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) Acommon problem these days in geological exploration, geophysical monitoring and derisking of sustainable
energy applications like geothermal, CCS, hydrogen and storage is that it requires evermore intensive data
surveying, data processing and data interpretation

) The computational power cannot keep up with the data volumes, until better software solutions arrive like
improved parallelization, reservoir computing or better hardware like quantum computing. These solutions
take long and the problem is now

) To tackle this problem, we can use for geophysical purposes cross-domain techniques from the Machine
Learning (ML) realm as used in the multimedia and medical domain

) Al algorithms like GAN’s (Generative Adversarial Networks) can mimic physics-based processing and
simulation tools up to 99% accuracy, at a fraction of the computational power once trained

) We have set up a GAN tool which generates tremendously accelerated attributes and broadbanded and
denoised seismic data for faster decision making in energy studies
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) ACTION: Use
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Adversarial
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4000 faster

In simple words, the idea behind GANs can be summarized like this:

>

>

Two Convolutional Neural Networks are involved.

One of the networks, the Generator, starts off with a random data distribution
and tries to replicate a particular type of distribution conditioned by a target.

The other network, the Discriminator, through subsequent training, gets better
at classifying a fake distribution from a real one.

Both of these networks play a min-max game where one is trying to outsmart
the other.

GANSs are generative models that learn a mapping from random noise vector z
to output image y, G: z — y. In contrast, conditional GANs learn a mapping
from observed image x and random noise vector z,toy, G : {x, z} — .

The generator G is trained to produce outputs that cannot be distinguished

from “real” images by an adversarially trained discriminator, D, which is
trained to do as well as possible at detecting the generator’s “fakes”.
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) RESULT: GAN ON BROADBANDING - SPARSE SPIKE DECON (SSD)

) RESULT: GAN application on broadbanding - sparse spike decon (SSD)

) Effectively: superresolution!
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) RESULT: GAN ON DENOISING NON-LOCAL MEANS (NLM)

) RESULT: GAN application on denoising non-local means (NLM)

) Effectively: cleaning data!
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) ML INTERPOLATION OF SPARSE 3D SEISMIC DATA USING GAN

- Big Data in Offshore Windfarms:

Research question: is it possible to generate a 3D dip volume in a given survey area from 2D sparse seismic data?

Answer: yes, we think it is possible. We will use the Ten Noorden van Wadden Windfarm 2D HRS seismic dataset to
attempt:

1) gridding an arbitrary set of 2D lines onto a 3D grid based on coordinates

*  2) bin and stack the seismic traces into a sparse 3D volume

3) interpolate the sparse 3D data into a dense 3D volume using state-of-the-art Machine Learning: MDA GAN




ML DATA INTERPOLATION: MDA GAN (MuLTI-DIMENSIONAL ADVERSARIAL)
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Fig. 1. In (a), the framework consists of one 3-D generator, one 3-D discriminator and two 2-D discriminators. For training, the input to the 3D network is
data of size 128 x 128 x 128, and the batch size is b. To conserve the RAM, the 2D discriminator randomly draws 8 slices of 128 x 128 in the 3D data along
the corresponding direction as input, and the batch size is 8 x b. While for inference, the input to the generator can be any size as allowed by the hardware.
(b) is the detailed structure of the generator in the framework, and the discriminator follows the standard encoder structure.The CONV block consists of a
3 x 3 convolution, a normalization layer and a LeakyReLU activation function, Resblock was proposed by He et al [40].



ML DATA INTERPOLATION: MDA GAN PRINCIPLE TNO
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Fig. 3. The figure is shown as 2-D slices of 1282 in 3-D volumes of
1283, displaying the missing of the five modes. The FSM generates mask-like
heatmaps without any mask supervision information.
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ML DATA INTERPOLATION: MDA GAN APPLIED ON F3 3D DATA

(a) (b) (c) (d)

Fig. 12. (a) New Zealand Kerry original data, (b) 80% traces loss in both inline and crossline directions, (¢) UNet interpolation results, (d) MDA GAN
interpolation results.

Fig. 13. (a) F3 Netherlands original data, (b) 80% traces loss in both inline and crossline directions, (¢) UNet interpolation results, (d) MDA GAN interpolation
results.
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Figure 5 Line plan — main lines TNW-A (blue) and TNW-B (green)
Gaps in the line plan are where the reference lines were acquired



TNW 2D DATA NORTH-SOUTH LINES
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83% sparse data!
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Finest grid of seismic, 12.5x12.5 m, 2D to 3D gridding, most sparse, Gridded data, original, Xline 124, TNW 2D subarea




Very dense data!
Finest grid of seismic, 12.5x12.5 m, 2D to 3D gridding, most sparse, Gridded data, ML interpolated steep, XIing 124, TNW
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) The ‘MIMIC’ approach to approximate high-standard but expensive geophysical
algorithms by Machine Learning routines appears to be promising

) +-95 % quality reproductions of geophysical algorithms at a speedup factor of +-
1000 for diffractions, 720 for denoising and +- 30.000(!) for broadbanding. GAN
interpolation on a typical 3D cube costs some minutes on a heavy laptop and GPU

) ML and GAN’s are promising departure point for seismic data conditioning,
attributes, prestack processing and quantitative interpretation. The GAN’s already
proved themselves in several TNO projects. Future is Diffusion Probabilistic Models

) Improvements: smarter subset training of GAN’s, transfer learning, active learning
TNO o
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