### CLASSIFICATION OF MOBILE LASER SCANNING POINT CLOUDS FROM HEIGHT FEATURES

Mingxue Zheng, Mathias Lemmens, Peter van Oosterom

Faculty of Architecture and the Built Environment, Delft University of Technology

02/11/2017



### CLASSIFICATION OF MOBILE LASER SCANNING POINT CLOUDS FROM HEIGHT FEATURES



# Content

- Introduction
- Dataset
- Research Question
- Methodology
- Results
- Analysis and Discussion
- Conclusion and Future work



## Introduction

- Point cloud data is increasingly easy to obtain given the rapid development of remote sensing technologies.
- As the fundamental research of common applications from point cloud data sets, object classification of urban scenes has been paid great attention.







### Dataset

#### Dataset: rueMadame\_database

A benchmark dataset generated by the Robotics laboratory (CAOR) at MINES ParisTech, France

#### **Selected classes:**

- Facade,
- Cars,
- Pedestrians,
- Motorcycles,
- Traffic signs



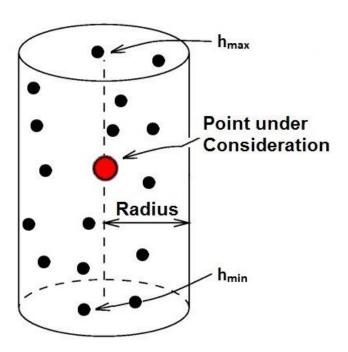
Fig.1 Orthophoto of the benchmark site: Rue Madame, Paris, France



# **Research Question**

• Question:

How to assign these five classes?


• Solution:

Extract height based features of every point.



# Methodology

 Our approach relied on point-based classification.
We considered height difference and number of points within a column spanned up by a cylinder, in addition to exploiting the reflectance value to present every point.





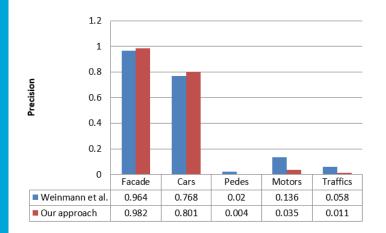
# Experiment detail

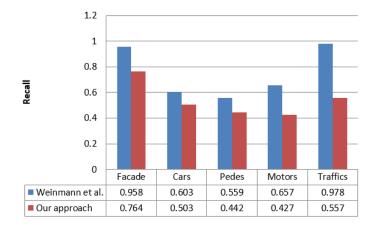
• Number of points in each class:

|               | Training points | Test points | Sum       |
|---------------|-----------------|-------------|-----------|
| Facade        | 1000            | 9,977,435   | 9,978,435 |
| Cars          | 1000            | 1,834,383   | 1,835,383 |
| Pedestrians   | 1000            | 9,048       | 10,048    |
| Motorcycles   | 1000            | 97,867      | 98,867    |
| Traffic signs | 1000            | 14,480      | 15,480    |

- Classifier: Support Vector Machine (SVM)
- Software: MATLAB R2017a
- Platform: Inter(R) Core(TM) i7-7700HQ, 64-BIT Operating System

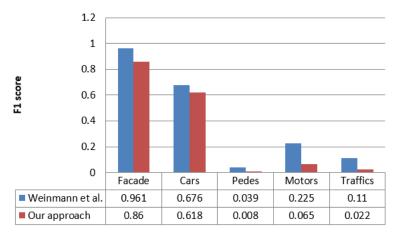



## Results


|                 | Facade | Cars  | Pedestrians | Motorcycles | Traffic signs |
|-----------------|--------|-------|-------------|-------------|---------------|
| Facade          | 77.62  | 2.10  | 8.09        | 6.74        | 5.45 -        |
| Cars -          | 7.36   | 50.59 | 11.43       | 25.83       | 4.79 -        |
| Pedestrians -   | 5.18   | 1.37  | 44.08       | 23.53       | 25.84 -       |
| Motorcycles -   | 0.22   | 20.05 | 25.82       | 42.60       | 11.31 -       |
| Traffic signs - | 18.57  | 4.52  | 17.14       | 5.82        | 53.94         |

#### Confusion matrix (i.e. Percent) of the five classes




### Results





#### Precision values in the five classes

#### Recall values in the five classes



# **ŤU**Delft

#### F1 score values in the five classes

# **Analysis and Discussion**

|               | Facade  | Cars  | Pedestrians | Motorcycles | Traffic signs |
|---------------|---------|-------|-------------|-------------|---------------|
| Facade        | 77.62   | 2.10  | 8.09        | 6.74        | 5.45 -        |
| Cars          | - 7.36  | 50.59 | 11.43       | 25.83       | 4.79 -        |
| Pedestrians   | - 5.18  | 1.37  | 44.08       | 23.53       | 25.84 -       |
| Motorcycles   | - 0.22  | 20.05 | 25.82       | 42.60       | 11.31 -       |
| Traffic signs | - 18.57 | 4.52  | 17.14       | 5.82        | 53.94         |



# **Conclusion and Future work**

- We exploited three features and achieved an overall accuracy of 73%, which was really encouraging for further refining our approach.
- Topics for further experimentation are the setting of the radius size of the cylinder, feasibility of using different radius sizes for a multiscale approach, impact of the maximum likelihood classifier on the classification result, etc.



Thanks for your attention! Question?

M.zheng-1@tudelft.nl

