for model (8.24) by application of two transformations.
First the (n-lm)x(n-tno) transformation matrix I is applied to Siro and yn to obtain the
estimator for the model error.

(B.25)

The mr-vector of predicted residuals 4 is split into the estimator ! (4-vector) and the new
pre.dicteA residuals ui ((mo-q)-vector). For the (mo-q)xmr-matrix B;, it holds that
BirC,r= 0 . cf section li 3 .

f " o l
r = 

|o 
G:rQ;,'c,)-,cfro,r'I

l " B ; )

(826, "1"1], f il ft) ,,,[i'],
Secondly, the actual adaptation is carried out. Matrix T is (n-tmo)x(n*m).
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(8.27)

The resultins model reads

Q"in a

(B.28) o Q v

The alternative hypothesis H" has now become the new null hypothesis. The same

procedure for detection, identification and adaptation for model errors can be carried out

igain if desired (to handle multiple model errors). The testing is then based on the

adapted predicted residuals vi. According to [Teunissen, 1990] we account, step by step,

for the most likely model eii'or and test after each step the likelihood of the remaining

model errors.

In the case above, where we considered local model errors, the total number of model

errors can not exceed mo. The approach shown, can in principle be followed for the

adaptation of global model errors as well, but might be a rather complex matter.

quality measures
Under the null hypothesis the quality of the estimator is described by the precision. The
precision of the filtered state estimato, toto is given by the variance covariance matrix

Qtr,r '

The purpose of carrying out the testing procedure is to detect model misspecifications if

there are any. The quality of the estimators, if model errors occur, is described by

reliability. Reliability measures can be divided into measures for internal reliability and

measures for external reliability. Internal reliability describes the (nominal) performance

of the testing procedure and external reliability describes the impact of undetected model

errors on the state estimator.

With (B.19) the Minimal Detectable Bias (MDB) for (8.22) becomes

(8.2e) l v ' * l  =

It gives the size the model error has to have, in order to be detected by the testing
procedure with probability y,. The model error in terms of (transformed) observables is
given by (8.30).
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(" 
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l
t = l o  I n  o  

I
f o o l<^uo)
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Separability between alternative hypotheses can
c, and d,, similar to section 1.8.2.

be analysed using the angle S between

r r l t

i , - rp-,
* I l t

xoru
t.

I

0
X,, ,

xoro
0 v t'k(B.30)

a - l

v,

;.
K

The impact of an undetected model error
state .xr reads

(B.31) Yiuto

0
c..

(8.30) on the filtered estimator for the current

= xutoY Lo

C.

and the significance of bias (B.31) can be judged upon by means of the following Bias to
Noise Ratio (BNR)

(8.32) Lr,,r = vidoQi,]rv*oo

Note that Bias to Noise- ratio (8.32) concerns a part of the unknowns (only xo). The
upperbound (cf. 

fgl. 
ton 1.8.2) for the bias in element i of estimate iu,o is given by

lYfr*t* ,l o rr,r,l . /lrr,*, [Teunissen, 19941.

concluding remarks
In this last section some essential aspects of quality control in a recursive estimation
procedure for a dynamic system have been reviewed. The DlA-procedure is a unified
procedure for (real time) model validation. It was not intended to give an extensive
theoretical treatment nor a thorough discussion of all practical aspects. The reader is
referred to the literature. Theoretical aspects of the DlA-procedure are given in [Teunis-
sen et al, 19891 and [Teunissen, 1990]. Reliability aspects of the DlA-procedure are
discussed in [Salzmann, 1993]. Navigational examples of recursive data processing can be
found in [Salzmann, 1991a] and [Salzmann, 1991b].

The recursive estimation discussed in this appendix is based on the assumption that the
observables are not time correlated. The variance covariance matrix is block diagonal, see
also model (1.1). A modification however, can be made to the procedure, in order to
handle some type of time correlation; state augmentation is treated in [Teunissen, 1995].
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3. GPS surveying: modelling

GPS sumeying
We start this chapter by marking the area of GPS surveying. Applications primarily
involve the traditional land surveying tasks. GPS surveying is considered to be a part of
GPS geodesy and concerns local scale applications. The working area is restricted to ten
or a few tens of kilometers (the short baseline limitation). Existing GPS surveying
techniques are mentioned and for kinematic GPS surveying, we come to the dertniilon that
kinematic is related to the motion of the receiver and not to a particular measurement
technique. Kinematic GPS surveying is therefore used to indicate the whole class of
precise, high production GPS surveying techniques.

concept of geodetic positioning wilh GPS
The nvo fundamental observables for positioning with GPS are the code and the carrier
phase. The concepts of both types of measurements are discussed. The unknowns in the
observation equations are geometric parameters and bias parameters. Geodetic positioning
with code and phase observables implies relative positioning as opposed to single point
positioning: two receivers simultaneously make observations. This concept of positioning
has been developed from radio interferometry.

Both code and phase are range related observables. In section 3, we will discuss the
measurement configuration with satellites and receivers for distance observations. The
coordinates of a second receiver are determined with respect to the coordinates of a
reference receiver.

mathematical model for GPS sumeying
The GPS observation equation is set up and developed further to arrive at a mathematical
model for relative positioning over short distances, i.e. the GPS surveying category of
applications. The mathemntical model consists of a functional and a stochastic model.
First the observation equation of a single phase observation, in terms of the expectation
and dispersion, is treated. Then also the observation equations for the code observations
are given. These observation equations are non-linear in the receiver coordinates, and
need to be linearized for the estimation.

In section 5 it is shown that an equivalent formulation of the resulting mathematical model
for GPS surveying can be given: the model of double difference observation equations.
This implementation has found widespread use in practice. Section 6 briefly treats some
related GPS mathemntical models. There are the parametization in terms of ranges
instead of (baseline) coordinates, and the model for Dffirential GPS.

The development of the mathematical model in this chapter will be rather straightforward.
No fundamentals on reference systems, signal propagation and receiver technology are
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treated. Also the underlying physics of the GPS, the system specifications and model
assumptions are not deah with. The reader is referred to the textbooks on GPS position-
ing.

3.1 GPS surveying

According to [Alberda, 1990], land surveying, as a part of geodesy in a broad sense, is
concerned with a local description of a part of the earth. Concerning topographic
surveying, it results in a geometric description of an area that is restricted to about 50 by
50 kilometers. Kinematic GPS surveying falls within this category of land surveying and
the above characteristics still apply. They are discussed below.

Traditional topographic surveying results in two-dimensional geometric information (the
remaining one-dimensional height system is left out of consideration, as it is related to the
gravity potential and therefore not a geometric system). GPS surveying yields Cartesian
coordinates in a three-dimensional coordinate system, e.g. WGS84. The coordinates of
one receiver relative to the other are determined, or actually the coordinates of the survey
marker underneath the tripod with the antenna. It must be realized that the coordinates of
this discrete point (idealization) are just a tool in our attempt to describe the topography
in the real world, and certainly not a goal in itself.

One main purpose of land surveying is to survey topography. In these normal surveying
tasks, GPS receivers replace conventional angle and distance measuring devices like
theodolites, EDMs and total stations. Applications of kinematic GPS surveying are
discussed at the end of this section.

The working area of surveying concerning topography is typically restricted to 50 by 50
kilometers. This restriction was based on the flat earth approximation. In that case, also
most of the geodynamic effects can be left out of consideration. In kinematic GPS
surveying, the area (baseline length) is restricted to 10 or a few tens of kilometers, but
the restriction has another cause. The relatively simple mathematical models for GPS
surveying do not account for differential atmospheric delays. This simplification of equal
ionospheric and tropospheric delays from one satellite to both receivers is allowed when
the receiver separation is small (for a 10 kilometer separation the differential delays are
usually at or below the millimeter level). The errors introduced by this neglect of course
directly depend on the actual atmospheric conditions. For larger receiver separations also
orbital errors need to be taken into account. In GPS surveying, satellite coordinates are
computed from the broadcast ephemeris received from the satellites. The accuracy of
these coordinates lies in the order of ten or tens of meters.

Practically speaking, most surveyors' project areas will be limited to a few tens of
kilometers. The working area of the mathematical model for GPS surveying, however,
can be extended by applying a-priori atmospheric corrections and using precise orbits
(instead of the broadcast ones). The orbit and corrective information can be obtained from
an Active GPS Reference System, a network of permanently operating GPS receivers.

Now we have sketched the working area of GPS surveying, we will discuss the measure-
ment techniques. Using the GPS for land surveying started with the static survey. We cite
from [Remondi, 1988]: 'Static GPS using the carrier phase was developed from ideas
which have their origins in VLBI...Carrier phase measurements are recorded at both sites
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and the data are sent or carried to the home office for processing. At that time it was
typical to collect data for 2-3 hours. In the home office the three-dimensional baseline
vector was estimated from these measurements'. From then on three important develop-
ments have taken place.

Instead of processing the data afterwards in the home office, the data processing can take
place in the field in (near) real time. The data of the reference receiver needs to be
transmitted via a telemetry link, to the second receiver. There, the recursive estimation
and quality control can be carried out. They have been discussed in chapter 2.

The second development concerns advances in receiver technology and processing
software, see also [Blewitt, 19931. Keywords are digital technology and automated data
processing to handle the bulk of (sampled) data. A remarkable sophistication of the
algorithms for the GPS data processing has been achieved in the area of ambiguity
resolution. In order to obtain precise positioning results using carrier phase observations,
the ambiguities have to be resolved. This resolution can be carried out very quickly, i.e.
using data of only a little time span. In the limiting case, the ambiguities are resolved
instantaneously, or On-The-Fly. This capability largely reduces the site occupation time as
compared with the 2-3 hours static survey.

Thirdly, as opposed to static, the GPS receiver can be in motion. We will not be
concerned with the forces causing the motion and therefore use the term kinematic,
instead of dynamic. With the receiver moving during the survey, surveying productivity
can be increased and also the receiver's trajectory can be determined (in a discrete sense:
positions at specific instants in time). In this way, kinematic GPS surveying actually
includes all GPS measurement techniques. The categories usually identified are, see

[Blewitt, 1993] and [Seeber, 19931:
- semi kinematic or stop-and-go: the roving receiver makes occasional stops at

survey marks. Some initialization is needed to determine the ambiguities and after
that, the receiver must keep tracking the signals, also during motion.

- true or pure kinematic: the receiver is in permanent motion (includes precise
navigation)

- rapid static: the survey marks are quickly surveyed. The ambiguities are resolved
using the data of the actual occupation. The receiver can be switched off during
transportation

In the sequel we will not further use the above terminology. In summary, we use the
adjective 'kinematic' to refer to the motion of the receiver during the survey. Kinematic
GPS surveying therefore comprises the whole category of GPS measurement techniques in
surveying, that provide precise coordinates in a short time span (possibly instantaneously).
Later on in this chapter, we will develop a mathematical model for GPS surveying in
general and not for one particular measurement technique.

Applications of kinematic GPS surveying are primarily traditional surveying tasks.
Community needs for spatial, or geo information have to be assuaged. The purpose
therefore usually is to obtain coordinates for mapping purpose, i.e. to gather geometric
information of (new) topography in order to relate it to existing structures. Kinematic
GPS surveying can be an efficient provider of geometric geo-information for Geographic
Information Systems. lSeeber, 1993] mentions cadastral surveys, control surveys and
engineering surveys (stake out, locating points and construction work). Note that
surveying, or basically positioning, does not necessarily take place on land but also at sea
(hydrography) and in the air. Kinematic GPS surveying can support aerial
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photogrammetry by either being an efficient tool to establish ground control, or for the
determination of the camera position at exposure, see e.g. [Ackermann, 1997]. In fact,
this determination is applicable to (remote) sensing techniques in general (based on e.g.
laser or radar).

On the other hand, the measurement technique can be used for navigation as well. In this
precise navigation application, coordinates are to be obtained in real time, in order to
determine ones position with respect to existing features, enabling the navigator to avoid
obstacles and reach the destination. These applications are primarily marine and airborne.
The precision requirements are usually less stringent as the size of the vehicle to be
positioned may range from several tens to hundreds of meters. Integrity on the contrary is
much more stringent as compared with surveying.

The applications of positioning by kinematic GPS mentioned here, are surveying and
navigation. The purpose is to determine the coordinates of a (discrete) point (object) that
is either stationary or moving.

3.2 Geodetic positioning with GPS: concept

The two fundamental observables for positioning with GPS are the code and the carrier
phase. Treating the concepts of both types of measurements is the first step in setting up
the mathematical model for positioning.

Precise positioning with GPS has been developed from radio interferometry. This implies
relative positioning as opposed to single point positioning: two receivers simultaneously
make observations. The unknowns in the observation equations are geometric parameters
(the coordinate differences) and possibly bias parameters. As such, GPS surveying can be
considered as an example of geometric satellite geodesy, [Seeber, 1993]. In this section
we will concentrate on the geometric unknowns; the bias parameters are left out of
consideration.

3.2.1 GPS observables

Both the code and phase observable are travel time, and thus range related. The signal,
carrier plus modulations, leaves the satellite at time f and arrives at the receiver at time
t,, the time of observation. The distance from the satellite at f to the receiver at /, is
denoted by /,". In order to clarify the rneasurement principles, error sources are not
considered here, i.e. we assume coherent oscillators, running at nominal frequency and
no propagation delays. Satellite and receiver clock are synchronized.

code
For the code observation, the distance from satellite to receiver is determined by
measuring the travel time of the signal. This travel time is measured by correlation of the
received code modulation with the local generated code modulation. The time shift
required to match the codes, is the travel time rl.

s
T r

(2 . r ) =  t , - t t
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The code observation is
19941. Multiplication of
observed at time t,.

a direct measurement of the difference
the travel time with the speed of light
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in time [Hatch et al,
c, yields the distance,

.2) r S  J
t r  =  c r r

phase
The phase observation results from a phase comparison. Tire difference of the phase of
the receiver carrier at time of observation t, and the phase of the satellite carrier at time
of signal transmission t' reads

(2 .3) VXr,) = 0,(r,)-0"(t)

Under the current assumptions and with zero phase at time zero, the phase of a carrier
equals the frequency / multiplied by the time t: OQ) =ft. The phase of the carrier
generated by the receiver equals $,(t)=ft, and the carrier transmitted by the -satellite
0"(r)=/(r,-ri;. SuUstitution in (2.3) thenyields for the actual phase difference rli

(2.4) rrpfr) = cri

As a consequence of carrying out measurements on pure monotone carriers, one cycle can
not be distinguished from another by the receiver. Only the fractional difference in phase
is measured: frac(yiQ) €t0,1> cycle. The observed phase difference $i differs by a
whole number of cycles N," from the actual phase difference rpi. At time /, when the
receiver locks onto the satellite signal, we have

(2.s) 0:(r1) = rpfr,; -in(oi(r1))

with the integer Ni = -int(6",(r,)). Once the receiver has locked onto the satellite signal, it
keeps track of zero passes in the phase difference and incorporates this in the phase
observation $i (accumulated phase). One ambiguity is involved in a timeseries of phase
observations of one receiver to one satellite. N,' represents the initial number of missing
cycles. At any later time /. we have

(2.6) 0:(t) = rytr,)*N,"

and with (2.4) and (2.6) we obtain for the phase observation at time /,

(2.7)

or

I) = cri  = l(6:-N,)

.8 ) r0; = /,"+lNj
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The phase observation is ambiguously related to the range lj. fne first time derivative of
the carrier phase observation is a measure of the change in range (the ambiguity drops
out). The difference in time of the phase observation is an integration of the frequency
difference: generated frequency minus received frequency (integrated Doppler shift), see

[Hatch et al, 1994].

(2.e) ),,loi?)-0:(r,)) = = tie)-/,"(rr)

3.2.2 Relative positioning

This section is a first attempt to develop the model !:Ax for the measurement system of
GPS geodesy. We will establish a relation between observations and unknown parameters,
with the emphasis on the geometric parameters.

Relative positioning with GPS implies the reception of signals from the satellites and
making observations at two (or more) sites (nearly) simultaneously. This concept has been
developed from radio interferometry, [Counselman et al, 1981]. GPS satellites can be
used for precise relative positioning, similar to the use of quasars for Very Long Baseline
Interferometry, [Seeber, 1993].

ln (relative) positioning with GPS, the received signal is compared with a signal gener-
ated by the receiver itself (correlation of the code modulation or comparison of the
phase). The resulting observations are then brought together for processing; the principle
of radio-interferometry with independent clocks [Brouwer, 1985]. A GPS receiver can be
considered as an advanced interferometry recorder.

In its design (single point positioning), the basic observable of GPS is the code observa-
tion, obtained by correlation of received and generated modulation. At first, developing
code correlating receivers was a military business because of the control and knowledge
of these code modulations.

In the early eighties, the Jet Propulsion Laboratory developed the SERIES-receiver,
Satellite Emission Range Inferred Earth Surveying, [MacDoran, 1979] and [MacDoran et
al, 19851. The received signals were recorded at two sites and physically brought together
for the correlation process. The group delay was measured and this can be seen as
(differential) codeless pseudo-ranging. As such, the receiver is also a predecessor of the
cross correlating capability of nowadays receivers.

The Massachusetts Institute of Technology proposed the MlTES-receiver, Miniature
Interferometer Terminals for Earth Surveying. The emphasis was on measuring the phase
delay of the carriers. We cite [Counselman et al, L979]: 'The basic quantity is the
interferometric phase - the difference between the phases of radio signals from a single
satellite received at anv two terminals'.

Texas Instruments then developed the first commercial receiver. The TI 4100 could make
both code observations (delay of signal; code correlation) and phase observations (phase

'2

I  I " (o\da
t1
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comparison). For a full
[Blewitt, 1993], [Seeber,

We will now discuss
interferometric principle.
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overview of the receiver development, the reader is referred to
19931 and [Hofmann-Wellenhof et al, 19971.

both the code and phase observation in relation with the
The distance to the source of the (radio) signal, the satellite, is

very large compared with the station separation, the
baseline length b, see figure 2.1.

By means of interferometry we have an observation that
is related to the difference in distances from source to r2
and from source to rl: d=Ii -/i. with

(2.r0) d = b c o s @

rl b 12 this observation can be related to the baseline length D
Figure 2.1: Principle of interferometry we are interested in.

With the code observations (2.2) made at both sites r1 and 12, the difference in travel
time can be determined:

(2.r1) d = c ( c ) - r i ; = c l t

This difference in travel time is also referred to as group delay, [Seeber, 1993].

At both sites phase observations are made simultaneously. The received phase is
measured with respect to a local oscillator. We take the difference of two equations (2.7):

(2.r2) d = )t (0;-0i-Nr"+wi;

The term between brackets is referred to as phase delay, [ibid].

For the phase observation, we will discuss also the
interferometric principle in terms of vectors in the three-dimen-
sional space. Vector b is the baseline vector (here directed
from 12 to r1) and vector F is the unit direction vector to the

r l b 1 2

Figure 2.2'. Principle of inter-
ferometry in terms of vectors

satellite, see figure 2.2.

Equation (2.10) now becomes

(2.r3) d = l l b l l c o s O = b . s

z.r4) b. i  = ).(0;-0i-Nr"*Ni)

The distance d equals the inner product of b and F. Combinine Q.l2) and' (2.13) yields
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Apart from the ambiguity term, this equation for the phase observation is given in [Coun-
selman et al, 19811. The observation is also referred to as fringe phase. In the above
equation, the receivers clock term - the difference between the phases of the independent
oscillators - is absent because of our assumption of no error sources. Observation (2.I4)
is actually the single difference and it can be considered as an interferometric observable.
The differencing of observations of two sites [Remondi, 1984], has its origin in interfer-
ometry.

The baseline vector b- contains the coordinate differences in three dimensions. The
estimation of these coordinates is dealt with in section 4. There we will elaborate on the
GPS observation equations for positioning. We will explicitly use the ranges from the
satellite to receiver r1 and 12 respectively and compute the position of the satellite, as
compared with interferometry on quasars, the satellite is not infinitely far away from
earth. The curvature of the wavefront must be taken into account, [Seeber, 1993].

3.3 Measurement configuration

In this section we will discuss different measurement configurations for positioning with
GPS. We start with the observation equations without error sources of section 2 and
consider the effect of introducing certain bias parameters - clock errors in particular - on
the capability of estimating the geometric unknowns (in the three-dimensional Euclidean
geometry).

Because of the biases, the observations are not true distance measurements anymore and
will therefore be referred to as range-related observations. Both code and phase are range
related, but we concentrate on the code observation. We will discuss single point position-
ing, the purpose of the GPS at first, and relative positioning, developed from interferome-
try.

single point positioning with distance observations
With three distance observations, like /." of (2.2), the receiver position xr can be deter-
mined in the three-dimensional space. The satellite positions are assumed to be known.
The satellites act as (moving) connection or control points. When the satellite coordinates,
determined with respect to some S-basis, are treated as stochastic quantities (with their
variance covariance matrix propagated), the receiver position is estimated also with
respect to this S-basis and a proper variance covariance matrix is obtained. Actually a
resection with distances is made.

single point positioning with range-related observations
In practice we have to deal with bias parameters in the observation equations (propagation
delays and clock errors). We will use p," for the code observation (the observed distance
ti in (Z.Z)) and P." for the phase observarion f l0l in (2.8)). The geometric range is
denoted by pi instead of /," for the distance.

The discussion will be restricted to clock errors. The full observation equations are given
in section 4. For a discussion of the error sources affecting the GPS observables, the
reader is further referred to the textbooks [Seeber, 1993], [kick, 1995], [Kleusberg et al,
19951, [Parkinson et al, 1996], [Bauer, 1997], [Hofmann-Wellenhof et al, 1997] and
[Strang et al, 19971.
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In addition to the three unknown receiver
coordinates in r,, we have to deal with the receiver
clock error 6,r (multiplied by the speed of light c).

(3 .  1) Elp', \  = pi*c6,r

The receiver clock elror causes that the distance
measured in the code observation is not a true
distance anymore and therefore observation (3.1) is
referred to as pseudo-range observation.

r l

Figure 3.1: Single point positioning

9 1

The parameters can be determined with observations to at least 4 satellites. Satellite
position and clock error, and atmospheric delays are treated as known quantities in the
estimation and are therefore the cause of the accuracy being not better than several tens of
meters. The full model of linearized observation equations is given by (3.2).

(3 .2)

In (3.1) the receiver coordinates,rr were contained in the range p:, er" is the unit
direction vector from receiver to satellite. The linearization will be treated in detail for
GPS positioning in section 4.

relative positioning with distance observations
When two receivers make distance observations /," to three satellites, the following free
network is obtained, figure 3.2.

",ll1l
lonl,l

c4)' r
(-r))' I

(-el) ' 1

Ge!)r t

Ior,' l
lr 6,t/

rl 12

Figure 3.2: Relative positioning with
distances

rl r2

Figure 3.3: Relative positioning; small
receiver interdistance
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The scale is determined by c, the speed of light. For the translation (3 parameters) and
rotation (3 parameters), the network must be connected to six satellite coordinates. They
form the (local) S-basis of this network. With sufficient observations, the coordinates of
the receivers and remaining satellites can be determined.

In practice, the broadcast satellite coordinates are used, which are nominally given in the
WGS84 coordinate system. By this, the above network is linked to the reference frame of
satellite coordinates and thus into the WGS84 coordinate system. It should be recognized
again that the satellite coordinates are stochastic quantities.

relative positioning with range-related observations
We introduce a satellite related bias for each satellite and a receiver related bias for each
receiver (per epoch and per observation type), for example a clock error 6t.

(3.3) ElP", l  = pi*c6,r-c6"r

Following the derivation in [Teunissen, 1990], we will show that the position of a
receiver itself is hardly estimable, as the satellites are far away as compared with the
distance between the receivers. We come to the concept of interferometry and estimate
only coordinate differences. The effect of many biases on relative positioning is small or
even negligible.

Two receivers simultaneously make code observations to n satellites. The linearized
model of observation equations reads

c"b' - l

(3.4)

^pl

tpi

AI,
At,

c 6 r f
c 6rt

c  6 l t
El l =

(-"{) '  1

Grb, 1 _1

- l

- l

^4

tpi

(-"{)'

The satellite coordinates are assumed to be known. The following square 2mx2m and full
rank transformation matrix is applied to the observables:

c 6^t

, =(1^ ,^)
The resulting model of observation equations becomes
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(3.s)

c"5'

G"{f

@b' c4)' -1 1

(e ' { ) ,  Gr{ f  - t  I

f 
^rl,'l 

lt"i 
-')t' c"b' t 

1' ' l  l ' = l
\^Pi) lr"{ -"ir, c,{), -t 1
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- 1^:'l
^;il

I
tpi)

- l

Ar,
Lx,

c 6 r l
c 6rt

c  6 l t
El

c 6^t

The upper lrt observables can be left out, as they can be considered to determine only the
satellite clock errors. The lower rn observables are single differences. They are not
related to the satellite clock errors. The geometric unknowns are reparametrized and split
into the coordinates of r1 and coordinate differences

( , , \  _ ( ' ^  )  | , ' , )l ' l = l
\*r) lr^ r^)p")

with the coordinate differences contained in x,r=xr-x,. The model becomes

(3.6)

In GPS surveying, the receiver interdistance is small as compared with the distance to the
satellite, figure 3.3. The unit direction vectors are defined as

s s
. " r 1  

" x 2e r  = -  e . ,  = -- 
ttritl 

- 
tlxz"tl

1xi1 = 1xr"11 -2.107 m. The difference in unit vectors can then be approximated by

ki -ei\ = 
"'ll'ri 11

f a r , )

lx;l
lc 6rr/
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and therefore ll(ei -")ll=10i for a 20 km receiver interdistance, whereas lle|ll:100. In
theory, with sufficient observations, all unknown parameters in model (3.6) can be
estimated. In practice, x,, the position of 11, is not estimable, due to numerical singular-
ity. The coefficients for the coordinates inx, are about 1000 times smaller than the coeffi-
cients for the coordinate differences in xrr. A near, not a strict, rankdeficiency occurs.
Note that in the estimation clock error 6,r is kept fixed. Clock error 6r/ is estimated
relative to 6rl.

As compared with the coordinate differences, the coordinates of r1 are poorly estimable.
Two implications are that first down on earth, an S-basis has to be chosen for the network
of coordinate differences: 3 parameters are needed to provide the translation. The near
rankdeficiency is treated as a strict one. In GPS surveying, we will estimate only

coordinate differences, and keep the coordinates of rl
fixed: Ax,:0, see also [Bock et al, 1985]. Secondly, in
practice all satellite positions are treated as known con-
stants. It may mean a serious overconstraining in a general
network. In fact a pseudo least squares adjustment is
carried out: Axs:0. The satellites are moving connection
points. The coordinates -f are stochastic quantities, but in
the data processing usually supposed to be non-stochastic:
Q":0. This is however, all greatly relaxed in relative
positioning with a network as in figure 3.3.

In GPS surveying we will estimate the coordinates of the roving receiver in three
dimensions, with respect to the coordinates of the reference receiver. As such, actually a
small free network is obtained (of one or more baselines). Treating the satellite positions
as known quantities provides the orientation of the network (3 parameters). The scale was
already provided by the speed of light (1 parameter). The coordinates of the reference
receiver (in WGS8a) then constitute the S-basis for the free network; the translation (3
parameters). This completes the 7 parameters for the similarity transformation.

To conclude this section, we will consider the connection of the coordinate differences to
the coordinates x, in more detail. The reparametrization of x, and x, into x, and, x,, in
(3.6) was carried out in order to explicitly show the coordinates of r1 and the coordinate
differences. As the coordinates of r1 are (almost) not estimable in GPS surveying, they
are kept fixed. The full model of observation equations is (3.7).

From model (3.5) the upper rn equations were left out. The first three columns are
denoted by At, the second thee by Ar. The coefficients for the differential clock error are
contained in z4r. Vector y contains the z observables of (3.6). The observables {, may
result from a single point solution. The variance covariance matrix is given bv e,.

(3.7) E{Af} = Ar\xr+ArA,xrr+Arc6rrt ; DlLyl = Qy
n lLx)  =  Ar r  ;  D{Ar r }  =Q, ,

For model (3.7) it can be shown that for the limiting case of At:O, the following
estimators are obtained

Figure 3.4: Unit direction vectors
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(3 .8)
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" , ( , ; ) '  
= [ " '

/ ; \
I  
- r  

|  _

lt',,J 
-

(Q', Q'r lt = 
fn, e,,*e,,,)=[",it,,) ' o,E,

hl ; n,,l
The estimator for the coordinate differences i,, is determined by the observables 1. The
coordinates x, areleft untouched. Estimates i, and i, are computed as if the coordinates
.xl were deterministic quantities, Q, :0. In practice, the reference receiver coordinate
observables l, will have a very limitbd effect on the estimators for the coordinate differ-
ences. The coordinates for 12 are obtained from (3.8) by

til
The connection of the network to existing poinJfields on earth and the transformation
from WGS84 to another datum are topics beyond the scope of this thesis.

3.4 Mathematical model

In this section a mathematical model will be developed for kinematic GPS surveying. In
this application two receivers simultaneously make range-related observations to GPS
satellites. One receiver is stationary, the reference receiver, the other may be stationary
either moving, the roving receiver. The parameters that are of primary interest are the
relative geometric unknowns: the baseline coordinates xn, lnand zp.

First the observation equation per observable is treated. Next the full mathematical model
for relative positioning over short distances is given. This model is then analysed on the
estimability of the unknown parameters.

3.4.1 Observation equation

First the L1 phase observable will be treated. Then the other types of observations are
considered. The modelling of the GPS observables is based on the Rinex convention, a
generally accepted standard for GPS observation files, [Gurtner et al, 1990]. The observa-
tion equation is non-linear in the geometric unknowns and has to be linearized. The
aberration effect is a complicating factor in this. The single observation part concludes
with a brief diagnosis on the non-linearity.

3.4.1.1 Functional model phase observable

The full observation equation for the Ll-phase observable Pl(r) follows by extension of
(2.8) and reads

4.1) EIE',(t)l = p)1t,t-i +c6,/(t) -c6"r(r-r) +riQ)-Ij(r) +D"(r) +Dtt)+Ai
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where
p:
6r/
6"t
T:

c
D s
D,
A:

geometric range from satellite to receiver
receiver clock error
satellite clock error
tropospheric delay
ionospheric delay
satellite hardware delay
receiver hardware delay
ambiguity

The observation is made by receiver r to satellite J at time t, which is expressed in GPS
time. The observation is expressed in [m]. In equation (4.1) t is used as the time tag of
the observation. with the definition of the traveltime r, time /-z becomes the time at
which the signal must leave the satellite circuits to be in time at the receiver for the
observation at time /.

Note that the traveltime r is defined by the geometric range and the various delays and is
therefore not an independent parameter:

(4.2) f p",(t,t-r1 * TiG) - I iQ1 * p "111 * D,(t)l

By definition @.2) the traveltime z is thus not determined by only the geometric range
sp , .

The geometric range p',1t,t-r1 is a function of the time of observation /: both satellite and
receiver are in general in permanent motion. The range is also a function of the travelti-
me r: the aberration effect. The satellite will move with respect to the receiver during the
the time interval the sienal needs to travel from satellite to receiver. Both r and r are not
known.

The measured phase difference Qi has been related to the traveltime r. The carrier phase
ambiguity ,{," in equation (4.1) does not represent an integer number as it now includes
initial phase offsets of receiver and satellite. The ambiguity is a constant as long as signal
tracking is un-intemrpted.

1
c

The inaccuracy with the time arguments of
p:, T: , 1," and D" in equation (4.1)

parameEer value [m]

implies only very small approximations lu, i3 : dr _ 10. s .,
(< 10am); e.g. D"(t)  should beD"(r- t)  cdY 10'  6i ,  .  r-o '  s
and x"(r-r) should be r"(/-r+D"/c). For I 13:
the delays it is a matter of notation: esti- ";, l3: :il:'il "'
mates for these quantities are computed, A L0 1

independent Of thg nOtatiOn and thgfefOfg 
') can be sevelat ms when continuousty runnins

the problem is not relevant. For the geo- 
clock is restored (Rinex conversion)

metric range the effect cancels in relative Table 4.1: Values for parameters in (4.1)

positioning.
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In table 4.1 indications are given for the magnitude of the parameters in observation
equation (4.1). The magnitudes in the table represent ordinary to maximum values for
these parameters. The minimum elevation is assumed to be 15".

3.4.I.2 Stochastic model phase observable

In chapter 3 of [Parkinson et al, 1996] the accuracy of the Ll-phase observable is stated
to be 0.1 radians rms. This translates into o":3 mm, which is assumed to hold for
normal operational conditions. The phase observable is assumed to possess a Gaussian
distribution.

DIPi,ol = a7

We assume here no time correlation (although the correlation length of the receiver noise
could be several seconds, as internal filtering may take place in the receiver).

With the above assumption on the stochastics, it must be realized that there are several
effects that are not explicitly captured by the current functional model (4.1). There are the
propagation effects: multipath, atmospheric diffraction (signal path is not a straight line
from satellite to receiver), relativistic delay (signal path is curved due to the earth's
gravity field) and higher order ionospheric effects (ionospheric delay is assumed to be
inversely proportional to the frequency, cf. (a.3)). Radio frequency interference of the
GPS signal is not considered. The non-modelled effects may induce time correlation.

In further data processing we will use the broadcast ephemeris to compute the satellite
position. A bias in this position is not accounted for. The geometric range is defined
using the (electro-magnetic) phase centers. In order to extract useful geometric informa-
tion, the range has to be related to some discrete point on the antenna. As the electro-
magnetic phase center is difficult to define, the relation will also be problematic and
additional biases may enter the estimation process. Interchannel biases of the receiver can
be neglected for a nowadays digital
receiver, see e.g. [Meehan et al, 1992].

sate l l i te  pos i t ion

Indications for the magnitudes of the ;3ff1:::; 3i'!ll3ril?!' """'
effects above on the observation equation dirrriction
(4.1) are given in table 4.2. Maximum ::?*i"?:ff: l!l:;nn"t' 

errects

values are given; ordinary values for these T:::i#:""i:.Ii3'iil35. .."..,
effects are of the same order or smaller.

Table 4.2: Maximum values for unmodelled effects

3.4.1.3 Phase and code observables

Beside the phase observation on Ll, also L2 phase observations can be made. Further-
more code observations can be made based on the LI or L2 signal.

The full observation equation for the L2-phase observable Pltr) reaOs

(4.3) ElE",Q)l = p",(t,t-r)*c6,r(r)-c6"r(r-r) *riG)-1r:Ol*O'(t)*O,(t),,q)
Iz

non-mode l led  e f fec t va lue  [m]

t o '
10 ' '
L O ' '
1 0 '
1 0 '
1 0 ' '
1 0  ' '

1 - 0 '
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For the Ll-code observable Al(/) we have

(4.4) E lp",(t)l = pi1t,t - I * c 6,r(r) - c 6"r(r-r) + f i Q) + I' (t) + d " (t) + d,(t)

and for the L2-code observable e](r) ttre observation equation reads

(4.5) E{E",Q)| = pi1t,t-r) * c 6,t(t)-c6"r(r-r) * ri4).4r:r' * d'(t) n d,(t)
Jz

In the equations above we made the assumption that the geometric range is identical for
all observation types. Although we did not denote it, the traveltime is different for
different observation types (due to the delays, see (4.2); think of l0-? s effects). This
affects the time arguments of pi and 6"t. We are now faced with a contradiction as the
range depends on / and r. The effects involved are < 10-a m and will largely cancel in
relative positioning. Furthermore, the electro-magnetic phase centers of the different
observation types will not coincide. The geometric ranges will not be identical (mm-cm
effects). These effects largely cancel in relative positioning.

The first order ionospheric delay is inversely proportional to the frequency of the carrier.
Code and carrier are assumed to be equally (although oppositely) affected.

(4.6) l =

The stochastic model of the observables made by one receiver to one satellite is assumed
to be (4.6). The standard deviation for the phase observable will be several millimeters,
for the code observable several decimeters.

Variance covariance matrix (4.6) is diagonal. We assume here that the four observables
above are not mutually correlated, although in practice there may be for instance
(frequency) cross correlation. We also assume here identical stochastics for all channels,
no mutual correlation between the channels (satellites) of one receiver and between
different receivers.

3.4.1.4 Linearization of observation equation

In this section we will linearize the observation equation (4.1), in order to be able to
compute estimates for the geometric unknowns of interest using the BLUE principle, i.e.
i,=x,,o+Ai,. A complication in the linearization is the aberration effect, A straightfor-
ward linearization would be possible in case both the satellite and receiver do not move
(in one or another coordinate system).

Dl

2
oP

O =
r

2
op

oo
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The observation equation (4.1) is linear in the satellite clock error, atmospheric and
hardware delays and the ambiguity, but is non-linear in the satellite and receiver
coordinates, and in the receiver clock error as it is involved in the geometric range, see
(A.1). Time /, is the time tag of the receiver inthe observation file. The time of observa-
tion in GPS time reads t = t,-6,t(t). The satellite position was assumed to be known. In
order to compute estimates for the receiver position, equation (4.1) has to be linearized
w.r.t. the receiver coordinates. We will thereby forget about the delays in equation (4.2),

see also the implementation given in appendix A.

The linearized observation equation reads

(4.7) aP"" = #,1.o''. #1. ou'+ cA6,/ - c6"t * T: - I i  * D' * D, * Al

and the partial derivatives are evaluated using the approximate values xr,o and 6,to.

We will neglect the second term on the right hand side of (4.7), i.e. the partial $erivative
of the geometric range w.r.t. the receiver clock error - the coefficient is - ":' - see
section 2.3 of [Jonge, 1,gg3l. at

As actually c6,t(t) = c6,t(t,-6,(t)), the partial derivative w.r.t. the receiver clock error
yields coefficient c and an additional coefficient. The latter is relatively (factor 106) small
and therefore neglected in this discussion. The clock error is then actually evAluated at /.
instead of r. The clock error appears only with coefficient c in(4.7).

With e," the vector of unit length from.r, at time / to x" at time (r-r) we obtain

4.8) AP," = *el' a,r, + cA6,/ - c6"t * T: - Ii * D' * D, * A)

The computed observation is obtained with the non-linear relation (4.1)

(4.e) P ) , " = p i , " + c 6 , t o

with_ x,., qnd 9,% as approximate values. The observed minus computed observation is
AP," = P: -P:. .

Once estimates for the (estimable) unknowns are obtained via (4.8), for example for x,,
they can be used as approximate values in a next iteration. The receiver clock error6,/
may not be separately estimable, see section 3.4.4. In that case no improved numerical
estimates are obtained.

The difficulties in the estimation process are the computation of the unit vector e," and
the computed observation Pi as the aberration effect is present. Both can be computed
with the procedure given in appendix A.



100

3.4. 1.5 Non-linearity effect

In the previous section we have performed the linearization of the non-linear observation
equation, without questioning its allowance. The linearized equation (4.8) was obtained.
The estimates obtained (using the linear approximation) will be biased due to the non-
linearity. The non-linearity effect will be briefly diagnosed.

Both code and phase observable are basically range observables. We use equation (2.8)
and leave the ambiguity out.

(4.10) P :  = t = w

The linearized version, cf. (4.8), becomes

( 4 . 1 1 ) AP," = -r l 'L*,

The non-linear relation (4.10) is approximated by a Taylor expansion (4.11), in which the
second and higher order terms are neglected. In [Teunissen, 1989] we find that the second
order remainder R (.r) can be used as a first measure of the non-linearity effect. The
second order term is the largest term that is neglected in using the linearized observation
equation instead of the non-linear one. The measure R (x) comprises both the intrinsic
non-linearity and the nonJinearity due to the parametrization.

The Taylor expansion of E{y}:.,4(r) up to the second order term reads

(4.r2) Elyl = A(x"\+d,A(x)1, Lx+!Ax'c.'/r1x11, tx

^2  r s
ot/,',

s s  s s \-Xr!, -xrZ, 
I

s z  s 2  
"  "  

I
xr +2, -!rZ, 

I
I

s  s  s 2  s 2 l-lrZ, xr *1, 
)

_ 1
, " 3

s 2  s 2
!, *2,

s s-xr!,

s s-xrz,

l.io

l-o

= 0

_ 1

c

9uA(l)l"is the 1x3 Jacobian matrix anA *;11611^ the 3x3 Hessian matrix. For (4.10) the
Hessiari matrix becomes, see also [ibid],

(4 .13)

(4.r4)

with vectorui=*" -x,=(xlJi,z)r. The eigenvalues of matrix (4.13) are

and with (12) of [ibid] we obtain the following bounds for the size of the second order
remainder
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(4.1s)

If the approximate coordinates for receiver r are on the
cm-level (0.1-0.01m), possibly after iteration, the second
order remainder in the linearization of the observation
equation is completely negligible (< 10'm). The linearized
observation equation is a sufficient approximation.

1 0 0
1 0

1
0 . 1
o  .  0 1  0 , 2 5  . 1 0 - "

Table 4.3: Second order remainder

We have seen that for the linearization, when the approximate values for the receiver
coordinates are correct up to 100 m, the second order remainder will be below the 1 mm
level. In [Lichten, 1990] it is stated that in order to avoid an iteration, receiver locations
should be known to within a few hundred meters. In the next section however, we will
see that 100 m errors are not allowed in the coordinates of the reference receiver. when
these are to be constrained in relative positioning.

In section 5.4 of chapter 1, it was noted that with a non-linear model of observation
equations, the estimator is biased: Elt-xl +0. For relative positioning with a short
observation time span, the bias in the observables, which propagates into the estimator -

see equation (40) of [Teunissen, 1939] - is at or below the 10-5 meter level, and thus well
below the measurement noise (of the precise phase observables).

3.4.2 Functional model

The model of observation equations is set up for relative positioning over short distances:
two receivers (nearly) simultaneously observe r?? satellites. The effects of many error
sources on the relative geometric unknowns are significantly less as compared with single
point positioning. The development of the model is shown in this section for L1 phase
observations.

Both the satellite and the receiver r1 position are not treated as unknowns in relative
positioning. The satellite position x" is computed from the broadcast ephemeris. The
receiver 11 position -r, follows from a reference frame or a separate single point solution.
In section 3.3 it was shown that these quantities are hardly estimable. When these
parameters are kept fixed in the estimation (introduced as deterministic quantities), the
effect of errors therein on the observation equation will be rather limited. The satellite
clock error 6"r will be estimated and therefore not computed from the clock parameters
in the navigation message.

It is assumed that receivers of the same make and type are used together with identical
antennas. The baseline vector x, is defined from phase center to phase center and equals
in this case the vector between the geometric centers of the antennas (mm-cm translation).
The discussion on the definition and interpretation of the baseline is pursued in section 1
of chapter 4"
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We will discuss the cancellation of errors in relative positioning. The short distance
assumption therein is essential. Three categories of error sources are distinguished:
satellite, signal propagation and receiver"

satellite
The signals to r1 and 12 nearly simultaneously (-ms) leave the satellite. The effects of
satellite related error sources on the observations made by r1 and r2 will therefore be
largely identical.

Similar to the derivation in section 3.3, one can give an indication for the maximum size
of the term concerning the satellite coordinates in the observation equation:

(4 .16)

In practice (4.t6) is interpreted as that a satellite position enor dr (true position -

broadcast position) has a db effect on the baseline vector in worst case according to dblb
:drlr with b is the baseline length and r the distance to the satellite [Wells et al, 1986].
As such a 20 meter error would have a 1 cm effect on a 10 km baseline, see also [Zie-
liriski, 19891 and [Kuang et al, 1996]. The effect of the satellite position is long term
(hours).

The stability of the satellite clock (even with SA on, Selective Availability see chapter 17
in [Parkinson et al, 1996]) is by far sufficient to safely bridge the small time span
between deparnrre of the two signals; the clock error 6"t can be used in the observation
equations of both rI and 12.

Also the hardware delay is sufficiently stable, and D" can be used in the observation
equations of both rl and 12.

Antenna phase center effects of the satellite can be neglected as the receiver separation is
very small (compared with the distance to the satellite).

signal propagation
For small receiver separation, the signals from s to r1 and to 12 pass through the same
part of the atmosphere.

We assume that the atmospheric delays are equal, i.e. ?i=Ti and Ii=C. The remaining
effects usually are in the order of several millimeters, but can reach the centimeter level.
Under extreme circumstances, the differential ionospheric effect Ii, can reach the 1 cm
level for 1 km receiver separation. The temporal variation of differential ionospheric
effects can be both short and long term. Differential tropospheric effects tend to be long
term.

The diffraction effect largely cancels.

The relativistic delay cancels.

(ei -e|)r tx" - 
ffi"o'",'
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Multipath completely depends on local circumstances and does therefore not cancel in
relative positioning. Multipath usually is a short term effect (seconds-minutes). Multipath
is not modelled, section 3.4.1.2.

receiver
All n satellites are observed by the same receiver exactly simultaneously. The effects of
receiver related error sources are equal for all observations made by one receiver.

The same receiver clock error 6,/ can be used in the observation equations.

One can also use the same receiver hardware delay D,.

Antenna phase center effects will cancel in short distance relative positioning, cf. section
1 of chapter 4.

Concerning an error in the receiver position xt, the magnitude of the effect is roughly the
same as for the satellite position error, see also [Bock et al, 1985]. Note that single point
positioning with CA-code provides typically 100 m positioning accuracy (SA on).

residual effects
In table 4.4 we give indications for the
residual effects in relative positioning. The
effects on the observation and the effect
on the baseline estimate are assumed to be
of the same order of magnitude. The
figures given are maximum values; ordi
nary values are of the same order or
smaller. Note that the figures given are
related to the 10 km receiver interdistance
and to a minimum elevation of 15o.

(4.r7)

(4 .18)

parameter value [m] remark

cn"I
D

phase centef
multipath"
diffraction

T
I

relativistic
phase center,
multipath,

10 ' '?
<  1 0 ' "
4 1 0  "

1 0  2

l -  0 ' "
1 o - ' ? -  1 o - '
1o  - '? -  to  - '

1 0 u

1 o - 2
1 o  ' '

for phase

for  phase

From table 4.4 we see that the largest residual effects are of the order 10-2 m. Taking the
baseline length of 10 km into account, yields the 1 ppm positioning accuracy, which is
frequently used as an indication in practice.

Apart from multipath, the most important effor sources are the atmospheric delays and
the satellite position. Modelling and estimation of atmospheric delays and satellite orbits
is beyond the scope of this research. The reader is referred to e.g. [Blewitt, 1993].

observation equations
The assumptions and approximations are now realized in the observation equations below
(time arguments are omitted). With two satellites i and j and two receivers r1 and 12 we
obtain with the non-linear observation equation for the Ll phase observable (4.1):

E{ I i }  =  p i  * cd r t - c6 ' t *  f i - I i  *O i  *Dr *A l

E lP , l  =  p1  *cd r r  - cU t  *T {  - I {  +D i  *Dr *A l
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(4.1e)

(4.20)

The linearized versions read

(4.2r)

(4.22)

(4.23)

(4.24)

EIP^I = P'z* c 6zt-c6"* T; - I ;  * Di * Dz* Ai

Etl l  = plz* c 6zt - c Ut +ri - 4 * Dj * Dz*Al

E {AP i }  =  - r l '  L t r+cAdr r - c6 t t  * r i  - 4  +D i  +Dr+A i

El AEirl = -"{' Atr+ c A 6 rt 
- c 6 it * Trt - Itr * D i * D r * Air

ElL4l  = - " i '  Lr r+ c  Adzt-c6 ' t+  f i  -  t  +  p i  +Dr+Aj

El All = -"i' A*., + c L, 6 zt - c 6it * fi - I', + Di + D, + Al

In relative positioning we keep x, fixed: Ar, = 0 . The coordinates of 12 are estimated with
respect to xr. To emphasize the relative character instead of the absolute, the estimation
result can be presented as fr, =iz-x, the estimate for the baseline vector. The observa-
tion equations for P", ei and 1"-fo[bw in a similar way from (4.3) to (4.5).

mathematical model
Below we will give the full model of observation equations for the case with two
receivers observing nr satellites for,t:1 epoch. First the clock errors of both satellite and
receiver are redefined. The receiver clock errors (for both r1 and 12) include the
hardware delays and the satellite clock errors include the hardware delays and the
atmospheric delays, corresponding to the observation type.

c 6 r t : - =  c 6 r t + D ,

(4 .25)  
"6 , t ;=  

c6p*5 ,

c d r t : =  c 6 " t + d ,

, 6 , t ;=  c6 , t+A ,

for both fl and 12

3.4.3 Stochastic model

The stochastic model was discussed
unchanged, but two remarks are in
short distances.

c 6 " t : =  c 6 " t - D " - f i + I i

"d} '= cd"r-0" -ri.Xti
cd t  :=  c6 " t -d ' - r i  - i {

, t t  t= c6"t--d'-r i - ! t i
for all ,z satellites

The model, which is quite similar to (3.4), then becomes (4.26). The estimability of the
parameters in model (4.26) is treated in section 3.4.4.

in section 3.4.1. For the moment this model is left
order for its application to relative positioning over
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- l

L*,
c A 6 r l
c L,6rt

" : "

c 6^t

Ai

A {

A;

(4.26) El

LPl-1

LP^-1

APl

:

LP^-2

) =

- l

- 1

c"b' I  - 1

t"{)'

Although the effects of satellite positions and reference receiver position on the estimators
will be rather limited, one should realize that they are stochastic quantities. Q" andQ.
should be taken into account in the data processing.

Differential atmospheric delays are not accounted for in the functional model. We cite

[Bock et al, 1986]: 'The residual errors of both propagation medium and orbital origin
are approximately proportional to the distance between stations, at least for distances of
up to several tens of kilometers. Therefore these errors are dependent on baseline
distance'. In [ibid], equation (23), it is proposed to account for the baseline length
dependence of these unmodelled effects in the dispersion of the observables. These effects
may also induce time correlation in the observables with a correlation length of several
minutes.

A{

2
aP

4.27) Dl

API- l

LP^*1

APl-2

LP^-1

l =

2
aP

oP

2
oP

The dispersion of the observables in (4.26) is given by @.27). The stochastic model is
identical for the observables of both receivers rl and 12.
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Equations (4.26) and (4.27) represent the full mathematical model for one epoch of the
time varying measurement system. They are of the form E{y\:Al,; DA}= Q (cf. (1.3)
in chapter 2). No pseudo-observables are involved yet.

3.4.4 Estimability of parameters

The model of observation equations has been set up in a straightforward manner. A direct
implementation of this model is not possible; it turns out to be rankdeficient. The full set
of parameters in the vector of unknowns can not be estimated (cf. section 2 of chapter 1).
In appendix B the functional model for kinematic GPS surveying is analysed on estima-
bility. Reparametrizations of the unknowns are proposed to remove the rankdeficiencies.
The coordinates x2 are not involved in the S-basis; they are directly estimable, once the
considerations of section 3.3 have been taken into account.

In appendix B five measurement scenarios are considered:

Cl: code, single frequency
Ll: phase, single frequency
LI&LZ: phase, dual frequency
Cl*Ll: phase and code, single frequency
LI&LL+CI&P2: phase and code. dual frequency

Both set ups, with two stationary receivers and with the second receiver in motion, are
treated. Below we repeat the conclusions of the analysis.

For all scenarios it holds true that the clock error (per epoch) of the reference receiver
can not be (separately) estimated, see also [Blewitt, 1993]: only relative clock behaviour
(between receivers) is estimable. Carrier phase ambiguities of the reference receiver are
not estimable, neither are those of the second receiver to the first satellite.

If one receiver makes a certain type of observation to a satellite and the other receiver
does not, the observations are free observations: they can be left out from the data
processing. Only the overlapping part in the data needs to be considered: with the data of
one receiver, under current S-bases, one can estimate the satellite clock errors, for each
observation type, for the particular epochs.

When both receivers are stationary at least two epochs of data are required (k)2), with
(single or dual frequency) phase data. As soon as also code data are available, one epoch
suffices (*>1). In all five scenarios, less satellites (m<4) may suffice when more epochs
of data are available" The absolute bottom is m:2.

When the second receiver is moving, we have 3 geometric coordinate unknowns per
epoch instead of 3 for the whole survey. With code observations, at least 4 satellites are
required and at least 7 satellites when only phase observations are available. With only
phase data, single or dual frequency, at least two epochs of data are needed for this
(k>2).When code data are available, one epoch suffices (k>1). Less than 4 satellites is
not possible, even when more epochs of data are available.

To conclude this section we consider mathematical model (4.26), but now with the
parameters that constitute the S-basis explicitly left out. Beside the coordinates of 12, the
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clock error of 12, the satellite clock errors and (rz-1) ambiguities remain.
matrix is of full rank when at least two epochs of data are considered (k>2).
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The design

The ambiguity Ai of an undifferenced carrier phase observation, is not an integer
number, or better, an integer number of cycles is involved, but it can not be separated
from the initial phase offset of the satellite and of the receiver. In the estimable functions
ei-e)-e?.ef rc A{ -e}-e( *r4,t, see appendix B, the initial phase offsets (of each
time two receivers and two satellites) cancel. As such, these parameters represent integer
numbers of cycles 1.,N, with N integer. They are double difference combinations of

ambiguities.

The stochastic model (4.27) is left unchanged. Estimability concerns the unknown
parameters, not the observables.

3.5 Model with double differences

For the kinematic GPS surveying application with two receivers, the mathematical model
can be reformulated to allow another implementation of the data processing. The model
with so-called undifferenced (Ll-phase) observables was given by (4.26) and (4.27). The
alternative is the model with double difference observables. We will first derive the full
mathematical model with double difference observables and then give the considerations
in chosing one or the other.

3.5.1 Observation equation

The double difference combination of observations has its
origin in interferometry [Counselman et al, 1972]. The
double difference is a linear combination of four undiffer-
enced observations. made by two receivers to two satel-
lites, figure 5.1. rl 12

Figure 5.1: Double difference
(5.1) r!, = ei-e)-P{.Pl

With the linearized observation equations for the
obtain:

Ll-phase observable in (4.26) we



5.3) ULPtlrl = *@l - e))r d,xr*tli

Under the assumptions and approximations of section 4, only coordinate unknowns and
ambiguities are present in the double difference observation equation. The linear combina-
tion A!r=ei-e)-Arr*Al represents an integer numlgr of cycles, as the initial phase
offsets of satellite and receiver oscillators cancel. Ar!z=LtN!2. When the receivers are
stationary, none of the parameters depends on time.

3.5.2 Functional model

Consider model (4.26) for the case with two receivers observing the m satellites 1,
2,..,ffi. Per epoch we apply the following square 2mx2m and full rank transformation to
the observables:

and obtain
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(s.2)

or

(s.4) r{

APl

. '

LP^-1

APl-12

LP^-12

El Lpllrl = 1e)1r n xr- (el)r t xr* Al - A: - e{ + |

1

G"b' -1 I

, =(1^ ,^)

- l

Lx,
c A 6 , l
cL6rt

" : "

c6^t
Ai

- l

l = - l

Ar
A;

(-"{) '  - t  I

The lower rn observables are the single differences. The observables of 12 are differenced
with respect to those of r1. In this respect, receiver 11 is the pivot or reference receiver.
The upper m undifferenced observables are free observables. Each observable is con-
cerned with its own unknown parameter, namely the satellite clock error yl . These

-1

A{
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observables will be left out of further consideration, together with the corresponding
unknowns.

With the following repanmetrization of the unknown ambiguities, s:1..m

(,^ ) fri'l= 
ft, ,^)lo;)

we obtain the model of single difference observation equations:

fal l
lrl',l

(s.s)

Per epoch, we had 2m observables. They have been transformed into m single difference
observables, i.e. one per satellite. The clock error of the reference receiver 6,/ is not
estimable. Only the clock error of 12 (with respect to r1) can be estimated, see appendix
B. Besides the designmatrix of (5.5) is rankdeficient by one. The single difference
ambiguities interfere with the receiver clock error 6rl.

Next, the square mxm and full rank transformation matrix is applied to the single
difference observables in (5.5)

t'art \
|  - t t  I

",11,=
I A P ' I
\ 

-r2/

Grb' -1 I r

G"{f -r 1 I

Ax,
cA 6, r
cL6rt

AL

Ail

and we obtain

T - -

c"h'
-@| -,b,

-@{ -"}) '

- 1  1  1

- l

1
- l  I

-'1

API-12

APIz* 1 2

.
^Pii

l =

Lt,
cA 6 , /
cL6rt

Al,

:

A#- 1

(5.6) El
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Satellite 1 is taken as a pivot, or reference satellite. It is a common approach to form
double difference combinations using a pivot. There exist other ways, but as long as
invertible linear transformations are used (as is the one here), one set of double differ-
ences can be transformed into the other, [Teunissen, 1995]. The models will be math-
ematically equivalent. From the observations made by two receivers to m satellites, 2m in
total, only (m-1) double difference combinations can be taken that are linearly indepen-
dent.

We observe in (5.6) that the remaining single difference observable Pf" is a free
observable, i.e. it determines the receiver clock error 6rr. This observable, together with
the receiver clock error, is left out of further conslideration. The single difference
ambiguity unknowns are reparametrized according to

We finally obtain
observables to ru
observables.

the model of double difference
satellites for one epoch (ft:l).

Al,
4,

A3

observation equations for L1-phase
It contains (m-1) double difference

Al,
^i:

Ali

1
- 1  I

- 1

-@] - rb,

'

-@{ -")\'

/Ax,\

l^Bl

t-l
I

I

"ffi1.7 )

This model is well known and widely used, see also [Seeber, 1993] and [Hofmann-
Wellenhof et al, 19971.

If m satellites are continuously tracked for ft epochs, we have k(m-I) double difference
observables. The vector of unknowns contains three baseline coordinates (stationary
receivers) and (tn-l) double difference ambiguities. These parameters are all estimable
(k>2) and the redundancy equals k(m-l)-m-2, compare to appendix B.

3.5.3 Stochastic model

Application of the variance covariance propagation law to diagonal matrix (4.27) yields
the variance covariance matrix of the double difference observables. The variance of the
(undifferenced) phase observable o| fras been taken outside the matrix. If the phase
observables are not time correlated, as is assumed for (4.27\, the double difference
observables are not time correlated either.
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The equations (5.7) and (5.8) represent the full mathematical model for one epoch of the
time varying measurement system. The model is mathematically equivalent to the
mathematical model given by (4.26) and, (4.27). No information has been lost in going
from (4.26) to (5.7). We have applied square and full rank transformation matrices and
left out only free observables.

3.5.4 Argumentation for double differencing

In this argumentation, frequent references are made to the discussion in [Blewitt, 1993].
Under the topic 'information content', we find in [ibid] that both models are equivalent,
when a clock error is to be estimated per epoq_h per observation type, as is the case in
section 3.4 with clock errors 6il, 6ir, 1it and dir. This is the so-called white noise clock
estimation. The statement holds true for relative positioning on local and regional scale,
when the issues of correlation and data selection are rigorously dealt with.

In the double difference implementation, the problem of estimability of certain parame-
ters, such as ambiguities and clock errors, is avoided (section 3.4.4). The S-basis is
implicitly chosen by taking the double difference combinations. This is done prior to the
data processing.

Two additional remarks are in order concerning the clock error parameters. In the
undifferenced approach estimates for the clock errors are explicitly available. These
estimates are usually not needed. Clock errors are time varying parameters and as such
their behaviour in time may be modelled (dynamic model; pseudo-observations). In the
double difference approach, this modelling is not possible, as the clock error parameters
have been explicitly eliminated.

According to [ibid], the double difference implementation is computationally more
efficient. As clock parameters have been explicitly removed, the system to solve is
smaller: less unknown parameters remain and the number of observations has been
reduced by the same number (data compression). Note that matrix Q, is diagonal in
(4.27), whereas (5.8) is a full matrix (per epoch). Double difference observables are not
time correlated, as long as the undifferenced observables are not time correlated.

Differencing for the case with two receivers and lar satellites is rather trivial. The set of
undifferenced observations have to be transformed into a set of linearly independent
combinations of undifferenced observations. The transformation matrix must be of full
rank. For a fully automatic procedure for generating a set of independent double
differences, see [Goad et al, 1988]. [Blewitt, 1989] checks the dependence by Gram-
Schmidt orthogonalization.

The above deals with the number of double differences that are to be obtained. The actual
set of double difference observations (or ambiguities) is not relevant. It is stated once

l l l
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more that one (valid) set can be transformed into another (valid) set and back, see
[Teunissen, 1995].

3.6 Related mathematical models

In the previous sections a mathematical model was developed for the processing of data
obtained with kinematic GPS surveying. To conclude this chapter, we will briefly review
two models for processing GPS data that are related to the model developed. The first one
concerns a parametrization in terms of (geometric) ranges instead of (baseline)
coordinates, the second one is the (basic) model for Differential GPS.

3.6.1 Parametrization in ranges

As discussed in section 4, the observation equations are non-linear in the receiver
coordinates. The data, either undifferenced, section 4, or double differenced, section 5,
are processed with a linearized version of these equations. In this separate section, we
will discuss a stepwise adjustment of the double differenced observables. In the first step
a linear observation model is used. In the second step, to arrive at estimates for the
coordinate unknowns, again a nonlinear model is employed.

stepwise adjustment
The linear observation equations for the Ll-phase double difference, cf. (5.3), reads

(6 .1) EIP:irl = p'ir.til

Two unknown parameters are involved: the double differenced geometric range pli anO
the double difference ambiguity eil. ns at least the satellites are in permanent motion,
the range pli OepenAs on time (the-ieceivers are allowed to move 

"s 
*ett).

For two receivers, observing rt satellites, the model of observation equations for one
epoch, cf. (5.7), reads

L2
P p

(6.2)

This model is simple as it is linear and no coordinates are involved (no satellite ephemeris
needed); it is completely expressed in ranges. Under the condition that the model is
observable (designmatrix full rank), estimates for the unknown parameters can be
computed. With only code observations on one frequency (and no phase observations),
the first step is trivial: Oii=nii,..,bli=pli.

''ff], lm
P n

A8

Aitr
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Next, based on the estimators gi:,..,ni:, the second step can be carried out and estima-
tors for the coordinates .r2 are bttained. Only geometric parameters are involved. The
non-linear model of observation equations reads

-@l-rb,

(6 .3) (Ax")

-@{-"b'

The receiver-satellite geometry, by means of the unit-direction vectors, is present now ln
the designmatrix.

In surveying practice, this stepwise approach is of limited value. The approach will not
work with only phase observations; code observations on at least one frequency are
needed (for the first step). Per epoch, there are (m-1) unknown range parameters, no
matter whether the receiver is stationary or moving. For m)4, the redundancy inthe first
step is less than in (5.7). The model is less stringent and this will affect the model
validation (detection of outliers and slips in the observations) and the capabilities of
resolution of the integer ambiguities.

References concerning the parametrization in terms of ranges are [Melbourne, 1985],

[Euler et al, 1991] and [Goad, 1992]. The above model is studied in [Teunissen, 1996]
and Uonkman, lp97l in particular with respect to resolution of the ambiguities. Based on
rhe estimatet A;;,..,Aiir.integer least-squares estimates can be computed for the double
difference ambiguities N;;,.., N;;' .

The connection between this approach, parametrization in ranges, and the common
parametrization in terms of coordinates is systematically elaborated upon in [Teunissen,
l997al. The two approaches are linked through a particular form of a phased adjustment.
The second step (6.3) is a consequence of including the geometric constraints. All (m-1)
ranges are then related to the 3 coordinates of the receiving antenna. With m:4 satellites
(one epoch), there is no redundancy in this step.

corrections for atmospheric delays
The atmospheric delays play the major role in limiting the baseline length (to 10 km)
under the current modelling. Accounting for the ionospheric and tropospheric delay may
extend the operational baseline length to several tens of kilometers.

The code and phase observations are corrected a-priori for the ionospheric 1," and
tropospheric delay 7j. The (non-linear) observation equation for the Ll-phase, in terms
of a single difference, reads

(6.4) ElPir-Tir+Iirl = pi, *c6,rt*Al,

"ffi;l

Linearization of the model yields again (5.5).
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Sample values for the corrections can be provided by an external model or by an Active
GPS Reference System (AGRS) [Marel, 1997]; an AGRS is an active infrastructure for
geodetic GPS users, which on the hardware side primarily consists of a network of
permanent GPS stations. If the corrections are precise and can be considered non-
stochastic, the variance covariance matrix of the observables is left unchanged, see also
todijk, 1997) and [Teunissen, 1997b]. The assumptions in section 4.2 correspond in
addition to taking sample values zero.

3.6.2 Differential GPS

The model of observation equations for relative positioning (over short distances, 10 km)
with single frequency code observations from one epoch of data, contains 2m observations
(m satellites are observed by both receivers) and 3ImI1 unknown parameters, namely
the three coordinates r, the m satellite clock errors cdt (l:1,..,m) and thecA2t
differential receiver clock error, see model (4.28) in section 4, but with the carrier phase
ambiguities left out. The rankdeficiency concerning the receiver clock error d,r is
discussed in appendix B. All code observations at receiver 1 are related to this clock error
and hence all corrections will be. The clock error of the rover d"r accounts for this; it is
part of the S-basis.

G")' I

(6.s)

(-e{)' 1

The satellite clock error unknown dr acrually represents the satellite (clock error) and
propagation (troposphere and ionosphere) parameters together, ct. (4.25). The effects (on
the coordinates) of position errors of receiver 1 and of the satellites will also be largely
absorbed by these clock error parameters. The model of single difference observation
equations is given by (6.5), cf. (5.5) in section 5.

There are m observations for 4 unknown parameters; the redundancy equals m-4, thus at
least m:4 satellites are needed.

In the above model, the m undifferenced observables pl,..,pi of receiver t have been
left out, together with the rn unknown satellite clock errors:

(6.6)

( - r

I
I

t - 1
We can now see that the n observations of receiver 1, eq. (6.6), are applied as (range)
corrections to the m observations of receiver 2, see eq. (6.5). Next, with model (6.5), the
position coordinates are estimated.

fonl,) ( on^- oni\
''f^rr)' =u'lo,, -^,,)' = I a t ]

lcAarrJ

ll":"1
) \ ce t )

Ionil"'l^r,J' =
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The conclusion is, that for the above model assumptions, relative positioning with code
observations is in principle identical to straightforward Differential GPS. By DGPS is
meant, code positioning by means of range-corrections, determined at the reference
station and applied at the rover site.

In practice with DGPS, there is a time delay in applying the corrections. It is caused by
generating and transmitting the corrections. As such, relative code positioning can be seen
as a limiting case of Differential GPS (time delay equal zero).

3.7 Summary and concluding remarks

This chapter has dealt with the mathematical modelling aspects of precise GPS positioning
on a local scale. Two receivers simultaneously make observations to rt satellites. The
receiver separation is usually limited to about 10 kilometers. The most significant error
sources are multipath, atmospheric delays and orbital errors.

The coordinates of the second receiver are determined with respect to those of the first
one. This determination takes place in the WGS84 coordinate system. The transformation
of the geometric information ir, into a local datum is not considered. In this chapter, the
coordinate vector from r1 to 12, the baseline vector, was defined by the geometric
antenna centers of the two receiver antennas. The connection to the survey markers on the
ground and other practical aspects of GPS surveying are deferred to chapter 4.

The adjective 'kinematic' refers to increased surveying productivity, as compared with
traditional static surveying. As such, a measurement technique is envisaged that is based
on rapid static, but with short site occupation times (by quick recovery of the ambiguities)
and the possibility (not the necessity!) of keeping lock to the satellites by the roving
receiver during transportation to the next site. Although this last aspect enables trajectory
determination, the emphasis of surveying remains on the determination of discrete points.
In conclusion, kinematic GPS surveying stands for efficient precise coordinate determina-
tion on a local scale.

The full mathematical model for the Ll-phase observable, for one epoch of the time
varying measurement system has been treated in this chapter. Two equivalent implementa-
tions were given: in section 4 with undifferenced observations and in section 5 with
double difference observations. For this particular application, the latter is thought to be
more appropriate. Equations (5.7) and (5.8) are of the form Elyil =Afi; D{yi} =Qr,, cf .
(1.3) in chapter 2.

As a result a mathematical model for kinematic GPS surveying is available and prepared
for the recursive estimation, discussed in chapter 2. We were concerned with observables
that result from measurements. Dynamic modelling of the time varying parameters in the
measurement system is beyond the scope of this research. These pseudo-observations can
however, be incorporated in the recursive estimation schemes of chapter 2 very easily
(time update). No relation in time is assumed to exist for time varying parameters. In the
model with double difference observations for stationary receivers only constant parame-
ters are involved; in the recursive estimation actually a sequential adjustment is made
upon these parameters. Further implementation aspects of the data processing, estimation
and in particular quality control, are discussed in chapter 4.

1 1 5



1 1 6

Appendix 3.A Unit direction vector e,"

The unit direction vector €"" from receiver to satellite is needed in the linearization of the
observation equation. First a few remarks concerning time-relations and the satellite
position are made. Then the procedure for the computation of the unit direction vectore,"
and the computed observation pf.o are treated.

time-relations
Time /, is the receiver time tag in the (Rinex) observation file. The time of observation in
GPS time reads t=t,-6,t(t) and is expressed ?s t=t,+At-6,t(t). A/ is the offset (in
receiver time) between the time of observation and the computation til,rret Lt:t,-t,.

The time arguments of the geometric range can now be rewritten in

(A.1) p",1t,t-r1 = p",(t,- 6,t(t) , t,- 6,t(t) - r)

= p:(t" + Af - 6,/(f) , t,* Lt - 6,r(r) - r)

The satellite ephemeris will be evaluated at time /. (then to be interpreted as a GPS time,
that is close to (/-z)). This evaluation needs to be done only once per satellite per
observation epoch and can then be used for all receivers. The satellite positions (needed
for the observations made by the various receivers) are then computed using a Taylor
expansion. The procedure presented here, completely parallels the one in appendix B of
[Jonge, 19931.

satellite position
For the definition of the reference system World Geodetic System WGS84 the reader is
referred to [Parkinson et al, 1996] and for the current status [Malys et al, 19971.

For a treatment of coordinate systems and orbital motion, see [Seeber, 1993]. The three
fundamental laws of Kepler determine the orbit of an object in space (normal orbital
theory). The orbit is an ellipse with the earth's center in one of the foci of the ellipse.
The perurbed orbit is represented by an extended set of Keplerian parameters. The
representation by means of Keplerian elements has been chosen for the reason of graceful
degradation in time [Dierendonck et al, 1978].

The satellite position will be computed based on data in the Rinex Navigation file, see
[Gurtner et al, 1990]. The broadcast ephemeris are contained in the records 1-5 of the
Navigation file, see also the Ephemeris Data Definitions in chapter 4 of [Parkinson et al,
19961 and [USCG, 1995].

For the ECEF coordinate system we take the WGS84: the coordinate vector is denoted by
.x. The (pseudo)-inertial coordinate system is identical to the WGS84 coordinate system,
but the earth rotation has been switched off. The (constant) earth rotation rate O" is
defined in the WGS84 reference system. Both systems coincide at 00:00h Sat/Sun
midnight (begin of GPS week). The system is pseudo-inertial as the motion of the earth
around the sun, together with the precession and nutation are neglected. This system will
be used for the computation of the geometric range. Coordinate vectors are denoted by X.
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If this pseudo-inertial coordinate system would be
would be no perturbing forces, the satellite orbit
described by the six elementary Keplerian elements:

semi major axis of orbital elliPse
eccentricity
longitude of ascending node
inclination
mean anomaly at reference time
argument of perigee

With the satellite ephemeris the satellite position (phase center of satellite antenna array)

is known as function of time. The satellite position can be computed in WGS84 (coordi-

nates obtained are corrected for polar motion): x'; see the procedure in chapter 4 of

[Parkinson et al, 1996]. We will compute the position in the pseudo-inertial system and

also compute the velocity and acceleration of the satellite [Jonge, 1993].

procedure fqr e,' and pi."
The procedure (A.3) has to be carried out in every iteration step, per receiver-satellite

combination. The first part, (A.2) for the satellite position, velocity and acceleration at

time /., need to be carried out only once per observation epoch (outside the iteration).

We introduced approximate values for the receiver clock error, 6,/o, and for the receiver
position, r,,o, so that we have x, --r,,o* 

ltr and 6,/=9y'n*46,r. The initial approximate
values may'iesult from a single point solution. This solution must certainly be carried out

for the reference receiver, as the clock error of the reference receiver 6rl is not esti-
mable, section 3.4.4. A good approximate value is necessary, see [Blewitt, 1993]; it is

used to compute the satellite position (A.3).

The approximate time of observation (in GPS time) becomes to=t,*At-6,to. In the

computation scheme (A.2)-(A.3) the o for approximate value is omitted.

In words, procedure (A.3) consists of the following steps. The receiver position is

transformed to the pseudo-inertial system. R denotes the rotation matrix. The rotation
angle is O(r)=Arr. The satellite position at the appropriate time, is computed using a

second order Taylor expansion. With this position the geometric range is computed (in

the pseudo-inertial frame). A new traveltime r results. A new iteration step can be carried
out. After termination of the iteration, the satellite position is computed in the ECEF
system. The unit vector, expressed in the ECEF (WGSS4) system, ei1t,t-r1 for the

design matrix, results. The value for p|,, is available after the iteration. Note that the
word iteration here, applies to the recursive procedure for the geometric range in (A.3).

We will spend a few remarks on procedure (A.3). The geometric range is evaluated in the
(pseudo)-inertial system, instead of the ECEF system. The advantage is that the earth
rotation is not involved in the expansion of the satellite position. In chapter 4 of [Parkin-
son et al, 19961 we find: the user shall account for the effects due to earth rotation rate
during the time of signal propagation so as to evaluate the path delay in an inertially
stable coordinate system.

tt'l

a true inertial system and if there
would be an ellipse and could be

a
e
o
i
Mo
0)
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(A.2) read broadcast ephemeris
x"(r-)
*"tr)
it"6")

t

(A.3) X,(t) = Ro(-O(r)) x,(r)

t

initial guess for r
t

+ €

J
x ' ( t - t )  =  X" ( t " )  *  i " ( r . ) (A t  -6 , t ( t ) - " )  .  j i " ( t " ) (L t -6 , t ( t ) - : )2

t p',{t,t-t) = llX"(l-r)-X,(r)ll

Pt'(t't-")

t
new r + stop?

T

x'(t-r) = &x(O(/)) X"(r-r)

t

ei1t,t-r1 =
x'(t-r) -x,(t)

p:(r,r-r)

The maximum values for the derivatives of the satellite position are
l lX" l l  :  2,6'107 m
ll i " l l  :  4,0.103 m/s
lli"ll : 0,6 m/s2

In the iteration (A.3) we define the (improved) traveltime as geometric range divided by
c. This does not comply with (4.2); the atmospheric and hardware delays are forgotten.
This can be interpreted as starting each iteration (in computing the estimates for the
geometric unknowns) with approximate values equal zero for these unknowns, as is
assumed for (4.8) and (4.9). The effect is of the order 10-7 s for the traveltime and of the
order 10-a m for the geometric range computed using this traveltime (in next iteration). It
largely cancels in relative positioning (as the neglected delays will about, but not exactly
equal for both receivers).

The procedure canbe used to compute p',{t,t-t)o for the computed observation as well.
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Alternatives to the procedure presented, method 5 of appendix B in [Jonge, 1993], are,
iterative computation of the satellite position by repeated use of the standard procedure in

[Parkinson et al, 1996], and iteration upon the'geometric range with a Taylor expansion
of the range itself (derivatives of pi have to be computed).

Appendix 3.B Analysis on estimability

The mathematical model developed in section 3.4.2 is rankdeficient. The full set of
parameters in the vector of unknowns can not be estimated, cf. section 1.2 of chapter 1.

In order to allow a proper implementation of the estimation, we will apply reparametri-
zations on the unknowns and remove the rankdeficiencies. We consider five measurement
scenarios:

C1: code, single frequency
Ll: phase, single frequency
Ll&A: phase, dual frequency
Cl+L1: phase and code, single frequency
LL&LL+CI&P2: phase and code, dual frequency

The discussion is based on the linearized observation equations, see (4.21) to (4.24) for
the Ll-phase observable; the A -symbols for the observations and unknowns are however

omitted in this appendix. We start by analysing the set up with both receivers stationary,
thus x, consists of three constant parameters. The set up with the rover in motion is

briefly treated at the end of this appendix. Pseudo-observables (from a dynamic model)
are left out of consideration.

From equation (4.1) it can be seen that hardware delays, clock errors and atmospheric
delays are introduced for every epoch, see also (4.25). We assume to have k epochs of
data. In the overviews index i runs from i:I,..,k by default and indexT from j:I,..,m.

The part that is underlined in the estimable functions represents (parts of) the chosen S-
basis. By Pi we mean the vector of Ll-phase observations made by receiver rl to all m
satellites.

Cl: code, single frequency

observations per epoch: pi, pr"

constant unknowns: t2

time-variantunknowns: c6rt, c)rt znd cdt

2mk

J

(n+2)k

total:

total:

total:

rankdeficiency: t

S-basis:  cd, l , :0

estimable functions: r,

cA2ti- cA],

cdt,-cd,t,

redundancy: ft(n-1)-3

geometric unknowns (3)

diff. receiver clock error (f)

satellite clock error (m*)

(k)

k = l  - )  m > 4
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Ll: phase, single frequency

obsenations per epoch: Pi, Pj

constant unknowns: xr, Ai and Ai

time-variant unknowns: c6rt, c6rl and c6't

total: znk

total: 3+2m

toral: (m+2)k

rankdeficiency: tlm+ I

S-basis:  c6r t :0 (k)

Al '  o  @)
A)=  o  ( r )

estimable functions: r, geometric unknowns (3)

c6rt,-c6,t,*S-N diff. receiver clock enor (t)

cUt,-c6,t,-{j, satellite clock error (mk)

Ai-4-4-4 double difference ambiguities (m-t), (with j=Z,..,m)

redundancy: k(m-l)-m-Z *=1 -) notsolvable

k = 2  - >  m > 4

Ll&12: phase, dual frequency

observations per epoch: Pi, Fi, P; ^nd F; toal: 4m*

constantunknowns::r,,{f, Ii, ei ara l} toal: 3+4m

time-variantunknowns: c6rt, c5rr, c6rr. c6-rr, c6"r and cd"r tohl: Z(m+z)k

rankdeficiency: 2(k+ m+ 1)

S-basis: c6rtr: 0 (*)

c6,r-= O (*)

Atr .  o (m)

,ql = o \m)

A ) ' o  ( l )

tr).  o (1)

estimable functions: x, g€omefilc unknowns (3)

c62ti-c6,t,+4;-4 diff. receiver clock error (t)

"6rt,-"t,t,*N-\ 
diff. receiver clock enor (t)

c7t,-c6,t,-{1, satell i te clock errcr (n*)

"ldt,-"la-l 
satell i te clock enor (mk)

Ai-,!;-4j,,,4- doubledifferenceambiguities(m-t),(withj:2,..,m)

fi-4-4,4_ double difference ambiguities (m-t\, (with j=z,..,m)

redundancy: 2k(m-l)-2m-l *=l -) not solvable

k=2-) m>4 
same geometry is involved for Ll and L2; an additional
rankdefect shows up in case m=3
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Cl+Ll: phase and code, single frequency

observations per epoch: ri, pi, P| and p| total: 4m*

consant unknowns: xr, ,4i and ,{i total: 3+2m

t ime-variant unknowns: cdlt, calt, c6rt, c)rt, c6"r and cdr total: 2(m+2\k

t2l

rankdeficiency: 2k+m+l

S-bas is :  c6r t i=0  ( t )

cdrt,: 0 (,t)

Ai= o (m)

A)=  o  ( r )

estimable functions: x, geometric unknowns (3)

c62ti-c6J,.4-41 diff. receiver clock error (k)

cAztr-cAli diff. receiver clock enor (t)

cut,-c6r7-A,1, satellite clock enor (nk)

cdti-ca], satellite clock error (n*)

Al-4-4j,-4 double difference ambiguities (m-l), (wirhi:2, .,m)

redundancy: 2k(m-l)-m-Z k:l -) m>4

LL&W+CI&W: phase and code, dual frequency

obsenations per epoch: ri , Fi , pf . pi . P; . F;, p| and pi total: \mk

constant unknowns: xr, ,{i, ei, ei anl e} total: 3*4m

time-variantunknowns: c6,r, c6=,r, cd,r, cb,r. c6rr, c6rr, cart. c6rt, co"r, cal, cdl and c-dt lrllall:4(m+2)k

mnkdeficiency: 4k+2m+2

S-bas is :  c6r t i=0  ( t )

cd,r,= 0 (t)

cd,f,: 0 (k)

ca,r,= 0 (f)

A t t .  o  ( m )

e{=  o  (m)

A ; =  o  ( l )

t r )= o ( l )

estimable firnctions: x, geometric unknowns (3)

c6rt,-c6,t,*,1-41 diff. receiver clock error (t)

"ort,-"trt,r l-\ 
diff. receiver clock error (k)

cA/i-ca!, diff" receiver clock error (t)

,a*,-rlrL diff. receiver clock error (k)

cYt,-c6rt,-N satell i te clock error (m/<)

":{t,-"trt,-\ 
satell i te clock error (nt)

cdti-cart, satellrte clock error \mk\

,ldt,-6rt, satellite clock error (mk)

A i -4 -4 j -4  doub led i f fe renceambigu i t ies (m- l ) . { * i tn i :2 , . . . ^ ' ,

i i -4 -4 ,4  doub le  d i f fe rence ambigu i t ies  (m- l ) .  (w i th l=2 . . . ,n )

same geometry is involved for Ll and L2: an additional

redundancy: 4k(m-l)-2m-1 k=l -) m>4 rankdefect shows up tn case m=3
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We have discussed the estimability of five measurement scenarios in relative GPS
surveying. In order to remove the rankdeficiencies in the mathematical models, we have
constructed S-bases, thereby aiming at bases that can be given some practical interpreta-
tion. Other S-bases are possible as well.

For all scenarios it holds true that the clock error (per epoch) of the reference receiver
can not be (separately) estimated, see also [Blewitt, 19931: only relative clock behaviour
(between receivers) is estimable. Carrier phase ambiguities of the reference receiver are
not estimable, neither are those of the second receiver to the first satellite.

If one receiver makes a certain type of observation to a satellite and the other receiver
does not, the observations are free observations: they can be left out from the data
processing. Only the overlapping part in the data needs to be considered: with the data of
one receiver, under current S-bases, one can estimate the satellite clock errors. for each
observation type, for the particular epochs.

With (single or dual frequency) phase data, at least two epochs of data are required
(k>2).As soon as also code data are available, one epoch suffices (k>1). In all five
scenarios less satellites (m<4) may suffice when more epochs of data are available. The
absolute bottom is m:2.

With both receivers stationary, we have 3 geometric unknowns for the whole survey. If
receiver 12 is moving, we have 3 geometric unknowns per epoch. The redundancy for the
five measurement scenarios is given below:

Cl: code, single frequency

Ll: phase, single frequency

obseryations: 2mk

unknowns:

redundancy:

LI&LZ: phase, dual frequency

observations: 4mk

unknowns:

redundancy:

unknowns:

redundancy:

Ll +C1: phase and code, single frequency:

obseruations: 4nk

2mk

3k+ (n+ l)k

k(m-4) k = l  - )  m > 4

3k+(m+ l )k+(m-l )

k(m-4)-(m-l\ k=2 -> m>7

3k+zk(m+ r)+z(m-l)

2mk-5k-2(m-l\ k=2 -) m>7

3k+2k(m+ l)+(m-l)

2nk-5k-(n-1\ k=l -> m>4

3k+4k(m+ l)+2(m-l)

4mk-7k-2(m-l) k=l -) m>4

same geometry is involved for Ll and L2; an additional
mnkdefect shows up in case m=4,5,6

same geometry is involved for Ll and L2: an additional
rankdefect shows up in case m:3

observations:

unknowns:

redundancy:

Ll&Lz+Cl&P2: phase and code, dual frequency
observations: \mk

unknowns:

redundancy:
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In brief, the rule for a moving receiver 12 reads that with code observations at least 4

satellites are required and at least 7 satellites when only phase observations are available.
With only phase data, single or dual frequency, at least two epochs of data are needed
(k>2). When code data are available, one epoch suffices (ft>1). kss than 4 satellites is

not possible, even when more epochs of data are available.
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