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Preface

As a remote sensing technique, SAR Interferometry (InSAR) belongs to the active
and microwave remote sense category. Unlike the passive and optical remote sensing
techniques InSAR is capable of providing measurements under all weather condi-
tions during day and night. The earliest space-borne InSAR experiments can be
traced back to the SEASAT mission operated by JPL (Jet Propulsion Laboratory)
in late 1970s. In the beginning, the main purpose of InSAR was to measure land
topography. With the achievements made by scientists and engineers (such as Ze-
bker et al. (1994), Massonnet et al. (1995) and Hanssen (2001), just to name a few),
nowadays, InSAR has been approved and accepted as an ideal tool for monitoring
earth surface deformation. Thanks to the advance in space technology since 1990s,
surface deformation can be detected and monitored from space by satellites (e.g.,
ERS1/2, RadarSat1/2, Envisat, TerraSAR-X and COSMO-SkyMed) with remark-
able precision (sub-centimeter level) and unprecedented spatial resolution (down to
1m).

One of the biggest uncertainties in InNSAR, measurement is the so-called atmospheric
phase screen (APS ) which is the result of the signal propagation delay caused by the
earth’s atmosphere. Without knowing the exact delay, it is difficult to measure low-
rate land deformation with acceptable accuracy (e.g., sub-centimeter). The difficulty
in removing APS from InSAR measurements comes from the high spatio-temporal
dynamics of water vapor in the lower troposphere. The most straightforward way to
correct APS is to use delay measurements from other sources such as GPS networks,
space-borne spectroradiometers (MODIS and MERIS) and meteorological observa-
tions (e.g., weather balloon), see Williams et al. (1998), Li et al. (2004) and Onn
and Zebker (2006). However, these independent sources of delay have their own lim-
itations such as spatial density and coverage, and weather and sunlight dependency.
Therefore, a generic solution for mitigating APS cannot be based on these sources.

Alternatively, APS can be estimated from InSAR measurement itself by utilizing the
difference in temporal characteristics between APS and ground deformation. The
former has a high variability (high frequency), whereas the latter very often shows a
strong temporal correlation (low-frequency). A temporal low-pass filtering approach
was originally proposed by Ferretti et al. (2000) for InSAR time series analysis
using persistent scatterers InNSAR (PSInSAR). In such approach APS is treated as a
temporally uncorrelated signal which is filtered out by the low-pass filter. However,
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the approach does not provide quality assessment for the APS estimate and requires
a user to construct the low-pass filter, which often results in different deformation
estimates from different InNSAR processors and makes the estimated deformation not
falsifiable.

Till now, APS is regarded as noise for surface deformation monitoring. From the
meteorology point of view, however, APS could be a valuable source for weather
analysis and climate study. The distinctive features of InNSAR for atmosphere study
from other remote sensing techniques are its high spatial resolution and all weather
capability. But, one of the difficulties that prevents its meteorological applications is
the so called acquisition ambiguity (Hanssen and Kampes, 2004) in which only the
temporal difference of delay between two SAR acquisitions is observed. Therefore,
the delay during each acquisition is not directly measurable.

At first, this book reviews the cause of APS and its spatio-temporal characteristics.
Then, it assesses the feasibility of mitigating APS using numerical weather forecast.
Afterwards, the book presents a new method for estimating APS as well as the
precision of the estimate based on InSAR time series analysis. Finally, the book also
provides a method for resolving the acquisition ambiguity to obtain APS at single
SAR acquisitions.
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Summary

Satellite SAR Interferometry (InSAR) is frequently promoted as an active, all-
weather technique in comparison to optical remote sensing techniques that need solar
illumination and cloud free conditions. However, the earth’s atmospheric refractivity
plays an important role in delaying the radar signal, resulting in a spatio-temporal
phase shift in repeat-pass InSAR measurements (i.e., interferograms). The phase
shift is also referred to as an atmospheric phase screen (APS). Therefore, repeat-
pass InSAR is not weather independent.

For C-band and X-band interferometry APS is mainly driven by the earth’s tropo-
sphere. The difficulty of correcting APS for surface deformation monitoring largely
comes from the highly dynamic behavior of water vapor located in the lower (< 2
km) troposphere. In this study we develop two methods for the APS correction and
one method for the usage of APS for meteorological purposes. The first correction
method is based on numerical weather models (NWM) and the second relies on In-
SAR time series analysis. The method for meteorological purposes aims at retrieving
water vapor spatial distributions at single SAR acquisitions from interferograms.

In the first correction method, we use the weather research and forecast (WRF)
model to simulate delay at SAR acquisitions. To evaluate the simulation, we use
atmosphere-only interferograms over different climatic regions varying from tropic
to semi-arid. Some of the regions have strong topography variations and the others
have flat terrains. We find that significant APS correction can be achieved only in
mountainous regions. This is mainly the result of correcting the delay correlated
with topography. However, the simulated topography dependent delay is not always
reliable with a success rate of 80% (1 out of 5 cases in which the model failed).

In flat regions the correction hardly leads to APS mitigation and very often deteri-
orates the original interferograms. This is because the model is not able to simulate
the realistic water vapor lateral distribution at fine scales (between 1 and 50km).
We also assess the feasibility of using the model to simulate stochastic properties
of APS such as spatial variograms. Unfortunately, we find the model constantly
underestimates the real variability of APS at all spatial scales between 1 and 50 km.

Therefore, we conclude that contemporary weather models are useful for correcting
the topography dependent delay but should not be considered reliable at all times.
For flat regions, the value of the models is very limited and we recommend not to
use them for delay correction.
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The second correction method, based on InSAR time series, utilizes least-squares
collocation (LSC) and variance-covariance estimation to separate APS and ground
deformation. The LSC method regards the deformation as a temporally correlated
stochastic signal and models it by its temporal variance-covariance function. APS
is also modeled as a stochastic signal. In time, APS is assumed uncorrelated and
modeled by a diagonal variance-covariance matrix. In space, APS is correlated
and modeled by a variance-covariance function from the Matern-family. Given the
stochastic modeling, the optimal separation of APS and deformation can be achieved
by least-squares collocation which not only gives the best estimates in terms of their
precisions but also provides the precision estimation. We implement the method
for PSInSAR. The evaluation of the method is performed over different climatic re-
gions with and without strong topography variations. We find that the method can
better separate APS and ground deformation than the APS filter in conventional
PSInSAR, especially when there are significant acquisition gaps in the time series
and for acquisitions taken during turbulent weather. This is because the tempo-
ral variance-covariance matrix of APS incorporates the time-varying magnitude of
APS disturbance to achieve the largest suppression of APS. Moreover, the stochastic
modeling of deformation is capable of estimating complex deformation that is diffi-
cult to be modeled deterministically by a functional model. Therefore, we conclude
that the method provides an optimal way to separate ground deformation and APS
for PSInSAR in terms of the result precision and its quality assessment.

The third and last objective is InSAR based water vapor mapping for meteoro-
logical applications. The main difficulty of the mapping comes from the so-called
acquisition ambiguity in which only the spatio-temporal differences of water vapor
(instead of spatial distributions at one specific epoch we observe the difference be-
tween two satellite acquisitions) are observed. To resolve the ambiguity a constrained
least-squares approach is used assuming APS between acquisitions are temporally
uncorrelated. Moreover, to prevent phase decorrelation we form a network of inter-
ferograms with favorable temporal and geometric baselines. The network not only
permits least-squares adjustment for the retrieving but also allows hypothesis test-
ing to reject incoherent pixels (i.e., outliers) in the interferograms. The APS at the
incoherent pixels can be later spatially interpolated using kriging. To evaluate the
method we choose a non-urban area over southwest Australia and obtain the water
vapor spatial distributions with 1 km lateral resolution during 22 ASAR acquisitions
over the area. The evaluation suggests that the retrieved distributions are realistic
and accurate.

In this study we have assessed the feasibility of mitigating APS for InSAR using
numerical weather models. We develop a method to separate APS and surface
deformation based on InSAR time series for PSInSAR. For meteorological purposes,
we develop a method to retrieve water vapor spatial distributions at single SAR
acquisitions. Future work should focus on improving the reliability of numerical
weather simulation by incorporating high spatial resolution water vapor maps as
inputs for weather analysis. InSAR water vapor products can play an important
role in such aspect. In return, the improved simulation will have a higher success
rate in mitigating APS for events such as earthquakes and volcano eruptions in which
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the time series based method is no longer applicable.






Samenvatting (Summary in Dutch)

Satelliet SAR Interferometrie (InSAR) wordt vaak neergezet als een actieve techniek
werkend onder alle weersomstandigheden. Dit in vergelijking met optische remote
sensing technieken die zonlicht en bewolkingsvrije omstandigheden nodig hebben.
De refractiviteit van de aardse atmosfeer speelt echter een belangrijke rol in het ver-
tragen van het radarsignaal, resulterend in een ruimtelijk-temporele faseverschuiving
in InSAR metingen gebaseerd op herhaalde overkomsten (dat wil zeggen, interfero-
grammen). De faseverschuiving wordt ook aangeduid als een atmosferisch fasebeeld
(APS). Daarom is InSAR gebaseerd op herhaalde overkomsten niet weersonathan-
kelijk.

Voor C-band en X-band interferometrie wordt het APS vooral veroorzaakt door de
aardse troposfeer. De moeilijkheid van het corrigeren van het APS voor oppervlakte-
deformatie monitoring is grotendeels afkomstig van het zeer dynamische gedrag van
waterdamp in de onderste (j2 km) troposfeer. In deze studie ontwikkelen we twee
methoden voor de APS correctie en een methode voor het gebruik van APS voor
meteorologische doeleinden. De eerste correctiemethode is gebaseerd op numerieke
weermodellen (NWM) en de tweede berust op InSAR tijdreeksanalyse. De methode
voor meteorologische doeleinden beoogt het reconstrueren van de ruimtelijke distri-
butie van waterdamp voor individuele SAR opnamen uit interferogrammen.

Bij de eerste correctiemethode gebruiken we het Weather Research and Forcast
(WRF) model om de vertraging gedurende SAR opnamen te simuleren. Om de
simulatie te evalueren gebruiken we interferogrammen met uitsluitend atmosfeer in
verschillende klimatologische regio’s varirend van tropisch tot semi-aride. Een deel
van de regio’s hebben sterke hoogtevariaties en de anderen hebben een vlak op-
pervlak. We ondervinden dat significante APS correctie alleen kan worden bereikt
in bergachtige gebieden. Dit is voornamelijk het gevolg van het corrigeren van de
vertraging die gecorreleerd is met de topografie. De gesimuleerde topografie afthan-
kelijke vertraging is echter niet altijd betrouwbaar met een slagingspercentage van
80% (1 van de 5 gevallen waarin het model faalde).

In vlakke gebieden leidt de correctie nauwelijks tot APS reductie en verslechteren
heel vaak de oorspronkelijke interferogrammen. Dit komt omdat het model niet in
staat is de realistische ruimtelijke waterdampverdeling op kleine schaal te simuleren
(tussen 1 en 50 km). Ook hebben we de haalbaarheid beoordeeld van het gebruik van
het model om stochastische eigenschappen van APS te simuleren, zoals ruimtelijke
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variogrammen. Helaas vinden we dat het model de werkelijke variabiliteit van APS
voortdurend onderschat op alle ruimtelijke schalen tussen 1 en 50 km.

Daarom concluderen we dat de hedendaagse weermodellen bruikbaar zijn voor het
corrigeren van de topografie afhankelijke vertraging, maar niet altijd als betrouwbaar
moet worden beschouwd. Voor vlakke gebieden is de waarde van de modellen zeer
beperkt en we raden aan ze niet te gebruiken voor vertragingscorrectie.

De tweede correctiemethode, gebaseerd op InSAR tijdreeksen, maakt gebruik van
kleinste-kwadraten collocatie (LSC) en variantie-covariantie schatting om APS en
deformatie van de ondergrond te onderscheiden. De LSC methode beschouwt de de-
formatie als een in tijd gecorreleerd stochastisch signaal en modelleert dat door zijn
temporele variantie-covariantie functie. Het APS wordt ook gemodelleerd als een
stochastisch signaal. APS worden ongecorreleerd in tijd verondersteld en gemodel-
leerd door een diagonale variantie-covariantie matrix. In ruimte is een APS gecor-
releerd en wordt gemodelleerd door een variantie-covariantie functie uit de Mtern-
familie. Gebaseerd op de stochastische modellering kan het optimale onderscheid
tussen APS en deformatie worden bereikt door kleinste-kwadraten collocatie, dat
niet alleen de beste schattingen geeft in termen van precisie, maar ook de schatting
van de precisie zelf. We hebben de methode voor PSInSAR gemplementeerd. De
evaluatie van de methode is uitgevoerd voor verschillende klimatologische gebieden
met en zonder sterke topografische variaties. We vinden dat de methode APS en
deformatie beter kan onderscheiden vergeleken met het APS-filter in conventionele
PSInSAR, vooral wanneer er significante onderbrekingen zitten in de opname tijd-
reeksen en voor opnamen gedurende turbulent weer. Dit komt doordat de temporele
variantie-covariantie matrix van APS de in tijd varirende sterkten van APS versto-
ring bevat, om zodoende de sterkste onderdrukking van APS te bereiken. Bovendien
is de stochastische modellering van deformatie in staat om complexe deformaties te
schatten, die moeilijk te deterministisch te modeleren zijn door een functioneel mo-
del. Daarom concluderen we dat de methode zorgt voor een optimale manier om
deformatie en APS te onderscheiden in PSInSAR, zowel in termen van de precisie
van het resultaat als de kwaliteitsbeschrijving.

De derde en laatste doelstelling is het op InSAR gebaseerd in kaart brengen van
waterdamp voor meteorologische toepassingen. De grootste moeilijkheid voor het
in kaart brengen wordt veroorzaakt door de zogenaamde opname meerduidigheid
waarmee de ruimtelijk-temporele variaties in waterdamp worden waargenomen (in
plaats van ruimtelijke verdelingen op een specifiek epoch worden verschillen tussen
twee satellietopnamen geobserveerd). Om de meerduidigheid op te lossen wordt een
geconditioneerde kleinste-kwadraten methode toegepast, waarbij aangenomen wordt
dat de APS van verschillende opnamen ongecorreleerd zijn in tijd. Bovendien vor-
men we een netwerk van interferogrammen met gunstige temporele en geometrische
basislijnen, ter voorkoming van fase decorrelatie. Het netwerk staat niet alleen een
kleinste-kwadraten vereffening voor het oplossen toe, maar maakt het ook mogelijk
hypothese testen uit te voeren om incoherente pixels (dat wil zeggen, blunders) in
de interferogrammen te verwerpen. De APS waarde voor de incoherente pixels kan
later ruimtelijk genterpoleerd worden met behulp van kriging. Om de methode te
evalueren kiezen we een niet-stedelijk gebied in zuidwest Australi en verkrijgen we
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de ruimtelijke verdeling van waterdamp met 1 km ruimtelijke resolutie gedurende 22
ASAR opnamen van het gebied. De evaluatie suggereert dat de gevonden verdelingen
realistisch en nauwkeurig zijn.

In deze studie hebben we de haalbaarheid onderzocht van het reduceren van APS
voor InSAR met behulp van numerieke weermodellen. We ontwikkelen een methode
om APS en deformatie van het oppervlak te onderscheiden op basis van InSAR
tijdreeksen voor PSInSAR. Voor meteorologische doeleinden ontwikkelen we een
methode om ruimtelijke verdelingen van waterdamp te bepalen voor individuele
SAR acquisities. Toekomstige werkzaamheden moeten worden toegespitst op het
verbeteren van de betrouwbaarheid van numerieke weer simulatie door het toevoegen
van een ruimtelijk hoge resolutie waterdampkaarten als invoer voor weeranalyse.
InSAR waterdamp producten kunnen in die zin een belangrijke rol spelen. In ruil
daarvoor zal de verbeterde simulatie een hoger slagingspercentage hebben in het
reduceren van APS voor gebeurtenissen zoals aardbevingen en vulkaanuitbarstingen,
waarvoor de tijdreeks gebaseerde methode niet meer toepasbaar is.
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Chapter 1

Introduction

Satellite synthetic aperture radar interferometry is a global, all-weather and active
remote sensing technique that is capable of imaging land surface topography and
monitoring ground deformation with high spatial resolution (down to 1-meter) and
on frequent basis (e.g., 8-day). Raw InSAR measurements consist of phase differ-
ences between two SAR images and are the combination of phases due to possible
ground deformation, land topography, atmospheric delay, earth curvature and in-
strumental noise. Among these phase components the atmospheric delay that is
often referred to as an atmospheric phase screen (APS) poses a great challenge on
InSAR for surface deformation monitoring.

1.1 Background

For radio signals, the atmospheric delay is introduced by the earth’s troposphere and
ionosphere during the signal propagation. Although the observed atmospheric delay
in InSAR is the sum of the delays caused by these two mediums, the challenge for
ground deformation monitoring mainly comes from the tropospheric delay that has a
high spatio-temporal variability. The high variability is due to a so-called turbulent
mixing process (Stull, 1995) in which water vapor in the lower troposphere plays an
important role. Without knowing the fine scale spatial distribution of water vapor,
the delay can be easily interpreted as a ground deformation that is measured as a
distance change from satellite to ground surface between two satellite acquisitions.
For general concepts of radar, SAR and InSAR, readers are referred to Massonnet
(1997), Bamler and Hartl (1998), Hanssen (2001) and Rosen et al. (2000).

The earliest report of the atmospheric delay (APS) in InNSAR measurements can be
traced back to the mid-nineties, see Goldstein (1995), Massonnet and Feigl (1995),
Tarayre and Massonnet (1996), Hanssen and Feijt (1996) and Zebker et al. (1997).
APS not only affects ground deformation monitoring but also contaminates land
topography mapping in case of repeat-pass InSAR, see Dupont et al. (1997), Hanssen
(1998), Hanssen and Feijt (1996), Mattar et al. (1999), Hanssen and Klees (1997)
and Hanssen and Klees (1999). Moreover, the stochastic analyses made by Goldstein
(1995), Williams et al. (1998), Hanssen (1998), Hanssen (2001), Di-Bisceglie et al.
(2001), Emardson et al. (2003), Yun et al. (2010), Knospe and Jonsson (2010) and
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Liu et al. (2011) reveal that APS has a power-law behavior as predicted by the
Kolmogorov turbulence theory (Kolmogorov, 1941). All the studies have reached a
consensus upon the idea that APS in InSAR measurements cannot be characterized
as a single isolated anomaly. It affects the total interferogram and the disturbance
increases with the increase of spatial distance (Goldstein, 1995; Ferretti et al., 1999;
Hanssen, 2001).

On the other hand, we should not limit our focus only on the negative side of APS.
One man’s trash could be another man’s treasure, which is particularly true for APS
if water vapor distribution rather than ground deformation is the signal of interest.
So far no earth observation techniques other than InSAR can provide water vapor
mapping at fine scales (~ 100m), globally under all weather conditions (Hanssen
et al., 1999). The spatial distribution of water vapor is strongly correlated with the
turbulent mixing process occurring in the lower part of troposphere and affecting
our day-to-day weather (Stull, 1995). Therefore, APS opens a door to InSAR for
meteorological applications, i.e., INSAR meteorology.

We will discuss the possibilities of mitigating APS for ground deformation modeling
in section 1.1.1 and InSAR meteorology in section 1.1.2.

1.1.1 Mitigation of APS for ground deformation modeling

In general, the approaches for the mitigation of APS can be divided into two cate-
gories: 1. using ancillary delay measurements, 2. internal adjustment using InSAR
time series.

Mitigation based on ancillary measurements

Attempts to mitigate APS by using ancillary measurements of delay from meteo-
rological observations, optical remote sensing, GPS networks and their integrations
have been reported by Delacourt et al. (1998), Hanssen et al. (1998), Williams et al.
(1998), Beauducel et al. (2000), van der Hoeven et al. (2002), Li et al. (2004), Li et al.
(2005), Onn and Zebker (2006), Li et al. (2006), Li et al. (2006) and Li et al. (2009).
The advantages of these methods are their straightforwardness, no need for a-priori
knowledge of surface deformation and assumptions regarding temporal correlation of
APS. However, these methods are usually hampered by practical limitations such as
data spatial coverage, temporal coincidence, full vertical profile (related with strati-
fication), spatial resolution and clouds (weather conditions). Therefore, we will not
investigate these methods in this thesis.

Following recent advances in numerical weather modeling, delay simulated by nu-
merical weather models is now regarded as the most promising ancillary data for
APS mitigation, see Wadge et al. (2002), Webley et al. (2002), Foster et al. (2006),
Puyssegur et al. (2007), Jolivet et al. (2011), Liu et al. (2009), Rommen et al. (2009)
Hobiger et al. (2010), Gong et al. (2010), Jolivet et al. (2011), Nico et al. (2010), Liu
et al. (2011), Gong et al. (2011) and Cimini et al. (2012). The distinctive features of
the simulated delay include its availability under all weather conditions, relatively
high spatial resolution (~ 1km) and perfect temporal coincidence with SAR acqui-
sitions. Nevertheless, the key research question for the simulated delay is its success
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rate and reliability.
Mitigation based on InSAR time series

The methods that utilize the temporal and spatial characteristics of APS and at-
tempt to separate it from gradual and low-rate ground deformation have been re-
ported by Ferretti et al. (2001), Shimada et al. (2001), Crosetto et al. (2002), Emard-
son et al. (2003), Li et al. (2009), Heleno et al. (2010) and Liu et al. (2011). It is
a commonly accepted assumption that two APS fields become temporally uncorre-
lated if the time interval between them is larger than 1-day (Ferretti et al., 2000;
Hanssen, 2001). Under such an assumption APS can be treated as a high frequency
noise in time and eliminated by a temporal low-pass filtering (Ferretti et al., 2000;
Berardino et al., 2002) or averaging a larger number of interferograms (Sandwell
and Price, 1998). Obviously, these approaches do not suffer the practical limita-
tions as mentioned for the ancillary data based approaches. They are however only
applicable when there are sufficient number of images available. With the advance
in space SAR missions such as ERS-1/2; Envisat, Radarsat-2, TerraSAR-X and
Cosmo-SkyMed the global achieve of SAR images has been enriched tremendously
and the time cost for building up a time series of SAR images has been significantly
reduced. As a result, the internal adjustment approaches are widely used nowadays
in mitigating APS. However, the performance of the methods has not yet been fully
understood and assessed.

In this thesis we will focus on improving the accuracy and reliability of separating
APS and ground deformation under PSInSAR framework (Ferretti et al., 2000) which
is the most widely used method in InSAR time series analysis. Given a good spatial
density of coherent targets and a short satellite repeat orbit the filtering method
used in the standard PSInSAR (see Ferretti et al. (2000)) provides a simple and fast
means to separate APS from temporally correlated deformation signal. However, the
separation is usually not optimal and can be erroneous when there are acquisition
gaps in the time series or for acquisitions taken under extreme weather conditions
such as thunderstorms. This is because the approach weights APS equally for all
acquisitions and remove it by a window-based (e.g., triangle, Gaussian) temporal
low-pass filter. The filter is not adaptive and its parameters (e.g., temporal corre-
lation length) are up to the users to specify. A good filter, however, should weight
APS per acquisition differently according to its significance and be self-adjustable
based on the input data to optimize its parameters towards an optimal filtering.

1.1.2 InSAR meteorology

The potential of using InSAR for meteorological studies, e.g., fine scale water vapor
mapping, has been investigated by Hanssen et al. (1999), Hanssen et al. (2000),
Hanssen et al. (2001) and Liu et al. (2009). The water vapor maps may be incorpo-
rated into advanced weather and climate analyses via weather and climate models to
improve the quality of weather and climate forecasts. However, APS is so far widely
regarded as a by-product of InSAR analysis and its value for the meteorology ap-
plications is underestimated. This is mainly because InSAR is only sensitive to the
spatio-temporal variation of delay instead of absolute delay, i.e., a so-called acqui-
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sition ambiguity (Hanssen and Kampes, 2004). The first step toward the potential
meteorology applications is to retrieve the spatial variation of APS per acquisition
from the measured spatio-temporal variation. The challenge mainly comes from the
acquisition ambiguity as well as the rapid interferometric phase decorrelation (Zebker
and Villasenor, 1992) over non-urban areas. In this thesis, we will try to find a way
to resolve the acquisition ambiguity and overcome the phase decorrelation problem
without compromising the spatial resolution of water vapor distribution.

1.2 Research objectives and thesis outline

Given the above discussion the research objectives of this thesis can be summarized
as follows:

e Investigate the feasibility of using high resolution numerical weather predic-
tions (NWP) from numerical weather models (NWM) for mitigating APS in
space-borne SAR Interferometry.

e Develop an algorithm based on geodetic methodologies to improve the precision
and reliability of separating APS and ground deformation using InSAR time
series.

e Develop an algorithm to map high spatial resolution water vapor lateral vari-
ation at SAR acquisitions.

In chapter 2 we review the cause of the tropospheric delay for microwave signals.
The spatio-temporal characteristics of APS are discussed. In chapter 3 we use the
WRF (Weather Research and Forecasting) (Wang et al., 2009) model to predict
tropospheric delay during SAR acquisitions and compare the model predictions at
1km spatial resolution with atmosphere-only interferograms (<70 days baseline)
formed from SAR images acquired by ENVISAT in descending orbit. We choose four
regions with different climatic conditions for case studies. Cloud-free MERIS water
vapor measurements from ENVISAT are used for cross validation and comparison
when available.

In chapter 4 we develop an algorithm based on least-squares collocation (LSC)
and variance-covariance components estimation to achieve an optimal separation
of ground deformation and APS. The advantages of the developed algorithm are
highlighted. Moreover, the original spatio-temporal filtering method proposed by
Ferretti et al. (2000) is re-formalized from a weighted least-squares point of view
and its characteristics are discussed. Chapter 5 is dedicated to assessing the devel-
oped algorithm based on simulated time series in which the ground truth of each
signal component (e.g., ground deformation, APS, noise, etc.) is perfectly known.
In this chapter the simulation strategies for ground deformation, APS, satellite orbit
errors and phase noise are given followed by the result of evaluation for each signal
estimate. The sensitivity of the algorithm to the functional and stochastic models
chosen for ground deformation modeling as well as the image acquisition rate (min-
imum satellite repeat-orbit) is also assessed in this chapter. Finally, in chapter 6
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the algorithm is evaluated using real InSAR time series from four regions in which
the climate varies from tropical to semiarid. For assessing the APS estimate from
the developed algorithm we compare them to cloud-free MERIS measurements (if
available), atmosphere-only interferograms (short baselines) and the APS estimates
from the standard filtering method.

In chapter 7 we develop an algorithm to retrieve spatial variation of APS for each
single SAR acquisition. The algorithm is based on the so-called free network ad-
justment approach (Teunissen, 2000a). The network is formed by small baseline
interferograms and designed to be redundant for least-squares adjustment. The ap-
proach is applied to ASAR interferograms over Southwest Australia in which phase
coherence is well reserved for a relatively long period (~ 180 days). The good phase
coherence allows to retrieve APS per acquisition at 1km resolution.

Finally, conclusions and recommendations are given in chapter 8.
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Chapter 2

Tropospheric delay and its effects on InSAR
measurements

Spatio-temporal variation in atmospheric refractivity can significantly influence wave
propagation in repeat-pass InSAR observations, leading to errors known as atmo-
spheric phase screen (APS) in derived products such as digital elevation models
(DEMS) or deformation maps. This chapter provides a review of tropospheric delay
mechanisms for microwave signals and the delay spatio-temporal characteristics in
InSAR observations (i.e., interferograms). In section 2.1 the causes of the delay
is reviewed and its numerical evaluation is given based on atmospheric refractivity.
Section 2.2 elaborates on the spatio-temporal characteristics of the delay observed in
InSAR. Based on the characteristics modeling of the delay is given in section 2.3. To
read this chapter as well as the rest thesis basic concepts of SAR and conventional
SAR interferometric processing are indispensable. Readers who are not familiar with
those concepts are recommended to get acquainted with the technical basics from
for example Massonnet (1997), Bamler and Hartl (1998) and Hanssen et al. (2000).

2.1 Signal propagation delay and refractivity

The propagation delay of a radio signal caused by the Earth’s atmosphere depends
on the refractivity along the path traveled by the signal. If we denote the electro-
magnetic (or optical) distance between the source and receiver by S and the geo-
metric distance by L, the excess path length D reads (Hall et al., 1996):

D:S—L:/S(n(s)—1)ds+(/sds—/ldl), (2.1.1)

delay bending

where s and [ are the electro-magnetic path and geometric path respectively, n is
the dimensionless refraction index which is the ratio between the speed of light in
vacuum and the actual signal propagation speed through the atmosphere. The first
integral in Eq. (2.1.1) accounts for the excess path length caused by the propagation
delay, whereas the second term is the excess path length caused by ray bending. The
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bending effect is negligible (<1 mm) for measurements made with elevation angles
(6e) larger than 15° (Mendes, 1999) which corresponds to an incidence angle (6;) of
75° for radar. Therefore the bending effect can be safely ignored for all space-borne
SAR systems. Since the value of n is nearly equal to one for the atmosphere, the
refractivity N = (n — 1) x 10° is often used instead of n. The refractivity N of the
troposphere can be expressed as (Davis et al., 1985):

P e e
N = ki — + (kb= + ks —) + k4 Weioud, 2.1.2
1T+(2T+ 3T2)+4 loud ( )
v M droplet
hydro wet

where P is total air pressure (hPa), T is air temperature (K), e is water vapor par-
tial pressure (hPa) and Wejouq denotes the cloud liquid water content (g/m3). The
first term on the right-hand side of Eq. (2.1.2) is often called hydrostatic refractiv-
ity (Nhydro) which results from the induced molecular polarizations of dry air and
water vapor (Davis et al., 1985). The second term (between brackets) is often re-
ferred to as wet refractivity (Nyet) and represents the effect of the permanent dipole
moment of the water vapor molecule (Thayer, 1974). The last term is due to liquid
water (droplets) within clouds. The constant coefficients k; = 71.6 KhPa™!, k} =
23.3KhPa~! and k3 = 3.75x 10° K?hPa~! are taken from Smith and Weintraub
(1953) while k4 = 1.45 from Solheim et al. (1997).

Using the refractivities defined above and assuming a homogeneous and isotropic
troposphere, the one-way slant range delay for radar in meters can be expressed as:

1 z z z
D= m (Dhydro + Dwet + Ddroplet)
107°

H H H
= N rod Nwed Nro ed )
cos@i(/h hyd Z+/h tz+/h dropletd?)

(2.1.3)

where H is the effective height of the troposphere and h is the elevation of the ground
surface. The factor 1079 is due to the conversion between refractivity index n and
refractivity N. The hydrostatic delay is of the order of a few meters (Bevis et al.,
1996) and the wet delay is usually not larger than 0.3 m (Elgered, 1982). The delay
caused by droplets depends on the cloud type and will be discussed in section 2.2.3.

2.2 Characteristics of delay in InNSAR

The delay of interest for InSAR is the so-called double difference (DD) delay caused
by the spatio-temporal variations of the atmosphere instead of the point-wise ab-
solute delay expressed by Eq. (2.1.3). The actual atmospheric delay observed by
InSAR reads:

spatial

—_—
AD}til,t}tz = (Dp — DQ)tl —(Dp — Dq)tzv (2.2.1)

spatio-temporal
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where p and ¢ denote two arbitrary pixels of an interferogram and ¢; and to denote
the SAR acquisition times. Obviously, the relative delay ADt1 2 makes InSAR blind
to point-wise absolute delay. Using Eq. (2.1.3) the DD delay can be decomposed
into:

AD;I,JZ = A-Dhydro + ADwet + ADcloud~ (222)

The impact of the components in Eq. (2.2.2) are assessed in the following.

2.2.1 Hydrostatic delay

Under the condition of hydrostatic equilibrium, the zenith hydrostatic delay in
Eq. (2.1.3) can be re-parameterized as a function of surface pressure P (Kleijer,
2004):

Di =10~ %—Pg, (2.2.3)
9m
where Rq = 287.053J K~'kg~! is the specific gas constant of dry air and gy, (m/s?)
is the local gravity at the center of the atmospheric column (Saastamoinen, 1972),
which is a function of latitude and surface elevation. Given the surface pressure
P; measured with an accuracy of 0.4hPa the hydrostatic delay can be estimated
with an accuracy of 1 mm (Bevis et al., 1996). For relatively flat regions, standard
observations of surface pressure within a typical interferogram area (100x100km?)
show a smooth behavior with variations typically below 1hPa, which is the result of
the large spatial extent of high and low pressure zones. Therefore, the hydrostatic
component in Eq. (2.2.2) usually manifests itself as a surface trend of maximally a
few millimeters over an entire interferogram (Hanssen, 2001).

2.2.2 Wet delay

Although the wet delay is usually much smaller in magnitude than the hydrostatic
delay (< 10%), its fluctuations in both space and time are significantly larger. The
fluctuation known as atmospheric turbulence is driven by the turbulent mixing of
heat and humidity within the atmospheric boundary layer (Stull, 1995). The life
time of a turbulence is proportional to its spatial extent: 7 ~ aD (Stull, 1995),
where a = 1s/m, and D and 7 denote the horizontal extent and life time of the
turbulence respectively. For instance, the lifetime of a turbulence with a horizontal
scale less than 1km is usually less than 15 minutes. The small spatial scale and
short life time of turbulence result in a great challenge on delay mitigation based
on external measurements. In general, turbulence is stronger during the summer
and during day-time than in winter and during night due to the annual and diurnal
variations of solar heating of ground surfaces (Stull, 1995).

Due to its large spatio-temporal variability, turbulence is often modeled stochasti-
cally rather than deterministically. We consider the total wet delay as the sum of a
mean delay and a delay fluctuation (turbulence) around the mean:
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Dwet = E{Dwet} + v = Dwet + v, (224)

where F denotes the ensemble average. Like the hydrostatic delay, the mean wet
delay Dyet can be modeled as a constant or a surface trend over a 100x100km?
area . The turbulent (stochastic) component v can be modeled stochastically using
a variogram <y, also known as structure function. Based on the Kolmogorov turbu-
lence theory (Kolmogorov, 1941) the variogram which describes a homogeneous and
isotropic turbulent medium has the form (Tatarski, 1961):

1(0) = B{o(+ A7) - o(7)?} .

= C(lar]), -
where 7 denotes a position vector in 3D space, A7 is a spatial displacement vector
and |Ar| denotes the length of the displacement, C' defines the power or strength
of the turbulence and the exponent v indicates the smoothness of the turbulence,
also called the correlation dimension (a higher correlation dimension indicates a
more homogenous medium (Handcock and Wallis, 1994; Hanssen, 2001)). A random
signal which has a structure function of the form Eq. (2.2.5) is said to have a power-
law behavior. Earlier observations made by e.g., very long baseline interferometry
(VLBI) (Treuhaft and Lanyi, 1987) and GPS (Williams et al., 1998) suggest a value
of % for v which is also the value predicted by Tatarski (1961) for the elementary
turbulence. Due to the low spatial resolution (>10km) of these measurements they
only reveal the turbulence at wavelengths much larger than the thickness of the
ABL (<2km), therefore the measured turbulence is effectively 2-dimensional (2D)
turbulence. By analyzing a number of tandem interferograms at fine resolution
(~100m) over the Netherlands which has a flat terrain, Hanssen (2001) reveals
that the turbulence-induced delay has a scale-variant power law behavior and a
transition region is observed at wavelengths of approximately 1.5km. Below this
wavelength the correlation dimension is increased by one to v = % which corresponds
to a 3D turbulence. Therefore, the complete form of the variogram describing the
atmospheric turbulence is:

2 2/3
(V) = { C4(|Ar|) if |Ar| > Hap, (2.2.6)

C2(|Ar[)®/3  if [Ar| < Hapr,
where Hapy, is the thickness of the ABL.

Given Eq. (2.2.1) and the decomposition in Eq. (2.2.4), the DD wet delay between
points p and ¢ taken at the same altitude can be written as:

— AT, 4 AvBhz (2.2.7)
—_——  N—

mean turbulence
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Table 2.1. Liquid water content (W) for different types of clouds (taken from Hanssen
(2001)). W is obtained from Hall et al. (1996) and Bean and Dutton (1968). The slant
delay in mm per km is evaluated using Eq. (2.2.10) with ;= 23°.

Type Altitude Liquid water content  Slant delay
[km] [g/m’] [mm,/km]
Ice clouds (e.g. Cirrus, Cirrostratus) > 6 <01 0.1
Stratiform clouds (e.g. Altostratus) 2-6 0.05-0.25 0.1-0.4
Cumulus (e.g. Cumulus humilis) <2 0.5 0.7
Comulus congestus and cumulonimbus <10 0.5-2.0 0.7-3.1

Therefore, the DD wet delay can be written as the sum of the difference between
the mean wet delays at ¢; and t5 and a random term which has a variogram of the
form given in Eq. (2.2.6). Here we assume that the two turbulent fields at ¢; and
to are uncorrelated. This decorrelation condition is satisfied when the time interval
between t; and s is sufficiently large, e.g., At12 > 1day (Stull, 1995; Hanssen, 2001).

2.2.3 Cloud droplets

The phase delay caused by clouds is due to the interaction of the radar waves with
the cloud droplets. The wave induces a dipole moment in the droplet which results
in a secondary wave front. After passing the droplet, the original undisturbed wave
front interferes with the secondary wave front and cause a phase shift (Hanssen et al.,
2000). The delay due to clouds is proportional to the liquid water content W (g/m3)
of the cloud (Solheim et al., 1999). Since air at a lower temperature can hold less
water vapor, low-altitude clouds such as Cumulus usually contain more liquid water
than clouds at high altitudes such as Cirrus. Table 2.1 lists the liquid water contents
for different types of clouds. Given the liquid water content W, the refractivity of
cloud droplets can be obtained using the Clausius-Mossotti equation (Solheim et al.,
1999):

3W(€0—1)
Neloud = ——————= ~ 1.45W 2.2.8
o = o (2.2.8)
and
clou P_ M
W = 100 Qetond(P = €)Ma (2.2.9)

RT ’

where g¢ is the permittivity of water, py, is the density (kg/m3) of liquid water,
R = 8.314JK'kg~! is the ideal gas constant, Mg = 28.966gmol ™! is the molar
mass of dry air and Qeoua (kg kg™!) is the cloud water mixing ratio. The relative
error caused by the approximation in Eq. (2.2.8) is below 1% (Solheim et al., 1999).
Therefore, the one-way slant delay (in millimeters) caused by the liquid water in
clouds can be estimated as:
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1.45

Deioud = 030, WL, (2.2.10)
where L is the thickness of the cloud in km. According to Eq. (2.2.10) and the
values of W listed in Tab. 2.1, significant delay up to 3cm can be caused by the
liquid water in vertical clouds, i.e., cumulonimbus (thunder clouds), which usually
have a relatively limited horizontal size (< 10km) and a large vertical extent and
liquid water content. These clouds are typically generated by thermal convection or
frontal lifting (Stull, 1995; Hanssen, 2001).

2.2.4 Height-dependent delay (vertical stratification)

Let us assume the troposphere to be composed of an infinite number of thin layers
in which the refractivity can be regarded constant (i.e., turbulence-free) at altitudes
h; (where 4 is an integer index). Given the refractivity N(h;) of each layer, the DD
zenith delay between points p and ¢, at altitudes h, and h, respectively, can be
written as:

p,q

ADD 2 (h) = / N"(h)dh — / N*2(h)dh
(2.2.11)
/ AN'™'2(h)dh,

where AN®*2(h) is the refractivity difference between times t; and ty at height
h € [hy, hy]. When h, # hy and AN't2 £ 0, Eq. (2.2.11) represents an effect
called delay vertical stratification which is a function of height and therefore strongly
correlated with land topography. For regions with significant topography, AD;{ {,th (h)
might be comparable to, or even larger than, the lateral delay gradients in the
interferogram whereas in flat areas the vertical stratification is “invisible”. One way
to evaluate AD!\*2(h) is to use radiosonde profiles to compute N*'(h) and N*2(h)
followed by integrating their difference with height using Eq. (2.2.11) (Hanssen,
2001). Alternatively, since the average profile of wet refractivity can be assumed to
have a linear or exponential form (Davis et al., 1991), some authors (e.g., Elosegui
et al. 1998; Delacourt et al. 1998; Onn and Zebker 2006) propose to use a linear or
exponential model to estimate the delay as a function of height from the observed
total delay.

2.3 Delay re-parameterization

One one hand, the DD delay in InSAR can be formulated as a combination of delays
due to different driving sources, i.e., dry air, water vapor, droplets (see Eq. (2.2.1)).
Under such formulation, the delay can be numerically calculated based on the stan-
dard meteorological quantities in Egs. (2.1.2) and (2.1.3). On the other hand, based
on the spatial delay characteristics discussed in section 2.2, the DD delay can be
re-parameterized as:
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AD = M(z,y, hym) + v(z,y) + V(h), (2.3.1)

where the terms on the right-hand side represent the spatial mean, the turbulence
and the height-dependent (vertical stratification) component of the DD delay, re-
spectively. M is equivalent to the mean (zenith) delay due to the air between the
mean topographic elevation of the area of interest, hy,, and the top of the tropo-
sphere. Due to its spatial smoothness, M can be often modeled as a constant or
a surface trend within the typical size of an interferogram. Meanwhile, V' accounts
for the vertical stratification effect which is of importance in mountainous regions.
It can be modeled as an analytical function (e.g., linear, exponential) of the surface
elevation which is available from a global digital elevation model (DEM) such as the
Shuttle Radar Topography Mission (SRTM). The middle term v represents the delay
fluctuation around the mean (turbulence) caused by the spatio-temporal variations
of water vapor, cloud droplets and possible precipitation among which water vapor
is the dominant contributor.

2.4 Summary

In this chapter we have discussed the cause of the signal propagation delay for mi-
crowaves. The one-way absolute delay can be evaluated numerically provided the air
temperature, air pressure, water vapor pressure and the signal propagation length.
The delay observed in interferograms is however a spatio-temporal variation of the
absolute delay and the largest contribution to the variation is caused by turbulent
mixing of water vapor within the atmospheric boundary layer. The turbulent mix-
ing is usually regarded as a stochastic process which can be modeled by its spatial
variogram. In addition, in mountainous regions the delay in interferograms is often
correlated with land topography and the phenomenon is known as vertical stratifi-
cation. Based on the spatio-temporal characteristics of delay in interferograms we
model it as a spatial trend due to dry air and mean water vapor content, a spatial
variation caused by turbulent mixing of water vapor and a height dependent term
which can be modeled as a function of height. Such modeling of delay forms the ba-
sis for comparing the delay observed by InSAR. and the delay predicted by weather
models which will be discussed in next chapter.
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Chapter 3

Delay mitigation using numerical weather
prediction (NWP)

Advance in numerical weather predictions, in terms of spatial resolution and success
rate as well as recent publications suggest the feasibility of correcting APS in InSAR
products using numerical weather model (NWM) outputs. In this chapter we use
the state-of-the-art Weather Research and Forecasting (WRF) model to evaluate its
usefulness for the pixel-wise correction of InSAR images as well as for a stochastic
approximation of the expected variability of APS. A short overview of the recent
advance in correcting APS using high resolution weather models is given in section
3.1. The generation of atmosphere-only interferograms, the WRF setup as well
as the calculation of tropospheric delays from WRF simulations are presented in
section 3.2. Section 3.3 gives details of repeat-pass InSAR processing to generate
atmosphere-only interferograms. In section 3.4 the case studies are described and the
results are analyzed. The tuning of model settings and its consequences are discussed
in section 3.5. Conclusions are drawn and an outlook is provided in section 3.6.

3.1 Introduction

Following recent advances in numerical weather modeling (Wadge et al., 2002; Foster
et al., 2006; Puyssegur et al., 2007), atmospheric models are regarded a promising
tool for mitigating the atmospheric effect haunting InSAR for decades. The main
advantages of these models are that they can be applied to any are of the globe,
are not hampered by cloudiness or the availability of daylight in contrast to many
external measurements, they have a relatively high spatial resolution and that they
can simulate the atmospheric conditions at the SAR acquisition time. Previous
studies conducted by e.g., Wadge et al. (2002) using NH3 (Non-Hydrostatic) model,
Foster et al. (2006) and Puyssegur et al. (2007) using MM5 (PSU/NCAR, Mesoscale
Model) have shown encouraging results. The authors found a strong correlation
between their model results and the APS observed in interferograms. However,
the regions chosen for demonstration exhibit strong elevation changes (i.e., mount
Etna, Hawaii and mount Lebanon). In these mountainous regions differences in
the vertical stratification of refractivity cause delay patterns in the interferograms
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Fig. 3.1. Regional land topography from SRTM, re-sampled to radar coordinates (i.e.,
azimuth and range). Strong elevation variations are found in (a) Hawaii and (b) Mexico
City whereas (c) the Netherlands and (d) Southwest Australia (sub-area) have almost
flat terrains. The colorbar unit is meters.

that show a strong correlation with the topography. In many application areas
of InSAR (e.g., subsidence, tectonics, infrastructure), the limiting factor is mainly
the lateral variability of the APS. To effectively mitigate lateral variation, however,
requires not only the modeling of the elevation-dependent delay but also of the lateral
delay variation driven by tropospheric turbulence in the atmospheric boundary layer
(ABL) with a typical depth of ~2km above the ground surface.

In this study, we use the WRF (Weather Research and Forecasting) (Wang et al.,
2009) model to predict tropospheric delay during SAR acquisitions and compare the
model predictions at 1km spatial resolution with atmosphere-only interferograms
(<70 days baseline) formed from SAR images acquired by ENVISAT in descending
orbit. We choose four regions with different climatic conditions for case studies (i.e.,
Hawaii, Mexico City, the Netherlands and Southwest Australia). Strong topography
is present in Hawaii and Mexico City, whereas the terrains over the other two regions
are relatively flat (see Fig. 3.1). Cloud-free MERIS water vapor measurements from
ENVISAT are used for cross validation and comparison when available.
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3.2 Delay simulation using numerical weather models

Numerical weather models, generally speaking, use mathematical and physical mod-
els of the atmosphere and oceans to predict the weather based on current and past
weather conditions. The first attempt can be traced back to the 1920s (Richardson,
2007) and it was not practically feasible until the advent of computer simulation in
the 1950s. Typical inputs for weather models representing the current and histor-
ical weather conditions are atmospheric data (e.g., air pressure, temperature, etc.)
collected from ground launched radiosondes and space-borne weather satellites. Fac-
tors affecting the performance of the weather models are the spatio-temporal density
and quality of the inputs as well as the complexities of the models themselves. The
outputs of weather models vary with applications and in our study the outputs are
air temperature, pressure, water vapor pressure and cloud liquid water content in a
three-dimension space from ground surface till the top of troposphere.

3.2.1 Model setup

In this study we use Weather Research and Forecasting (WRF) model (release ver-
sion 3.1.1) to simulate tropospheric delays during SAR acquisitions. WRF is a
state-of-the-art numerical weather forecasting model suitable for meso-scale appli-
cations (Wang et al., 2009; Skamarock et al., 2008). The WRF model allows the user
to choose from a number of different dynamics options and physics parameterization
schemes. It can be applied on the continental to local scales with resolutions from
hundreds of kilometers down to under a kilometer. The model has two “dynamics
cores”, a hydrostatic and a non-hydrostatic one. For the purposes of our study, the
non-hydrostatic core is chosen since it is capable of representing convection and the
associated water vapor processes with higher reliability.

The WRF model requires input data (initial and boundary conditions) from a global
model. A global model is also a numerical weather model which incorporates and
reanalyzes (this is also known as data assimilation) both ground based and remotely
sensed data before and after a weather event of interest to generate the input data.
The spatial density of the input data for the global model is usually sparse and
meant to provide boundary conditions for a local model. In this study we used the
NCEP (National Center for Environmental Prediction) Final Analyses (FNL) from
the Global Data Assimilation System (GDAS) which are available at 6-hour intervals
with a horizontal resolution of 1-degree (= 100km). The FNL is the starting point
for the WRF model to simulate atmospheric process at mesoscale below 100km.
The model is run with 28 vertical levels out of which about 10 are situated in the
lowest 2km of the atmosphere in order to better model the water vapor fluctuation.
A nested set-up (Wang et al., 2009) is used to ensure a smooth transition from the
coarse resolution of the FNL data to a fine, 1-km horizontal resolution. Four WRF
domains are nested into the global fields with successively increasing resolutions of
27km, 9km, 3km, and 1km. Each coarser domain serves as the parent domain for
the one step finer nested domain, providing it with initial and boundary conditions.

The model is started 7 to 10hours before the SAR acquisition time, in order to
allow for the fine scale features to appear and the processes related to water vapor
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Table 3.1. Physical parameterizations used with the WRF model.

Urban physics
PBL physics
Cumulus option (only

Physics Scheme
Microphysics Morrison 2-moment
Longwave radiation RRTMG
Shortwave radiation RRTMG
Surface-layer option MYNN

Land surface Noah

single-layer UCM
MYNN 34 level TKE
Kain-Fritsch (new Eta)

for domains 1 and 2)

to properly initialize (called spin-up time (Wang et al., 2009)). The properties of
the land surface (e.g., albedo, roughness length, topography height, vegetation type,
etc.) can substantially impact the heat, moisture and momentum fluxes in the lowest
layers of the atmosphere. Therefore, it is important to use as accurate land-use and
topography databases as possible. We choose the 20-category MODIS-based land-
cover classification of the International Geosphere-Biosphere Program modified for
use with WRF (Wang et al., 2009). This proves to be more accurate in most ar-
eas than the other option, the 24-category United States Geological Survey (USGS)
database. Both datasets are available at resolutions down to 30seconds (= 1km).
The USGS topography data which is readily available for use with WRF is replaced
by terrain elevation data from the Shuttle Radar Topography Mission (SRTM). In
contrary to the USGS topography data which is available at a maximum resolution
of 30seconds, the SRTM data has a 3-second (about 90m) resolution. As men-
tioned before, WRF comes with a large number of physics parameterizations. The
physics settings selected for the simulations discussed in this paper are summarized
in Tab. 3.1.

3.2.2 Delay computation

Given the model output variables: air temperature T' (K), total air pressure P (hPa),
water vapor partial pressure e (hPa), cloud liquid water content W (g/m3) and cloud
water mixing ratio Qcoud (kg kg™1) for each model grid box, the refractivity N can
be determined using Eqs. (2.1.2) and (2.2.9). Due to the spatial heterogeneity of
Nyet and Nejoug we do not use Eq. (2.1.3) in which the zenith delay is computed first
followed by mapping to the radar line-of-sight. Instead, we integrate the computed
N along the exact propagation path of the radar wave determined by the SAR orbit
geometry. The temporal differential delay is computed as:

ADgG = [ Neai— [ N (3.21)

where L denotes the propagation path of the radar wave. Since the delay observed
by InSAR is a double-difference delay, InSAR is insensitive to the image-wide delay
bias. To eliminate the bias between NWP and InSAR we apply the same de-trending
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procedure to ADlt\}\’,f,zp as we do for InSAR (see section 3.3). This de-trended delay
can be directly compared to the InSAR delay given by Eq. (3.3.4).

3.3 Repeat-pass InNSAR processing

To exclude possible low-rate land deformation and to suppress phase noise due to
temporal and geometric decorrelation (Zebker and Villasenor, 1992), all interfero-
grams formed in this study have short temporal baselines (< 70 days) and small per-
pendicular baselines (<300m). Hence, the dominant signal in the interferograms
should be the result of atmospheric disturbance during SAR acquisitions. Our In-
SAR processing starts with SLC (single look complex) images acquired by ENVISAT
in descending orbit. Interferograms are generated using the DORIS software (Kam-
pes, 1999) using ESA’s precise orbits. The topographic phase in the interferograms
is modeled and removed using 3-arc second SRTM data and phase unwrapping is
carried out using the SNAPHU software (Chen and Zebker, 2000). In order to speed
up the phase unwrapping and to suppress phase unwrapping errors and phase noise,
all interferograms are multi-looked (i.e., spatially average or low-pass filtered) from
the original ASAR pixel size of 20m in range and 4 m in azimuth to 100m both in
range and azimuth using a rectangular window (25 in azimuth and 5 in range) after
removing the topography phase. A larger multi-look window may cause unwrapping
errors in areas with strong topography since phase gradients between nearby pix-
els may be significant due to possible strong vertical delay stratification. After the
phase unwrapping we further multi-look the unwrapped interferograms to 1km by
1km which is the spatial resolution of the WRF model simulations. To avoid biases
which might be caused by the large spatial size of the multi-look window (from 100 m
to 1km) we use the coherence 7 (ranging from 0 to 1) between the complex signals
of master (sp,) and slave (sg) SLCs to guide the multi-looking:

1 m_ n
S 5y 3.3.1
’ D121 Wi ZZ’U) RLICGY) ( )

i=1 j=1
where £l g) > b
R 1 i’yivj>’7min
Wij = { 0 otherwise, (3.3.2)
E mes
y = {mss} (3.3.3)

VE{[sm|*FE{[ss]?}

and ¢ is the unwrapped phase while |y|min is a pre-defined coherence threshold (0.35
is used in this study).

Since inaccurate satellite orbits may result in phase trends in interferograms (Hanssen,
2001) which are usually not distinguishable from the phase trends caused by the at-
mosphere, we model the possible surface trends in the interferograms using a least-
squares fit based on the unwrapped phases using a linear trend model in range and
azimuth. The phase residue after de-trending has a zero mean and represents delay
fluctuations due to turbulent mixing for areas with flat terrain and it consists of tur-
bulent mixing and vertical stratification for mountainous areas. The corresponding
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Table 3.2. Mitigation results for Hawaii. Global RMS error (mm) of the original
interferograms, WRF predictions and mitigation residues are denoted as ojnsar, OWRF
and o respectively. 7y indicates the pixel-wise delay correlations between the original
interferograms and the WRF simulations. The track and frame for the SAR acquisitions
are 200 and 3213 respectively. The acquisition time is 20:23UTC.
Index Date OImSAR OWRF  Ores 7

1 20030617/20030721  11.5 10.2  14.9 0.07
20030721/20030825  12.3 9.1 12.6 0.34
20030929/20031103  19.4 23.8 114 0.88
20041227/20050130  12.0 6.8 13.3 0.37
20050130/20050307  12.8 6.8 14.1  0.06
20080331/20080505  11.2 10.5 13.9 0.18
20081027/20081201 8.2 5.9 9.1 0.20
20081201/20090105  16.9 14.2 105 0.79

0~ O U W

one-way double-difference slant range delay reads:

A
ADfrelgAR = _E(ﬁresv where E{¢res} =0 (334)

and A is the radar wavelength, ¢..s is the phase residue and the negative sign is due
to a phase increase corresponding to a range decrease (Rosen et al., 2000).

3.4 Evaluation of the delays simulated by WRF

In this section we first evaluate the performance of WREF for delay mitigation by
subtracting the predicted delay during SAR acquisitions from the ASAR interfer-
ograms. To make the evaluation globally representative, four climatic regions are
chosen: Hawaii (maritime and tropical), Mexico City (continental and tropical),
the Netherlands (marine time and temperate) and Southwest Australia (continental
and semi-arid). Among these regions, the Netherlands and Southwest Australia have
flat terrains, whereas significant topography is present in the others. Fig. 3.1 shows
the ground elevation maps for these regions. The effectiveness of delay mitigation
is assessed by global (i.e., image-wide) delay root mean square (RMS) error and
pixel-wise delay correlation between the interferograms and the WRF predictions.
We expect a high delay correlation and a small delay RMS error after mitigation if
WRF performs well. For the mountainous regions we separate the total observed
delay into a part due to turbulent mixing (lateral variation) and a delay component
which is strongly correlated with land topography (vertical stratification). In sec-
tion 3.4.2 we further evaluate the statistics of the WRF simulations using variograms
which reveal the turbulence strength turbulence at different spatial scales.
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Fig. 3.2. Global delay RMS error in millimeters for (a) Hawaii, (b) Mexico City, (c) the
Netherlands, (d) Southwest Australia. The RMS errors of the original interferograms,
WREF predictions and residues after mitigation are shown as blue, green and red bars,
respectively.

3.4.1 Pixel-wise comparison
Island of Hawaii

The climate of Hawaii is dominated by a moist and heterogeneous tropical atmo-
sphere. Its terrain height ranges from sea level to more than 4 km at the summits of
the Mauna Loa and Mauna Kea volcanoes, see Fig. 3.1a. We correct 8 interferograms
with 35-day temporal baselines using WRF model results. The overall RMS errors
are displayed in Fig. 3.2a and quantified in Tab. 3.2. After correction, interferograms
3 and 8 (see Tab. 3.2) show reduced delay RMS errors of 11 from 19 mm and 10 from
17mm respectively, which corresponds to about 40% reduction in the delay RMS
error. The delay correlations between InNSAR and WRF are 0.9 and 0.8 respectively
for these two cases. In the other 6 cases, however, deterioration is observed rather
than mitigation. The mean delay RMS error for these cases increases from 11 to
13mm after correction and the pixel-wise delay correlations do not exceed 0.4.

The considerable delay reductions in interferograms 3 and 8 are largely due to the
removal of delays which are strongly correlated with height. This can be visualized
by plotting the delay against the local DEM as shown in Fig. 3.3. Strong height-
dependent delays can be observed both in InSAR and WRF for these two cases. To
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Fig. 3.3. Delay (millimeters) with respect to the local DEM (meters) for Hawaii. (a)
and (c) are delays (denoted by crosses) obtained from the original interferograms 3 and
8 in Tab. 3.2 respectively. (b) and (d) are delays obtained from the corresponding WRF
simulations. The full altitude range is divided into 20 bins and in each of the bins a
mean delay is calculated (marked by a red dot). The red line is the least-squares fit to
the mean delay.

model the delays we equally divide the full height range (i.e., 0 to 4km) into 20 bins
and calculate the mean delay (red dots in Fig. 3.3) of the group of pixels within
each bin followed by fitting the mean delays along height using a linear trend model
(red lines in Fig. 3.3). After the trend is determined, the delay caused by turbulent
mixing is isolated by taking the difference between the original delay and the modeled
height-dependent delay. By subtracting the modeled height-dependent delays only,
the delay RMSs of the original interferograms 3 and 8 reduce to 12mm and 13 mm
respectively. As a demonstration, Fig. 3.4 shows the delay maps of the total delay,
the modeled height-dependent delay and the delay caused by turbulent mixing in
the original interferogram and in the WRF simulation, respectively and the residue
(difference) for interferogram 3. As can be seen from the figure, the height-dependent
delay is almost completely removed after mitigation but the turbulent mixing part
largely remains. We calculate the correlation between InSAR and WRF for the
delays due to turbulent mixing which reveals that in both cases (interferograms 3
and 8) they decrease to 0.5. The decrease of correlation implies that the height-
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Fig. 3.4. Delay decompositions for case 3 of Hawaii (see Tab. 3.2). The first column
(a,d,g) represents (top-to-bottom) the total delay obtained from the interferogram (100
by 100km), the WRF simulations and their difference respectively. The second col-
umn (b,e,h) represents (top-to-bottom) the modeled height-dependent delays from the
interferogram, the WRF simulations and their difference respectively. The last column
(c,f,i) represents (top-to-bottom) the modeled turbulent mixings from the interferogram,
the WRF simulations and their difference respectively. The colorbar unit is millimeters.
Similar results from MMS5 for this case can be found in Fig. 2 of Foster et al. (2006)

dependent delays present in the interferograms are better modeled by WRF than
the delays caused by turbulent mixing. In the other 6 cases neither InSAR nor
WRF show noticeable height-dependent delays thus these cases are dominated by
turbulent mixing. Therefore, for this region WRF is only successful in correcting
the height-dependent delays which exhibit much less spatio-temporal variations than
the delays driven by turbulent mixing.

Mezico City

The region of Mexico City has a subtropical climate which is the result of the in-
teraction between tropical air masses from the south and cold northerly fronts. The
urban area of the city with a mean elevation of 2200 m is surrounded by mountains
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Table 3.3. Mitigation results for Mexico City (see the caption of Tab. 3.2 for the
meanings of the symbols). The track and frame for the SAR acquisitions are 255 and
3216 respectively. The acquisition time is 16:36 UTC.
Index Date OImSAR OWRF  Ores 7

1 20031107/20031212 5.8 4.9 5.8 043
20031212/20040220 7.1 4.4 6.9 0.38
20041126/20041231 7.6 7.6 4.6 0.82
20041231/20050204 11.7 9.5 59 0.86
20041231/20050311 8.0 7.4 94 0.26
20050311/20050415  11.2 9.0 12.0 0.31

S U W N

with elevations up to 5000 m in the east and the southwest, see Fig. 3.1b. The low-
est area is located in the south where the elevation decreases rapidly from 2000 to
1300m. High-rate (~1cm/month) land subsidence in the urban area due to exten-
sive ground water withdrawal has been observed in a number of interferograms. To
avoid the mixing of the atmospheric signal with land deformation, we mask out the
subsiding region from all the interferograms. Moreover, coherence loss in non-urban
areas of the region is significant and results in noisy interferograms during seasons
other than winter. To avoid this, we only use SAR images acquired during winter.
Note that air is normally less turbulent in winter than in warmer seasons (Stull,
1995).

We correct 6 interferograms using WRF model simulations. The overall RMS errors
are displayed in Fig. 3.2b and quantified in Tab. 3.3. Similarly to the Hawaii region,
only 2 out of 6 interferograms experience delay reduction after correction (see in-
terferograms 3 and 4 in Tab. 3.3) with delay RMS error reductions from 8 to 5 mm
and 12 to 6 mm respectively (i.e., ~40-50% reduction). The delay correlations be-
tween InSAR and WRF for these two cases are 0.8 and 0.9 respectively. The worst
case is interferogram 5 in which the delay RMS error is increased by 2mm after
correction. This case shows the lowest delay correlation as well (0.3). By plotting
the delay against the local DEM for this case we observe that WRF indicates a
significant height-dependent delay (Fig. 3.5b) which is, however, not present in the
corresponding interferogram (Fig. 3.5a). To find out which picture is the realistic
one, we carry out a cross-validation using two cloud-free water vapor measurements
by MERIS which were acquired simultaneously with the SAR images. In these data
water vapor is expressed in terms of integrated water vapor (IWV) along the zenith
with a reduced horizontal resolution of 1.2 km which is comparable to the resolution
of the WRF simulations (1km). The theoretical accuracy of the MERIS TWV over
land is 0.17 g/m? at full resolution (~300m) (Bennartz and Fischer, 2001), which
corresponds to 1 cm accuracy in range delay. The accuracy of the reduced resolution
product is expected to be substantially higher due to the spatial averaging applied
(ESA, 2006). To obtain delay from the IWV along slant range we apply the following
widely used approximation:
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Fig. 3.5. Delay with respect to the local DEM for the Mexico City area. (a) and (b) are
delays (denoted by crosses) obtained from interferogram 5 and the corresponding WRF
simulations respectively (see Tab. 3.3). WRF indicates a strong but non-existent height-
dependent delay (see Fig. 3.6). (c) and (d) are delays obtained from interferogram
3 and the corresponding WRF simulations respectively. (e) and (f) show the results
interferogram 4 and the corresponding WRF simulations respectively.

IWV,, —IWV,

ADslant ~ I cos O )
' i

(3.4.1)
where the indices m and s denote the master and slave acquisitions respectively, II
is a dimensionless factor with a typical value of 0.15 (Bevis et al., 1996). The delay
derived from MERIS is shown in Fig. 3.6b which confirms the InSAR observation
shown in Fig. 3.6a. Thus in this case WRF predicts a strong but non-existent

height-dependent delay which is largely responsible for the serious deterioration of
the original interferogram.

Similarly to the Hawaii cases, the considerable delay reductions in interferograms 3
and 4 are the result of the removal of the height-dependent delay. To illustrate this
we model the height-dependent delay and turbulent mixing in the same way as for
the Hawalii cases. The results are shown in Fig. 3.5(c-f). After removing the height-
dependent delays, the delay correlations between InSAR and WRF substantially
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Fig. 3.6. Validation of the WRF simulations for interferogram 5 of Mexico City. (a) delay
map from the original interferogram (100 by 100 km), (b) from the WRF simulation, (c)
from the MERIS acquisition taken simultaneously with the ASAR image. Cloud pixels in
the MERIS image are masked out using the cloud flag provided by ESA. The subsiding
urban area of Mexico City has been masked out manually.

decrease to 0.4 and 0.3 respectively. As a demonstration, we plot the total delay,
the modeled height-dependent delay and the delay caused by turbulent mixing for
interferogram 3 in Fig. 3.7. The delay correlated with land topography is almost
perfectly represented by the WRF results, whereas the turbulent mixing part is
poorly modeled and is much smoother than the real delay in the interferogram. In
the other three cases (interferograms 1, 2 and 6) neither InNSAR nor WRF show
noticeable height-dependent delay and the mean delay correlation between InSAR
and WRF is less than 0.4.

The results from this region are largely consistent with what we have found for
Hawaii. Both of them reveal that turbulent mixing is poorly modeled by WRF and
the considerable delay mitigations are achieved mainly due to the removal of the
height-dependent delay. However, interferogram 5 from this region further warns
us that the height-dependent delays modeled by WRF are not always reliable and
subtracting them from the interferograms without caution may result in misinter-
pretations of geophysical phenomena such as co-/post-/or inter-eruptive activities.

The Netherlands

The Netherlands have a maritime climate and flat terrain. Clouds appear virtually
every day and rainfall occurs throughout the year. Land deformation rates are less
than 1 mm/year for most land surfaces within the region. Since vegetation causes
significant temporal decorrelation for C-band interferometry even within 35 days,
we only use ASAR images acquired during winter when the land surface is relatively
barren. The chosen SAR images come from 5 frames in 2 orbit tracks which cover
the whole country.

We correct 9 interferograms with 35-day temporal baselines. Due to the flat terrain,
the height-dependent delay is negligible in all interferograms and delay variations
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Fig. 3.7. Delay decompositions for case 3 (see Tab. 3.3) of Mexico City. The first column
(a,d,g) represents (top-to-bottom) the total delay obtained from the interferogram (100
by 100km), the WRF simulations and their difference respectively. The second (b,e,h)
and the last columns (c,f,i) represent the modeled height-dependent delays and the
delays driven by turbulent mixing respectively.

are solely caused by turbulent mixing. The overall mitigation results are displayed
in Fig. 3.2c and quantified in Tab. 3.4. Seven out of nine cases show no considerable
delay reduction after mitigation. Only interferograms 1 and 9 show a global delay
RMS error reduction from 7 to 5mm and from 5 to 4 mm respectively (about 25%
reduction). Figure. 3.8 shows the delay maps obtained from InSAR and WRF as
well as their difference for these two cases. Although the spatial delay patterns in
the interferograms and the WRF simulations are similar at relatively large spatial
scales (i.e., along the diagonal from southwest to northeast and in the southeast
and northwest corners), the modeled lateral delay variations are much smoother
than the ones in the interferograms. This implies that the strength of turbulent
mixing is underestimated by WRF in these two cases. A possible reason for the
poor performance of WRF is a prediction timing error which may manifest itself
as a horizontal delay shift in space with respect to the real delay at the acquisition
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Table 3.4. Mitigation results for the Netherlands (see the caption of Tab. 3.2 for the
meanings of the symbols). The chosen acquisitions are from 5 frames (2533, 2576, 2542
2544 2550) and 2 tracks (380, 423) covering the whole of the Netherlands. The data
acquisition varies between 10:00 and 10:10UTC. The last 4 columns show the results
of a search for prediction timing errors. The maximum pixel-wise correlation between
InNSAR and WREF is searched for within £2 hours around the acquisition epoch. At,, and
At are the times in the modelled master and slave acquisition with respect to the SAR

acquisition epoch. o™ is the delay residue RMS error corresponding to Ymax-
Index Date OInSAR OWRF  Ores ~y Aty Aty Ymax  Oredt
12533 20041031,/20041205 6.9 4.0 54 061 -120 60 0.78 4.6
22533 20051120/20051225 5.3 1.7 5.8 -0.12 -90 120 0.23 5.3
32576 20041031/20041205 4.2 24 5.5 -0.35 0 -30 0.75 3.1
4276 20051120/20051224 4.4 21 47 01 30 120 0.53 4.1
52542 20041103/20041208 3.7 1.1 3.7 012 -120 -30 034 3.5
62542 20050112/20050216 4.0 2.0 3.7 0.36 30 -30 043 3.6
72554 20041103/20041208 3.4 09 34 012 90 120 0.35 3.2
82554 20050112/20050216 3.8 2.1 34 044 30 -60 055 34
92550 20041031,/20041205 5.0 2.8 3.8 066 -30 0 0.79 3.3

epoch. Depending on the local wind conditions, a large mass of water vapor can
be transported a substantial distance within a relatively short period. Therefore,
we do not only calculate the delay from the simulations at the acquisition epoch
but within 2hours before and after the epoch. The results are reported in Tab. 3.4
and suggest that there is probably a simulation timing error in the modeling of
the delays in interferogram 3. Without taking the timing error into account the
delay correlation between InSAR, and WRF is as low as -0.35 and the RMS error of
the delay residue after mitigation (6 mm) is even larger than the RMS error in the
original interferogram (4 mm). The maximum delay correlation (0.8) for this case is
found using the model results from 30 minutes before the slave acquisition epoch, see
Fig. 3.9. After correcting for the timing error, the RMS error of the delay residue
reduces to 3mm (~ 25% RMS error reduction). Nevertheless, even accounting for
the timing error WRF significantly underestimates the lateral delay variations. No
apparent timing error is found for the other eight cases. Since only two out of nine
cases show delay RMS error reductions (~ 25%), we come to the same conclusion as
for the mountainous regions, namely, that the WRF simulations, in general, are not
able to mitigate satisfactorily the delay due to turbulent mixing in interferograms.

Southwest Australia

The center of the region is located at -30°27'S 116°57'E, approximately 220km
away from the city Perth in southwest Australia. It has a semi-arid climate and the
terrain is nearly barren in all seasons. The average terrain height is approximately
300m above sea level and height differences are less than 200 m, see Fig. 3.1d. We
correct 6 interferograms with short temporal baselines to avoid possible local sur-
face deformation. The mitigation results are visualized in Fig. 3.2d and quantified
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Fig. 3.8. Delay mitigation results for interferograms 1 and 9 from the Netherlands, see
Tab. 3.4. The first row from left to right (a,b,c) represents delay maps (100 by 100 km)
obtained from interferogram 1, the corresponding WRF simulations and their difference
respectively. The second row (d,e,f) is the same but for interferogram 9. The water
bodies in the figures are masked out.

in Tab. 3.5. None of the interferograms show noticeable delay reduction after correc-
tion. The mean delay RMS error of the interferograms is increased by 1 mm from the
original 4 mm and the delay correlation between InSAR and WRF ranges from -0.2
(interferogram 6 shown in Fig. 3.10a) to 0.2 (interferogram 4 shown in Fig. 3.10d)
with an average value of 0.04. A search for possible simulation timing errors as done
for the Netherlands did not lead to improvements.

Due to the semi-arid climate there are 13 mostly cloud-free MERIS acquisitions
spanning 4 years over the region available. This provides us an opportunity to eval-
uate the absolute wet delays modeled by WRF during single acquisitions instead
of the double differential delays which only represent spatio-temporal delay varia-
tion. We compute the mean and the variability of the MERIS measurements and
of the WRF simulations along with their differences. The results are summarized
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Fig. 3.9. Visualization of the timing error found in the 3" Netherlands case (see
Tab. 3.4). Delay maps (100 by 100 km) obtained from (a) the original interferogram;
(b) the WRF simulations at the master and slave acquisition epochs; (c) the simulations
at the master acquisition epoch and 30 minutes (i.e., timing error) prior to the slave
acquisition epoch.

in Fig. 3.11. The mean and the RMS errors of the delays represent the mean water
vapor content and the strength of turbulent mixing respectively. The mean of the
difference indicates the mean content bias between WRF and MERIS and the RMS
error of the difference is a measure of the pixel-wise correspondence between the
modeled and measured turbulent mixings. The comparison reveals that (i) in terms
of the mean water vapor content (which ranges from 35mm under dry conditions
to 166 mm under wet conditions) WRF agrees reasonably well with MERIS albeit
WRF shows a slight overestimation (8 mm on average, corresponding to ~ 1.2kg/m?
IWV); (ii) WRF significantly underestimates the water vapor variability in all cases;
(iii) WRF does not simulate a realistic water vapor distribution as evidenced by the
large RMS errors of the differences. In summary, the comparison suggests that WRF

Table 3.5. Mitigation results for Southwest Australia (see the caption of Tab. 3.2 for
the meanings of the symbols). The track and frame for the SAR acquisitions are 203
and 4221 respectively. The acquisition time is 01:39 UTC. No evident timing error has

been found in the WRF simulations.
Index Date OInSAR OWRF  Ores v

1 20050621/20050726 1.9 0.8 1.9 0.16
20051004/20051108 4.3 3.1 5.1 0.10
20060919/20061024 3.2 1.9 4.0 -0.17
20070522/20070626 1.8 0.9 1.9 0.23
20070626,/20070731 5.4 3.6 6.2 0.09
20070731/20070904 5.7 4.4 7.8 -0.19
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Fig. 3.10. Delay mitigation for cases 4 and 6 from Southwest Australia, see Tab. 3.5.
The first row (a,b,c) from left to right represents the delay maps (100 by 100km)
obtained from interferogram 6, the corresponding WRF simulations and their difference
respectively. This is the worst case from the region. After mitigation the delay RMS
error is increased by 2mm. The second row (d,e,f) displays the same for interferogram
4. This is the best case from Southwest Australia in terms of delay correlation between
InNSAR and WREF albeit no delay reduction is achieved.

can predict the total water vapor content reasonably well, but it fails to simulate
the lateral water vapor distribution and its overall variability realistically.

3.4.2 Comparison in terms of turbulence statistics

The global model data (i.e., FNL) used to initialize the WRF simulations have a
coarse horizontal resolution of 1degree (= 100km). Water vapor fields are interpo-
lated to the higher-resolution (27, 9, 3 and 1km) WRF domains during the model
initialization step. As the simulation progresses, more details appear in the water
vapor field as the adjustment to the high-resolution orography and land-use takes
place and the physical processes develop in the model. The coarse initialization of
the water vapor fields together with the fact that the turbulent mixing of water
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Fig. 3.11. Wet delay comparison between MERIS and WRF. Thirteen cloud-free MERIS
water vapor measurements are compared to the corresponding WRF simulations. Blue,
red and green crosses denote the mean delays from MERIS, WRF and their difference
(residue) respectively. The error bars represent the delay RMS error around the mean
which indicates the strength of turbulent mixing. The mean delays of MERIS and
WRF agree reasonably well, ranging from 35 mm under dry condition to 166 mm in wet
weather with WRF slightly overestimating the mean. However, the turbulence strength
is underestimated by WRF in each case. Furthermore, the RMS errors of the residues
(green error bars) are comparable to or larger than the RMS errors of the original MERIS
measurements. This implies that the turbulent mixing modeled by WRF is unrealistic.

vapor is a chaotic process (Lorenz, 1963; Stull, 1995) are likely responsible for the
poor performance of WRF at predicting realistic turbulence at fine scales, which
may even lead to a deteriorated result after correction. Hence, it might not be
a reasonable approach to mitigate delay in interferograms using WRF in a deter-
ministic manner, i.e., to perform a pixel-wise correction. Note that independent
of possible realizations of turbulent mixing at an arbitrary location and time their
spatial statistics should obey a power law behavior according to the Kolmogorov
turbulence theory (Tatarski, 1961). This implies that the predicted delays should
have variograms of the form of Eq. (2.2.5) but with varying magnitudes due to dif-
ferent weather conditions (Hanssen, 2001). If NWMs would be able to predict the
power law variograms, even if they are not capable of simulating the actual water
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Fig. 3.12. Statistical comparison between WRF and InSAR. The delay variograms (log-
log) of the interferograms and WRF simulations are shown in blue and red respectively.
(a) Hawaii, (b) Mexico City, (c) the Netherlands, (d) Southwest Australia. WRF con-
siderably underestimates the turbulence strength at all spatial scales ranging from 1 to
50km. The dashed and dotted lines follow a 5/3 (3D isotropic turbulence) and a 2/3
(2D isotropic turbulence) slope for reference.

vapor distribution, such statistical information may still be very valuable to the
internal adjustment based approaches such as low-pass filtering used in persistent
scatterers InSAR (Ferretti et al., 2000) and the small baseline subset method (Be-
rardino et al., 2002) or interferogram stacking (Sandwell and Price, 1998; Hooper,
2006). In these methods, atmospheric delays during different SAR acquisitions are
currently equally weighted regardless of their varying strengths and are eliminated
as a high-frequency component using a low-pass filter. This encourages us to further
examine the capabilities of WRF and to compute the experimental variograms of
the interferograms and the WRF simulations, shown in Fig. 3.12 for each region.
For Hawaii and Mexico City the variograms are computed from the delays driven by
turbulent mixing only (see section 3.4.1). The statistical analysis reveals that WRF
significantly underestimates the turbulence strength (by approximately one order of
magnitude) at all spatial scales between 1 and 50 km (see Fig. 3.12) in all cases. The
underestimation results in rather smooth delay maps compared to InSAR or MERIS
as also seen before in section 3.4.1. Therefore the WRF simulations neither represent
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Fig. 3.13. Variograms computed from WRF model results before and after tuning.
(a) case 5 of Hawaii, (b) case 4 of Mexico City, (c) case 5 of the Netherlands (d)
case 5 of Southwest Australia. The variograms represented by the dashed lines are
computed from the simulations with more than 24 hours of spin-up time and 70 vertical
levels. The variograms shown as solid lines are computed from simulations with less
than 10 hours of spin-up time and 28 vertical levels. Blue, red and green variograms
are computed from the interferograms, the WRF model results and their differences
respectively. Possible height-dependent delays in the Hawaii and Mexico City cases were
removed before computing the variograms.

the turbulent mixing in a realistic manner deterministically nor statistically in any
of the cases. However, the variograms computed from the model results shown in
Fig. 3.12 do obey the power-law of turbulence, although they are all down-scaled.
In section 3.5 we tune a number of model parameters in an attempt to improve on
this the down-scaling effect.

3.5 Model tuning toward improving delay simulation

In an effort to improve on the APS mitigation results using WRF, we consulted
model developers as well as meteorologists from the model user community (Dudhia
and Ferretti, 2010). It was recommended to increase the model spin-up time (i.e.,
the time interval between the model initialization and the SAR acquisition epoch) to
allow atmospheric processes such as turbulent mixing at fine scales to fully develop.
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In addition, Foster et al. (2006) and Puyssegur et al. (2007) used more dense vertical
levels in their model simulations, for instance Puyssegur et al. (2007) uses 42 vertical
levels with 30 below sigma level 0.8 (approximately corresponding to 2km above
ground surface). Since the bulk of water vapor in the troposphere is concentrated
within the ABL which has a typical depth of 2km, these seems to be a reasonable
approach. Therefore, we re-do the model simulations with the following adjustments:
(i) a longer spin-up time, ranging from 26 to 30hours; (ii) increased number of
vertical levels with 35 out of 70levels below sigma level 0.8. However, the applied
adjustments did not lead to any considerable improvements, neither in terms of
pixel-wise delay correction nor turbulence statistics. For demonstration we choose
the cases where the turbulence strength is the most severely underestimated from
each of the four regions and plot their variograms in Fig. 3.13 using both the old
and new model results. Height-dependent delays are removed for the Hawaii and
Mexico City cases. Although the case from the Netherlands shows a slight increase in
turbulence strength after the model tuning, the turbulence strengths are still largely
underestimated (by approximately one order of magnitude) at all spatial scales.
The Mexico City case, however, shows a decrease of turbulence strength instead of
an increase. In the other two cases the turbulence strength stays more or less the
same. Furthermore, by comparing the variograms of the residues (green lines) to the
variograms of the original interferograms (blue lines) for each case in Fig. 3.13 we
find that even after the model tuning there is still no delay reduction at all spatial
scales. Therefore, we conclude that longer spin-up time and denser vertical levels
do not necessarily improve the quality of turbulent mixing predictions.

The finest resolution of the WREF simulations is 1km while InSAR has a 20-m
resolution (down-sampled by multilooking to 1km, see section 3.3). Meteorological
processes at scales smaller than 1km can not be modelled explicitely by WRF. The
effects of such phenomena are partially accounted for via parameterization. We
hypothesize that the underestimation of turbulent mixing stems from un-modelled
sub-scale processes. If this is the case than we would expect to observe a difference
in the strength of turbulent mixing between simulations at different resolutions.
To investigate this possibility, we compute the variograms of wet delays, shown
in Fig. 3.14, based on WRF simulations at 1, 3, 9 and 27km resolutions for the
Netherlands case of 31 October 2004. We use a 28-hour spin-up time and one-
way nesting in which communications between the coarser and finer domains are
strictly one way from coarse to fine (Wang et al., 2009). The variograms clearly
indicate that the turbulence strength simulated by WRF is independent of the chosen
resolutions, i.e., at overlapping wavelengths (spatial scales) their magnitudes are
identical. Therefore we conclude that the relatively low resolution of our simulations
is not responsible for the significant underestimation of turbulent mixing. Moreover,
this conclusion is also substantiated by the Kolmogorov turbulence theory which
proposes that turbulence at fine scales (i.e., 3-D turbulence) is excited by larger-
scale turbulences, i.e., the energy cascades downward from large-scale structures
towards small-scale structures (Kolmogorov, 1941).

Although the above discussion does not reveal the causes of the underestimation
of turbulence, it does provide us some hints. One potential cause could be a bias
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Fig. 3.14. Variograms of delay simulations with varying spatial resolutions (1, 3, 9
and 27 km). The simulations are carried out for the Netherlands on 31-Oct-2004 with
a 28-hour spin-up time. At overlapping wavelengths (spatial scales) the magnitudes of
the variograms with different spatial resolutions are virtually identical. Therefore, the
turbulence strength simulated by WRF is independent of the model resolution.

in the initial conditions (the FNL data). If the turbulence power were in the first
place underestimated in the initial conditions, following the power law behavior (see
section 2.2.2) the turbulences at fine scales would be inevitably underestimated as
well. The other possibility is related to the physical models available in WRF (a.o.,
boundary layer, surface and microphysics schemes, see section 3.2 and Tab. 3.1)
for high spatial resolution forecasting. It is possible that these models are not
sophisticated enough from the point of view of the application at hand.

3.6 Summary

We assess the feasibility of using WRF for mitigating the tropospheric delay in
C-band interferometry, dominated by the space-time fluctuations of water vapor.
We compare WRF simulation results to atmosphere-only interferograms from four
climatic regions. The comparison is carried out both deterministically by means of
pixel-wise corrections and stochastically using variograms. The pixel-wise correction
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leads to considerable reductions (~ 50%) of the delay RMS error and strong delay
correlations (up to 0.9) in cases when the delays in both the WRF model results and
the interferograms are strongly correlated with the land topography (i.e., Hawaii,
Mexico City). This delay reduction is achieved by removing the height-dependent
delay. When there is no noticeable air stratification (i.e., over flat areas), the WRF
simulations can hardly mitigate the delay in the interferograms and in many cases
they even lead to a deterioration of the original interferograms, i.e., they amplify
the atmospheric effect. This is the result of poor modeling of the delay lateral varia-
tions which are driven by turbulent mixing. Moreover, the height-dependent delays
simulated by WRF in mountainous regions are not always reliable. Consequently,
applying WRF for InSAR correction without caution in such areas may result in the
non-existent height-correlated delay being interpreted as ground deformation.

In a stochastic approach, variograms are computed from the original atmosphere-
only interferograms and the WRF simulation results following the removal of the
height-dependent delay component. We find that in each case WRF underestimates
the variability of turbulence by one order of magnitude at all spatial scales between
1 and 50 km. This underestimation prevents the use of WRF data as an indication
of the significance of water vapor f fluctuations during SAR acquisitions. Such a-
priori information could be used to aid internal adjustment based approaches such as
interferogram stacking, persistent scatterers and the small baseline subset method.

Attempts have been made to increase the turbulence strength in the WRF simu-
lations by increasing the model spin-up time and increasing the number of vertical
model levels especially in the ABL where the bulk of water vapor is located. How-
ever, we find no evidence suggesting that a longer spin-up time and denser model
vertical levels could substantially increase the strength of turbulence. In addition,
we also find that the underestimation of turbulence is not caused by the limited
spatial resolution of the model. The turbulence strengths predicted by WRF at dif-
ferent spatial resolutions are consistent in a stochastic sense, i.e., their variograms
are identical at common wavelengths. Furthermore, by comparing the WRF predic-
tions to cloud-free water vapor measurements acquired by MERIS over Southwest
Australia we find that WRF agrees with MERIS reasonably well in terms of the
mean water vapor content with a mean bias of 1.2kg/m?. However, regarding the
water vapor lateral variations there is little resemblance between WRF and MERIS
and in each case WRF significantly underestimates the real variations.

Although our study is based on the WRF model only, this model is expected to out-
perform older generation models such as NH3D and MM5 (Bowman, 2009). There-
fore, we come to the conclusion that delays simulated by numerical weather models
do not provide a reliable, practical means for mitigating the tropospheric delay in
SAR Interferometry. To become a globally applicable, operational tool for delay
mitigation, the reliability and the degree of spatial detail of water vapor simulations
need to be improved.
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Chapter 4

Least-squares collocation (LSC) method for
InNSAR time series

This chapter provides a mathematical framework of parameter estimation and pre-
diction for InSAR time series analysis based on the persistent scatterers SAR In-
terferometry (PSInSAR) technique. We begin this chapter by first reviewing the
original algorithm for separating ground deformation and atmospheric phase screen
(APS) proposed by Ferretti et al. (2000). The drawbacks of the algorithm are ad-
dressed. To overcome the drawbacks we propose a new method based on least-
squares collocation (LSC) (Moritz, 1962; Krarup, 1969) to separate complex ground
deformation and APS with the best precision. Features of the proposed method are
stochastic modeling of possible complex ground deformation, precision assessment
of the estimated deformation time series, spatio-temporal characterization of tro-
pospheric delay, including estimation of the (time-varying) variance of tropospheric
turbulence and its spatial variance-covariance function per SAR acquisition, and the
scaling effect of delay caused by strong topography variation in mountainous regions.
Last but not the least, we will show in this chapter that there is a strong connection
between the original algorithm and the new method. The former is actually a special
realization of the latter under certain circumstance.

4.1 The standard window-based filtering method

4.1.1 Method review

In the standard PSInSAR technique (Ferretti et al., 2000), the observation model for
the unwrapped differential interferometric phase in interferogram k (@’;:‘;nw) between
two pre-selected persistent scatterer (PS) p and ¢ can be written as (Colesanti et al.,
2003):
k, _ kit k,def k,aps k,nois

Dpg " =g Pplg Bl Pl (4.1.1)
where QS’;:;OPO is the phase due to inaccuracy of the reference DEM, (;S’;ﬁdo is the
phase due to ground deformation with respect to the master acquisition, ¢’;:ZPS is
the atmospheric phase screen (APS) and d)’;:;“’ise is decorrelation and thermal noise.

The unwrapped phase @’;:};nw is not directly observable but needs to be estimated
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(i.e., unwrapped) from its wrapped version ¢’;:;”ap. To make the phase unwrapping
possible (i.e., to ensure the phase gradient between adjacent acquisitions within
(-, 7], a functional model is assumed and used to model qi)’; f]‘)po and qi)k defo - Apy
deformation that is not modeled by the functional model is referred to as unmodeled
deformation. Here we denote it as sk defo During the phase unwrapping, ¢’]§7;°p° and
d)’;’gef‘) are estimated and then subtracted from the unwrapped phase, see Colesanti
et al. (2003); Kampes and Hanssen (2004); Kampes (2005).

The remaining phase components in the phase residue are the unmodeled ground

deformation sk*dEfo APS ¢’;:2ps and phase noise ¢’;:20is‘3. In the standard PSInSAR

k defo might have some degree of correlation in time (depending

it is assumed that Sy
on the source of bubbldence), whereas qﬁ’;:;ps and qﬁ’;:g‘)ise are not correlated in time.
Such an assumption is often valid in practice when the ground deformation has
a progressive and seasonal characteristic (Colesanti et al., 2003) and the temporal
baselines between the consecutive SAR images in the time series are larger than
1-day. The latter is because beyond the time interval APS is not correlated any
longer (see discussion in section 2.2.2). Based on such an assumption, the authors
propose to separate sk defo from qﬁ’;:;ps and qﬁ’;:g‘)ise by means of a temporal low-pass
filtering. A wealth of low—pass filters exists, but commonly used low-pass filters in
InSAR literatures are triangle (Ferretti et al., 2000) and Gaussian (Hooper et al.,
2007) filters.

Mathematically, the temporal low-pass filtering is a discrete convolution operation:

N—-1
§’;:36f0 = Z ’LU(k‘ - ,L) : 1Zr/es = ’LU(k‘ - ’L) ® ¢req
i=0
1Zreq — (Dz ,unw ¢z ,topo qs;;’c(i]efo E{(I)z unw 74, defo ¢z ,topo , (412)
where ® and E{.} denote a convolution and an expectation operator respectively.
§’;:gef° is the estimated unmodeled deformation of interferogram k (€ [0,N-1]), N is
the number of interferograms in the time series (also the number of slave images)
and qgj;flefo is the estimated deterministic deformation (e.g., linear deformation).
The expectation in Eq. (4.1.2) is an estimate of master APS. This is because APS
and phase noise are assumed not correlated in time and the master APS appears
as a constant in all interferograms. The master APS has to be subtracted before
filtering otherwise it will pass the filtering and bias the deformation estimation.
Furthermore, w are window coefficients which satisfy: Y w(i)=1, w(i) >0 and
w(i) =w(—1i). Here, we define the effective window length as the number of window
coefficients that are larger than zero. The effective window length can be expressed
in terms of the time interval between the first and last SAR acquisitions involved
in the filtering (i.e., with non-zero window coefficients) to estimate A’; gEfo Ferretti
et al. (2000) use one-year as the effective window length for all PS. From now on,
we call the effective window length simply window length.

Moreover, the convolution in Eq. (4.1.2) is equivalent to a matrix multiplication:

Adefo
—we, . (4.1.3)

qu
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adefo
Spaq

deformation between PS p and ¢ with respect to the master acquisition and <I>;,7q is
an Nx1 vector that contains the time series of ¢i._ in Eq. (4.1.2). W is an NxN

res

toeplitz matrix which is constructed by the window coefficients in Eq. (4.1.2).

where is an N x 1 vector which stores the time series of the estimated unmodeled

After subtracting the estimated unmodeled deformation from the phase residue,
Ferretti et al. (2000) use a spatial low-pass window (2x2km?) to separate APS ¢k-2ps
and phase noise ¢’;:3°is‘3 in space. It is noted later by Colesanti et al. (2003) that the
spatial filtering can be better performed by Kriging (Journel and Huijbregts, 1978;
Stein, 1999) that takes the spatial correlation of APS into account via its spatial
variogram. Given the spatial correlation, APS at non-PS pixels can be obtained by
interpolation such Kriging based interpolation.

4.1.2 Drawbacks of the window-based filtering method

Despite its simple form and easy implementation, the filtering method in section 4.1.1
does not necessarily give the optimal estimation of each phase component (i.e.,
deformation, DEM inaccuracy and APS). This is because of the following drawbacks
of the algorithm:

e The algorithm only models ground deformation deterministically via a func-
tional model but does not consider the complexity of deformation which might
not be sufficiently modeled using the deterministic approach. Any inconsis-
tency between the real deformation and the proposed functional model is not
taken into account and therefore can lead to significant estimation error in the
final deformation estimate.

To be able to carry out phase unwrapping, ground deformation at PS is modeled de-
terministically by a functional model (e.g., linear, quadratic or trigonometric polyno-
mials). The unmodeled deformation is simply treated as a temporal correlated phase
component and its stochastic characteristics (e.g., variance, correlation length, etc.)
in time are not exploited at all.

In addition, no criteria are provided for optimally choosing a window and a window
length for the low-pass temporal filtering. A proper window should reflect the shape
(or pattern) of the temporal correlation in the unmodeled deformation. The win-
dow length should reflect the degree of correlation in the unmodeled deformation.
Moreover, the optimal window length may vary from one PS to another. In other
words, some PS targets might experience relatively slow and smooth deformation,
whereas the other PS targets might undertake rapid and less smooth deformation.
Such information are usually not known a-priori and therefore the optimal window
length can hardly be obtained before analyzing the InNSAR time series.

Last but not the least, the variance of the unmodeled deformation might also change
from one PS to another and it is not known a-priori neither. The variance is an
important statistical factor that allows us to assess the accuracy of the estimated
ground deformation and APS.

e The algorithm ignores the difference in spatial variance of APS from one ac-
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quisition to another. Moreover, it also ignores the difference in magnitude of
APS disturbance from one spatial arc (i.e., line connecting two PS) to another
in an interferogram.

The ignorance of the time-varying APS spatial variance can be seen from Eq. 4.1.3.
It is equivalent to multiplying an identity matrix to <I>;,, 4 followed by W. Obviously,
the identity matrix gives the same weight to all acquisitions. This can cause a leakage
of APS to ground deformation for acquisitions taken under extreme weather such as
thunderstorms.

For spatial arcs in an interferogram, the APS disturbance increases with the lengths
of the arcs. This is because of the power-law behavior of APS discussed in section
2.2.2. Moreover, in mountainous regions, APS disturbance is further increased by
atmosphere vertical stratification in which atmospheric delay is strongly correlated
with land topography. Obviously, a good modeling of APS should take all these
spatial characteristics into account.

Because of the ignorances, the low-pass temporal filtering may fail when there are
acquisition gaps in the InSAR time series. In such a case, less elements from <I>;,7q
are involved in the convolution in Eq. (4.1.2) and make the APS suppression not
effective.

e No quality assessments for the estimated phase components.

Unlike conventional geodetic survey techniques such as leveling and GPS, there is not
yet an InSAR standard such as technical specifications that can be adapted by indus-
try for real-life operations. The standard PSInSAR algorithm for example does not
distinguish deterministic and stochastic deformation and ignores the spatio-temporal
variation of APS. Therefore, it is difficult to assess the qualities of its final estimates.

4.2 Least-squares collocation and variance covariance estimation

This section provides a review of least-squares collocation (LSC) and its applica-
tion to a trend-signal-noise model which is generally applicable to many estimation
and prediction problems in geosciences based on observations collected from field
or satellite measurements. An analogue to the trend-signal-noise model in geo-
statistics is known as universal Kriging when the trend is unknown or simple Krig-
ing when the trend is absent or set to zero, see Journel and Huijbregts (1978) and
Wackernagel (1995). In this paper, the trend-signal-noise model serves as a generic
mathematical frame for modeling the relation between the observed (or derived)
interferometric phase and the possible phase contributors, e.g., ground deformation,
APS, phase noise, etc. A successful application of LSC requires a good modeling
of the stochastic variates in the trend-signal-noise model. The estimation of these
stochastic variates needs to be performed separately. In the following we will com-
bine variance-covariance estimation (VCE) to estimate stochastic properties needed
for LSC. A desirable estimator should give an unbiased estimation of the stochastic



4.2 Least-squares collocation and variance covariance estimation 43

property, meanwhile the estimation should have a minimum estimation error (in the
least-squares sense) among all the unbiased estimators.

4.2.1 Least-squares collocation

In the trend-signal-noise model (also known as least-squares collocation with pa-
rameters), the observable vector y is written as a sum of three terms as:

y=t+s+n, (4.2.1)

where ¢ is a deterministic but unknown trend (in space or time), s is a zero-mean ran-
dom signal vector, and n is a zero-mean noise vector. The underlines in Eq. (4.2.1)
are used to distinguish stochastic variables from deterministic ones. The trend is
usually further parameterized by means of an unknown deterministic parameter vec-
tor x as t = Ax, where A is the so-called design matrix (Teunissen et al., 2005). The
signal and noise vector are assumed to be uncorrelated and their variance-covariance
matrices (VCM) are denoted as Qs and @, respectively. Thus, a complete version
of the trend-signal-noise model can be written as (Teunissen et al., 2005):

y=Ar+s+n and
ny = st + any (422)

where @y, is the VCM of y and is obtained by applying the error propagation
law (Teunissen et al., 2005) to Eq. (4.2.1).

From now on, we speak of estimation when an observable random vector such as
y is used to estimate the value of an unknown deterministic parameter such as x.
We speak of prediction in case that an observable random vector is used to predict
the outcome or realization of a random variable such as s. The best linear unbiased
estimation (BLUE) of z is given as (Teunissen et al., 2005):

&= (ATQ,}A) AT Q) y, (4.2.3)
where T denotes a matrix transpose, and the hat above x denotes an estimation of
z. Here, the unbiasedness is a statistical criterion that requires Z on average to be
equal to the true z, i.e., E{} = x (E{.} denotes the expectation operator). The
‘best’ means among all unbiased estimates of z, the estimate Z in Eq. (4.2.3) has the
minimum estimation uncertainty, i.e., E{||2 — z||*} < E{||2’ — ||*}, where 2’ is an
arbitrary unbiased estimate of z other than . Given the BLUE of z, we can obtain

the best linear unbiased prediction (BLUP) of s and n respectively as (Teunissen
et al., 2005) :

= QssQ,, (y — A) and

1S 1w
&>
1>

(4.2.4)

Again the unbiasedness of 3 means E{3} = s, and the ‘best’ implies that E{||5—s||?}
< BE{||8' — s/|?}, where §' is an arbitrary unbiased prediction of s other than 8. The
combination of BLUE in Eq. (4.2.3) and BLUP in Eq. (4.2.4) is called least-squares
collocation with parameters (Moritz, 1962; Krarup, 1969).



44 Chapter 4: Least-squares collocation (LSC) method for InSAR time series

A desirable feature of LSC is that it gives not only the best estimation and prediction
of the parameters of interest but also an accuracy assessment of these parameters
provided that Qss and Qn, (so Qyy) are known. The VCM of the BLUE of z is
given as (Teunissen et al., 2005):

Qaz = (ATQy, A" (4.2.5)

Using error propagation law the accuracy of the estimated trend ¢ = AZ can be
assessed by:
o= AQssAT. (4.2.6)

For the BLUP of s, let us denote the prediction error as ¢, = s — 5. Combing
Eqgs. (4.2.3) and (4.2.4) we have é5 = (s — QSSQTJ,}y) + QSSQ;;A@ Since the first
bracketed term is uncorrelated with y and & is function of y (i.e., correlated with y),
therefore the two bracketed terms are uncorrelated. Applying the error propagation
law to €; we obtain:

Qésés = st - stQy_less
+H(QssQyy A) Q22 (QesQpy AT (4.2.7)

where the first term is the original uncertainty of s itself, and it is reduced by the
second term given the observation y. The reduced uncertainty is then increased
by the third term which is due to the uncertainty of the estimate & (i.e., unknown
trend).

4.2.2 Variance-covariance estimation

To apply LSC to the trend-signal-noise model in Eq. (4.2.1) we need to know the
VCM of the signal (Qss) and noise (Qn,). However, they are rarely known a-
priori in practice and they could have varying forms from one realization to another
(i.e., non-stationary). For instance, interferograms with varying temporal baselines
usually suffer from different degrees of phase decorrelation (Zebker and Villasenor,
1992). If @Q,.,, is the VCM of the phase decorrelation in this case, it will vary corre-
sponding to the temporal baselines of the interferograms. A common way to model
a stochastic variable in geostatistics is to compute its variogram from its obser-
vations (i.e., realizations) (Journel and Huijbregts, 1978; Wackernagel, 1995). To
guarantee the variogram being negative definite, the computed variogram is usually
fitted by a negative definite variogram model, e.g., Gaussian or spherical (Journel
and Huijbregts, 1978). By determining the parameters, i.e., range and sill (Journel
and Huijbregts, 1978), of the model via (un)weighted least-squares (Cressie, 1985),
a positive definite and invertible VCM of the variable can be constructed, assuming
the variable is second-order stationary (Wackernagel, 1995). Then, the constructed
VCM can be used for LSC.

However, the above approach cannot be applied to the trend-signal-noise model if
the trend embedded in the observable vector y is not negligible. A dominant and
non-constant trend in y will bias the variogram estimation (Starks and Fang, 1982;
Myers, 1989). Therefore, in order to achieve an unbiased estimation of the vari-
ogram the trend in y has to be removed beforehand. However, the trend is unknown
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and has to be estimated from y. From Eq. (4.2.3) we see that to compute the
BLUE of the trend, we have to know the VCM of y. Therefore, we are faced with
a chicken-and-egg problem unfortunately. A trivial solution to this dilemma is to
estimate the trend using unweighted least-squares, i.e., replacing @, in Eq. (4.2.3)
by an identity matrix. After the trend being estimated in this way, it is subtracted
from y, then a variogram is computed from the residue. Unfortunately, it has been
pointed out by many authors that the computed variogram based on the residue
is biased (Matheron, 1973; Armstrong, 1984; Kitanidis, 1993). In addition, an iter-
ative least-squares method has been proposed by Neuman and Jacobson (1984) to
approximate the real variogram iteratively starting with the residue obtained from
the unweighted least-squares. However, it has been shown by Cressie (1987) that
the final approximation of the variogram is still biased no matter the number of
iterations.

Several methods (Kitanidis, 1983; Kitanidis and Lane, 1985; Stein, 1986; Kitani-
dis, 1987; Teunissen and Amiri-Simkooei, 2006) have been developed to model the
stochastic variable without explicitly estimating the trend. In these methods, a
linear transformation is applied to the observable vector y to filter out the trend as:

z=Ty=T(Az) +T¢e
satisfy: TA =0 (null matrix), (4.2.8)

where ¢ = s + n, T is a transformation matrix and has the form: T = (I —
A(AT A)=1AT), where [ is an identity matrix. The transformed version of Eq. (4.2.2)
is therefore:

z=Te and
Q.. =TQ,,T" =TQ..T". (4.2.9)

Note, the transformation matrix T" does not have a full rank. If x is an n-element
vector and there are m observations in y, then T is an mxm matrix with a rank
deficiency of n. Therefore, to make Q.. invertible we have to drop n linear dependent
rows from T'. After row dropping we have:

z=Ae and
Q.. = AQy AT = AQ.. A", (4.2.10)

where A is obtained by dropping n arbitrary rows of T

Now our goal is to estimate @y, from the transformed vector z. We may use a para-
metric approach to determine ()y,. That is, based on some prior knowledge about
s and n we assume Qss and Q),,, are realizations of some positive-definite variance-
covariance models. Based on such assumption, we simply need to estimate the model
parameters (usually only a few) to construct these matrices. We will elaborate on the
variance-covariance model selection in section 4.3.3. One advantage of the paramet-
ric approach is that the estimated Qss and Q.. are positive-definite and therefore
invertible. The estimators that we look for to estimate the model parameters should
be unbiased, meanwhile the estimation error should be the smallest among all the
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unbiased estimators. The restricted maximum likelihood estimator (RMLE) pro-
posed by Kitanidis (1983); Kitanidis and Lane (1985); Kitanidis (1987) is one of such
estimators. Other estimators, such as minimum-variance unbiased quadratic esti-
mator (MVUQE) and minimum-norm (least-squares) unbiased quadratic estimator
(MNUQE), of the same kind can be found in Stein (1986); Kitanidis (1987); Teu-
nissen and Amiri-Simkooei (2006). However, these estimators require the variance-
covariance model to be a linear function of the model parameters, e.g., a linear
combination of a set of unknown variance components (see Teunissen and Amiri-
Simkooei (2006)). Under the assumption that the joint probability density function
(PDF) of the transformed observable vector z in Eq. (4.2.8) has a Gaussian distri-
bution: P(z]0) = (27)~ 2 |Q.-| "2 exp(—327Q7} 2), the objective function of RMLE
to be minimized reads (Kitanidis and Lane, 1985):

L(z]0) = _ InF&lo)

N 1 1
=3 In*™ +§ In!@==! +§§TQZ_Z1§,
where 0 is a vector which contains the unknown parameters of the variance-covariance
models, N is the number of observations in y and |Q..| denotes the determinant of

(4.2.11)

Q... The § that minimizes the negative log likelihood function in Eq. (4.2.11) is
the best unbiased estimate of #. The minimization of Eq. (4.2.11) usually has to be
solved iteratively due to its nonlinearity. A commonly used iteration approach for
the minimization is the Gauss-Newton method (Kitanidis and Lane, 1985) because
of its computational efficiency. Note, an initial guess of @, (i.e., an initial guess of
0) is required in order to start the iteration. The accuracy of 6 can be assessed via
a so-called Fisher information matrix (Kitanidis, 1987):

1 _ _
(Foo)ij = §tr(szlQinyle), (4.2.12)
where tr stands for the trace of a matrix, ¢ and j are the ¢th and the jth element
0Q:-

of 0 respectively and @Q; denotes 50— Lhe inverse of Fpg is the Crawer-Rao lower
bound of the VCM (Vyy) of 0 (Kitanidis, 1983), i.e., Vgg > (Fpe) L.

4.3 Least-squares collocation applied to Persistent Scatterers INSAR

In this section we apply the LSC framework to PSInSAR, (Ferretti et al., 2000) to de-
tect and estimate possible ground deformation signal in the presence of atmospheric
phase screen (APS) as well as other signals due to, e.g., satellite orbit, phase decor-
relation, land topography, etc. We use the restricted maximum likelihood estimator
(RMLE) discussed in section 4.2.2 to estimate variance-covariance matrices (VCM)
of the signals. Given the estimated VCMs, we can obtain the optimal estimation
and prediction of the signals as well as their accuracies.

4.3.1 LSC applied to a time series per arc

Given N+1 SAR images, we form N interferograms with respect to the master im-
age. Moreover, from the N+1 SAR images, we select M+1 pixels which have a low
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Fig. 4.1. Pie chart of the phase components in the observed interferometric phase.

amplitude dispersion index (e.g., D4 < 0.25) (Ferretti et al., 2000) as persistent scat-
ter (PS) candidates (Kampes and Hanssen, 2004). After phase unwrapping (Kampes
and Hanssen, 2004), we obtain the unwrapped phases per arc formed by a PS p with
respect to the same reference PS r. Assuming the phase unwrapping is carried out
successfully, we model the unwrapped phase from one of the interferograms for this
arc as (see Fig. 4.1):

on)b: — defo+¢topo+ map§+ morb
__4s,aps __ gs,orb noise
g — groth 4 ghol (4.3.1)
where qSObq is the unwrapped interferometric phase serving as an observable, ¢>de:°

is the phase caused by ground deformation, QS;OPO is the phase due to unmodeled
topographic contribution, ¢7:%P* and ¢;2P* are the APS of the master and a slave

respectively, ¢, orb and d)s b are the results of orbit uncertainties of the master and

a slave respectlvely, Qﬁ‘me accounts for a phase noise due to phase decorrelation and
thermal noise. Here, we denote stochastic variables by underlines to distinguish them
from deterministic variables. The deformation phase ngdEfO is denoted as a stochastic
variable because we model the total deformation as the sum of a deterministic term
which can be modeled by a linear function (e.g., a linear, quadratic or periodic trend)
and a stochastic term which has a zero-mean and is second-order stationary in time,
ie. qﬁdEfO ggefo, det qﬁdEfO s, Moreover, ¢7:P* and ¢;°™ are also denoted as
determlmbtlc variables smce they appear in every interferogram as a constant.
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Given the modeling above (see Fig. 4.1), we can write the full phase time series of
this arc by the trend-signal-noise model in a matrix form as:

obs __
Qp,r - Aml’vr TSR

p,r?

(4.3.2)

where <I>°b5 is an N x1 vector which contains the unwrapped interferometric phases.
Az is the temporal trend component in which z,,, is an nx1 vector that contains
unknown deterministic parameters, including coefficients of the linear function used
to model the deterministic part of the deformation d)defo’ det " the unmodeled topo-
graphic contribution ngtOpO and a component { which is the sum of @7, #P*, gf;orb,
Le., & = Qph. """ + ¢phs °rb. The choice of the linear function to model ¢gfrf°’ det jg
arbltrary but usually depends on a priori assumption/knowledge about the defor-
mation in the area of interest. Assumptions that can be explicit or implicit are often
needed in parameter estimation because many inverse problems such as the one in
Eq. (4.3.1) are inherently under-determined and ill-posed. Matrix A is a design
matrix with N rows and n columns. For instance, if ¢gfrt’ defo can be modeled as a
linear function of time (i.e., a constant velocity), then A is an N x3 matrix which
has the form:

BL 1
rrsin 070 BT 1
B?
At | =L B2 1
e d : (4.3.3)
BY N
T sin 070 BT 1

where B, and Bt are the perpendicular and temporal baselines of an interferogram,
A is the radar wavelength, " is the range from the master sensor to the PS p
and 0" is the local incidence angle. The first column of A relates d)gff‘ with the
uncertainty in the DEM model used for removing the topographic phase contribution
(Rodriguez and Martin, 1992). The second column serves as the base function for
the linear deformation ¢gfrf°’ det and the third column relates the component ¢ with
the unwrapped phase. Finally, the factor —47” is a range to phase converter (Rosen

et al., 2000).

The signal component s, . is an N x1 vector which contains the stochastic part of

. . _defo, sto
the deformation, ie., s,, = gszr .

stationary in time and has a normal distribution with a zero mean. Moreover, the

noise component n,, . is also an N x1 vector which reads:

defo, st
We assume that ngpe 9 5% is second-order

n,, = —(B5P° + &5 — roise), (4.3.4)

—p,r P

Similar to s, ,., we also assume that n,, is second-order stationary in time and
has a normal distribution with a zero mean. Furthermore, we assume n, . has no

correlation in time. Applying the error propagation law to Eq. (4.3.2) we have:

p.T _ NPT + D,

PP T Xss nn
QP OPT 4 QPT 4 OP (4.3.5)
— %ss aps orb noise
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where Q% g, QL , QP QY1 and QY are the temporal VCMs of oS g @00,

ss ) Waps’ D, p Al
b is
@07 and @797 respectively, assuming these phase components are mutually un-
correlated. In practice, Q%y, QP and QP are not known a-priori and therefore

have to be estimated. We will discuss their estimation in section 4.3.3.

According to Eq. (4.2.3) the best linear unbiased estimation (BLUE) of xy, , is:
= (AT(Q%3) TA) AT Q) oo (4.3.6)

—Pa p,r?

and its accuracy can be assessed by:

DY — (AT(Qhp) 1 A) ! (4.3.7)
Moreover, the best linear unblased prediction (BLUP) of 5, is (see Eq. (4.2.4)):
Sy = QU (QRia) (@30 — AR ). (438)
and its prediction error €, = 3, . — 5, ,. can be evaluated by (see Eq. (4.2.7)):
QUL = QU - QL(Qgs) QN +
(QF () A)QET (QL(Q5) " A)T. (4.3.9)
Finally, the BLUP of n is:
R = —(PO0F — A, — 8, ), (4.3.10)
and its prediction error ¢, = f, . —n, . can be evaluated in analogue to Eq. (4.3.9)
as:
QUL = Q- Qn(Qee) ' Qhy +
(Qhn () ™ A)QET (5 (Qp) AT (4.3.11)

In this section we apply LSC to the time series of each arc in time domain. The
time series consists of the unwrapped phases of each arc with respect to a global ref-
erence PS r. The outputs from LSC are the estimates of deterministic deformation,
stochastic deformation, DEM phase residue and the sum of phases of APS, satellite
orbit and noise for each arc with respect to the global reference PS. In next section
we will use LSC to separate APS, satellite orbit and noise in spatial domain.

4.3.2 LSC applied to spatial arcs per SAR acquisition

Till now, we have obtained the best prediction of i for the time series of each arc
with respect to the same reference PS 7. Next, we are going to separate, in space, the
APS (¢>*"") and orbit error (¢* °rb) per slave as well as the phase noise (¢""°) per
interferogram by utlhzlng their spatial characteristics. Taking one slave acquisition
as an example, the n* (k denotes the kth slave acquisition) in space can be written
as:

k apq k,orb k,noise
ﬂlir ¢ + ¢ + Ql,r
ﬂk _ ﬂ];vr _ ¢k:,aps +¢k:,orb +¢k,noise ) (4312)
ﬂ?\/{,r ¢k apq + ¢k ,orb + ¢k ,noise
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For the APS component ngk’ 4P " we model it in space as a spatial trend plus a spa-
tial variation and if applicable a height-dependent component usually known as the
atmospheric vertical stratification. The spatial trend usually manifests itself as a
long wavelength linear surface trend which has been observed from many ERS-1/2
tandem interferograms (Hanssen, 2001) and it might be the result of the large spatial
extent of high and low pressure zones. The spatial variation component is mainly
caused by the high spatial variation of water vapor in the lower troposphere, i.e.,
turbulent mixing. It is usually modeled as a zero mean stochastic process and its
spatial characteristics can be revealed by its variogram (Hanssen, 2001; Liu et al.,
2009; Knospe and Jonsson, 2010). The height dependent component is applica-
ble when the variation of the land topography in the area of interest is significant
(e.g.,>1000m) (Liu et al., 2009) and it can often be modeled as a linear function of
height (Liu et al., 2009). The orbital phase term ¢"°™ usually presents in interfer-
ograms as surface phase ramps and can be sufficiently modeled as a linear surface
trend over a typical spatial extent of 100 by 100 km (Hanssen, 2001). Since Qk’apsand
#"°™ share the common spatial characteristic (i.e., a long wavelength trend) it is
not possible to separate them in practice without any external data. Finally, we
model the phase noise term ¢*"°*¢ as white noise, i.e., uncorrelated in space, a
normal distribution with zero mean.

Based on the spatial characteristics of the signals discussed above and in analogue to
Eq. (4.3.2) in the time domain, we model n* per slave in space by the trend-signal-
noise model as:

n* = Ry* + % + ¥, (4.3.13)

where R is a spatial design matrix which has M rows (recall that there are in total
M+1 PSs) and 4 columns, y* is an 4 x 1 parameter vector which contains three
coefficients for determining a linear surface trend caused by troposphere and orbit
errors and one coefficient taking into account the vertical stratification as a linear
function of height with respect to the reference PS r. Moreover, v* is an M x 1 vector
which contains the phase component due to the turbulent mixing and p* accounts
for the noise component. Applying the error propagation law to Eq. (4.3.13) we
obtain:

k=@ +QF (4.3.14)

B

where Q| Q% and Qfm are the spatial VCMs (M x M) of n*, v*¥ and Ek for the
kth slave acquisition respectively, assuming v* and p* are mutually uncorrelated.
Again, these VCMs are not known a-priori in practice and we will discuss their
estimation in section 4.3.3.

Since n*

is not directly observable but predicted from Eq. (4.3.10), its prediction
error gfl = ﬁk — n* needs to be modeled as well. The actual observation equation in
space reads:

0" = RyF + vk + pb + €, (4.3.15)

and the corresponding stochastic model reads:

ra=QF, +QF +KE (4.3.16)



4.3 Least-squares collocation applied to Persistent Scatterers InSAR 51

assuming ¢, is neither correlated with v nor pu. Kfnen is the spatial VCM of the
prediction error €, of n in Eq. (4.3.10) for all arcs in the kth interferogram. Here,
we use K¥ _ to distinguish it from QY". in Eq. (4.3.11).

€n€n

The BLUE of y* is given as:
i = (R™(Qha) ' BT RT(Q) 712", (4.3.17)
and its accuracy can be evaluated by:
Qgy = (RT(Q) 'R (4.3.18)

The BLUE of the spatial trend (due to troposphere and orbit errors) plus the vertical
stratification can be obtained as: ng. To separate the turbulent mixing component

from the phase noise Qk’nom, we apply BLUP to the residual ék (=nf - ng):

o = Qk,(Qk) " (4.3.19)

Combining Egs. (4.3.17) and (4.3.19) , the APS at non-PS pixels can be spatially
predicted/interpolated by:

~k
ok = R/Tgk +Q5'y( llfy)—lg , (4.3.20)

where /% is the APS at the non-PS pixels and R’ is the spatial design matrix
corresponding to the non-PS pixels and Ql’f,y is the spatial cross VCM between PSs
and non-PS pixels.

By now, we have theoretically obtained the optimal estimation and prediction of
ground deformation ¢d¢f:det and gdefosto unmodeled topographic contribution ¢toP°
and APS together with orbit errors Pt for cach PS w.r.t. the same reference
PS r per SAR image. In addition, we have also obtained the optimal prediction of
APS at non-PS pixels.

4.3.3 Variance-covariance modeling and estimation

Our objective is to estimate the temporal VCMs in Eq. (4.3.5) for the time series of
each arc and the spatial VCMs in Eq. (4.3.16) for each slave acquisition and interfer-
ogram from the unwrapped phases. All these VCMs are summarized in Tab. ??7. The
modeling of the temporal and spatial VCMs is discussed in this section. Based on
the modeling, we implement their estimations using RMLE which has been discussed
in section 4.2.2.

Temporal variance-covariance estimation

The VCMs per arc to be estimated are: (i) @2y, which is the temporal VCM of the
stochastic ground deformation s, . in Eq. (4.3.2), (ii) @&, which is the temporal
VCM of slave APS Q;’ips including the spatial trend, vertical stratification and
turbulent mixing, (iii) @}, which is the temporal VCM of orbital uncertainty Q;:‘;rb
and (iv) QP . which is the temporal VCM of phase noise ?;‘)ise, see Eq. (4.3.4).

noise’ r
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Table 4.1. Variance-covariance matrices required by the least-squares collocation
method. N and M are the number of interferograms and the number of first-order PS
(excluding the reference PS) respectively. The used estimation methods are parametric
based (presumed variance-covariance model with limited number of model parameters)
and non-parametric based (each individual element is estimated).

VCM Structure Size Estimation method
Temporal
Deformation: QFy full matrix N by N parametric
APS: Q& diagonal N by N non-parametric
Orbit: Q21 diagonal N by N non-parametric
Noise: QP diagonal N by N non-parametric
Spatial
Turbulence: QF, full matrix M by M parametric (Matérn)
Noise: Qﬁu diagonal M by M non-parametric
Prediction error: K fn o diagonal M by M nonparametric

Suppose the full time series is composed of N interferograms, Q. will be an N xN
matrix. Moreover, since ground deformation often takes place gradually in time,
Q2" is therefore a full matrix and its off-diagonal elements account for the temporal
covariance of the deformation. For the arc between p and r (the reference PS),
the stochastic ground deformation between the master acquisition at ¢ty and a slave
acquisition at t; can be written as:

sl = (s — s1°) — (sh — 51), (4.3.21)

where §]tj and s are the stochastic deformations on the PSs p and r respectively
. . . tot; /-
during the epoch ¢ . The covariance between s/0;% and s+’ (j denotes another
slave acquisition) is:
to,ti Jto,ti 1 to _ oto __ oti i to _ oto _ oty tj
E{§p,7‘ 7§p,77‘]} - E{(§p Sy §p7 + §7'7)(§p Sy —p] + §7‘])}

_ ti oty _ otioti _ otigto ti .to
- E{§p §p §p §'r‘ §p §p + §p §7"

t; ot t; ti t; t; b
— 8,87 +8,757 +5.°8,) —5/°8,° (4.3.22)
_ otooty to oti to oto __ oto oto
Sy 8 +8,57 +8,5,) — 8,8,
tooti _ otooti _ otooto to oto
+ 8,87 —5°87 — 5,50 +5°5°}.

As we can see from Eq. (4.3.22), to fully model the covariance we also need to
model the spatial and spatio-temporal covariances of the stochastic deformation,
e.g., E{s} si Y, E{slisli}. However, in reality, we do not know a-priori whether s,
and s, are correlated in space or not. When they are correlated we do not know
a-priori whether the correlation is stationary in space or not. For PSs that are close
to the reference PS r it might be reasonable to assume they are correlated both in
space and time. But for PSs that are far away from r such an assumption might
become invalid and it will vary from one specific ground deformation to another.
Fortunately, modeling of the spatial and sptio-temporal covariances can be circum-
vented by choosing a non-deforming PS as the reference PS. This is often possible in



4.3 Least-squares collocation applied to Persistent Scatterers InSAR 53

practice using some prior information about the ground surface under investigation.
In such a case, Eq. (4.3.22) can be simplified to:
E{silisioli}y = B{slishi} — E{slislc} — E{slslc} + E{slosl

(4.3.23)

=0 tit; — O tito — 0 tj.tg +O’S
Sp 2p Sp =p

2

where 95, is the variance of the stochastic deformation at p, and o fL tj5 O gtirto and

0 it are the covariances of the stochastic deformation between tlme epochs t; and

t], t; and tg and t; and ¢y respectively. Thus, we simplify the modeling of Q2" to
the modeling of st

One difficulty of modeling Q2 is the number of unknown elements in Q%,. It is a
symmetric matrix and there are in total N (N +1)/2 independent unknown elements
that need to be estimated. To reduce the number of unknowns for estimation, we
may use a positive definite covariance model (e.g., Gaussian, spheric or exponential,
etc.) which only has a few unknown parameters to approximate QF,. The choice
of covariance models is usually subject to the prior knowledge or assumption about
the deformation in the area of interest. By estimating the model parameters we can
obtain the estimation of @2, without explicitly estimating the N (N 4 1)/2 elements.

The temporal VCM Q% is an N xN diagonal matrix, which is the result of a
generally accepted assumption that APSs are temporally uncorrelated when the
time interval between SAR acquisitions is longer than 1-day (see e. g Ferretti et al.
(2000)Hanssen (2001)). We can write the APS component (;55 aps

$aPS — ¢9 APS _ 45,25 (4.3.24)

Lp,r Lr

where Q;’aps and ¢”*** are the APSs at p and r respectively during a slave acquisi-

tion. Taking into account the spatial characteristics of APS as discussed in section
4.3.2 we can rewrite Eq. (4.3.24) as

¢s,aps — ¢s,trend +é;,’:b +Q;i:,m7 (4325)

—p,T —p,T

S,VSs

where qﬁg rend jo the phase gradient due to atmospheric trend in space, (;5 is caused

p,T

S js the phase difference due to spatial

by atmospherlc vertical stratification and ng

variation of water vapor, i.e., turbulent mlxmg Applying the error propagation law
to Eq. (4.3.25) and writing the result in matrices we have:

apb Qtrend Q th7 (4326)

assuming each component of APS is uncorrelated with each other. If we assume
the trend and vertical stratlﬁcatlon components are stationary in time, Q" . and
P can be reduced to o2 ;- I and o2 - I, where I is an NxN identity matrix,

Vs
2 2 trend
Ofrena and o7 are the temporal variances of (;5

and QZTT respectively. o2, 4 is
proportional to the spatial distance between p and r and o2 is scaled by the height

difference between p and r. If the full time series of Q;rjnd and Q;ST can be estimated
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beforehand we can estimate o2 4 and o2 by computing the temporal dispersions
of the estimated time series of Q;ri“d and Q;BT respectively.

The turbulent mixing component, however, cannot be assumed stationary in time.
Tandem interferograms of ERS-1/2 have revealed that the variability of turbulent
mixing varies from one acquisition to another depending on how turbulent the local
atmosphere is during the acquisition (Hanssen, 2001). Therefore, the whole diago-
nal elements of QV;" have to be estimated. Applying the error propagation law to
Eq. (4.3.24) for the turbulent mixing component we have:

2 2 2 t
O'?Zz = O'?;m + O'Q:‘m - 20’171?;1‘, (4327)

where Uitm and o2 o are the variances of turbulent mixing at p and r respectively,

Uztff; is the spatial covariance of turbulent mixing between p and r. If we assume
the turbulent mixing component per acquisition is spatially stationary and isotropic
within a spatial extent of 100x100 km (i.e., a typical spatial extent of an interfero-

gram), Eq. (4.3.27) can be simplified to:

a;ﬁ = 2030w — 20,7, (4.3.28)

where ¢2,., is the global variance of turbulent mixing during a slave acquisition and

th
it varies from one acquisition to another. Moreover, the covariance ap " will only
depend on the spatial distance between p and r because of the assumed spatial

isotropy. On average, the smaller the distance between p and r the smaller o2 s will
Lzl

be, i.e., APS has less impact on short arcs. Note, to estimate o2, we need know

tm
Sor

the spatial covariance O'p " which can be estimated in space if APS at PSs during
every slave acquisition is known.

Strictly speaking, the temporal decorrelation noise can often be correlated in time (De
Zan and Rocca, 2005; Rocca, 2007). But since the selected PSs have a very low am-
plitude dispersion (i.e., D4 <0.25) we may expect the decorrelation noises on the
PSs are small. Thus, the temporal covariance of the decorrelation is small and can
be neglected. As a result, Q2. = can be modeled as an NxN diagonal matrix.
Moreover, ¢;O’qe is not stationary in time and its temporal variance varies with per-

pendicular and temporal baselines (Gatelli et al., 1994)Zebker and Villasenor (1992).
Therefore, each main diagonal element of Qnmqe has to be estimated individually.
We use the approach described by Kampes (2005) based on the least-squares vari-
ance component estimation (Teunissen and Amiri- Simkooei, 2006). In this approach
¢n°rise is assumed stationary in space. Therefore Q" becomes identical for all arcs

S noise

in space but varies from one interferogram to another. From now on, we replace
P o by Q' io. Finally, since the orbit error has the same spatial characteristic

as the atmospheric trend, therefore it is not possible to estlmate Qtrend and Qb

separately. The estimation of @}’ . is actually the sum of Q{:. , and Q7).
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Spatial variance-covariance estimation

The spatial VCMs to be estimated are: (i) QF,, which is the spatial VCM of the
turbulent mixing component (v, see Eq. (4.3.15)) of APS for the kth (k € [1 NJ)
slave acquisition; (ii) ’:W which is the spatial VCM of the phase noise (y, see
Eq.(4.3.16)) for the kth interferogram and (iii) K . , which is the kth spatial VCM

of the prediction error €, of n (see Eqs. (4.3.10) and (4.3.11)) for all arcs in space.
k will be an M x M matrix if the number of selected PS is M + 1 (i.e., M non-

vv
reference PS form M spatial arcs w.r.t. the reference PS). Moreover, Q¥ is a full
symmetric matrix since APS is spatially correlated (Tatarskii, 1971; Hanssen, 2001).
As aresult, there are M (M +1)/2 independent elements of Q¥ need to be estimated
in order to construct @,,. We assume APS is spatially stationary and isotropic, then

the ith element on the main diagonal can be evaluated by:

US’? = E{Zf,r : Zf,r
— B{( - )?) (1.3.29)

_ 2
= 20’21‘, — 20’2’1;,7‘,

2
vk
tion and o,r is the covariance of APS between the PS i and the reference PS 7.

Zi,r

where o, is the global variance of turbulent mixing during the kth slave acquisi-

Furthermore, the element at row ¢ and column j of @), can be evaluated by:

— k k
O-gfyjﬂ, - E{Zi,r : Zj,r}
= B{(yf —v¥) - (& — )} (4.3.30)
=0yk —Oyk — Oy k +Ul2,k'
Zi,j =i Zj,r v

To reduce the number of unknowns we assume Q¥ can be approximated by a co-
variance model from matern-family (Handcock and Wallis, 1994; Stein, 1999, 2005;
Grebenitcharsky and Hanssen, 2005). It has been shown by Tatarskii (1971) that
models from Matern-family are capable of describing the well known power-law of
2D (“2/3-law”) and 3D (“2/3-law”) turbulence proposed by Kolmogorov’s elemen-
tary turbulence theory (Kolmogorov, 1941). The covariance model we choose has
the form:

0.2

NG NNl

oh) = 2(7—5;(7) R R

), (4.3.31)

where 7 is the model parameter which controls the spatial smoothness of v, R is
the spatial range of v beyond which the atmospheric turbulence becomes totally
decorrelated, I is the Gamma function and K is the modified Bessel function of the
second kind. By estimating the three model parameters, i.e., R, 7 and o2, we are

vy

able to estimate QF, per slave.

wa has the same size as @Q,, and is also a full symmetric matrix. The ith main



56 Chapter 4: Least-squares collocation (LSC) method for InSAR time series

diagonal element of Ql’j ., can be evaluated by:

Uz’n - E{NZT —z 7'}
= B{(uF — p")*} (4.3.32)
= 20’21“

assuming p is spatially stationary and uncorrelated. O’ik is the global spatial vari-

ance of p for the kth interferogram. Furthermore, its off-diagonal elements can be
evaluated by:

k k
Uﬁ'lic,j,r = E{Zi’r ’ Zjar}
= B{(pf — 1) - (uf — )} (4.3.33)
- Uik.

2

Ty is equal to the kth element on the main diagonal of Q* which is the temporal

noise

VCM of the phase noise for all arcs, see section 4.3.3.

The prediction error €, of n in Eq. (4.3.10) is evaluated independently per arc (see
Eq. (4.3.11) in section 4.3.1) and we may assume €, is uncorrelated in space. Thus,
the spatial VCM K¢, of €, is an M x M diagonal matrix whose diagonal elements
are different from one arc to another. The ith diagonal element of K fnen can be

obtained from the kth diagonal element of Qiign in Eq. (4.3.11).
Estimation implementation

We carry out the estimation of the temporal and spatial VCMs modeled in4.3.3
and 4.3.3 respectively in a sequential and iterative way. The full procedure of our
implementation is given in the end of this section. It starts with the unwrapped
phase time series per arc. As we discussed in section 4. 3 3 one way to estimate the

temporal VCM Q¥ is via estimating Q% Q77 and QU7 . (Qli.) separately, see

q. (4.3.5). However this requires that (;55 ap&, (;55 o and d); noise jn Bq. (4.3.4) are
known already. The other way we can estlmate Q is to directly estimate its main
diagonal elements. Note, as a rule of thumb, given the same number of observations,
the estimation accuracy of the unknowns in a functional/stochastic model decreases
with the increase of the number of unknowns. Thus we believe that the first approach
of estimating QP:" is superior to the second. However, we have to start with the
second approach at the first place. It will become clear later that once we have
initial predicts of (;55 ap&, d)s o and (;55 molse e can switch to the first approach for a
better accuracy. Now the questlon becomes that are the main diagonal elements of
@P:" estimable given the unwrapped phase time series as observations? Suppose the
chosen positive definite covariance model to model QP:;" has m parameters, there will
be N + m unknowns to be estimated, where N is the number of interferograms in
the time series. The maximum number of estimable unknowns of a stochastic model
(i.e., VCM) is b(b+1)/2 (Teunissen and Amiri-Simkooei, 2006), where b = N —n and
n is the number of unknowns in the corresponding functional model, for example the
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Initially estimate
temporal VCMs

(step 1)
Time domain < ‘ l
Estimate time

series of n per arc
(step 1 or step 7)

Estimate spatial

VCMs (step 2)
Space domain

Estimate APS per
slave and noise per
interferogram
step 3

If the updates are
significant different
than the previous
estimates
(step 6)

Update (re-estimate)
temporal VCMs
(step 4 and 5)

Time domain < ‘ l
Final estimation and }

quality assessment
(step 9)

Fig. 4.2. Implementation diagram of the collocation method.

trend component (i.e., Azp ) in Eq. (4.3.2). Since m and n are usually small (~ 3)
and N is relatively large (> 15), thus N+m is usually less than b(b+1)/2. Therefore,
in practice we are able to estimate Q)" and QP given the number of observations.
We use the maximum likelihood estimator (RMLE) given in section 4.2.2 for their
estimations.

Next, in space, we use RMLE to estimate Q% and QZ ., based on the initial prediction
of n* (see Eq. (4.3.15)). Moreover, we compute K. . by Eq. (4.3.11). Given
the initial estimation of Q% , QZM and K. ., we are able to initially predict APS,
including spatial trend, turbulent mixing and vertical stratification components, per
slave and phase noise per arc and per interferogram. Then, we use the initially
predicted APS and phase noise to estimate the temporal VCMs (i.e., Q7 Pt and

o) from which QP can be updated. Finally, we re-estimate Q?;" based on the
updated estimation of Q% .

To achieve the best estimation and prediction accuracy we implement our algorithm
sequentially and iteratively as follow (see Fig. 4.2 as well):

1. initially estimate Q?;" (via a positive definite covariance model) and Q2" (by
its main diagonal elements) and solve Eq. (4.3.10) for n for every arc (w.r.t.
the same reference PS).

2. given the prediction 71, estimate Q¥ and QZM and compute K ., by Eq. (4.3.11).

né€n
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3. solve Eq. (4.3.17) for ¢**"* (including Qorb) per slave and Eq. (4.3.19) for Qmise
per interferogram for all arcs.

4. update QP;" by estimating QP;"., Q¥7 and Q' separately based on the results

aps’ ¥orb noise
from step 3.
5. re-estimate QP given the updated QP from step 4.

6. compare the new estimated Q?;" (via the model parameters) with the previous
estimate, if they differ significantly go to step 7, otherwise go to step 9

7. solve Eq. (4.3.10) for a new f based on the new estimates of QP and QP
from step 4 and 5 respectively.

8. go to step 2.

9. solve Eqgs. (4.3.6) and (4.3.8) for the ground deformation and solve Egs. (4.3.7)
and (4.3.9) for the accuracy of the ground deformation estimation.

The diagram of the implementation is sketched in Fig. 4.2.

4.4 Summary

We review the standard window-based filtering method (Ferretti et al., 2000) in
section4.1 and introduce the collocation method in sections4.2 and 4.3. In the
following we compare the two methods and show the theoretic advantages of the
collocation method over the filtering method.

e The collocation method takes into account the stochastic characteristics of the
unmodeled deformation. The characteristics of the unmodeled deformation is
modeled by its temporal variance-covariance matrix (VCM) in Eq. 4.3.5.

The variance-covariance model in the collocation method is corresponding to the
temporal low-pass window in the filtering method. However, by using a variance-
covariance model we allow the choice of the variance-covariance model become falsi-
fiable. The falsifiability may come from external data, e.g., GPS, leveling, etc., in the
area under investigation or based on the geophysical properties of the deformation
process.

Commonly used variance-covariance models (e.g., Gauss, spheric, hole effect, etc.)
have two parameters. One is the signal variance and the other is the correlation
length of the signal. These two parameters are estimated for each PS from its
unwrapped phase time series. In contrast, the filtering method treat all PSs having
the same variance and correlation length for the unmodeled deformation. In addition,
the filtering method needs the user to specify a window length before the filtering
can be performed. However the optimal window length is hardly known a-priori in
practice. Last but not least, for the collocation method the estimated variance and
correlation length are again falsifiable.
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e Both spatial and temporal variation of APS are taken into account in the
collocation method.

In the collocation method, different spatial characteristics, e.g., long-wavelength
spatial trend, vertical stratification (in mountainous regions) and turbulent mixing,
of APS are distinguished and modeled accordingly. They are estimated by BLUE
and predicted by BLUP, see Eqgs. (4.3.17) and (4.3.19).

The temporal variation of APS is taken into account and used for weighting obser-
vations (i.e., unwrapped phases of PSs), see Eq. (4.3.8). Comparing Eq. (4.2.4) and
Eq. (4.1.3) we notice that the collocation method use the VCM of the observations
for weighting. The VCM of the observations incorporates the temporal variation
of APS via its temporal VCM, see Eq. (4.3.5). Acquisitions which experience large
APS disturbance will be assigned a small weight and vice versa. Because of the
weighting, the APS estimation from the collocation method should not be sensitive
to the acquisition gaps in the time series.

e The filtering method is a special case of the collocation method.

This can be seen by comparing Egs. (4.1.3) and (4.3.8). If the weight matrix W in
Eq. (4.1.3) is constructed using the variance-covariance matrix of the deformation
(QEy in Eq. (4.3.8)) and the phase residue 'I>;,,q in Eq. (4.1.3) is firstly weighted by
the inverse of Q%% in Eq. (4.3.8), the two methods will become equivalent. In other
words, if the ground deformation has a variance-covariance function equivalent to
a window function and APS in every acquisition has a similar degree of variation,
then the two methods will give identical results.

e Unlike the filtering method, the precision of the result from the collocation
method can be assessed in a systematic and falsifiable manner.

Given the VCM of each phase component, LSC provides a framework to allow
users to compute the precision for each estimated or predicted phase component
via Egs. (4.2.6) and (4.2.7).

Last but not the least, we need to stress that the LSC method gives the best estimates
of APS and deformation only when the presumed functional and stochastic model
for deformation can well describe the signal. In next chapter we will show via
simulations the sensitivity of the method to the mis-specification of the functional
and stochastic model respectively.
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Chapter 5

Evaluation of the least-squares collocation
method using simulated InSAR time series

In this chapter the collocation method developed in chapter 4 is evaluated using
simulated data. The simulated data provides the ground truth for validating the
estimates of APS and ground deformation as well as the estimated precisions for
the estimates. In case of real data ground truth is often unknown or unaccessible,
particularly for APS which has relatively small magnitude with respect to total at-
mospheric delay and unprecedented spatial resolution. Although not all signals and
noise sources that are present in real data can be simulated, the virtual evidence col-
lected from properly designed simulations will help us to comprehend many complex
and random processes in the real world.

Section 5.1 provides the stimulation strategies used for simulating ground deforma-
tion, APS, orbit error and phase noise. Section 5.2 reports and validates the result
of the collocation method using the simulated data. The collocation method needs
a-priori knowledge (i.e., suitable functional and stochastic models) of ground defor-
mation, however such knowledge is usually unknown in practice. Thus, in section
5.3 we assess the sensitivity of the collocation method to different functional and
stochastic models for ground deformation modeling. Finally, section 5.4 provides a
summary of the evaluation results.

5.1 Simulation strategies

In this section we elaborate on the simulation strategies used for simulating ground
deformation, APS, orbit errors and phase noise. Since the input data for the col-
location method developed in chapter 4 is the time series of unwrapped phases for
each PS and the method assumes that the phase unwrapping is carried out success-
fully. Thus, in our simulation we directly simulate unwrapped phases for each signal
component of interest and do not take into account the possible phase unwrapping
errors. In addition, we do not simulate the phase caused by DEM inaccuracy, which
lead to a simplification of the functional model in Eq. (4.3.2), i.e., dropping out the
deterministic parameter counting for the DEM inaccuracy. Such a simplification
will not influence our method evaluation with regard to separating complex ground
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deformation and APS.

In our simulation the time span of the InNSAR time series is set to 3 years. The spatial
size of our simulation is 256 by 256 pixels. From the full set of pixels we randomly
select 300 pixels as PSs using an uniform distribution in space. The satellite repeat
orbit is set to 12 days, which corresponds 91 acquisitions. We choose the 46th
acquisition as the master of the time series.

5.1.1 Simulation of ground deformation

We divide the 300 randomly selected PSs into 3 categories. For the first category
which consists of 75 PSs (randomly selected from the 300 PSs), we simulate a de-
terministic ground deformation for each of them using a linear model:

d'(T) = v'T, (5.1.1)

where T' is a 91x1 vector that contains the temporal baselines w.r.t.the master
acquisition (the temporal baseline of the master is zero), and v* is the deformation
rate at PS 7. For each of the PSs the deformation rate is simulated using uniform
distribution within (2, 20) mm/year.

The second category consists of another 75 PSs which are randomly selected from
the remaining 225 PSs. For each of them we simulate a ground deformation as:

dN(T) =0T + ¢, (5.1.2)

where s/ is an 91x1 vector that contains the stochastic part of the ground de-
formation on PS j. v/ is the simulated (using an uniform distribution) deforma-
tion rate on PS j and v/€(2, 20) mm/year. To simulate s/ we assume that s/ is
second-order stationary in time, i.e.,a constant mean and variance. We use a 1D
(one-dimension) hole-effect model that is often used to model a pseudo-periodic ran-
dom process (Journel and Huijbregts, 1978; Kitanidis, 1997) to simulate its variance-
covariance as a function of ¢:

{ o?(1— L)exp(—LLj) for t < Lj,

j I
’ 0 fort>Lj, (5.1.3)

where 032 denotes the variance of s/ and L; is its correlation length in time (also
called range in Geostatistics). We set the correlation length to 1-year which is
often used assumption in practice for all the PSs and simulate 0]2» per PS using
uniform distribution within in (9, 225) mm?
in Eq. (5.1.3), 87 can be simulated by:

s7 = chol(R)n/, (5.1.4)

. Given the variance-covariance model

where chol stands for the Cholesky factorization, R is the variance-covariance ma-
trix of 87 and it is a 91x91 Toeplitz matrix constructed from 77 (t), and n? is a 91x 1
vector simulated by a standard normal distribution (i.e., zero mean and unit vari-
ance). To see s/ has the desired variance-covariance we apply the error-propagation
law (Teunissen et al., 2005) to Eq. (5.1.4):

Q= chol(R)Q,,;chol(R)T = chol(R)Ichol(R)T = R, (5.1.5)
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where I is an 91x91 identity matrix and the superscript 7' denotes a matrix trans-
pose.

Finally, the remaining 150 PSs in the third category are deformation free. Moreover,
we choose the PS (from this category) which is closest to the spatial center of our
simulations as the reference PS. For demonstration, the simulated deformation rates
and variances are shown in Fig. 5.1 a and b respectively. In addition, Fig. 5.1 ¢ shows
the deformation time series of a PS (from the second category) which has the largest
deformation variance, whereas Fig. 5.1d plots the time series of a PS (also from
the second category) which has the smallest variance. Note, in our simulation we
do not attempt to simulate a spatial correlation of deformation between PSs. This
is not necessary because the collocation method does not require the deformation
to be spatially correlated (see section 4.3.1). In practice, however, deformation at
neighboring PSs are often spatially correlated.

5.1.2 Simulation of atmospheric phase screen

As discussed in section 4.3.2 we model APS in space per acquisition as a surface
trend delay (i.e., long-wavelength delay), a stochastic delay (i.e., turbulent mixing)
and a height dependent delay (i.e., vertical stratification) if local land topography
variation is significant (e.g., Ah>1000m). In this simulation we only simulate the
first two terms. The estimation of the height dependent delay will be evaluated
using real data in Chapter 6.

To model the spatial surface trend delay we use the model:
z(x,y) = ax + by + ¢, (5.1.6)

where z(x,y) is the trend delay (unit: mm) at lateral position (x,y) and a, b, ¢
are the trend coefficients. We simulate a, b and ¢ independently using a standard
normal distribution (i.e., zero mean and one-unit standard deviation). Based on the
eight ERS-1/2 tandem interferograms from Groningen, the Netherlands analyzed by
Hanssen (2001) we find that a more realistic trend can be obtained by down scaling
the simulated coefficients by a factor of 16.

The stochastic delay can be modeled in a similar way as modeling the stochastic de-
formation in section 5.1.1. We assume the stochastic delay is second-order stationary
and isotropic in space and choose the Mdtern covariance model in Eq. (7.2.17) as
its variance-covariance function. The most important parameter for simulating a
realistic stochastic delay is its spatial variance. Note, because of the assumed sta-
tionarity and isotropy each APS simulation has a constant variance but the constant
varies from one acquisition to another. To simulate a set of realistic spatial vari-
ances for all acquisitions we have considered the statistics of APS variance estimated
from 26 tandem interferograms over the Netherlands by Hanssen (2001). Based on
such statistics we simulate the variances (unit: mm?) using a noncentral chi-square
distribution which has the degree of freedom set to 5 and non-centrality set to 2.
Figure 5.2 a shows the histogram of the simulated RMS. As we can see most APS
in our simulation have an RMS between 3 and 8 mm. Moreover, Fig. 5.2b plots the
simulated (real) RMS (in blue) against the computed RMS (in red) from each APS
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Fig. 5.1. Simulated deformation time series. a) Simulated linear velocities on the
full set of PSs (300 PSs), color-bar unit: mm. The PS enclosed by the black square
is chosen as the reference PS. b) Variances of the simulated stochastic deformation
on the PSs, color-bar unit: mm?2. ¢) Simulated deformation time series of the PS that
has the largest stochastic deformation variance (225mm?). d) Simulated deformation
time series of the PS that has the smallest stochastic deformation variance (9 mm?).
Note, in our simulation we do not attempt to simulate spatial correlation of deformation
between PSs. This is not necessary because the collocation method does not require the
deformation to be spatially correlated (see section4.3.1).

simulation after removing a surface trend estimated by unweighted least-squares.
The mean of the true RMS is 6.7 mm and the mean of the estimated RMS is 5.7 mm.
Figure. 5.2b is used to demonstrate that using unweighted least-squares to remove
the trend in data will later on lead to a biased estimation of the variance of the
stochastic signal embedded in the data, see discussion in section 4.2.

It has been revealed by Hanssen (2001) that the power spectrum of APS in space
is scale variant and its slope decreases from approximately 5/3 below 1.5 km to
2/3 beyond 2km. In our simulations we set the parameter 7 in Matern model (see
Eq. (7.2.17)), which controls the spatial smoothness of the stochastic delay to 4/3 for
all the acquisitions. Note, the chosen spatial smoothness does not represent the real
statistics of turbulence but is merely used for evaluating how good the least-squares
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Fig. 5.2. RMS of simulated APS. a) Histogram of the RMS of simulated APS (in total
91 acquisitions). Most APS simulations have a RMS between 3 and 8 mm. b) True
RMS of the simulated APS (blue) and computed RMS (red) after removing a surface
trend using unweighted least-squares. The mean of the true RMS values is 6.7 mm and
the mean of the estimated RMS values is 5.7 mm. The plot is used to demonstrate that
using unweighted least-squares to remove the trend in data will later on lead to a biased
estimation of the variance of the stochastic signal embedded in the data, see section
4.2.

collocation method can estimate this parameter. Moreover, the spatial correlation
length (R in Eq. (7.2.17)) of APS is simulated for each acquisition using an uniform
distribution within (30, 80) pixels.

We use the algorithm developed by Dietrich and Newsam (1993) for a 2D random
simulation. Figure 5.3 shows the simulated 2D isotropic and homogeneous random
fields based on the spheric model (Fig. 5.3a), the Gaussian model (Fig. 5.3b), the
Métern model with 7 = 2/3 (Fig. 5.3 ¢), the Mdtern model with 7 = 5/3 (Fig. 5.3d),
the hole effect model (Fig. 5.3¢) and the exponential model (Fig. 5.3 ¢). The math-
ematic equations for these models are given in Appendix A. To make the simulated
random fields in Fig. 5.3 comparable, each of the simulations uses unit variance and
a spatial correlation length of 64 pixels. From the figure we observe that the simu-
lation based on Gauss model has the smoothest spatial variation. In addition, the
simulations based on spheric, hole effect, exponential and Métern (7 = 5/3) models
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Fig. 5.3. Simulation of 2D isotropic and homogeneous random fields (unit: mm) using
the algorithm developed by Dietrich and Newsam (1993). a) Spherical model. b) Gauss
model. ¢) Matern model with 7=2/3. d) Matern model with 7=5/3. e) Hole effect
model. f) Exponential model. All the simulations have a unit variance and a spatial
correlation of 64 pixels.

have a similar degree of spatial smoothness. Last but not least, by increasing the
parameter 7 in the Matern model we can obtain a smoother random field. Note, the
variance-covariance model dependent smoothness is also applicable for 1D isotropic
and homogenous random field.

The simulated master APS which has a spatial RMS of 6.8 mm is visualized in
Fig. 5.4. Note, the spatial RMS here is the RMS of the turbulent mixing part of
delay but not of the total delay. For slave APS simulations we show the one which
has the largest spatial variance (16.9mm) in Fig. 5.5a and b and the one which has
the smallest RMS (0.7 mm) in Fig. 5.5¢ and d.
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Fig. 5.4. Simulated master APS (unit: mm). a) Total APS. b) Turbulent mixing (RMS:
6.8 mm).

5.1.3 Simulation of satellite orbit error and phase noise

Since orbit error has the same spatial characteristics as the atmospheric trend, it
has been included during APS simulation in section 5.1.2. In addition, we simulate
phase noise for all PSs per acquisition independently using a normal distribution

centered at zero. The variance of the simulated noise is within (1,2) mm?2.

5.1.4 Single-master interferograms formation

To form interferograms with a common master, we first compute the temporal phase
difference between the master and each slave per PS. Afterwards, we compute the
spatial phase difference between non-reference PSs and the pre-selected reference PS
(see Fig. 5.1a).

5.2 Result validation: a-prior knowledge of deformation is given

In this section we evaluate the developed collocation method by comparing its result
against ground truth. We also compare the result with the result obtained from
the standard low-pass filtering method discussed in section 4.1. To assess the best
achievable accuracy from the collocation method we take the advantage of the a-
priori knowledge about the deformation. That is, we assign the right model (i.e.,
linear function) and stochastic model (i.e., hole effect) of deformation to the colloca-
tion method. In practice, however, such a-priori knowledge is usually not available
and the choice for the deformation models is often arbitrary. We will investigate the
sensitivity of the collocation method to the choice of deformation models in section
5.3.

5.2.1 Validation of the stochastic models

For all experiments in our study we use a constrained minimization to minimize the
objective function of RMLE in Eq. (4.2.11). In other words, we set the boundaries
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Fig. 5.5. Two simulated slave APS (unit: mm). The one that has the largest RMS
(16.9mm) is shown in Fig. 5.5a (total delay) and b (turbulent mixing). The one that
has the smallest RMS (0.7 mm) is shown in Fig. 5.5¢ (total delay) and d (turbulent
mixing).

for the parameters of a stochastic model. Then, the search for the parameters that
minimize the objective function is constrained by the boundaries. In this experi-
ment we set the boundaries of the correlation length of deformation to (0.5, 1.5) in
year(s). In addition, the boundaries of the parameter 7 in Matern model is set to
(2/3, 5/3) and the boundaries of the spatial correlation length of Métern model is
set to (20, 100) in pixels. Although the correlation length does not have a phys-
ical meaning, the main purpose is to test how accurately it can be estimated by
the collocation method. Moreover, the boundaries of the temporal variance of the
ground deformation and the spatial variance of APS per acquisition are both set to
(0, 4+00) mm?2. Table 5.1 lists the real (simulated) range of each parameter as well
as its search boundaries.

Turbulent mizing

The estimated APS RMS (blue) against the simulated (true) APS RMS (green) per
acquisition as well as their difference (i.e., estimation error) highlighted in red are
plotted in Fig. 5.6 a. From the figure we observe that the estimated APS RMS agrees
very well with the ground truth. The mean of the estimation error is -0.02 mm and
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Table 5.1. Search intervals for the parameters of the stochastic models used in simula-
tion of INSAR time series (see section 5.1). The real (simulated) range of each parameter
is given for reference.

Parameter Range Search interval
APS RMS [mm] (0.7,16.9) (0,+00)
Deformation RMS [mm] (3,15) (0,40)
APS correlation length [pixels] (30,80) (20,100)
Deformation correlation length [year] 1 (0.5,1.5)
APS spatial smoothness (7) 4/3 (2/3,5/3)

the error RMS is 1.2mm. The scatter plot of the estimated and real APS RMS is
given in Fig. 5.6 c and the correlation between them is 0.95. Hence, we conclude that
APS RMS per acquisition can be well estimated by RMLE. In addition, with regard
to the spatial correlation length of APS, its estimation accuracy is less satisfactory,
see Fig. 5.6d. The correlation between the estimated and the real spatial correlation
is only 0.59. Nevertheless, a clear linear relationship between them can be observed.
In the end, Fig 5.6b shows the comparison between the estimated and the real
APS spatial smoothness (7 in Matern model) per acquisition. The RMS error of its
estimates is 0.33. The above results are summarized in Tab. 5.2.

Stochastic ground deformation

Figure 5.7a,b show the true (simulated) and estimated (stochastic) deformation
RMS per PS respectively. These PSs (75 in total) are from the second category
of the simulated PSs which have stochastic ground deformation, see section 5.1.1.
Moreover, the difference (i.e., estimation error) between the real and estimated RMS
is shown in Figure 5.7 c. From the figure we do not see a dependency of the estimation
error on the spatial distance between non-reference PSs and the reference PS.

Figure 5.8 a shows the estimation error of the deformation RMS in ascending order
(sorted using the simulated deformation RMS). From the figure we do not observe a
dependency of the estimation error on the magnitude of the real RMS. In addition,
the histogram of the estimation error is plotted in Fig. 5.8 b and we observe that the
histogram largely resembles a norm distribution centered at 1.2 mm with a standard
deviation of 3.3 mm. Moreover, the scatter-plot between the estimated and the
simulated RMS is given in Fig. 5.8 c. A clear linear relationship is observed and the
correlation between them is 0.69.

Finally, the estimated deformation correlation length (in time) per PS is shown in
Fig. 5.9. Unlike the other parameters, the correlation length cannot be estimated
reliably, too small (i.e., close to the lower boundary) or too large (i.e., close to the
upper boundary). The poor estimation is likely due to the presence of APS in the
estimated deformation time series. It suggests that in real applications we should
provide a range of possible correlation as small as possible to RMLE. The above
results are summarized in Tab. 5.2.

We also evaluate the parameter estimation on the remaining 225 PSs (from the first
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Fig. 5.6. Evaluation of the estimated parameters of APS variance-covariance function
per acquisition. a) Estimated APS RMS (unit: mm) per acquisition (blue), simulated
(true) APS RMS per acquisition (green) and their differences (red). The mean and RMS
of their differences are -0.02 and 1.2 mm respectively. b) Estimated spatial smoothness
(7 in Matern model) per acquisition (blue) and real 7 per acquisition (green). c¢) Scatter
plot of the estimated and the real APS RMS. The correlation between them is 0.95 and
the red line follows a unit slope for reference. d) Scatter plot of the estimated and the
real APS spatial correlation length in pixels. The correlation between them is 0.59.

and third categories) which do not have a stochastic deformation. The evaluation
tells us about the possible false alarm of stochastic deformation (i.e., non-zero defor-
mation RMS) raised by the collocation method. In total, there are 91 from the 225
PSs showing false alarm and the histogram of the false alarm is plotted in Fig. 5.10.
From the figure we observe that the false alarm ranges from 0 to 5mm. The mean
of the false alarm is 2.3mm. In contrast, the mean of the simulated deformation
RMS on the 75 PSs who do have stochastic deformation (from the second category)
is 8.6 mm. Therefore, we conclude that the false alarm is relatively small and should
be acceptable.
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Fig. 5.7. Evaluation of the deformation RMS (unit: mm) estimation. a) Simulated
(true) RMS for the PSs in the second category of simulated PSs (see section 5.1.1). b)
Estimated RMS for these PSs. ¢) Their difference, i.e., estimation error. Note, the esti-
mation error does not have a dependency on the spatial distance between non-reference
PSs and the reference PS. d) Scatter plot of estimated and simulated deformation RMS.

5.2.2 Validation of the final result

Given the estimated variance-covariance matrices from the previous section we use
least-squares collocation to separate APS and ground deformation in this section.
The result is evaluated by comparison against ground truth (i.e., the original simu-
lation). In addition, the result obtained from the standard low-pass filtering method
using a one-year Gaussian window is also assessed in this section.

APS estimates

The most straightforward way of validation is to compare APS estimate per acquisi-
tion to the corresponding ground truth. We can also carry out the validation in terms
of single-master interferograms, i.e., APS temporal difference between the common
master and a slave. In this experiment, we can carry out both comparisons because
the ground truth is perfectly known from our simulation. But we have to keep in
mind that in practice such comparisons are usually not possible due to the lack of
ground truth. In practice, the best ground truth available is short temporal baseline
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Fig. 5.8. Continued evaluation of the deformation RMS estimation following Fig. 5.7. a)
Estimation error (in red) of the deformation RMS in ascending order (sorted based on the
real deformation RMS in green). Note, the estimation error does not have a dependency
on the magnitude of the real deformation RMS. b) Histogram of the estimation error.
It is centered at 1.2mm with a standard deviation of 3.3mm. c) Scatter-plot between
estimated and simulated RMS. Their correlation is 0.69. The red line follows a unit
slope for reference.

(i.e., a few months) interferograms whose interferometric phases are dominated by
APS, provided that the ground area does not undertake rapid deformation.

Figure 5.11a b and ¢ show the simulated master APS, estimated master APS by
the collocation method by unweighted least-squares respectively. The unweighted
least-squares is carried out by replacing the variance-covariance matrix in Eq. (4.3.6)
by an identity matrix. The histogram of the estimation error is plotted in Fig. 5.12a
for the collocation method and in Fig. 5.12b for unweighted least-squares. The
estimation error made by the collocation method has a -0.3 mm mean and a standard
deviation of 1.9mm. In contrast, the estimation error made by unweighted least-
squares has a -0.6 mm mean and a standard deviation of 4.4mm. Therefore, the
collocation method leads to a better estimation of master APS through modeling
the variance-covariance functions of APS and ground deformation.

Regarding slave APS estimation, the overall comparison is shown in Fig. 5.13. The
RMS of the estimation error made by the collocation method is shown in blue and
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Fig. 5.9. Evaluation of the deformation correlation length (unit: year) estimation. The
real correlation length (1 year) is identical for all PSs. a) Estimated correlation length
for the PSs who have stochastic deformation (see section 5.1.1). b) Histogram of the
estimated correlation length. The poor estimation of the correlation length is likely due
to the presence of APS in the estimated deformation time series.

the mean of the RMS is 2.1mm. In contrast, the RMS of the estimation error
made by the filtering method is shown in red and the mean of the RMS is 3.4 mm.
The mean of the real RMS of slave APS shown in green is 8.7mm. Note, for the
filtering method a Gaussian window with a window length of 1-year is used. Thus,
we conclude that the collocation method results in a better APS estimation. The
above results are summarized in Tab. 5.2.

Ground deformation estimates

The simulated (real) deformation rates are shown in Fig. 5.14a and the estimated
rates by the collocation method and the filtering are plotted in Fig. 5.14b and c re-
spectively. In the filtering method, the deformation rate is estimated by unweighted
least-squares. In addition, the histograms of the estimation errors are displayed in
Fig. 5.15a for the collocation method and in Fig. 5.15b for the filtering method.
The mean and RMS of the estimation error made by the collocation method is 0.46
mm and 3.3 mm respectively. The mean and RMS of the estimation error made by
the filtering method is 0.78 mm and 3.6 mm respectively. Therefore, in terms of the
deformation rate estimation these two methods give very similar results. In other
words, the deformation rate estimation is not sensitive to weighted least-squares.

It is of also interesting to see how good the total deformation is estimated. Fig-
ure 5.16 shows the total deformation estimation of four PSs who have both deter-
ministic (linear) and stochastic (hole-effect) ground deformations (from the second
PS category). The simulated ground deformation is shown in green, the estimate
made by the filtering method is shown in red and the collocation result is shown
in blue with estimated errorbars (£ standard deviation) in mm. Note, each error-
bar is estimated individually for each deformation estimate in the time series using
Egs. (4.3.7) and (4.3.9). In general, the errorbar tends to be larger at the beginning
as well as in the end of the time series. This is because of a so-called edge-effect in
which less input data is involved in estimation. Comparing the estimates with the
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Fig. 5.10. Histogram of the estimated deformation RMS (unit: mm) on the PSs who
do not have a stochastic deformation, i.e., deformation false alarm. In total, 91 from
the 225 PSs (from the first and third categories) show false alarms which range from
0 to 5mm. The mean of the false alarm is 2.3mm. In contrast, the mean of the
simulated deformation RMS on the PSs (from the first category) who have stochastic
ground deformation is 8.6 mm.

real deformation, we can clearly see that the estimate obtained from the collocation
method recoverers more small scale details of the real deformation and on average
has a better fit to the ground truth. Moreover, the estimated errorbars provide a
reasonable measure of the estimation error made by the collocation method.

Figure 5.17 plots the total deformation estimation of four PSs who have only de-
terministic deformation (from the first PS category). In addition, Fig. 5.18 displays
the total deformation estimation of four PSs who are deformation free (from the
third PS category). Clearly, we can see from both figures that the estimates of the
filtering method always show an artificial seasonal deformation with a period (i.e., a
time interval between a peak and a valley) of 0.5 year approximately. The artificial
seasonal pattern is caused by the leakage of APS.

5.2.3 Sensitivity to the acquisition rate in time

In this section, our goal is to investigate the sensitivity of separating APS and
ground deformation to input data (i.e., unwrapped phases of PSs) which has a lower
temporal resolution (i.e., longer satellite repeat orbit). In the previous section we
have shown the validation result based on simulated time series with a temporal
resolution of 12-day. The validation shows that our collocation method can better
separate APS and ground deformation than the standard window-based filtering
method. This is because the collocation method uses weighted least-squares via the
estimated variance-covariance matrices of the signals of interest (i.e., deformation
and APS). In practice, one of the limitations that could influence the stochastic
modeling (i.e., variance-covariance estimation) is the temporal resolution of the in-
put data. Moreover, given the same variance-covariance functions, the collocation
method is expected to give less accurate result as the temporal resolution decreases.
This also applies to the filtering method in which less acquisitions will be involved
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Fig. 5.11. Estimated master APS (unit: mm). a) Simulated master APS. b) Estimated
master APS by the collocation method. ¢) Estimated master by unweighted least-squares
(same as the filtering method). d) Difference between the two master APS estimates

in averaging out APS.

We decide to decrease the temporal resolution to 36-day which is approximately the
repeat orbit of ESA’s ERS1/2 and Envisat satellites (35-day) by selecting a subset
of the original time series simulated in section 5.1 with a 36-day interval starting
from the first acquisition of the simulation. We apply our collocation method to the
subset of the time series in the same way as we did in section 5.2 and the result
(after validation) is shown in Tab 5.3. Comparing to the result listed in Tab 5.2 we
find that the accuracy of the stochastic parameters obtained from the subset time
series is slightly worse. With regard to APS and ground deformation estimation,
both filtering and collocation methods give less accurate results. This is what we
expected. Therefore, we conclude that the decrease of the temporal resolution of
input data will have a noticeable impact on the separation of ground deformation
and APS but only a minor affect on the stochastic modeling.

Regarding slave APS estimation with the 36-day temporal resolution, Fig. 5.19 shows
the comparison between the collocation method and the filtering method. Similar to
Fig. 5.13 (12-day temporal resolution) the estimates obtained from the collocation
method are always more accurate than the estimates made by the filtering method.
Moreover, we find that the estimation error of slave APS has a considerable corre-
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Fig. 5.13. Evaluation of slave APS estimation. The RMS (unit: mm) of the estimation
error made by the collocation method is shown in blue and the mean of the RMS is
2.1mm. In contrast, the RMS of the estimation error made by the filtering method
is shown in red and the mean of the RMS is 3.4mm. The mean of the RMS of the
real RMS of slave APS shown in green is 8.7 mm. For the filtering method a Gaussian
window with a window length of 1-year is used.
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Fig. 5.14. Evaluation of the deformation rate (unit: mm/year) estimation. a) Simulated
deformation rate. b) Estimated deformation rate by the collocation method. ¢) Esti-
mated deformation rate by the filtering method (unweighted least-squares). d) Scatter
plot of the two estimates. Their estimation errors are displayed in Fig. 5.15.
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made by the collocation method. b) Estimation error made by the filtering method.
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Fig. 5.16. Evaluation of the total deformation estimates for four PSs who have both
deterministic and stochastic ground deformations (unit: mm). The simulated ground
deformation is shown in green, the estimate from the filtering method (1-year Gaussian
window) is shown in red and the estimate from the collocation method is shown in blue
with an estimated errorbar for each estimate in the time series. a) PS No.3 whose
distance to the reference PS is 106 pixels. The RMS errors made by the collocation
and filtering methods are 4.3 and 8.6 mm respectively. b) PS No.7 whose distance to
the reference PS is 72 pixels. The RMS errors made by the collocation and filtering
methods are 3.8 and 4.8 mm respectively. ¢) PS No. 15 whose distance to the reference
PS is 115 pixels. The RMS errors made by the collocation and filtering methods are 6.4
and 11.0 mm respectively. d) PS No.26 whose distance to the reference PS is 61 pixels.
The RMS errors made by the collocation and filtering methods are 6.2 and 9.7 mm

respectively.

lation in time, especially among a sub-series of acquisitions in which one acquisition
has a relatively large APS RMS. To show that, we plot the estimation errors of slave
APS made by the collocation and the filtering method in Figs. 5.21 and 5.22 respec-
tively for the 8, 9, 10 and 11th acquisitions. Among these acquisitions, the 10th
slave APS shown in Fig. 5.20 has the largest RMS in the time series (see Fig. 5.19).
Comparing Figs. 5.21 and 5.22 we find that the correlation is stronger among the
estimation errors made by the filtering method. For instance, a clear positive esti-
mation error from down-left to up-right can be seen in every subplot of Fig. 5.22.
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Fig. 5.17. Evaluation of the total deformation estimates for the PSs who have only
deterministic deformation (unit: mm). The simulated ground deformation is shown in
green, the estimate from the filtering method (1-year Gaussian window) is shown in red
and the estimate from the collocation method is shown in blue with an estimated errorbar
for each estimate in the time series. a) PS No.81 whose distance to the reference PS
is 47 pixels. The RMS errors made by the collocation and filtering methods are 0.5 and
1.6 mm respectively. b) PS No.130 whose distance to the reference PS is 90 pixels.
The RMS errors made by the collocation and filtering methods are 1.1 and 1.8 mm
respectively. ¢) PS No. 131 whose distance to the reference PS is 143 pixels. The RMS
errors made by the collocation and filtering methods are 1.4 and 2.5 mm respectively.
d) PS No. 141 whose distance to the reference PS is 122 pixels. The RMS errors made
by the collocation and filtering methods are 1.6 and 2.3 mm respectively.

By comparing the pattern of the estimation error to the 10th slave APS shown in
Fig. 5.20 we can conclude that the strong correlation is caused by the leakage of the
APS in the 10th slave acquisition. The estimation error made by the collocation
method is smaller and less correlated in time, i.e., less leakage. This is what we
can expect because the collocation method takes the temporal variability of APS
into account and weight the observations accordingly, see discussion in section 4.4.
Note, if we use the full time series (12-day temporal resolution) instead of the 36-day
time series the correlation between the estimation errors will be much lower. This
is because there are more observations are involved in averaging APS.
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Fig. 5.18. Evaluation of the total deformation estimates for the PSs who are deformation
free. The simulated ground deformation is shown in green, the estimate from the filtering
method (1-year Gaussian window) is shown in red and the estimate from the collocation
method is shown in blue with an estimated errorbar for each estimate in the time series.
a) PS No. 159 whose distance to the reference PS is 114 pixels. The RMS errors made
by the collocation and filtering methods are 1.8 and 2.5 mm respectively. b) PS No. 187
whose distance to the reference PS is 51 pixels. The RMS errors made by the collocation
and filtering methods are 0.4 and 1.8 mm respectively. ¢) PS No.200 whose distance
to the reference PS is 115 pixels. The RMS errors made by the collocation and filtering
methods are 1.6 and 2.2 mm respectively. d) PS No. 203 whose distance to the reference
PS is 61 pixels. The RMS errors made by the collocation and filtering methods are 0.76
and 1.6 mm respectively.

5.3 Result validation: a-priori knowledge of deformation is unknown

In this section our goal is to investigate how good our collocation method will per-
form when a-priori knowledge of ground deformation is not known exactly. We have
shown in section 5.2 that given the right assumptions (i.e., a-priori knowledge) about
the ground deformation (i.e., deterministic and stochastic models) the collocation
method always outperforms the standard filtering method. In the following investi-
gation we will assess the sensitivity of the collocation method to the functional and
stochastic model of deformation separately.
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Table 5.2. An overview of the validation result when a-prior knowledge is available. The
satellite repeat orbit is 12-day. The column of Correlation is w.r.t. the ground truth
(i.e., simulation). * is used to indicate that the value is an average over all slave APS.
** is used to indicate that the value is an average over the time series of all PSs. The
value within the parentheses indicates the relative estimation error w.r.t. the original
signal (simulation) in percentage. For the filtering method a Gaussian window with a
1-year length is used.

Variable Mean error  RMS error  Correlation
Stochastic parameters
Deformation RMS [mm] -1.2 3.3 0.69
Deformation correlation length [year] 0.12 0.43 -
Deformation false alarm [mm)] 2.3 2.6 -
APS RMS [mm] 0.0 1.2 0.95
APS correlation length [pixels] 10.1 28.8 0.59
APS smoothness (1) -0.1 0.33 -
Signals
Deformation rate (collocation) [mm/year] 0.46 3.3 0.89
Deformation rate (filtering) [mm/year] 0.78 3.3 0.87
Master APS (collocation) [mm)] -0.28 1.9 (25%) 0.97
Master APS (filtering) [mm] -0.6 4.5 (52%) 0.87
Slave APS (collocation) [mm] -0.24* 2.1* (24%) 0.98*
Slave APS (filtering) [mm] -0.5* 4.9* (40%) 0.84*
Total deformation (collocation) [mm)] -0.1** 3.1** (35%) 0.94**
Total deformation (filtering) [mm] -0.1** 4.8 (55%) 0.84**

5.3.1 Sensitivity to the stochastic model

In this scenario we only change the stochastic model for modeling the stochastic
ground deformation. We choose Gaussian and spheric models to evaluate the sensi-
tivity. In section 5.1 we have demonstrated by simulations (see Fig. 5.3) that given
identical model parameters Gaussian model leads to a very smooth random field
whereas spheric model results in a rather rough random field. We summarize the
validation results based on the original simulation (full time series with 12-day tem-
poral resolution) in Tab. 5.4 where Gaussian model is used and in Tab. 5.5 where
spheric model is used. In general, the results based on these two stochastic models
are similar. More specifically, the result based on spheric model has more or less
the same accuracy as the result obtained based on hole effect model (see Tab. 5.2)
which is the model used for simulating the stochastic deformation. This might be
explained by the similarity between the simulations generated from these models us-
ing the same model parameters (i.e., variance and correlation length), see Fig. 5.3.
The Gaussian model based result is less accurate and this is most likely due to
its smooth nature. Nevertheless, even a less appropriate stochastic model is used
the collocation method still gives a more accurate result than the filtering method.
We believe this is mainly because of the robustness of the stochastic modeling of
APS (i.e., temporal and spatial variance-covariance estimations), Moreover, we find
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Table 5.3. An overview of the validation result when a-prior knowledge is available. The
satellite repeat orbit is 36-day. The column of Correlation is w.r.t. the ground truth
(i.e., simulation). * is used to indicate that the value is an average over all slave APS.
** is used to indicate that the value is an average over the time series of all PSs. The
value within the parentheses indicates the relative estimation error w.r.t. the original
signal (simulation) in percentage. For the filtering method a Gaussian window with a
1-year length is used.

Variable Mean error  RMS error  Correlation
Stochastic parameters
Deformation RMS [mm] -1.3 4.0 0.68
Deformation correlation length [year] 0.08 0.71 -
Deformation false alarm [mm)] 3.1 3.5 -
APS RMS [mm] 0.0 1.8 0.94
APS correlation length [pixels] 11.9 36.0 0.49
APS smoothness (1) -0.4 0.47 -
Signals
Deformation rate (collocation) [mm/year] 0.43 3.7 0.87
Deformation rate (filtering) [mm/year] 14 3.7 0.85
Master APS (collocation) [mm)] 0.4 2.5 (32%) 0.95
Master APS (filtering) [mm] 0.4 4.2 (52%) 0.90
Slave APS (collocation) [mm] 0.6* 2.9* (36%) 0.96*
Slave APS (filtering) [mm] 0.6* 5.4* (55%) 0.81*
Total deformation (collocation) [mm)] -0.37** 4.0** (44%) 0.90**
Total deformation (filtering) [mm] -0.13** 5.6" (62%) 0.80**

that the collocation method is more sensitive to the temporal resolution of input
data than the choice of the stochastic model for deformation. This can be seen by
comparing the results in Tab. 5.4 and Tab. 5.5 with the result in Tab. 5.3.

5.3.2 Sensitivity to the functional model

In section 5.1 we simulate the deterministic deformation as a linear function of
time (i.e., a constant deformation rate), see Eq. (5.1.1). To assess the sensitivity
of our collocation method to the functional model we re-simulate the deterministic
deformation using a quadratic model in time as:

d(T) = viT? + viT, (5.3.1)

where vi (€ (1,10) mm) and v (€ (2,20) mm) are the model parameters for the PS
1. We apply the collocation method to the new simulation using the linear function
in Eq. (5.1.1) for modeling the deterministic deformation. The validation result in
listed in Tab. 5.6. From the table we find that the deformation correlation length
is largely overestimated by approximately 5 months. In addition, the deformation
RMS for the second category PSs who have stochastic deformation (see section 5.1)
is also overestimated by 2.6 mm. Moreover, for PSs who do not have stochastic
deformation (the first and third category PSs) the deformation false alarm (i.e., a
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Fig. 5.19. Evaluation of the slave APS estimation for a time series with a 36-day
temporal resolution. The RMS (unit: mm) of the estimation error made by the collocation
method is shown in blue and the mean of the RMS is 2.9 mm. In contrast, the RMS of
the estimation error made by the filtering method is shown in red and the mean of the
RMS is 5.4mm. The mean of the RMS of the simulated slave APS shown in green is
8.1mm. For the filtering method a Gaussian window with a window length of 1-year is
used.

non-zero deformation RMS) is doubled with respect to the corresponding value in
Tab. 5.2. All these overestimation effects are caused by the inappropriate functional
model (i.e., the linear model) used for modeling the deterministic deformation. More
precisely, the difference (i.e., discrepancy) between the modeled linear deformation
and the realistic quadratic deformation is identified by the collocation method as the
stochastic deformation since this difference is strongly correlated in time just as the
real (simulated) stochastic deformation. Moreover, regarding master APS estima-
tion the filtering method results in a considerable bias but the collocation method
does not. The bias is caused by the leakage of deformation. That is the difference
between the modeled linear deformation and the realistic quadratic deformation is
partly identified by the filtering method as the master APS which is a constant in
time (i.e., perfectly correlated). Due to the leakage of deformation the accuracy of
the total deformation estimation obtained by the filtering method is much worse
than the accuracy achieved by the collocation method. In conclusion, the colloca-
tion method is more robust than the filtering method when the a-priori knowledge
of the functional model for ground deformation is unknown. In such a case, the
unmodeled deformation, i.e., difference between modeled deformation by the chosen
functional model and real deformation, can be incorporated into the stochastic part
of deformation by the collocation method and prevent it being leaked to master
APS.

5.4 Summaries

In this chapter we have assessed the performance of the collocation method developed
in chapter 4 using simulated InSAR time series. We find the collocation method is
robust and always results in a better estimation of ground deformation and APS
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Fig. 5.20. Simulated (real) APS for the 10th slave acquisition. The simulated APS
(unit: mm) has the largest delay RMS among all slave acquisitions, see Fig. 5.19.

compared to the standard window-based filtering method (see section 4.1). For
ground deformation simulation, we divide the simulated PS (time series) into three
categories. The first category consists of PSs whose deformation is simulated using
a linear function of temporal baseline (see Eq. (5.1.1)), i.e., constant deformation
rate. The deformation on the PSs from the second category is composed by a
deterministic trend plus a stochastic variation. The deterministic trend is simulated
using the linear function and the stochastic variation is simulated using a hole effect
variance covariance model (see Eq. (5.1.3)). The PSs in the third category does
not undertake any deformation. The APS per acquisition is simulated using Matern
variance-covariance model in Eq. (7.2.17). The variance of the simulated APS varies
from one acquisition to another to account for the temporal variability of APS (see
Fig. 5.2). Orbit errors are simulated as long-wavelength spatial trends and phase
noise is simulated as white noise. Finally, the simulated signals are combined and
double differenced (in time and in space) to form input data for the collocation
method. The time span of the full time series is 3 years with a 12-day temporal
resolution (i.e., repeat orbit).

The best result of the collocation method is achieved when a-priori knowledge of
ground deformation (i.e., the functional and stochastic model used for simulating
ground deformation) is given to the collocation method. In terms of the stochastic
modeling of APS, the APS RMS estimation per acquisition is unbiased and the
correlation between the estimate and ground truth is 0.95. The spatial correlation
length of APS can also be estimated reasonably well but less satisfactorily with a
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Fig. 5.21. Estimation error(unit: mm) of slave APS made by the collocation method.
a) Estimation error for the 8th slave APS. b) Estimation error for the 9¢h slave APS.
c) Estimation error for the 10th slave APS. d) Estimation error for the 11¢h slave APS.
Note, the estimation errors, e.g., positive residues in the down-left of each subplot, have
a noticeable correlation in time. This is caused by the leakage of APS in the 10th slave
acquisition, see Fig. 5.20.

correlation of 0.59 with respect to the ground truth. In terms of the stochastic model
of ground deformation, the estimate of ground deformation RMS (for the stochastic
part) on the second category PSs is slightly biased by -1.2mm and the correlation
between the estimate and the ground truth is 0.69. It is more difficult to estimate
the correlation length of deformation in time. Its estimate is either too small (i.e.,
close to the specified lower search boundary) or too large (i.e., close to the specified
upper search boundary). Moreover, the collocation method may arise false alarm of
ground deformation on PSs who do not have stochastic deformation by simulation.
The probability of giving false alarm is high (91 out of 225 PSs) but the magnitude
of the false alarm is relatively small, i.e., ranges from 0 to 5mm with a mean of
2.3mm. In terms of APS estimation, the collocation method can result in 75%
delay reduction for master APS and 76% delay reduction on average for slave APS.
In contrast, the delay reduction is 48% and 60% (on average) for master and slave
APS respectively when the filtering method is used. In terms of ground deformation
estimation, the estimate from the collocation method is strongly correlated with the
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Fig. 5.22. Estimation error(unit: mm) of slave APS made by the filtering method. a)
Estimation error for the 8th slave APS. b) Estimation error for the 9th slave APS. c)
Estimation error for the 10th slave APS. d) Estimation error for the 11¢h slave APS.
Note, comparing to the estimation errors shown in Fig. 5.21, the estimation errors made
by the filtering method is larger and more correlated in time. This is because the filtering
method does not take the temporal variability of APS into account and equally weight
APS for all acquisitions, see discussion in section 4.4.

ground truth (0.94). In contrast the correlation between the estimate of filtering and
the ground truth is 0.84. Moreover, the estimated ground deformation time series
by the filtering method always present an artificial seasonal pattern with a period
of approximately 0.5 year (see Figs. 5.17 and 5.18). The artificial pattern is caused
by leakage of APS to deformation.

We have also evaluated the performance of the collocation method when a-priori
knowledge of deformation is unknown. In one scenario, we assign an imperfect
stochastic model (i.e., Gaussian or Spheric) to the collocation method. We find
that the stochastic modeling of deformation and APS is almost unaffected and the
final APS and deformation estimation become slightly less accurate when Gaussian
model is used. We believe the degrade of estimation accuracy has something to do
with the smooth nature of Gaussian model. Even when Gaussian model is used the
collocation method still outperforms the filtering method in all aspects. In a second
scenario, we re-simulate the deterministic ground deformation using a quadratic
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Table 5.4. An overview of the validation result when a-prior knowledge of stochastic
deformation (i.e., hole effect model) is unknown. Gaussian model is used to model the
stochastic deformation. The satellite repeat orbit is 12-day. The column of Correlation
is w.r.t. the ground truth (i.e., simulation). * is used to indicate that the value is an
average over all slave APS. ** is used to indicate that the value is an average over the
time series of all PSs. The value within the parentheses indicates the relative estimation
error w.r.t. the original signal (simulation) in percentage. For the filtering method a
Gaussian window with a 1-year length is used.

Variable Mean error  RMS error  Correlation
Stochastic parameters
Deformation RMS [mm] 1.0 4.3 0.7
Deformation correlation length [year] 0.26 0.31 -
Deformation false alarm [mm)] 3.2 3.6 -
APS RMS [mm] 0.1 1.3 0.95
APS correlation length [pixels] 8.7 24.6 0.62
APS smoothness (1) -0.1 0.36 -
Signals
Deformation rate (collocation) [mm/year] 0.25 3.3 0.89
Deformation rate (filtering) [mm/year] 0.78 3.6 0.87
Master APS (collocation) [mm)] 0.0 2.1 (28%) 0.96
Master APS (filtering) [mm] -0.6 4.5 (52%) 0.87
Slave APS (collocation) [mm] -0.20* 2.2* (26%) 0.97*
Slave APS (filtering) [mm] -0.5* 4.9* (40%) 0.84*
Total deformation (collocation) [mm)] 0.2 ** 3.4** (39%) 0.92**
Total deformation (filtering) [mm] -0.1** 4.8 (55%) 0.84**

model (see Eq. (5.3.1)) in time. We find that the master APS estimation obtained
by the filtering method is very sensitive to the imperfection in the functional model
and an estimation bias of 3.4mm is observed. On the contrary, the result from
the collocation method is not affected by the imperfection. This is because the
temporally correlated unmodeled deterministic deformation (i.e., difference between
the modeled deformation by the linear model and the real quadratic deformation)
is incorporated into the stochastic deformation and modeled stochastically by the
collocation method. In this sense, we conclude that the collocation method is more
robust in practice when a-priori knowledge of deformation is unknown.

Finally, we find the most influencing factor for separating ground deformation and
APS is the temporal resolution of the input data, i.e., satellite revisit frequency. Ob-
viously, given the same a-priori knowledge about ground deformation, the dataset
with lower temporal resolution leads to a less accurate result. It has been demon-
strated by simulated time series with a 36-day temporal resolution spanning 3 years
(see Tab. 5.3). Moreover, in terms of slave APS estimation we find its estimation
error is noticeably correlated in time. The estimation error made by the filtering
method can be large and strongly correlated (see Figs. 5.21 and 5.22). This usually
happens in the neighborhood of an acquisition which has a relatively large APS
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Table 5.5. An overview of the validation result when a-prior knowledge of stochastic
deformation (i.e., hole effect model) is unknown. Spheric model is used to model the
stochastic deformation. The satellite repeat orbit is 12-day. The column of Correlation
is w.r.t. the ground truth (i.e., simulation). * is used to indicate that the value is an
average over all slave APS. ** is used to indicate that the value is an average over the
time series of all PSs. The value within the parentheses indicates the relative estimation
error w.r.t. the original signal (simulation) in percentage. For the filtering method a
Gaussian window with a 1-year length is used.

Variable Mean error  RMS error  Correlation
Stochastic parameters
Deformation RMS [mm] -0.9 3.2 0.72
Deformation correlation length [year] 0.17 0.35 -
Deformation false alarm [mm)] 2.4 2.6 -
APS RMS [mm] 0.0 1.2 0.95
APS correlation length [pixels] 10.4 29.0 0.57
APS smoothness (1) -0.1 0.33 -
Signals
Deformation rate (collocation) [mm/year] 0.45 3.3 0.88
Deformation rate (filtering) [mm/year] 0.78 3.6 0.87
Master APS (collocation) [mm)] -0.27 1.9 (25%) 0.97
Master APS (filtering) [mm] -0.6 4.5 (52%) 0.87
Slave APS (collocation) [mm] -0.24* 2.1* (24%) 0.98*
Slave APS (filtering) [mm] -0.5* 4.9* (40%) 0.84*
Total deformation (collocation) [mm)] -0.1 ** 3.1%* (36%) 0.93**
Total deformation (filtering) [mm] -0.1** 4.8 (55%) 0.84**

RMS, i.e., an acquisition taken during an extreme weather.

In next chapter we are going to assess the collocation and filtering methods using
real interferograms over both flat and mountainous regions.
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Table 5.6. An overview of the validation result when a-prior knowledge of the deter-
ministic deformation (i.e., quadratic model, see Eq. (5.3.1)) is unknown. The linear
model in Eq.(5.1.1) is used to model the deterministic deformation. The satellite repeat
orbit is 12-day. The values in the Correlation column is w.r.t. the ground truth (i.e.,

*

simulation).

is used to indicate that the value is an average over the time series of all

slave APS. ** is used to indicate that the value is an average over all PSs. The value
within the parentheses indicates the relative estimation error w.r.t. the original signal
(simulation) in percentage. For the filtering method a Gaussian window with a 1-year

length is used.

Variable Mean error  RMS error  Correlation
Stochastic parameters
Deformation RMS [mm] 2.6 3.1 0.68
Deformation correlation length [year] 0.4 0.28 -
Deformation false alarm [mm)] 5.4 6.1 -
APS RMS [mm] 0.1 1.3 0.94
APS correlation length [pixels] 6.9 23.0 0.55
APS smoothness (1) -0.1 0.34 -
Signals
Deformation rate (collocation) [mm/year] - - -
Deformation rate (filtering) [mm/year] - - -
Master APS (collocation) [mm)] 0.1 2.0 (26%) 0.97
Master APS (filtering) [mm] 3.4 6.7 (57%) 0.78
Slave APS (collocation) [mm] -0.16* 2.3* (27%) 0.97*
Slave APS (filtering) [mm] -0.6* 5.0* (41%) 0.83*
Total deformation (collocation) [mm] 0.25 ** 3.4** (31%) 0.95**
Total deformation (filtering) [mm] 4.2%* 6.5 (59%) 0.80**
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Chapter 6

Application of the least-squares collocation

method to PSInSAR

In this chapter we assess the developed collocation method using real InSAR time
series. To make the assessment generally acceptable we choose four areas, i.e., Dubai,
Mexico City, the Netherlands and Hawaii, belonging to different climatic regions.
Among them Hawaii has the most significant topography variation which often leads
to a strong vertical stratification effect in atmospheric phase screen (APS). Water
vapor variation in Dubai is significant, which is driven by the large air humidity.
Moreover, significant acquisitions gaps are presented in the ASAR time series which
is used for PS analysis. In Mexico city, large deformation rate (; 40 cm/year) is
observed and non-linear deformation in some regions is expected. For assessing the
APS estimates of the collocation method we compare the estimates with cloud-free
MERIS measurements (if available), short temporal baseline interferograms and the
APS estimates obtained from the standard filtering method (see section 4.1 and
Ferretti et al. (2000)).

Since we do not have ground truth of deformation in these areas we attempt to
evaluate the estimated ground deformation internally by comparing the results of
the collocation and filtering methods. In principle, a better APS estimation will
lead to a better separation of deformation and APS. Based on the evaluation of the
APS estimates from the two methods we are able to identify the leakage from APS
to deformation or the other way around in one of the methods or both. The chapter
is organized as fellow. InSAR data pre-processing prior to the application of the
collocation method is elaborated in section 6.1 . FEach section between 6.2 to 6.5 is
dedicated for one case study for one of the chosen areas. Summaries and conclusions
are given in section 6.6.

6.1 Pre-processing

In this section we provide the details of data pre-processing including single-master
interferogram formation, PS selection, PS network construction and phase unwrap-
ping. All these steps are necessary to provide input data (i.e.,unwrapped phase)
for the least-squares collocation method elaborated in Chapter 4. The software
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used for the pre-processing are: Doris (Delft Object-oriented Radar Interferometric
Software) (Kampes and Usai, 1999), DePSI (Delft PSI) (Kampes, 2005; Ketelaar,
2008; Samiei-Esfahany, 2008) and StaMPS (Stanford Method for Persistent Scat-
terers) (Hooper, 2006).

6.1.1 Single master interferogram formation

Given K+1 SLC (Single Look Complex) images, K interferograms are formed with
respect to a common SLC image called master (denoted as m). Usually, the master
image is selected such that the dispersion of the perpendicular baselines is minimum,
see Colesanti et al. (2003). In DePSI, the master image is selected by maximizing
the expected stack coherence of the interferometric stack. The stack coherence is
defined as (Kampes, 2005):

K

3" g(BE™ B x g(TH™, Tax) X g(f5", f120), (6.1.1)
k=0

_ 1
T TK
where

[ 1—z|/c if|z| < ¢,
9(@,c) = { 0 otherwise, (6.1.2)

and Bi’m is the perpendicular baseline between images m and k at the center of the

image, T%™ is the temporal baseline and fécc’m is the Doppler baseline (the mean
Doppler centroid frequency difference). In this study we use 1500 meters, 15 years
and1380 Hz for B"®*, Tiax and f** respectively.

C
In the time domain an interferogram is formed by dot-multiplication of correspond-
ing phases (pixel-wise) in master and slave after resampling the slave to the master
geometry. The dot-multiplication is equivalent to a convolution in frequency do-
main, consequently, after the convolution the bandwidth of the interferogram is
larger than the bandwidth of any of the SLCs. To avoid an aliasing effect caused by
the increased bandwidth in combination with constant sampling frequency, all slave
images are oversampled by a factor of two in both range and azimuth. Here, we
need to stress that the oversampling does not improve the image spatial resolution
because the image bandwidth is not increased by the oversampling. After over-
sampling, slave images are co-registered and resampled with respect to the master
geometry. In rural areas and for interferograms having large temporal and perpen-
dicular baselines, the co-registration step could be difficult due to significant signal
decorrelation (Zebker and Villasenor, 1992; Gatelli et al., 1994). The difficulty can
be relieved by distributing the co-registration windows around bright pixels (i.e., lo-
cal amplitude maxima which are likely corresponding with terrain features that are
stable in time) in master. Alternatively Hooper et al. (2007) develop an amplitude
based algorithm which coregistrates image pairs having good correlation. Usually
these image pairs have different masters with short temporal and perpendicular
baselines. Moreover, for high resolution SAR images (e.g., TerraSAR-X) acquired
over mountainous regions the co- registration becomes more difficult due to large
topography variations. In such cases, a DEM assisted co-registration algorithm can
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be applied, see Arikan et al. (2008); Nitti et al. (2011). After co- registration, slave
images are resampled with respect to the master image geometry.

Next, interferograms are formed between the master and resampled slaves. We do
not apply any spectral or phase filtering before generating the interferograms since
these operations will shorten the measurable bandwidths of point targets. After-
wards, a so-called “flat earth” phase that is introduced by the WGS84 reference
surface is computed and removed using ESA’s precise satellite orbits (Scharroo and
Visser, 1998). The precise orbit is also used during the co-registration step to approx-
imately compute the offsets between master and slave geometries. Finally, the phase
contribution due to local land topography is modeled and subtracted using SRTM
(Shuttle Radar Topography Mission) DEM (Farr et al., 1999; Rao and Phalke, 2001;
Rosen et al., 2001) which is available for the earth surface between —57° and 60°
with a 3 arc second lateral resolution. However, it has been pointed out by Colesanti
et al. (2003) that it is not absolutely necessary to remove the topographic phase
during the formation of interferograms. Alternatively, its removal can be carried out
in the PS analysis. Nevertheless, in our data processing we perform the topography
phase removal using SRTM and in our PS analysis we still model the topography
contribution that actually accounts for the inaccuracy of SRTM. The processing
chain for single master interferograms formation is sketched in Fig. 6.1.

6.1.2 Time series analysis using DePSI
Identification of PS candidates

Due to phase decorrelation not every pixel in an interferogram is useful for a time
series analysis. Only pixels that contain point-like targets are useful and these targets
often correspond to man-made objects. The selection of such pixels based on their
phases is prevented by the wrapped nature of the interferometric phase. Instead,
the selection is often carried out by analyzing the amplitude of each pixel. Ferretti
et al. (2001) use a so-called amplitude dispersion index D, as a criteria for selecting
the useful pixels. D, is defined as:

Oa
D, = -2, 6.1.3
- (6.1.3)

where o, is the temporal standard deviation of the amplitude and a is the temporal
mean of the amplitude for a certain pixel. Ferretti et al. (2001) show that for a
constant signal and high signal to noise ratio (SNR), D, is a good approximation
of the phase standard deviation og4, i.e., D, =~ 04. Pixels which have a low D,
(e.g., D, < 0.4) is identified as a potential Persistent Scatterer. In urban areas using
D, =0.4 will typically result in a large number of pixels being identified as potential
PS (> 3 PSC/km?). Such a high density of PS is usually not needed for APS
estimation at a later stage but imposes a huge burden on numerical computations.
Usually a PS density of 3 PS/km? is sufficient (Colesanti et al., 2003) for estimating
APS. To keep a sufficient PS density, two groups of potential PSs are selected in
DePSI. The first group consists of potential PSs which have an amplitude dispersion
index less than a threshold of ~ 0.25. The potential PSs in the second group typically
have a threshold larger than 0.25 but smaller than 0.4. Given a sufficient number of



94 Chapter 6: Application of the least-squares collocation method to PSInSAR
Master Slave
- SLC SLC
Precise
orbit
Oversampling
by a factor of 2
Image
coregistration

Precise
orbit

Oversampling
by a factor of 2

Slave resampling Input magnitude image
(knab6p) for initial PS selection

Raw interferogram
generation

Coherence map Removal of flat earth (WGS-84) and
generation land topography phase (SRTM)

Input interferogram

for DePS| DePSl inputs

Fig. 6.1. Flow diagram for an interferogram generation using Doris.

SAR images (e.g., > 30), the amplitude dispersion based selection is very successful
in identifying potential PSs in urban areas (Ferretti et al., 2001). However, in
rural areas and when the number of available SAR images is small (e.g., <20)
the density of the PS selected by the method is often too small to allow for a
reliable phase unwrapping (Hooper, 2006; Hooper et al., 2007). In such cases, the PS
selection approach introduced by Hooper (2006) based on the pixel spatial coherence
is preferred. Nevertheless, in our data processing we use the amplitude dispersion
based method since the number of available images is more than sufficient and
the areas of interest are mainly urban areas. Here we need to stress that prior
to the computation of D, all SLC images need to be calibrated in terms of their
amplitudes. The reason for the calibration is to avoid amplitude variations due to
sensor characteristics and viewing geometry. Different calibration methods can be
found in Laur et al. (2002); Cassee (2004); Ketelaar (2008).

Network construction based on PS

Based on the selected PS which have a low amplitude dispersion index (e.g., < 0.25)
a spatial network connecting all the PS can be formed for each interferogram. The
formed network is referred to as the first-order network in DePSI. The arc (i.e., line
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connecting two PS points) length of the network is restricted to a certain maximum
to minimize the influences from atmosphere, orbit uncertainty, etc. A redundant
network is preferred since it will provide redundant observations (i.e., phase differ-
ence between an arc) for error detection in the phase unwrapping step. Commonly
used approaches for network construction include Delaunay triangulation and spider
networks, see Kampes (2005); Ketelaar (2008).

Phase unwrapping

After forming the first-order networks, the phase unwrapping is carried out in time
per arc. In DePSI the temporal unwrapping for each arc time series is regarded as
an estimation problem whose observation equations can be for example written as:

Q; —27 al 51 BT(I) 1 AR
2 x
i T Tle|® @
d)'K R I PO BE BT(K) 1 aps
B (6.1.4)

where the K by 1 vector on the left side of equation contains the time series of the
wrapped phase of an arc, a® is the unknown integer phase ambiguity for interfero-
gram k, B% is the height to phase convector (see Eq. (4.3.3)), BT is an K by 1 vector
that contains the temporal baseline of interferograms, Ah is the uncertainty of DEM
(SRTM in our case), v is the unknown deformation rate (linear deformation model)
and ¢ . is the unknown phase due to master APS.

Obviously Eq. (6.1.4) is undetermined (i.e., the number of unknowns is larger than
the number of observations). Therefore, additional constraints have to be added in
order to achieve a unique solution. As addressed by Hanssen et al. (2001); Bianchi
(2003) the constrained observation equation can be written as:

i Eﬂ} - {ﬁj ot {gj b, (6.1.5)

Pt Ej} N [le Qyj ’ (6.1.6)

where y A; and Bj; are defined by Eq. (6.1.4), Ay is a 3by K zero matrix , Bs
is a 3by3 identity matrix and y, is a 3by1 zero vector. Operator D{.} denotes
the dispersion of the observations. There are various algorithms to solve Eq. (6.1.5),
such as ambiguity function (Counselman and Gourevitch, 1981; Ferretti et al., 2001),
integer bootstrapping (Teunissen, 2001; Kampes and Hanssen, 2004) and integer
least-squares (Teunissen, 2001; Kampes and Hanssen, 2004). In our data processing
the integer bootstrapping is used as the default algorithm. The advantages of which
over the other algorithms are: 1. the stochastic properties of the observations are
taken into account; 2. it is computationally efficient and the computation load does
not increase with the increase of parameters added to Eq. (6.1.4).

m
aps

with

After estimation of the unknown parameters in Eq. 6.1.4 per arc, a spatial phase
unwrapping is carried out for all arcs per interferogram. The spatial phase differ-
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Fig. 6.2. Flow diagram for PSI analysis using DePSI. The contribution of the developed
least-squares collocation method to DePS! is highlighted by the dashed ellipse. Note, in
this diagram we use PSC (PS candidate) to refer to the PS which has a lower amplitude
dispersion index and belongs to the first-order PS network. The PS which has a higher
amplitude dispersion index and belongs to the second-order PS network is referred to as
PSP (PS potential).

ence per arc is integrated to the phase difference with respect to a common PS,; i.e.,
the fixed reference PS. Because the spatial network formed by the arcs is redun-
dant, thus during the integration step possible temporal unwrapping errors (due to
mis-identified PSC or imperfection of the deformation model) can be checked and
rejected by following a DIA (Detection, Identification and Adaptation) procedure,
see Baarda (1968); Teunissen (2000b). In this sense, the spatial phase unwrapping is
actually equivalent to a free network adjustment in Geodesy such as leveling network
adjustment. Note, the spatial unwrapping can be time-consuming when the success
rate of the temporal unwrapping is low, which could be caused by the quality of
the selected potential PS. This is another advantage to choose PS with very low
amplitude dispersion (D, < 0.25) during the PS identification step. Moreover, it has
been pointed out by Ketelaar (2008) that the choice of the reference PS of the net-
work is arbitrary because the relative accuracy of the phase difference between two
arbitrary PS is independent of the choice. However, to apply the collocation method
the reference PS has to be stable and does not suffer from any ground deformation,
see Chapter 4 for the discussion.
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APS estimation and interpolation

The APS estimation in DePSI starts with the phase residue (unwrapped) which
reads:

res __ gunwrap defo dem m
' = P — lefo _ glem _ gm

B (6.1.7)
=Y — D1y,

where @"""*P (also y) is the unwrapped phase with respect to the reference PS, pdefo
is the modeled (functional model) deformation phase, ®%°™ is the phase caused by
DEM inaccuracy and @7 is the master APS. By and b are defined in Eq.(6.1.4) in
case of a linear deformation model.

Before the collocation method being developed, the parameter vector b is estimated
by a weighted least-squares:

b= (BTW,By) ' BIw, 1y, (6.1.8)

where the weight matrix W is the inverse of the variance-covariance matrix of the
phase noise Qnoise- It is a diagonal matrix (i.e., the phase noise is uncorrelated in
time) and is estimated before phase unwrapping from the first-order network formed
by PS, see Kampes (2005). In the collocation method b is estimated using the best
linear unbiased estimator (BLUE), which uses Qy ! as the weight matrix, see Chapter
4. The details for the APS estimation and interpolation using the standard filtering
method and the collocation method are given in Chapter 4.

Phase unwrapping for the PS in the second-order network

As mentioned previously, a group of pixels which have D, ranges between 0.25 and
0.4 are also identified as PS. The interpolated APS at these pixels are removed and
the same temporal phase unwrapping discussed before is carried out. Afterwards, a
spatial unwrapping (integration) is carried out with respect to its closest PS which
has D, less than 0.25. Finally, a selection of final PS is made based on a so-
called temporal ensemble coherence (Ferretti et al., 2001) or a so-called a-posteriori
variance factor (Kampes, 2005). For each PS, the topography height inaccuracy
(height residue), ground deformation and APS are obtained with respect to the pre-
selected reference PS. The diagram of the time series analysis using DePSI is given
in Fig. 6.2.

6.2 Dubai

In chapter 4 we review the filtering method and introduce the collocation method.
By comparing the two methods we find that there is a strong connection between the
two, i.e., the filtering method is a special realization of the collocation method under
certain circumstances (see discussion in section 4.4). One of the circumstances is
when ground deformation is negligible. In such case, the variance-covariance matrix
of the deformation is a null matrix. As a result, the two methods will give comparable
results for deterministic variables such as deformation rate, DEM uncertainty and
master APS which are constants in time (in the filtering method, the estimation
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of the deterministic variables is done by weighted least-squares, see Eq. (6.1.8)).
Nevertheless, the advantage of the collocation method is that it not only provides
the estimates of the variables but also gives the expected precisions of the estimates.
The filtering method however cannot provide a similar quality assessment.

On the other hand, with regards to slave APS estimation, the two methods will in
general lead to different results. The difference will be relatively large for acquisitions
taken under extreme weather (e.g., thunderstorm) and when there are acquisition
gaps in the time series. This is because the filtering method does not take into
account the varying magnitude of APS per acquisition and weight all acquisitions
equally. As a result, the temporal averaging in the filtering method cannot suffi-
ciently average out APS in the time series, see discussions in section 4.4. Therefore,
the APS estimates from the filtering method will be biased, which results in part of
the APS being identified as non-linear deformation. This is the case for Dubai city
where the ground deformation is negligible and there are significant acquisition gaps
in the ASAR time series and extreme weather in summer is not rare.

6.2.1 Test sites and data

Dubeai city has several desirable aspects to select it as the first test site for evaluating
the collocation method as presented in chapter 4. Firstly, it is a large and modern
city with lots of man-made infrastructure, which provides a high quality pool of
PS. Secondly, it has a humid atmosphere especially in summer (between June and
September) due to sea water evaporation. The recorded maximum and minimum
temperature is 41° C in August and 14.3° C in January respectively between 1984
and 2009 (Dubai Meteorological Office, 2011). The combination of high temperature
and high humidity in summer can make atmospheric conditions extremely unstable.
In addition, the annual precipitation over the city is less than 100 mm and most
rainfall takes place in winter (Dubai Meteorological Office, 2011). Thirdly, because
of the local climate cloud-free MERIS water vapor measurements over the city are
often available from seasons other than winter. These measurements provide us the
opportunity to cross validate the APS estimate per acquisition from the collocation
method.

The test site is centered at 25°15" northern latitude and 55°20" eastern longitude
with a spatial extent of 35km in azimuth and 30km in range, see Fig. 6.3. The
available SAR acquisitions for the test site are from Envisat track 435 and frame
3105 in descending orbit. In total 31 ASAR (advanced SAR) images between 20-
Mar-2003 and 9-Oct-2008 are available to this case study. The master image is
selected as the image acquired on 3-May-2007. The baseline plot is given in Fig. 6.4.
The minimum and maximum perpendicular baseline is 24 and 1041 m respectively
and the largest temporal baseline is 4.1 years. Unfortunately, the ASAR acquisitions
are not continuous in time, which causes significant acquisition gaps (maximum 1.5
years) in the full time series, see Fig. 6.4. Moreover, the difference in Doppler
centroid between the ASAR images is under good control and does not cause any
image rejection during the pre-processing step due to large shift in Doppler centroid.

Even though the urban area of Dubai is flat with a maximum terrain height difference
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Fig. 6.3. Land topography of Dubai covered by ASAR acquisitions (track:435,
frame: 3105) with a spatial extent of 30 by 35 km.

less than 100m (see Fig. 6.3), we remove the topography phase contribution using
SRTM. For the initial selection of PS we set the threshold for amplitude dispersion
index to 0.22 to keep a balance between the quality and the spatial density of PS.
There are 1283 PS selected in total. For the spatial network (the first-order) formed
by the PS the allowed maximum arc length is 3km to suppress APS contribution
to the double difference phase per arc. After spatial phase unwrapping (i.e., arc
integration), the phase per PS is the phase difference between the PS and the pre-
selected reference PS. By default DePSI chooses the PS which has the smallest
a-posteriori variance factor (see Kampes (2005)) as the reference PS.

6.2.2 Time series analysis using LSC

The whole procedure for modeling different phase components is sketched in Fig. 4.2
in chapter 4. Firstly, we need to decide which functional and stochastic models
that should be used to model ground deformation. Since we do not have any a-
priori knowledge about the area regarding possible ground deformation, we therefore
use a linear model with a constant deformation rate to model the deterministic
deformation. For deformation that is not modeled by the linear model, we assume



100 Chapter 6: Application of the least-squares collocation method to PSInSAR

1200 T T T T I
: : : + slave acquisitions
: : : o master acquisition
1000} : : B +| . temporal distribution of acquisitions
800k T S N S - S —
600l = FORRORS SN SR S ]
E T : - 5
2 400F g : : -+ : : .
© : : : : :
ﬁ + -+ : +
& 200f + I : -
E]
g L
8_ oF - . 000 000 B8 i ‘008000000 & .oo-o%oo:i» -~
o
200k s (SN D OP— S (- . [ —
400k N P T D L A
+ + H
800} IO ST Ot RN [ . fd]
i i i i i i
-8005 -4 -3 -2 -1 0 1 2

Temporal baseline [years]

Fig. 6.4. Baseline plot for 31 ASAR acquisitions over Dubai from track 435 frame 3105.
The master acquisition on 3-May-2007 is marked as a square. The maximum acquisition
gap from the time series is 560 days.

that it is temporally stationary and model it stochastically via a variance-covariance
model. As discussed in section 5.1.2 (see Fig. 5.3) the spherical and exponential
models represent very similar stochastic processes and the Matern model has one
extra unknown parameter which reduces the redundancy in the model parameter
estimation, therefore we decide to choose spherical and Gaussian models to model
the stochastic deformation.

For APS, we model it per acquisition as a long wavelength surface trend plus a
spatial variation due to water vapor. The former is modeled deterministically and
the latter is modeled stochastically using the Matern model, see the discussion in
section 4.3.2. The height dependent delay, i.e., the vertical stratification, is not
applicable for the test site which has a flat terrain. The orbit error per acquisition
is modeled together with the atmospheric long wavelength surface trend. Moreover,
the DEM inaccuracy of SRTM and the master APS are modeled as deterministic
variables.

After selecting the functional and stochastic models for ground deformation, the
estimation of the parameters of the stochastic models is carried out using the re-
stricted maximum likelihood estimator (RMLE), see section 4.2.2. There are at least
two difficulties in the parameter estimation. One is that it is difficult to validate the
estimated parameters since the validation usually requires the entire distributions
(i.e., probability density function) of the stochastic variables to be known. The other
difficulty is due to the unknown phase quality of the selected PS. Some PS may turn
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Table 6.1. Used constraints for minimizing the objective function of the restricted
maximum likelihood estimator (RMLE) in Eq. (4.2.11). The constraints are the possible
ranges (in physics or by assumptions) of the (variance-covariance) model parameters.

Parameter Search boundary
APS RMS [mm)] (0,4-00)
Deformation RMS [mm] (0,400)
APS correlation length [km] (0,150)
Deformation correlation length [year] (0.5,1.2)
APS spatial smoothness (7) (2/3,5/3)

out to be incoherent and carry large phase noise which can result in an unrealistic
estimation of the model parameters. Therefore, we decide to use constraints in the
estimation. The constraints are the feasible physical ranges of the model parameters.
We list the constraint for each model parameter in Tab. 6.1. The upper boundaries
of the APS RMS and stochastic deformation RMS are set to infinity because we do
not know how turbulent the local atmosphere could be and whether or not the linear
function (constant rate) for modeling the deformation is sufficient to capture most
deformation signal (if there is). If the linear function is not sufficient, a large part
of the deformation will be identified as the stochastic deformation that is strongly
correlated in time. For the APS spatial correlation length the upper boundary is
set to 150 km which is the maximum distance between two pixels in ASAR images.
Because the water vapor variation in space is highly dynamic due to turbulent mix-
ing we usually expect a correlation length much smaller than the upper boundary.
With regard to the deformation correlation length in time we set the upper bound-
ary to 1.2years for two reasons. Firstly, the simulation in chapter 5 shows that the
estimate of the deformation correlation length is not reliable and it always tends to
be either too small (lower boundary) or too large (upper boundary). Secondly, an
artificially large correlation length will result in leakage of deformation to APS, i.e.,
the ground deformation will be too smooth. We want to retrieve as much as possi-
ble the real ground deformation, therefore we are conservative in setting the upper
boundary. On the other hand, a too small correlation length of deformation will
cause APS to be identified as deformation and result in an oscillatory deformation
time series. Finally, the parameter that controls the spatial smoothness of APS in
the Métern model is bounded between 2/3 and 5/3 which corresponds to a 2D and
3D turbulence respectively, see Hanssen (2001).

After the stochastic modeling, the collocation method is applied in the time domain
to estimate master APS, DEM inaccuracy (e.g., skyscrapers not modeled by DEM),
deterministic and stochastic deformation for each PS time series. Afterwards, the
phase residue of each PS is collected per acquisition and is used to separate APS
and phase noise using the collocation method in the space domain.
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6.2.3 Result and evaluation

In this section we will first present the results of the stochastic modeling. In terms
of ground deformation, the goal is to estimate the variance and temporal correlation
of the stochastic deformation based on the chosen variance-covariance model. The
estimation of variance and temporal correlation is made for each PS. With regards
to APS, the goal is to estimate the parameters of the Matern model per acquisition.
Note, the model parameters of the stochastic models are regarded as deterministic
variables. Next, based on the estimated model parameters, the variance-covariance
functions of the deformation and APS can be established and the corresponding
variance-covariance matrices can be constructed. Given the variance-covariance ma-
trices, the deterministic variables (i.e., master APS, linear deformation rate, DEM
uncertainty) can be estimated and the realizations of the stochastic variables (i.e.,
stochastic deformation, APS, phase noise) can be predicted using the collocation
method.

Estimation of variance-covariance function of stochastic deformation

We use Gaussian and spherical variance-covariance models separately to model the
possible stochastic deformation. The estimated standard deviation per PS of the
stochastic deformation is shown in Fig. 6.5 a and b. The estimated correlation length
(in years) per PS is displayed in Fig. 6.5 ¢ and d. We observe from the figure that the
Gaussian model detects stochastic deformation in some areas (see Fig. 6.5b) and the
most significant stochastic deformation is located in the bottom-left of Fig. 6.5b.
However, no stochastic deformation is detected in the same area (zero RMS) by
spherical model. Since we do not have any ground truth for the ground deformation
it is not possible to assess the results. However, from the simulations in chapter 5 we
have learned that the collocation method could result in false alarms, i.e., non-zero
RMS of deformation at stable PS. The false alarms are caused by the leakage of
APS to deformation. By looking at Fig. 6.5b and d, we observe that the PS which
have non-zero deformation RMS also have relatively short temporal correlation (~
0.5 year). Such coincidence is likely due to the leakage of APS to deformation on
these PS. Therefore, we decide to use the spherical model to model the stochastic
deformation in the rest of the analysis.

Estimation of the APS variance-coariance function

We plot the estimated parameters of the Matern variance-covariance model for APS
turbulent mixing per acquisition in Fig. 6.6. We observe that the histogram of
the estimated turbulent mixing RMSs shown in Fig. 6.6 b does not resemble a Chi-
square distribution but rather like an uniform distribution. The mean of the RMSs is
15.5mm and the standard deviation is 9.1 mm. It implies that the APS disturbance
in the area is on average 15.5 mm and during extreme weather the disturbance can
be as large as 24.6 mm or more. Because of the relatively large mean we expect a
strong APS disturbance on the PS. In contrast, the mean of the RMSs of turbulent
mixing computed using 26 tandem interferogram over the Netherlands is only 6 mm,
see Hanssen (2001). Moreover, the estimated spatial correlation length of APS per
acquisition ranges from 35km to 91km and the mean is 52km. The estimated
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Fig. 6.5. Estimation of deformation variance and temporal correlation per PS over
Dubai city. a and b) Estimated deformation standard deviation or RMS (unit: mm)
using a spherical and Gaussian model respectively. The non-zero RMS in Fig. 6.5b
is likely a false alarm and caused by the leakage of APS to deformation. ¢ and d)
Estimated deformation correlation length (unit: years) using a spherical and Gaussian
model respectively. In Fig. 6.5d the location where the deformation correlation length is
relatively short is exactly the location where the deformation RMS is sufficiently different
from zero, see Fig. 6.5b. The short correlation length could be an indication of APS
leakage. The location of the reference PS is marked by the black cross in Fig. 6.5c.
Persian Gulf is located on the left side of the plots.

smoothness factor 7 ranges from 0.67 to 1.4 with a mean of 0.84.
Estimation of the deterministic component of ground deformation

We have shown that the stochastic component of deformation over the city is negli-
gible, which implies that the linear deformation model is sufficient for modeling the
possible ground deformation. The estimated deformation rate and its precision (one
standard deviation) obtained from the collocation method is shown in Fig. 6.7 a and
b. We observe that the precision ranges from 1.2 to 2 mm/year in magnitude. More-
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Fig. 6.6. Estimated parameters of the Matern variance-covariance model for APS per
acquisition over Dubai. a) Estimated RMS (unit: mm) of turbulent mixing per acqui-
sition. b) Histogram of the estimated RMS of turbulent mixing. ¢) Estimated spatial
correlation length (unit: km) of turbulent mixing per acquisition. d) Estimated spatial
smoothness factor 7 in the Matern model per acquisition.

over, it decreases with the increase of the distance with respect to the preference PS
which is highlighted as a black cross in Fig. 6.7b. This is reasonable because APS
disturbance in general increases with the increase of distance between PS. Moreover,
we observe a spatial trend in Fig. 6.7 a. The trend suggests that the land close to the
coast experiences uplift (with respect to the reference PS) and the land away from
the coast suffers subsidence. However, there is no geophysical explanation for the
spatial trend. A similar spatial trend has also been observed by Ketelaar (2008) from
ASAR time series over Groningen, the Netherlands. Ketelaar (2008) has pointed out
that such spatial trend is observable from ASAR time series but not from ERS1/2
and RadarSat-2 time series . Unfortunately, the cause of the trend is not clear
so far. Since the trend is likely artificial, we therefore decide to remove the trend
and present the de-trended (using a surface trend model) deformation rate map in
Fig. 6.7 c. There are only a few PS in the figure showing considerable (> 5 mm) land
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Fig. 6.7. Deterministic modeling of the ground deformation. a) Estimated deformation
rate (unit: mm) per PS. Note, a spatial trend across the area of interest can be observed
but the trend is not likely due to ground deformation. b) Estimated precision (one
standard deviation, unit: mm/year) of the deformation rate in Fig. 6.7 a. The location of
the reference PS is highlighted by the black cross. ¢) Deformation rate after removing
a linear spatial trend from the original estimate in Fig. 6.7a. d) Histogram of the
deformation rate in Fig. 6.7 c. Therefore, we conclude that the urban area of the city is
stable.

subsidence. By comparing the subsidence rate to the estimated deformation rate
on the neighboring PS it seems that the estimated subsidence are most likely out-
liers (subsidence is usually spatially correlated). After de-trending, the histogram
of the estimated deformation rates is plotted in Fig. 6.7d from which we can see
that the majority of PS have a deformation rate less than 2mm/year. Considering
the precision (1.2 to 2mm/year) of the deformation rate estimate we conclude that
the deformation over the city should be negligible. Next, we also use the weighted
least-squares in Eq. (6.1.7) to estimate the deformation rate. This is the default ap-
proach to estimate deformation rate by DePSI. The weighting matrix is the inverse
of the phase noise variance-covariance matrix, whereas the weighting matrix used
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Fig. 6.8. Continued evaluation of the deformation rate estimation following Fig. 6.7.
a) Estimated (also de-trended) deformation rate (unit: mm) on PS based on weighted
least-squares. b) Histogram of the difference between the deformation rate estimates
shown in Fig. 6.7 c and Fig. 6.8a. In conclusion, in terms of deterministic deformation
estimation, the weighted least-squares and collocation methods give very similar results.

by the collocation method is the inverse of the full variance-covariance matrix of
the unwrapped phase time series, see Eq. (4.3.5). The de-trended deformation rate
estimates using weighted least-squares are shown in Fig. 6.8 a and the histogram of
the difference between the two estimates (i.e., one from the collocation method and
one from weighted least-squares) is displayed in Fig. 6.8 b. The histogram resembles
more or less a normal distribution. The mean of the difference is 0.0 mm/year and
the standard deviation is 0.22mm/year. Therefore, we conclude that the deforma-
tion rate estimation is not sensitive to the weighting matrices. This is the same
conclusion we made in chapter 5 based on the simulated time series, see section 5.2.

DEM inaccuracy estimation

We present the DEM inaccuracy (Ah in Eq. (6.1.4) with respect to the reference
PS) estimates obtained from the collocation method in Fig. 6.9a. The precisions
(one standard deviation) of the estimates are displayed in Fig. 6.9b. Similar to the
deformation, the precision decreases with the increasing of distance between a PS
and the reference PS. The corresponding estimates using the weighted least-squares
are shown in Fig. 6.9 ¢ and the histogram of the difference between the two estimates
are plotted in Fig. 6.9 d. The mean and standard deviation of the difference is 0.35m
and 0.39 m respectively. In conclusion, the DEM inaccuracy estimation is not that
sensitive to the weighting matrices.

APS estimation

We present the master APS estimate obtained from the two methods in Fig. 6.10a
and b. The histogram of their difference (collocation minus filtering) is plotted
in Fig. 6.10d. The mean and standard deviation of the difference are 0.48 and
0.96 mm respectively. To validate the estimates we compare them with the MERIS
water vapor measurement taken simultaneously as the master ASAR. The MERIS
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Fig. 6.9. Estimated DEM inaccuracy. a) Estimated DEM inaccuracy (unit: m) by the
collocation method. b) Estimated precision (one standard deviation, unit: m) of the
DEM inaccuracy estimation in Fig. 6.9a. The location of the reference PS is highlighted
by the black cross. ¢) Estimated DEM inaccuracy (unit: m) by weighted least-squares.
d) histogram of the difference between the DEM inaccuracy estimates shown in Fig. 6.9 a
and c. In conclusion, in terms of DEM uncertainty estimation, the weighted least-squares
and collocation method give very similar results.

measurement is firstly converted to delay in mm from integrated water vapor (IWV)
in g/m? using a constant factor II=0.15, see Bevis et al. (1992, 1994). Then the
converted zenith delay is mapped to the slant delay along the line-of-sight (LOS)
of the radar. The slant delay obtained from MERIS is shown in Fig. 6.10c. By
comparing the master APS estimates with the MERIS delay we conclude that both
methods give a good estimation of master APS. To assess which method gives a
more accurate result we use the MERIS delay as a ground truth and compute the
mean and standard deviation of the difference between the MERIS delay and one
of the master APS estimates. For the collocation method the mean and standard
deviation are 1.45 and 4.19mm respectively. With regards to the weighted least-
squares method, the mean and standard deviation are 1.93 and 4.11 mm respectively.
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Fig. 6.10. Estimated master APS. a) Estimated master APS (unit: mm) by the col-
location method. b) Estimated master APS (unit: mm) by weighted least-squares. c)
Derived delay (unit: mm) from MERIS water vapor measurement taken simultaneously
as the master ASAR. d) Histogram of the difference between the two estimates made
by the collocation method and weighted least-squares respectively. In conclusion, the
weight least-squares and collocation methods give comparable master APS estimates.

Thus, we conclude that the estimate by the weighted least-squares method is slightly
more biased.

We are lacking ground truth data to validate the APS estimate for every slave and
therefore decide to first compare the estimates made by the collocation method
and the standard filtering method (using a 1-year Gaussian window) to see whether
or not the estimates are different. If the difference is significant then it will be
worthwhile to find out which method gives a better estimation. The overview of the
comparison is displayed in Fig. 6.11 in terms of a-posteriori delay RMS computed
from the estimated APS (including both spatial trend and turbulent mixing). From
the figure we observe that the RMS of the slave APS estimates obtained from the
collocation method is in general larger than the corresponding RMS obtained from
the filtering method. In other words, the filtering method tends to give a smoother
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Fig. 6.11. Comparison between estimated APS per slave acquisition in terms of a-
posteriori delay RMS (unit: mm). The RMSs of the estimates from the collocation and
the filtering methods are shown in blue and green respectively. The filtering method
uses a 1-year Gaussian window. The RMS of the difference between the APS estimates
is shown in red. A large RMS of the difference indicates a significant difference between
the estimates.

APS estimate per acquisition on average. The RMS of the APS estimate obtained
from the collocation method ranges from 0.9 to 12.4mm with a 4.7mm mean. In
contrast, the RMS of the APS estimate obtained with filtering method ranges from
1.0 to 9.6 mm with a 3.3 mm mean. The RMS of the difference between the estimates
of the two methods ranges from 0.79 to 7.1 mm with a 3.1 mm mean. Therefore, the
two methods give considerablely different estimates of slave APS.

To find out which method gives a better APS estimation we compare the esti-
mates to MERIS water vapor measurements. In total 10 MERIS acquisitions are
not severely affected by clouds (including the MERIS on master date). The mean
correlation between the APS estimates from the collocation method and the corre-
sponding MERIS measurements is 0.7, whereas the mean correlation for the APS
estimates from the filtering method is 0.5. Note that the used MERIS measurements
are not noise-free due to possible undetected clouds which can bias the retrieved wa-
ter vapor (Bennartz and Fischer, 2001; ESA, 2006; Lindenbergh et al., 2007). For
demonstrations we show comparisons between MERIS and the APS estimates for
four slave acquisitions in Figs. 6.12 and 6.13. Two of the four acquisitions, i.e., ac-
quisitions on 22-Mar-2003 and 22-Jul-2004, are at the edges of the acquisition gaps
indicated in Figs. 6.4b and 6.11. We expect a poor APS estimation from the filter-
ing method for these two acquisitions because the method does not weight the time
series based on the magnitude of the APS variation per acquisition and therefore
requires a relatively large number of sequential images to smooth out (i.e., temporal
averaging) APS. By comparing the APS estimates shown in Fig. 6.12b, d with the
MERIS derived delays shown in Fig. 6.12e, f we indeed see that the APS estima-
tions on these two dates are strongly biased. However, the estimates made by the
collocation method shown in Fig. 6.12a, b are not biased and agree well with the
MERIS delays. Thanks to the proper weighting in the collocation method based
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Fig. 6.12. Validation of slave APS estimates (unit: mm) using delays derived from
MERIS cloud-free water vapor measurements. a and b) APS estimates for the acquisition
on 22-Mar-2003 and 22-July-2004 respectively obtained from the collocation method.
c and d) Obtained from the filtering method. e and f) Derived delay from MERIS.
In conclusion, the APS estimates from the filtering method are largely biased. This is
caused by the acquisition gaps in the time series, see Fig. 6.4 b.

on the estimated variance of APS per acquisition, the collocation method is not
sensitive to the acquisition gaps and still results in a good estimation of true APS.
The other two acquisitions, i.e., 18-May-2006 and 26-Jun-2008, are from the middle
of two groups of sequential images and the groups are isolated by the acquisition
gaps, see Figs. 6.4b and Fig. 6.11. Although the APS estimates from the filtering
method on these two dates suffer less from the acquisitions gaps, they are still prob-
lematic. This is because the two acquisitions have relatively large APS variations
than their adjacent acquisitions, see 6.11. From Fig. 6.13c, d we observe that the
APS estimates from the filtering method are again significantly biased comparing
to the estimates from the collocation method shown in Fig. 6.13a, b. The latter
agree reasonably well with the delays derived from MERIS shown in Fig. 6.13e, f.
Moreover, due to the relatively large variations of APS on these two acquisitions
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Fig. 6.13. Continued validation of APS estimates (unit: mm) using delays derived from
MERIS cloud-free water vapor measurements. a and b) APS estimates for the acquisition
on 18-May-2006 and 26-Jun-2008 respectively obtained from the collocation method.
c and d) Obtained from the filtering method. e and f) Derived delay from MERIS. In
conclusion, the APS estimates from the filtering method are biased. This is because
the two acquisitions experience relatively large APS disturbance (i.e., large anomaly)
comparing to the rest acquisitions, see Fig. 6.11.

the APS estimates from the filtering method for the adjacent acquisitions can be
strongly biased as well. That is because the APS on these two acquisitions are not
filtered out completely and leak to the deformation estimate in the adjacent acqui-
sitions via temporal convolution (see Eq. 4.1.2). As a result, the APS estimates in
these adjacent acquisitions are biased. This can be seen from Fig. 6.14 in which we
plot the difference between the two methods for the APS estimates on 22-May-2008,
26-Jun-2008, 31-Jul-2008 and 4-Sept-2008. Clearly, the differences on 22-May-2008,
31-Jul-2008 and 4-Sept-2008 resemble the difference on 31-Jul-2008. In other words,
the difference between slave APS estimates by the collocation and filtering methods
per acquisition is strongly correlated in time. Such temporal correlation is due to
the poor estimation of APS on 31-Jul-2008 by the filtering method, see Fig. 6.13.
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Fig. 6.14. Difference between APS estimates (unit: mm) made by the collocation and
filtering methods. a) Difference on 22-May-2008. b) Difference on 26-Jun-2008. c)
Difference on 31-Jul-2008. d) Difference on 4-Sept-2008. The differences are strongly
correlated and it is caused by the biased estimation of APS obtained from the filtering
method on 26-Jun-2008, see Fig. 6.13b,d,f.

The poor estimation of APS by the filtering method seems to result in a significant
leakage of APS into ground deformation. This can be clearly seen from Fig. 6.15 in
which we plot total deformation time series of 6 PS. The distances between these PS
and the reference PS shown in Fig. 6.7 range from 2.6 to 17.4km. The APS leakage
causes all the deformation time series to present an artificial seasonal deformation
pattern. The same sort of artificial seasonal deformation pattern has been observed
in Figs. 5.17 and Fig. 5.18 based on the simulated data in chapter 5. Moreover,
the leakage of APS is significant at the acquisitions that are close to the acquisition
gaps, e.g., the first acquisition (22-Mar-2003) in the time series.
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Fig. 6.15. Estimated total deformation time series (unit: mm) on 6 PS. a) A PS which
is 4.2 km away from the reference PS. b) A PS which is 2.6 km away from the preference
PS. ¢) A PS which is 8.3km away from the preference PS. d) A PS which is 9.5km
away from the preference PS. €) A PS which is 17.4km away from the preference PS.
f) A PS which is 14.1km away from the preference PS. The precision (one standard)
deviation of the estimated deformation by the collocation method is given as the error
bars. The precision of the estimate by the filtering method is however not defined by
the method. In conclusion, the large temporal variations in the estimated deformation
time series obtained from the filtering method is unrealistic and caused by the leakage
of APS to deformation. The variations are typically found near the acquisition gaps and
during acquisitions having relatively large APS disturbance.

6.2.4 Summary

We have applied the collocation method to the urban area of Dubai. We model
the possible ground deformation using a linear functional model and a spherical
variance-covariance model. We find that the ground deformation rates on most PS
are within + 2mm/year. We also evaluate the precisions (one standard deviation)
of the estimated deformation rates and they range from 1 to 2mm/year. Moreover,
we find that the estimated variances of possible stochastic deformation at the PS
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are negligible. Therefore, we conclude that the urban area of Dubai is stable.

Regarding the estimation of the deterministic variables (i.e., deformation rate, mas-
ter APS, DEM inaccuracy) the weighted least-squares and collocation methods give
more or less identical results. This is because the variance-covariance matrix of the
deformation is a null matrix and the deterministic variables are constants in time.
Given the sufficiently long time series (i.e., 31 images between 2003 and 2008), the
estimates of the deterministic variables are no longer sensitive to the varying mag-
nitude of APS disturbance per acquisition.

However, with regards to the stochastic deformation (deformation that is not mod-
eled by the functional model) estimation the filtering method typically results in a
deformation time series having a considerable oscillation, see Fig. 6.15. By com-
paring the APS estimates from the filtering method with a number of cloud-free
MERIS water vapor measurements we find that most of the APS estimates are bi-
ased (smoother than ground truth), especially for the acquisitions that are close
to the acquisition gaps and that have relatively large APS RMS (i.e., acquisitions
during extreme weather). Therefore, we suggest that the significant oscillations in
the deformation time series obtained from the filtering method are artificial and
caused by the leakage of APS to ground deformation. Our suggestion is supported
by the fact that the filtering method does not take into account the varying magni-
tude of APS disturbance per acquisition and weight all acquisitions equally. Given
a fixed filtering length in the time domain (i.e., one-year) the method may not be
able to sufficiently average out APS, especially for acquisitions taken during extreme
weather and when there are large acquisition gaps in the time series. As a result,
some of the slave APS estimates can get biased and are partly identified as non-linear
deformation, i,e., the oscillations in the time series.

6.3 Mexico City

From the Dubai case we have shown that the collocation and filtering methods
give similar estimates for the deterministic variables, i.e., deformation rate, DEM
uncertainty and master APS. This is because the local area is stable and insensitive to
the selection of the functional model for deformation modeling. However, when the
ground deformation is complex (e.g., non-constant rate) we expect different results
from the two methods. As we see from the simulation result in section 5.3.2, in case
of a complex deformation the filtering method (i.e., weighted least-squares) becomes
sensitive to the functional model chosen for modeling the deformation. If the chosen
functional model is not a good approximation of the actual deformation, the master
APS estimate will be biased. This is because the un-modeled (by the functional
model) deformation is strongly correlated in time and the master APS is a constant
in time, i.e., perfectly correlated in time. Therefore, it is difficult to separate them
without explicitly model them separately. The collocation method is however not
sensitive to the functional model selection. This is because the method models the
deformation both deterministically (via a functional model) and stochastically (via
a stochastic model). In other words, any deformation that is not modeled by the
functional model is taken into account by the stochastic model. This prevents the
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Fig. 6.16. Land topography of Mexico City covered by ASAR acquisitions (track: 255,

frame: 3213) with a spatial extent of 40 by 40 km

deformation from being partly identified as the master APS. We will demonstrate
the above discussion in this case study. Additionally, we will show that in case of
acquisition gaps the collocation method gives better estimation of slave APS than
the filtering method. For the filtering method, a better APS estimation can be
achieved by increasing the filtering length (one-year by default) in time. But this
could cause an over-smoothing of the deformation time series.

6.3.1 Test site and data

We choose Mexico City as another test site to evaluate the performance of the
collocation method in the presence of rapid and complex ground subsidence. Many
authors, e.g., Strozzi et al. (2003); Lopez-Quiroz et al. (2009) and Osmanoglu et al.
(2011) have investigated the subsidence in Mexico City using InSAR. The largest
subsidence rate that has been observed is 40 cm/year (Strozzi et al., 2003). The large
subsidence rate is due to intensive ground water extraction and highly compressible
clays on which the city is built. The city has a subtropic highland climate due to
its tropical location and high elevation. The temperature of the region varies from
~6°C in winter to ~26° in summer (Servicio Meteorologico Nacional, 2011). The
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Fig. 6.17. Baseline plot for 45 ASAR acquisitions over Mexico City from track 255 frame
3213. The master acquisition on 31-Dec-2004 is marked as a square. The maximum
acquisition gap from the time series is 210 days.

annual rainfall is about 816 mm and most of the rainfall takes place between June
and September (Servicio Meteorologico Nacional, 2011).

The test site is centered at 19°25’ northern latitude and 99°2” western longitude with
a spatial extent of 40km in both azimuth and range, see Fig. 6.16. The available
ASAR acquisitions for the city are from track 255 and frame 3213 in descending orbit.
In total 45 ASAR images between 22-Nov-2002 and 5-Dec-2008 are used for this case
study. The master image is selected as the acquisition acquired on 31-Dec-2004.
The baseline plot is given in Fig. 6.17. The minimum and maximum perpendicular
baseline is 26 and 1064 m respectively and the largest temporal baseline is 3.9 years.
Similar to the Dubai dataset, the ASAR acquisitions over the region are not regular
in time, which causes considerable acquisition gaps (maximum 210 days) in the time
series, see Fig. 6.17.

The topographic variation within the area of interest is only a few hundred meters,
see Fig. 6.16. We remove its phase contribution using 3 arc second SRTM. For the
initial selection of PS we set the threshold for amplitude dispersion index to 0.22.
For the first-order network which is constructed by the PS, the allowed maximum
arc length is 5km to suppress APS. The pre-selected reference PS is highlighted as
a black cross in Fig. 6.19.
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Fig. 6.18. Master APS estimation. a and b) Estimates (unit: mm) by collocation and
WLS respectively based on a linear deformation model. ¢ and d) Estimates (unit: mm)
by collocation and WLS respectively based on a quadratic deformation model. e) Delay
(unit: mm) derived from the MERIS acquisition acquired simultaneously as the master
image. f) Difference (unit: mm) between the master APS estimates shown in Figs. 6.18b
and d. The large residue shown in Fig. 6.18f indicates the WLS method is sensitive to
the functional model selection for deformation modeling.

6.3.2 Sensitivity to the functional model for ground deformation

Osmanoglu et al. (2011) use a linear model for the ground subsidence in the ur-
ban area of the city using PSInSAR. They validate the modeled subsidence against
the subsidence derived from local sparse GPS networks and find good agreement
at the locations of the GPS stations. Hence, we decide to use the linear model as
the first attempt to model the deterministic ground subsidence. In addition, we
choose a hole effect variance-covariance model that is capable of describing some
type of pseudo-perioditcity to model possible stochastic deformation. This is be-
cause strong seasonal deformation has been observed by the GPS network and the
deformation is likely caused by aquifer recharge through precipitation, see the dis-
cussions in Osmanoglu et al. (2011).
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Fig. 6.19. Subsidence rate estimation based on a linear deformation model. a and
b) Estimates (unit: mm/year) by collocation and WLS respectively. The reference PS is
marked by a black cross. c) Estimated precision (one standard deviation, unit: mm/year)
of the subsidence rate estimate in Fig. 6.19a. d) Difference (unit: mm/years) between
the estimates in Figs. 6.19a and b. In conclusion, the deformation rate estimates from
the two methods are similar.

The master APS estimates from the collocation and weighted least-squares (WLS)
are displayed in Figs. 6.18 a, b respectively. The most significant disagreement be-
tween the two estimates is a band of positive delay highlighted by the dashed red
circle in Fig. 6.18 b. Fortunately, the MERIS acquisition taken simultaneously as the
master acquisition is not severely affected by clouds and can be used for validation,
see Fig. 6.18e. Clearly, the MERIS measurement suggests that the positive delay
is probably artificial and the APS estimate from the collocation method shown in
Fig. 6.18 a is more reliable. We will discuss the possible cause of the artificial delay
later in this section.

Regarding the deformation rate, its estimates are plotted in Figs. 6.19a, b using
collocation and WLS respectively. The histogram of the difference between the two
estimates is displayed in Fig. 6.19d. The mean of the difference is 0.4 mm/year
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Fig. 6.20. Stochastic deformation estimation. a and b) Estimated RMS (unit: mm) of
the stochastic deformation based on a quadratic and linear deformation model respec-
tively. The regions with relatively large deformation RMS are highlighted by red circles.
These regions are corresponding to the locations in Fig. 6.19 c where the precisions of the
estimated subsidence rates are lower than the surroundings. c¢ and d) Estimated tem-
poral correlation length (unit: years) of the stochastic deformation shown in Fig. 6.20a
and b respectively. This figure demonstrates that the un-modeled deformation by the
linear model will be modeled stochastically by the collocation method.

and the difference at most PS is less than 1mm/year. Therefore, in terms of the
deformation rate estimation the two methods provide the same result. In addition,
the collocation method also gives the precision of the estimated deformation rate,
see Fig. 6.19c. As expected, the precision degrades with increasing distance from
the reference PS. Here we need to stress that the indicated precision is relative and
depends on the reference PS selection (Ketelaar, 2008). Therefore a low precision
does not suggest a less coherent PS. In addition, at some locations the precision of
the estimated deformation is unexpectedly worse than the surroundings. This can
be explained by the estimated stochastic deformation shown in Fig. 6.20b. The
estimated RMS suggests that at these locations the linear model does not fit the
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Fig. 6.21. Estimation of ground subsidence using a quadratic functional model. a and
b) Estimated linear subsidence rate (unit: mm/year) by collocation and WLS respectively.
c and d) Estimated quadratic subsidence rate (unit: mm/year?) by collocation and WLS
respectively. In conclusion, the deformation rate estimates from the two methods are
similar, see also Fig. 6.22.

true subsidence very well and the discrepancy between the linear model and the
true subsidence is therefore modeled as the stochastic deformation by the collocation
method.

We have learned from the simulation in section 5.3.2 that when an inappropriate
functional model is chosen for the deterministic component of ground deformation
the discrepancy between the functional model and the real deformation will be large
and become strongly correlated in time. This can be seen from Figs. 6.20b and
d. The figure tells us that the linear deformation model is probably not sufficient
to model the deformation over the entire region. Therefore, we decide to use a
quadratic model. Based on this functional model, we redo the stochastic modeling
of the deformation using the same variance-covariance model (i.e., hole-effect model).
The estimated variance and temporal correlation length are shown in Fig. 6.20 a and
Fig. 6.20 ¢ respectively.
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Fig. 6.22. a) Histogram of the difference (unit: mm) between the linear subsidence
rate estimates shown in 6.21a and c. a) Histogram of the difference (unit: mm/year?)
between the quadratic subsidence rate estimates shown in 6.21b and d.

By comparing the estimated correlation lengths of the stochastic deformations shown
in Fig. 6.20¢ (based on the quadratic functional model) and Fig. 6.20d (based on
the linear functional model) we see that the strong correlation disappears when the
quadratic model is used to model the deterministic deformation. This is because
the stochastic deformation is now modeled by the quadratic term of the quadratic
model. When the linear functional model is used to model the deterministic de-
formation, the locations where we observe a large correlation length in Fig. 6.20d
are exactly the locations where the stochastic deformations are significant, see red
circles in Fig. 6.20b. Therefore, we conclude that the deterministic deformation
over the region can be better modeled by a quadratic model. As a rule of thumb,
a stochastic modeling is preferred only when the ground deformation cannot be
modeled well by a functional model. In practice, a suitable functional model for
deformation in the area of interest is usually not known a-priori. A function model
is however always preferred as long as it can model the deformation well. This is be-
cause estimation always has a better precision than prediction (i.e., more observation
redundancy). Based on the discussion above we re-model the deterministic defor-
mation by a quadratic model. The estimated model parameters (i.e., coefficients
for the linear and quadratic terms) are shown in Fig. 6.21 a, ¢ using the collocation
method and in Fig. 6.21 b, d based on WLS. As we can see, at the discussed loca-
tions we do find the quadratic term of the subsidence larger than zero. The positive
sign of the quadratic term indicates that the ground subsidence at these locations
is decelerated with respect to their surroundings. Finally, the difference between
the estimated model parameters by the two methods is visualized by histograms
in Fig. 6.22a, b. Again, we find that the model parameter estimates are almost
identical.

In the end, we revisit the master APS estimate obtained from WLS shown in
Fig. 6.18b. We have concluded that the band of positive delay, indicated with
the red dashed circle, is artificial and it must be the result of a leakage from an-
other source. Among all possible sources (e.g., ground subsidence, DEM inaccuracy,
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etc.) the ground subsidence has the largest likelihood. This is because the master
APS is considered as a deterministic constant in WLS (see Eq. 6.1.8). Moreover,
the stochastic subsidence, which is not modeled by the linear functional model, is
relatively large and strongly correlated in time. Last but not the least, in the fil-
tering method the master APS is estimated prior to temporal filtering that gives
the estimate of the stochastic deformation. Therefore, the stochastic deformation is
partly mis-identified as the master APS by WLS.

On the other hand, the collocation method takes into account the imperfection of
the functional model used for the ground deformation modeling and uses a stochastic
model to retrieve the un-modeled deformation as a stochastic deformation. There-
fore, it prevents the stochastic deformation from being partly identified as master
APS. After replacing the linear functional model by a quadratic functional model
the new master APS estimate obtained from WLS is shown in Fig. 6.18d. As we
can see the artificial delay almost disappeared. The difference between the old and
new master APS estimates is shown in Fig. 6.18f. Clearly, the locations where the
difference is significant are exactly the locations where the quadratic subsidence has
been detected, see Fig. 6.22¢, d.

6.3.3 Slave APS estimation

The estimation of the slave APS is challenging since the region experiences rapid and
complex ground subsidence (see Figs. 6.21 and 6.20) and there are large acquisition
gaps (up to 210 days) in the time series, see Fig. 6.17. We expect the filtering method
with 1-year window length to fail for the slave acquisitions close to the acquisition
gaps. This is because there will be only a few acquisitions in the time series involved
in the temporal filtering. The collocation method, however, should be much less
sensitive to the gaps since it uses the estimated variance of APS per acquisition to
weigh the time series before estimating stochastic ground subsidence. We compare
the APS estimates by collocation and filtering methods in terms of a-posteriori delay
RMS in Fig. 6.23. We can see that the difference between the two estimates tends
to be significant for the acquisitions near the temporal acquisition gaps, see the
enclosed acquisitions by the dashed rectangle in Fig. 6.23. This is very similar to
the Dubai case discussed in section 6.2.

Unfortunately, we do not have cloud-free MERIS acquisitions over the region to val-
idate the slave APS estimates. Fig. 6.24 gives an example of a cloud contaminated
MERIS delay map on 5-May-2006. We have removed cloud pixels by using cloud
flags provided by ESA,(ESA, 2006). Unfortunately, the cloud detection algorithm
used by ESA (Fischer and Bennartz, 1997; Albert et al., 2001) can fail when the
clouds are semitransparent cirrus (Puyssegur et al., 2007) for example. The negative
delay in Fig. 6.24b is subject to undetected clouds. As a result, it is not possible
to evaluate the slave APS estimates individually. The only alternative left for vali-
dation is to compute the temporal difference between two APS estimates and then
compare the temporal difference to the repeat-pass interferogram formed by the
corresponding slave images. Note, to keep the repeat-pass interferogram remaining
coherent its baselines need to be small. For urban areas a small temporal baseline is
not always necessary to suppress decorrelation, but it will suppress ground deforma-
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Fig. 6.23. Comparison between estimated APS per slave acquisition in terms of a-
posteriori delay RMS (unit: mm). The RMSs of the estimates from the collocation and
filtering methods are shown in blue and green respectively. The filtering method uses
a l-year Gaussian window. The RMS of the difference between the estimates is shown
in red. The RMS of the difference tends to be large for the acquisitions close to the
acquisition gaps (see the acquisitions enclosed by the dashed rectangular in the figure).

tion and leave APS as the dominant signal in the interferogram. Unfortunately, for
the Mexico City case, even interferograms with 35-day temporal baselines cannot be
considered as atmosphere-only interferograms because of the large subsidence rate
in the region. Therefore, the repeat-pass interferogram based validation can only be
carried out outside the subsiding zone of the region. Although we cannot validate
the APS estimates within the subsiding zone, we can still deduce the influence of
the acquisition gaps on the results of the collocation and filtering methods. This is
because the separation of APS and stochastic subsidence is carried out in time per
PS and the spatial distribution of APS can be often assumed isotropic. Therefore, an
insufficient smoothing of APS due to the acquisition gaps will result in comparable
APS leakage for arcs (with respect to the reference PS) with comparable lengths in
space.

We show three comparisons in Figs. 6.25, 6.26 and 6.27 between the temporal differ-
ences of the slave APS estimates and the corresponding repeat-pass interferograms.
The clearly visible APS signals are highlighted by the black dashed circles in each of
the figures. The highlighted areas are outside of the subsiding region, see Fig. 6.22.
We can clearly observe from all the figures that in the highlighted areas the collo-
cation method gives a very good approximation of the true APS, whereas the APS
estimates in the same areas made by the filtering method using a 1-year Gaussian
window are largely biased. The biases are the result of leakage of APS to deformation
and the leakage is caused by insufficient smoothing of APS due to the acquisition
gaps in the time series. The bias given by the filtering method can be reduced by
increasing the temporal window length to three years, see Figs. 6.25d, 6.26d and
6.27d. Indeed, by increasing the window length a sufficient smoothing of APS can
be achieved. Therefore, we conclude that for the filtering method a better estima-
tion of slave APS can be achieved by increasing the temporal window length when
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Fig. 6.24. An example of MERIS water vapor measurement by undetected clouds. a)
Estimated APS (unit: mm) for acquisition on 5-May-2006 by the collocation method. b)
Derived APS (unit: mm) from the MERIS measurement on the same date (simultaneously
taken as the ASAR acquisition). The negative band of delay in the plot is likely caused
by undetected clouds.

there are significant acquisition gaps in the time series. However, the increase of the
temporal window length does not necessarily lead to a good separation of APS and
ground deformation. When the stochastic deformation is not negligible a large tem-
poral window will over smooth it and result in a leakage from deformation to APS.
This can be seen from Fig. 6.28, in which we plot the estimated stochastic deforma-
tion time series of 2 PS coming from the area suffering from significant stochastic
deformation (RMS > 6 mm), see Fig. 6.20a. From Fig. 6.28 we observe that given
an one year window length, the filtering results deviate away from the collocation
results around the acquisition gaps. We have shown that the deviation is caused by
the leakage of APS to deformation. Moreover, the deviation is remedied by increas-
ing the window length to three years. However, the increase of the window length
compromises the temporal resolution of the deformation time series and result in
over-smoothing the stochastic deformation. In contrast, the filtering length in the
collocation method equals to the correlation length of the stochastic deformation
and it is estimated from the time series other than a required input from a user.

6.3.4 Summary

In this case study we have shown that the urban area of Mexico city experienced
rapid subsidence (> 200mm/year) between 2002 and 2008. The subsidence is com-
plex in the sense that at some locations the subsidence rate is not constant. The
complex subsidence leads to difficulties in subsidence modeling. At first, a linear
model is used to model the subsidence since a-priori knowledge about the subsidence
is unknown. Later, we find that the linear model is not appropriate and results in
part of the subsidence that is not model by the linear model being identified as the
master APS when weighted least-squares (WLS) is used. The collocation method
is however robust against the functional model imperfection because it models the
un-modeled subsidence stochastically. By replacing the linear model by a quadratic
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Fig. 6.25. Validation of slave APS estimates using a repeat-pass interferogram. a)
Temporal difference of APS estimates made by the collocation method on 16-Mar-2007
(master) and 7-Sept-2007 (slave). b) Repeat-pass interferograms formed by SLCs on
the same dates, including the dominant subsidence signal in the northeast. The clearly
visible APS patterns are highlighted by the dashed black circles. The highlighted areas
are outside of the subsiding zone. ¢ and d) Temporal difference of APS estimates made
by the filtering method on the same dates using a 1-year and three-year Gaussian window
respectively.

model we identify the locations where the subsidence rate is not linear. The locations
coincide with the locations where the collocation method detects stochastic defor-
mation (via variance-covariance function). This implies that the collocation method
should be used when the ground deformation is expected complex and in the mean
time there is no reliable a-priori knowledge about the deformation available. If the
filtering method is used in such cases, it may result in leakage of deformation to
master APS.

With regards to slave APS estimation, the collocation method seems to give more
realistic estimates comparing to the standard filtering method, see Figs. 6.25, 6.26
and 6.27. This is likely due to significant acquisition gaps in the time series. Given a
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Fig. 6.26. Same as Fig 6.25 but for dates 12-Oct-2007 (master) and 9-May-2008
(slave).

1-year filtering length the filtering method tends to give a biased estimation of APS
(smoother than real). The bias can be reduced by increasing the window length to,
e.g., ~ 3 years. However, a large window length may result in an underestimation
(i.e., over-smoothing) of ground subsidence. The best window length should be
the length of the temporal correlation of the ground subsidence. The collocation
method tries to estimate the length from the time series itself rather than using a
user’s guess.

6.4 Groningen, the Netherlands

When ground deformation can be well modeled by a functional model and there are
no significant acquisition gaps in time series, the difference of the results from the
collocation and filtering methods will be much less noticeable with respect to the
previous case studies, especially for the estimates of the deterministic variables (i.e.,
deformation rate, DEM uncertainty and master APS). However, there still can be a
considerable difference between the slave APS estimates from the two methods for
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Fig. 6.27. Same as Fig 6.25 but for dates 9-May-2008 (master) and 26-Sept-2008
(slave).

acquisitions taken during extreme weather (e.g., thunderstorm). This is again caused
by the equal weighting of slave APS in the filtering method and it may not sufficiently
average out APS with large variations due to the extreme weather. Here, we will
demonstrate this situation using continuous ASAR time series over Groningen where
land subsidence is caused by ground gas extraction and the subsidence is steady in
time.

One of the difficulties for comparing the slave APS estimates from the collocation and
filtering methods is the lack of ground truth. Although a short baseline interferogram
can provide a good mapping of APS (spatio-temporal APS), it may not always be
useful for the comparison. This is because the errors (in the time series) made
by the filtering method from separating the slave APS and the the unmodelled
ground deformation can be temporally correlated. It implies that when a temporal
difference is taken between two adjacent slave APS estimates, the errors in the two
APS estimates will be largely canceled because of the correlation and result in a
comparable spatio-temporal APS as the small baseline interferogram. We will show
this effect in section 6.4.4.
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Fig. 6.28. a) Estimated stochastic deformation time series of a PS which has a defor-
mation RMS of 6.2mm and it is 22 km away from the reference PS shown in Fig. 6.19.
b) Estimated stochastic deformation time series of a PS which has a deformation RMS
of 6.5mm and it is 20 km from the reference PSC. The filtering results are based on a
Gaussian window with varying window lengths which are subject to users to define. A
large window length corresponds to a smoother deformation time series and vice visa.
In the collocation method the best window length, i.e., the correlation length of the
subsidence, is estimated from the time series.

Last but not the least, in section 6.4.5 we will create artificial acquisition gaps in the
time series and compare the slave APS estimates with the corresponding estimates
obtained from the full time series. The comparison will tell us about the sensitivity
of the collocation and filtering methods to the acquisition gaps.

6.4.1 Test site and data

The Netherlands has a moderate maritime climate with cool summers and mild
winters. The warmest month in a year is August and ice days usually occur from
December until February. Precipitation throughout the year is relatively equally
shared per month. Summer and autumn months tend to have more precipitations
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Fig. 6.29. Land topography of Groningen covered by ASAR acquisitions (track: 380,
frame: 2533) with a spatial extent of 90 by 90 km. The Groningen gas field is highlighted.

and thunderstorms than the other months (see KNMI (2011)). Groningen is the
most northeastern province of the Netherlands and it has the largest gas field (i.e.,
Groningen gas field) in western Europe. The gas field is currently operated by
Nederlandse Aardolie Maatschappij B.V. (NAM) since 1963 and the annual gas
production from the field is approximately 30 billion cubic meters. The horizontal
extent of the gas field is of ~ 900km? (see Fig. 6.29) and it is suited at a depth
of 2750-2900 m (Ketelaar, 2008). The land subsidence around the gas field has been
dedicatedly investigated by Ketelaar (2008) using PSInSAR. The discovered subsi-
dence rate by Ketelaar (2008) in the gas field is less than 1cm per year and the
subsidence is steady in time and can be well approximated by a linear deformation
model. Moreover, the land surface in the province is mainly used by agriculture.

The main focus of this case study is to assess the collocation and the filtering methods
on APS estimation. Intuitively, a better APS estimation should lead to a better
separation of deformation and APS. In this case study we choose Envisat ASAR
images from track 380 and frame 2533 (centered at 53°6" northern latitude and
6°36" eastern longitude) in descending orbit. In total 68 ASAR images between 21-
Dec-2003 and 3-Jan-2010 are available for this time series analysis. The ASAR image
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Fig. 6.30. Baseline plot for 68 ASAR acquisitions over Groningen from track 380 frame
2533. The master acquisition on 29-May-2005 is marked as a square. The maximum
acquisition gap from the time series is 70 days.

acquired on 29-May-2005 is selected as the master of the time series. The baseline
plot of the time series in displayed in Fig. 6.30. The perpendicular baselines range
from 18 to 914 m and the longest temporal baseline is 5.3 years. Fortunately, there
is no significant acquisition gap in the time series of Groningen, see Fig. 6.30.

For the initial selection of PS we set the thresholds for amplitude dispersion index
to 0.22. The first-order PS network consists of 2576 PS with a maximum arc length
of 10km. The relatively large arc length is needed to prevent isolated subnetworks
due to the lack of man made targets in the agriculture fields. The disadvantage is
that many long arcs of the network will experience relatively large APS disturbance
and result in arc rejections during spatial unwrapping. The pre-selected reference
PS is located in the center of the region, see Fig. 6.32a.

6.4.2 Ground deformation estimation

From a previous study by Ketelaar (2008) we already have a good knowledge about
the subsidence in the Groningen gas field. The subsidence is steady in time and
can be well modeled using a linear deformation model. Regarding possible seasonal
deformation over the province due to e.g., soil compaction we model it using a
hole effect stochastic model per PS. The estimated stochastic deformation is shown
in Fig. 6.31. As we can see from the figure, the stochastic deformation is overall
negligible, which implies that the linear deformation model can well describe the
subsidence in the gas field. The estimated subsidence rate by the collocation method
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Fig. 6.31. Stochastic subsidence modeling (on PS) over Groningen using a hole effect
variance-covariance model. a) Estimated RMS (unit:mm). b) Estimated temporal
correlation length (unit: years). Although the estimated correlation length is not zero
everywhere, the estimated RMS suggest that the non-linear deformation is negligible
(less than 2 mm). Therefore, the local subsidence over the area of interest can be well
modeled by a linear functional model.

is shown in Fig. 6.32a. Similar to the Dubai dataset (see Fig. 6.7) we find that there
is a spatial trend embedded in the estimated subsidence rate. The same spatial
trend is also reported in Ketelaar (2008). The subsidence rate after de-trending is
plotted in Fig. 6.32b. For comparison we plot the subsidence rate estimated using
WLS in Fig. 6.32 c. Finally, the difference between the two subsidence rate estimates
are shown in Fig. 6.32d. Similar to the precious case studies, the difference is again
quite small. Therefore, we conclude that the subsidence in the gas field can be well
modeled by both methods based on a simple linear functional model.

6.4.3 Master APS and DEM inaccuracy estimation

Since the subsidence in the area of interest is linear and steady and there are no
significant acquisition gaps in the time series, the collocation and filtering methods
therefore give comparable estimates for the DEM inaccuracy and master APS. Their
estimates are presented in Appendix B.

6.4.4 Slave APS estimation

Clouds appear almost everyday in the Netherlands, which results in MERIS images
from the same orbit track as the ASAR images being strongly contaminated and
cannot be used to assess the slave APS estimates. Alternatively, considering the low
subsidence rate over the region it is possible to assess the estimates by comparing
them to atmosphere-only interferograms which have short temporal baselines (e.g.,
35-day). Because the land surface of the region is mainly used for agriculture,
many 35-day interferograms over the region are therefore too noisy (i.e., temporal
decorrelation) to provide realistic APS for validation. Fortunately, there are a few
35-day interferograms with short perpendicular baselines (e.g., < 300 m) remaining
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Fig. 6.32. Subsidence rate estimation over Groningen using a linear deformation model.
a) Estimated deformation rate (unit: mm/year) using the collocation method. The ref-
erence PS of the first-order network is marked as a black cross. b) The deformation
rate after removing the spatial trend in Fig. 6.32a. c) Estimated deformation rate using
WLS (de-trended as well). d) Histogram of the difference between the deformation rates
shown in Fig. 6.32b and c. In conclusion, the two methods give similar subsidence rate
estimates.

coherent. Most of these interferograms are formed by images acquired during winters
when the ground surface is relatively barren.

To enable a direct comparison with the slave APS estimates we first interpolate
APS at the PS locations from the atmosphere-only interferograms and then spatially
differentiate the interpolated APS with respect to the reference PS. The interpolation
is carried out after phase unwrapping. We plot two atmosphere-only interferograms
as examples in Fig. 6.33e, f for the pair on 31-Oct-2004 and 5-Dec-2004 and the
pair on 7-Aug-2005 and 11-Sept-2005 respectively. The corresponding collocation
and filtering results are shown in Fig. 6.33 a, ¢ for the first pair and in Fig. 6.33b,
d for the second. Clearly, both collocation and filtering results match well with
the ground truth (i.e., the atmospheric-only interferograms). For the first pair we
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Fig. 6.33. Validation of slave APS estimates using atmospheric-only interferograms.
a) Temporal difference (unit: mm) between slave estimates from the collocation method
on 31-Oct-2004 and 5-Dec-2004. b) Temporal difference (unit: mm) between slave
estimates from the collocation method on 7-Aug-2005 and 11-Sept-2005. c¢) Same as
Fig. 6.33a but the estimates are from the filtering method. d) Same as Fig. 6.33b
but the estimates are from the filtering method. e) Atmospheric-only interferogram
(unit: mm) between 31-Oct-2004 and 5-Dec-2004. f) Atmospheric-only interferogram
between 7-Aug-2005 and 11-Sept-2005.

plot the differences between the estimates and the ground truth in Fig. 6.34a, b.
The histograms of the differences are given in Fig. 6.34c, d. The mean and RMS
of the difference between the collocation result and the ground truth are 0.04 and
1.6 mm respectively. For the filtering result the mean and RMS are 0.1 and 2.5 mm
respectively. Thus, for this pair the collocation result is slightly better. In the same
way, we plot the differences for the second pair in Fig. 6.35a, b. The corresponding
histograms are displayed in Fig. 6.35¢c, d. For the collocation method the mean and
RMS of the difference is 0.18 and 5.7 mm respectively. With regard to the filtering
method the mean and RMS are -0.01 and 5.4 mm respectively. Hence, in this case
the filtering method is slightly better.
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Fig. 6.34. a) Difference between the APS estimates shown in Fig. 6.33 a and the ground
truth in Fig. 6.33e. b) Difference between the APS estimates shown in Fig. 6.33 ¢ and
the ground truth in Fig. 6.33e. c¢) Histogram of the difference shown in Fig. 6.34a. d)
Histogram of the difference shown in Fig. 6.34b. In conclusion, the collocation method
gives a slightly better APS estimates for the slave acquisitions.

We should however not misinterpret the comparisons to reach the conclusion that
the slave APS estimates obtained from the two methods are comparable at all times.
We have demonstrated in Chapter 5 (see Figs. 5.21 and 5.22) and section 6.2 (see
Fig. 6.14) that the errors in slave APS estimates are strongly correlated in time. This
is because the error is mis-identified as un-modeled deformation which is correlated
in time. In other words, if we take the temporal difference between adjacent slave
APS estimates the error will be largely canceled. To demonstrate that we use the
slave APS estimates to compute the temporal difference of the estimates in a cascade
way as:

A‘bx};sl = Paps — j;PlS’ (6.4.1)
where 7 ranges from 2 to N, and N is the total number of SLCs in the time se-
ries. In this manner we obtain two sets of Agbf,fl;sl. The first set is obtained based
on estimates from the collocation method and the second set is from the filtering
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Fig. 6.35. a) Difference between the APS estimates shown in Fig. 6.33 b and the ground
truth in Fig. 6.33f. b) Difference between the APS estimates shown in Fig. 6.33d and
the ground truth in Fig. 6.33f. ¢) Histogram of the difference shown in Fig. 6.35a. d)
Histogram of the difference shown in Fig. 6.35b. In conclusion, the filtering method
gives a slightly better APS estimates for the slave acquisitions.

estimates (using a 1-year Gaussian window). For every Aqﬁ%fsl in each set we com-
pute its RMS. The RMSs of the first and second sets are visualized in Fig. 6.36b in
blue and green respectively. To evaluate the difference of Aqﬁf&zl;sl between the two
sets we show the RMSs of their differences in red in Fig. 6.36 b. The mean of the
RMSs shown in blue, green and red are 7.4, 7.3 and 1.7 mm respectively. Therefore,
on average the two sets of Aqﬁl’:{sl agree reasonably well, which is consistent with
what we have shown in Fig. 6.33 in which we compare the temporal differences of
the APS estimates to the corresponding atmospheric-only interferograms having a
35-day temporal baseline.

However, if we look at Fig. 6.36 a in which we plot the same sort of RMSs but based
on the APS estimate per slave we observe that the RMSs of the differences (shown in
red) between the collocation and filtering results are on average considerably larger
than the RMSs of the differences shown in Fig. 6.36b. The mean of all RMSs in
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Fig. 6.36. a) RMSs of slave APS estimates. Blue: based on the collocation estimates.
Green: based on the filtering estimates. Red: RMS of the differences between the
two estimates. b) RMSs of the cascade APS computed using Eq. (6.4.1). Therefore,
the collocation and filtering methods give different APS estimates for each individual
slave acquisition, but the difference is largely canceled by taking the temporal difference
between two adjacent APS estimates.

Fig. 6.36 a shown in blue, green and red are 5.1, 4.5 and 2.3 mm respectively. Thus,
the slave estimates made by the two methods are more inconsistent by about 50%.
Here we need stress that for the separation of APS and ground deformation the
APS estimate per slave is important, given the same master APS estimate by the
collocation and filtering methods.

In addition, from Fig. 6.36 a we also notice that the RMS of the difference becomes
relatively large around acquisitions which have relatively large APS RMS. In other
words, the slave APS estimates from the two methods are more different around
slave acquisitions that were taken during extreme weather with a more turbulent
troposphere than usual. In such cases we expect that the collocation method gives a
more realistic estimation of APS and the large difference between the two methods
should be mainly caused by the estimation error of the filtering method. In Chapter
4 we revealed that the filtering method treats the spatial variation of APS per ac-
quisition equally during the temporal low-pass filtering. Given the limited window
length (typically 1-year) it is difficult for the filtering method to completely average
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out the APS at these acquisitions. Moreover, the APS estimates from the filtering
method at the adjacent acquisitions are more prone to get biased by the strong APS
at these acquisitions. This can be seen from Figs. 6.37 and 6.38 where we plot the
corresponding APS estimates for a subset of continuous slave acquisitions. The ac-
quisitions on 26-Sept-2004 and 3-Jul-2005 have the largest APS variations in their
own neighborhoods, see Fig. 6.36. In addition, the acquisition on 22-Aug-2004 also
has a large APS variation. From Fig. 6.37 we can see that the differences between the
APS estimates on 22-Aug-2004, 26-Sept-2004 and 31-Oct-2004 are strongly corre-
lated and the differences largely resemble the APS on 22-Aug-2004 and 26-Sept-2004.
In Fig. 6.38 we see the same pattern that the differences between the APS estimates
on 24-Apr-2005, 3-Jul-2005 and 7-Aug-2005 are highly correlated and they resem-
ble the APS on 3-Jul-2005. We believe the equal weighting of APS in the filtering
method causes the bias. Although we do not have a direct evidence to prove our
hypothesis, the simulation in Chapter 5 (see Figs. 5.21 and 5.22) obviously supports
the hypothesis. Therefore, we suggest that the collocation method should give a
better estimation of the slave APS and it should be the result of the effectively
weighting of the time series using the estimated APS variance per acquisition (see
discussion in section 4.4).

6.4.5 Slave APS estimation in the presence of acquisition gaps

The goal of this section is to demonstrate that the collocation method is much less
sensitive to acquisition gaps than the filtering method. From previous case studies
we found that the slave APS estimates from the filtering method are considerably
poor for the acquisitions close to the gaps (> 70 days). Fortunately in this case
study no significant gaps exist in the whole time series. On the other hand, the time
series of Groningen provides us an opportunity to investigate the effect of the gaps
on slave APS estimation. The investigation can be done by taking out some of the
slave acquisitions from the original time series to create artificial gaps. Consider
two sets of slave APS estimates, one is obtained using the full time series and the
other from the time series with gaps. The first set of APS estimates should be more
accurate than the second since there are more acquisitions involved in the temporal
filtering. Equivalently, with the same level of APS reduction, the required number of
acquisitions for filtering out APS will be smaller (comparing to an equal weighting
of all APS in the time series) if the APS per slave acquisition is properly weighted.
In other words, the collocation method should be more effective than the filtering
method in reducing APS when there are gaps in the time series.
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Fig. 6.37. a, d, g) APS estimates by the collocation method on 22-Aug-2004, 26-Sept-2004 and 31-Oct-2004 respectively. b, e, h)
APS estimates by the filtering method using a 1-year Gaussian window. c, f, i) Difference between the corresponding APS estimates
of the two methods. As we can see the differences between the two estimates are temporally correlated and resemble the spatial
pattern of the APS (on 26-Sept-2004) that has the largest spatial variation in its neighborhood.
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Fig. 6.39. a) Baseline plot of the new time series after taking out 24 slave acquisitions
from the original time series, see Fig. 6.30 for comparison.

In line with the discussion above we randomly select 24 out of 67 slave acquisitions
and take them out from the original time series. The baseline plot of the new time
series is given in Fig. 6.39. The created acquisition gaps ranges from 105 to 175 days.
We apply both methods to the new time series and compare the result from each
method to the result obtained from the same method but based on the original full
time series. We plot the comparison in terms of the mean and RMS of the residue
(difference between the results from the same method) per acquisition in Fig. 6.40.
It can be seen that the results from the collocation method are obviously much more
consistent, i.e., less sensitive to the acquisition gaps than the filtering method. The
RMSs of the collocation residues shown in Fig. 6.40a are limited between 0.4 and
1.6 mm. In contrast, the RMSs of the filtering residues ranges from 1.0 to 9.3 mm.
Moreover, the collocation residues shown in Fig. 6.40b in general have a smaller
mean than the filtering residues, i.e., they are less biased with respect to the APS
estimates obtained based on the full time series. Therefore, we have demonstrated
that the filtering method is indeed sensitive to acquisition gaps, which results in a
rather poor estimation of slave APS. In contrast, the collocation method is much
less affected by the gaps and gives consistent estimates of slave APS.

6.4.6 Summary

In this case study we have investigated the land subsidence in the Groningen gas
field using the collocation method. The results confirm the conclusion made by
Ketelaar (2008) that the subsidence is steady in time and can be well modeled by
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Fig. 6.40. a) Each blue bar represents the RMS (unit: mm) of the difference between
slave APS estimates by the collocation method for the same acquisition. The difference
is due to the created artificial gaps in the original full time series, see Fig. 6.39. Each
red bar presents the RMS of the difference between slave APS estimates by the filtering
method for the same acquisition. b) Each blue bar represents the mean (unit: mm)
of the difference between slave APS estimates by the collocation method for the same
acquisition. Each red bar presents the mean of the difference between slave APS esti-
mates by the filtering method for the same acquisition. As we can see the collocation
method gives more or less same estimates of slave APS with and without acquisition
gaps. However, the estimates from the filtering method vary significantly if there are
significant acquisition gaps in the time series.

a linear functional model. Because of the simple subsidence mechanism and the
absence of large acquisition gaps the estimates of the deterministic variables from
the collocation and filtering methods are comparable.

In terms of slave APS estimation we find that the results from the collocation and
filtering methods exhibit considerable discrepancies for the acquisitions that have
relatively large APS variation, i.e., acquisitions taken during turbulent weather.
It seems that the discrepancies are mainly the result of the uncompensated APS
originated from the filtering method in which every slave APS is weighted equally.
Moreover, we find the discrepancies are highly correlated in time and resemble the
spatial pattern of the APS that has the largest variation (taken during turbulent
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weather) in its neighborhood. Because of the strong correlation it is difficult to
validate the APS estimates using atmosphere-only interferograms which have small
temporal baselines, i.e., interferograms formed by adjacent acquisitions.

Finally, we have also investigated the sensitivity of the two methods to the acquisition
gaps by taking out a number of slave acquisitions from the original time series. We
find that the filtering method is much more sensitive to the gaps and its estimates
based on the full time series and on the time series with gaps are very different. The
results from the collocation method is however not sensitive to the acquisition gaps.

6.5 Island of Hawaii

So far our investigations only focused on flat terrains where APS mainly manifests
itself as a lateral variation. For volcano studies it is equivalently important to remove
the dependency of APS on local terrain topography (known as vertical stratification)
as it can be as large as the lateral variation or even larger, see chapter 3. Therefore,
in this case study we will assess the feasibility for the collocation method to estimate
both the vertical stratification and the lateral variation. In the collocation method
the vertical stratification is modeled in the space domain deterministically using an
analytic function of local terrain heights, whereas the lateral variation is modeled
stochastically. In contrast, the filtering method does not distinguish the two effects
and models them together simply as a temporally uncorrelated noise component.

6.5.1 Test site and data

The big island of Hawaii has a moist and heterogeneous tropical atmosphere. Be-
cause of its geographic location it only has two seasons: summer between May and
October and winter for the rest of the year. In general, most of the precipitation
in a year occurs during the winter season and drier conditions usually take place in
summer. The temperature variation on the island is fairly small from 26 to 32 C° be-
tween winter and summer. Due to the dominant trade winds over the island clouds
are often formed at low altitudes (< 2400 m) where air is more moist than the upper
atmosphere (Morgan, 1996). From the MERIS dataset available to us over the island
between 2003 and 2008 we can rarely find any cloud free MERIS image, which makes
the validation of the APS estimates using MERIS not possible. Moreover, the island
has a strong topography variation varying from sea level to approximately 4200 m,
see Fig. 6.41. This leads to a strong tropospheric vertical stratification in many of
the interferograms used for this case study. Therefore, for the time series analysis of
this region we need to take into account the vertical stratification effect which could
be ignored in the previous case studies. On the other hand, this provides an op-
portunity to test the collocation method for the capability of modeling tropospheric
vertical stratification in the presence of ground deformation.

The ASAR image stack we use for the time series analysis is from track 200 and frame
3213 in descending orbit. In total there are 39 ASAR images which were acquired
between 27-Jan-2003 and 5-Jan-2009. The ASAR image acquired on 7-Mar-2005 is
selected as the master of the time series. To limit the computational load we select
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Fig. 6.41. Land topography of island of Hawaii covered by ASAR acquisitions
(track: 200, frame: 3213) with a spatial extent of 60 by 60 km.

a 60 by 60 km crop covering the Mauna Loa volcano (centered at 19° 28’ northern
latitude and 155° 35’ western longitude), see Fig. 6.41. The baseline plot of the time
series is displayed in Fig. 6.42. The perpendicular baselines range from 12 to 1110 m
and the longest temporal baseline is 3.8 years. In addition, acquisition gaps up to
175 days are found in time series, see Fig. 6.42.

6.5.2 Ground deformation estimation
Stochastic deformation

The surface deformation around Mauna Loa is associated with volcanic inflations, see
Amelung et al. (2007). In this study we use a linear model (i.e., constant velocity) to
model the deterministic part of the deformation. Given the linear model we attempt
to model the stochastic deformation using different variance-covariance models, i.e.,
Gaussian, spherical and hole effect. The modeled stochastic deformations based on
these models are displayed in Fig. 6.43. As we can see from the figure, the modeled
stochastic deformations are in general similar to each other. All the models indicate
that there is a significant (up to 15mm/year) deformation component which is not
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Fig. 6.42. Baseline plot for 39 ASAR acquisitions over the big island of Hawaii from
track 200 frame 3213. The master acquisition on 7-Mar-2005 is marked as a square.
The maximum acquisition gap from the time series is 175 days

captured by the functional model around the summit. In addition, there is also a
noticeable stochastic deformation along the southwest side of the volcano. However,
for this area different models give different estimates of the deformation correlation
length. Both Gaussian and hole effect models give a relatively short correlation
length (~ 0.5 year), but the spherical model suggests a longer correlation (~ 1 year)
in the south. As we have learned from the simulation in chapter 5 the estimate of
the correlation length is not always reliable and it can be either too short or too
long. This is the reason why we need to fix the possible range of the correlation
length between 0.5 and 1.2years in the collocation method, see Tab. 6.1 On the
other hand, the deformation over the area (i.e., along the southwest) however does
not have a considerable RMS (i.e., smaller than 5 mm on average) and therefore the
induced error by the correlation length should not be significant. Since we do not
have the ground truth of the deformation over the area, we decide to used the result
based on the hole effect model which is able to model random signals having periodic
behaviors.

Deterministic deformation modeled by a functional model

Based on the hole effect variance-covariance model the estimated deterministic de-
formation using a linear model is shown in Fig. 6.44a. From the figure we observe
both uplift and subsidence, which is consistent with the result obtained by Pepe
et al. (2010) using the small baseline subset (SBAS) approach. The subsidence is
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Fig. 6.43. Estimated stochastic surface deformation (over PS) at Mauna Loa volcano,
Hawaii. a and b) RMS (unit:,mm) and correlation length (unit: years) of the estimated
stochastic deformation using a hole effect variance-covariance model. ¢ and d) RMS and
correlation length based on a spherical model. e and f) RMS and correlation length based
on a Gaussian model. As we can see, all stochastic models indicate that the deformation
around the submit is not linear and therefore modeled as a stochastic deformation.

observed in the west and south with respect to the summit. The uplift, which is
more profound than the subsidence, takes place around the summit where we also
observe strong stochastic deformation, see Fig. 6.43. In addition, Fig. 6.44b shows
the deformation rate estimated by WLS (see Eq. 6.1.8). Moreover, the histogram of
the difference between the two estimates is given in Fig. 6.44c. As we can see the
absolute difference between the two estimates is less 1 mm. So far we have seen from
all the cases that the estimated deformation rates by the two methods are always
similar.

Finally, Fig. 6.45 shows full time series of ground deformation of 6 PS which are
randomly selected from the subset of PS who have (stochastic) deformation RMS
larger than 5 mm. The locations of the selected PS are highlighted in Fig. 6.44 a. One
common feature of these time series is that the filtering method based on a Gaussian
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Fig. 6.44. Deformation rate estimation (over PS) over Mauna Loa using a linear de-
formation model. a) Estimated deformation rate (unit: mm/year) using the collocation
method. The reference PS of the first-order network is marked as a black cross. The red
circles highlight the locations of the PS shown in Fig. 6.45. b) Estimated deformation
rate using WLS, see Eq. 6.1.8. c) Histogram of the difference between the deformation
rates shown in Fig. 6.44a and b.

window of one year constantly gives a more oscillating estimation of deformation,
especially at locations (in the time domain) where there are significant acquisition
gaps. From the precious studies we have learned that the relatively large oscillations
are due to leakage of APS, which is caused by the equal weighting of APS variation
together with the limited number of images involved in the filtering. The collocation
method is however much less sensitive to the acquisition gaps because it weights APS
according to its variation per acquisition and therefore does not need as many images
as the filtering method to be available within the period of filtering.
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Fig. 6.45. Time series of total deformation estimation. a) Estimated deformation time
series on a PS from region D in Fig. 6.44a. The dot-dashed blue line is the result of the
collocation method and the dot-dashed red line is the result of the filtering method using
a l-year Gaussian window. b, ¢, d) PS from region B in Fig. 6.44a. e€) PS from region
C in Fig. 6.44a. f) PS from region A in Fig. 6.44a. The oscillations in the filtering
results are likely artificial and caused by the acquisition gaps in the time series.

6.5.3 APS estimation

We do not show the estimates of master APS and DEM inaccuracy since the two
methods (i.e., collocation and filtering) do not give noticeable difference, just like the
precious case studies. Instead, in this section we will focus on the feasibility of es-
timating the tropospheric vertical stratification effect using the collocation method.
Moreover, we will also investigate the slave APS estimates from the two methods
(i.e., filtering and collocation). Since there are no cloud-free MERIS images avail-
able, the only way we can validate the estimates is to compare them with repeat-pass
interferograms that have short baselines. Fortunately, the island on average remains
fairly coherent in the interferograms having a 70-day baseline or shorter.
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PS (from SRTM).

Estimation of tropospheric vertical stratification

The topography heights of the PS are displayed in Fig. 6.46b. To model the vertical
stratification effect of delay between two PS p and ¢ we choose a linear model
(Elosegui et al., 1998; Delacourt et al., 1998; Onn and Zebker, 2006):

DY = kAH = k(H, — H,), (6.5.1)

where k is a vertical stratification coefficient. If the units of delay and height are
millimeter (mm) and meter (m) respectively then the unit of k£ is mm/m. For each
ASAR acquisition we estimate a constant k over the full image. The estimate of k
per acquisition is shown in Fig. 6.46a. Obviously, the estimated k does not have
a physical meaning since the delay should always increase as the microwave signal
traveling further down to the sea level, i.e., a negative k. Therefore, we should
always interpret the estimates of k£ in terms of their difference between acquisitions.
To demonstrate this fact we plot the temporal difference of the estimates for some
acquisitions in Fig. 6.47 against the k estimated from the corresponding repeat-pass
interferograms using least-squares. The signal in these interferograms should mainly
represent APS because of the short temporal baseline. From the figure we can see a
very similar delay pattern against the topography height between the two estimates,
although the collocation method constantly suggests a larger k. From the figure an
overestimation of 5mm/km on average of k is observed.

Slave APS estimation

We show the posteriori RMS of slave APS estimates obtained from the collocation
and filtering methods (using a 1-year Gaussian window) in Fig. 6.48. As we can see
the RMSs of the residues (difference) between the two APS estimates are consid-
erably large (4.5mm on average) comparing to the Groningen case, see Fig. 6.36.
The average RMS of the APS estimates of the collocation and filtering methods are
8.5mm and 6.4 mm respectively. It implies that the latter underestimates the slave
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Fig. 6.47. Validation of the estimated vertical stratification coefficients by the col-
location method using short-baseline repeat-pass interferograms. a) Temporal APS
difference between the APS estimates (by the collocation method) on 29-Sep-2003 and
3-Nov-2003. The slope of the red line is the difference between the estimates of the ver-
tical stratification coefficients for the two dates, see Fig. 6.46a. b) Unwrapped phases
of the interferogram on 29-Sep-2003 and 3-Nov-2003. The slope of the green line is the
estimate of the vertical stratification coefficient for the interferogram using least-squares.
¢) Same as Fig. 6.47a but on 12-Jan-2004 and 26-Apr-2004. d) Same as Fig. 6.47b
but on 12-Jan-2004 and 26-Apr-2004. e) Same as Fig. 6.47a but on 27-Oct-2008 and
5-Jan-2009. f) Same as Fig. 6.47 b but on 27-Oct-2008 and 5-Jan-2009. In conclusion,
the estimated vertical stratifications matche the ground truth.

APS on average. This is not a surprise because the island has a tropic climate (i.e., a
turbulent troposphere) and there are large acquisition gaps (> 70 days) in the time
series. Given one year filtering length the filtering method is not able to average
out the slave APS and therefore results in a leakage from APS to deformation, see
Fig. 6.45. To validate the APS estimates we compare them with the correspond-
ing short baseline repeat-pass interferograms in which APS is the dominant signal.
Some examples are shown from Fig. 6.49 to Fig. 6.54. In all the examples, the APS
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Fig. 6.48. Posteriori RMS (unit: mm) of APS estimate per slave acquisition. Blue:
Estimates of the collocation method. Green: Estimates of the filtering method using a
1-year Gaussian window. Red: RMS of the difference between the two estimates. Large
residues are seen for acquisitions close to acquisition gaps.

estimates from the collocation method are more accurate.

6.5.4 Summary

In this case study we have demonstrated that the collocation method is able to es-
timate both the vertical stratification and the lateral variation of APS. To model
the vertical stratification we assume a constant vertical stratification coefficient per
acquisition. A validation of the estimated coefficients using three short baseline
repeat-pass interferograms (corresponding to 6 coefficients ) suggests that the col-
location method overestimates the effect on average by 5mm/km. Moreover, we
have also demonstrated that the collocation method gives a more reliable slave APS
estimate than the filtering method when there are acquisitions gaps (> 70 days) in
the time series. On average the filtering method using a 1-year Gaussian window
underestimates the slave APS by 2.1 mm and the error leaks into the deformation
time series.

Regarding the ground deformation based on a linear deformation model we find both
uplift and subsidence around the volcano. The velocity estimates by the collocation
method and WLS differs less than 1 mm. Moreover, the collocation method suggests
that the uplift around the summit is non-linear with a deformation RMS up to
15 mm.

6.6 Summary

In this chapter we applied the collocation method to InSAR time series from four
different climatic regions (Dubai, Mexico city, Groningen and Hawaii). Among these
regions the island of Hawaii has a strong land topography variation, which often leads
to a strong vertical stratification effect in APS. The a-posteriori RMSs of the APS
estimates for these regions indicate that the local troposphere is in general more
turbulent in coastal regions (i.e., Hawaii, the Netherlands) and regions that have a



6.6 Summary 151

19.7
19.6
2 19.5
2
ki 19.4
19.3} *=LR
20 20 = 20 0 20
[ — 19.2p ~EFSNE o —
-155.8 —-155.7 —155.6 —155.5 —155.4 -155.8 —-155.7 —155.6 -155.5 -155.4
Longitude

-1565.8 -155.7 -155.6 -155.56 -155.4

Fig. 6.49. Comparison of slave APS estimates (unit: mm) over PS for dates 11-Apr-2005
and 20-Jun-2005. a and b ) Temporal differences of the two slave APS estimates by
the collocation and filtering method resepctively. A 1-year Gaussian window is used by
the filtering method. ¢) The corresponding repeat-pass interferogram. Note the strong
signal in the submit is likely caused by atmospheric delay but it may also be caused by
deformation which is highly nonlinear, see Fig. 6.44 and Fig. 6.43.

warm climate (i.e., Hawaii, Dubai).

Among these regions, Hawaii, Mexico City and Groningen experience ground defor-
mations over the period of the InSAR time series. However, the observed ground
deformations are caused by different mechanisms. The deformation in Hawalii is
caused by volcanic inflations and the subsidences in the other two regions are re-
lated with human being activities, i.e., underground water/gas extraction. In terms
of the deformation magnitude Mexico City experiences the largest subsidence (> 100
mm/year) rate followed by Mauna Loa (~ 30 mm/year) volcano at Hawaii. The de-
formation over the gas field of Groningen is slow (~ 1cm/year) and steady and can
be well modeled by a linear deformation model. No deformation has been found in
Dubai.

For deterministic variables (deformation rate, DEM inaccuracy and master APS),
the collocation and filtering methods give similar estimates when there is no ground
deformation or the deformation can be well modeled by the chosen functional model,
see the Dubai case in section 6.2 and the Groningen case in section 6.4. The selection
of the functional model in practice is often arbitrary due to the lack of a-priori
knowledge of the deformation. When local ground deformation is complex and
cannot be well modeled by the chosen functional model, part of the deformation will
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Fig. 6.50. Validation of the slave APS estimates shown in Fig. 6.49. a) Difference
(unit: mm) between the APS shown in Fig. 6.49a and c. b) Difference between the
APS shown in Fig. 6.49b and c. ¢) Histogram of the difference shown in Fig. 6.50a.
d) Histogram of the difference shown in Fig. 6.50b. Obviously, the estimates from the
collocation method match better with the ground truth.

likely be identified as master APS or the other way around if the filtering method
is used, see the Mexico city case in section 6.3. The collocation method however
always attempts to model (via stochastic modeling) the un-modeled deformation by
the chosen functional model, which prevents the mis-identification.

Regarding slave APS estimation, the collocation method always gives better esti-
mates than the filtering method, especially when there are significant acquisition
gaps in the time series and for acquisitions taken during extreme weather (e.g.,
thunderstorm). When there are no significant acquisition gaps and given a shorter
satellite repeat orbit (i.e., higher sampling rate in time) the filtering method will
give similar slave APS estimates as the collocation method.

In terms of the quality of the deterministic and stochastic estimates, the collocation
method can provide the precision assessments of the estimates. If the assumptions
(such as functional and stochastic models used for deformation modeling) made for
time series analysis are realistic, then the precision assessments should be reliable and
realistic. In such cases, the collocation method not only gives the optimal estimate
of each variable but also provides a reliable quality indication which will enhance
the role of InSAR as a stand-alone technique for surface deformation monitoring.

In conclusion, we recommend to use the collocation method for InSAR time series
analysis, especially when 1. there are acquisition gaps in the time series, 2. there
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are acquisitions in the time series taken during extreme weather and 3. a complex
ground deformation is expected and no a-priori knowledge of the deformation is
available.
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Chapter 7

Optimal water vapor mapping: a network
approach

Currently, space-borne InSAR is mainly used for ground deformation monitoring and
land topography modeling. The observed spatio-temporal variation of atmospheric
delay, which is mainly caused by water vapor in the lower part of the troposphere,
is commonly regarded as a measurement noise. In this chapter, we consider the
atmospheric delay observed by InSAR as a signal for atmospheric studies and propose
a method to retrieve its spatial variation at the epochs of SAR acquisitions from a
set of repeat-pass interferograms. The method is applicable to cases in which land
deformation in the area of interest is negligible during the SAR. acquisitions or the
deformation signal is known and can be subtracted from the interferometric phases.
Comparing to the least-squares collocation method discussed in previous chapters,
this method can retrieve water vapor spatial variation with 1-km resolution or better
covering a large ground surface rather than at PS points only, thanks to the good
phase coherence provided by short baseline interferograms.

The method is introduced in section 7.2 and it uses a temporal network formed
by small-baseline interferograms to estimate the water vapor distribution at each
SAR acquisition by means of constrained least-squares adjustment. In section 7.3
we apply the approach to 40 interferograms formed by 22 ASAR images acquired
by Envisat in descending orbit over a scene in south-west Australia. The estimated
water vapor spatial variations during the 22 SAR acquisitions are evaluated in terms
of estimation bias, power spectral density and temporal correlation. In addition, we
cross validate some of the APS estimates for those dates on which cloud free MERIS
integrated water vapor (IWV) measurements are available. Finally, the conclusions
are given in section 7.4.

7.1 Motivation

Over the last two decades, great achievements of space-borne SAR Interferometry
for Earth observation have been widely witnessed. Most of its applications can be
found in the fields of ground deformation monitoring and land topography mod-
eling. In these applications the atmospheric phase screen (APS) is commonly re-
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garded as a phase noise with high spatio-temporal variations caused by water vapor
in the lower part (< 2 km) of the troposphere. On the other hand, it has been
demonstrated that InSAR can provide high spatial resolution measurement of APS
spatio-temporal variations (Hanssen et al., 1999; Hanssen, 2001), provided that the
ground deformation is negligible and an external DEM model is available to compen-
sate the topographic phase contribution. However, compared to the spatio-temporal
variations of interferometric APS, its spatial variations at the epochs of SAR acqui-
sitions are apparently more valuable for atmospheric studies related to climate (Rind
et al., 1991), mesoscale meteorology and numerical forecasting (Emanuel et al., 1995;
Crook, 1996). Therefore, for InSAR to be used as a tool for the atmospheric stud-
ies we need to be able to retrieve the APS spatial variation at the time of each
individual SAR acquisition. Based on this motivation we develop an approach to
estimate APS spatial variations at the epochs of SAR acquisitions from a set of
small-baseline interferograms. Our approach is applicable to cases in which land
deformation in the area of interest is negligible or the deformation signal is known
and can be subtracted from the interferometric phases.

7.2 Methodology

The methodology consists of three steps. The first step is to form redundant tempo-
ral network of interferograms using coherent interferograms. These interferograms
usually have relatively small baselines. The redundant network allows for a free
network adjustment using least-squares by imposing an artificial constraint. After
the network adjustment, in the second step a statistical testing is carried out to
remove obvious outliers in the observations. In the last step, a spatial filtering and
interpolation is performed to further reduce noise in the estimates and interpolate
APS at locations where outliers are detected.

7.2.1 Spatio-temporal network formation and APS estimation

Given N+1 SAR acquisitions we can form N(N+1)/2 different interferograms, al-
though only N of these interferograms are independent. For repeat-pass interferom-
etry, baseline constrains (e.g. Bperp <600 m, B;<180 days depending on the sensors
and areas of interest) are necessary in order to suppress decorrelation noise (Zebker
and Villasenor, 1992; Gatelli et al., 1994). Under the baseline constrains, the number
of interferograms that can be formed is reduced substantially and their baseline plot
would look similar to the temporal network sketched in Fig.7.1. For an arbitrary
pixel p in the aligned interferograms (i.e. co-registrated with respect to a common
image) in the network, its unwrapped interferometric phases can be written as:

dj;)] = apq orb + ¢defo tOpO + ¢n01be’ (721)
where ¢3¢ is the temporal difference of two APS spatial variations during acquisi-

tions ¢ and j (with respect to a common reference point in space), gzborb represents
the phase caused by the error in satellite orbit, ¢, counts for the land deforma-
tion between the acquisitions and ¢/, denotes the phase contribution from land
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Fig. 7.1. Baseline-Network plot of SAR acquisitions. Horizontal-axis: temporal base-
line. Vertical-axis: perpendicular baseline.Each node represents an acquisition and each
edge connecting two nodes represents an interferogram formed by the two acquisitions.
Dashed edges are the ones which cannot be included in the closed loop of the network
due to baseline constrains.
topography and ¢ is the noise term including decorrelation noise, coregistra-
tion/resampling noise and processing noise. The deformation term can be removed
from Eq. (7.2.1) for ground surfaces that do not suffer from ground deformation. The
topography contribution can be compensated by using a global DEM (e.g. SRTM)
and the orbit error can usually be modeled as a surface trend (Hanssen, 2001) and es-
timated separately from the unwrapped phase. Therefore we can rewrite Eq. (7.2.1)
as :

d);;] = ;ps - d)Japs + Pnoises (722)

which can be written in a matrix form:

y = Azr+e, (7.2.3)
where y is a mx1 observation vector which contains the unwrapped interferometric
phases at the pixel p and m is equal to the number of interferograms in the network,
x is a nx1 (deterministic) parameter vector which contains the unknown APS at the
epochs of SAR acquisitions and n is the number of the SAR acquisitions from which
the m interferograms are formed (note for the networks such as shown in Fig. 7.1, m
is larger than n, i.e., redundant networks), A is a m by n matrix which represents the
network configuration and e is the observation (random) noise vector. One simple
realization of Eq. (7.2.2), for example, can be: given a network formed by three
acquisitions namely a, b and ¢, y = (¢%,, ¢}, #E.)T, A =[1,-1,0;0,1,-1;1,0,-1] and

= (¢, 8%, ¢P)T, where T stands for a matrix transpose.

Since the m interferograms are formed from the n acquisitions, so there are only n-1
independent interferograms and the other m-n+1 interferograms can be obtained
via the linear combinations of the n-1 independent interferograms. As a result, the
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matrix A in Eq. (7.2.3) is rank deficient and it has only n-1 linear independent
columns. Thus, Eq. (7.2.3) is inherently ill-posed and it has an infinite number
of solutions, even tough the number of observations in Eq.(7.2.3) is larger than or
equal to the unknowns. To overcome the rank deficiency we need to add one or more
constraints to Eq. (7.2.3). One of the choices could be adding one or more external
water vapor measurements, e.g., from GPS or MERIS in case of ASAR, acquired
coincidently with the SAR acquisitions. However, these auxiliary measurements are
not always available due to e.g., clouds or the spatial density of the GPS network.
Alternatively, we can make use of the temporal mean of APS as a constraint/pseudo-
observation. Because of the weak correlation between spatial variations of water
vapor at different acquisitions, the temporal mean will decay toward zero as the
number of acquisitions increases. For example, assuming the standard deviation of
APS disturbance per acquisition is 5 mm on average, then by taking the average of
25 SAR acquisitions the standard deviation of the average will drop to 1 mm and the
decay rate is 1/y/n, where n is the number of acquisitions involved in the temporal
average. In line with the constrain, Eq. (7.2.3) can be modified to:

Q)@ e

where B is a 1xn vector with all its entries equal to 1/n;

The weighted least squares (WLS) solution of x in Eq.(7.2.4) is given as (Teunissen
et al., 2005):
b= (ATQ ) ATQY, (725)

and the variance-covariance matrix (VCM) @, of the observation vector y reads:

Qu = (Cf) Q(;)

_ Qe 0
N0 XLl /n?)”

where ). is the VCM of the observation noise and it is a diagonal matrix because we
assume that the phase noise in the interferograms is uncorrelated, Ugi is the spatial
variance of APS during the ith acquisition. To evaluate @), we use:

(7.2.6)

7= Bl -0} = [ (0-onPpdr(o)d

do+7
- /¢ "6 e ()0 (7.2.7)
= [ &paro + o0)do,

where ¢ is the expectation of ¢ (E is the expectation operator). In our case, ¢g
corresponds to the mean phase delay in the resolution cell. Since the variation of
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the atmosphere phase delay at short distance (e.g. < 1 km) is limited, hence 05) is a

good approximation of the variance of the phase noise. For distributed scatters with
Gaussian or Rayleigh scattering, the phase pdf in Eq. (7.2.7) has the form (Tough
et al., 1995):

(1- 7|2)2{ r@2L-1)
T

pdf (@7, L, d0) = o2m (L)]222(C-1) x
(L-18 | :
{W(§+arcsmﬁ)+m T =D
L—-2 . . )
> F((L_i;?:)F(L —1-nr)I(L - 1)%}, (7.2.8)

where 8 = |y|cos(¢ — ¢o); L is the multilook factor; « is the complex coherence.
Note, Egs. (7.2.7) and (7.2.8) show that we do not need to know ¢o in order to
evaluate 03). The magnitude of the complex coherence |y| can be estimated by

(Seymour and Cumming, 1996):

N *
|'AY‘ _ ‘ anl yly2|
N N ’
VEY [ PYY [yaf?

where y; and yo are the complex signals of master and slave respectively and x
denotes the complex conjugate. In practice, the estimate |¥| is biased towards higher
values, i.e.|9| > |Ytrue|, for low coherence and small estimation windows (Tough et al.,
1995). In addition, for single-look data (L = 1) ai can be expressed in a closed form
as (Bamler and Hartl, 1998):

(7.2.9)

2
1
oG -1 = % aresin(|7|) + arcsin®(|7y]) — 3 Z

‘2k

(7.2.10)

Numerical evaluations of the phase pdf in Eq. (7.2.7) with varying |y| and L are
shown in Fig. 7.2 a, b, ¢. The phase variance integrated numerically using Eqgs. (7.2.7)
and (7.2.8) as a function of |y| and L is plotted in Fig. 7.2d. Note, for large L (i.e.
L>80) the phase variance ai turns to depending on the coherence magnitude ||
only. To realize @, in Eq. (7.2.6) we need to know o2 as well. To estimate it
we however need to know the atmospheric signal magnitude = which is not known
a-priori and needs to be estimated from the data. Therefore, we need to compute
Z iteratively and in each iteration we compute 02 based on the estimate of x; from
the previous iteration. The initial approximation of o2 can be an approximation of
the average of local atmosphere variance. After several iterations the update of o2
becomes trivial and therefore the WLS estimate of  can be obtained.

Finally, we need to stress that although APS at all acquisitions within the network
in Fig. 7.1 can be estimated uniquely using Eq. (7.2.5), their estimates have different
accuracies depending on their locations in the network. Assuming the same noise
level for all interferograms in the network, the accuracy of the estimates at the
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Fig. 7.2. Probability density function and standard deviation of the interferometric
phase as a function of coherence and multilook level. A) Single look for coherence levels
|v]=0.1, 0.3, 0.5, 0.7, and 0.9 (smallest curves correspond with highest coherence). B)
Multilook level 10. C) Multilook level 50. D) Phase standard deviation with varying
multilook level (L=1,20,50,60,70,80 and 85) and coherence. For large L, 03) turns to
depending on || only.

network arcs (the dashed lines in Fig.7.1) which are not in the closed loop of the
network (the solid lines in Fig.7.1) are lower than the accuracy of the estimates at
the arcs within the loop. This is because there is no observation redundancy at the
open arcs and therefore the noise in their observations cannot be adjusted. Moreover,
for the same reason it is not possible to validate the estimates and remove possible
outlier at these open arcs. Statistical testing and outliers detection are discussed in
the following.

7.2.2 Statistical testing and outlier detection

The estimate of x obtained from WLS may have low precision due to outliers in the
observations (i.e. unwrapped interferometric phases). Many contributors can cause
outliers in the interferograms, e.g., phase unwrapping error, mis-coregistration be-
tween master and slave, DEM error that becomes larger as the perpendicular baseline
increases, etc. Moreover, poor estimates of x can also be caused by errors in the
stochastic model, i.e. the VCM @, of the observations in Eq. (7.2.6). The error is
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likely to occur when the pixels used to estimate the coherence in Eq. (7.2.9) have low
signal-to-noise ratio (SNR). In such case, the estimated phase noise variances from
Eq. (7.2.7) for these pixels are underestimated, i.e., the quality of the data is overes-
timated (67 < 03 (,,,)- Therefore, the need for testing the validity of the estimate is
obvious. We propose a testing procedure which is commonly used to detect outliers
during the geodetic network adjustment. The procedure can be generally described
by three steps: detection, identification and adaptation (DIA) (Teunissen, 2000Db).
Firstly, in the detection step a null-hypothesis, which assumes the model described
by Eq. (7.2.4) is well supported by the data (i.e. observations), is tested against
general model mis-specifications. This step is the overall model test (OMT) since it
checks the overall validity of the model without the need to specify any particular
alternative hypothesis. The appropriate test-statistic for this step reads:

T, =e'Q,'e, (7.2.11)
where ¢ is the WLS residue which is equal to y - AZ, m,n are the number of obser-
vations and unknown parameters respectively, m-n is the observation redundancy
(degree of freedom). The null hypothesis is rejected when Tom! > x2(m-n, 0),
where X2 (m-n, 0) is a central Chi-square distribution with m-n degrees of freedom
and « is called the level of significance which represents the likelihood of a type-I
error of the test. The type-I error is caused by mis-specifying reliable observations
as outliers which are therefore rejected by the test. On the other hand, there is a
type-II error (the likelihood is denoted as ) which is the result of accepting the
outliers in the observations. Given the type-II error 8 the power of the test is v =
1-8. These two types of errors are always co-existing in all hypothesis-based tests.
Moreover, a decrease of a will result in an increase of 5 and vice versa. Therefore,
there is no hypothesis test that can minimize « and S simultaneously. To get out
of the dilemma, in practice, it is common to fix one type of error and then try to
minimize the other type. The test (among all tests) which gives the minimum S for
a fixed « is called a most powerful test since it maximizes the power of the test.
In our case, we cannot afford rejecting correct observations since they are not re-
measurable. Therefore a small «, e.g. 0.001 should be chosen. Assume maximally
10% of the interferometric phases within the closed loop of the network in Fig. 7.1
are outliers, =0.001 implies that 1% of the identified outliers actually were correct
observations. Obviously, the value of a should be increased as the noise level of the
observations increases. Next, if the null hypothesis in the first step is rejected then it
implies that there most likely exists one or more significant model mis-specifications
due to outliers. The task of the second step, i.e. identification, is therefore to detect
the outliers in the observations. For simplicity, we assume there is only one outlier
in the observations and the test-statistic for detecting the outlier reads:

T H-14

qu‘, Y’ e

b
—1 —1
VQ, Qe ey,

(7.2.12)

w; =

where Qé:Qy—A(ATleA)_lAT is the VCM of the least squares residue &; cy,
is an unit vector having the 1 as its ith entry. It can be shown that the w test in



164 Chapter 7: Optimal water vapor mapping: a network approach

Eq. (7.2.12) is a most powerful test (Teunissen, 2000b). In case that @, is a diagonal
matrix then the test-statistic reduces to:

&

w; = - (7.2.13)
The jth observation is suspected to be an outlier when |w;| > |w;| for all ¢ # j and
|w;| > Na(0,1), where N, (0,1) denotes the standard normal distribution. In the
last step, the detected outlier, i.e. the observation y;, is rejected and the parameters
of interest are re-estimated using Eq. (7.2.5). The testing procedure iterates until
there is no outlier that can be identified with the given «. Note, as mentioned in the
end of section 7.2.1, the outlier detection is not possible for acquisitions which are
not included in the closed loop of the network. Therefore, we need to either discard
the APS estimates for these acquisitions or just accept them without reliability
assessment.

7.2.3 Spatial filtering and interpolation

After testing, we obtain the pixel-wise APS estimates at all acquisitions. However,
there can be pixels which do not have APS estimates at some acquisitions. This is
because for these pixels Eq. (7.2.4) is ill-posed due to the rejection of outliers at these
pixels after testing. On the other hand, there are pixels having APS estimates but
the estimates are contaminated by noise. The noise in these estimates is propagated
from the outliers which are not detected by testing due to the inherent type-II error.
This error is often not negligible since during testing the type-I error « is fixed to a
small value to prevent rejecting correct observations. Therefore, the goal of spatial
filtering and interpolation described in this section is to refine the estimated APS and
to interpolate APS at locations where no APS estimates are available. The filtering
and interpolation are implemented by ordinary kriging which gives the unbiased
estimation of the signal of interest, meanwhile its filtering/interpolation error is
minimized in a least squares sense. To refine/interpolate APS at location hy from
its surrounding APS estimates (tested), the kriging equation reads (Wackernagel,
1995):

N
X(ho) => N\X(h;), he R (7.2.14)

where A; is the kriging weight for the sample X(h;) at location h;. The kriging
weights can be computed by solving the system of equations:

y(Ahiz) - y(Ahiy) 1\ /A 7(Ahio)
Y(Ah21) - y(Ahan) 1] [ A2 7(Ahy)

: : : : = : ; (7.2.15)
y(Ahiy) - y(Ahyy) 1 | An 7(Ahno)

1 - 1 0/ \ u 1

where v(Ah;;) is called semi-variogram; p is a Lagrange multiplier. To uniquely de-
termine the kriging weights A, the left hand side N+1 by N+1 matrix in Eq. (7.2.15)
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needs to be positive-definite and therefore invertible. To satisfy the positive-definite
requirement we first compute the raw semi-variogram by:
[X (hy) — X (hy)]?

2 b

and then we fit the raw variogram to a Matérn family model which can describe
the well-known ’2/3’ law of the Kolmogorov turbulence theory (Tatarski, 1961).
Assuming that the estimated APS is wide-sense stationary (otherwise we de-trend
it), the model for the variogram can be obtained from:

~(Ah) = C(0) — C(Ah), (7.2.17)

where C(Ah) is the covariance function of the Matérn class. The function reads
(Stein, 2005):

C(Ah) = (a]Ah|)” K, (aAh)), (7.2.18)

c
2v=1T(v)
where ¢ denotes the variance (power) of the turbulence; « represents the correlation
length of the turbulence, v defines the smoothness of the turbulence, T is the Gamma-
function and K is the modified Bessel-function of the second kind.

We have so far introduced the methodology in detail. Forming a redundant temporal
network is the key for the successful application of the methodology. Therefore, we
prefer a testing area that allows for a good phase coherence for interferograms with
relatively large temporal baselines, e.g., 6 months. In the meantime, the area shall
be stable and have no or negligible ground deformation. In next section, we will
demonstrate the methodology based on an area from southwest Australia.

7.3 Retrieving APS spatial variation: a case study

In this section we apply the developed methodology in the previous section to an
area in southwest Australia.

7.3.1 Area of interest and data pre-processing

The area is centered at 30.36°S and 117°E from southwest Australia, see Fig. 7.3.
It is barely vegetated due to the regional semi-arid climate. As a result, the phase
coherence can remain high enough for a relatively long period (~ 6 months) as shown
in Fig. 7.4.

The time span of the ASAR acquisitions used in this study is between May 2005 and
April 2008. To apply the algorithm the surface deformation in the area should be
either negligible or removed from the unwrapped interferograms beforehand. Since
we find no evidence of ground deformation over the area based on a PSInSAR time
series analysis, therefore we assume the ground deformation over the area is negli-
gible. Starting with SLC (single-looking-complex) images, 40 interferograms with
on average 85 days temporal and 205 m perpendicular baselines are formed from 22
SLCs, see the baseline plot in Fig. 7.5. The area has a smooth topography with an
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Fig. 7.3. The area (green square) chosen for the case study is located in southwest
Australia with scene centered at 30.36°S and 117°E. The red polygons outline the dried
salt lakes. The local time of the acquisitions is 9:40 am.

average height of 250 m and the maximum height difference is about 200 m. There-
fore the vertical stratification effect of APS is negligible in this area. The topographic
phases in the interferograms are modeled and subtracted using 3-arc-second SRTM
data. To reduce phase noise due to geometric decorrelation range filtering is applied
to all interferograms to cut off non-overlapping spectra of master and slave. After
phase unwrapping, a coherence-based spatial average (i.e.multilook) is applied to
the unwrapped phases to reduce random phase noise. The operation can be written
as:

¢ = ST 12] g Zwaqzs i5), (7.3.1)

=1 j=1

where

Wiy _{ 0 otherwise (7.3.2)

and |Y|min is a pre-defined coherence threshold (e.g. 0.35). Since APS is spatially
smooth thus in this case a large window size (e.g. 250 by 50 in azimuth and range
respectively) for averaging is admissible without invoking signal aliasing. In this
study we spatially average the unwrapped interferograms to 1km in both azimuth
and range. After the spatial average a surface trend is estimated from each in-
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Fig. 7.4. Wrapped interferometric phases from the area of interest (100 by 100 km)
with different temporal baselines; a) 35-day. b) 70-day. c) 105-day. d):140-day. e)
175-day. f) 210-day. g) 350-day. The coherent parts in Fig. 7.4 g are corresponding to
the dried lakes highlighted in Fig. 7.3.

terferogram and the modeled trend is then subtracted from the interferogram to
mitigate other phase contributions, i.e., orbit error, hydrostatic and ionospheric
delays (Hanssen, 2001). The de-trended phase has a zero mean and is wide-sense
stationary. In the end, the phase delay is converted to the range delay in zenith
by multiplying with —ﬁcos 0, where 0 is the local mean incidence angle (23° for
Envisat) and A is the radar wave length, the minus sign is due to a phase increase

corresponding to a range decrease.

7.3.2 Validation

We validate our APS estimates from four different aspects: estimation bias, stochas-
tic characteristics, temporal auto-correlation and cross validation using MERIS. The
first three do not need external and independent measurements of the troposphere
so we regard them as internal validations. In line with the definition, the cross val-
idation using MERIS can be therefore regarded as an external validation in which
MERIS water vapor measurements acquired under cloud free condition are compared
to the corresponding APS estimates.

FEstimation bias

The APS estimates are biased due to the added constraint (see Eq. (7.2.4)) that is
the temporal mean of all APS estimates should be equal to zero. It can be shown
that the bias is a constant for all APS estimates and it is equal to the temporal mean
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Fig. 7.5. Baseline plot of the ASAR acquisitions used in the case study. Each node
represents an ASAR acquisition and each arc connecting two nodes represents the in-
terferogram formed by the two acquisitions fulfilling the baseline criteria (less than 400
meters perpendicular baseline and short than 6 months temporal baseline). The track
and frame numbers of the acquisitions are 203 and 4221 respectively.

which has a zero expectation. Given the estimated APS it is possible to evaluate the
RMS of the bias (in terms of delay). Using the variance propagation law we find:

2 o 2 52
GRS = \/ ZZ;;U’ = 212:212"2 = 0.8mum. (7.3.3)

where N is the number of acquisitions involved in the temporal average and 67 is
the estimate of the a-posteriori variance of APS in acquisition ¢. In contrast, the
mean RMS of the APS estimates is 3.6 mm which is about 5 times larger than the
bias RMS. The histogram of the RMS for all APS estimates (in total 22) is shown
in Fig. 7.6b. As we can see that 17 out of 22 APS estimates do not have an RMS
larger than 4 mm. The low delay RMS is likely related to the semi-arid climate in
the region. The rightmost bar in the histogram is corresponding to an acquisition
(on 08-Nov-06) probably taken during very turbulent weather. For comparison, the
histogram of the APS derived from 11 MERIS IWV measurements on the same
dates with clear sky is shown in Fig. 7.6 c. It can be seen from Figs. 7.6 b, c that the
derived APS estimates from InSAR and MERIS show a similar magnitude of spatial
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Fig. 7.6. Comparison between the APS (in terms of delay) derived from InSAR and
MERIS IWV measurements (in total 11) of the same dates under clear-sky conditions.
a) Blue-bar: delay RMS for 22 APS estimates derived from InSAR. Green-bar: delay
RMS derived from 11 MERIS IWV measurements of the same dates under clear sky.
Red-bar: differences (pixel-wise) between the derived APS from InSAR and MERIS.
The relatively large RMS of the residue (pixel-wise difference) is caused by the errors in
the MERIS measurements, see Fig. 7.9. b) Histogram of the APS estimates (in total
22), the rightmost bar is corresponding to an acquisition (on 08-Nov-06) likely taken
during a very turbulent weather, see Fig.7.11d . The MERIS measurement of that
acquisition is completely obscured by clouds. ¢) Histogram of the APS derived from
the 11 MERIS acquisitions. Although the derived APS from InSAR and MERIS show
similar magnitude of spatial variations, their pixel-wise differences for some acquisitions
indicate some considerable inconsistencies between the two.

variations.
Stochastic behavior

The raw variograms and power spectral densities (PSD) of the APS estimates are
shown in Figs.7.7 a, b respectively. The PSDs are computed using the periodogram
approach. The average of the raw variograms is plotted as the bold red line in
Fig. 7.7a. At short distances (i.e., a few kilometers) the slope (approximately 5/3)
of the averaged variogram is steeper than the slope (dominated at 2/3) at larger
distances and the slope turns to flat at the distances beyond about 40km. The
flattening effect is the result of the surface trend removal. Note, the uppermost
raw variogram which corresponds to the APS spatial variation on date 08-Nov-06
is excluded from the averaging. It has a dominant anisotropic spatial pattern and
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Fig. 7.7. Stochastic analysis of all 22 APS estimates for the 22 ASAR acquisitions used
in the case study. Since the interferograms used for APS estimation were significantly
subsampled, only wavelengths above 1 km are shown. Furthermore, wavelengths above
50 km are truncated since the signal power does not increase anymore beyond that wave-
length due to the removal of average APS (spatial trend). a) Computed raw variograms
(solid black) and their average (bold red) using a log-log scale, the background dot lines
follow a 2/3 and a 5/3 slope for reference. b) Computed one-dimensional power spectra
(solid black) using periodogram and their average(bold red), the background dot lines
follow a -5/3 and -8/3 slope for reference. Note, although the area has a semi-arid
climate the APS variation can still vary 2 orders of magnitude from one acquisition to
another.

therefore bias the average based on only 22 acquisitions. The MERIS cloud masks
for this date indicate the sky of the area was completely covered by clouds. There
may be some significant precipitation during the acquisition but we do not have
any meteorological data for validation. The averaged PSD is shown as the bold
red line in Fig. 7.7b. Its slope is also scale-variant, at large wavenumbers (> 0.4
cycle/km) the absolute slope (approximately -8/3) is higher than the absolute slope
at smaller wavenumbers and the dominant slope is of -5/3. The computed variogram
and PSD are therefore consistent with the theoretic power-law of the atmospheric
turbulence (Tatarski, 1961; Hanssen, 2001).

Temporal correlation

It can be shown (e.g., Hanssen (2001)) that the sum or difference of two APSs from
different acquisitions has the same power-law behavior as described in section 7.3.2.
Therefore the stochastic analysis cannot discover any mixture of APS from different
acquisitions. A mixture of APS can result in a considerable correlation between the
APS estimates. Hence, we compute the pixel-wise cross-correlation between each
two APS estimates to detect any possible mixture, see Fig. 7.8. Despite a few APS
estimates show some considerable cross-correlation, the mean of the overall cross-
correlation is as low as 0.1. Therefore, the mixture of APS from different acquisitions
should be very limited. Thus, the estimated APS per acquisition should be reliable.
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Fig. 7.8. Correlations between the APS estimates for 22 ASAR acquisitions. The
elements in the main diagonal are the auto-correlation of the APS estimates. The
elements in the off diagonal represent the cross-correlation between the APS estimates
for different dates. As we can see, most of the off diagonal elements are close to zero,
therefore the estimated APS per acquisition is not temporally correlated.
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Fig. 7.9. Comparison between MERIS and APS estimates. a) Estimated APS spatial
variations (from left to right) on 26-Jul-05, 19-Sept-06, 24-Oct-06 and 26-Jun-07 re-
spectively. b) Corresponding spatial delay variations converted from the MERIS IWV
measurements acquired under cloud free condition. The dashed red ellipses in Fig. 7.9b
indicate the locations where the APS signal is underestimated. The underestimation
might be due to undetected thin clouds in MERIS. The black arrows in Fig. 7.9b indi-
cate the camera interface problems of MERIS.
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Cross validation with MERIS

Figure 7.9 shows some representative comparisons between the estimated APS and
the delay spatial variations derived from the MERIS cloud free IWV measurements.
Although large spatial correspondence between them can be clearly seen from the
figure, the quantitative comparison, see Fig. 7.6 a, between the two indicates some
substantial inconsistencies between them. We believe the inconsistencies are due to
the cloud masking errors of MERIS (see the red ellipses in Fig. 7.9) as well as the
camera-interface effect (indicated by the black arrows in Fig. 7.9) of the on-board
cameras (in total 5) which scan the ground surface under a push broom mechanism

ESA (2006).

In the end, the retrieved 22 APSs in the network shown in Fig. 7.5 are presented in
Fig. 7.10 to Fig. 7.12.

From this case study we have demonstrated the capability of the developed algorithm
for optimal water vapor mapping. Thanks to the good phase coherence over the area
of interest, the algorithm allows us to estimate APS spatial distributions during 22
ASAR acquisitions. The conclusions and recommendations will be given in next
section.

7.4 Conclusions and recommendations

In this chapter we presented a method to retrieve the spatial variation of APS at each
single acquisition from a stack of SLC images. The interferograms formed from these
images result in a temporal network of interferograms under the baseline constraints.
APS estimates at each acquisition of the network are obtained by using weighted
least-squares with a constraint on the temporal average of APS in order to obtain an
unique least-squares solution. Since the network provides redundant observations of
APS spatial-temporal variations, the obtained APS estimates per acquisition can be
tested using statistical hypothesis testing for validity. After the statistical testing,
a kriging based interpolation and filtering is applied to the estimates and the final
estimates of APS are obtained with a 1km spatial resolution.

The APS estimates can be biased if the used constraint on the temporal average of
APS becomes unrealistic in reality. As a rule of thumb, the larger the number of
images in the network the less the bias is. After obtaining the final APS estimates we
evaluate the bias in the estimates and the estimation of the bias for this case study
is 0.8 mm which is relatively small comparing to the average RMS of the 22 APS
estimates (3.6mm). In addition, we have examined the stochastic characteristics
of the APS estimates via their variograms and power spectra densities and they
agree well with the theoretical power-law of the turbulence theory. Moreover, by
computing the cross-correlation between the 22 APS estimates we find the correlation
is on average 0.1 and it means the estimates are temporally uncorrelated, which
agrees with the generally accepted assumption which says two APS fields become
completely uncorrelated when their time interval is in the order of hours. We also
compare the APS estimates to 11 MERIS water vapor measurements which are not
severely contaminated by clouds. The match between the estimates and the MERIS
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Fig. 7.12. Retrieved APS per single SAR acquisition (part 3). a) 4-Sep-2007 b) 9-Oct-
2007 c) 13-Nov-2007 d) 1-Apr-2008. The unit of the colorbar is mm.

measurements is very well, especially considering the undetected clouds in some of
the MERIS images and a common camera-interface effect of MERIS.

The advantage of the APS retrieving method is that it uses only small baseline
interferograms and APS spatial variation at every pixel of 1km resolution can be
obtained over the whole imaging area. The network adjustment and kriging inter-
polation and filtering further reduce the noise in the estimated APS per acquisition.
The limitations are that 1. the method assumes the ground deformation is neg-
ligible or already known a-priori; 2. the phase coherence in the area need to be
good for a relatively long period in order to have a redundant temporal network
of interferograms. However, the new generation of earth observation satellites such
Sentinel-1A /B will provide full coverage of global land mass with a fast revisit orbit,
e.g., 6-day when both satellites are in orbit. Moreover, most land surfaces do
not suffer rapid deformation and our knowledge about deformation regions will keep
improving. Therefore, we believe the method opens a door for further exploring the
possibility of integrating InSAR observations for meteorology studies at fine spatial
scales.
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Chapter 8

Conclusions and Recommendations

This study has two themes: 1. mitigating atmospheric phase screen (APS) for InSAR
based surface deformation monitoring and 2. mapping water vapor spatial distribu-
tions for meteorological purposes. For the first objective we developed two correction
methods. The first correction method is based on numerical wether models (NWM)
from which delay maps during SAR acquisitions are simulated and removed from
original interferograms. The second correction method utilizes least-squares colloca-
tion (LSC) and variance-covariance estimation (VCE) to estimate APS and surface
deformation from InSAR time series. For the second objective which is water va-
por mapping, we developed a method to retrieve high resolution (~ 1km) water
vapor spatial distributions at single SAR acquisitions from interferograms. The
retrieved spatial distribution may be assimilated in advanced weather models to
improve short-term and fine-scale weather forecast.

Section 8.1 provides the conclusions of this study. The contributions of the study are
summarized in section 8.2. Finally, recommendations for future research are given
in section 8.3.

8.1 Conclusions

In this section conclusions are given for the two APS correction methods as well as
the method for water vapor mapping respectively.

8.1.1 APS mitigation using numerical weather models

In the first correction method, we use the state-of-the-art weather research and
forecast (WRF) model to simulate APS at 1km resolution during SAR acquisi-
tions and use the simulated APS to correct original interferograms formed by ASAR
(Envisat) images. These interferograms have small temporal (< 70days ) and per-
pendicular (< 350 m) baselines, meaning that the observed phases are mainly driven
by tropospheric delay. Therefore, the feasibility of correcting delay using WRF
can be assessed by the phase residue after removing the simulated APS from the
atmosphere-only interferograms.

To prevent a regional bias in our analysis we chose four different climatic regions
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which are Hawaii, Mexico City, Groningen (the Netherlands) and Southwest Aus-
tralia. The first two regions have strong topography variations, whereas the other
two have flat terrains. From our analysis we find that APS mitigation is only achiev-
able in the mountainous regions in which WRF can simulate height (topography)
dependent delay. We have analyzed 8 and 6 atmosphere-only interferograms from
Hawaii and Mexico City respectively. WRF simulations suggest that five of these in-
terferograms experience height dependent delay. However, in reality, only four of the
five interferograms experience height dependent delay (80% success rate). In these
four cases the height dependent delay can be largely removed by the WRF simula-
tions. For the case in which height dependent delay is absent the WREF correction
however deteriorates the original interferogram. This is because the predicted but
artificial height dependent delay is added to the original interferogram after correc-
tion. For the other nine interferograms, WRF simulations show no height dependent
delay and no APS reduction is observed.

For the flat regions, we have analyzed 9 and 6 interferograms from Groningen and
Southwest Australia respectively. The observed APS in these interferograms are
mainly caused by spatio-temporal variation of water vapor in the lower troposphere.
From our analysis we find that WRF simulations hardly lead to APS mitigation and
very often deteriorate the original interferograms. This is because WRF is not able
to simulate the realistic water vapor spatial distributions at fine scales (< 50km).
This also explains why the nine interferograms from the mountainous regions cannot
have APS reduction.

The spatio-temporal variation of water vapor is caused by the so-called turbulent
mixing process which has a random characteristic and can hardly be modeled de-
terministically. This leads us to examine the possibility of using WRF to simulate
stochastic properties of delay instead of its realizations (i.e., delay maps during
satellite acquisitions). To do that, we compute spatial variograms of APS from the
original interferograms and the WREF simulations respectively. The result shows
that WRF systematically underestimates the spatial variability of water vapor at
all scales from 1 to 50km. Increasing the model spin-up time and the number of
vertical model levels within the atmospheric boundary layer (ABL) did not improve
the variability.

Although our study is based on the WRF model only, this model is expected to
outperform older generation models such as MM5 (mesoscale model). Therefore,
based on our analysis, we conclude that contemporary weather models are useful for
correcting the height dependent delay in interferograms over mountainous regions.
However, their corrections should not be considered reliable at all times. For cor-
recting delay caused by turbulent mixing, the value of these models is very limited
and we recommend not to use them for APS correction.

Based on the above discussion, we believe that the best APS estimate, nowadays, is
likely from InSAR data themselves by using advanced signal estimation techniques
as we will conclude in the following section.
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8.1.2 Separate APS and ground deformation from InSAR time series using LSC

Due to the poor performance of weather models for correcting APS driven by the
spatio-temporal variation of water vapor, we decide to estimate APS from InSAR
data themselves. The main challenge in this approach is to discriminate the various
sources of phase variation, e.g., deformation, topography and atmosphere.

The correction method based on LSC and VCE uses only InSAR data (InSAR time
series) as input. It is developed for PSInSAR analysis and utilizes least-squares
collocation (LSC) and variance-covariance estimation (VCE) to optimally separate
APS and ground deformation. Comparing to the filtering method in conventional
PSInSAR, the LSC method not only gives the best estimates of APS and deformation
but also provides the quality assessment (i.e., precision) of the estimates.

In conventional PSInSAR, the separation of APS and deformation is implemented as
a window-based temporal low-pass filter. The optimal window type and length are
usually unknown a-priori and subject to specify. In addition, because the window
type is pre-determined and does not have the flexibility to cope with the time-
changing variability of APS per acquisition. Therefore, this method does not lead
to an optimal separation of APS and deformation, especially when there are large
acquisition gaps in the time series and for acquisitions taken under bad weather such
as thunderstorms. Moreover, the quality of the separation cannot be systematically
assessed by the method, which makes the uncertainty of the deformation estimate
hard to be quantified.

In the LSC method, the time-changing variability of APS is taken into account by
modeling APS stochastically in both space and time. In space, APS is modeled
as a correlated random signal by a variance-covariance function from the Matern-
family. In time, it is modeled as an uncorrelated signal with varying variance per
acquisition (i.e., a diagonal variance-covariance matrix). The spatial and temporal
variance-covariance matrices are estimated from InSAR time series and no external
information of APS is needed. In such a way, APS can be filtered out from input
time series more effectively comparing to the window-based filter in conventional
PSInSAR.

The nonlinearity of ground deformation is taken into account by modeling the de-
formation stochastically. The LSC method models the total deformation using a
functional model (e.g., a linear or quadratic function of time) and a stationary
variance-covariance function in time. Although both the functional and stochas-
tic models need to be pre-specified, their parameters (e.g., variance and correlation
length of the deformation) are estimated from the InSAR time series.

Because of the stochastic modeling of deformation and APS, the uncertainty of their
estimates can be quantified, which gives the precisions of the estimates.

The LSC method, however, has several limitations. First of all, it needs the nonlin-
ear part of ground deformation to be stationary in time. A non-stationary deforma-
tion cannot be detected by the method and may result in biases (e.g., deformation
leaking into APS) in the final ground deformation estimate. Secondly, similar to
the window-based filtering method, it is only applicable to steady and progressive
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ground deformation and assumes no temporal correlation of APS between adjacent
acquisitions. Finally, the computational load of the method is significantly higher
than the standard filter method, which is mainly the result of variance-covariance
modeling of nonlinear deformation and APS. However, the modeling can be carried
out per acquisition in parallel on multi-core CPUs to reduce the total computation
time.

8.1.3 InSAR based water vapor mapping

The poor performance of weather models for simulating realistic water vapor distri-
bution is largely due to the lack of high resolution water vapor observations. Such
observations can only be obtained globally under all weather conditions by space-
borne InSAR. However, InSAR is only sensitive to the spatio-temporal variations
of water vapor. To retrieve its spatial distributions at single SAR. acquisitions from
interferograms we develop a method that makes use of a temporal network of small
baseline interferograms. The method is based on constrained least-squares and free
network adjustment. It requires a sufficient number of SAR images from which semi-
redundant interferograms can be formed. Under the assumption of no correlation
between APS from different acquisitions, the lateral variations can be retrieved un-
ambiguously and the redundancy helps to optimize the retrieval using free network
adjustment. Unlike PSInSAR in which APS per acquisition is retrievable only from
PS points our method can retrieve APS in 1-km resolution or better over the whole
ground surface by forming small baseline interferograms to suppress phase decorre-
lation. We believe that the method will become widely applicable in the near future
for the new generation of SAR satellites (such as Sentinel-1A/B) that have much
shorter revisiting orbit (e.g., 6 days). The retrieved lateral distribution of water
vapor may be assimilated by advanced weather models to improve the prediction of
water vapor distribution at fine spatial scales. As a result, the improved modeling
of water vapor can be used for mitigating APS in interferograms when separation of
APS and deformation is difficult based on InSAR time series, e.g., earthquakes.

8.2 Contributions

Based on the conclusions in section 8.1, the contributions of this research are sum-
marized as follows:

1. The feasibility of using numerical weather models for APS mitigation has been
assessed. The mitigation can only be achieved in mountainous regions as the
result of removing height dependent delay. The success rate of such mitigation
is high (80%) but not always reliable. For flat regions the mitigation will often
lead to deterioration of the original interferograms.

2. Statistics (lateral variation) of the simulated delay by WREF have been ana-
lyzed. The result shows that the model constantly underestimates the delay
variation caused by turbulent mixing at all scales between 1 and 50 km.
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3. A stochastic approach has been introduced for modeling ground deformation
based on PSInSAR. The approach considers ground deformation as a stochastic
process and models it via a variance-covariance model. It enables a system-
atic and simultaneous modeling of ground deformation together with other
stochastic variables such as APS.

4. Separation of APS and ground deformation has been optimized for PSInSAR
by taking into account the spatio-temporal stochastic characteristics of APS.
In space, APS is correlated and modeled by a variance-covariance function
from the Matern-family. In time, APS is assumed uncorrelated and modeled
by a diagonal variance-covariance matrix. The elements in the main diagonal
correspond to the variances of APS during single SAR acquisitions.

5. A systematic way of assessing the precisions of the PSInSAR results has
been introduced using least-squares collocation and the estimated variance-
covariance matrices of ground deformation and APS.

6. The feasibility of mapping high resolution (~ 1km) water vapor distribution
over land using InSAR has been demonstrated. The retrieved water vapor
distribution has the potential to improve the prediction of water vapor distri-
bution at fine scales using numerical weather simulations.

8.3 Outlook and recommendations

Two APS correction methods have been studied in this thesis. The weather model
based method has a great potential (80% success rate) to remove height dependent
delay but lacks the ability to correct the delay caused by turbulent mixing at fine
spatial scales. The InSAR time series based method can estimate the fine scale lateral
delay variations but relies on two assumptions: 1.temporal smoothness of ground
deformation and 2.no correlation between APS at different acquisitions. It also
requires a sufficient long time series of interferograms to allow a reliable estimation
of APS statistics, i.e., the spatio-temporal variance-covariances. One way to get out
of the dilemma is to improve the reliability of weather models.

8.3.1 Weather models

There are several possibilities to improve the reliability of weather models. One is
to use better initial and boundary conditions, such as ECMWF (European Cen-
ter for Medium-Range Weather Forecasts) data with 50km resolution, as inputs
for simulation. Another possibility is to use a so-called 4D-Var data assimilation
scheme (Rabier and Courtier, 1992) which can utilize meteorological observations
before and after SAR acquisitions to refine the forecast that only uses observations
prior to the acquisitions. Moreover, satellite observations of water vapor ( from e.g.,
MERIS, MODIS and GPS networks) can be included in the data assimilation to
increase the spatial density of the input data.

Considering the high dynamic characteristics of turbulent mixing, simulating real-
istic water vapor distributions at the fine spatial scales may be difficult to achieve
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in the next decades. Instead of simulating the distributions, weather models can
be used to simulate the statistics (e.g., variograms) of the distributions. Then, the
statistics can be used to construct variance-covariance functions of APS and allow
an optimal separation of APS and deformation using InSAR. time series for events
in which ground deformation is progressive. For events like earthquakes and vol-
canic eruptions the variance-covariance functions and InSAR observations can be
combined and incorporated into geophysical models and data inversion schemes.

8.3.2 InSAR meteorology

For weather models, the lack of the ability for simulating fine scale water vapor
variations is largely due to the low spatial density (> 50km) of their input data.
Until now, only satellite interferometry can provide fine scale mapping of water vapor
over land globally under all weather conditions. We have demonstrated that it is
possible to retrieve the spatial distributions of water vapor at single SAR acquisitions
from interferograms. Therefore, space-borne InSAR can be used as an additional
source for providing meteorological input data for weather models to improve their
reliability. We expect the new generation of SAR satellites such as Sentinel-1A /B
will be able to demonstrate the capability of InNSAR, for meteorological applications.
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Appendix A

Random process models

A spatial random field Z(s) is called homogeneous if (Tatarski, 1961):
E{Z(s)} = p, (A.0.1)

and

Q(Z(s), Z(s + h)) = E{(Z(s) — E{Z(s)})(Z(s) — E{Z(s)})}
= Q(h),

where E{.} is the mathematical expectation, p is a constant, s and h are spatial
vectors and @ is the autocovariance function of Z. A random field is isotropic if it
is homogeneous and Q(h) = Q(|h|), where |.| is the spatial distance operator. In
addition, the variogram or structure function of Z is defined as:

(A.0.2)

Y(Z(s), Z(s +h)) = B{|(Z(s) — u) = (Z(s + h) — p)|*}

— (h) (A.0.3)
For an isotropic and ergodic random field we have:
1
Q(h) = Q(0) — 57(h). (A.0.4)
Spheric model. A spheric model has two parameters a and o:
2 3h | 1h®
nod o0—33+35) for0<h<a, A0.5
() { o? for h > a, ( )
2¢(3h _ 1h3
o [ PG -1) foro<h<e, A0,
@(h) { 0 for h > a, (A.06)

Exponential model. Given the same parameters, the variogram of a exponential
model has the form:

1(0) = 0?1 exp(—1), (A.0.7)
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and the autocovariance reads:
B h
Qh)=0c exp(—g). (A.0.8)

Gaussian model. Gaussian model has the same parameters:

v(h) = o?(1 — exp(—%))7 (A.0.9)
and b2
Q(h) = O'2€Xp(—¥). (A.0.10)

Hole-effect model. Hole-effect model is not a monotonic function of h and it is
used to represent some type of pseudo-periodicity:

02(1 — (1 — B)exp(-h for h < a,
7(h) = { (1= (1= a)exp( ag)g PO (A.0.11)
e 2(1 - B)exp(-1)
_ ) ot = 3 )exp(—2 for h < a,
Q(h) = { 0 forh>a (A.0.12)

Matern family. The models from Matern family have one extra parameter 7 which
controls the spatial smoothness of Z:

) 1 27h ___ 2/7h
v(h) =o°(1 - 2(771>1“(T)( { )TE( { ), (A.0.13)
and 2 2,/7h 2,/7h
Q(h) ? VT )KL ( VT ), (A.0.14)

- 2(7*1)1"(7)( a a

where I' is the Gamma function and K is the modified Bessel function of the second
kind.



Appendix B
Groningen: master APS and DEM

inaccuracy estimation

This appendix provides the details of master APS and DEM inaccuracy estimation
for the Groningen case study in section 6.4 of chapter 6.

The master APS and DEM (SRTM) inaccuracy are treated as deterministic vari-
ables. The estimates of the master APS and the DEM inaccuracy obtained from
the collocation method (see chapter 4) are displayed in Fig. B.1a and Fig. B.2a
respectively. The corresponding weighted least-squares solutions (see Eq. 6.1.8) are
shown in Fig. B.1b and Fig. B.2b respectively for comparison. Moreover, the differ-
ence between the results from the two methods are visualized by histograms shown
in Fig. B.3a and b. The correlation between the two master APS estimates shown
in Fig. B.1a and b is 0.99. The mean and RMS of the difference between the two
master APS estimates are 0.1 and 1.0 mm respectively.

Regarding the DEM inaccuracy the two methods again give quite similar results.
The mean and RMS of the difference between the two DEM inaccuracy estimates
are -0.05 and 0.2 m respectively. Therefore, we conclude that the collocation method
does not give a significantly better result than WLS on estimating the deterministic
variables for the Groningen case where the ground subsidence is steady in time and
there are not significant gaps in the time series.
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Fig. B.1. Master APS estimation. a) Master APS estimates (unit: mm) obtained from
the collocation method. b) Master APS estimates (unit: mm) by WLS. In conclusion,
the two methods give a comparable result
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Fig. B.2. DEM inaccuracy estimation. a) DEM inaccuracy estimates (unit:m) ob-
tained from the collocation method. b) DEM inaccuracy estimates (unit: m) by WLS.
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acquisition ambiguity, 4

acquisition gaps, 42, 100, 116, 130, 137, 144

acquisition rate, 74

aliasing, 92

ambiguity function, 95

amplitude dispersion, 54, 96

ancillary, 2
GPS, 2
MERIS, 4, 29, 91, 107, 167
meteorological observations, 2
optical remote sensing, 2

atmospheric delay, 1
atmospheric phase screen, 1
delay re-parameterization, 12
double difference delay, 8
electro-magnetic distance, 7
hydrostatic delay, 9
integrated water vapor, 24
ray bending, 7
vertical stratification, 12, 19, 50, 59, 148
wet delay, 9

camera-interface effect, 172
Cholesky factorization, 62
co-registration, 92
convolution, 92

Delaunay triangulation, 95

detection, identification and adaptation, 96, 163
deterministic deformation, 48, 62, 82

Doppler centroid frequency, 92
dot-multiplication, 92

error-propagation law, 43, 62
flat earth phase, 93

geostatistics, 42
kriging, 41, 42, 164

ill-posed, 48
InSAR meteorology, 2

water vapor mapping, 3
integer bootstrapping, 95
integer least-squares, 95

least-squares collocation, 4, 39, 42
best linear unbiased estimation, 43, 49
best linear unbiased prediction, 43, 49
deterministic, 41
restricted maximum likelihood estimator
(RMLE), 46
simulation, 61
trend-signal-noise, 42, 48
unmodeled deformation, 40, 41, 58
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variance-covariance estimation, 42
variance-covariance matrix, 43

métern-family, 55
multilook, 19, 162, 166

numerical weather models, 2, 17
FNL, 17, 31
MMS5, 15
NH3, 15
spin-up time, 34
vertical levels, 35
WRF, 4, 17

oversampling, 92

periodogram, 169

phase unwrapping, 95

positive definite, 165

pseudo observation, 160

PSInSAR, 3, 39
convolution, 40
first-order network, 95
Gaussian window, 40
low-pass filtering, 3, 40
persistent scatterer candidate, 96
persistent scatterer potential, 96
second-order network, 96
temporal correlation length, 3
triangle window, 40

random fields, 66
homogeneous, 66
isotropic, 66

rank deficiency, 160

redundant network, 159

refractivity, 7
hydrostatic refractivity, 8
liquid water, 8
wet refractivity, 8

resampling, 93

second-order stationary, 48, 62
spatial variance-covariance, 55
stochastic deformation, 48, 64, 81

temporal decorrelation, 54

temporal variance-covariance, 51

test-statistic, 163

Toeplitz matrix, 62

troposphere, 8
atmospheric boundary layer, 9
effective height, 8

turbulent mixing, 1, 9, 19, 50
Kolmogorov, 2, 10, 55, 165
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power-law, 2, 32, 42, 170
variogram, 34

under-determined, 48
unweighted least-squares, 72

variance-covariance models, 58
correlation length, 58, 62
exponential model, 65, 185
Gaussian model, 65, 186
hole effect model, 65, 186
Maétern model, 63, 186
spheric model, 65, 185
variance, 58, 62

weighted least-squares, 97, 160






