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A common problem these days in geological exploration, geophysical monitoring and derisking of sustainable 

energy applications like geothermal, CCS, hydrogen and storage is that it requires evermore intensive data 

surveying, data processing and data interpretation

The computational power cannot keep up with the data volumes, until better software solutions arrive like 

improved parallelization, reservoir computing or better hardware like quantum computing. These solutions 

take long and the problem is now

To tackle this problem, we can use for geophysical purposes cross-domain techniques from the Machine 

Learning (ML) realm as used in the multimedia and medical domain

AI algorithms like GAN’s (Generative Adversarial Networks) can mimic physics-based processing and 

simulation tools up to 99% accuracy, at a fraction of the computational power once trained

We have set up a GAN tool which generates tremendously accelerated attributes and broadbanded and 

denoised seismic data for faster decision making in energy studies
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MIMIC – MACHINE INTELLIGENCE FOR MULTI-
GEOPHYSICAL INTENSIVE COMPUTING
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CREST report 2021

Inline 3100 section from DEF survey original

Inline 3100 section from DEF survey SSD
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ACTION In simple words, the idea behind GANs can be summarized like this:

➢ Two Convolutional Neural Networks are involved.

➢ One of the networks, the Generator, starts off with a random data distribution 

and tries to replicate a particular type of distribution conditioned by a target.

➢ The other network, the Discriminator, through subsequent training, gets better 

at classifying a fake distribution from a real one.

➢ Both of these networks play a min-max game where one is trying to outsmart 

the other.

➢ GANs are generative models that learn a mapping from random noise vector z 

to output image y, G : z → y . In contrast, conditional GANs learn a mapping 

from observed image x and random noise vector z, to y, G : {x, z} → y.

➢ The generator G is trained to produce outputs that cannot be distinguished 

from “real” images by an adversarially trained discriminator, D, which is 

trained to do as well as possible at detecting the generator’s “fakes”.
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RESULT: GAN application on broadbanding – sparse spike decon (SSD)

Effectively: superresolution!

RESULT: GAN ON BROADBANDING – SPARSE SPIKE DECON (SSD)



SECOND TITLE OF THE SLIDE
FIRST TITLE OF THE SLIDE

Inline section from DEF survey original - input
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Inline section from DEF survey GAN-SSD - prediction

Runs on laptop!

60 GB in 30 mins
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Inline 3100 spectrum from DEF survey original: 0-1000 ms



SECOND TITLE OF THE SLIDE
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Inline 3100 spectrum from DEF survey GAN-SSD: 0-1000 ms



RESULT: GAN application on denoising non-local means (NLM)

Effectively: cleaning data!

RESULT: GAN ON DENOISING NON-LOCAL MEANS (NLM)
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Inline section from 2D survey original - input



SECOND TITLE OF THE SLIDE
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Inline section from 2D survey GAN-NLM - prediction

Runs on laptop!

1.5 GB in 1 min
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Inline section from 2D survey NLM - target

720x slower!



• Big Data in Offshore Windfarms:

• Research question: is it possible to generate a 3D dip volume in a given survey area from 2D sparse seismic data?

• Answer: yes, we think it is possible. We will use the Ten Noorden van Wadden Windfarm 2D HRS seismic dataset to 

attempt:

• 1) gridding an arbitrary set of 2D lines onto a 3D grid based on coordinates

• 2) bin and stack the seismic traces into a sparse 3D volume

• 3) interpolate the sparse 3D data into a dense 3D volume using state-of-the-art Machine Learning: MDA GAN

ML INTERPOLATION OF SPARSE 3D SEISMIC DATA USING GAN



ML DATA INTERPOLATION: MDA GAN (MULTI-DIMENSIONAL ADVERSARIAL)



ML DATA INTERPOLATION: MDA GAN PRINCIPLE



ML DATA INTERPOLATION: MDA GAN APPLIED ON F3 3D DATA



TNW 2D DATA EAST-WEST LINES



TNW 2D DATA NORTH-SOUTH LINES



TNW 3D HIGH-RES DATA
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PreACT WP3

Improved results: EBN2019 2D testline. ML/AI picked faults.

Finest grid of seismic, 12.5x12.5 m, 2D to 3D gridding, most sparse, Gridded data, original, Xline 124, TNW 2D subarea

MDA GAN ON TNW 2D-3D DATA: ORG 83% sparse data!



PreACT WP3

Improved results: EBN2019 2D testline. ML/AI picked faults.

Finest grid of seismic, 12.5x12.5 m, 2D to 3D gridding, most sparse, Gridded data, ML interpolated steep, Xline 124, TNW 

subare

MDA GAN ON TNW 2D-3D DATA: MDA Very dense data!



PreACT WP3

Improved results: EBN2019 2D testline. ML/AI picked faults.

Finest grid of seismic, 12.5x12.5 m, 2D to 3D gridding, most sparse, Gridded data, 3D HRS ground truth, Xline 124, TNW 

subare

MDA GAN ON TNW 2D-3D DATA: 3D TRUTH



3D dipscan of TNW

superposed on seismic

2D migrated gridded

interpolated data
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The ‘MIMIC’ approach to approximate high-standard but expensive geophysical 

algorithms by Machine Learning routines appears to be promising

+-95 % quality reproductions of geophysical algorithms at a speedup factor of +-

1000 for diffractions, 720 for denoising and +- 30.000(!) for broadbanding. GAN 

interpolation on a typical 3D cube costs some minutes on a heavy laptop and GPU

ML and GAN’s are promising departure point for seismic data conditioning, 

attributes, prestack processing and quantitative interpretation. The GAN’s already 

proved themselves in several TNO projects. Future is Diffusion Probabilistic Models

Improvements: smarter subset training of GAN’s, transfer learning, active learning
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CONCLUSIONS
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