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ABSTRACT.

This is a report on a method for the detailed and global mapping of the
planetary gravitational field using two artificial satellites

that carry devices to track each other along the same near-circular,
near-polar orbit, separated by a few hundred kilometers and as low as the
atmosphere would allow. They are kept aloft, in spite of air drag, by the
action of small rocket engines that maintain a proof-mass inside each
spacecraft in constant free fall. The signal is the relative line-of-sight
velocity of the proof masses, averaged over several seconds.

A specially tailored analytical perturbation theory, where the reference
orbit is periodical and obtained by numerical integration in a Tow-degree
zonal reference field, is used here to derive a linearized model for the
signal. The "Tumped coefficients" of the perturbations can be calculated
very efficiently with a technique that relies heavily on the Fast Fourier
Transform algorithm, and whose principle is similar to that of Gauss'
method for integrating Lagrange's planetary equations. Computer simula-
tions of the relative motion of the satellites in a field whose potential
is the sum of zonal spherical harmonics up to degree 300, suggest that
the model is accurate to better than 1% at most frequencies present in
the spectrum of the signal. The programs used for the simulations are
explained and listed in an appendix.

Detailed consideration is given to a method for estimating from the data
all potential coefficients up to a high degree and order (such as 300).
This method is based on the choice of a common orbit that closes upon
itself after enough days have elapsed to resolve all the unknown coeffi-
cients. This orbit gives a rotationally symmetrical distribution of data.
After taking care of the non-periodical component of the signal (due to
orbit estimation errors and secular resonant effects) by introducing
extra unknowns, the normal equations of the adjustment become very sparse.
With a suitable ordering of unknowns, it shows an "arrow" structure, the
"shaft" consisting of diagonal blocks. It is feasible to solve such a
system (in spite of its great size) with ordinary modern computers, and
also to find the formal accuracies of the results by a partial inversion
of the normal matrix.

KEYWORDS: satellite goedesy; satellite-to-satellite tracking; Earth model;
analytical perturbations; sparse matrices; Hill's equations; celestial
mechanics; GRAVSAT; GRM; adjustment; least squares collocation.
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When I wrote the draft of this report, it did not look at all 1ike the
eye-pleasing object now in front of you. The transformation has been the
product of hard and careful work by Wil Coops-Luijten, who typed the
clean copy. Also some of the credit must go to Brett Saunders, who did
the illustrations. Nothing we ever do is totally of our own making, and
this is most true of any serious effort in science, however small the
outcome. I have many thanks to give to many people; I have mentioned
some here, others escape me right now. To all, my gratitude is real.
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TO THE READER.

After a long year working on the problem of how to map the gravitational
field by means of satellite-to-satellite tracking, all I claim is that
my results, though preliminary, look to me encouraging. The real situa-
tion is so much more complicated and untidy than what can be simulated
in any computer, or can be expressed by any set of formulas. The ideas
put forward here should be tested further, and harder, than I have had
time for. When writing this report, I have done my best to weed out
inconsistencies and errors; I hope that those that remain are only minor
ones that the reader will be able to find and put aright without much
inconvenience. The mathematical principle at the heart of the matter,
rotational symmetry, is simply beautiful, although in this work, because
of the limitations of the writer, this quality may not be easy to see.
Beauty alone, unfortunately, is no guarantee of goodness, but I do
believe that any solution to this great puzzle must have harmony and
grace. Whatever their ultimate fate, if the ideas proposed here can help
to clarify the problem and to move the discussion forward, they will
have served their purpose well.

The quest to know the shape of the Earth is as old as thought. Fulfilling
it has long been a task in the overall enterprise of understanding the
world. It is like a thread in a very long rope, spun by the hands of
countless men through history, who have joined in and done their job

for all sorts of reasons, but always out of curiosity as well. This
thread runs from the sunny days of Anaxagoras and Ptolomei to our own
interesting times. In a year of mixed seasons and storms, as the days
grow darker, my wish is that we may continue to spin it for a while yet.

Delft, Autumn of 1983.
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INTRODUCTION.

"There is nothing too Tittle for so little a creature
as man. It is by studying little things that we attain
the great knowledge of having as little misery and as
much happiness as possible"”.

Sanwel Johnson
{quoted by Boswell in his London Journal of 1762-63).

Over thousands of years, the understanding of the shape of the Earth based
on scientific observations gradually evolved from the recognition of its
essentially spherical character to the measurement of its mean radius and,
eventually, of its flattening. Slowly, additional information became
available through the surveying of the land masses and the very sparse
coverage, mostly with ship measurements, of the oceans. In the Tlate
nineteen-fifties, the first artificial satellites were put in orbit and,
from thenon, the situation began to change drastically and at a lively
pace. Analysis of radar and optical tracking data soon showed that the
Earth is slightly pear-shaped, with the southern half a bit larger than
the northern, and revealed some considerable departures from the general
ellipsoidal shape with longitude as well as latitude: the first "Earth's
models" had appeared. Those early gravity maps only displayed very broad
features, like the great depression in the geoid south of India. Over the
years, the "models" (global maps in the form of truncated spherical har-
monic expansions of the potential) were improved continuously, as more

data from satellites became available. In the early Seventies their global
accuracy stood at better than 10 m, and their resolution at some 1000 km.
Then, between 1975 and 1978, two satellites (GEOS 3 and SEASAT) were
launched carrying very accurate radar altimeters. Their measurements were
used, among other things, for mapping the mean sea surface, which departs
from a true level surface (the ocean geoid) by no more than two meters.

As a consequence, the oceans became the best known parts of the globe to
geodesists and those scientists interested in the irregularities of the
gravity field, reversing drastically the previous situation. At the same
time, the patient and careful accumulation of gravimetry from all over the

world, madepossible by improvements in technique, continuing exploration



and better scientific exchanges, produced large sets of more conventional
terrestrial data. The combination of the satellite models, the altimetry,
and the terrestrial data, resulted in global maps with a resolution close
to 100 km, such as those made by Lerch et al. (1981), Rapp (1982(a)), etc.
These recent maps are particularly good over the oceans (thanks to the
use of satellite altimetry), where they are believed to be accurate to
about one meter. The picture they give of the fine detail of oceanic
anomalies is truly impressive, showing clearly the wrinkles in the geoid
caused by the mountain ranges, trenches and faults marking the boundaries
of the plates that make up the Earth's crust (as an example, see Rapp,
1982(b})). The very broad details, on the other hand, have become better
known thanks to the use of laser ranging to very high (and, thus, very
visible) satellites Tike LAGEOS and STARLETTE. Most of the problems today
1ie, probably, in the medium range, from 3000 km to 300 km. There, sea
surface departures from the horizontal due to currents, errors in the
oceanic maps caused by uncertainties in the orbits of the altimeter
satellites, and poor, inconsistent or unavailable data on land, contri-
bute to the unreliability of existing gravity field models. Those obtained
purely from satellite tracking are affected by the uneven distribution of
tracking stations, which can observe most satellites, the very highest
excepted, only when they are in their proximity.

The 1imitations of present day gravity field maps, in spite of the impres-
sive progress they represent over the situation twenty, and even ten years
ago, has maintained alive the interest of geodesists and geophysicists

in the development of new methods for charting the gravity field on a
global basis. The main problem with tracking satellites from the ground
is that, in order to observe them for long periods of time to get good
coverage, they have to be in very high orbits. But the gravitational
anomalies, and the orbital perturbations that they cause and that are

the source of the information in the tracking data, decrease rapidly

with altitude, particularly the finer details. To obtain a sharp picture,
the satellite has to be low, and to get this picture over a large area,

it has to be tracked from afar. The solution is to track it with another
satellite. Tracking a low spacecraft from a high one can achieve this,



although coverage may be limited to less than the whole world. This idea

has been tried already twice, using first the ATS/6 geosynchronous satellite
to track the combined Apollo-Soyusz craft in a low orbit, and then ATS/6
and GEQS-3. Both experiments were conducted in the mid-Seventies. Perhaps
the most impressive demonstration of what can be achieved by tracking
satellites over very large areas came a decade earlier, and was not part

of the study of the Earth, but of the Moon.

Muller and Sjogren (1968) used data from the Apollo Lunar Orbiters to show
evidence for the existence of very large and extense mass concentrations,
or "mascons", under the Tunar plains (the maria) of the visible side. In
order to cover the whole Moon (or the whole Earth), instead of having two
spacecraft far apart, one Tow and one high (in the case of the lunar
orbiters, the Earth was the "high spacecraft"), we could have two that
would follow each other along much the same orbit, and at as Tow an alti-
tude as atmospheric friction would allow. Among the first to propose this
principle, known as "low-Tow satellite-to-satellite tracking", was Wolff
(1969). This is one way of trying to obtain a homogeneous set of measure-
ments from a single source with global coverage. The alternative, and it
has remained the only one over the years, is to put a gravity gradiometer
in orbit (for a review of this idea, see Forward, 1973).

The deficiencies of existing gravity maps become clearer when one compares
the spherical harmonic coefficients of the same degree and order obtained
by different groups of sc¢ientists. The latest such comparison that I know
of has been made by Reigber (1983), and the discrepancies among the various
sets of results appear to be considerable. More reliable models are needed
to improve the calculation of spacecraft orbits; to provide a better geoid
as a reference surface for heights (mean sea level); to remove trends

from the data before making detailed regional maps of the field at the
Earth's surface; to determine the tilt of the sea due to the currents,

and in this way to plot such currents (averaged over some length of time);
etc. Also the study of both gross and fine structures within the solid
Earth, its crust and upper mantle in particular, can be done better if

a reliable and comprehensive gravity survey is available. Gravitational
anomalies are the product of the irregular distribution of matter inside



the planet, so a knowledge of them can help to unravel this distribution
when combined with other information about the interior, such as seismic
and geological data. For this reason, the National Academy of Science of
the USA (NAS) has sponsored the discussion of means and objectives
regarding future gravity surveys using satellites. A report (1979) was
produced after a workshop under NAS auspices and the main conclusions,
summarized, were: (a) for geophysical and geological studies, the
gravity field at the surface has to be known with a resolution of 100 km
and an accuracy of between 2.5 and 10 mgals, depending on the applications,
(b) oceanographers need a geoid accurate to 10 cm for features between
100 km and 3000 km in size.

To understand the technical difficulties in fulfilling these requirements,
one should consider that a 10 mgal anomaly on the ground, covering a
square area of some 100 km on each side, would change the relative velo-
city of two low satellites, a few hundred kilometers from each other and

at a height of some 200 km, by less that 10 microns per second (10_6m s_1

).
The same anomaly at the same height would cause a change in the gradient
of gravity of a few hundredths of EotvOs units, or less than 10-11 of the
normal acceleration of gravity per meter. This means that extremely sensi-
tive instruments are required, beyond what has been in use until now. For
satellite-to-satellite tracking, a study commissioned by the European
Space Agency in the 1970's proposed a laser tracking system placed on the
Space Shuttle or on an independent orbiter, ranging to two reflecting
targets in its vicinity (SLALOM report, 1978). More recent information

on this idea can be found in the CSTG Bulletin, No. 2, of 1980. The pur-
pose of this experiment, if conducted from the Shuttle, would be to cover
some regions over Eurasia and the Mediterranean. The National Aeronautics
and Space Administration of the US, for its part, has nurtured for years
p]ané for putting two satellites in orbit, capable of tracking each other
by a radar interferometric system being designed and tested at the Appilied
Physics- Laboratory, which is said to be able, eventually, to reach accura-
cies of better than 1 micron per second (Pisacane and Yonoulis, 1980).

As one way to increase sensitivity is to keep the satellites as low as
possible, the US idea would have the two spacecraft provided with small
rocket engines, or thrusters, able to fire in all directions to compensate



with their impulses for the ‘loss of velocity caused by air drag, so the
pair may stay in orbit for some six months, to ensure that enough data

is gathered. At the same time, by using a closed-loop control system that
senses the position of a proof-mass inside each satellite, such mass
would be kept in permanent free fall, affected only by gravitational
forces, simplifying the analysis of the measurements, which record the
relative velocity of one proof-mass respect to the other.

The alternative to satellite-to-satellite tracking is satellite gradio-
metry. In Europe, the French have considered this possibility, as shown
by a recent study from a group of scientists from various organizations
(Balmino et al., 1981). Their idea is to perfect a three-axial accelero-
meter already used in France's space programme, and to put an ensemble
of several of these in orbit. In the US, present efforts are concen-
trated on developing a completely new instrument, where the sensors are
superconducting accelerometers inmersed in liquid helium, and are derived
from the design ideas for absolute gravimeters and gravity-wave detectors
perfected over the last decade. The aim is to build a device with an
accuracy of one thousandth of an E6tvOs or better (Paik, 1981).

There seem to be three main difficulties in the way to the detailed
mapping of gravity from space: building adequate instruments, financing
the whole operation, and analyzing the data to create the actual maps.

A11 I can say about the first two is that they are quite considerable.

The last one, data-processing, is also on the formidable side; of the
three, it is the only one with which this work is concerned. To map the
field globally to a resolution of one hundred kilometers or so, the mathe-
matical representation of the map must have, regardless of the actual type
of base functions chosen (spherical harmonics, area means, etc.), in the
order of 105 parameters. The values of these paramaters are unknowns to

be estimated from several millions of observations (assuming a six-month's
mission and a sampling rate of a few seconds). One possibility is to take
data covering a certain region and map that part of the world separate
from the rest. These local maps, or solutions, have been produced already
using some of the existing satellite-to-satellite data from Tast decade's
experiments (see, for example, Marsh and Marsh, 1977, and Kahn and Wells,
1979). No counterpart to these exist for gradiometry, as no gradiometer



has been used in a mapping mission yet. The methods for producing such
local maps already exist, in principle, though a good deal of "tunning
up" is needed before they can be used with confidence, a major problem
being numerical instabilities when solving the adjustment equations.

The logical alternative would be producing a world-wide, or global, map.
Here one must deal with the huge numbers of unknowns and observations
mentioned already. In addition to the parameters describina the gravita-
tional anomalies, one must include others to account for the imperfectly
known position of the satellites in their orbits. In the case of the
gradiometer, assuming that several second derivatives of the geopotential
can be measured simultaneously, it appears possible to split the problem
into two independent parts: mapping the field and estimating the orbits,
and that both parts can be carried out very efficiently, so global
estimation may be feasible even with present day computers (Rummel and
Colombo, 1983). The likely accuracy of the estimated gravitational para-
meters (in the form of spherical harmonic potential coefficients) and of
the orbital parameters may be very high with an instrument 1like the
superconducting gradiometer (Colombo and Kleusberg, 1982). The problem
is basically more difficult with satellite-to-satellite tracking.

The main difference between satellite gradiometry and satellite-to-satellite
tracking stems from the Tatter involving two, instead of one, spacecraft.
There is also the nature of orbital perturbations, which have a more com-
plicated mathematical representation than the second derivatives of the
potential. The key to a feasible estimation of the gravitational para-
meters is an ordered spatial arrangement of the data, and a relatively
simple Tinearized model that approximates the effect of the field anoma-
lies on the signal. The latter is readily available for gradiometry, from
the differentiation, twice over, of the spherical harmonic expansion of
the potential. In the case of the satellite pair, both members

must retain their relative positions within rigid limits for long periods
of time, as they together form the actual instrument, and changing their
distance, relative heights, etc., is equivalent to changing the instru-
ment, something quite foreign to the gradiometer. A realistic mathematical
model must be found which is also simple enough to be used in calcula-
tions of reasonable length, and to allow the exploitation of symmetries



in the measurements to cut down the computing effort. The search for models
for satellite-to-satellite tracking that are both handy enough and accurate
enough has been going on for quite some time. Activity over the last few
years has been centered around the discussions of the "GRAVSAT working group"
(GRAVSAT was the original name for NASA's future gravity mission) in the
US. A number of simplified models for the signal have been considered,
including Wolff's old idea of equating relative velocity changes to the
changes in gravitational potential between the satellites (divided by the
mean velocity), orthat of taking the time-derivative of the range-rate as
equal to the difference between the gravitational accelerations of the two
spacecraft projected along the direction of their line-of-sight. These
models were proposed to side-step the supposedly intractable description

of the signal in terms of orbital mechanics (such description seemed

useful only in local solutions; C. Schwartz (1970) was one of the first

to study it; see also Douglas et al (1980)).

In 1982, computer simulations of relative line-of-sight velocities were
conducted by Lerch and others at Goddard Space Flight Center, USA, and
the computed signal was used to assess the various simplified models then
under study. This showed that none of them could be described as better
than "fair", and that probably none was "good enough". On the other hand,
these simplistic models have been very useful for error analysis, i.e. to
guess how good the results of a mission could be, given certain charac-
teristics (separation, height, etc.) and a certain quality of data.

Far the global charting of the field, of many studies conducted over the
years, those by Breakwell (1979), and Rummel (1980), are representative.
The reassuring thing about them is that they all tend to arrive at similar
conclusions, even when the approximations are quite different. A search
for a better model, incorporating principles of orbital mechanics, become
clearly necessary after the simulations at Goddard. Some attempts were
being made even before, as exemplified by the work of Gaposhkin and Kaula
as members of the "GRAVSAT group" (Kaula (1983} has presented recently his
own ideas on this matter (1)). Finally, a breakthrough occurred when, in
December of 1982, Wagner and Goad delivered to the Fall Meeting of the
American Geophysical Union a joint paper suggesting the possibility of
estimating vast numbers of potential coefficient using a Tinear model
derived from classical analytical orbital perturbations' theory.

(T)see also his paper in J.G.R. (Red); pp. 8345-9349, Oct. 1983, Vol. 88,

No. B10, "Inference of Variations in the Gravity Field from Satellite-
to-Satellite Range Rate".




Their solution to such an enormous estimation probles depends on a
principle that is both simple and beautiful. Imagine that two satellites
follow each other a few hundred kilometers apart and virtually along the
same orbit. To obtain the highest resolution, this orbit is low, near-
circular and close to polar. In order to have some structure in the signal,
the "one instrument" principle is enforced by using the thrusters to keep
the spacecraft "flying" in a tight formation. Imagine, further, that their
common height is chosen so that the orbital period is congruent with a
whole number of revolutions of the Earth, so, after some months, the
satellites return to the same places where they started from, as seen

by an observer fixed to the Earth. From the point of view of this observer,
the common orbit is a helix that wraps itself around a nearly spherical
surface of revolution until it comes back to its start. If the mission
goes on afterwards, the same places will be reached again and the same
signal will be measured once more, except for some secular phenomena

kept on check by the corrective manoeuvres(l). The whole mission becomes
periodical, "biting its own tail". To ensure this, the mean orbit is

also "frozen", so it does not precess in its own plane (though the plane
itself may move). The temporal periodicity of such an orbit corresponds

to a beautifully symmetrical pattern in space. The "tail biting" orbit,
and the points where measurements are taken at regular intervals along

it, are such that-an observer looking from any of these points can tell
his latitude, if the position of the pole is visible as well, but not

his longitude: each successive turn of the helix is identical to any of
the others. This means that both the helix and the pattern of measure-
ment have rotational symmetry around the Earth's axis. This is the
principle at the heart of the global solution.

The idea of using a rotationally symmetrical orbit to speed up computa-
tions was tried for the first time, in connection to satellite-to-
satellite tracking, in an error analysis that I did some years ago using
one of the more naive models (Colombo, 198la). The great merit of Wagner
and Goad has been to remove a collective mental block, showing that this
symmetry also works its wonders when a much more realistic model is used,
and that there 1is no unsurmountable problem in trying to base such a model
on analytical perturbations' theory. This approach is, of course, only
one of many alternatives, but, in my opinion, it is the best proposed

(

1)The spelling adopted is mostly that of the Concise Oxford Dictionary.



up to now for global mappning, and so I have followed it in the work
reported here. Models based on orbital mechanics, until the time when

I started my own research, have relied on the "literal" formulation of
analytical perturbations. This is ideal for understanding what happens
when the main characteristics of an orbit (semi-major axis, eccentri-
city, inclination, etc.) are changed, but has the drawback of being
chock-full with the beautifully long and complex expansions that
celestial mechanicists are so fond of. This makes computing more than

a bit awkward. There is a very clever alternative, if the latter is

the goal, attributed to Gauss and known as the "numerical" formulation,
where certain quantities that have very complicated "literal" forms,
requiring many arithmetic operations, can be calculated by much simpler,
but equivalent, methods. As the purpose of computing either

"Titeral" or "numerical" formulas is to obtain the Fourier coefficients
of the perturbations and, eventually, of the signal, it seems a good
idea to try to couple the "numerical" approach with powerful mathema-
tical tools such as the Fast Fourier Transform for harmonic analysis.
The advantage of this is that one does not need to exclude all terms
above the first power in the eccentricity, as it has been the case until
now because of the difficulties posed by the "literal" formulation
(and one has to include higher powers if a very high resolution of the
field is the objective).

In addition to having joined together a "numerical"” formulation to the
Fast Fourier Transform for computing the analytical perturbations' Fou-
rier coefficients, I have adopted a reference orbit that is not merely
“frozen" in the sense that its mean ellipse does not change its shape
and orientation, except for a slow precession around the terrestrial

axis, but that actually closes upon itself in its plane, so it apoears
to an observer on this plane to be perfectly periodical.

This orbit, integrated numerically in a reference field comprising the
central force term and the Tow degree zonals of the spherical harmonic
expansion (according to one of the existing satellite models), is not
the usual Keplerian ellipse along which the perturbations are linea-
rized in the classical approach (Kaula, 1966) known as "variation of
constants" in astronomy. Being a true orbit in the zonal reference field,
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it contains both long and short period perturbations, and the effect of
higher degree zonals in addition to these of the oblatness. As a result,
it comes much closer to the actual path of each satellite than the classical
ellipse (and the satellites can follow it for longer periods without being
forced to do so by the action of their engines). This means a greater
accuracy in the model than it is possible with the conventional ellipse
and a formulation limited to first power 1in the eccentricity. That a
greater accuracy is really needed to deal with high degree spherical
harmonics (about 100 km wavelength) is apparent from the results of

some of the calculations reported in this work. Simpler models, trun-
cated at the first power, have performed reasonably well, but only when
tested up to degree and order eight or thereabouts, which does not show
the actual difficulties at much finer resolutions. Abandoning the classi-
cal ellipse for the sake of accuracy requires giving up also on the use
of the classical theory. For this reason I have developed an approach
specially tailored to the problem, based on the solution of the approxi-
mate variational equations sometimes known as Hill's equations, which
for low, near-circular orbits are correct to the order of the Earth's
flattening. This means an ultimate accuracy of a few parts per thousand
in the model. These differential equations are related to the ones
derived by Hill (1878) for the study of perturbations in the lunar orbit
caused by the Sun. As in Hill's original work, the formulas correspond

to a system of Cartesian coordinates rotating uniformly in the orbital
plane. They have some application in studying the rendezvous of two
spacecraft (see Kaplan, 1976).

The general plan of this work is as follows: section 1 explains the main
concepts relevant to the linearized model, and presents the derivations
leading to it. Hill's equations, whose solutions are part of the model, are
obtained by linearizing the equations of motion, and the main assumptions
underlying the model are discussed in detail. Section 2 deals first with
the periodical reference orbit and how to compute it; then it gives a com-
blete "literal" treatment of the forcing terms of Hill's equations, and
finally it arrives at the Fourier-series form of these terms, a form that
simplifies greatly the analytical solutions of the variationals. The
mathematical details of how these solutions are obtained are shown
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in Appendix I (Appendix II covers some aspects not relevant to the
central problem, but that complete the orbit theory).There is, also in
section 2, an explanation of how the "numerical" approach can be used
to implement the theory in a computer (without actually employing the
lengthy formulas that took me so much trouble to derive and may require
so much patience of the reader who tries to follow them).

Section 3 gets down to the central business, which is the estimation of
a huge number of potential coefficients from an enormous number of
measurements. Here the methods of estimation compatible with the approach
(1east squares adjustment, least squares collocation) are presented in
their more relevant aspects; the linearized observation equations are
derived from the model of section 1 and the perturbation theory of
section 2; and the choice of orbit that brings about the rotational
symmetry of the data points is considered in some detail. This is
followed by an explanation of the structure that this choice and the
resulting symmetry induce in the normal matrix. As I consider the
adjustment of some additional parameters, known here as "arc narameters",
that soak up all the main aperiodic fluctuations in the signal, the
normal matrix is not block diagonal, as in my old error analysis of
1981 or in Wagner and Goad's paper, but an "arrow" matrix, with a
"shaft" of diagonal blocks and two side "wings" (at the lower and at the
right edges of the matrix) corresponding to the extra parameters.

This matrix, which is huge but very sparse, can be set up directly,
without having to create first a matrix of observation equations

(which is nearly full and much Targer) and the arrow-shaped normals

can be solved quite easily by Cholesky decomposition, Also, it is pos-
sible to calculate the formal variances of the estimated potential
coefficients by a partial inversion of this matrix. The overall proce-
dure can be implemented in existing sequential processing machines

to estimate spherical harmonic coefficients up to degrees as high as
300 in a few hours and without the risk of undue accumulation of
rounding errors. After discussing several problems associated with
obtaining and using such large global models, the section closes with
the consideration of the complementary role of Tlocal and global
mapping. Section 4 presents the results of computer simulations that
test the quality of the model of the satellite-to-satellite tracking
signal, using a very high degree field of zonals (up to n = 300), as
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far as it has been practicable within the time at my disposal. The listings
of the computer programs that I have used for these simulations, together
with some explanation of how they work, can be found in Appendix III.
Finally, Appendix IV shows in full detail, frequency by frequency, the
spectra of purely gravitational perturbations of the signal for satellite
separations of 100 km and 300 km, respectively.
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THE MATHEMATICAL MODEL.

Preliminary comments and overview.

This section introduces the basic concepts needed to develop a mathema-
tical model of the signa1 for a satellite-to-satellite tracking mission.
As treated here, this signal is the result of substracting, from the
relative velocity between two spacecraft subject only to the Earth's
gravitational field, the value of this velocity computed using a

field model with incorrect parameters and erroneous estimates of the
initial state (position and velocity) of each satellite. This diffe-
rence is a function of the unknown corrections needed to set both the
field model and the initial states right. The model proposed here is
the result of linearizing this function about known parameter values,
so that it can be used in a conventional least squares adjustment,

plus some approximations that simplify the mathematical formulas.

The two spacecraft are supposed to follow each other along nearly
circular and polar orbits that are almost identical. The orbits are

as low as possible, to allow the greatest sensitivity to the irregu-
larities in the field that the mission must map. Each satellite carries
a proof-mass inside, which is maintained in permanent free-fall by the
action of small rocket engines that fire intermitently to avoid the
mass touching the walls that enclose it, thus eliminating the effect
of aerodynamic drag and other non-gravitational forces on the mass.

The relative motion measured is that of the two proof-masses, using
radar to find the changes in separation between both spacecraft while
also sensing the varying positions of the proof-masses inside them.
Depending on the way the measurements are taken, the signal may be
either the instantaneous relative line-of-sight velocity, or its
average over a number of seconds, which is directly proportional to

the change in distance over the same period, also known as change

in "biased range". As one model is a simple time integral of the other,
all formulas derived for the instantaneous velocity can be modified
very simply to deal with the other cases. For this reason only the
model for the instantaneocus velocity is treated in this section. The
extension to obtain the model for the averaged velocity is done in
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section 3, which deals with the actual observation equations and the
details of the adjustment.

The main objective in deriving the model has been to reflect the
physical reality of the problem as accurately as possible, while
respecting the constraint that the formulas should be susceptible
of practical implementation. The result is of considerable complexi-
ty, as the reader will appreciate when looking at sections 2 and 3.
This complexity is not incompatible with practical use, but makes the
writing of computer programs more difficult than the simpler models
proposed so far. This extra programming increases the overall effort
and cost of a mission by a negligible amount, so it is a mere
nuisance. The important thing is that the model must describe the
signal accurately from its broadest aspects to its finest details.
Simpler models have failed to do this in computer simulations, and
may need upgrading before they can be of practical use. This could
prove to be much more difficult than deriving a more realistic

model from the start.

The model is based on Newtonian orbit mechanics. Because of the
absence of non-gravitational forces, the use of analytical pertur-
bation theory, which avoids expensive numerical integrations when
setting up the normal matrix for the adjustment, is a natural choice.
While following the example of previous authors in making this choice,
I am not starting from the Lagrangian planetary equations, which i
describe the motion of a satellite in inertial space in terms of its
Keplerian elements, linearized about an approximate orbit consisting
of an ellipse precessing according to the secular perturbations
caused by the Earth's oblatness. This is today the standard form of
perturbation theory used in satellite geodesy, but it demands a good
deal of familiarity and experience before one can start making the
simplifications needed to obtain practical formulas, and initially

it is difficult to grasp intuitively.

Lacking myself such familiarity, I prefer to build my theory on some-
thing I understand better. For this reason I start this section by
discussing a general, kinematic model for the relative velocity, and
then introduce the dynamical aspects, not in inertial space, but in
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a geocentric coordinates' frame that rotates with the satellites. This
leads from Newton's equations of motion to the variational equations
known as Hill's equations, which describe the changes in a nearly
circular orbit that take place when there are small changes in the
initial state and the gravitational field departs slightly from that
of a perfect sphere. These are linear differential equations with the
perturbations for unknowns. Because of the simplifications introduced
to obtain tractable analytical, or closed, expressions for their
solution, the variationals are accurate to about the order of the
flattening, or better than one percent, at most frequencies in the
signal. The linearization of the equations of motion into variationals
is done, essentially, along the trajectory that a spacecraft would
follow if the gravitational field consisted only of the main zonals,
including the second (oblatness) and third (pear-shape) and so on up
to a chosen degree N.

As explained at the beginning of section 2, this orbit is closed, or
periodical, from the point of view of an observer fixed to the instan-
taneous orbital plane. The reason for this is made C]ear in section 3,
where the resulting periodicities in the structure of the observation
equations and the normal matrix make the adjustment of an enormous
number of unknowns feasible. The details of the analytical solution

of the variational equations are given in section 2. The use of a
reference orbit which includes both the secular and the

short-term effects of the main zonals, the second and third in parti-
cular, eliminates those perturbations from the residual signal.
Compared to the precessing ellipse of the standard theory, which does
not contain the short-term effects, the more realistic reference orbit
must result in smaller perturbations and, therefore, in a better linear
approximation.

This first section ends with the detailed formulation of the linear
model, which was sketched at the beginning, as obtained with the help
of the physical and mathematical concepts introduced in between.
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Note on mathematical symbols.

Listed below is the basic notation used in this work. When needed,
further symbols shall be introduced in the text.

r is the geocentric, 3-dimensional position vector;

a, & indicate the first and second time-derivative of a scalar or
vector;

ng is the partial derivative of a with respect to x;

h° is a unit 3-D vector pointing in the positive "h" direction

(when necessary, the sense is made plain by means of a drawing);

a.b is the internal, or scalar, product of two vectors;
axb is the external, or vector, product of two vectors;
EY is the modulus of a;

5(obs ) is the observed, or measured, value of s;

Ab is the product of matrix A by vector b.

The relative 1ine of sight velocity.

The measured quantity is the rate of change in the distance between two
drag-free satellites, or line-of-sight velocity s. The distance p is

= [r) -5l

©
|
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and its time derivative is
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Geocenter
Fig. 1.1.1 Geometry of s.s.t.
where

e = (r, -r,e (1.1.3)

The pair of vectors r, r associated with each satellite constitute its
state: the value of the six components (three for each vector) at a
given time t0 and the forces acting on the spacecraft from then on
fully determine its future trajectory for all t > to'

In general, the position and velocity of a satellite are functions of
time and of a parameter vector p. This vector consists of the initial
state, or initial conditions, and of a number of coefficients that
determine the forcing function, such as the spherical harmonic poten-
tial coefficients of the gravity field. Therefore, the observation
equation is of the form

S (opserved) = S(Ti(R)sra(R)Fy (). (p))4n (1.1.4)

where p includes both known and unknown parameters, and n is the
measurement notse, which here is supposed to be random, and of known
variance. From (1.1.2) follows that (1.1.4) indicates a nonlinear
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relationship between s and p. To solve for the unknown components of p,
such as the potential coefficients, (1.1.4) must be linearized about
some approximation J2N of p 1in order to start an iterative parameter
estimation consisting of successive linear least squares adjustments,
such as the Gauss-Newton procedure. The linearized observation equation
has the form

2
S(obs.)_s(Eo) = 151 Pﬁis.(qggiAR) +
+ Qiis.(qgﬁiAE) +n (1.1.5)
where
Ap = p - P, (1.1.6)

and (1.1.5) is a first order approximation to {1.1.4). The orbits of the
two satellites computed with the parameter values

reference orbits. Derivatives such as D, s and DL
i

B, are known as the

.S can be obtained

i

directly from (1.1.2) once the reference orbits are known; they are cal-

culated from purely geometrical considerations. On the other hand Dpﬁi
and D Pi can be obtained only after solving a system of differential
equations intimately related to the equations of motion of free-falling
bodies (such as the two satellites) known as the variational equations.
To understand what these equations are and how they can be solved
analytically, it is necessary to study first the equations of motion.

Note: In general, the number of parameters needed to describe the gravi-
tational field of a planet is infinite. However, only a finite number
of those parameters affect sensibly the motion of the spacecraft and

the signal s, so their effects can be distinguished from the measure-
ment noise. This is why s is assumed throughout to depend only on a
finite number of parameters.

The equations of motion.

The relative velocity s is independent of the system of coordinates in
which the individual positions and velocities of the two satellites
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are defined. Therefore r; and ij in (1.1.2) can be given in any conve-
nient system. In this paragraph the equations of motion will be derived
in a rotating system, because this results in simple variational
equations that can be integrated analytically if the reference orbits

are almost circular. The choice of coordinates made here resembles
somewhat that in G.W. Hill's theory of the lunar orbit (see, for example,
Brower and Clemence (1961), Ch. 12).

Consider a system of coordinates revolving about the planetary center

of mass (geocenter) with a time-varying angular velocity vector N.
Assume that the geocenter coincides with the origin of coordinates O

at all times, and that it is free from acceleration in inertial space.
The newtonian equations of motion of a particle in such a system, summed
up in vector form, are

i:g-ﬂx(ﬂxﬁ)-Zﬂxi-ﬂxr_ (1.2.1)

(see, for example, Spiegel (1967), Ch. 6).

Here a is the acceleration in inertial space,
- Nx (Nxr) is the centrifugal acceleration,
-2Nxr is the Coriolis acceleration,

-Nxr is the so-called linear acceleration,

and N is independent of the unknown parameters p mentioned in the previous
paragraph and of the motion of the particie, in contrast to r.

If a is due only to the gravitational field, represented by its potential
V, then

a=w (1.2.2)
where Vv = Dy is the gradient operator. In spherical coordinates (r, ©, 1)
where r is the geocentric distance, ¢ the latitude and A the longitude,
the potential can be expanded in external spherical harmonics (at least
outside any sphere containing all planetary masses)
GM !

n - -
v =2 5 0§ or ()M ¥ (,1) (1.2.3)
3 =0 n=o m=o " nm - nm
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where

Yzm(cp,x) =P _(sin @){

cos }a=0
nm

sinlo=1 ™A (1.2.4)

and Enm is the associated Legendre function of the first kind, degree n

and order m. Here P__, Y and Ezm are fully normalized in the sense

nm
that
2‘n‘ ™
(S = 7= J dx [ (Ch Y2 (0,1))cos @ do (1.2.5).
0 0

Also G is the universal constant of gravitation, M is the mass of the
planet, compared to which that of the satellite is negligible, and "a" is
the meanequatorial radius. In what follows the spherical harmonic
expansion will be truncated at a degree n = Nmax so high that the
influence on the signal of all terms of greater degree can be neglected.
This makes the number of parameters Enm needed to describe the field a
finite one, as explained in the Note in the preceeding paragraph. The
normalized Legendre functions can be calculated with the help of the
following recursive formulas:

(a) form = o

Poo(sin o) = 1, Elo(sin @) = V3 sin @ (starting values)

and

Bn 0(s1'n ©)= %{[(Zn +1)(2n - 1)]£sin ©® En—l o(sin ©) -

- (n - 1)[%%—;—:1;]é En_z o(sin o) (1.2.6)
(b) m=n

|-’m(51'n ®) = [ég};}%i% cos © Bn-l n-1(sin o) (1.2.7)
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(c)m#n
P (S ©) = [(22:}] 1)1} Gin g b (sin o) -
2n+1)(n+m-1)(n-m-1),% 3 )
i [(<2n-%§(n+m)2r(1-m) Lt Py misin @) (1.2.8)

(notice that these are recursions in n, with m fixed).

Since the forces acting between the two satellites are negligible,
knowing how a single spacecraft moves is enough to understand the
behaviour of the pair. Because the two satellites are supposed to be
made "drag free" by the use of small rocket engines, so their pfoof-
masses are in constant free-fall, all non-gravitational forces such
as aerodynamic friction, electromagnetic drag, and solar radiation
pressure are excluded from this treatment. Gravitational forces that
do not originate from the Earth or vary with time, such as the
attractions of the Sun, Moon and major planets and of the solid,
oceanic and atmospheric tides raisedby those attractions, are also
kept out. Their effects on the motion of the spacecraft can be calcu-
lated to a large extent by using existing models, so they are likely to
be eliminated from the data when the computed values of the signal,
S(Eo)’ are subtracted from the measurements to set up observation
equations in accordance to the linearized expression (1.1.5). If this
elimination is not complete, due to imperfections in the models, these
may be corrected separately, from the residuals, in an iterative process.
Because of the attractions of other components of the solar system,
the geocenter is accelerated in inertial space and, along with it,
the geocentric coordinates used in this work. This accelerated systém
can be treated as an inertial system by making use of the concept of
tidal potential. For each attracting body, this potential is the sum
of the gravitational potential of this body and of that of a ficti-
tious uniform field whose gravitational acceleration is everywhere
the same in magnitude and direction, but opposite in sign, to the
acceleration of the geocenter caused by that body. The total tidal
potential acting on the Earth is simply the sum of those of the
individual bodies that have appreciable influence on the geocenter's
movement. Polar motion, precession, nutation and changes in length

of day are ignored here because they result in variations in the
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horizontal position of the sateliite with respect to the Earth of a

few meters, which is much less than the shortest wavelenght component

of the signal that can be distinguished from the noise (about 100 km).
Any cumulative effects can be eliminated in the same way as those of

the attractions of the Sun, Moon etc., discussed above. The Newtonian
character of the equations of motion (1.2.1) precludes the consideration
of relativistic effects. These may be introduced as "relativistic correc-
tions" to be added to the computed signal s(p,).

The variational equations.

The solutions of the variationals are the components of the matrices
Dpfi and Dpti that appear in the linearized signal equation (1.1.5).
They relate individual changes Ap, in the elements p, of the vector of
unknown parameters p to the perturbations in r and r caused by those
changes. They are the derivatives of the components of the state
vector with respect to the P The following reasoning shows how,
through the introduction of some approximations, it is possible to
arrive to a form of the variationals that can be solved analytically.

A change APy in Pk results in a perturbation of the orbit. If u is a
continuous function of P> either directly or through the state vector
(which depends on pk) and if uo(t) and uA(t) are the values of u at
time t corresponding to Pk = Pko and to Pp = Pro * 4Py respectively,
then

D_u(t) = Lim {
Py AP0

As both the unperturbed variables (r , io’ ¥,» 3,) and the perturbed

variables (rﬂ, jﬁ, EA, EA) satisfy the equations of motion, then, as

N is independent of Py>

Fp-Fo=a, -3 =~ Nx (Nx(r, -r))-2Nx(r, -7 -

- - N (r, - 1) (1.3.1)

This is the vector form of the perturbation equations. These are

nonlinear, because a andg0 are, in general, nonlinear functions of r.

A
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Dividing both members by APy and taking 1imits:

-y

Lim{‘—:—}= Lim {[a, -a, - Nx (Nx (r, = r)) -
8p, 0 Apy 8p, >0 —A =0 - —A 0

1

]

)1

- N x (B - Fg) - N (ry -y

which, using the notation of the previous page, can be written as
D,F=D_a +Drgnp£-ﬂx(anpﬁ)-zﬂxnpi-

Pk Pk =Py K K

Finally, since APy is not a function of time,

2
d
—D r=D_ a+DaD r-Nx (NxD_ r) -
a? Pk P IR T T R
d o
- zﬂxapokr_-Ex Dpk£ (1.3.2)

This is the vector form of the variational equations in the rotating
frame introduced in the previous paragraph, and Dp r is the unknown.
-

The symbol D a represents a 3x3 matrix of second derivatives of the
gravitational potential V (Marussi's tensor). Two terms involving deri-
vatives of a appear because, in general, a is both a direct function
of P, and also a function of r, which depends on Py The variationals
are linear equations.

If N is chosen perpendicular to the instantaneous plane of the unper-
turbed (reference) orbit and oriented so that the system turns in the
same direction as the satellite, and if the magnitude of N is a constant
n, (as yet unspecified), then ﬂ is zero (or close to zero) for a polar
(near-polar) reference orbit of the type described in paragraph (2.1),
which is shaped by a reference gravity field made up of the zero
harmonic of the potential and its main zonals.

In this case the linear acceleration term in the equations of motion
(1.2.1) and the related last term in the variationals (1.3.2) can be
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dropped because they are either zero or much smaller than the others.
To continue this reasoning it is better to replace the vector form of
the variationals with a set of three scalar equations in cartesian
coordinates. Choosing an orthogonal triad of unit vectors ZF’ 30 and
EO, with 50 having the same direction and senseas N, and both EF and
EO lying in the plane of the reference orbit and pointing so (gp, LO, go)
is left-handed, as shown in figure 1.2.1, the position vector can be
written

r=2zz+ '+ ul
where z, r and u are the scalar components of r in the system defined
by the triad and whose origin is the center of mass 0. Vectors i, ¥, and
a can be written similarly in component form. Since a = WV = DrV
according to (1.2.2), -

-0 0 0o, _ 0 0 0
a=2za, +ra +ua =zD0V+rDV+ubdyV
SATELLITE
r(B)
—
Geocenter u(?)
Zia)

Fig. 1.2.1 The rotating system (z, r, u}.
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expression (1.3.2) in component form is

. 1.3,
dy Dpkaz+Dza oy #0288, 4D 2y, (1.3.33)
1 = 2 - y 1.3.3b
By Dpka +D,a,9,#D, 3,8, 4D a v, +  ngBy 2n .y, ( )
. 2 .
Vi Dpka +Dza ak+D a k+D a Nev + 2n By (1.3.3c)

e — —~— A ; —— — e —— e

4 h rob as D aD_ r Nx(NxD_ r)=2Nx3D

at? Pk P R TP Tty

where n = IN|. For a planet like the Earth it is true that, to an

accuracy of one part per thousand of GM|r|™>, and provided r and ro are

closely aligned,

2%z uwlu © 7 BE

GM

r

. ZGM
r ’
rf’
= Duar = DZa

a, = a, - GM a
. 2 2GM
Bk Dpkar + (n0 + T;ngsk
2 GM
Y =D, a + (n - )y
k pk u 0 |[‘|3 k

In so far as

their analytical solution can be very complicated. However,

(1.3.4)

(1.3.5)

(1.3.6)

these equations depend on |r|, which is a function of time,
if the

orbit is close to circular, |r| is almost constant. For the simplified



- 26 -

expressions (1.3.4-6) to be valid, r in the reference orbit andL0
must stay closely aligned and, if |r| is almost constant, this can be
ensured by choosing

n, = GMr3
where r is the mean value of r along the reference orbit. This means
taking n, equal to the mean angular velocity of the satellite. Neglec-
ting the difference between the instantaneous and the average geocentric
distance, which for a near-circular orbit around the Earth introduces
an error of the order of the flattening (a few parts per thousand),
results in the approximate, time-invariant variationals (sometimes
called Hill's equations, as explained in the Introduction)

" 2

ay = Dpkaz U (1.3.7)
s 2 .

B, = Dpkar + 3n.8) - 2n0yk (1.3.8)
Yy = Dpkau +2n.8, (1.3.9)

The first equation is independent from the other two. This helps greatly,
as it turns out that oy and &k are not needed for the Tinearized model.
The solution of the first equation is important, however, for under-
standing the precession of the orbital plane that occurs when the orbit
is not polar. As far as I know, the first to suggest using Hill's
equations for studying the satellite-to satellite tracking problem was
Dr. Peter Bender, in a circular letter to some of his colleagues, in
1982. In the present derivation N has been chosen as independent of

the satellite motion, whereas the usual derivation (see Kaplan, Ch. 3,
1976) assumes that 10 is aligned with r. Both approaches lead to the
same equations, after small terms are neglected. The idea of a constant
rotation rate n, makes the application of these equations to the two-
satellite problem treated in this work easier to understand. The choice
of n, means that the system of coordinates turns with the angular
velocity of a "satellite" ina circular orbit of radius r around a point
of mass M at the origin. In this system, such a "satellite" appears
stationary at a distance r from the origin, while the actual spacecraft
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hovers around the stationary one, responding to irregularities in the
gravity field. Using a circular reference orbit would simplify '
greatly the mathematical treatment that follows; unfortunately

the actual path of a low satellite of the Earth, for example, will
depart by nearly ten kilometers from a circle, however carefully the
satellite is put in orbit. This is mostly due to the larger terms in
the expansion of the potential, which are the low degree zonals,
notably the\second and third, or the "oblatness" and "pear-shape"
terms. Choosing a circle would mean large perturbations and an eventual
breakdown in the validity of the linearized model (1.1.5). This is
likely to happen in the part of the model corresponding to high degree
potential coefficients, whose spherical harmonics change with a pertur-
bgtion Ar in the radial direction, for instance, by a factor of

(r t Ar)n+1

Y

» where n is the harmonic degree. Therefore the forcing terms
D a_, D a_ , D a should be computed along an orbit that includes the
P2’ P ™ P

effects of the first N zonals, so the perturbations are small when the
problem is linearized along it. The determination of such an orbit is
explained in paragraph (2.1); the low zonals that are needed are known

very well already, after decades of patient work developing Earth models.

The approximate variationals (1.3.7-8) were obtained from the exact

vector equations (1.3.2) by making two changes in the terms corre-

sponding to ngDp r: (a) an "spherical" approximation in Dra and the
r= Py -

assumption that r and LO are nearly aligned at all times leading to
(1.3.4-6); (b) a "circular" approximation, replacing |r| with F. These

two steps introduce an error of a few parts per thousand in DrEDp r, in
— Tk

addition to which there will be a much smaller error (for near-polar
reference orbits) due to the dropping of the “linear acceleration" term,
which is actually zero for polar orbits; the other terms are all exact.

If the orbit is not polar, the orbital plane precesses about the Earth's
axis. This happens because the forcing terms normal to the orbital

1 D
plane ( P

same period as the orbit(l). Expression (1.3.7) corresponds to a harmonic
oscillator with a natural angular frequency n, that is the same as that

az) corresponding to even zonals contain sinewaves of the

(l)See paragraph (AII.2) in Appendix 1I,
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of the orbit. As a result of this the forced response contains a
resonant term that grows steadily in amplitude while it oscillates
in step with the turns of the satellite. So, every time that the
spacecraft crosses the equator, the node will be displaced from
the position it had in the initial orbital plane by a distance a(t)
that is proportional to the number of turns elapsed. This means
that the instantaneous orbital plane rotates about the z axis at a
constant rate. As the vector N was chosen perpendicular to the
instantaneous plane of the reference orbit when obtaining the
scalar form of the variationals for the first time (expressions
(1.3.3a-c)), N must precess at the same rate as that plane. This
rate is, to a close approximation for near circular orbits, given
by the formula

) cos 7 /5 (1.3.10)

where 7 is the inclination of the orbital plane. Clearly, this rate is
zero for a polar orbit, so whatever effects this precession brings
about, they vanish for an inclination of 90° and must be negligible
for orbits close enough to this inclination. The reason for considering
the non-polar case is the lack of accuracy in the "injection" of a
satellite into orbit. Ideally a polar orbit will be selected, as it
gives the most complete coverage of the gravity field. Errors in the
initial steering of the spacecraft will cause the actual orbit to

have a small obliquity. The error may be as much as a few degrees in
inclination, and it could be too expensive in terms of fuel to carry
out a trimming manoeuvre to correct the orbital plane. The main effect
of a precessing plane is the introduction in the equations of motion
of the linear accelgration term, which has the form (expression
(1.2.1))

A inear N x L

where |N| = angcos 7 and ﬁ_. N = 0 always, as the length of N

is constantly n,. The inclusion of this extra term causes the
variational equations to be fully coupled and also time-dependent,
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which does make the search for analytical solutions problematic. It
turns out that this term is less than 10> times the size of the other
ones in the dynamic part of the variationals when the error in the
inclination is only two degrees or less, which is an accuracy quite
within present capabilities. For this reason the dynamic part is

kept as for a circular polar orbit, and thus unchanged from (1.3.7-9).

The Tlinearized model,

As seen in the first paragraph, the relationship between the measured
quantity, the relative Tine of sight velocity of the two satellites,

and the unknown parameters, the corrections to the potential coefficients

and to the initial conditions, is a nonlinear one. In order to estimate
those unknowns in a relatively simple way it is necessary to obtain an
approximate linear relationship, the linearized model. This has the
differential form

ds=zD_  sdp, =D g(p, - P..) (1.4.1)
K Pk k K Pk k ko
where s is the signal in the measurement (noise will be ignored for the
time being) and pk0 is the approximate value of the parameter P> whose
correction APy = Py - pk0 is one of the unknowns in the problem. If,

as it is the case with most potential coefficients, Pro = 0, then the

correction equals the parameter Pk itself. The partial derivatives Dp s
k
are taken along a reference orbit determined by the pko's, the known

(but probably incorrect) values of the coefficients and of the initial
conditions of the two spacecraft. The details regarding this orbit are
discussed in section 2;for the present only a few general characteri-
stics have to be considered. In the first place, the potential used
to compute this reference orbit include only zonals up to degree N.
Second, the initial conditions of both satellites are assumed to be
on the same orbit plane (defined by the velocity and the geocentric
position vectors of each spacecraft) and to be such that, from the
point of view of an observer fixed to this common plane, the second
satellite will move until, eventually, its position and velocity coin-
cide with the initial state of the first satellite. Since the field
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determining the orbits is purely zonal, and so time-invariant in spite
of Earth rotation (other time variations being negligible), both
satellites must continue to share the same orbital plane indefinitely,
and to the observer fixed to this plane they should appear to follow
exactly the same orbit passing through the same point always At seconds
apart (if fluctuations in inclination are very small). In the snecial
case where both orbits are polar, they will coincide also in inertial
space. In what follows, both orbits will be regarded as one, "the"
reference orbit. "Unperturbed" quantities associated with this orbit
shall bear the subscript "o". In addition, the first and the second
satellite will be distinguished by a subscript "i" taking values "1"
and "2", respectively. In reality, the field will contain infinitely
many terms, and the first N zonals will be somewhat different from the
values adopted for the reference orbit, while the initial states will
never fall exactly (or even very close) on this orbit. Such differences
are the unknown corrections APy - According to expression (1.1.2), when
P = P for all k,

. ) -1
So = (19 = Fa0) - (ryg = Fagleg (1.4.2)

A small change Apk in one of the parameters away from its reference
value p, causes a corresponding change As, in s:

. . . . -1
So * ASk (310+A£1k-(£20+A£2k))'(310+A£1k'(£20+A£2k))(po+Apk)

= [80p (P10 T ) - (ALy =8P ¥ (87 =08, ) (2 4=Pyy)
. . -1 - -3, 2
+(A£1k-4£2k)(431k-A£2k)..]x(pol-pozAp+p0 bpT=...)
(1.4.3)
Substracting the reference value of the relative line of sight velocity

from both members, and neglecting all terms of order higher than one in
the perturbations:

-1 ., . .
Ask = po [(£10-£20). (Aﬁlk-Aﬁzk)-'-(-r—.l 0-320).

‘(Ailk'Aizk)'(iao'izo)'(ﬁlo'ﬁzo)palApk] (1.4.4)
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1
Since o = |ry-r,| = [(r;-ry).(r;-r,)1%
it follows that

-1

oy = Dp pAPy = 0, (fdo'ﬁzo)’npk(ﬁl'ﬁz)Apk =

k

-1
= p " (r

0 —qo-rzo)'(AﬁlkmAfzk)

and so

-1, . . .
Asy = og L0y 47Fy )« (A mar ) 4 (I g=rpp) - (AT AT,y )
. _ e ap )7
(P gmF) e (1 gmrag)eg (Fygrpgleg
(ary e )] (1.4.5)

According to (1.1.3),50 = (El-ﬁz)p-l is the unit vector along the
instantaneous line of sight. Let gg be such a vector for the reference
orbit, and gg a unit vector perpendicular to gﬁ at all times, and pointing
away from the geocenter. Decomposing (iloﬁﬁzo) and (erk-qrzk) into com-

ponents paralel to go

.0
0 and &,

. ) e 0 i 0
(Fyg7La) - (ANl ) = (£ Ty 0) o (ar iy ) g +
Lo 50 50
+ (ﬁlo-ﬁzo).gO(Aglk-Agzk).go (1.4.6)
Replacing (1.4.6) in (1.4.5)
. . -1, . .0 .0
asy = (Ary=ar,, ). e0+o o (1) g7rpg)-8o(Ar g =ary, ). &, (1.4.7)

because e’ = (r. -r. ) -1
=0 - ‘\l107l207P0 -
Dividing both sides by Apy and taking limits for apy > 0, as in the

previous paragraph,

. . 0 _1 . . ‘.0 -0
Dpks = (Dpkgl-Dpkgz).go+p0 (5101320).30(Dpk51 Dpk£2)'50 (1.4.8)
This expression is valid in any system of coordinates, because the vector
notation used so far is completely general. To use the perturbation
theory developed in this work, it is necessary to state the problem in
the rotating Cartesian coordinates in which the variationals have been
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derived. As it was shown in Fig. 1.3.1, the "r" and "u” axes of this system
1ie in the orbital plane, which now is common to both satellites, and

the "z" axis is constantly perpendicular to this plane. Imagine that

at t = 0 the "r" axis is normal to the initial direction of the line of
sight. From then on, it moves with constant angular speed " from the
point of view of an observer fixed to the orbital plane. Let At be the
time interval between the passage of the first and the second satellite
through the same point of the common reference orbit, as seen by that
observer. Consider the unit vector L?o’ rotated forwards from the axis

v by in At radians, and the unit vector ﬁgo’ rotated backwards from

v by the same angle. As the system turns, both vectors, which appear
fixed in the moving coordinates, form a constant angle of nOAt radians,
and remain more or less aligned with the position vectors of the
satellites, as indicated in Fig. 1.4.1. Let u o and u o be unit vectors
normal to ﬁ?o and ﬁgo’ respectively, both in the orb1t p1ane and
pointing against the motion of the respective spacecraft. Let also

Tio and r be the position and the velocity vectors of the unperturbed

0’
sate111tes as seen in the rotating coordinates. Decomposing the vector
of partial derivatives Dp rs along ¥, U and Z:
-
Dpkri = EODpk . _JODpkr + 5100pku , where z points along z
and Zis Tys u; are the components of r; in the (z,r,u) system (with
= 1 or 2, depending on the satellite), then, in the notation of para-

graph (1.3),

0 0 0
Pp i = Zo %k * Diofik * Yioik (1.4.9a)
and
. 0 . 0 . 0 .
Do i = 2o %kt ik YigYik (1.4.9)
. o . . 0 .0 0 A0
Since z, is normal to the common orbital plane, z, L8 =208 = 0, so
0 0 0 0 0
Do Zi 0 = BikCig 8o * Tikdio S (1.4.10a)
J0 0 .0 0 .0
Dpkri'go = Bilior&o t Yikliorgy (1.4.10b)

.. . 0 . 0 . . .
and similarly for Dpkﬁi'go and Dpkﬁi'go’ so at this point, ik and a5y
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"exit" from the discussion.

Calling Nio to the angle formed by u;

: 50
between r. and &,

0
o and e;, and &, to the angle

10
0 0 .

Tio + & = sinny, (1.4.10c)

ﬁ?o . gg = COS ny, (1.4.10d)
and

0
Ujo - &, = COS nyo (1.4.10e)
A0 .

Uiy - &, = -sin n;, (1.4.10f)
while

. A0 _ .

Yio » & = Ir;,l cos &5, (1.4.109)

Replacing (1.4.10a-g) in (1.4.8)

= 5 -y +P i Y in
D s Y1k €05 N7k cos oo Blk sin n sz S n

Py 10 20

-1, . .
tog ([r)glcos 8, 4=ry,|cos 8,0) (By COS ny =B,y €OS nyp-
ik ST Nty sinon,)

10° 620’ |£10|’ I-.EZO‘

To obtain the complete differential of s (i.e., the linearized model)

where Nps Nops § , and p, are all functions of time.

one now must add all the increments As) = S Apy. Then, for

D
k Pk
infinitesimal variations in the parameters,

AS = i[ilk cos nlo(t)-%2k cos nzo(t)+'31k sin n  (t)-

“B,, SN n, ()40 (£)TH(IF, ((t)|cos 6 (t)-]F,q(t)[cos 8,4(t))

x(Blk cos ”lo(t)'sz cos ”2o(t)'Y1k sin ”1o(t)+

Y,k sin ”2o(t))]Apk (1.4.11)
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This is the full expression of the linearized model, with some of the
time-dependencies made explicit. As shown by the computer studies of
section 4, only the first four terms are needed for an adequate
representation of the model; also it is possible to make the further
approximation

Cos n,, = €OS n,, = COS nj, (the overbar indicates the

10 time-average over one orbit)
without appreciable Toss of accuracy, because 5o is small, so its
cosine changes very slightly if the angle is perturbed, unless this
perturbation is very large. Ignoring the last part of (1.4.11)
eliminates the need to evaluate the complicated time-varying products
in the neglected terms. Such terms do have an influence on the signal,
but this has basically the form A t sin n,t + B t cos not which, as
explained in section 3, can be taken care of in a very simple way
without bringing in the whole formula for the differential of s. In
consequence, sections 3 and 4 will consider only the simplified model:

AS = i[(Qlk-sz)cos n10+é1k sin nlo(t)-é2k sin ”2o(t)]Apk

(1.4.12)

It is possible to neglect the Tast part of (1.4.11) and to have (1.4,12)
instead, because the orbits are near-circular and p,is 1arge when
compared to the quantities it divides (order of 105 meters). These
quantities cancel out along a perfectly circular reference orbit, as
then |i10| = |ﬁ20| and N1o = Moo for all t, so they are bound to be
small when the orbit is almost circular.

The assumption that both satellites move in coplanar (or near-coplanar)
orbits eliminates from the model the perturbations perpendicular to the
common plane. When the planes are different, ay and &k must be incor-
porated into the model. This generalization can be done without much
difficulty, although the numerical computations then become more
laborious. Because only the coplanar case has been the subject of
serious discussion and research until now, and it is also simpler,

the more general problem is not considered here. Some recent calcu-
lations by Breakwell (reported to me by P, Bender) indicate that
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having slightly different planes may improve the estimation of low and
medium degree potential coefficients. This could be due to the rein-
forcement of the signal by the additional terms in @ and &k. This
question shall be discussed further in paragraph (3.10).

Fig. 1.4.1 The geometry of the common reference orbit.
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Summary,

The relationship between the signal (relative line-of-sight velocity)
and the parameters to be estimated (potential coefficients, components
of the initial state of each spacecraft) is a nonlinear one. To
evaluate the parameters by such methods as least squares adjustment,
it is necessary to linearize this relationship. The resulting mathe-
matical model includes the derivatives of the states of the satellites
at the time of the measurement with respect to the parameters. These
derivatives are found by solving the variationals, which are linear
differential equations obtained by differentiating the nonlinear
equations of motion. To exploit its geometrical symmetries, the problem
is defined in a system of Cartesian coordinates, two of whose axes
rotate in the plane of the orbit with a constant angular velocity
equal to the mean angular velocity of the satellite, and the model

is linearized along a special reference orbit described in further
detail in the next section. The choice of coordinates results in
variationals that, after some simplifications valid for near-circular,
near-polar orbits, are relatively easy to solve analytically; they

are known as Hill's eqguations. In the problem studied here, the two
satellites follow each other along much the same trajectory, so they
can have a common reference orbit and reference orbital plane.

In this special case, perturbations perpendicular to such plane do

not appear in the linearized model., After some further approximations,
validated by the numerical studies of section 4, only variations in
the radial and along-track velocities of each spacecraft remain in

the model.
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2, THE ANALYTICAL SOLUTION OF THE VARIATIONAL EQUATIONS.

Introductory remarks and overview.

As shown in this section, the variational equations have analytical
solutions in the form of sums of sines and cosines of angles that grow
linearly with time. These sums take strongly symmetric as well as
simple forms when the reference orbit along which the problem is
linearized appears, to an observed fixed with respect to the instan-
taneous orbital plane r (defined by the instantaneous position and
velocity vectors r and 1), to be a closed path repeating itself
periodically with the angular frequency Noe In addition, the orbit
should appear to the same observer as symmetrical with respect to the
intersection of I and the meridian plane perpendicular to r. By solving
the variationals analytically, the coefficients of the unknown Pk in
the linearized signal equation(1.4.12) can be obtained without laborious
numerical integrations which are subject to cumulative rounding and
truncation errors. The Fourier series form of the analytical solutions
(terminated at a sufficiently high frequency) permits the simultaneous
adjustment of the hundreds of thousands of potential coefficients that
describe the gravitational field at satellite altitude because, partly
due to this form, the huge normal eguations have a very strong struc-
ture. This reduces. the work needed to set up and solve these equations
to the point that the adjustment becomes feasible.

This section begins with theoretical considerations on the existence
of closed, symmetrical orbits in purely zonal fields, followed by a
description of a method for obtaining them by refining the initial
conditions of the classical "frozen orbit", whose mean Keplerian
elements are constant except for a secular precession of the line of
nodes. Then comes the development of the forcing terms of the varia-
tionals along the reference orbit in the form of Fourier series with
time for independent variable. Next, the analytical solutions of the
variationals are discussed (the mathematical derivations are in
Appendix I) including both forced and free responses. All the formulas
needed for computing the Fourier coefficients of the forced response
are given in this section.
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Finally, the theory is applied to the case where the reference orbit
is perfectly circular, because. this clarifies some properties of the
periodic reference orbit (which can be regarded as a perturbed
circular one).

The periodic reference orbit.

To investigate the existence of closed, periodical, symmetrical orbits
in a reference field of zonals from the point of view of an observer

in the moving orbital plane, it is convenient to start by looking at
the problem in "fixed" inertial space. Let (x,y,z) be an inertial
system with origin at the geocenter. Assume that the gravitational
field has rotational symmetry about the 7 azis, so its expansion
contains only zonals. Two particles, or satellites, A and A', start
from the same point P, moving perpendicularly to the meridian plane

at P with the same velocity and in opposite directions. This situa-
tion is illustrated in figure 2.1.1, where the plane xz is also the
meridian at P. Due to the rotational symmetry of the field, the choice
of meridian plane is irrelevant to this argument. The free-fa11 trajec-
tories of the particles must be mirror images of each other, because
the accelerations in a zonal field are mirror-symmetrical respect to
any meridian plane, xz included. Imagine now that A collides with

a rigid plane normal to its motion at a point Q, bouncing back in a
perfectly elastic fashion. An instant after the impact the position of A
is virtua]]y the same as before it, but its velocity vector has
reversed its direction while keeping its magnitude. Since the satellite
is drag-free, and thus subject only to the forces of a conservative
field which depend on position alone, the particle will retrace the

arc PQ and return to P with the same velocity as before, but moving

in the opposite direction. Then it will have the same state as A'

at the start of its trajectory, so now A will follow the arc PQ'
described by that particle. In this way A will have moved, from the
point of collision, along the symmetrical path QPQ'. This leads to

the conclusion that, in a zonal fie]d; any trajectory that is perpen-
dicular at some point to a meridian plane must be, in inertial

space, also mirror-symmetrical with respect to that plane.



- 39 -

Clearly, there is an infinite number of such trajectories. According
to the argument so far, such conclusion is valid in Znertial space.
Consider now the case of an observer on the instantaneous orbital
plane I', whose reference frame is the moving system of polar coordi-
nates (r,F') illustrated in figure 2.1.2. In this system r is the
geocentric distance and the origin 0 is the geocenter. This choice
is possible because I' is the plane spanned by r and ﬁ) so it always
contains r and 0. F' is the angle formed by r with the axis E, which
lies along the intersection of r with the meridian plane perpendicular
to r, and whose positive sense is towards the northern hemisphere.
F' increases from ascending to descending node, following the move-
ment of the satellite.

Fig. 2.1.1 Mirror-symmetrical orbit in a zonal field in
inertial space (P is in the xz plane).
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In the new reference system, two symmetrical points B and B' have coor-
dinates rg = rg and Fé = —Fé.. The symmetrical orbit must fulfill the
equations of motion in the moving system (r, F') so, the accelerations
being always finite, both position and velocity must be continuous and
differentiable functions of time. For continuity to be compatible with
symmetry about the E axis, the velocity vector in the moving system
must be normal to E at two points where this is crossed by the orbit.
This means that the radial component of the velocity must be zero at
those points.

This component is the relative velocity between the satellite and the
geocenter 0. Relative velocities are coordinate-independent, so the
radial velocity * in the inertial system (x,y,z}, whose origin is also
the geocenter, must be the same as that in the moving system and, in
particular, r = 0 at the time of a crossing of the E axis (another way
of explaining this is to notice that r is the same at all times in
both systems, so its time derivative has the same value in both). This
means that, in inertial space, the velocity vector i must be perpendi-
cular to the position vector r whenever this happens to their counter-
parts in the moving system., If the zero harmonic is much larger than
the rest, so the orbit differs only slightly from a keplerian ellipse,
there will be two intersection points P and P' on E at opposite sides
of the origin, as in the case of an ellipse.

Meridian
Plane of
P

Reference
Orbit

Q
& T (b)

Fig. 2.1.2 The system (r,F') in the instantaneous orbital plane
spanned by r and i. (a) In inertial space - (b) As seen by
observer on T.
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At either intersection the satellite is on the meridian plane normal to T,
according to the definition of 3, and the velocity vector is normal to r,
which is then aligned with 5, and Ties (as it does at all times) in T.
This means that the velocity vector must be normal to the meridian plane
of the satellite at each intersection. Consider the "northern” crossing,
where F' = 0, and assume that the satellite's meridian at that point is
identical to the xz plane, which is a choice we are free to make. This
is, once more, the situation shown in Fig. 2.1.1., so the orbit must be
symmetrical respect to xz in inertial space. At symmetrical points B

and B', the orbital planes are also symmetrical, and so are the instan-
taneous directions of E as seen in inertial space.

This reasoning can be repeated for the "southern"™ crossing, where F' = =,
with the same conclusion. So r = 0 when F' = 0 or F' = 7 is a necessary
condition for the orbit to be symmetric, in order that both position and
velocity be differentiable, as explained earlier, but it is also a
suffictent condition for symmetry, as just shown. Furthermore, the
differentiability of the orbit makes r = 0 at both crossings a necessary
and suffieient condition for any orbit that is symmetric in T with
respect to E to be also closed. This means that r = 0 when F' = 0 and

F' = n is a necessary and sufficient condition for an orbit to be
symmetrical and closed in the (r,F') system on the instantaneous orbital
plane.

Because r is the same in the inertial and in the moving system, the last
statement implies that an orbit is symmetric and closed in the moving
system if it crosses perpendicularly two meridian planes in inertial
space.

The time.interval between two such crossings is half the orbital period
To, and the orbital angular frequency is n, = 2n/T0.

It should be remembered that these conclusions are valid for near
keplerian orbits, with on]yktwo crossings of E per revolution. This is
a reasonable assumption for the Earth, other planets and major moons
in the solar system, particularly when only the low degree zonals of
their fields are involved.
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The previous reasoning has shown the existence of symmetrical orbits,
but not of orbits that are closed as well. Because of its great complexity,
the question of their existence will not be considered further, Instead,
making the assumption that such orbits exist, the ideas obtained so far
will be used to develop a method for computing near-circular orbits that
can be sufficiently symmetrical and periodical for practical purposes.
This method involves making successive corrections to the initial state
of a trajectory that is, from the start, symmetrical and almost closed.
It is an iterative search whose beginning is chosen by taking advantage
of a property of the mean ellipse of a symmetrical and closed orbit.
This is the ellipse that fits best the orbit over a period of time
sufficiently large for fluctuations of frequency N, and higher to
average out. When the orbit is periodical, the mean ellinse will

have the same shape when averaged over any whole number of revolutions
and, in inertial space, the only change will be a steady precession of
its plane about the ; axis. This precession occurs because, in general,
the inertial position and velocity vectors at the end of one revolution
(when the satellite crosses a meridian plane perpendicularly and north
of the equator for the second time) are the same as those at the
beginning of that revolution rotated about ; by a common angle. Because
the field is zonal, the next turn of the spacecraft is identical to the
previous one rotated by the same angle. As a result, the orbital plane
rotates about z by a constant amount at every revolution. As each
revolution takes the same time, the average motion is a steady precession.
In the case where the orbit is polar, all forces lie in the orbital
plane, which does not change, so there is no precession: the closed
orbit is a flat curve. For other inclinations the initial and the

final state differ, in general, by some rotation, so, as explained
above, precession ensues. The rate of precession, for planets with a
substantial equatorial bulge, like the Earth, is dictated mostly by

the second zonal, as shown in formula (1.3.10). The explanation given
here is only valid for periodical orbits; a more general one, based on
resonance in the solution of the variational equation (1.3.7), was
outlined in paragraph (1.3) and is discussed further in Appendix II.

From the previous discussion follows that the Keplerian elements of
the mean ellipse, or mean elements, must be all constant for a perio-
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dical orbit, with the exception of the longitude of the ascending node,
Q, which changes steadily due to the precession. For all near-circular
orbits whose mean inclination is not too close to the “critical"” value
= sin'1(4/5)é = 63.439, G.E. Cook (1966) has found relationships
linking the mean eccentricity e, the mean argument of perigee w (the
angle between the trace of the orbital plane on the equator, or line of
nodes, and the semimajor axis, positive from ascending node to perigee)
and the potential coefficients of the dominant zonal terms, given the
mean length of the semimajor axis a and <. Generally ¢ and w are slow-
varying functions of time, except when they satisfy simultaneously the
conditions

(2.1.1)

€
"
NI

e = a certain function of the Cﬂo'
Choosing in this way the initial "trial orbit” means taking

r, the desired mean radius;

a =
7 = given value, assumed to be not too close to the
critical inclination, as it is the case with near
polar orbits.
e = C/K (2.1.2)
where
GM,3 -0 ,a,2 5 ..
K = 3/5(5)5 €0 (3201 - 2 (sin ©)?) (2.1.3)
and

N ]
=@z ¢ @ n-nEm)¥ (0)p

n=3

O
|

cos ) (2.1.4)

n n1(

(Cook wrote in his paper equivalent expressions using wmormalized
potential coefficients and Legendre functions). In (2.1.3) all even
zonals above degree n = 2 have been neglected, and in (2.1.4) N is the
highest degree included in the zonal expansion, while the summation is
over odd values of n only. From these Keplerian elements the Cartesian
components of the initial state can be calculated as follows:
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Xg=124=0 (2.1.5a)
Yo -[% (1}%)1% (2.1.5b)
Yo =0 (2.1.5c)
z, =1 sinz (2.1.5d)
x, = (7 - 22)} (2.1.5€)

where the "o" subscript indicates, simultaneously, that this is the
initial state and also the state corresponding to F' = 0 in the moving
systems and where ¥ = (l-e)a.

Cook's formulas are valid as 16ng as certain terms proportional to the
square of the eccentricity can be neglected, i.e., for near circular
orbits, which are those of interest here, except when Z is close to

the critical inclination. Away from this problem zone the eccentricities
given by (2.1.2) are, for the Earth, of the order of 1073, so the use

of these expressions is justified. Choosing the initial state of an
orbit so that the instantaneous Keplerian elements at the start satisfy
(2.1.1-2) does not guarantee that the orbit will close, because Cook's
theory applies to mean elements only. However, one can reasonably expect
a near-periodical result, which can be improved by small corrections to
the initial state. Since the argument of perigee is 90°, the orbit
starts perpendicular to the initial meridian plane, so its symmetry is
ensured.

In general, Cook's orbit is not perfectly closed, which means that

r # 0 when F' = 7,

In such a case the radial velocity "misclosure" Fw (where the subscript
“r" indicates that this is the value of r when F' = 7) has to be elimi-
nated by modifying the initial state. Assuming that < is given and cannot
be changed (modifying the inclination of a satellite orbit is expensive
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because it requires a good deal of fuel), then, since the initial velocity
must remain perpendicular to the initial meridian, and since changing this
meridian has no effect on r, (rotating the initial state about 7 in a
zonal field rotates the orbit as a whole, without modifying its shape),
the only elements of the initial conditions that can be modified to

reduce r, are r_ and ¥,- Calling ar  and Ay, to the corresponding changes,

0
the variation in r; due to them is, to first order, ArTr=Dr0r1T Ar0+DS,0r1T AY -

To correct the "misclosure" r , Ar. and Ay, must bring about a variation

-n-,
A%ﬁ = -iﬂ. Therefore, the required changes should satisfy the equation
Drorﬂ Aro + DyorTT Ay, = -F, (2.1.6)

Two cases are possible:

(a) D o}“ = Dyoin = 0; here there is no solution to (2.1.6). This means

that the misclaosure cannot be eliminated by small changes Ar, and Ayo,

r

s0 a new starting orbit has to be found, perhaps by varying r by several
kilometers and using (2.1.1-5) once more to determine the initial condi-
tions. This may not be always necessary. For example, in a central force

field (zero zonal only) a change in r_ or 90 has no effect on v, but r_

0
is always zero because the orbits are always closed!
(b) At least one of the partial derivatives is not zero and there are,

in general, infinitely many solutions.

In the second case, which is the one of interest here, the solution is
made unique by the introduction of an additional constraint. The con-
straint chosen, for reasons that will become clearer later, is that the
mean value of the orbit should remain constant. From the analytical
solution of Hill's variationals (given in paragraph (2.4), at the end
of this section), for changes in the initial conditions of the orbit Ar§
and Ayﬁ (where the superscript R indicates that the coordinates corre-
spond to the rotating frame introduced in section 1) the mean value of
the same orbit varies by

AF = -2A&%n51+4Ar§
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according to expression (2.4.2)(1). Using the superscript I to indicate
inertial coordinates, the relation between both frames is

R_ 1.
Arg = Aroo= ar (2.1.7a)
o7k = oyl +nar] (2.1.7b)

and from this follows the ar = 0 constraint for Arg and A}%:
I 1 -1 _
AV 0 (2.1.8)
so
I 1 -1
Aro = Ayon (2.1.9)

and expression (2.1.6) becomes (dropping the superscript I, inertial
space is now used exclusively)

dr
1 . . T e _ e
0 + D_.yorTT)AyO = H_)T/; Ayo = Y‘ﬂ

(Dr r.n
0

The solution is

ar, = ayngt (2.1.10a)
y M di"n -1
by, = -rﬂ(ayg) (2.1.10b)
dr

The derivative H?%' = (Drﬁﬂngl + Dyoﬁﬂ) cannot be obtained analytically,
because Hill's equations, which are only approximately valid, give here
singular first order solutions. In fact this singularity does not show up,
at Teast in the cases that I have studied, if the problem is solved by
numerical differentiation. First, one computes a trajectory from the
initial conditions given by Cook's equations (2.1.3) to (2.1.5e). Then
yo is changed by a certain amount (1 m sec”! gives good results) and

the trajectory is computed again. In each case the time when F'=~n

and the corresponding value iﬂ are found by linear numerical inter-
polation between the last computed point where F' < = and the next one
{numerical integration only gives discrete points at regular intervals

R

(1)HereA§0

is equivalent to aU(t;) in paragraph (2.4).
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along the orbit). If Aiw is the change in F“ corresponding to a change
Ayo in 90 when the constraint (2.1.8) is enforced, then

de ar_
x T (2.1.11)
g, " Ay,

After the correction A&O is made to the initial conditions, a new orbit
is computed and the time and coordinates of the point where F' = 27 are
obtained, again by interpolation between the two closest computed points.
The difference between these coordinates and the initial conditions
constitute the misclosure of the orbit. If this is not satisfactory, the
procedure is repeated as many times as necessary, until the misclosure
becomes negligible. Two iterations have been sufficient, in my experience,
to reduce the discrepancies between starting and end points to about
10microns (107> m) in position and below 10™* microns per second in velo-
city. It is important to determine accurately both the F' = 5 and the

F' = 2n crossings. For this purpose I found it very effective to stop
the numerical integration at the point immediately after the crossing

in question, and to re-start it from this point with the integration

step reversed in sign and reduced to a tenth of its previous size,
repeating this operation several times (running the orbit backwards

and forwards through the crossing with ever decreasing point spacings)
until the value of the linearly interpolated crossing time did not

change its 10th significant figure from the previous result.

The resulting closed orbit is not very different in ellipticity from
the “frozen" orbit that provided the start for the procedure just
described. As ﬁw = 0, expression (2.1.6) indicates that the orbit will
stay closed if small perturbations to the initial conditions satisfying
Dr r Aro + Dy roAy, = 0

0 0

and, therefore,
D. v
Vo' :
AY'O = - T 7 A_Yo (2.1.12)
Y‘O T
are applied. This means that there may be infinitely many closed orbits,
and that it is possible to change their shape continuously by modifying
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aro and A&O. There is the possibility that some of these closed orbits
may be more circular than the one just obtained, and also that their
mean radius may be nearer to the desired one (Cook's formulas

used as explained here may give a mean radiusthat differs from the one
chosen by several kilometers). This suggests an iterative search for

a closed orbit that minimizes the rms difference between the instan-
taneous radius and r in which, at each jteration, an attempt is made
to decrease the functional

) - 7)? (where Jat = orbital period and

J = -
At =t - t)

by linearizing the equations of motion along the orbit to be corrected,
or "circularized", and solving the linearized problem, which is a least
squares fit of the orbit to a circle of radius r, to obtain ar, and Ayo.
A simple way of doing this is to use the analytical solution to Hill's

equation for the radial component (expression (2.4.1)) to obtain the

partial derivatives for the linearized equation of the residual

F-Y(tj) = i[Dror(tj)ArO + Dyor(tj)AyO] (2.1.13)
under the constraint that the orbit remains closed (expression (2.1.12)).
Using (2.1.7) to formulate the problem in an inertial frame, the solution
to the least squares fit is

-1

. - - -1
8, = - %{(n01+i K2 +(2n! +4K)?17 [ (-2n ' -3K) x

2
J-1 . J-1
X L Ar cos anAt+(2n0 +4K) I Ar] (2.1.143)
j:O j:O
Ar o = Kay (2.1.14b)
K= D v /D P [1-n (D. -1 2.1.14
pyorﬁ/ ror“[1 nO(DyO?n/Drorﬂ)] ( c)

In practice there is little further improvement after two iterations,
the result being considerably more circular than the initial orbit.
Because the constraint (2.1.12) is a first order approximation, the
circularized orbit will not be as well closed as one might wish, so
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the “closure" procedure already described may be applied once more to
ensure a satisfactory result. Because the circularized orbit has, in
practice, a mean value very near to r (a few meters' difference), it
is important that, in closing it once more, this mean value does not
drift away. This is why the constancy of the mean radius was chosen as
a constraint for this operation earlier on (expression (2.1.8)).

Summing up: the calculation of a reference orbit that in the instan-
taneous orbital plane appears symmetrical, closed, and near-circular,
comprises four main stages:

(a) Given Z, r, and the potential coefficients for the main zonals up
to degree N, use Cook's formulas and (2.1.5a-e) to find the initial
conditions of the first approximate solution;

(b) With (2.1.10) find the corrections Ar, and Ayo to the initial
conditions that reduce or eliminate ?ﬂ. Iterate until some "closed-
ness" criterion is satisfied;

(c) Use the result of (b) in (2.1.14a-c) to find additional corrections
to the initial state that make the orbit more circular, iterating
if necessary;

(d) Check the misclosure in the result of (c) and, if too large,
repeat (b).

The use of Cook's formulas for choosing the reference orbit (without
further corrections) has been proposed by Wagner and Gould (1982) as
part of their approach to processing satellite-to-satellite tracking
data based on the classical first order analytical perturbation theory
of the keplerian elements.

As it will be explained in paragraph (2.6), in a field consisting only
of zonals the near-circular, near-polar reference orbit can be regarded
as a circle of radius r plus a perturbation whose radial component is
of the form

Aar =r-r=zg Kj cos J not
N
= I K; cosjF' = ar(F")
j J
because F' = n,t for the unperturbed circular orbit. Moreover, for even
degree zonals j takes only even values, and for odd degree zonals only
odd ones.



2.2

- 50 -

Thus, if all the zonals are even:
Ar(s + o) = ar(
and
AY‘(.?% +a) = Ar‘(f.% - a),

so the orbit is symmetrical with respect to the equator, where F' = gq
and F' = 3%. In the case of the Earth, both even and odd zonals must be
considered, so the reference orbit has no equatorial symmetry, but due
to the near circularity of the orbit obtained by the procedure des-
cribed here, such a symmetry is not far away. This situation could be
exploited to reduce quite considerably the computing effort when
estimating the potential coefficients from satellite-to-satellite
tracking data, provided that these coefficients are not of very

high degree, as explained in paragraph (3.9).

Once the closed reference orbit has been found, the orbital period

T0 becomes known and, along with it, the value of the fundamental
angular frequency n, = 2n/T0, which appears in many equations through-
out this work.

The Fourier expansion of the forcing terms.

The forcing terms of the variationals (1.3.7-9) are the derivatives

of the corresponding terms in the equations of motion (the gravitational
accelerations or first gradients of the potential V) with respect to
some component p, of the parameter vector p. According to (1.2.3), V

is only a function of those components of p that are potential

. =0 .
coefficients Cnm’ so the forcing terms Dpkaz, Dpkar and Dpkau are zero

for all the other Pk and only those corresponding to the C:m have to
be considered here. Also, as explained in paragraph (1.4), only the

last two variationals are of relevance to this work, so Dp a, shall
k

not be studied here. The objective of the argument that follows is to
explain how the forcing terms can be expressed as functions of time

in the form of Fourier series which, because of the choice of reference
orbit, are of a simple kind.
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As a consequence, the complete solutions of the variationals
must contain "steady state" components, or particular integrals, that

are also Fourier series. This happens because the variationals under
consideration are linear, time-invariant differential equations. These

analytical Fourier-series solutions are essential to the simultaneous
adjustment of hundreds of thousands of unknown potential coefficients,
as explained in section 3.

Figure (2.2.1) shows the instantaneous plane of the reference orbit

in inertial space. The plane forms an angle <, the iInclination angle,
with the equatorial plane. The point Q is the ascending node, whose
longitude L increases gradually due to precession, as already explained,
A is the longitude of the satellite, ¢ is its latitude. The origin of

L and » is not necessarily the meridian of Greenwich, and will be
defined later.

Orbital Plane I”

(In general ¢ and u®
are not exactly aligned.)

Origin of Eg::tonal

Longitude

Fig. 2.2.1 Orbital geometry in inertial space.
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F' is the same angle as in the previous paragraph (Fig. (2.2.2)), and
F is the angle between the ascending node and the satellite. From the
definition of F' follows that F = % + F'. The relationships between
the geocentric angles F, L and ¢, A are given by the formulas of
spherical trigonometry

arc sin(sin < sin F) (2.2.1)

S
N

>
]

arc cos(cos < sin F/cos ¢) + L (2.2.2)

where 0 < o 5-% if0 <F <m, and - % <@ <0if < F < 2n, and where
A - L is always in the same quadrant as F.

The inclination of the instantaneous plane fluctuates periodically, but
these variations are so small that ¢ shall be considered to be a constant
throughout this discussion. As all the orbital variables mentioned in
this paragraph correspond to the reference orbit, the "o" subscript
introduced in section 1 to single out such variables shall not be used.
The geocentric distance [1[ shall be designated here by "r",

Reasoning as in (Kaula, 1966, Ch. 3), but using F and L instead of the
equivalent astronomical angles w + f and @ - 8, it can be shown that
the spherical harmonic expansion of V becomes, after replacing ¢ and A

according to (2.2.1-2) into (1.2.3-4),

N =0
max n n_ C
VinFLe) = 3T @™y pF ) { '1"“} cos((n-2p)F+nlL )+

n=o m=0 p=0 Cnm

(_:1

+{_Q"‘} sin((n-2p)F+nL) (2.2.3)
¢
nm

where a is the mean planetary radius and the expansion has been trun-
cated at n = Nmax’ as explained in the Note at the end of paragraph
(1.1), while the top of the curly brackets { } corresponds to the

case n-m even and the bottom to n-m odd. The Enmp(i) are fully norma-
lized inelination functions. Their efficient computation by means of the
Fast Fourier Transform is explained in (Wagner, 1979), The last
expression already resembles a trigonometric expansion in sines (or

cosines) of the potential.
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According to paragraph (1.3), the forcing terms of the variationals
are the derivatives with respect to Pp = Eﬁm of the components of the
gravitational acceleration in the direction of the moving unit vectors
30 and EO of an wniformly rotating system of coordinates, whose "r"
axis is always closely aligned with the instantaneous position vector
of the reference orbit, r,, while the "u" axis points against the
direction of motion. Calling AF' the small misalignment angle between
LO and r,, the following relationship exists between the spatial
derivatives of V in the directions of the ¥ and U axes and those along

the ¥', U' axes of the local geocentric frame of the satellite in the
reference orbit:

1]
1l
o
-
<7
|

= D V cos AF' + Dy V sin AF' (2.2.4a)

[T}
]
o
<7
1]

u u =Dy V sin AF' + Du' V cos AF' (2.2.4b)

The forcing terms of the variationals are

D

=y @ =Dzq DV =Dzq D_,Vcos AF' + Dzq D ,V sin AF'
Cnm r Cnm r Cnm r Cnm u
= D=y a,, cos AF' + Dzy a_ , sin AF' (2.2.5a)
Cnm r Cnm u
and, similarly,
Drq @ = -Dzgq a.,.. Sin &F' + Dzo a . cos AF'  (2.2.5b)
C%m u Cnm r Cnm u
Calling G(F,L,i)nma to the sum over p in (2.2.3),
n+1 n+3 ,
Dea aps = Dpa DV = LMLl @y"iap oy 0 (2.2.6a)
nm nm
1 ,a\n+1 .
Droo a,+ =Dza D,V =-= (%) "DG(F,L,Z) (2.2.6b)
Cnm u Cnm u rr F nmoe

It is easier to develop first Dzy a,. and Dga a: into time Fourier
nm nm
series and then use (2.2.5) above to arrive at the desired expansion
of the forcing terms DC“ a..s Dca a,-

nm r nm
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Replacing G(F,L,z) Mo with its full expression according to (2.2.3):

o 4 - -(n+z)p=0 mmpl(170) (g} ((n-2p)Fml) +
+ Slgs ((n-2p)F+mL)] (2.2.7)
o 3 - r(n+2) zozunmp[<1 @) "SI0} ((n-2p)FenL) +
+a{ 203 ((n-2p)F4nl)] (2.2.8)
where
2rnmp = -GM a (n+1)anp( ) (2.2.9)
Zunmp = -GM a"(n- 2p)anp( 1) (2.2.10)
SO
Zunmp = '&mmp(n-Zp)(nn)'1 (2.2.11)

The forcing term Dza a, is of no interest, as the solution to the first

variational (1.3.7) does not appear in the linearized signal equation
(1.4.11).The "«" symbol in the expressions above and in all which follow
is the superscript of the coefficient sz’ unless it is expressly noted
otherwise. Comparing (2.2.7) and (2.2.8) above it is easy to see that,
but for the different coefficients arnmp and gunmp’ the second expression
can be obtained from the first by adding 90° to the arguments of the
trigonometric functions. This relationship holds throughout.the following
discussion, so it is enough to go through the derivation of the Fourier

time series expression for DC“ a, to understand how that for DCa a,
nm
can be obtained. Starting the reasoning with (2.2.7), quick exam1nat1on

of this formula shows that it can be written more compactly as
-(n+2)

CoS
pzoarnmp{s1n ((n—2p)F+mL+¢a) (2.2.12)
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where

[}
- O

(2.2.13)

0 if «a
¢a={-1§ if

As the field for the reference orbit consists of zonals only, the shape
of the orbit is not affected by the rotation of the corresponding "zonal
Earth". In the instantaneous orbital plane the satellite is seen to
follow the same closed path again and again. If the central angle F
between the satellite and the instantaneous nodal point Q is given,

then r is uniquely defined, regardless of the time t. So r is a function
of F alone. Moreover, as the orbit (in the instantaneous plane T) is
symmetrical with respect to the line from the geocenter along which
F=3%n, ris an even fumetion of

F' = F - 3n (2.2.14)

and it can be written as a sum of cosines

r{(F') = ¥ + 2 r_cos qF' (2.2.15)
q=1 9
because, as explained in paragraph (2.7), if the reference orbit is a
slightly perturbed circular orbit, only the first N frequencies in the
Fourier expansion of r correspond to terms that are large enough to
be considered, so the series can be truncated at q = N, where N is the
highest degree in the expansion of the zonal field that shapes this

. . . . ={n+2
orbit. Since r is even, so is r (n+2)

, which has also a cosine expansion.
The question is where to truncate this expansion. If the perturbations
are small compared to the mean radius of the orbit, so r_ << r, then
r'("+2) in (2.2.12) can be expanded in a Taylor series agout r as

follows. Calling
r=r+Ar

where
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then
2
r—(n+2) - F_(n+2)-(n+2)F'(n+3)Ar+(n+2)(n+3)F-(n+“)Ar
Therefore, to a first order approximation in ar:
-(n+2) N
r = ¢ h__ cos gF' (2.2.16a)
g=0 "9

and the Fourier series can be truncated at q = N Tike that of r. Also
to first order in rq:

_ ==(n+2)
hn0 =r (2.2.16b)

-(n+3)r

h = -(n+2)F q

nq (2.2.16c)

Expression (2.2.16) can be used as an alternative to a numerical

(n+2)

Fourier analysis of r_ sampled at regular intervals along the

orbit. Due to the nonlinearity of r~("*2)

, a truncation
at q = N may not be high enough for large values of n, in which case
terms with q > N should be included. However, to simplify the nota-
tion, the upper 1imit N is assumed in what follows. Replacing (2.2.16a)
in (2.2.12):

n N
D'a a 1 = Z Z
Cim ™ peo g=0

cos

. h_cos q(F - %){sin

Zrnmp nq H(n-2p)F+ml+¢ ) (2.2.17)

From the trigonometric identities
2 cos q(F -‘%)cos((n-Zp)F+mL+¢a) = cos((n-2p+q)F+mL - %; + ¢a)
+ cos((n-2p-q)F+mL + %;-+ ¢,)

and

™

2 cos q(F - 5

)sin((n-2p)F+mL+¢,) = sin((n-2p+q)F+mL - %; + ¢a)

+ sin((n-2p-q)F+mL + %} + ¢a)
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follows that (2.2.17) can be written

n N
D¢ au= I Ia [{cqs}((n-2p+q)F+mL - %} + ¢ )
Com T p=0 g=o "MMPA"sin o
cos qm
Hoipt((n=2p-q)F+ml + == + ¢ )] (2.2.18)
where
=34 2.2.19
Lenmpq © : arnmphnq (2.2.19)
Remembering that F = F' + i7:
n N cos T
Drg @1 = I La [{.:2H((n-2p+q) F'+mL+(n-2p)5 + ¢ )
Chm T p=0 q=o TMMPA" sin 7t o,

+{ 2 H((n-2p-q)F ' +ml+(n-2p)T + ¢)]  (2.2.20)

Moreover

cos((n—2ptq)F'+mL+(n—2p)g-+ ¢a) = cos(n-2p)% cos((n-2ptq)F'+mL+¢a)
-sin(n-2p)3 sin((n-2pq)F ' +ml+¢ )

and

sin((n-2pzq)F'+mL+(n-2p)7 + ¢,) = sin(n—2p)%-cos((n-2ptq)F'+mL+¢a)

+cos(n—2p)g-sin((n—2ptq)F'+mL+¢a)

For n even (n—2p)% is an integer multiple of =, while for n odd the
same angle is an integer multiple of iw, so

{E?ﬁ} ((n-2pzq)F'+mL+(n-2p)3 + ¢ ) =
(ngzg
= (-1) {gonH((n-2p£q)F +mL+s ) (2.2.21)

for n even, and
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{g?ﬁ}((n-2piq)F'+mL+(n-2p)g-+ t,) =
(n-29-1 )
=(-1) 2 (S anH{((n-2p+q)F ' +mL+s ) (2.2.22)

for n odd. Further inspection of (2.2.20) in the Tight of (2.2.21-22)
shows that the form of this expression depends only on the parity of
the harmonic order m. Grouping all terms where k = (n-2pzq) is the
same leads to

Dégm apr = k=T%:+N) @ppmy €O (KF'+mL+s ) (2.2.23)
for m even, and to
n+N ) .
Dtgm ap = k=-?n+N) @k STN(KF'+mL+s ) (2.2.24)
for m odd, with
Zrnmk = ("1)q(n’m’p)arnmpq(1+5qo) (2.2.25)

Pq

Here the sum is over all terms in (2.2.20) where (n-2p+q) = k or
{(n-2p-q) = k. The (_1)q(n,m,p) correspond to the factors mu1ti§1ying
the sines and cosines in the right hand sides of (2.2.21-22)' /. The two
expressions above can be written in a more compact form, as one differs
from the other only by a 90° phase shift. Introducing the notation

e = % T ®m (2.2.26)
where

m

0 if m is .even
*m {E if m is odd

and ¢ is defined by (2.2.13) leads to

n+N
D(—:a a 1 =

@ 2 cos(kF'+mL+¢ma) (2.2.27)

z a
ke-(nsN) "MK

This expression is clearly a Fourier series of sines or cosines, but
what is needed is an expression where the forcing term appears as a

I,

q0 is the delta Kronecker.
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function of time (the independent variable in the variationals) and
not of the orbital angles F' and L. These angles are themselves
functions of time, so a change in variables is possible. Assuming
that L = 0 at t = 0 (more will be said about the significance of
this choice of time-origin presently)

L=29't (2.2.28)
where
g' =0 -8 (2.2.29)

8 being the spin rate of the Earth and @ the precession rate of the
orbital plane (expression (1.3.10)), both taken here to be constant.
The very small fluctuations in both rates that occur in reality
change the actual peint at which the forcing terms are calculated

by a distance that is always very small compared to the wavelengths of
the gravitational features that can be detected at satellite altitude,
which are probably longer than 50 km. The total effect of such

small changes is negligible, justifying the assumption that the rates
are constant. The same reasoning can be used to disregard the effect
of polar motion and nutation, while the effect of precession can be
ignored during the relatively short duration of the satellite mission,
as well as secular changes in the gravitational field. Therefore, this
field is considered here as rotating at a constant rate around an axis
whose direction is fixed in inertial space, and undergoing no other
changes besides this rotation (all tidal perturbations are ignored,
see paragraph (1.2)).

Obtaining a relationship between F' and time is more difficult than
in the case of L, because the low degree zonals of the field cause
the satellite to follow the orbit with a variable angular rate.
Approximately, this rate is
-1

N
F'(t) =n +F £y

c
0 n=1

N o g . (2.2.30a)

and, as explained in paragraph (2.7),
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N
Y o Cn 0 = i fi cos 1not (2.2.30b)

if the reference orbit departs only slightly from a circular one. So

t
F'(t) = f F'(r)dr
0 N .
=nt+ I fi sin ingt (2.2.31)

i=1

where

It is easy to see that (2.2.31) is in agreement with

the fact that F'(t) must be an odd function of t, because of the

orbital symmetry. From this follows that cos kF' must be an even function
of t, and sin kF' an odd one, so the first has a Fourier expansion of
cosines and the second a Fourier expansion of sines. To decide where

to truncate these expansions in order to carry out practical computa-

tions, one can apply a reasoning 1ike that used for r_(n+2) earlier
on. Calling
F' = F' + aF' (2.2.32a)
where
N
AF' = ¢ f. siningt (2.2.32b)
i=1
and
F'=nyt, (2.2.32¢)

and assuming that the perturbation AF' is small compared to F! (the
mean anomaly of the circular orbit of the same period as the reference
orbit), one can expand cos kF' and sin kF' in a Taylor series about
F'. To first order in aF':

cos kF' = cos k(F' + aF")

cos kF' - sin kF' kaF'

r
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and

sin kF' = sin kF' + cos kF' kaF'
SO

N
cos kF'(t) = cos knjt - = Kkf; sin kngt sin ingt
i=1
N
= cos kn,t + 121 gkfi[cos(k+i)not-cos(k-i)not]
k+N
= I c. cos jn.t (2.2.33)
j=k-n K °
where j = k = 1 and
- Lifj=k 1 if x20
3k =3k |j_y| sion(j-k) otherwise, where sign(x)={
J -1 if x<0
Similarly
k+N
sin kF'(t) = S sin jn,t (2.2.34)
j=k-N Y
where

S. =

Jk %kflj-kl otherwise
Therefore, for small perturbations, the expansions can be truncated
at [j-k| = N. This may not be true for the large values of k that go
together with very high values of n. In this case, additional cosine
or sine terms with |j-k| > N may be needed. For convenience, a
truncation at N in all cases is assumed in the reasoning that follows.
According to (2.2.33-34),

cos(kF'+mL+¢ma) =Cos kF'cos(mL+¢ma)-sin kF'sin(mL+¢ma)
' k+N
= %jzi_N(cjk+sjk)cos((Jn0+me e )+

+ (cjymsyleos((dng-me')t-¢, ) (2.2.35)
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Replacing (2.2.35) in (2.2.27) and adding together all terms with the
same argument (jn0 +me')t + e separate from those with the argument

(jn0 - met)t - ¢ma:

n+2N
Dro a,i(t) = z a . cos({jn,+me')t+y )
Com ° j=-(ne2n) "M 0 ma
+ a;nmj cos((Jjng-me')t-¢, ) (2.2.36)
where
J+N C s +S.
vt - jkT>3k
“rnmj = k=§_N Tenmk (&) (2.2.37)
J+N ¢. =S,
- = o Jk ik
“ramj " k=§-N Tk ) (2.2.38)
where a =0 if k < -(n+N) or k > n+N,

rnmk
Going back to (2.2.8) and DC“ s which, except for different coeffi-
nm

cients and a shift of 90% has the same form as (2.2.7) for Do aprs and
nm
repeating the same reasoning that lead to (2.2.36) above, one gets

n+2N .
Dga 21(t) = . cos((jn0+me')t+¢ma + ) +

z aun
j=-(n+2N) UMM

- s ) 1
* @ynmg Cos((dng-me’)t-9, - 7) (2.2.39)

+ - . _ . +
where aunnﬂ and aunnu are Fourier coefficients corresponding to %

and ap, o in (2.2.36). Calling

+ -

*
Genmi = %rnmg T %em -

and

+ -
“Aunmi = %unmi t Gnm -

expressions (2.2.36-39) can be written as

D 2N,

a_,(t)

g or cos((Jny+me’)t+e, ) (2.2.40)

I P
j=-(n+2n) "M
n+2N

chmau.(t) sin((jn0+me')t+¢ma) (2.2.41)

X a .
j=-(n+2N) UNM
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These are the Fourier expansions of Dﬁa a. and DC“ a,: as functions
nm nm

of time. From them one can arrive to the desired expansions of the
forcing terms of the variationals, Dﬁa a, and DC“ a,s by using
nm nm

expressions (2.2.5) to change from the local geocentric frame (z,r',u‘)
at a point in the reference orbit, to the uniformly rotating frame
(z,r,u) on which the theory is based. Since the misalignment AF'
between both frames is quite small at all times for the near circular
orbit (about 10 minutes of arc), the following approximations are

acceptable:
N
AF'(t) = = fi sin ingt (see expression (2.2.32b))
i=1
cos AF'(t) =1
and
sin AF'(t) = AF'(t)
Accordingly,

Drq a.(t) = Dxy a ,(t) cos aF'(t)+Dzy a . (t) sin AF'(t)
Cnm r Cgm r Cgm u
n+2N

z a,.. . cos((jn.+me' Yt+¢_ )+
j=-(n+2n) "M 0 Ma

n+2N * N

+ sin((jn0+me')t+¢m ) E fi sin in,t
[0 _|=1

2unmj 0

z
Jj==(n+2N)
n+2N
= z a,. . cos((jn +me')t+e )-
j=-(n+2N) "M ° o
n+2N * N
z 3a .z f.lcos(((j+i)n +me')t+e -
j=-(me2N)” UMM4s, T ‘ Ma

-cos(((j-i)n0+me')t+¢ma)] (2.2.42)

and, similarly
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Dzq a (t) = -Dzq a_,(t) sin AF'(t)+Dxq a ,(t) cos AF'(t)
Cnm u Cnm r C

nm Y
n+2N
-y a . sin((jn +me')t+¢_)-
J==(n+2N) unmy ° e
2N, N
-z dagns B RIsin(((3+i)ngme )te )-

-sin(((j-i)no+me')t+¢ma)] (2.2.43)
Calling
- 2 L1 E : 2.2.44
Yermi = Frenmi " 2151 i(aunm(j—i)-aunm(j+i)) (2.2.442)
and
= a N, : 2.2.44b
Qnmj = %unmj " Ziil 1(arnm(j—i)_arnm(j+i)) (2.2.44b)
(keeping in mind that ;rnmk = ;unmk = 0 if |k| > n+2N) expressions
(2.2.42-43) can be written as
n+3N
D=y a..(t) = I a,. . cos((jn +me')t+e ) (2.2.45)
Chm * j=-(n+3N) "M ° o
n+3N
D=z, a (t) = by a. . . sin((jn,+me')t+e_ ) (2.2.46)
C%m u j=-(n+3N) unmJ 0 Ma
where
bny = O 5 - [1_(_1)’"]g (2.2.47)

and these are trigonometric expansions of the forcing terms as functions
of time.

The |j| > (n+3N) Timits in the summations above originate in the trun-
cation of the Fourier series of r(t) and F'(t) at the frequency of N
cycles per revolution of the satellite in expressions (2.2.16a) and
(2.2.33-34). This truncation is based on the argument given in para-
graph (2.7) for the perturbations of a circular orbit, which is correct
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only to first order in Ar and AF'. For this reason, the truncation may
not be valid when the degree n is very high or when the reference orbitr
departs too much from a circle, so second order and higher terms in ar
and AF' become important. In such a situation more frequencies may have
to be considered, expanding the range within which j varies. In the

case considered in this work, the computer studies of section 4 suggest
that the orbit is sufficiently circular and the highest degree consi-
dered low enough (n = 300) for a smaller range of j to be quite adequate.
For all practical purposes, restricting the expansions to terms where

|i| s (n+5) seems to cause no appreciable loss of accuracy.

In deriving (2.2.45-46) it has been assumed that at t = 0 the satellite
is at its perigee, where F = im, and that the Tongitude of the ascending
node is zero. In general, neither assumption may be true, but the
results obtained so far can be generalized without difficulty to

include all cases. For an arbitrary time origin, let tr, be the moment
when the satellite reaches perigee, and let L0 be the Tongitude of the
node at this time. To take into account non-zero T, and L0 one can
replace 8't = L with 8't + L0 = L when making the change in variables
Teading to (2.2.36), and replacing t with t - 7, in (2.2.45-46). This
leads to the general formulation of the forcing terms

n+3N
Dz, a (t) = ¢ a.. . cos{(jn,+me')t+d ) | (2.2.48)
Chom T j=-(n+3N) romj 0 Mo
n+3N )
Dz, a (t) = I a . sin((jn +me')t+e )| (2.2.49)
Chg U j=-(n+3N) UMM 0 Mo
where
I ¢ma-(jn0+me')r0+mL0 (2.2.50)

0 T, and L0 affect only the phase angle.

Computing the Fourier coefficients of the forcing terms.

The two main reasons for developing the present analytical theory of

the motion of a spacecraft have been, first, to understand this motion
better and, second, to use this understanding for solving the problem
of processing satellite-to satellite tracking data to map the gravity
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field. The latter involves very extensive numerical computations;

a truly vast operation. So it is necessary to find ways of carrying
out such computations as efficiently as possible. This can be done
by exploiting any symmetries that may exist in the problem, and
also by careful programming. One of the most laborious operations

is that of finding the Fourier coefficients Dz, a_ and Dzyq a, in
Com 7 Com Y
expressions (2.2.48-49). Oncethese are known, the analytical solu-

tions of the variationals can be obtained with relatively few
additional operations. In principle it is possible to obtain these
coefficients by performing the calculations implied by the long
chain of formulas developed in the previous paragraph, all the way
from (2.2.7-8) to (2.2.43-50). But while these formulas are needed
to understand the nature of the problem, they provide a very
awkward way to numerical results. Fortunately, there is a very
direct short-cut. Going over the derivation of (2.2.48-50) it
becomes clear that the Fourier coefficients are independent of

8', t_ and Lo’ so they must be the same whatever the value of

0
these parameters, including the case where all three are zero. If

so, according to (2.2.45-47), the formulas become

_ _ _ a+m .
chm a (t) = g (arnmj+( 1) am -j)C°5(3"0t+¢ma)
-— a 3
= g Arnmj cos(Jn0t+¢ma) (2.3.1)
Dra A (t) = L (@ ~(-1)*™ g )sin(in,t+o )
C;m u j unmj unm -j 0°" ma
Q . -
= § Aunmj s1n(Jn0t+¢ma) (2.3.2)

Assuming that o' = 0 is the same as saying that the spin rate of the
Earth has slowed down to the point where it equals that of the nodal
precession, which is virtually zero for near-polar orbits (see expres-
sion (1.3.10)). With the satellite initially at perigee (r = 0), and
taking an integration step At that is an exact submultiple of the period
T, of the reference orbit (so T, = Kat for some integer K) one can:
integrate numerically this orbit with initial conditions chosen as
explained in paragraph (2.1), and a gravitational force due to the
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first N zonals and the zero harmonic alone. Then, at each of the com-
puted points one can use the (ro,mo,xo) coordinates to calculate the
values of DC“ a_. and DC“ a , which depend on these coordinates

nm " nm Y

(the details shall be given later). This results in two sequences
of values, one for each forcing term, which can now be subject to
. . . . . [0 ] o
numerical harmonic analysis to get the coefficients Arnmj and Aunmj'
In general, it is necessary to do this twice, first for a = 0 and
then for o = 1, to obtain the Fourier coefficients according to the

formulas

_ a=0 L ,0=1
Lenmj = é(Arnmj+Arnmj) (2.3.3a)
(=DM a=0 pam)
Gpm -5 = 7 PrpmnPrnms) (2.3.3b)
- . atm .
and similarly for Tyami® Funm -3° except that, for -j, (-1) is
replaced by —(-1)“+m. The calculation of the A% and A® is best

rnmj unmj
done with a Fast Fourier Transform algorithm, as this is a very

efficient type of procedure. There is no need to use any of the inter-
mediate expressions derived in the last paragraph, and the programming
of the operations that are actually performed is quite straightforward,
once a Fast Fourier Transform subroutine is available.

To calculate Dzy a_ and Dza a,6 at points along the reference orbit,
Cnm r Cnm u
the formulas listen below are needed. According to (2.2.4a-b), the

forcing terms can be found by computing first the components
Drq a.. and Dxy a , of the vector Dzxq a in the local geocentric
C r C u e =

nm nm nm

frame (r',u') of the unperturbed satellite, and then converting these
results to the uniformly rotating frame (r,u), where 4 goes through
the starting point (perigee) at t = 0. This requires finding the
angle AF' between ¥ and 7', which is a simple calculation once the
orbit has been integrated numerically. As for DC%m . and chm 2,

they can be expressed as functions of the geocentric spherical coor-
dinates (ro,ub,xo):

GM n+2z .
Déﬁm a. = (n+1);5 %;) an(s1n ®,)cos (mx j~a %)

Dz D _,V (2.3.4)
Cnm r
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because V is a function of (r,p,\) according to (1.2.2-3), and, similarly,

1 -1 .
Dza a ,=—[Dxa D V cos u + Dra D.V cos @, sin u]
Cnm us T Cnm @ Cnm

A
= ?%({%0"+2[zzfm(sin ©,)cos (M - Z)cos u
- EB%LEE ﬁnm(sin ©,)sin(m -a E)sin u] (2.3.5)
and
p = cos '(-cos m sin 7) (2.3.6)

where u is the angle formed in the plane of Eg and.Eg (pointing to North
and East, respectively, and both normal to 58') by the vectors Eg and
Eg'(remember that ggllies in the orbit plane and points against the
direction of motion). The various geometrical elements are shown in

Fig. 2.3.1.

While the method proposed here is already much simpler and faster than
the direct implementation of the formulas Teading to (2.2.48-50), there
are symmetries in the problem that permit further substantial reduc-
tions in computing.

Equator

AN
Fig. 2.3.1 Geometry associated with expressions {2.3.4-6).
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Evgn-qdd synmetry:

Examination of expressions (2.3.1-2) shows that DC“ a, and DC“ a, are
nm nm

even or odd functions of time, and that if one is even the other must
be odd, and viceversa, depending on o and m. This helps in two ways:

first, it is enough to compute DC“ a, and DC a, over half the orbit,
nm nm
as the values on the other half are the same, except for a possible

change in sign; second, analyzing the sum of the functions, instead

of each one separately, reduces the number of times the Fast Fourier
Transform has to be applied by half while providing the same results,
because if Dtﬁm a, is even and DC:m a, is odd, then the Fourier
coefficients of the cosine terms in the expansion of their sum are also
the coefficients of DC%m a., while those of the sine terms correspond
to chm a,. The converse is true when DC:m a, is odd and DC:m a, is

even.

The even-odd symmetry just discussed is quite general, but there are
additional symmetries in some special cases, such as m = 0 (zonals),
and when the reference orbit is truly polar.

Zonals:
Here there are no harmonic terms in V, . and au. ifa=1, so

Dﬁl a, and Dﬁl a, vanish and, with them, their Fourier coefficients
nm nm
in (2.3.1-2), implying that

= - a=0

Zenmi = %enm -j T } Arnmj (2.3.7a)
- - _ 1 00

Qynmi = "%unm -j } Aunmj (2.3.70)

This means that calculations with « = 1 are not needed, and the com-
puting is cut further by half.

Polar reference orbit:

If the true orbit is close enough to polar, the reference orbit can be
chosen as truly polar, because the departures between both will be
sufficiently small to use the linear theory developed this far. While
this may not always be the case in reality, it is important in
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a pre-mission study 1ike an error analysis, where the orbit can

be assumed to be polar because this has Tittle effect on the

validity of the results, as long as the planned mission involves a
near-polar orbit. As such a reference orbit lies entirely in the
meridian plane containing the origin of longitudes, the value of X in
(2.3.4-5) is either 0 or =. In both cases chm a. and chm a, are
zero when o = 1, and regardless of m (Déa DAV disappears

from (2.3.5) because yu = 0). So, once mogz (2.3.7a~b) are true,
indicating that the spectra of the forcing terms are symmetric in j
and only computations with o = 0 are required, thus halving the number
of arithmetic operations.

In addition to exploiting symmetry, it is essential to avoid the

unnecessary repetition of operations. When computing DC“ a to

nm
obtain the forcing terms according to (2.3.5), one needs a derivative

of the Legendre function 5nm(sin ©) with respect to latitude. This
could be done using special recursive formulas, but the extra operations
these formulas require can be avoided by using instead

ul

aP 8
nm 8 . = . 0
—g- = Mta o P (sin}B L (sin0)I(1 - —zm)(n-m)(n+m+1)]
_ _ (2.3.8)
(Gom =14ifm=0: Som = 0 otherwise)

where sin ¢ and tg ¢ are the same for all n, m and need to be computed
only once per orbit point, while the two 5nm's involved have to be
calculated anyway to find DC“ D.V and Dz, D V. This expression is

m " Com

singular over the poles (and so is (2.3.5)), but this problem can be
overcomed completely by changing the latitude by a fraction of a
second of arc at those critical points, and using a modern computer
whose double precision words are at least 64 bits long. This simple
trick has enabled me to carry out without difficulty the calculations
reported in section 4. Some simple additional measures, such as
computing the powers of (%) and other factors that depend only on the
degree n once per point, and storing them for repeated use in terms
with different order m, will ensure the streamlining of the arithmetic
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operations. Additional savings may be possible by choosing K, the
number of integration steps, equal to a power of 2, as this allows
the use of the efficient Fast Fourier Transform procedures. On

the other hand, K should be larger than twice the highest value
of j in (2.3.1-2), or nt5 in practice if n is not much higher than
300. This could result in a power of 2 that is much larger than
the number of points needed to satisfy that minimum sampling rate,
and an intrinsicly slower mixed-radix algorithm may do the job
faster in some cases, because it can work with the smallest
possible K, even if this is not a power of 2. This example shows
the need for careful planning at all stages of software development.

The direct computation of the Fourier coefficients without using the
many formulas in paragraph (2.3) is an idea that can be applied more
generally. For example, computing analytical perturbations by the
usual method of "variations of constants" (the classical reference
for satellite geodesy is Kaula's book, already mentioned) could
involve calculating very many inclination and eccentricity functions
if one follows the standard Tlong formulas: what is known as the
"literal" approach. Alternatively, one can choose Gauss' form of the
equations of motion (Brower and Clemence, Ch. XI, par. 13, 1961},
which makes the calculations of the derivatives of the keplerian

elements much easier because it requires finding Déa Dr.V, DC“ Du.V,
n

and D"a

Cnm

functions of the mean orbital parameters and time. Computing these

DZV only, as in the method just explained, and a few simple

derivatives at regular time intervals along the mean ellipse, after
having set the rate of the argument of perigee o = 0(1), the same as
8', T, and L, results in a series of values for each derivative
that can be analyzed by means of the Fast Fourier Transform to
obtain the corresponding harmonic coefficients. The Fourier coeffi-
cients of the perturbations, which are needed to compute them analy-
tically, are simply those of their derivatives divided by the corre-
sponding angular frequencies. This is an extension of the old
"numerical" approach, which the astronomers prefer to the "literal"
one for certain extensive calculations, made possible by the
existence of modern computers and of the Fast Fourier Transform
algorithms,

(1)1f w # 0 in reality, the procedure can be extended essentially by
repeating the calculations with w = kaw, k = 0,1,2...kpay
(kmaxbw = 2m), where kya, = 8 may be enough.
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2.4 The analytical solution of the variational equations.

The variationals derived in paragraph (1.3) are linear differential
equations with constant coefficients; their solution by the method
of the Laplace transform is explained in Appendix I. Of the three
equations (1.3.7-9), the first corresponds to perturbations @y
normal to the reference orbital plane and is completely independent
of the last two, which describe the fluctuations Bl s Yk of the orbit
in this plane. Moreover, when both satellites in the pair move in
the same plane, which is the case considered here, only the in-plane
first order perturbations appear in the linearized model, as shown in
paragraph (1.4). For this reason,the discussion that follows is
Timited to the solutions of (1.3.8-9) (though that of the (1.3.7)
equations can be found in Appendix II). These solutions, because of
the type of equation, consist of particular integrals %k’ ?k, which
satisfy the equations when the forcing terms are not zero, and of
homogeneous parts Bﬁ» YE’ which sétisfy them when the forcing terms

D, a,=D_ a = 0. The complete solutions are their sums:
P T Pp U

By = BE + %k’ Yk = yﬁ + ?k. They must satisfy both the equations
and the initial conditions g, (0), ék(O), 1, (0)s «}k(O), and this is
ensured by the homogeneous parts alone; the particular integrals
depend only on the forcing terms.

The solution By is the derivative of the radial position of the
satellite with respect to the parameter Py which can be one of
the potential coefficients, or else a component of the initial
state to be estimated, while \0" is the derivative of the along-
track displacement (positive against the motion of the snacecraft)
with respect to Py So, according to the nature of P> two cases
have to be considered:

(1) Py s a component of the initial state of the satellite.

In this case D_ a, =D_ a,6 = 0, because the gravitational acce-
P 7 P M

lerations a, and a, are not direct functions of the initial state.

As there are no forcing terms, the solutions of the variationals

consist of the homogeneous part only. As shown in Appendix I, these

solutions have the general form
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Bk(t) Bok * B1k cos n;t + B, sin n,t (A1.17)

and

yk(t) Gok + le cos nt + sz sin n,t+G6,t (A1.18)
where the Bik and Gik constants are functions of the initial conditions
of the variationals. These are the values of By » ék and Yo &k at

t= to. The table below shows the initial conditions for each compo-
nent of the initial state ﬁ(to),‘i(to) in the (z,r,u) coordinates:

pk Sk(t0)=Dpkr(t0) ék(t0)=Dpk;‘(tg) Yk(t0)=Dpku(t0) ;k(to):'Dpkl.‘(to)
Y‘(to) 1 0 0 0
r(to) 0 1 0 0
u(t,) 0 0 1 0
U(to) 0 0 0 1

These values are a consequence of the mutual independence of the various
components of the initial state. Equating the right hand sides of
(AI.17) and (AI.18) and of their first derivatives to the respective
initial conditions, it is possible to solve for the values of the Bik

and Gg . If Br(to)(t) stands for Dr(to)r(t), Yu(t&(t) for Du(to)u(t)’
and so on, then, making the change of variable t' = t-t0 to simplify
the results,

Br(to) = -3 cos not' + 4 (2.4.1a)

B%(to) = nal sin n t' (2.4.1b)

Bu(t )= 0 (2.4.1c)
’ -1 ' 2.4.1

Bﬁ(to) = 2n0 (cos not -1) (2.4.1d)

Yr(t,) * -6(sin not' - not) (2.4.1e)
0

Yi(t,) T -2ny'(cos nyt' - 1) (2.4.1F)

Yu(to) 1 (2.4.1q)

P B Vo apt
Yﬁ(to) = 4n;" sin n,t 3t (2.4.1h)
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Multiplying the partial derivatives B Yk by APy and adding over all
k to obtain the total radial and along-track variations:

1

>
-3
—
t
~
1]

W - . [ Y -1 1
Ar(to)n0 sinnt (3Ar(t0) 2Au(t0)n0 Jcas n,t'+

+(4Ar(t0)-2Aﬁ(t0)n;1) (2.4.2)

au(t') = -2ar(t )n;1

' -1, _ : vy
0 cos not +(4n0 Au(to) 6Ar(t0))s1n not +

-1

+(Au(t0)+2Ar"(t0)n0

)+(6n0Ar(t0)-3Aa(t0))t' (2.4.3)
Therefore

ar(t') = ar(tg)cos n t'+(3n ar(t;)-2su(t,))sin njt' (2.4.4)

0 0

BU(t') = 2aF(t )sin n,t'+(4s0(t )-6n ar(t ))cos not'+
+(6n ar(t,)-3su(t,)) (2.4.5)

These expressions are very useful in understanding the perturbations
caused by changes in the initial state. The constant term
4Ar(t0)-2Aﬁ(t0)n;1, in particular, is proportional to the change in
total energy (kinetic + potential) of the orbit. So the drift

(6n0Ar(t0)-3Aﬁ(t0))t is clearly also proportional to this change.

(2) Py s a potential coefficient.
Here the forcing terms are given by (2.3.48-49). The particular inte-
gral is a sum of sine and cosine terms with the same frequencies as

those of the forcing functions Déa a,
nm

and DCQ a, If the phases of
nm

the forcing terms change, but not their amplitudes, then the phases

of the corresponding terms in the integral change by the same angle,

but their amplitudes stay the same; these are properties of the

response of any linear, time-invariant system. .As shown in Appendix I,

the complete solution is
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Bk(t) = Bnma(t)
= Bonmu+81nma cos n0t+anma sin n t+
n+3N .
: j ' 2.4.
+j=—%n+3N)bnmJ cos ((Jn,+me )t+¢ma) (2.4.6)
Yk(t) = Ynma(t)
= GonmatCinma €05 Mo*Gopmg ST MG pp bt
n+3N .
. sin((J : 2.4.7
+j=-?n+3N)gnmJ sin((Jjn +me’)t+e, ) ( )
where
.. -((Jn+me )arnmj+2n0aunmj) (2.4.8)
nmJ (jn0+me')((jn0+me')2—n§)
. v . 1y 2 2
- =(2(Jn +me )noarnmj+((3n0+me ) +3n0)aunmj) (2.4.9)
nm (jn0+me')2((jno+me')2-n§)

while the constant phase angle $ma is given by (2.3.50), and does not
depend on to' The summations in (2.4.6-7) are the particular integrals;
the remaining terms represent the homogeneous response. Expressions
(2.4.8-9) show clearly that the bnmj and 9nmj
initial conditions. Because a change in gravitation cannot affect the
initial state vector,

are independent of the

Drg r{t,) = Dzq r(t.) = Dzq u(t )=Dzy U(t.) =0
Cnm 0 Cnm 0 Cnm 0 Cnm 0

or, in the "8,y" notation,

Bnma(to) = Bnma(to) = YnITIeL(tO) Ynma(to) = 0.

so all initial conditions are 0 at t, In general, t, # Ty the time
when the satellite first reaches perigee (F' = 0), because the varia-
tionals are solved, in practice, along orbital arcs that can begin
and end at any time during the mission. To ensure zero initial
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conditions, the homogeneous part must cancel the particular integral
at t = to’ because, in general, this integral is not 0 at this time.
So, ¢alling Bgma to the homogeneous part of g,

0

Snma(to) = Bonma+B1nma cos n0t0+anma sin nyt,
= _Bnma(to)
n+3N .
= z b . cos((jn,+mo’)t +¢_ )
j=-(n+3N) MM ° o
From this follows that the coefficients Binma are all functions of to,

the starting time of the arc. Not so the bnmj’ gnmj
arc ends and another starts at t0 (perhaps with slightly different r

and $ma' If one

and r due to a corrective orbital manoeuvre, as explained later) the
particular integrals for the second arc are the analytical continu-
ations of those for the first, but not so the homogeneous parts.
For all t, the particular integrals are

n+3N

Y] . -
g (t) = I b . cos{{jn +me')t+s ) (2.4.10)

" ) n+3N .
Y t) = )y g, sin{{jn +me')+s ) (2.4.11)
N j=-(n+3N) nmj 0 Ma
regardless of the arc in which the spacecraft happens to be (remember
that $ma depends on t, and not on t ).

2.5 Resonance.

The particular integral contains terms of angular frequency smaller
than Nys corresponding to short period perturbations, and others of
frequency larger than Nys corresponding to long period perturbations.
These terms grow larger as their freguencies approach 0 or Nys where
expressions (2.4.8-9) become indefinite. This phenomenon is known as
resonarice.

Oscillations with frequencies very close to either of the critical
values can have extremely large amplitudes. When forced exactly at

a critical frequency, the linear dynamic system defined by the

variationals behaves essentially differently than at any other



- 77 -

frequency. At zero frequency, as shown in Appendix I, the response
is 1ike that to perturbations in the initial conditions only, or free
response: a constant term in B, oscillations at the system's natural
frequency n, and a secular drift in y. At n, the response contains
all of these, but there are additional terms of the form A t sin n,t
or B t cos n,t: secularly increasing oscillations in B8 and in y. The
theory developed in paragraph (2.2) shows that, in general, for a
rotating planet like the Earth, where 8' can never be 0, because it
spins too fast, only the zonals can produce forcing terms with
frequencies 0 and n,- For nearly circular orbits, those that contri-
bute most to the zero frequency are the even zonals, while the odd
zonals provide most of the n0 oscillations. This is because, as
shown in paragraph (2.5) for a given degree n, the more circular
the orbit, the smaller those terms in the forcing functions corre-
sponding to odd multiples of n, if n is even, and to even multiples
if n is odd.

As Tong as the perturbations in the orbit remain small enough

to be considered solutions of the Tinear variationals, any

secular drift along-track can be due to the zonals only, so the
coefficient Gsnma (except in some especial cases, like geostationary
orbits, where jn0+me' can be zero) corresponding to such a drift in
the general expression (2.4.7) must be negligible if m # 0, i.e. for
tesserals and sectorials. In physical terms, any along-track drift
implies a change in the mean orbital energy, which must be 1inked

to a non-zero average value, along the whole orbit, for the anoma-
lous potential that creates the perturbations. If this potential is

expanded in a Fourier series, like Dga 3, and Dza a, were in
nm nm
paragraph (2.2), only that part that is due to the zonals contri-

butes to the mean value, except in the case of a planet in which
8' = 0 is possible, or of especial orbits where perfect resonance
occurs with m # 0.

The resonance at n0 produces oscillations that should grow for ever,
or until the satellite finally crashes against the ground in one of
its downward swings. But such a catastrophic end is merely an extra-
polation of a behaviour that is only valid for very small perturba-
tions, so any conclusions on what may happen when they become very
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large are 1ikely to be wrong. Resonance occurs whenever the satellite
encounters the same disturbing gravitational feature at repeated,
virtually identical intervals of which the orbit period is an exact
multiple. The response to this feature is then gradually reinforced
and grows with time. In the case of a closed, periodical orbit, a
zonal is precisely this type of feature. The actual orbit, in general,
is not periodical. The increasing oscillations that separate it from
the reference orbit, at least, are not so. Therefore, once this sepa-
ration has become sufficiently large, the satellite may be passing
through the same disturbance at intervals that are appreciably
different from each other, in the end experiencing large (but bounded)
oscillations, accompanied by secular changes in the argument of
perigee.

Whatever the ultimate fate of drag-free satellites orbiting close to
the Earth, those forming the pair used for the mission under study
can be kept always sufficiently near their desired trajectories by
using the same rocket engines that they carry for compensating drag
and other non-gravitational forces. This would require some brief and
widely spaced manoeuvres, in addition to their normal operation, to
simply turn the drift away from the reference orbit back towards it,
without causing any immediate change in position, so fuel consumption
can be kept to a minimum.

The familiar first order perturbation theory based on Lagrange's
planetary equations, widely used in satellite geodesy, regards the
orbit as an ellipse with one focus at the geocenter, whose size,
shape and orientation in space are continuously changing under the
effect of gravitational anomalies. These changes are expressed as
perturbations of the Keplerian elements that define the ellipse;
some are secular, like the precession of the line of nodes and

of the main axes, and some are periodical. Resonance occurs near

the zero frequency, so very slow variations tend to become also
large. In the rotating coordinates of the variantionals, changes

in the size of the ellipse will show up also as very slow oscilla-
tions, but changes in the shape (i.e., in the eccentricity) will

be seen as fast oscillations close to Nys modulated by very slow
ones close to zero. This is because the perturbed orbit has a
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period (the time between consecutive crossings of the perigee) that
is slightly different from n . As the satellite turns, its geocentric
distance varies from a maximum at apogee to a minimum at perigee once
per revolution. A slow change in eccentricity will displace the focus
within the major axis, so the difference between maximum and minimum
at each oscillation will change slowly, with the same period as the
eccentricity. Such variations in the argument of perigee and in the mean
anomaly mostly affect the orbital frequency. To understand the pre-
sence of pulsating oscillations in terms of the theory developed so
far, consider the forced response of the variationals to a simple
sinewave of frequency n, + An, where An is a small difference between
the frequency of the perturbation and n,-

According to expression (2.4.10-11) this response must contain terms
of the form A sin n,t + B sin(n +an)t and C cos not + D cos(n +an)t;
those of frequency N, belong to the homogeneous part, and the others
to the particular integral. Without loss of generality, they can be
written as

(A-B)sin(n0t+g)+B[sin((n0+%An)t-%Ant+g)+sin((n0+%an)t+%ant+g)]

where ¢

0 or in. This is equivalent to
E sin(n t+c)+F cos 3ant sin((n +ian)t+c)

where E = A-B and F = 2B.

Since E and F are always such as to ensure that the expression above
is zero at t , the response begins increasing very gradually from
zero, reaches eventually a maximum, and goes back to zero in a long
cycle of period ian. If an is very small, asecularly growing oscil-
lation at n, and a slowly growing pulsation at n,+an ook much the
same at their initial stage, when both are small enough to be expli-
cable in terms of a first order theory. Only after they get quite
large do their differences become apparent.

The zonal resonances explained here are similar to those that take
place at the "critical inclination" ¢ = sin—l{(%)%}. When the orbit
is periodical, its mean ellipse is "frozen" in its precessing plane,
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so the argument of perigee w does not change, and o = 0. At the
critical inclination, all orbits round a planet closely resembling
an oblate ellipsoid, 1ike ours, have a very small o and are,
therefore, "frozen" enough to show resonance (some important formu-
las of the classical first order theory become singular at this
inclination).

To complete the topic of zonal resonances, I shall mention briefly
those that perturb an orbit at right angles to its plane. They
affect this plane by making it turn slowly about the Earth's axis,
as mentioned in earlier paragraphs and shown in Appendix II. For

a near-polar orbit, forces normal to the orbit plane are quite weak,
so this effect is extremely slow.

Because there are values of the order m for which me' comes close to
being a whole multiple of the orbital frequency, the coefficients
Cﬁm of such an order will contribute frequencies (jn,+me') that, for
some j, will be very close to either 0 or n,. The resulting steady
oscillations in the forced response can be very large. Coefficients
related to these near-resonances are usually referred to as resonant
coefficients. Whether perfectly or nearly resonant, some perturbations
may grow so large in the absence of compensatory manoeuvres, that they
cannot be treated by a linear, or first order theory any longer. In
this case a nonlinear treatment is required; some examples of this
kind of approach are given in the book by Kaula already mentioned.

Perturbations of a perfectly circular orbit.

Assuming that the reference orbit corresponds to a central force field
where the potential is V = GMr_l, so it is perfectly circular, and

that the true orbit results from slight perturbations to that circular

one introduced by the C%m (this assumption is not valid for the Earth,

because of the large "oblate" and "pear-shaped" terms related to
Cgo and Cgo’ respectively), then the forcing terms of the variatio-

nals given as functions of F and L are:

Dzy a, = g a cos
Cﬁm r p=0 romp\sinf ((n-2p)F+mL+¢ ) (2.6.1)
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n .
= v =sS1in _
thm a = pEO aunmp{ cos}((n 2p)F+mL+ ) (2.6.2)
where ¢0. = -q % and
—-{n+2 = .
Zrnmp = -gm a"F (" )(n+1)anp(¢) (2.6.3)
¥ =oM% (M2 op)E (2) (26.4)
unmp nmp .6.

These expressions can be derived directly from (2.2.7-8) if r is assumed
to be constant and equal to r =\}Eﬁ_;27. Changing from F to F' = F-}r
and reasoning as in paragraph 2.2 (except that now r is a constant)
leads to the equivalent of (2.2.27):

n
D= = I -2p)F"'+mL+ 2.6.5
fa 2 = I Srp COS((2PIF Ly (2.6.5)
n
Deza @, = I a sin{({n-2p)F'+mL+¢_ ) (2.6.6)
Cnm u p=0 unmp (V]
where
n-2p
(-1) Zrnmp if n is even
v = (2.6.7)
romp -~ | (n-2p+2m-1)
Y . .
(-1) — if n is odd
n-2p
1Y . .
J’(-1) Tynmp if n is even
“ %mmp T 1 (n-2p+2m-1) (2.6.8)
(-1) Zunmp if n is odd

Choosing t, = 7, = 0 to simplify matters, and using the relationships
L=mo't and F' = nyt (the latter is valid, because the reference
orbit is here a circle), one obtains

n
Dt:m ar(t) = pzo — cos(((n-2p)no+me')t+¢ma) (2.6.9)

DC:m au(t) = pio Tyrmp sin(((n-2p)no+me')t+¢ma) (2.6.10)
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The solutions to the variationals corresponding to perturbations in
the initial state have the form given by (2.4.1a-h} in a previous
paragraph. The complete solutions for gravitational perturbations
affecting the coefficients C%m are going to resemble (2.4.6-7),
with same terms in the "homogeneous" response as in (2.4.la-h), and
terms in the particular integral of the same frequency as those in
(2.6.9-10):

Bnma(t)

+B cos n t+B
0 2N

B i t
OnMo ~ 1NMa st n,

Mo

n

+ pEO bnmp cos(((n-2p)+me')t+¢ma) (2.6.11)

+G i +G t
(o{o] not N sin not 3n

= +
Trmatt) = Gopma G, o Mo

n
+ I g

sin(((n-2p)+me’ )t+s ) (2.6.12)
p=0 *

nmp
where bnmp and gnmp are given by (2.4.8-9) after replacing "j" by
"(n-2p)}". Notice that the terms in the particular integral have fre-
quencies that are even harmonics of N, if the degree n is even, and
odd harmonics if n is odd, "shifted" by me',

The periodical reference orbit seen as a perturbed circular orbit.

The reference orbit can be regarded as the result of perturbing a
perfectly circular orbit with small changes in the initial state
vector at t = 0, and in the gravity field (by adding zonal terms of
degree n between 1 and N(l)) The orbit is periodical, so the effect of
all secular perturbations and exact resonances must cancel out. The
solutions to the variationals, By and Yio corresponding to changes

in the initial state have the same form as before, given by
(2.4.1a-h), while those corresponding to Py = Cﬂo are given by

(2.6.11-12) with m = o = 0, so Oy = 0, and
Broo(t) = Bingo*Bingo €05 Not+B,p40 SN Nyt
n
+ pEO bn0p cos((n-2p)not) (2.7.1)

(l)The non-linear effects associated with 530 and 530 can be ignored
here,
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Ynoo(t) B Gonoo+Glnoo cos not+B2noo I N t4B g0t
n
+ pzo 9n0p s1n((n—2p)n0t) (2.7.2)

From the Tast two expressions and (2.4.1-2) one can see that B, and
" have the form

n
By = 2 an cos jn0t+Bi sin n,t (2.7.3)
J=-n
n
Yy = ji-n an sin jn0t+G& cos n t+Gt (2.7.4)
where
nj = an =0 if Py is a component of the initial state
and j # 1, or p, = C,. and j and n have

different parities.

Calling Ar to the radial departure of the reference orbit from the
unperturbed circular one, which has the same period, and Au to the
along-track departure between both orbits, then, to a first order

approximation,
Ar = 5(D. r)ap, =z 8, AP (2.7.5)
c Py k™ kP
Au = g(D_ u)ap, = I y, Ap (2.7.6)
K Pk k K k "k

where AP = PPy, 35 defined in paragraph (1.4), is the variation
in the value of Pk responsible for the perturbation. Also

MU= 3y, AP, (2.7.7)
k

As all Yk and By contain terms of frequency n,s while some contain terms
of frequency 0 (constants) and of frequencies (n-2p)n,, with -n < p < n
and 1 < n < N, the sums (2.7.5-7) of such terms multiplied by constants,
have the general form (remember that the secular terms cancel out,

that the orbit is symmetrical respect to t = 0, and that Bis Yk have
the general form (2.7.3-4))
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Ar(t) r. cos jn_t (2.7.8)

Il M=

and

AU(t) f, cos ingt (2.7.9)

Accordingly, the orbital radius is

N
r=r+Ar=r+ I r.cos jnt (2.7.10)
. j 0
j=1
where r is the mean value of r, and this is the same formula in para-
graph (2.2) that leads to expression (2.2.15). The tangential velocity
along the reference orbit is

u-= nOF + AU
(n0 is the angular velocity along the circular orbit) so, according to
(2.7.9),

a(t) = nr+

and

Fr(t) = 9451 = n +F _2 %1 cos int (2.7.11)
which is the same as (2.2.30). This completes the partial justification
given in paragraph (2.2) for the "3N" that appears in the upper and
the lTower Timits of the summations in the forcing terms and in the
solutions of the variationals. In the case discussed in this paragraph
the degree of the field of the "reference" circular orbit is 0, which
explains the absence of "3N" in expressions (2.7.1) to (2.7.4). The
"N" in (2.7.10-11) corresponds to the zonals that disturb the circular
orbit, which in this paragraph plays the role of "reference orbit".

So "N" here has the same meaning as "Nmax"’ the degree at which the
spherical harmonic expansion of the potential responsible for the
perturbations can be truncated.
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Summary.

The equations of motion and the expression of the relative Tine of sight
velocity are linearized along a reference orbit that is closed and
periodical in its plane, to introduce symmetries in the mathematical
model that can be exploited to make the estimation of the potential
coefficients very efficient, as explained in section 3. Insight gained
from the discussion of the existence and properties of such orbits in
a purely zonal field can be used to find numerical methods for obtaining
the initial conditions of trajectories that, when numerically integrated
over one revolution, close almost perfectly, returning to their initial
state, and have a mean radius very near the one specified for the
actual satellite orbit (the method proposed in this chapter is a
refinement of Cook's theory of perturbations of near-circular orbits).
The forcing terms of the variational equations along the reference
orbit can be expressed as functions of time developed in trigonometric
Fourier series after a long sequence of mathematical operations, as

it is common in celestial mechanics. These operations produce an
equally long (and cumbersome) sequence of formulas that could be used
to obtain the Fourier coefficients of the forcing terms, which are
essential to the analytical solution of the variationals. To use such
formulas, what astronomers call the "literal" approach (because
formulas are written with letters!) would require very lengthy and
complex computations. Alternatively, first the forcing terms can be
computed at equal time intervals along the reference orbit using

the coordinates obtained by numerical integration, and then their
values can be subject to Fourier analysis by some efficient algo-
rithm of the Fast Fourier Transform family. This can be seen as an
extension, possible in the "computer age", of the "numerical"

approach, of which Gauss'method is a well-known example. The idea

is feasible because the coefficients are independent of Earth's
rotation and orbital precession. Once the Fourier coefficients have
been found, expressions (2.4.la-h) and (2.4.6-9) give the analytical
solutions of the variationals corresponding to changes in the

initial state and in the potential coefficients, respectively. The
detailed derivations are given in Appendix I. These solutions
correspond only to perturbations in the orbita1'p1ane, which are
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all that is needed for this study. To complete the orbit theory,pertur-
bations normal to that plane, and non-periodical reference orbits, are
discussed in Appendix II. The analytical solutions show the existence
of secular variations in position and in velocity; of oscillations of
frequency lower than n, (the angular frequency of the reference orbit)
called Zong period perturbations; of oscillations above n,sor short
pertod perturbations; and of secularly increasing oscillations of
frequency n, caused usually by zonal gravitational anomalies. These
growing oscillations reveal the resonant character of the dynamic
system defined by the linearized equations of motion, or variationals.
This system is totally undamped, because the satellite is supposed to
be drag-free. Resonance is also shown by the fact that the steady
forced oscillations have larger amplitudes as their frequencies aproach
0 orn, (the peak at n, is a consequence of the use of a system of coor-
dinates that rotates at this frequency). The zonals can excite growing
oscillations because the reference orbit is periodical. Due to all the
secular perturbations, the true (or perturbed) orbit moves continuously
away from the reference one, until the solutions of the variationals
become inapplicable because the perturbations have grown too large to
be explained by them. The two satellites to be used for mapping the
geopotential must follow reasonably closely the reference orbit, so

the model linearized along it remains valid, and the mapping can be
done in a single global operation in an efficient way. Their thrusters,
used normally for drag-compensation, must also be fired occasionally

to nudge each spacecraft back towards its proper course, before it
strays too far. The closed reference orbit can be seen as a circular
orbit perturbed by the first N zonals, so the properties of disturbed
circular orbits must be studied to understand the shape of the former,
which modulates the forcing terms of the variationals giving them a
richer frequency content.
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THE ADJUSTMENT.

Introductory remarks and overview.

After having described the linearized model for the signal in satellite-
to-satellite tracking, and explained the orbit theory behind that, it is
time to get on with the question of how to use these ideas to estimate
some 105 unknown corrections to the potential coefficients out of some
106 measurements. Clearly, this requires a very sparse system of normal
equations with a helpful structure. Such structure, in this case, is
that of an arrow, with a "shaft" and "tip" made up of diagonal blocks,
and two "wings" (the right and the bottom edges). The rest of the normal
matrix is all zeros. This structure occurs when the sites of the obser-
vations, and, thus, the orbits, form a strong geometrical pattern.
Imagine the periodical orbit of the previous section, with a period

that fits an exact number of times in an interval of a whole number of
days. In that interval, the orbit must look to an Earth-fixed observer
like a helix wrapped around the nearly-spherical surface swept by the
near-circular orbit itself as its plane precesses and the Earth rotates.
At the end of this period, the helix must close, "biting its own tail".
This makes the whole orbit repeat itself indefinitely, and the measure-
ments along it too, if we ignore the non-periodical component of the
signal, due to discontinuities at the start of the various arcs in
between orbital manoeuvres, and to increasing oscillations caused by
zonal resonances. At every point along this orbit, an observer knowing
only where the poles (or the equatorial plane) are, would be able to
tell his latitude, but not his longitude,because the shape of the orbit
would convey no information to him on this respect: the "tail biting"
helix has rotational symmetry about the Earth's axis, and so does the
discrete subset of its points where measurements were taken. The perio-
dical part of the signal consists, then, of harmonics of the basic frequen-
cy at which the grand sequence of measurements repeats itself. If the
coverage is fine enough, and the sampling rate of the instruments high
enough, the contributions to the periodic part of the sianal coming from
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Aﬁzm with a given m and o are completely independent (orthogonal) to
those coming from all other ACﬁm, provided that Nmax is not too high.
Assigning so-called "arc parameters" (extra unknowns) to the non-
periodic part, as explained in paragraph (3.1), this independence of
the components of the periodical part leads to the arrow-structured
normal matrix, which makes solving the corresponding equations, if
not easy, at lTeast feasible even with present-day machines. At the
heart of the method lies the rotational symmetry of the overal
trajectory, and the unbroken nature of the data stream. Of course,
the overall mission can be divided into shorter portions, each one
"biting its tail", instead of a single grand cycle from beginning
to end. The practical consequences are the same. In each of these
sub-intervals, the main parameters of the mission, such as satellites'
height and separation, could be chosen to reinforce the estimation
of a particular part of the spectrum, or for other reasons. In a
real mission there may be, from time to time, interruptions in the
stream of measurements caused by malfunctions, jonospheric distur-
bances, orbital manoeuvres, and so on. Planned interruptions must

be brief, so interpolation from measurements adjacent to the break
may "seal" the gaps without much harm to the results. Large,
unplanned breaks would make the method described here inapplicable.
As an alternative, one may consider local maps, or solutions, to
recover information wherever there is enough data coverage. A third
possibility, sketched in paragraph (3.11), is to ignore the non-
periodical part of the signal, and then regard the measurements,
separated according to whether they belong to ascending or to
descending passes (half-orbits containing the node after which they
are named), as "point" measurements of a function of position. Then,
the measurements can be processed in the same way as, say, gravi-
meter or satellite altimeter measurements. By averaging the obser-
vations within the blocks of a regular grid laid over the surface
swept by the reference orbit, very efficient procedures that exploit
the rotational symmetry of this grid become applicable. This is,

of course, less satisfactory than the more rigorous adjustment of
the uninterrupted data stream, which is the main topic of this
section.
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Because the model is obtained by linearizing along the periodic reference
orbit, which is too rigidly defined to follow the actual trajectories
very closely, nonlinear effects will become progressively larger, as true
and reference orbits diverge, and they could invalidate very soon the
whole idea. Instead, numerically integrated orbits should be fitted to
all the data (including tracking from terrestrial stations) using models
for all important forces acting on the satellites not included in the
calculation of the reference orbit. From the velocities of these so-
called nominal orbits, a reference line-of-sight velocity should be com-
puted and substracted from the data, to form residuals. Eventually, when
the separations grow too large, the thrusters in the satellites should

be used to bring them back to their proper courses. In this way, non-
linearities and other unwanted effects can be eliminated or greatly
reduced, diminishing the bias in the linear estimates of the potential
coefficients.

The first paragraph considers the advantage of using residual obser-
vations as data, for the reasons outlined above, and introduces the
concept of arc parameters. The two paragraphs that follow discuss
estimation methods. First, it is ordinary, linear least squares adjust-
ment; then, "conditioning" in general, and least squares collocation
in particular. This is followed by a detailed derivation of the obser-
vation equations, particularly of the periodical part, which retains
the Fourier-series structure of the perturbations of section 2.
Starting with the Tinearized model for the instantaneous line-of-sight
velocity, the formulas are modified to cover the case of practical
interest: averaged Tine-of-sight velocity. The next two paragraphs
look at the overall periodic structure of the trajectories, and
explain how this structure brings about a sparse normal matrix.
Detailed formulas for setting up this matrix are given, and a method
for solving them and then obtaining formal variances and covariances
for the solution, is outlined. Several important details, including
aliasing, the idea of iterating the solution, downward continuation

of the results to the Earth's surface, and how to compute orbits

with a very high degree and order force field, come next. The section
closes with an outline of how to treat residual measurements as "point"
observations of a function defined in space, rather than in time; and
with a discussion of local solutions, and on how they can complement
global ones.
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3.1 Observations, nominal orbits, and residuals.

In section 1, the model for the perturbation As of the line-of-sight
relative velocity, the difference between the signal s and its reference
value s,, was obtained by Tinearizing the mathematical expression of s
along a reference orbit defined by a set of reference parameter values
Pko- If the p) are the true values, the perturbations As, an analytic
function of the parameters, can be developed in a Taylor series that
converges for small differences (pk-pko), as follows:

= - = D - D -
As = $-S, i Py (PePyo) * f f 1, e (pk1 k1°)
1 "2 1
(pkz_pk 0)+Z L. Z%‘I’ D: P (pk ~Py 0)
2 ky ky kh ky kh
(PkZ"PkZO)---(th'th0)+....+As (3.1.1)

where As is that part of As that is not due to the D (differences in
potential coefficients and initial states) but to other causes, such as
the attraction of the Sun and the Moon, etc., not accounted for in the
reference orbit.

Let Bk’ Xs represent parameter values and estimates of As obtained a
priori, the ones from some already existing model of the gravitational
field, the other from tables of ephemerides, tida] models, etc » which
shou]d be good enough to ensure that both (pk pk) for all pk and

{(As- AS) are quite small. In general, as the maximum dearee

N in the reference field def1ned by the Pko is low, one can take the
highest degree N for the pk to be larger than N, so the pk may 1nc1ude
the values of more potential coefficients C than do the Pka If s

is the relative line-of-sight velocity correspond1ng to the ﬁk’ then

- * *
As = s-s, = £ D_ s (p-p )+I I3}D s (P -Py o)
Dk P TR TR T PP, K TR
(pk P et D %T-Dg oo op S (PP )
k1 , Tk kPl Pl K110
* * *
(p, -p, ).--(p, =P, )+...*+0s (3.1.2)
K, Pk, L
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*
(for both As and As the partial derivatives are taken at the same

points along the reference orbit).

In what follows, it shall be assumed that As corresponds to a pair of
orbits that the sate111tes would follow, in a field whose C are equal

to the respective pk, from initial states adjusted to fit a]l tracking data
available over a long period, or arc. These adjusted initial states
complete the set of Bk‘ The fitted orbits, better approximations to

the true ones than the common reference orbit introduced in paragraphs
(1.4) and (2.1), shall be called the nominal orbits. Substracting the
expansions of as and Ag term by term (Taylor series converge abso-

Tutely)

*
As - AS

*
(s-5)-(5-5,)

(s-5)

8s

2D s (p-p )+ T I 3D [(p, -p, (P, =P, )
. . i} . .
k pkS pk pk k1 klo kz kzo

k, k, Pk, Pk,
* * | 1 h
-(p, -p, )P, -p, )I+..+L T I D s
k, Tk Tk, Ko Ky Ky Ky hT Py ...pkh

* *
[(p, =P, )---(P =P, )-(P =Py ).--Ap, -P, )I1+..
k1 klO kh kho k1 klO kh kho
.. +As-As (3.1.3)

*
If the P are close enough to the true values, then those terms
& D S 1(py -y )ee (P Py )-(P =Py )owr(Py Py )]
hT pkl...pkh ky Tky'tT kh kh0 ki Tkyg'ttT kh kho
including only the known parameters (the Bk and pko for unknown ones
are all zero) must be very small. This is true, not only for Tinear
terms, that have the form

*
Dpks (PP )
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but also for nonlinear ones involving higher powers and cross-products
of the (pk-Bk ). Also, if the models used to calculate As are suffi-
0

ciently good, the difference As-A; can be neglected, except for slowly
growing secular effects improperly accounted for in A;. As the satel-
lites are prevented from drifting too far away from their common
reference orbit by corrective manoeuvres, the buildup of secular
effects is kept from becoming large enough to matter. Therefore, with
good values Bk and good models to approximate As, the relationship

*
s = D_s (p,-p,) (3.1.4a)
Kk Pk k Fk
could be a closer approximation to s§s than

AS = i Dpk s(pk-pko) (3.1.4b)
is to As. In other words, the use of good nominal orbits may result in
residual perturbations s§s = s-g that are freer fromnonlinear and other
effects than as = =S, The cancellation of nonlinearities by using
nominal orbits is very important, as the common reference orbit along
which the problem is linearized does not necessarily provide a good

fit to the true ones. This is so because the reference orbit is rigidly
defined, to give a special structure to the normal equations of the
adjustment, as it will be explained in paragraphs (3.5) and (3.6). If
the adjustment is iterated, this rigid orbit is not likely to be
changed, as it is by nature impervious to any significant improvement,
This creates a situation not unusual in the adjustment of geodetic
networks, where the same normal matrix is used iteration after
iteration to save computing effort and without real ill-effects.

It is, however, not done in satellite geodesy, where the problem is
always linearized along the best fitting orbits that can be obtained
using the best a priori values of the parameters and as much tracking
data as possible. This improves convergence and, as most potential
coefficient adjustments are done without iteration, because of the
massive computations involved, strong convergence is needed to secure
good results in a single step. Here it is necessary to depart from

this practice, as the gains in doing so are likely to outweight the
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losses. The main gain is that, in this way, some kind of global solu-
tion becomes possible at all: By eliminating many of the unwanted
effects, so linear terms with the Dp S computed on the reference

k

orbit can account for most of the residual signal &s, the use of
nominal orbits extends the validity of the linearized model of sec-
tion 1 to perturbations that are much too large to be described as
first order variations along the reference orbit.

According to (3.1.4a-b), one can use the same partial derivatives

to model gs and as; such derivatives are the brackets containing
combinations of ék’ ;k that appear jn expression (1.4.12). The ék’

;k consist of periodical parts %k, ?k, corresponding to the parti-
cular integrals of the variationals, quite independent from the start-
ing time t0 of any given arc, and of terms of the form A sin n,t +

+ B cos not + C t sin not + Dt cos not where A, B, C, D depend on

t0 (see paragraph (2.5) and Appendix I). These latter terms are due
both to the particular integral and to the free response. Similarly,
the residual signal ss can be separated into a periodical part ss,

and an aperiodical part 8s, of the form shown above (the changes in A
and B from arc to arc destroy the periodicity of the sine and the cosine).

This split extends also to the derivatives DC“ S, as Dcu s=DCa §+Dcu S
_ nm nm nm nm
Grouping the periodical effects of the Aczm apart from all aperiodic ones,

a-

and having the Tatter accounted for by a few terms with coefficients like
A, B and C that change from arc to arc, and are, therefore, called arc

parameters, the linearized model adopts the equivalent form

§s = L Dza S Aﬁﬁm + aperiodic terms + unknown and ignored
Nl nm effects (3.1.5)

where As - AE = unknown and ignored effects, and the Aﬁgm are gow
the differences between the true ﬁﬁm and their nominal values Ezm.
The estimation of the Aﬁﬁm is based on residual measurements, or
"residuals' S(observed)(ti) - S(computed)(ti)' A complete description of
these should include the random part of the measurement error, n, the

systematic errors, and also the errors in s( caused by the

computed)
numerical integration of the orbits. Their complete expression

or observation equation, is
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S (observed) S (computed)

= I Dta S Aﬁﬁm + aperiodic terms (arc parameters) + n
nma nm

+ systematics + numerical integrator errors + unknown and

ignored effects (including model errors) (3.1.6)

A detailed form of this equation, needed to carry out numerical calcu-
lations, shall be given in paragraph (3.4).

The arc parameters have an indirect relationship with the initial state
errors, whose place they take in expression (3.1.6). In fact, they
depend on the ACﬁm as well as on the state errors, representing in
lTumped form the aperiodic effects due to qlZ parameters. The reason

for replacing state corrections with arc parameters is twofold: (a) it
permits exploiting the periodical nature of s to create a special
structure in the normal matrix, as explained later; (b) it eliminates
ill-conditioning in this matrix due to the virtual non-estimability

of the state errors (when both satellites are close to each other)

from satellite-to-satellite tracking data alone. What can be estimated
are the differences between those errors, but not the errors themselves.
One way of seeing why this is so is to notice that, when nearly on the
same orbit, all perturbations due to state errors are virtually at the
same frequencies (mainly O and "0)' From now on, the Aﬁzm are the
potential coefficients of the gifference between the true and the
nominal field (defined b¥ the sz), which shall be called the disturb-
ing field: A(-:(;m = C;‘m - cﬁm.

Least squares adjustment.

If everything besides the linear terms in the signal and the random
noise can be ignored in a model of the residual measurements, then the
set of all observation equations can be written in matrix-vector nota-
tion as follows:

Ax+n=d (3.2.1)
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where x is the vector of unknowns x, (here, the corrections Aﬁﬁm
and the arc parameters), n the vector of random measurement errors, and
d the vector of residual measurements S(observed)(ti)'s(computed)(ti):

ES [, ] S (obs) (£1)75 comp) (t1) |
) N2 S(obs)(tZ)'S(comp)(tZ)
x= 1 ’ n=1|" ’ d=1"
_xL J "NMJ S(obs)(tNM)'S(comp)(tNM)

The dimension of x is L, the number of unknown parameter corrections, the
dimension of n and d is Ny, the number of measurements, and A is a NyxL
matrix whose elements are the coefficients of the unknowns in the linearized
observation equations. In the case considered here L < NM’ so the system

of equations is overdetermined, or redundant, assuming that A has full

rank. In fact, NM is more than one order of magnitude larger than L.

A is usually known as the design matrix, or matrix of partials, or matrix

of the observation equations.

If n is a series of samples of an stochastic process of zero mean E{n}
and known covariance E{ninj} (where E{ } is the operator corresponding
to averaging over all outcomes of the process) and if W is the inverse
of the variance-covariance matrix P of n:

W=Pp!

(E(n n'3)! (3.2.2)

(yT indicates the transpose of vector or matrix y), then the linear
unbiased estimator of the form

[ >

=Fd (3.2.3)

(where F is the L x NM estimator's matrix) that minimizes the main
diagonal elements of the variance-covariance matrix of the error vector

e, = (X - x) in the estimate X ,
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i T

E, = Ele, e} (3.2.4)
is
= (ATw )y AT d (3.2.5)

156>

so F = (ATw A)-IATN. The vector of estimates i has the same dimension
L as x, and is also the solution to another variational problem, the
minimization of the quadratic form

Q = xTW v (3.2.6)

where

ved-A

>

(3.2.7)

is the vector of misclosures. In other words: least squares adjustment
minimizes the variance of the estimation errors and also gives the best
weighted fit to the data.This type of estimator is wnbiased, because the
mean of the error, E{gx}, is the zero L-vector. Another way of under-
standing unbiased estimation (which is equivalent to the statistical
definition under the assumptions made here) is that, if the estimator
is as in (3.2.5), but the data in d are actually free of errors, i.e.

n =0, then _).5 = X. S0 perfect data yield perfect estimates. This can

be verified easily by replacing d = A x (because n = Q) in (3.2.5).
Moreover, if the noise is a normal, or Gaussian, stochastic process,
then i is not only unbiased, but also of maximm likelihood. Of course,
all these good qualities of the estimator depend on the linear model

d = A x + n being true. In general, the existence of non-linear terms,
systematics, etc., and a more or less non-gaussian n, robs the esti-
mator of those qualities, at least in a narrow sense. But the reason
why least squares adjustment is so widely used, besides its relative
simplicity in theory and in practice, is that it usually is sufficiently
"robust" to provide estimates which are almost free of bias, of high,
if not maximum, 1ikelihood, etc., even when the statistical assumptions
on which the method is founded are not exactly fulfilled by the data.
Another way to look at it is to see it as a sensible method, which
takes more account, through the weighting with W, of good measurements
than of bad ones.
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In the particular case where
(E{njn;} = 0 i 1 # 4, E{nZ)

comes from a random stationary process
o? for all i), W becomes

n s

W=o?1 (3.2.8)

where I is the unit matrix of dimension NM’ 02 is the variance of the
noise, while o is its standard deviation. In (3.2.5), the matrix

G= (AW A) (3.2.9)
of dimension L, is known as the normal matrix. Accordingly,
obtaining the estimate i is equivalent to solving the system of normal

equations

G

|

=b (3.2.10)

where b, the vector of the right-hand sides of the normals, is

b =AW d

(3.2.11)

In the particular adjustment discussed in this section, the unknoyns'
vector x shall be partitioned into c, the vector of corrections all
to the potential coefficients, and é, a vector of auxiliary variables
related to the nominal orbital errors and to the increasing oscilla-
tions of frequency n, due to zonal coefficients' resonances (the "°"
denotes "the estimate of"). The corrections to the initial states of
the nominal orbits will not appear directly in the observation equa-
tions, but through some of these auxiliarly parameters. The reason

is that these are not fully observable from satellite-to-satellite
tracking data alone, and their direct inclusion would cause A, and
thus G, to be virtually rank-deficient. As a result of this separa-
tion of the unknowns, the system of observation equations is parti-
tioned as follows:

¢+ Na tn=d (3.2.12)
]
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. (1) 2
where A_ is a Ny x [(Nmax+1)2-6] matrix ( ), Ay @ Ny x [L=(N . +1)7+6]
matrix, and ¢ and & are (N +1)?-6 and L-(N__ +1)?+6 dimensional
vectors. The normal equations are partitioned accordingly:

T
| G =AWA
- _ AT 11 c c
Gyl Gia| |S b be=AMd T
Rt o i BT S . 3 Gy, = AawAa (3.2.13)
G,,'G a b b. = AWd
21 V22| |2 —a =3 a - _ _ al
' G12 = G21 = ACWAa

Details of the solution of this partitioned system are given in para-
graph (3.8).

Conditioning and least squares collocation.

Given the system of observation equations A X + n = d, the estimator
that minimizes

¢ = X KX + v Wv (3.3.1)
for a given positive matrix K, is

%= (ATWA + K)TATM d (3.3.2)
and the corresponding normal equations and normal matrix are

(ATWA + K)X = ATW d (3.3.3)

G = ATWA + K (3.3.4)

This is a bZased estimator, as can be verified by replacing d = Ax in
(3.3.2); because of the presence of K, i # x, so perfect data do not
result in perfect estimates. The difference is the bias of the estimator.
Bias estimation is used mostly to improve the condition of the normal
matrix, so its inversion is numerically stable, and to reduce the
variances E{(g—x)z} of the individual estimates. If the latter purpose

is the main one, there are several choices of K corresponding to the
various methods for biased estimation now in use (such as Bayesian,
quite common in satellite geodesy, ridge regression, etc.).

Tl)The coefficients of the zero and of all the 1st harmonics,as well as
the 2nd and 3rd zonals, are not adjusted (see par. (3.8)).
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In the problem at hand, the unknowns have been partitioned into the cor-
rections to potential coefficients, grouped in &, and to the arc para-
meters, grouped in a, as indicated in expression (3.2.12), which can
also be written

Ac+Aa+n=d (3.3.5)
Let C! be the diagonal matrix of the same dimension as c, and where the
diagonal element - corresponding to the column associated with a given

o .

Acnm is o,

¢ = (g £ al2)7!

nma Zn+1 nm

ma
= (2n + 1)o” (3.3.6)
Here 0;2 is known as the degree variance of the disturbing field whose
potential coefficients are the corrections AE:m to the nominal field
2
“n -1

introduced in paragraph (3.1); 72T = €pma 1S the global r.m.s. of the
average coefficient of degree n. If K is chosen

K=|-4--- (3.3.7)

then, given that the number of potential coefficients defining the
disturbing field is that of the elements of c, and, therefore, finite,
and if the parameters in a can be regarded as independent from the
disturbing field, the Tinear estimator resulting from this choice

of K is that of the technique known as least squares collocation

with parameters (Moritz, 1972). The proof of this has been given by
K.-P. Schwarz (1976), who discusses this question at length in his
article in a book edited by Moritz and Siinkel (1978). So, collocation,
in this particular application, is equivalent to the conditioning of

G by weighting the unknown Aézm with the extra quadratic term ET cc
in the functional to be minimized by the estimates. As already noted,
the elements of a are related to some extent to the Aézm’ and, there-
fore, conditioning as described here is not equivalent to collocation
in a rigorous sense. Including the correlations between all the
unknowns would result in a full normal matrix, while leaving these
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correlations out brings about the very convenient sparse structure to
be described in paragraph (3.7). Be as it may, I am happy to let the
reader decide what to call this form of conditioning. I shall refer
to it as "collocation" for convenience, being just one word, and
because I Tike the sound of it. Those interested in the origins of
the idea of collocation may read Kaula (1963, 1976), Moritz (1966),
and Krarup (1969).

The choice of C as the conditioning matrix must result in estimates that
have the main properties typical of collocation. The idea behind this
method is to minimize a certain quadratic measure of the estimation
error. Perhaps it is easier to explain this in the case when the esti-
mate is that of a single quantity, for example a single potential coeffi-
cient. The general linear estimator for a scalar s out of a vector of
measurements d is

S-fd (3.3.8)

where f is the estimator vector. The error in the estimate, assuming
that d has the form Ac + n = d, is

e =5-5§
ol
= f (Ac + n)-s (3.3.9)

e can be separated in two parts: the bias

e, = fT Ac - s (3.3.10)
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and the propagated data error
e, = fn (3.3.11)

Unbijased least squares minimizes the error measure E{eﬁ} under the con-
straint that e, = 0. Collocation minimizes, without constraints,

o2o1. = Miefy + E(e?} (3.3.12)

which is called the (hybrid) variance of the estimate § (looking back
at expressions (3.3.1-7) the connection with (3.3.12) is by no means
obvious, nevertheless they are equivalent in this case). The operator
M{ } indicates the average of e, over all possible rotations about

the geocenter, of the set of points where the measurements are taken.
One could think of this as follows: the field of the first N zonals
that define the reference orbit stays fixed in space and the disturbing
field of the Acﬁm can rotate. With the disturbing field in one position,
the mission is "flown", data is collected, analized, and the results
obtained, with their biases e,- Then the disturbing field rotates to a
new position, a new mission is flown, with the same initial states,

new data and new results with their biases ensue (as shown by (3.3.10),
e, depends on the field through c). This is repeated time and again,
over all possible rotations, and then the term M{eé} is the average

of all the corresponding values of eé. Collocation tries to minimize
this average while keeping the more conventional E{eﬁ} also small. The
idea may sound strange, but it is not stranger than minimizing eﬁ
averaged "over all outcomes of a stochastic process", which is the

goal of ordinary least squares estimation. The estimates produced by
collocation havevsome convenient properties. In the first place, the
propagated error cannot be larger than for least squares adjustment,
and it can be smaller (this follows from C being a positive matrix).
Moreover, the hybrid standard deviation 0201 cannot exceed 100% of

the rms value of s, otherwise the optimal estimate of collocation

would be worse than that of an estimator that always assigns to §

the value zero (i.e., where f = 0). I have discussed these questions

at some length in (Colombo, 198la, and 1981b). For general information
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on collocation, the reader can consult the book by Moritz (1980). Con-
ditioning based on collocation has been used in satellite geodesy to
obtain field models such as GEMI (Lerch et al., 1977).

A good property of collocation is that it produces smooth estimates.
In the present case this means that the higher degree coefficients,
whose signal is weaker because of its attenuation with height (so
ordinary least squares may give rather wild estimates, mostly propa-
gated noise) are going to be assigned small values by collocation.
This damping down of the higher spatial frequencies results in a
smoothed field. While some fine detail may be lost, problems asso-
ciated with the truncation of the series at Nmax’ such as Gibson's
phenomenon, are less Tikely to occur when mapping the field on the
Earth's surface using the estimated AC:m’ particularly in the neigh-
bourhood of strong gravitational anomalies. Another consequence of
this smoothing can be seen in the results of my error analysis of a
satellite-to-satellite tracking mission (Colombo, 198la). The stan-
dard deviations for unbiased Teast squares estimates increases
suddenly, exceeding 100% of the rms of the coefficients, at degrees
associated with the attenuation bands discussed in paragraph (3.5).
The errors for least squares collocation are smaller, change more
gradually with degree, and never exceed 100%. As for the loss of fine
details, it is better to map these by Tocal methods, rather than by
global ones involving potential coefficients, as argued in paragraph
(3.12).

To implement collocation one needs to know the degree variances oﬁ in
order to set up C. In the case of the Earth, this variances have been
estimated from gravity measurements and satellite altimetry, as well
as from models of the geopotential obtained from ordinary satellite
tracking data. Perhaps the most up-to-date models for the cﬁ as
functions of n are those proposed by Rapp (1979). Wagner and Colombo
(1979) have used a method for estimating cﬁ from altimetry passes that
can be generalized to planetary probes' tracking data {Wagner, 1979)
and also to satellite-to-satellite tracking. In this method the oi are
derived from the autocovariance function of the stream of data,
treated as a staEionary process, after correctiqg for whige measure-

. o . . . o 2
= T
ment noise. The Cnm with known a priori values Cnm have 9% =z anma’

&
where § is the a priori standard deviation of sz (see Colombo 198la).
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3.4 The observation equation.

The signal is the average over a fixed time-interval Ah of the
residual relative line-of-sight velocity 6s. To arrive to the corre-
sponding equation, I shall first consider the instantaneous

value of &s according to the approximate Tinearized model defined by
expression (1.4.12), and also to (3.1.4a),

65(8) = Bl (811, (8))30 T gvdy, (81310 n, (£)-

10
-ékz(t)sin nzo(t)}spk

where now the sp, are the corrections, to be estimated, to the known
values pk of the potential coefficients and of the initial state com-
ponents of the nominalorbits (or, rather, to some linear combinations
of the components, as these are not fully estimable from relative
velocity measurements). When developing the orbit theory, time was
counted from Ty the moment when the satellite along the unperturbed
reference orbit reached perigee (F' = 0) for the first time. Here a
small change is convenient: T, shall be now the instant when the
unperturbed positions of both satellites do stand, for the first
time, at symmetrical points with respect to the perigee. Since the
reference positions ran backwards along the same path when the velo-
cities are reversed, and since the reference orbit is symmetrical,

in its plane, with respect to the line where F' = 0,7, it follows
that

no(t') = mny (-t') (3.4.1)

where t' = t-1,. The angles nyg(t'), n,,(t") and their sines are

periodical of period To = 2y ngl, the same as the orbit, and being
continuous and bounded functions of time, can be expanded in Fourier

series which, because of (3.4.1) above, have the form

sin nlo(t') = sin n1°+k§1 a, cos kn t'+b, sin kn t' (3.4.2a)
and

sin n, (t') = -57n n1°+k§1 -3, cos kn t'+b, sin kn t' (3.4.2b)
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where sin n , indicates the time-average of sin n,,(t") over one orbital
period To' As the numerical studies of section 4 indicate, the sizes of
the coefficients a and bk decrease very rapidly with k, because

sin nlo(t') is a very smooth function for a nearly-circular orbit. As

a result, only two terms in each formula must be retained to achieve
satisfactory accuracy, as shown below,

sin nlo(t') =sinn, + b, sinngt' (3.4.3)
and
sin n,,(t') = =sin n , + b, sin ngt' (3.4.4)

As shown in paragraph (2.4), the particular integrals in the solutions
of the}variationa]s, when Py is a correction to a potential coeffi-
cient Cﬁm’ consist of trigonometric sums for all frequencies

Ynj = jn0+me', except 0 and n,» which are replacedby aperiodic, secu-
lar effects. Let gnma(t') and ?nma(t') be the periodic parts of Boma(t")
and Ynma(tl)' The leading satellite, satellite 1, is initially ahead of
perigee by an angle

n,c = sin"'(3p 1) (3.4.5)

where o, r are the average intersatellite distance and orbital radius,
respectively, while c is the time it takes the satellite to move between
perigee and its initial position. Satellite 2 is behind perigee by the
same angle and time interval, so the Fourier expansions of % and ¥
replacing t with t' = t-1,, can be obtained by a simple change in the
phase angles in (2.4.10-11) to give (assuming L, = 0 in (2.2.50))

n+3N .

(t') = b . (t'-(-1)] 4.
Bomai(t") o ey D oS (£ (D Tehre ) (3.4.62)
N . n+3N ) j
Ynmai(t ) = j=-?n+3N) gnmj S1n(wmj(t -(-1) c)+¢ma) (3.4.6b)

where i = 1, 2, and the coefficients bnmj and gnmj are as shown in
expressions (2.4.8-9), while o ® because of the change from t to t',

is as in (2.2.47). Differentiating with respect to time,
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n+3N

wee

. . i
. s1n(mmjt +¢ma'('1) mmjc) (3.4.7a)

S(t') z w . b
nmo | j=(ne3n) M3 nmg

and

A

n+3N

Y (t") z w . b .
nma 1 j='(n+3N) mJ nmJj

[] .i
cos(mmjt +¢ma'('1) mmjc) (3.4.7b)
Replacing Enmai’ xnmai and sin “1o(t)’ sin ”20(t) in the linearized
model (1.4.12) according to (3.4.3-4) and (3.4.7a-b), and applying the
trigonometric identities for the sine and cosine of the sum and diffe-
rence of two angles a few times, leads to

N

¥s(t') max n 1 o n+3N+1 2o
s(t’) =z &z L A z {20 .[sinncb_ .
n=0 m=0 a=0 ™ j=-(n+3N+1) ™ 0~ “nmj

cos mmjc-cos n,c gnmj sin mmjc]+b1[mm(j-1)bnm(j-1)

ST ein(3-1) " m(3+1)Pm(341)°T" Um(341) 1

x sin(wmjt'+¢ma) (3.4.8)

where ¥s denotes the periodical part of &s, excluding terms of frequency
0 or N, The term in brackets multiplying b1’ as&well ai the new sum
limits *(n+3N+1), result from the modulation of Bamai® Yrmod by

sin n;,(t'), sin n, (t"). Changes in the initial conditions of the
satellites, as well as zero frequency terms in the forcing functions
of the variationals, produce components of frequencies O and n, in ék
and %k (see expressions (2.4,1a-h)) which, in turn, are reflected by
extra terms of the same frequencies in the relative line-of-sight
signal. The components of the free response are modulated, Tike

those of the particular integral by sin n ,(t') and sin n, (t'). Since
the initial state errors can be relatively large, producing strong
perturbations at n, (the natural frequency of the system), their modu-
lation by the components of sin nlo(t') and sin “20(t') at frequencies
higher than n,s neglected in the development so far, cannot be ignored
altogether. In particular, they can produce second and third harmonic
components in §s that are comparable to those in the "periodic" part
§s. To all this is added the contribution, at frequency Ny» from the
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homogeneous parts of the forced responses, as indicated by (2.4.6-7),
that are also modulated by sin "o and sin Nypo contributing to 2n0
and 3n0. Also, there are the secular perturbations due to the zonals,
contributing to an overall term of the form At cos not. Moreover,
there is a term of the form Bt sin n,t caused by perturbations in the
initial states affecting r; or ﬁi. This last effect comes from those
terms in the expression of the full linearized model, (1.4.11), that
were neglected to obtain (1.4.12). Perturbations in r and ( produce
drift in vy, according to (2.4.1e) and (2.4.1h), and the result is a
quantity At, coming from'iyik(t) sin ”io(t)’ multiplied by sin n,t
mostly from |  |cos 510'|i20|cos 5,, (this can be verified, to the
order of the eccentricity, by regarding the orbit as slightly ellip-
tical and using the corresponding formulas for r(t+c)-r(t-c), when
the satellites are not very far from each other). Lumping together
the various contributions to the free and the secular perturbations,
the complete expression for the residual relative line-of-sight
instantaneous velocity is

3
ss(t') = kzo Cy cos knot +5) sin knot +At cos n0t+
+Bt sin not‘+§s(t') (3.4.9)

Notice that, whenm = ¢ = 0, i.e. the case of the zonals, both the
zero frequency term and the Bt sin not disappear, unless they are
caused by perturbations in the initial state (the contributions of
the zonals to the zero frequency are equal in both satellites, and
cancel out when their velocities are substracted). Since $po = 0 as
well, according to (2.2.47), ss(t') due to zonals is an odd function
of time (see (3.4.8-9)). This agrees with what one would expect from
the symmetry of the orbit in a purely zonal field, when the initial
states of the satellites are symmetrical respect to a meridian plane,
as in the present case. Changing from t' back to t, modifies the
values of the coefficients Ck’ Sk’ A, B, but not the form of their
terms, and turns¢ma int0<hnaaccording to (2.2.50), so
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3 "
kEO Ck cos kn t+S, sin kn t+At cos n t+Bt sin ngt
Npax n 1 q n+3N+1 i

E I I AC I {mej[s1n n,c bnm'

n=0 m=0 o=0 "™ J==(n+3N+1) J

COS wy5€=COS NoC g o Sin “mjc]+b1[“m(j—1)bnm(j-1)

b )s1n w )c]}

ST g 5-1) U (5+1) Pnm( 41 m(j+1

sin(mmjt+¢ma) (3.4.10)

The signal in the actual residual neasurements is time-averaged:
t
() = o J ss(t)di (3.4.11)
t-ah
(the """ distinguishes the integration variable from the integration
1imit) where ah is of the order of a few seconds, so the averaging
operation has very little effect in the shape of the secular and "free
response" terms in (3.4.10), and they can be assumed to transform into
terms of the same form, with negligible error, because of their much
longer periods (thousands of seconds):

3 - _
Bs(t) = : Ek cos kn t+S, sin kn t+At cos n t+Bt sin ngt
k=0
t
+ L J %s(2)dt (3.4.12)
t t-ah
To find-gh J ¥s dt, consider the time-average of a single term of
t-ah R
the form ij S1n(wmjt+¢ma):
t " t
1 ) .. .1 'Cos(wmjt+¢ma)
N J ij sin wmjt+¢ma)dt = Zﬁ[ 5 ]
t-ah J t-ah
= dmj(Ah)sin(mmjt+$ma) (3.4.13)

where

_ 1 112, cin2 3
dmj(Ah) = Zﬁ;;} [(cos mmjAh 1)“+sin mmjAh] (3.4.14)
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and
- . _y Cos mmjAh-l
e S Ty (3.4.15)
mJj
Replacing this last result in (3.4.1)
— 3 - - -
5s(t) = kio C, cos knyt+s sin kn t+At cos n t+Bt sin nt
Nmax n 1 n+3N+1 ) _
+n§0 mED aio *Com j:-(nE3N+1;) mg 51" (¢4 ™ o)
(3.4.16)

where

< 1 2, .2 .
Snmj = ZH[(cos wmjAh-l) +sin wmjAh]%{2[51n n,c bnmj

cos mij-COS noc g

. -1
nmj SN wij]+mmjb1[wm(j-1)

b b

m(3-1)5™ “n(3-1) " m(3+1)Pm(3+1) ST (1)1

(3.4.17)

which is the complete expression of the time-averaged signal. To write
the observation equation from this, the measurement noise n{t) must be
added; t itself has to be replaced by ti’ the actual instant in which
the ith observation takes place; moreover, the coefficients Ck, Sis A,
B must be written using the notation Cz, Sz, B¥, B¥, where the super-
script w is a positive integer that indicates in which orbital arc the
observation is taken. The orbital arcs start just after an orbital
manoeuvre to bring the satellites closer to the reference orbit, or at
the beginning of a period of time over which a nominal orbit is fitted
to the data to obtain the residuals; also after both events, if they
coincide (which is desirable, to reduce the number of unknowns in the
problem). There are, therefore, nine unknown arc parameters per arc,
in addition to the potential coefficients. These arc variables will
depend on the starting time of their arc, tg. Initial state errors

in r and 0 will produce a term of the form a(t-tg)sin no(t-tg) =

a[-tg sin no(t-tg)+t(sin notg cos n0t+cos notg sin not)], so A% will
not be determined by the particular integral exclusively, but will
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depend on the orbit errors at tg as well through a t sin notg cos n t,
and the same applies to Y. According to all this, the observation
equation is (the lower 1imit for n shall be explained shortly)

3

S(observed)(ti)—S(nominal)(ti) N kEO

=W W

C, cos kno(ti-t0)+
W Wy, W W W

+S, sin kno(ti-t0)+A (ti-to)cos no(ti'to)+

o w Npax 01 _ n+3N+1
+B"(t.-t!)sin n (t-t)+ 2z x z Al 3
0 0 n=2 m=0 =0 j=-(n+3N+1)

s . sin .t.+6_ )+n.+ systematics + numeric errors
nmj S (me § 70 )4 Y

+ linear model errors + nonlinear perturbations +

unknown and neglected effects (tides, etc.)

(3.4.18)
where 5ma is given by (3.4.15), gnmj by (3.4.17), and w s = jnj+me’.

While the arc parameters convey information on the corrections to the
initial states of the nominal orbits of the satellites, they also
contain information about the potential coefficients and both cannot
be unscrambled. Even if they could, the perturbations in the relative
velocity of the satellite contain only information on the in-plane
states'errors, and even those cannot be observed fully, because of
the differential nature of the measurement; only differences in errors
can be estimated properly and, according to (2.4.1la-h), this is not
even true for along-track errors, which have no effect in 3, y and,
thus, in §s. The only purpose of the arc parameters is to absorbe

the influence of errors in the initial conditions of the nominal
orbits, not to estimate these errors. The latter can be done once

the potential coefficients have been adjusted, by using the corrected
coefficients to calculate better nominal orbits fitted to all avail-
able tracking data, including that from tracking stations. Because

of the auxiliary role of the arc parameters, the computing effort
should be directed to estimating the Aﬁﬁm in the first place, if
possible avoiding the determination of the other unknowns altogether.
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3

The extra terms I Cz cos kn0t+§¥ sin knot contain practically the
k=0

same frequencies as those in the periodical part of &s corresponding

to ACgo for 0 < n < 3 (for near circular orbits and Tow degrees, the
Timits z(n+3N+1) can be replaced by *n without appreciable error), so
the respective columns in the matrix A of the observation equations
will be almost Tinearly related, making this matrix virtually rank-
defficient. To avoid this problem, the equation can be modified by
"dropping" AC?O, Aﬁgo and Aﬁgo as unknowns, thus assuming that the
second and third zonals are known perfectly. This is a reasonable
assumption, because they are, even today, very well known quantities.
Improvements to these zonals could be attempted separately, by ana-
lyzing the residuals of the adjustment of the other coefficients,

for example. The same can be done to extract information about cer-
tain phenomena, such as ocean tides, which may have a small but
detectable effect on the measurements over extended periods of time,
different from the mostly "high" frequency perturbations considered
here. In addition, C?m = 0 in a geocentric system, so the correspond-
ing unknowns AC?m are also "dropped", which explains the limit n = 2
in the sum in (3.4.18).

If an arc is sufficiently long to contain nearly overlapping passes,
then the difference of the residual measurements along such passes
will consist primarily of the differences between the secularly
increasing oscillations in &8s, because two points corresponding to
different passes and close to each other (by comparison to the
shortest spatial wave-length clearly detectable in the signal) will
correspond to epochs t1 and t2 differing by a whole number of revo-
lutions, so t,-t, = k T,, where k is an integer, T, the orbit period,
and cos nyt, = cos n;t,, sin nyt; = sin ngt,. Therefore

Rt (S(Observed)(tl)-s(nomi"a1)(tl))_(s(observed)(tz)'
s = ¥ BW .
=S (nomina1)(t;)) = A°KTy cos nt +B%kT) sin n t,
(3.4.19)

and A, BY could be estimated by 1inear regression from successive
values of 5§12. If this is possible, then AY and BY can be eliminated
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from the adjustment simply by substracting ﬂwg cos n0t+§wt sin n t
from the residual observations, where A¥ and B are the estimated

values of A¥ and BY.

Attenuation bands.

For the type of gravity mapping mission considered here, mejAh
should be small, compared to the shortest spatial wavelength to be
resolved, while the angular separation n,c between the satellites
should be a small fraction of a full revolution, and b, a small
number, compared to cos n,c- Under these assumptions, the size and
sign of Snmj is largely dictated by those of the term

-2 cos ncg sin w_.c in (3.4.17). Accordingly, gnmj should be

nmj mJ

very small for “mj in the neighbourhood of a frequency at which,

for a given value of ¢, that term is zero. This happens whenever

nyc is an exact multiple of the wavelength (in radians) characte-

ristic of w_., that is to say, when ¢ = k x period of Wpie OF

mJ J
_ 27k _ 27k _
C _%—W N k = 1, 2, 3, cee (3.5.1)

Since the frequencies “mj depend on the rates o' and LU while c is
given and these three quantities are independent of each other, it is
not likely that gnmj will be exactly zero for any of the frequencies
actually present. However, for each “mj nearly satisfying (3.5.1),
there will be a band of frequencies more or less centered on this
value where the spectral components of the signal will be considera-
bly attenuated. In the case where ; = Fnoc = 300 km, for example, the
first band is centered at about 134 cycles/revolution, and the others
at multiples of this one. For 100 km separation the first band moves
to a higher frequency, near 400 cycles/rev. The simulation studies in
section 4 show these bands very clearly. As the field is limited to
terms of degree n5Nmax = 300, and the highest significant frequency
is about 306 cycles/rev., there are two such bands visible in the
spectrum of the signal when 5 = 300 km, centered at about 134 cycles/

rev. and at 270 cycles/rev., and non when o = 100 km.

The attenuation of the Fourier spectrum of the signal may affect the
accuracy of the adjusted coefficients sz for n close to
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n:g‘ri

noc

L k=1,2,3, ... (3.5.2)

according to several error analysis conducted in the past, including
one by myself (Colombo, 198la), and more recently by C. Wagner (1983,
private communication). Clearly, choosing a separation such

that the first attenuationband is above the highest significant
frequency in the signal must result in a more homogeneous

quality of the estimated coefficients, as the center of such a band
corresponds to a peak in the inaccuracy of the Ezm at n = 2wkn;1c_1.
To some extent, these fluctuations in the results can be ironed-out
by appropriate use of conditioning of the normal matrix, as indicated
in (Colombo, 198la), based, for instance, on least squares collocation;
but it is better not to have to deal with these attenuation bands in
the first place. On the other hand, the smaller the separation between
the satellites, the weaker the signal, as both velocities become
increasingly similar, their difference consequently smaller, and the
average accuracy of the recovered coefficients deteriorates. To get
the best of both worlds, P, Bender, among others, has suggested having
both satellites at an average separation of 100 km for part of the
mission, and then moving them apart to 300 km, keeping them thus for
the remainder. To process such data in the efficient way described in
the next paragraphs, two separate adjustments must be done, one using
the "100 km data" and the other, the "300 km data" (assuming that

each subset constitutes an unbroken stream of data). The two sets of
estimated potential coefficients can be combined, afterwards, accord-
ing to expression (3.8.8).

Linking the orbital period and the length of the data stream to the

rotation of the planet.

Here "length of the data stream" means the duration Td of an unbroken
stream of data (except for very minor interruptions) sufficient to
estimate all potential coefficients of interest. There may be several
such intervals within one mission. "Rotation of the planet" must be
understood in a node-fixed system, where its apparent rate is o'. The
"orbital period" is T0 = ZWHEI, the perﬁod of the reference orbit.
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The question to be considered now is: how to choose T, (or n,), and Tqs
given 8', so the normal matrix has many zero elements, arranged in such
a way that the solution of the normal equations can be calculated in a
reasonable time with existing computers.

Let

=
P

(3.6.1)

be an integer equal to the number of measurements comprising the data
stream to be analyzed, where At (usually equal or larger than the
averaging interval ah) is the sampling interval, the separation between
consecutive measurements. If T0 and Td are chosen so that both U and o'
are exact multiples of the fundamental frequency of the data stream

wy = ZwT; » then all the angular frequencies jn0+m present in the data
will be harmonics of this fundamental (for a polar orbit, this is the
same as saying that Td equals an exact number of sidereal days, during
which the satellites perform a whole number of revolutions). Let U be
such that, for different values m and m' of the harmonic order, there
are no two integers j and j' such that

2 | I N | 1 t
jnytme’ = j'n +m'e

while i 18 in the range of significant frequencies

lwmjl < (Nmax+3N+1)n0+Nmaxe . Finally, assume that the sampling inter-

val At is such that the sampling frequency

€
I
l>|r\)
IS E)

is higher than twice the highest significant frequency. Under these
suppositions, the following trigonometric formulas are valid (they
are the basis of all numerical Fourier analysis methods with equally
spaced data):

Ny
2, coslupyHTg)eos(ug: 44Ty )
NM . ) 0 ifm#m'
= 151 s1n(mmj+ij)S1n(wm-j.+ij) = {5NM e (3.6.2)
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and
N

M
cos(w ++T .)sin(w ;4T

) i T m'j mJ.) =0 always (3.6.3)
1=

regardless of the phase angle ij. The elements of the normal matrizx G
consist of the scalar products of columns of the matrix of observation
equations A, weighted by the matrix W, according to (3.2.9), To simpli-
fy the argument, assume that W is the identity matrix times a constant

o % as in the case of uncorrelated, homogeneous observations. The mai
elements of the column of A corresponding to Acgm are the coefficients
of this unknown in the observation equations, and can be regarded as

equispaced samples of a Fourier series of the form

n+3N+1 m
- . _1 _1
. = N .S .- b + .
“me j==(n+3N+1) Somg ST (gt ‘[(“ 1—%——)—%)
ding to (3.4.15-16) and (2.2.50) can-1(S05emgoh~1 )
according to (3.4.15- an .2.50), s0 T_.=-u_.tT_+tan < -y
mJ mj o gﬁﬁaagzﬁ——y

is a phase shift independent of i. The element of G;; (the submatrix of
G corresponding to the potential coefficients) related to Aézm and

=0 .
Acnlml 1S
N
n'm'a' -2
=0

gnma

n
151 nmai “n'm'a’it (3.6.4)

If the assumptions made at the beginning hold, so expressions (3.6.2-3)

are applicable, (3.6.4) becomes

o-2 n+H _ _ )
-~ - 1 - ]
I —5 Nm j=-?n+H) Snmj sn'm'j' ifm=m'and a = a
g =
nMa

0 otherwise (3.6.5)

where H is the smaller of n+3N+1 and n'+3N+1. This means that many
elements in G, (which occupies most of G) are zeroes. In fact, <f the
Aeﬁm are separated in groups by order m, and each one of these groups
is partitioned in two according to a, then G11 becomes block-diagonal.
The largest non-zero block {corresponding to the zonals) has dimension

Nax™

is about Nmax times smaller than the dimension of G11' As the size of

the blocks decrease with increasing m (dimension = Nmax-m+1), the

3 (the zero to third zonals are not among the unknowns), which

ratio of the number of elements in the blocks to those outside, which
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are all zero, is of the order of Nmax’ so it may be close to 300.
Therefore, G, is mostly zeroes. Its block-diagonal structure greatly
facilitates both the setting up of the normals and their solution, as

explained in paragraphs (3.7) and (3.8).

The assumption that j n, + me' # §' n, + m'e’ for all values of j, j',
m, and m' within their respective ranges, as long as m # m', can be
ensured by choosing the reference orbit so n, and Td (the length of
the data stream) are such that Nr, the total number of revolutions,
and Nd’ the total of nodal days in Td, are mutually prime integers,
or relative primes. This means that they have no common divisor other
than the unity. That this is a sufficient condition is demonstrated
in (Colombo, paragraph (2.6), 198la). A nodal day is the period

Tn = 2n/0' after which the node of the orbit returns to the same
place on the equator, as seen by an Earth-fixed observer. It is
slightly different from the sidereal day because of the precession

of the orbital plane.

T0 and Td are commonsurable, so, neglecting secular perturbations,

the orbits of both spacecraft "bite their own tails", in Earth-fixed
coordinates, and their ground-tracks do the same. If the mission
lasts for an additional interval Td’ both spacecraft merely repeat
the path the have already followed: the mission is periodical, with
period Td. The requirement that Nr and Nd must be relative primes
ensures that there is no smaller number of nodal days, within the
grand period Td, after which the ground-tracks repeat themselves
exactly (cycles within cycles), resulting in a coarser coverage of
the Earth. With such a coarse coverage, some orders would become
coupled inside G11’ and some unknown AC%m could have columns in A
that are linearly related, causing rank-deficiency, which is the
equivalent of aliasing in ordinary Fourier analysis. Finally, this
choice of n, and Td means that j n, + mg' # 0, other than in the
trivial case j = m = 0. According to paragraph (2.5), this must
exclude perfect resonances for all orders in the permitted interval
0<mg Nmax’ except for the zonals. This is so because, as long as
Nr and Nd are relative primes, j n, + me' can be zero (zonals
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excluded) only when m is a multiple of Nr, so the Towest resonant order
ism= Nr' By choosing Td so long that Nmax = maximum order < Nr’ there
cannot be detectable perfect resonances. Of course, there may be fre-
quencies in the signal quite close to 0 and to n;, causing considerable
oscillations. But secular effects, the product of perfect resonance,
can only come from the zonals (the reader can check that, if no zero
frequency terms are possible for 0 <m < Nmax’ then N, terms must be
absent, as well). Within the grand period Td there are no overlapping
arcs, so the coverage of the Earth and its gravitational field is the
finest and most even that can be achieved in this interval.

To choose n, and Td one must proceed by successive approximations. After
launch, the orbits are trimmed to get them as close to circular and
polar as possible, within practical limits set by the fuel available.
After this, the inclination of the orbital plane is "given" (changing
it, to make the orbit closer to polar is costly in fuel), and any
further manoeuvre to adjust N, must change mostly the mean radius of
the orbit. Starting with the specified mean radius (say, 160 km), the
number of revolutions in Nd nodal days (virtually the same as the
sidereal day for near-polar orbits) is N, = Tyg/T, = Ny(GM r=3)/e'.
One way to ensure that Nr and Nd are relative primes

is to choose Nd first, which, given r and 96’ determines Td and
T4/Ty- In general, Tg/T, will not be an integer. Next, check wether
the integer part of Td/T0 and Nd are relative primes. If not, change
Nd by one, plus or minus, and try again. When both numbers are rela-
tive primes, call the integer part of Td/T0 "Nr"' There will be still
a fraction of revolution to go, after Nr turns, in Nd days. This can
be corrected by varying the mean radius ¥ to adjust T0 until the dis-
crepancy disappears. There are about 16 revolutions per day for low
satellites, so if Nd is of the order of months, a change in T0 of a
few parts per thousand, requiring a variation in r of the same order,
or no more than a few kilometers, can bring the number of revolutions
in Td to be exactly Nr' Once this adjusted value of r is found, a
closed periodic orbit with the given inclination and ¥ must be found
by a procedure like the one described in paragraph (2.1). After this
is done, the precise period T0 becomes known. In general, this will
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not correspond exactly to a whole number of turns in Nd days, so a
further trimming of the orbital radius will be needed, followed by
another application of the "closing" and "circularizing” procedures,
and so on. Fortunately a perfect return of the satellites to the
starting point after Nd days is not necessary, and in any case, it

is unlikely that the sampling interval At will divide Td exactly,

so perfect periodicity in the mission is not possible. What is
required ig a return to positions that differ very little from the
initial ones when compared to the smallest wavelength to be resolved.
In any forseable application, this means that the satellites must go
back to points that are no more than a few kilometers away from where
they started. The whole discussion actually refers to the positions
along the reference orbit. Those along the actual orbits may be
within a kilometer each of the former, being brought periodically
closer, as already explained, by means of the drag-compensating
rockets. The period Td may be the whole length of the mission, or a
sub-interval in which the orbital parameters, distance between space-
craft, etc., may be different from those in other subintervals. The
important thing is that the stream of data should be unbroken, or
that any gaps should be short enough to be filled adequately by
interpolation. The data of each subinterval Td must be used in a
separate adjustment of the sz, the various solutions then being
combined as explained in paragraph (3. 8).

Summarising: the coefficients should be recovered from a practically
unbroken data stream lasting almost exactly Nd nodal days, and the
reference orbit should be chosen so that, its mean radius being as
close as possible to the one originally specified, it has a period
that results iq.an exact number of revolutions Nrin Nd days. The
sampling rate it and Nr must be larger than 2Nmax and Nmax’ respec-
tively, to avoid aliasing. To prevent secular effects due to perfect
tesseral or sectorial resonances, while ensuring the finest coverage
possible in Nd days, Nr and Nd must be relative primes. The choice

of a reference orbit and Nd satisfying these conditions canbe done

by successive approximations, involving repeated small changes of

the mean orbital radius.

Note: In addition to the "frozen orbit" where & = 0 (fixed argument
of perigee, closed reference orbit) one could choose & = k Zn/Td with
k = 0,1,2,... and obtain a rotational-symmetrical data structure leading
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to a sparse normal matrix (sparser than that in next paragraph,
which corresponds to k = 0, because the even and odd degrees within
the same order become decoupled). The problem is that this requires
a more eccentric orbit, unless Td is very long, and the use of a
less accurate orbit theory based on a processing ellipse.

The normal equations arrow structure and their direct setting up.

As shown in the previous paragraph, when the unknown Aﬁﬁm are grouped,
first by order and then according to «, the partition G11 of the normal
matrix is block-diagonal, the size of the blocks decreasing with m
according to the formula: block dimension = (Nmax'm+1)’ except for
orders 0 and 1, where this dimension is less. Moreover, as shown

by (3.6.5), the value of the element gn;gl“|
a, so both blocks corresponding to the same m are Zdentical, except for

of G,, does not depend on

the zonals, where there is only the block for « = 0. The overall dimen-
sion of G11 is (Nmax+1)2—6, or the number of all coefficients through
degree Nmax’ minus those of degree zero and one, and the second and
third zonals, all of which are "dropped" from the adjustment for

various reasons given in (3.4). A1l the blocks in G,, are symmetric.

If the "arc parameters" of each arc are grouped together, the submatrix
G,,» corresponding to all those unknowns, is also block-diagonal, the
blocks being all of dimension 9; there are as many blocks as arcs, and
they are all symmetrical. Naturally enough, the dimension of G,, is

9 x number of arcs.

Matrix G,, and its transpose, G both are of dimension ((N

2
21° maxtl)=6)
(9 x number of arcs), and have no especial structure. The elements of
G12 and 621 are the scalar products of columns of the A matrix related
to the Acﬁm with those that correspond to the "arc parameters"”.

With the unknowns grouped as explained above, the normal matrix G has
an overall arrow pattern of non-zero elements, the diagonal blocks of
G11 forming the “shaft", those of G22 the "tip" while G12 and 621 are
the "cutting edges", as shown in figure (3.7.1). As explained in para-
graph (3.8), solving a system of equations with an arrow matrix is
much easier than solving another system with the same number of
unknowns and a full matrix.
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Corrections to coefficients AC gm

m=0 m=1 2 3 N\_ Arc Parameters
' ) i (9 per arc)

a=0 L¢:’t=o 1 0101

Fig. 3.7.1 The arrow pattern of the normal matrix.

A very important property of G, from the point of view of carrying out
the adjustment, is that its elements can be found directly, without
having to compute and store first the whole matrix A (which is truly
gigantic in the case under study) in order to obtain the scalar products
of its columns. Furthermore, calculating the elements of G in this way
involves less operations than when forming scalar products, all of which
brings about not only a great saving in computing costs, but also
greater accuracy, as the arithmetic rounding errors decrease with the
number of operations. This direct determination of G shall be treated
now in some detail.

Before considering the setting up of the various partitions of G, it
is better to generalize the problem somewhat to include correlated
observations. These may arise, for example, when the average interval
Ah is Tlonger than the sampling interval at, so there is an overlap of
contiguous measurements, and their errors. Assuming that the random
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part n; of the error constitutes a stationary stochastic process, so
the correlation between a measurement at ti and another one at ti+k
depends only on k, and assuming also that the correlations are symme-
trical about ti in time and become practically zero after some small
number of sampling intervals K before and after ti’ then the variance-
covariance matrix of the noise, or P, has a very strong structure,
being symmetrical and banded, with bandwidth 2K+1, and also Toeplitz,
i.e. the elements along any of the principal diagonals are all equal,
provided that the observations are ordered in the same sequence as
they were taken and the data stream is unbroken. The key to simpli-
fying the adjustment is the overall periodicity of the data stream,
resulting from the choice of reference orbit explained in paragraph
(3.6). This periodicity is disrupted by the existence of correlations
between the errors; since the last measurement is not correlated with
the first K ones, the data stream does not "bite its tail" anymore,
as in the uncorrelated case. This "tail biting" simplifies matters so
much that, assuming that K is a very small number compared to that of
the measurements TM (perhaps 1 or 2, versus several millions), it is
preferable to improve slightly on reality and suppose that the few
first and last measurements are , in fact, correlated. If we accept this
little Tie (which only applies to correlated measurements), then the
W matrix becomes Toeplitz circulant, i.e., successive rows are cyclical
permutations of the first one, in addition to being symmetrical and
banded as before. Furthermore, the elements of the first row are equi-
valent to samples of an even function whose period equals the length
of the data stream. A1l this properties are retained by the inverse
of P, or weight matrix W. An extremely useful characteristic of W,
when it has this structure, is that, because the first row has the
form
% ( NM— 1 ) o

W= kio Ay cos k N (i-1) (3.7.1)

{assuming NM is even, for simplicity) where Nﬁ%f = uy is the fundamental

frequency of the data stream, then the eigenvectors of W come in pairs

o, Wk

Wes Wes with components



- 121 -

K .
wci = Akkk cos k N_ (i-1) (3.7.2a)
ko oAz sin k 28 (5-1), 1< <N (3.7.2b)
Wsi = Mtk Ny » -1 =Ty e

associated to the common eigenvalue

Mg "'TT——_ NM]% Ak’ where sk =

(3¢5 1if k=0
{ (3.7.2¢)

0 otherwise
If v and u are of the type

k, :\2n
- . - s o _{mj
Vi = v s1n(met1+¢ ) » where “nj = Jjn +me'= _NEZ%——

(because of the congruences among U 6' and Ng%f Wy ) and, further-

more, w . # 0, w . < mat”! = 3w_ (or half the samp11ng frequency), then
mJ mJ S
T 2
v WU = VU(EN,) Ak(mj) (3.7.3)

From all this follows that, when the observations are correlated, and
we accept a slight distortion of facts regarding the first and last

measurements, then expression (3.6.5) can be generalized quite easily
to

( 2 n+H
iNy) z A S, 4 5y if m=m' and a=a'
L ZM j=-(n+H) k(mJ) nm j°n'm’ j'
nmoao _
Inma - { .
0 otherwise, (3.7.4)

where H = Min(n3N+1, n'+3N+1). If W = o"°I, then A, = 0'22/NM

for all k < %(NM-I), and (3.7.4) reverts to (3.6.5).

H can be reduced further; starting with H = 1, it can be increased
gradually up to H = 4 for Min{n,n') = 300. Expression (3.7.4) indicates
how to set up G11 directly. The number of products and sums is 2(n+H)+2
and 2(n+H), respectively. If the elements of G , were formed in the
usual way, as scalar products between the columns of A, the number of
operations would equal that of the measurements, which is much larger.
Conditioning, as explained in paragraph (3.3),can be introduced by
adding suitable positive quantities to the diagonal elements of G,
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Finding the elements in the 9 x 9 diagonal blocks of G,,» corresponding
to the arc parameters, is better done by the usual scalar products
instead of using Fourier coefficients, as for G11' The reason for this
is that the elements of a column of A corresponding to an arc parameter
are zero everywhere except on the rows of A associated with observations
in that arc, so its Fourier coefficients, CWk SWk » are not zero

at any frequency, because of the d1scont1nuou§ natuﬂe of the arcs, and

their number equals the largest dimension of A,

The elements of G,, (and of its transpose, G,,) are best obtained by
multiplying the Fourier coefficients snrn by the corresponding coeffi-
cients of the columns associated with arc parameters, ka and Sxk

The reason for using here the Fourier coefficients of thgge co]umﬂg, is
that the number of operations is determined by the number of coefficients
gnmj’ which is always much less that the number of observations, or
largest dimension of A. The formula for the elements of G, is, there-
fore,

wk 2 - wk _. - wk -

g = (3Ny)" T A, iyS.a(C sin ¢ _ 4§ cos ¢ ) (3.7.5)
nma M i k(m3j)>nmj Y0 Mo wp 5 mo

where w identifies the arc, and k = 1,2,...q, the particular arc variable.

To f1n1sh setting up the normals, one must find the right hand side

vector A Wd=Db. The components of b corresponding to the AC re
2 - - -
b = (3Ny) ¢ A (mi)s_ .(C sin ¢ +S cos ¢_ ) (3.7.6)
na M j k nmj Y3 Mo “nj Ma

where Cw ) and Sw _are the Fourier coefficients of the data stream,
mj mj
corresponding to frequency Onj = jn +m '. The b componens for the arc para-
meters, bwk’ are best found using conventional matrix vector multipli-
cation. To obtain the coefficients C ) and Sw one may use special
m mj
Fourier Transform algorithms, designed to handle a data stream with

millions of samples. The same applies to finding the CWk and SWk

mJ fﬂJ
Such procedures move the information from bulk storage devices, such

as disk in and out of the random access central memory, when needed, and
as efficiently as possible, bulk storage is necessary whenever all the

data cannot be contained in central memory at once (see Brigham,
Chapter 12, 1974).
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3.8 Solving the normal equations and finding the formal variances and

covariances of the results.

The goal of the adjustment is to obtain corrections Aﬁﬁm to the poten-
tial coefficients, which amounts to estimating the coefficients them-
selves when these are totally unknown. The arc parameters are auxi-
liary variables included for the purpose of separating those effects
that are periodic over the whole length of the "tail-biting" data
stream, and depend only on the Aﬁzm, from those who are aperiodic and
may depend on other things. Thanks to these extra variables, the
normal matrix G has the arrow structure described in the previous
paragraph. But, beyond allowing this structure to appear, the arc
parameters are of no real interest in themselves and have no clear
physical significance.

After grouping the unknowns and partitioning the problems as explained
in paragraph (3.2), the normal equations can be solved by Cholesky
factorization of the normal matrix. Calling L to the Cholesky factor,
so G =1L LT, where L is lower triangular, then L can be partitioned
into L,,, L,,, and L,, (corresponding to G,,» G,;» and G,, as defined
by expression (3.2.13)), respectively. Moreover, L., is, in fact, the
Cholesky factor of G11' Since the Cholesky factor of a block-diagonal
matrix is also block-diagonal, and the blocks in the factor are the
factors of the original blocks, obtaining L,, reduces itself to
obtaining the factors of the blocks of G11’ which breaks the task
into a number of much smaller and mutually independent operations.
Once L,, has been found, obtaining L,, and L,, is also a straight-
forward and relatively small task, if one uses expressions (3.8.5a-c)
to be introduced later in this paragraph) to this end.

With the partitions of L in hand, the solution of the normals can
proceed along the following steps:

First, obtain the vector s,, by solving the lower triangular system
of equations

L,, s, =b (3.8.1a)

11 =1 —

Next, compute L,;s, and find &, the estimate of the arc parameters,
by solving the equation
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Fa=b -L, s (3.8.1b)

N T
where F = L22 L22

Finally, find &, the estimate of the potential coefficients, as the
solution to the triangular system of equations

is a real and symmetric matrix already factorized.

L e=s -L 8 (3.8.2)

For the derivation of these formulas, and of the Cholesky method gene-
rally, the reader may consult the book on least squares' theory by

P. Meiss1 (section D, par. 3+2). %n Meissl's book, L, s L, s L, os Pc’
Pa’ ¢ and & are called R11’ Rlz, Rzz, bl, b2, X, and X, respectively.
Obtaining L, is further helped by the fact that, in G, the blocks
corresponding to unknowns Aﬁﬁm with o = 0 are identical to those for
the Aﬁﬁm with o« = 1, and so are the respective factors, so it is suffi-
cient to factorize half of the blocks (say, for « = 0) to determine

the whole L . As the blocks are dealt with independently, the arithme-
tic rounding errors in the computation of one block do not propagate

to the others. Moreover, the largest block is the one for the zonal
coefficients, and its dimension is 1ikely to be about Nmax
300. The smallest blocks are of dimension 1, corresponding to the

coefficients of order N. Therefore, rounding errors and computing

, or nearly

time are not going to be a serious problem.

The greatest effort is in obtaining L,,+ From previous experience
(Colombo, 1981a) with factorizing a similar block diagonal matrix,
where the blocks were close in nature to those under discussion here,
but only half in size, I estimate that calculating L,, would require
about & hours of C.P.U. timg (most of it employed in setting up the
normals by the method explained in paragraph (3.7)) in a computer
similar to the AMDHAL 470v/VL-II used by me in 1981 at the Ohio State
University. This assumes working with double precision arithmetic
(64-bit words), and the availability of some 4 megabytes of central
memory. Accordingly, the solution should be feasible even with existing,
sequential machines, although it would remain a quite considerable task.
This is a time, however, when quite revolutionary changes in computing
machinery are taking place, destined to provide better and much faster
devices for scientific calculations than the business-oriented computers
common until now. In addition to advances such as the introduction of
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“pipelining", which speeds up matrix-vector operations generally by orders
of magnitude, parallel processing could further accelerate the task, as
each block in L;;, for example, can be computed quite independently from
the others. A11 these improvements will save computing time, but the
results may not be better than those produced by a conventional machine,
as their accuracy depends only on the lengths of the (memory and arith-
metic) registers and not on computer architecture. Whether using an uncon-
ventional machine is of any real advantage will depend mainly on economic
considerations (relative costs) and on the availability of the machine
itself. Obviously there is no gain in using a computer that can do the
job twenty times faster, if the charges, per second, are thirty times
higher. Numerical accuracy should be no problem with most present-day
"mainframe" computers, except when calculating the nominal orbits and
forming the residuals, where both arithmetic unit and central memory
registers of a length similar to those of ordinary CDC machines are
needed. By "arithmetic" I mean, in all cases, double precision arithme-
tic. Four byte word machines could do the job of computing the reference
values only be resorting to extended, or quadruple, precision for the
floating-point arithmetic, though this is very time-consuming in today's
devices. But these can be used for the adjustment itself without any
serious problems, as far as I can see.

In addition to solving for the corrections to the potential coefficients,
it is of interest to obtain the formal variances and covariances of the
errors in the solution. In principle, they can be found by computing the
partition (G—l)11 of G™', which corresponds to G,, in G, according to

(6 -6 6 ¢ )7!

11 11 12 22 21

(™)

E. (the error matrix for the aCl)  (3.8.3)
which is applicable not only to ordinary least squares estimation (see
Meiss1 (1982), section A, paragraph (7.4)) but also to least squares
collocation with parameters, as shown by K.P. Schwarz (1976, and 1978).
However, while inverting G11 alone presents no great problems, because
it is block-diagonal in either form of adjustment, the extra term
-GIZG;;GZ1 in (3.8.3) causes the inverse to loose all distinct structure
other than symmetry: it is one huge full matrix. Nevertheless, if the
arc parameters, which are the source of this problem, are much fewer
than the Atzm’ as it is likely the case, one would expect (G'l)11 to

be not too different from Gzi, which is block-diagonal. So it is likely

that the elements of (G'l)11 which correspond, in position, to those in
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the blocks of Gzi are going to be considerably larger than those outside
these blocks. In other words: 1§ is 1ikely that the correlations in the
results should be mostly among sz belonging to the same order and having
the same o. Therefore, the most interesting part of (G'l)11 would be the
diagonal blocks, and finding these relatively small portions of the whole
G'1 can be done with a computing effort comparable to that needed to

find the solution (3.8.1). What is required is the complete Cholesky
factor of the nqrma1 matrix G, which has to be computed, anyway, to

solve for the Aﬁgm. The Cholesky factor L has the form

ot

L

11 0

i
|

- - — - -
'
]

I'21

22

and satisfies the matrix equation

]
Lll |0 L
R '
Loy :Lzz 0 1 L22 G21 :622

1 Gll |GIZ
| (3.8.4)

The formulas for calculating the various partitions of L, once L,; is

known, are

L,,X =G, (3.8.5a)

Ly, =X (3.8.5b)

Ly, = (6,,-L, L1 )¢ (3.8.5c¢)
where X is obtained by "forward substitution", and (GZZ-LZILL)é indicates
the Cholesky factorization of G,,-L, L} .

Once the Cholesky factor of G is known by doing the extra operations
indicated by expression (3.8.5a-c), one can proceed to compute the desired
elements of the inverse of G. One column of G'1 is a vector gd satisfying
the equation

Gg:.=¢e (3.8.6)
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(G is symmetrical) where e is a vector of the same dimension of G and
ﬂd’ in which all elements are zero except for the jth, which is 1. This
equation can be solved by applying the Cholesky method, but only the
elements of the solution vector g corresponding to the diagonal blocks
in G are wanted and, because of the symmetry of G » only those at
agd below the main diagonal. To save computing effort, the unknown

Aéﬁm can be "reordered" by thinking of those belonging to the order m
under consideration to be at the end of the sub-vector ¢, so the corre-
sponding diagonal block in G,, is the one at the Tower-right corner.
Because L, is also block-diagonal, the "forward substitution" phase of
the solution can start at a point level with the top row of the {now)
Tast block of L ,,
of the intermediate solution vector is found. In this way, only a rela-
tively small part of this intermediate vector is computed. The "back
substitution" phase starts from the bottom of g and moves up unt11 the
last desired element of 95 the one on the main d1agona1 of G, is
obtained. In this way, if Ncma is the number of Acgm with a given m

proceeding down from there until the lowest component

and o, and Na is the total number of arc parameters, only the last

Ncma + N components of the intermediate solution vector and an equal
number of elements of g s at the very most, are computed. The resulting
incomplete version of G 1s, of course, a "poor man's variance-cova-
riance matrix", but it contains what are likely to be the most signi-
ficant parts of GI;, such as the formal variances of all the Aéﬁm and
their correlations within the same order, which are the strongest.

The "reordering" of the unknowns needed to speed-up computations (and
to decrease numerical errors) is a purely notional one. Reordering does
not change the values of the elements of the various blocks of L, G and
G'! that get moved around, so there is no need to shuffle them inside
the computer, but merely to alter the order in which they are used in
the calculation after they have been created in the "patural" ordering
of increasing m and, for a given m, of increasing «. Obtaining a com-
plete G ! s likely to be unfeasible with existing machines, because

of the size and lack of structure of this matrix, and to remain so for
the foreseable future.

It could happen that, during a mission, the altitudes of the spacecraft
and their separation are kept more or less constant over long periods
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of time, but are changed from period to period, so as to get better
resolution on particular bands of the spectrum from the partial data
streams gh (where h indicates the corresponding sub-interval), and
for other reasons (such as reducing aliasing between coefficients),
that have been suggested by other workers. Each partial data stream
will contribute a subset of observation equations

d

Ahfh +n, =dy (3.8.7)

which can be partitioned: A = (A : Aah], 5h-[éh]. Every A, has the

c
basic structure discussed here, prgvided that the partial stream is
long enough to come sufficiently close to "biting its own tail". The
unknown Aﬁzm may not be the same in all cases, because Nmax may change
with altitude from one segment to the next, and the arc unknowns will
be, of course, all different. To maintain the overall arrow structure
of G, all unknowns, whether they are considered or not in the actual
observation equations of a given sub-interval, should be entered in a
formal way, by assigning to some of them null coefficients in the rows
of A corresponding to equations where they do not appear, so the
overall order is left unchanged. The adjustment can then be done using
the formula

2 =1 4T _ T
¢ = (ﬁ Gllh) ﬁ(Achwhgh GlthzzhAahwhgh) (3.8.8.)
where 1 indicates a sum over all values of h, and the individual
h
G = AT WA _ etc., are set up in the manner explained in paragraph

11h h h h
(3.7), filling up with zeros those portions that correspond to unknowns
absent from the corresponding subset of observations equations.

The adjustment when Nma is sufficiently small.

X

Assume that the satellites are high enough, so only components of the
spherical harmonic expansion of the potential below degree Nmax can be
detected from the relative velocity signal, where NmaX is sufficiently
small for the effect of the "ups and downs" and along-track departures
from circularity experienced by the reference orbit to be quite small.
Then, the asymmetry of the orbits with respect to the equator can be
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ignored, in a first approximation, and the results obtained in this way
can be refined without much extra effort. There is advantage in this
because, for a symmetrical orbit such as a circle, the blocks of G are
halved in dimension, though doubled in number, as it will be explained
shortly. The asymmetry of the periodical reference orbit of section 2
stems from it being slightly elliptical, with its perigee and apogee
fixed in their latitudes in the opposite hemispheres, so the two space-
craft pass lower over one hemisphere than over the other. At the same
time, they move slower when they are higher, taking longer to cover one
hemisphere than the other. This results in more measurements being

made on that on which they are higher, a phenomenon that would tend to
counteract the 1oss of sensitivity due to the greater altitude.

The departures from symmetry modulate the orbit and more than double

the number of frequencies present in the signal, compared to the case

of a symmetrical and circular orbit discussed in paragraph (2.§ ). This
change is very small for perturbations caused by low degree coefficienmts,
and increases slowly with n(l). It cannot be ignored in the sort of mission
discussed in the main body of this work, because the satellites are then

too low, so Nmax is much too large. But for N small enough, the situ-

ation can be very close to that where the ref2$:nce orbit is circular,

so that the perturbations caused by the AC%m with n-m even contain only
frequencies jn0+me' where j is even, and those with n-m odd, only fre-
quencies where j is odd. This makes the columns of A for Aﬁzm with n-m
even, orthogonal to those for Aﬁgm wit? n-m odd, so the corresponding
elements of G are zero. Ordering the AC:m not only according to n and

a, but also to the parity of n-m, results in diagonal blocks that are
half the size of those when the reference orbit is not circular. In
general,with a slightly elliptical orbit, those elements of G that would
be zero if the orbit were a circle, would be smaller than the rest inside
the larger blocks. So G11 can be considered as the sum of Gll, where only
the smaller "half" blocks are non-zero, and a “perturbation matrix" 4G,
of the complementary off-diagonal blocks corresponding to coefficients
Aﬁz.m. and Aﬁﬁm with n-m even and n'-m' odd simultaneously. If the ele-
ments of AG11 are very small (and its larger eigenvalue is << 1), the
following series converges quickly:

Msee formulas (2.2.16) and (2.2.33-34) in par. (2.2).
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-1 _ a-1 ® a-1 ia-1
Gy = G +AG), iEO (-G,18G,,) G, (3.9.1)
(where Fl = FF...F i times). Truncating at i = Imax’
I
) - R max
=6 Eé ) - hotaGyy = hy (3.9.2)
i=0

where h. is the solution of -G h; = G h;  , with hy, in turn, being
the solution of the system Gllhﬂ = géR). This series expansion reduces
the solution of the normals to doing Imax solutions involving Gll,

with its "half" blocks. Because these blocks are half the size, but
twice the number, of those in G,,, and the solution of a system of equa-
tions is proportional to the cube of the number of unknowns, the number
of arithmetic operations required is Imax/4 times the number that is

needed to solve the normals in the conventional way. If Imax < 4, there
is a real economy in computing.
m = Cte.
(Smaller
Elements}
| 4
4 ===
:;/7 L ]
G441 BLOCKS 611BLOCKS AG11BLOCKS
(Larger

Elements)

Fig. 3.9.1 The blocks of G,,, G;,, and aG,,.

11°

3.10 Miscellaneous questions.

Out of many problems associated with the global high resolution mapping
of the gravity field by techniques Tike those described in this section,
I shall consider here five questions that have turned up rather often
when discussing this topic W1th colleagues.
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(a) Aliasing.

This word means really two rather different things. The first is asso-
ciated with the impossibility of separating information at two frequen-
cies equidistant from the Nyquist frequency (half the sampling rate)
because the sampling process scrambles them. This means that signal
coming from a Aﬁzm where (n+3N)n,+me' > % (sampling rate) will have

some of its contents mixed-up with those of different order coefficients
and, if the scramble is bad enough (too many frequencies above the
Nyquist) the coefficient in question will be estimated with great error,
and will interfere with the estimation of others. It is also possible
that the design matrix may become rank-defficient (and, thus, the normal
matrix) if one tries to estimate too many coefficients (see Colombo
(1981b), paragraph 1.3)). The thing to do here is to guess as accurately
as possible the band of frequencies within which most of the power in
the signal is 1ikely to 1ie, and to select the sampling frequency accor-
ingly. Guessing the bandwith of the signal requires studying its likely
power spectrum on the basis of some model of the degree variances cﬁ, as
proposed, for example, by Wagner and Goad (1982).

The second meaning of "aliasing", at least in satellite geodesy, refers
to the bias in the estimates of the Aﬁzm caused by not including enough
of them among the unknowns to make a sufficiently realistic model of the
signal. This problem arises when there is more information in the signal
at high frequencies than it is possible to model, as this would require
too much computing effort. Then, the expansion of the disturbing poten-
tial is truncated too low, resulting in errors in the results. These
errors are likely to affect more the high degree coefficients close to
the point of truncation. Let us say that there is significant informa-
tion in the signal up to degree 400, but it is only practical to model
up to degree 350. In reality, one would be happy enough with a global
model up to degree 300, because finer detail is more conveniently mapped
by local methods, as explained in paragraph (3.12), and a model with
more than 105 coefficients (roughly the number up to degree 300) can be
awkward to use. One possible solution is to estimate up to degree 350,
the maximum practicable, and then to throw away all coefficients above
300. Those are put in the adjustment to absorb the brunt of the aliasing
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due to the coefficients above 350 that have been ignored, so that the
ones up to 300 are not seriously harmed.

(b) Iteration.

The model of the signal given in paragraph (3.4) is not perfect, but
only a good approximation, as shown in section 4. Because of its errors,
the estimates based on it will be biased. Using the adjusted potential
coefficients and all the tracking data, one can obtain better nominal
orbits, form new residual measurements, and proceed to estimate the
errors in the results of the previous iteration by a new adjustment of
the coefficients, repeating the process as many times as feasible, to
refine the solution as far as possible. If the initial results were
good enough, this procedure should converge to better estimates. Since
the normal matrix, as explained in paragraph (3.1), is not iterated
with the solution, but the same matrix is used again and again, to save
computing at the cost of a minor Toss in accuracy, there is a problem
if one uses conditioning based on collocation. The conditioning matrix
C must have for diagonal terms the inverses of the variances

I (Aﬁﬁm)2(2n+1)-l, but these change from one iteration to the next, as
Mo

the corrections Aﬁzm become smaller. The variances at the ith iteration
can be guessed as equal to the formal variances of the errors in the
previous iteration. The difference between the old and the new C can be
regarded as a perturbation matrix, and the solution dealt with by a
refining algorithm 1ike the one proposed in paragraph (3.9), at little
extra computing cost. Ordinary least squares does not present, of
course, this problem.

(c) Downward continuation and convergence.

The data aregathered by the two satellites as they run their courses
nearly two hundred kilometers above the Earth, but it is on the surface
of it that the resulting gravity field model has most of its potential
applications. To obtain a map of gravity anomalies, geoid undulations,
or similar quantities of interest, the potential coefficients obtained
from the analysis of the satellites' data can be modified simply by
multiplying them by factors such as a, (n+l), etc., and then the values
according to these coefficients can be computed by replacing the general
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coordinates r, @, X in the corresponding spherical harmonic expansion
with those of the points of interest on the Earth's surface. One problem
with this straightforward operation is that the expansion is truncated
at Nmax and, even if one were to assume that it does converge in the
limit to the desired quantity, there is no guarantee that it will do

s0 quickly enough for its truncated form to give an accurate result.
Spherical harmonic series are a special kind of Fourier series, defined
on a sphere, so, like their counterparts on the real line, they can
converge slowly and in an oscillatory fashion near those points where
the function they approximate is discontinuous. This is known as Gibson's
phenomenon, whose existence would reveal itself near strong and abrupt
anomalies as groups of ripples surrounding the anomalies in the map, and
corresponding to no real feature. This distortion can be reduced by damp-
ing or smoothing the high degree terms, i.e. multiplying them by factors
less than unity chosen in some appropriate way (it may be enough to use
collocation to condition the normals). The ultimate question of whether
the series as such converges or not down to the surface is one that has
puzzled and worried many geodesists over the years, while it has been
generally accepted by them that this is not 1ikely to be a very serious
problem in practice. In a recent study by Jekeli (1982), the effect of
the main topographic features of the world was examined by computer
simulation, to see if they would affect the representation of the geo-
potential by a series truncated at a high degree, like n = 300. No
evidence of real difficulties was found, so one may expect a reasonable
behaviour of the truncated series, which means that the map would be
reliable over most of the world. The theoretical problem of convergence
was settled many years ago by Walsh (1929), who extended a theorem by
Runge on the series expansions of analytical functions of complex varia-
bles, to the case of spherical harmonic expansions of harmonic functions
lTike the gravitational potential,though this was not known to geodesists
until recently. His theorem shows that, if there is a distribution of
mass inside the Earth for which the series does not converge at the
surface, there must be also another that differs from the first by as
little as desired, and whose expansion converges uniformly down to the
surface. Moreover, the corresponding sz in both expansions can differ
from each other also by as little as desired, so their differences can
be always less than the uncertainty in their estimated values due to



- 134 -

observational errors. Conversely, if the series converges, it is always
possible to find another expansion whose potential coefficients differ
from those of the convergent series by insignificant amounts, corre-
sponding to a mass distribution that differs from the true one by as
1ittle as desired, and that does not converge at the surface. This
situation has been compared by Moritz (see Chapter 7 of (Moritz, 1980})
to the question of whether a distance measurement corresponds to a "true"
distance that is a rational or an irrational number . Not surprisingly,
he concludes that both problems are just as physically meaningless.

‘I also have discussed this problem in detail in (Colombo, 1982).

(d) Numerical integration of the nominal orbits.

A gravity anomaly of 1 mgal covering a 1° x 10 area on the ground will
be sensed as a change in the relative velocity of the spacecraft of only
a few micrometers per second, so, in order to detect features as small
as 1 mgal, the measurement noise should not be much more than one micro-
meter per second. This means that a great deal of trouble and expense
are being devoted at present to the design of an unprecendently accurate
tracking radar that each spacecraft will carry to sense the movements of
the other. As explained in paragraph (3.1}, the measurements themselves
(after screening for blunders) must be converted into residual obser-
vations by substracting from them corresponding values of the relative
velocity computed from existing models of the gravity field, the attrac-
tion of the Sun and the Moon, etc. This must be done to eliminate
effects not included in the theory, and nonlinearities due to inevitably
large departures from the periodical reference orbit along which the
problem must be linearized to ensure a feasible adjustment. These com-
puted values are obtained using the position and velocity of each
satellite along its nominal orbit, and this orbit is calculated by
numerical integration. The errors in the numerically integrated velo-
cities will show up in the residual measurements, so one must be care-
ful that the accuracy of the original data is not spoiled by the intro-
duction of a lot of integrator noise when forming the residuals. My
experience with the numerical integrator that I have used for getting
the results of section 4 suggests to me that, with a computer whose
double precision words are wore than 100 bits long, like a CDC machine,
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for example, no serious numerical problems should crop up. Of course,
one must also use a very good numerical integrator, but probably nothing
beyond the present state of the art.

During some procedures, like the iteration of the solution, for example,
it becomes necessary to compute nominal orbits using very high degree
spherical harmonic expansions for the gravitational accelerations. This
cannot be done by the usual method of adding up the terms of those series
at the point of computation, as that would require a tremendously. long
time. An alternative that has been contemplated for many years, but
seldom, if ever, used, because no real need for it has existed so far,

is to compute the accelerations on a regular grid and then to interpo-
late them to the places in the orbits where they are needed. Calculating
spherical harmonic expansions on regular grids (constant increments in
latitude and in longitude) covering the whole world can be done most
efficiently and in a few minutes using today's machines, even when Nmax
is as high as 300. For determining orbits, one needs a three dimensional
grid, made up of a succession of contiguous and concentric spherical
shells, each divided in a regular array of parallelepipeds the bases of
which form a regular two-dimensional grid on the bottom spherical sur-
face of the shell. At the vertices of each cell, the three accelerations
aps 3, 3, are computed using an efficient procedure 1ike those des-
cribed in (Colombo, 1981b). The interpolation from the vertices to a
point inside can be done by some simple and fast scheme, and more points
from neighboring cells could be involved. The accuracy of the procedure
would depend on the size of the cells, and on the number of vertices
used. Linear interpolation of any kind consists in multiplying the values
at the nodes by certain weights and then adding them up together. The
weights will be different for cells with different mean Tatitudes and
heights, but the same for those in the same shell and latitude, as the
grid must have rotational symmetry about the Earth's axis. This means
that only the weights of cells in one wedge, cutting across the whole
system of shells and running from pole to pole, are needed, because

they repeat themselves in the cells outside. The 3-dimensional set of

all the values of the three accelerations is bounhd to be quite huge,

as small and, therefore, numerous cells are needed. But it can be

stored in mass storage devices, such as magnetic disks, arranged in
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files of a simple sequencial organization. In each, the shells will be
represented by consecutive sub-files, and in those, the rows of cells
of equal latitude by smaller consecutive sub-files in which the cells
are stored sequentially by longitude. Knowing the approximate initial
conditions, the orbit can be integrated with sufficient accuracy to
predict through which cells the satellites will pass within a certain
period, using only a few terms of the spherical harmonic expansion
(central force and oblatness) to compute rough estimates of the orbits.
Once the cells needed are identified in this way, the values of the
accelerations at their vertices, and the corresponding weights, which
may be in a separate file, can be picked up by scanning sequentially
through the data set on disk. With a suitable arrangement of the files,
they have to be searched only once in this manner.

The crucial point is the interpolation scheme and the size of the cells,
as both determine the accuracy of the interpolated values. This accuracy
should be high enough to guarantee that the interpolation errors shall
not corrupt the residual measurements. The accelerations, in their
spherical harmonics form, are functions of r, ¢, and X, and can be
interpolated as such by a carefully chosen finite differences scheme.
During my stay in Delft, E.O. Schrama has tested one such scheme and
found that the orbits computed using the interpolated accelerations
were virtually as accurate as those calculated without interpolation.

He used a field of zonals, complete to degree 300, a ten seconds'inte-
gration step, and the same integration subroutine that I have used for
the work reported in next section. Mr. Schrama is finishing his sur-
veying degree at the Department of Geodesy, and did his work under the
supervision of Professor Rummel. His results give me confidence that
simple and very efficient interpolation schemes can be found to com-
pute orbits using very high resolution gravity field models. These
schemes can be used, of course, with low degree fields as well, and
doing so can result in a great deal of time and money being saved in

the routine operation of computing orbits that goes on nowdays in

many places round the world.

(e) Two different orbital planes.

The ideas developed here for the case of two satellites following much
the same course, so they share a common reference orbit,can be gene-
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ralized to a situation in which the orbital planes are so different that
two separate reference orbits are needed, one for each spacecraft. In
this case, the rotational symmetry of the data distribution that under-
pins the efficient adjustment of the potential coefficients can be ob-
tained by making each reference orbit identical, except for a rotation
of the orbital plane, and closed and periodic as described in section 2.
The linearized model will contain a larger number of terms, as the
out-of-plane perturbations must be included, so the computations must
be somewhat more laborious than with coplanar orbits. A possible advan-
tage would be that, as the data is sensitive to East-West forces as well
as to North-South ones, the tesserals and sectorials may be estimated
better than with the two satellites moving in the same meridional plane
(see also the comments at the end of paragraph (1.4)).

The data as "point" measurements.

The discussion in this report is centered on the estimation of the Aﬁﬁm
from a virtually uninterrupted stream of data, long enough for it to
"bite its tail". This is what one hopes to obtain out of a gravity field
mapping mission, this is what the mission is supposed to give. But will
it? If not, what? A break in the data of a few minutes is not fatal, as
one could fill the gap with interpolated values from the measurements
taken near both ends of it. Several such gaps would deteriorate the
results. One or more larger gaps, where a substantial part of a revolu-
tion is missing, could put "paid" to the whole idea. A break due to a
malfunction that lasted more than one revolution would do that for sure.
At one end of the range of possibilities, not a single observation is
missed, the stream is Tong enough to "bite itself",and the ideas pro-
posed so far can be applied. At the other end, there are so many breaks
that only over some regions the coverage is adequate, and one must
resort to making local maps of those, giving up on global methods. It
is the middle situationthat is a problem: a global coverage, but too
many breaks. In this case one would like to do local solutions over
those areas with the denser coverage, and still get some kind of global
model using all the data available, even if some corners must be cut to
realize this, so the results are 1likely to be less than the absolute
best. It is a question of doing something at all. In this situation,
one could regard the measurements, not as samples in a time series, but
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as "point" measurement taken with an instrument sensitive to some aspects
of the gravity field, which exists in space,

Looking at expression (3.4.16) for the residual signal, this could be
written, ignoring the aperiodic terms, as
8§ = ¢ AT
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Nma = -ma—mLO, L, being the longitude of the ascending node at .,
the first time the reference position of the middle point between satel-
Tites reaches perigee. But m(s't+L ) = mx, so
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The values of cos(jn0t+$ma) and sin(jn0t+$ma) repeat themselves for all j
only at those times t;, t,, ..., ti when the corresponding angles "oti
are congruous with each other, i.e., differ by whole multiples of 2.
Because the reference orbit is periodical, whenever this congruence
occurs, both r and F' determine the same point in the orbital plane, for
an observer fixed to this plane. Therefore, r and ¢ in Earth-fixed coor-
dinates are aiso the same. The congruity of not means that the satellite
is, at such times, always in an ascending pass (the half of a revolution
where the satellites crose the equator going North) or in a descending
pass (the other half). So, if measurements taken along ascending passes
are considered separate from the others, the periodical part of the
signal in them is a function of position; the same is true, of course,
of measurements taken along descending passes.

As the Earth rotates and the orbital plane precesses, the common refe-

rence orbit (here I am assuming that the two satellites have been

kept close enough to it, in spite of malfunctions) sweeps a

surface of revolution round the spin axis, in Earth-fixed space. As the
measurements are taken no more than a few hundred meters away from this
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surface, and the spherical harmonics reflected in them change very slightly
over such distances, it is possible to assume that they have been taken
actually on the surface, and to assign to them the coordinates r, ¢, A of
the projection on it of the middle point between satellites. It is possible
to subdivide the surface with a grid of Tines of constant latitude and
longitude, and assign to each block the value of the average of all mea-
surements taken when the satellites were on ascending passes over them.
Another set of mean values can be formed using the descending passes.

These two sets of grided data can be processed quite efficiently, because
they are of the form

Pi+1 Aj+1
C ooy L 200 siny
65(1,3? = néa ACnm J (Function of )dy J cos JMA (3.11.1a)
(ascending) 0 (ascending) >
and Pi+1 J+1
ss(i,j) = = Aﬁzm J (Function of o)dp J z;g my (3.11.1b)
(descending) "M* o, (descending) 3,

where 8s(i,j) indicates an area mean, i,j identify a part1cu1ar block in
the grid, and the grid has rotational symmetry. Algorithms for least
squares adjustment and least squares collocation exploiting this symmetry
are discussed in detail in (Colombo, 1981b). One problem is that the
accuracy of the mean values changes with the number of measurements per
block. As indicated in the work just mentioned, if all blocks at the same
latitude are assigned a fictitious accuracy equal to the mean accuracy
for all such blocks, and an efficient estimation algorithm is set up on
this basis, the result, while not absolutely optimum, is the best esti-
mate that such an efficient procedure can provide. This is really a
minor problem, because at this stage one is trying to do what one can
with whatever one can get. Another problem is the elimination of the
non-periodic part of the signal. The secularly growing oscillations

could be removed by analyzing overlapping passes, as explained in para-
graph (3.4). The free response terms at 0, nys 2ng and 3n., which are
discontinuous from arc to arc, cannot be estimated in this way, or in

any other way I can thing of, from overlapping or from intersecting
passes. The best thing to do, probably, is to use as much information

as possible about the gravity field when computing the nominal orbits,

so the initial state errors, and the related oscillations, are kept
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small. Fortunately, for the Earth there is already a great deal of infor-
mation, reflected in gravity field models 1ike GEM 10C (Lerch et al.,
1981) and similar high resolution maps. These have come about since the
late seventies thanks to the availability of a great deal of satellite
altimetry data from the GE0S-3 and SEASAT missions, combined with land
gravimetry accumulated, through international exchanges, in large data
banks. After having obtained a first estimate of the Acﬁh by processing
the satellite-to-satellite tracking data in the way outlined here, it

is possible to use this result to recompute the nominal orbits, form new
residual measurements, and iterate the solution, hoping to improve in
this way on the previous one.

The use of a surface of revolution generated by a periodic orbit has been
proposed recently by Rummel and Colombo (1983) for the processing of mea-
surements of a gravity gradiometer carried by a satellite which are
"point" measurements, as an alternative technique for mapping the gravity
field.

Local solutions.

As an alternative to global mapping of the geopotential, which involves
estimating the spherical harmonic potential coefficients 5:m or equiva-
lent parameters, there is Zocal mapping where data collected over a
limited region areused to estimate the parameters of a two-dimensional
function defined on this region (bicubic splines, 2-D Fourier series,
area means, etc.). This function usually represents boundary values on
the Earth's surface, such as geoid undulations or gravity anomies, that
are susceptible of upward-continuation if they are known over a suffi-
ciently large area. Gravity field maps are commonly called "solutions",
presumably because the main job in making them is to solve a rather
large system of normal equations in order to fit some function to the
data. Be as it may, the usefulness of local solutions is very conside-
rable. If there arenot enough data to go around, they are the only possi-
bility and global mapping is out. If the distribution of data is too
irregular to use elegant methods based on uninterrupted data streams
and "tail biting", they are the only choice, as a global adjustment,
though possible in theory, requires too much computing in practice, so
it is not feasible. Instead, one makes many local solutions until they



- 141 -

cover the whole world, and then "stitches them up" in some way or another,
like a crazy-quilt. But even when a global solution is possible both in
theory and in practice, local solutions still have a very important, if
complementary, role to play. There are regions in our planet (and, presuma-
bly, in others which some day may be studied by these methods) where the
gravitational field presents strong and sharp anomalies; such regions
stand out in a map of the ocean surface obtained from satellite altimetry,
and are intimately related to cracks and folds in the crust. Where these
cracks and folds occur, a number of geophysical processes are at work
shaping the crust and upper mantle, so the study of these regions is of
great interest. Typically, along a major fault or mountain system there
are strong and narrow anomalous features in the field, perhaps a hundred
kilometers across and a thousand or more in length. The details of these
anomalies, even if they were detectable with a satellite pair, would be
near the 1imit of resolution of a spherical harmonic model with a maximum
degree of 300 or thereabouts, at least in one of their dimensions. To be
able to see them clearly one might need a maximum degree of 400 or higher,
with close to 200000 coefficients. On the other hand, most of the world

is actually very "flat" and uneventful in terms of gravity anomalies. So
many of the coefficients would be dedicated to modelling what happens
over a small portion of our planet, and on the rest of it they would be
just fitting the noise in the data, assuming that one uses ordinary

least squares adjustment. When using collocation, or a similar kind of
conditioning, the map will probably not reflect the finest detail,
regardless of how many coefficients are estimated, because such methods
tend to give a smoothed picture of the field.

A local solution, on the other hand, can provide as detailed a pic¢ture

of an anomalous region as the data would allow, by using all the para-
meters to describe just that region and nothing else. But it would be
needlessly time-consuming to map the whole world in 1ittle bits, most

of which would cover rather featureless areas. So global and local solu-
tions complement each other: the ones providing the main trends and

" broader outlines, the others focusing on interesting details while,
perhaps, combining satellite-to-satellite tracking data with other mea-
surements and with knowledge of geological structures, something much
easier to do in local maps.
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One problem with local solutions is that they tend to be numerically
unstable. To some extent, obtaining a global solution first, and using
it as a reference field to create residual data for the Tocal ones
afterwards, could reduce the numerical difficulties by removing the
trends and leaving only fast-changing anomalies to be mapped. Trends
de-estabilize, as anybody who has tried fitting low-degree polynomials
to closely packed data knows. Removing trends is, of course, only part
of the answer to instability, and the important question of how to
obtain good Tlocal solutions remains an open one at this time.
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Summary.

The data to be analyzed consist of the measured values of the 1ine-of-sight
velocity minus the valuescalculated from orbits integrated numerically on
the basis of existing force models; these differences are the residual
measurements. The integrated orbits, fitted to all tracking data available,
are known as nominal orbits. The residual measurements are formed to elimi-
nate disregarded effects, such as the attraction of the Sun and Moon, tides,
polar motion, relativistic effects, etc., as well as nonlinearities which
could be otherwise too large to ignore, because of the rather large depart-
ures of the actual courses from the reference orbit along which the problem
is linearized. The formation of these residuals, and the use of the space-
craft thrusters to manoeuvre them back to the reference orbit, cancelling
out undesired long-period perturbations, tend to ensure the validity of

the use of a linear model of the actual signal, including only the effects
of gravitational anomalies and initial state errors. The observation equa-
tion based on this model has, the same as the perturbations discussed in
section 2, the form of a Fourier series, slightly modulated by

the lack of circularity of the reference orbit. By choosing this orbit

such that its period is a whole multiple of the duration of the data stream,
which is a whole number Nd of days long and also an exact number N

of revolutions, Nd and Nr being relative primes, the normal equations of
tbe adjustment have an arrow structure. This structure appears when the
AC%m are grouped together by order, and within each order by «, and the
other unknowns, the arc parameters, are grouped separately, by arc. The
"shaft" and "tip" of the "arrow" are strings of diagonal blocks, the "fins"
on the bottom and on the right edge of the normal matrix are full rectangles,
and the rest is all zeroes. The arc parameters replace the original initijal
state errors, which are not fully estimable from satellite-to-satellite
tracking data, and absorb all non-periodical effects associated with dis-
continuities between the arcs, and with zonal resonances peculiar to the
choice of a periodical reference orbit. By adding a diagonal matrix of
degree variances to the normal matrix, least squares adjustment becomes
least squares collocation with parameters, at least if one ignores the
slight correlations between these parameters and the Aﬁgm. Collocation
tends to produce a more smooth map of the field, reflected in smaller,
attenuated values for the higher degree coefficients, compared to least
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squares adjustment. It also helps to improve the numerical stability of the
solution, which, for some separations of the spacecraft, can be affected
adversely by the appearance of attenuation bands in the spectrum of the sig-
nal stemming from the differential nature of the measurements. The number of
coefficients to be solved for can be very large, but there are practical
1imits toits size. For many applications, going beyond Nmax = 300 may not

be altogether necessary, and carrying so many coefficients around would
cause unnecessary problems to the users. As most high frequency anomalies
of interest are concentrated in a few regions, such as the vecinities of
trenches, ridges and cordilleras, any information about those features can
be extracted more easily by Tocal solutions, which can achieve high resolu-
tion with a moderate number of parameters. The idea of making local maps,

or solutions, complements, rather than competes,with that of making global
ones. The arrow structure of the normals helps enormously to alleviate the
computing burden, but it depends on the availability of a virtually uninter-
rupted stream of data during the mission. If things go badly enough, Tocal
solutions, which pose no such requirements, are the only way of obtaining
results. If there are major breaks in the data stream, but still there is
enough data coverage to allow a global solution, it may be better not to
treat the data as a time-series, but to regard the residual measurements

as point measurements. This ignores their aperiodic part, which might be
made quite small if as much information as it is available nowadays on the
anomalous field (after two successful satellite altimeter missions) were
used to calculate the nominal orbits.
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NUMERICAL TESTS OF THE MODEL.

Preliminary comments and overview.

This section presents the results of computer studies carried out to

verify how accurately the linearized model of sections 1 and 3 represents
the actual relative Tine-of-sight velocity (or relative range-rate)

between the two satellites. This has been done by computing simulated
range-rate from numerically integrated orbits in a high degree (n = 300)
zonal field. The common reference orbit has been chosen exactly polar,

to simplify some of the calculations, while the use of a zonal field

means that a "tail-biting" data stream can consist of just one revolu-

tion of the spacecraft, as all variations in the field take place with
latitude only. These choices bring important simplifications to the

problem from the point of view of the total computing time needed. More
comprehensive tests, involving tesserals to high degree and order,

would have required a much longer arc, whose calculation was well beyond
the means availabie for this project. The limited tests show, neverthe-
less, some important characteristics of both signal and model not encoun-
tered in the work of previous authors who have used analytical pertur-
bations to tackle the satellite-to-satellite tracking problem, and

have been forced to use very Tow degree spherical harmonic expansions

(up to degree and order 8) to be able to include tesserals and sectorials
without prohibitively lengthy calculations. One of these characteristics

is the increasing effect with harmonic degree of the departures from
circularity of the reference orbit on the perturbations. This orbit has
been obtained by the procedure described in paragraph (2.1), and it

closes (i.e., returns to the same initial state after one revolution) almost
perfectly (a few microns difference in position, and a few microns per second
in velocity). The departure from perfect circularity is of about +10 km,
corresponding to a mean ellipse with an eccentricity of about 1.5 ¥ 1073,
The departure of the mean height from the desired 160 km, is a few meters.
The initial state of the nominal orbits included various "errors", or depar-
tures from the "true orbits", of the order of 10 m. and 107 m s7!, while the
"true" orbits departed from the reference orbit by about 20 m at the
starting point, and nearly 600 m in radial distance at the point of
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greatest separation, thus testing the effectiveness of linearizing the
problem along the inflexible, closed reference orbit of section 2. The
integrator presented some minor problems, suggesting the need to use

an improved version in more realistic simulations, as well as for the
analysis of real data. These problems seemed tobe caused by the 1limi-
ted arithmetic of the computer (14 significant figures in double preci-
sion) and the large range in the size of the perturbations caused by
the harmonics included in the simulated gravitational field. This diffi-
culty could be overcome by using machines with 20 or more significant
figures in double precision, already widely available.

The study concentrated in the comparison between the lumped Fourier
coefficients of the simulated signal, and their values according to the
model. To obtain these coefficients in a manner that made the compari-
son possible, the signal had to be corrected to eliminate the nonperio-
dical part (secularly increasing oscillations due to zonal resonance,
etc.), which in an adjustment would be absorbed by the arc parameters
introduced in the previous section. After this was done, the agreement
was better than 1% at most frequencies.

The section begins by describing the various orbits: reference, nominal
and true, their discrepancies and errors (included to see how they affect
the results), their respectivé gravitational fields, the method of
integration and associated problems, and a detailed discussion of the
periodical reference orbit. The second paragraph introduces the con-

cept of lumped Fourier coefficients, the formulas for calculating their
theoretical values according to the model, and the error measures used

to quantify the agreement between these theoretical values and the
simulated ones. Paragraph (4.3) refers to the effect of neglecting some
first order terms when deriving the linearized observation equations in
section 3, and also to the influence of the slight eccentricity of the
orbit on high degree perturbations. Finally, the section closes with a
discussion of the results of the comparisons between the simulated 1ine-
of-sight perturbations and their theoretical counterparts, for a distance
between both satellites of either 100 km or 300 km and with various
orbital errors.
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4.1 Characteristics of the simulations.

(a) "True" and "nominal" orbits, and "orbital errors".

The relative line-of-sight velocity (or relative range-rate) between two
satellites was simulated by integrating two separate polar orbits, start-
ing from initial conditions identical to the positions and the velocities
at two points on the reference orbit (also polar) symmetrical respect to
perigee (F' = 0), or else differing from such position and velocity by
specified quantities. The velocity on each "true" orbit was projected
along the Tine-of-sight directions and the difference of the projections
was the simulated "true" instantaneous relative velocity. The residuals
8s were created by substracting from the "true" range-rate the range-rate
corresponding to the nominal orbits. These were integrated using a field
truncated at degree n = 30. These orbits had the same initial conditions
as the "true" ones, sometimes modified by "orbit estimation errors" added
to them. These "errors", for each nominal orbit, were about 10 m in
radial component, a change in along-track velocity sufficient to cancel
out the resulting relative drift between "true" and "nominal" orbits

(see expression (2.4.5)),and £50 m in the across-track direction. The
condition of zero relative drift was chosen to simulate, roughly, the
nature of the errors following the adjustment of the initial conditions
of a reasonably long arc (several days of tracking from ground stations
as well as between satellites), where any substantial rate of drift would
eventually result in errors between predicted and observed quantities
sufficiently large to be detected and corrected by the adjustment proce-
dure. The size of the radial errors was choosen considering that, with
sufficient tracking and the use of as much information on the gravita-
tional field as is contained in present day Earth models complete to
degree and order 180 (such as GEM 10C, (Lerch et al., 1981)), a 10 m
uncertainty for a low satellite is probably reasonable. Across-track
errors are harder to detect, if for no better reason that the satellite-
to-satellite tracking data should convey insignificant information about
the out-of-plane motions, in the case of a common orbital plane studied
here. The discrepancy between the start of each "true" orbit and the
reference orbit was chosen identical for both, on the theory that con-
troling manoeuvres to keep the spacecraft near their reference course
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would be largely directed by the information in the relative line-of-
sight velocity measurements, as these would be the bulk of the data
available. As a result, relative discrepancies can be corrected better
than absolute ones, and the satellites are 1ikely to be put (just after
a corrective manoeuvre) almost on the same orbit, parallel to the refe-
rence one but separated from it by a common offset. This offset must
vary as time goes by, but, as both spacecraft are close to each

other, its change is likely to be determined by much the same

causes acting simultaneously on both, so their distances from the
reference orbit are always nearly equal. The initial offsets were of
some 20 m, which must result in a peak separation of about 60 m (see
expression (2.4.2)), a separation from the desired reference trajec-
tory easy to detect from the analysis of tracking data. A1l orbits

were chosen as exactly polar (except for the across-track errors in

the nominal ones) to simplify the computations, particularly those of
the Fourier coefficients of the forcing terms of the variational equa-
tions (see paragraph (2.3)). The "true" field, and those of the refe-
rence and nominal orbits, were all purely zonal, and the coefficients
for those zonals common to all three were identical. The choice of a
zonal field was dictated by the limited availability of computing
resources, as the only way to test the theory up toasufficiently high
degree (n = 300) without the very large effort in developing and running
the programs which would be needed if tesserals and sectorials were in-
cluded. This happened because I had chosen to Took at the Fourier coef-
ficients of the simulated signal, which can be computed in a way that
makes them comparable to their analytical counterparts only from arcs
lasting an exact number of revolutions, or "biting their own tails",

so the data stream is periodic. Otherwise, a significant excess (or
defect) in completing the Tast turn could result in numerical artifacts
that falsify the results. To obtain a "tail biting" orbit with high
degree tesserals, one has to inteqrate a very long arc, which was both
beyond my resources and (probably) of the accuracy of the double pre-
cision arithmetic of my machine. On the other hand, one revolution is
enough for the orbit to close upon itself in a zonal field, because such
field has rotational symmetry. As the orbit is polar, it must encounter
all the "roughness" of such a field along its way, as all anomalies
depend on latitude only. The mean height of the satellites was 160 km
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above the mean Earth's radius, and the separation was, alternatively,
300 km and 100 km. This height and separation correspond to current
assumptions made about the 1ikely mission parameters, based on the
results of years of error analyses (see references in the Introduc-
tion).

(b) The field.

The zonal field was defined by the choice of potential coefficients
up to degree 300. The value of GM = 0.39860047 x 10'° and of the mean
terrestrial radius a = 6378139 m were adopted. The dimensionless po-
tential coefficients up to degree 9 were identical in value to the
first nine zonal coefficients of GEM 9 (Lerch et al., 1977) (see
Common statement "CC" in the programs of Appendix III). For degrees
from 10 to 100, the coefficients were made equal to the square roots
of the corresponding degree variances 03 for the full harmonics,
according to the approximate spectral law (Rapp, 1979)

2 A A
R%\2 1 1 _n+2 2 n+2..% -5
on = UG 71 bwB; 51 * Rezy ey V) x 10 (B:10)

where A; = 3.405 mgal?, A, = 140.03 mgal?, B, = 1, B, = 2, s; = 0.998006,
s, = 0.914232.

Above degree 100, the coefficients were all zero, except for the last
two zonals (degrees 299 and 300), which were both equal to 107, As all
the zonal harmonics are positive over the North pole, a choice of alter-
nating signs for the coefficients from n = 10 up to n = 100, with the
first two positive, the following two negative, etc. (always an even

and an odd zonal in each pair) was adopted to avoid a "mountain" in the
anomalous field over that pole. The alternating signs eliminated this
"mountain", resulting in more or less evenly distributed irregularities
from pole to pole and, therefore, in a more "natural" kind of anomalies.
The choice of coefficients was a compromise between two contradictory
goals: first, to use values that were strongly determined by present
knowledge of the terrestrial field, to make the selection as impersonal
as possible; second, to minimize the effect of the finite floating point
arithmetic of the computer. At 160 km, the perturbations in gravitational
acceleration due to an individual harmonic of degree 300 is more than
eleven orders of magnitude smaller than that due to the zero harmonic,

or central force term. The floating point double precision arithmetic



- 150 -

at my disposal was able to carry up to 14 significant figures, so a
perturbation of a single coefficient at the high end of the spectrum
would have been smaller than the 1likely accumulation of rounding
errors when the accelerations are computed by adding up the terms of
their spherical harmonic expansions. This meant choosing "larger than
life" coefficients, capable of creating much larger perturbations. Up
to degree 100 it was enough to merely concentrate all the power of

the harmonic of a given degree in the respective zonal, but above

n = 100 several tests indicated that even this size of zonal was not
big enough. As the use of such large zonals created correspondingly
large resonant perturbations (along track drift and secularly increas-
ing once per revolution oscillations), the departure of the "true"
orbits from the reference and nominal ones amounted to hundreds of
meters. So coefficients between degree 101 and 298 were set te zero,
while coefficients of degree 299 and 300 were made both equal to 10-5,
which is much larger than the total spectral power at those degrees
would imply. This choice was needed because, otherwise, due to the
attenuation bands mentioned in paragraph (3.5), the signal at some
frequencies may fall below the orbital integration errors, resulting
in misleadingly large discrepancies between theoretical and simulated
perturbations. This did happen as soon as the size of the coefficients
was reduced by just one order of magnitude. All the problems mentioned
above would have been obviated by using extended precision arithmetic,
or 28 significant figures, but this would have costed about four times
more computing time, because all calculations of this kind are done

by software rather than hardware. There are, however, machines currently
available that can carry about 27 significant figures in double preci-
sion (implemented by hardware).

{c) The numerica?l integrator.

A1l orbital integrations were done using the subroutine COWELL provided
by Chris Reigber, the current Director of the Deutsches Geoddtisches
Forschungs Institut (DGFI) in Munich. The algorithm of this subroutine
is an eight order predictor-corrector based on a variant of the Cowell
method developed by Kulikov (see Levallois, Book IV, pp. 213-225, 1970).
This integrator did a most remarkable job, considering that it was never
meant to calculate orbits in fields of degree Targer than 20 or 30.

One small problem was the presence of a tiny spike-shaped error
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at the start of each arc, resulting in a nearly constant error in the
amplitude of all the cosine Fourier coefficients of the perturbations.
This spike was probably caused by the different way in which the first
point after the initial conditions is calculated, compared to the rest
of the orbit. The algorithm is selfstarting, so the first computed point
is found by a series of iterative refinements of a first estimate. To
reduce this effect, I tried iterating once the corrector step in every
subsequent calculation, but this modification of the original program
brought only a slight improvement at the cost of doubling the computing
time, so I did not use it. By choosing the field in the manner outlined
above to get fairly strong perturbations at most frequencies compared
to the integrator errors, and by correcting the simulated cosine Tumped
Fourier coefficients in the simple manner explained in paragraph (4.2),
this problem was largely superated. For a calculation with realistic
coefficients, as would be needed to form residuals from actual data in
the event of iterating the solution, for example (see paragraph (3.10b)),
a better integrator must be chosen. This can be the same type of inte-
grator, but of higher order, or a different one altogether. The question
requires careful study to achieve a good compromise between accuracy
and computing efficiency, but present-day theory and computers should

be sufficient to fulfill this purpose.

The integration step chosen for all orbits in the final calculations was
about 2.8 seconds. Halving this interval resulted in negligible changes
in the results. The same step was used for the reference, nominal, and
"true" orbits, and it divided the reference orbital period an exact
number of times. This number was a power of two (2048) adopted in order
to reduce the computer time needed to get the various Fourier coeffi-
cients with a Fast Fourier Transform algorithm.

(d) The periodical reference orbit.

The initial conditions were obtained by means of the "closing" and
"circularizing" procedures described in paragraph (2.1), to ensure that,
when integrated in a field consisting of the central force term and the
first nine zonals as defined by the coefficients mentioned in part (b) of
this paragraph, the orbit would return at the end of one revolution to
virtually the same place with the same velocity, and it would be also
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reasonably close to a circle. Starting with Cook's formulas for the clas-
sical "frozen" orbit, the initial conditions were selected for a polar
orbit of about 160 km height using expressions (2.1.5a-e). After finding
the precise instant when the orbit reached its apogee (F' = 7), the radial
velocity was calculated for that instant. The integration was then repeated
after changing the initial radjal distance by 1 km. The new radial velocity
at apogee, substracted from the original one and divided by 1 km was used
as the approximate value of ;;E-needed for determining the corrections to
the initial state. The proceduge was iterated three times, after which two
iterations of the "circularizing" procedure were executed, followed by a
final application (one iteration) of the "closing" procedures. Each ite-
ration of the "closing" procedure needed two separate runs, the derivative
of ?“ being obtained afterwards with a pocket calculator. Each iteration
of the "circularizing" algorithm required a separate run. Clearly, elegant
and easy-to-use software was not the overriding goal in writing the pro-
grams for calculating the reference orbit or, indeed, any of the other
programs. With Timited time, I settled for making sure that the programs
were working by carrying out numerous checks, and kept attempts at opti-
mizing the code to a bare minimum, except for the programs directly
concerned with the orbital integrations, where I put greater effort in
eliminating redundant calculations and madeuse of the efficient subrou-
tine LEGEND (Colombo, 198la} to compute the normalized Legendre functions
needed both for the numerical integration of the orbits and for calcu-
lating the forcing terms of the variationals.

Economizing time and effort took precedence over cutting computing costs,
where savings were mostly achieved through the choice of a polar orbit

and a purely zonal field.

The orbits were computed in an inertial system of Cartesian coordinates
{X,¥,2), where the x axis was normal to the orbit plane, the y axis

formed the intersection of this plane and the equator, and the z axis

was aligned with the Earth's axis, positive towards the North. The initial
conditions obtained for the closed orbit were

x(0)

0.m y(0) = 0.m z(0) = 6526447.57571 m

1

0.ms™' y(0) =-7812.98318978 ms~' 2(0) = O.ms™ "

x(0)
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The maximum departures from a circular orbit were *10 km, and the mean
height was 160002.33 m, just 2.33 m off the desired value. At the end

of the orbital period, which was equal to 5263.369068 seconds, the posi-
tion and velocity components were

x(T,) -0.169 x 10" m z(T,) = 6526447.57570 m

n
[en]
3

<
3
r
n

-7812.98318978 ms™'  2(T,)=-0.13 x 107 ms™"

1]
o
3
7]

x(T,)

e
—_
—
o
~—
i

so the misclosures in position was of the order of 10 microns, and that
in velocity, of the order of 1 microns per second.

To test the procedure further, an orbit with an inclination of 70° (rather
Tow for a geodetic satellite) was also studied. The initial conditions

turned out to be (for a mean height of 160 km)

6156165.39899 m

>
—_
o
~

n

2240660.96245 m y(0)

0.m z(0)

1 . -1

-1 z(0) = 0.ms

x(0) = 0.ms y(0) = -7795.38760561 ms"
the orbital period was 5282.38457 seconds, and the misclosures in position
and velocity after one revolution, of about 10 microns and 0.1 microns per
second, respectively. No “circularizing” of this orbit was attempted. All

programs used are listed in Appendix III.

According to expression (3.4.8), it is necessary to know cos n,, = coOs ngc

and sin Mg = sin n,c, the mean values of the cosine and the sine of the

0
angle (see paragraph (1.4)) and the Fourier coefficient b, corresponding
to the fundamental nj of sin n, (t). These values are, for 100 km separa-

tion:

cos n,, = -0.9997361435 sin n;, = -0.2294022357 x 107!

b, = -0.1538200005 x 10~~
Also

0.6416433923 x 107"

o
1]
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For 300 km separation:

Tos n,, = -0.9999700635  STn n,, = 0.7647337494 x 107
b, = -0.1538919912 x 107°

Also
b, = 0.6421539551 x 10

Using Tumped coefficients to study the accuracy of the linearized model.

The signal in the simulations was the instantaneous value of the relative
velocity. In order to test the theory, the Fourier coefficients of the
simulated signal, corrected for the effects of orbital errors and secular
terms, were compared to their corresponding values according to the formu-
las of section 3. The "true" coefficients were obtained by analyzing one
revolution worth of the simulated range-rate, computed at regular inter-
vals. As the only purpose of the calculations was to test the linearized
mode] for the observations, noise and other instrumental errors were
not included, so one could say that the "true" values were "perfect data".
Moreover, as the quality of the approximation must be the same for the
perturbations on the instantaneous velocity as for the averaged velocity
(the Fourier coefficients of both differ only by a known smoothing
factor), the tests were done with instantaneous velocity. The theory of
section 3 refers to the Fourier coefficients Snmuj of the perturbations
caused by each harmonic separately, but to test 300 harmonics in this
way, one at the time, would have required more computer time than was
available, and produced masses of numbers which could only be interpreted
by summarizing them in some way (i.e., throwing most of them away). So,
instead of individual perturbations, I have choosen to Took at the whole
effect on the signal of all the harmonic terms of the disturbing poten-
tial, as represented by the lwumped Fourier coefficients
1 Nmax
5, = 1 1 o

s .
m 2o nem nm ~nmj

(4.2.1)
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According to this definition and to expression (3.4.8),

a _ =0 : _ :
Sjm = ;; ACnma{Zwmj[s1n n,c bnmj cos wmjc cos n,c gnmj sin wmjc]
*0; Lin(5-1) Pam(j-1) STM Yn(3-1)"¥n(3-1) Pam(g+1)

where the bnmj and Inmj 2Te given by (2.4.8-9). For the actual calculations
see explanation in paragraph (AIIl.4), Appendix III. By starting the orbits
precisely at the instant when the mean point along the Tine-of-sight chord
between the satellites was at perigee (F' = 0), and assuming that the node
of the (nonprecessing) polar reference orbit is L = L, = 0, the phases of
the perturbations in expression (3.4.8) are, for « = m = 0 (zonals) and

t0=TO=Os

according to (2.2.47) and (2.2.50), so the periodic part of the signal due
to the disturbing zonals is an odd function of time, in accordance with

the rotational symmetry of the chosen field and the selection of the crossing
of perigee as the starting time. This symmetry extends to the secularly
increasing oscillations cause by zonal resonance, that must have the form

At cos not

which is an odd function of time too. Even perturbations can only be due,
if the model is correct, to nominal orbit errors, as indicated by expres-
sions (2.4.6-7) for the variations in radial and along-track velocity.
Such even secular oscillations have the form

Bt sin not

In the course of an adjustment along the lines of section 3, the nonperio-
dical part of the signal (increasing oscillations, oscillations due to
initial state errors that change from arc to arc) are more or less obsorbed
by the arc parameters of expression (3.4.18). To eliminate this part from
the simulated signal in a manner roughly equivalent to an adjustment, the
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Fourier coefficients of this signal were subject to some corrections. In
the first place, due to numerical integration errors, the cosine Fourier
coefficients in the absence of orbit errors took on a very small and
nearly constant non-zero value (because of the symmetry mentioned above,
they should have been all zero). The effect of integrator errors on the
sine coefficients was less clear. To compensate for this, the value of
one of the high frequency non-zero cosine coefficients was substracted
from the rest, leaving negligible residual values. The sine coefficients
were not treated in this way.

Since the simulated arc lasts exactly one revolution of the reference
orbit, the arc parameters for the zero, first, second and third harmonic
in a real adjustment would absorb the zero and first harmonics completely,
and also the differences between the analytical and the observed second
and third harmonics, at least with noiseless data. Therefore, the diffe-
rences between the analytical and the observed coefficients must be zero:
for one-revolution arcs the theory is apparently "error-free" up to the
third harmonic. The real corrections must take place, in this special case,
from the fourth harmonic up. These corrections are needed to remove the
effects of the secularly increasing oscillations. If the theory were
perfect, the differences between the (noiseless) simulated and the ana-
lytical lumped coefficients would be identical to the Fourier coeffi-
cients of the increasing oscillations analyzed over one orbital period,

Ch ira2_1y-1
F(At cos "ot)j = hSJ(J 1) (4.2.3)
for the sine terms, and
. N .2 141
F(Bt sin not)j = hc(J 1) (4.2.4)

for the cosine terms, where F(s)j indicates the operation of taking the
Fourier coefficient for the jth harmonic component of s. The coefficients
hC and hS are proportional to the respective arc parameters, and were
“estimated" by averaging hs and hc computed from individual differences
between observed and analytical coefficients, according to (4.2.3-4)
above, over several frequencies. This completes the "rough adjustment"
of the arc parameters. Substracting the differences from the "observed"
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coefficients gives the corrected lumped coefficients for the periodical
part of the signal, which can be compared to their theoretical counter-
parts, and should be identical if the theory were exact. Therefore, the
percentage error per coefficient

Ej% _ 35 (corrected) (ana]yt1ca11 100 (4.2.5)

sJ.(corrected)

is a measure of the accuracy of the theory at a given frequency. As there
are more than 300 frequencies to be considered, it is easier to give a
general picture of the quality of the model by providing the total per-
centage .r.m.s. error within a narrow band of a few individual frecuencies:

k+aJ 5 . 2.\,
jzk [(corr.(cos.)coeff&)j+(sj(corr')-sj(ana]_)) 1)z 00
®(k band)é’= K+2J , x 10
z . . Jeoeffs. ) +8%
k3 [(uncorr. (cos. )coeffs )J SJ(uncorr.)] (4.2.6)

as well as the total percentage rms error over all the frequencies of inte-
rest(l). In the present case, the highest frequency with significant power
was 304 cycles per revolution, and the lowest, for the reasons given before,
was four cycles per revolution (lower frequencies are, of course, inte-
resting, but they are "error-free" in this particular case). This total

rms error is, then

304 , )
j£4[(c0rr.(cos.)coeffs.)j+(§j(corr_)_§j(ana]_)) 1]3
ext = - , x 100 (4.2.7)
£ [(uncorr. (cos.)coeffs. )+ ]
j=4 J J(uncorr.)

Summing up: after making a small correction to the observed lumped cosine
coefficients to reduce the numerical integration errors, the effects of
the increasing oscillations due to zonal resonance were estimated accor-
ding to expressions (4.2.3-4) and then substracted from the observed
coefficients corresponding to frequencies above the third harmonic. Up

to the third, all aperiodical effects would be absorbed exactly by the
arc parameters, amounting, for noise-free data, to a perfect agreement
with the analytical coefficients, so no correction was needed. This can
only happen in a one-revolution arc, or one that lasts an exact number

(1 )where "{cos.)coeffs." and "§ “ stand for "cosine" and "sine" coeffi-
cients, respectively.
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of revolutions, and should be reasonably close to the thruth for those
which do not, but are so Tong that the fraction of cycle left over at
the end is a small part of the overall period (provided the noise level
is low). The corrected Tumped coefficients were then compared to their
analytical counterparts by computing percentage errors for the Fourier
coefficients of the individual frequencies in the band from 4 to 304
cycles per revolution; the percentage error in rms over narrow bands

(5 cycles wide) across the same overall range; and the total percen-
tage rms error (or "error-to-signal" ratio) in that range. As (except
for the low frequency effects of nominal orbit errors) only the sine
terms convey any interesting information, the relative errors per indi-
vidual frequency, listed in Appendix IV, were computed only for the
sine coefficients, as the cosine terms are negligible after correction.

The main effect of neglected first order terms, and the influence of

the eccentricity on perturbations of high degree.

The linearized model is based on expression (1.4.12), which was obtained
from the complete differential of the signal by ignoring those terms in
(1.4.11) that represent the effect of perturbations on the direction of
the line of sight. These terms contain Bs and Y; but not their deriva-
tives, and their only appreciable influence on the results is an increas-
ing oscillation of the form At cos t not. I found this oscillation after
introducing small modifications to the values of Cgo and Cgo in order to
cancel out the one-cycle-per-revolution components in the forcing terms
Déa a, and DCa a that cause zonal resonances.

nm nm
The modifications eliminated completely these resonances from Bis Yy and
their derivatives, but the increasing oscillations reappeared, to a small
extent, in the line-of-sight velocity. They were the only significant
departure from the predictions of the simplified model. My explanation
of this is as follows: the ignored terms contain the product of Y, and
Y, times the difference in reference velocity normal to the line-of-sight.
Y10 Y, include a secular along-track drift Gt, while the normal relative
velocity, if the satellites are close to each other, is much the same as
the difference in their radial velocities. The radial velocity, when the
time origin corresponds to F' = 0, is an odd function of time, so its
increment over the constant interval separating the passage of both
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spacecraft through the same point 1is an even function. For an ellipse

of small eccentricity, it takes the approximate form of K cos n,t (where
K is proportional to n, and the intersatellite distance). As Y, and Y,
are multiplied by K cos nt, the product because of the secular drift,
must include a term At cos n,t, where A = KG. When correcting the coeffi-
cients in the manner described in the previous paragraph, or through the
inclusion of the appropriate arc parameter in the adjustment, this extra
secular oscillation gets lumped together with the one coming from the
first order terms retained in the model, and both are taken care of
together.

As explained in paragraph (2.6), if the reference orbit were perfectly
circular, the perturbations caused by a single spherical harmonic of the
disturbing potential would be zero at those frequencies j n, + ma' where
J is opposite in parity to the degree n. So, for an odd zonal (m = 0),
all even harmonics of n, must be zero. If one includes the effect of the
eccentricity to the first power only, as in previous attempts to build a
simple Tinearized model based on analytical perturbations using the
"Titeral” approach and classical theory, the result is identical to that
of assuming that the reference orbit is circular, because this result

is valid only for orbits of vanishing eccentricity (see, for example,
Wagner and Goad (1982)(1), expression (33)). The influence of the non-
circularity of the orbit increases with the degree n, because of the non-
linear relationship between the values of the coordinates and of the spheri-
cal harmonics. At the high end of the spectrum, the simulations showed
that the harmonics of opposite parity from n were not just different
from zero, but also comparable in amplitude to those of the same parity.
An example, for the odd zonal n = 299, is given in Table (4.1), where
the amplitudes of a few consecutive frequencies are listed to show what
is a prevailing pattern across the spectrum. The fact that the highest
significant frequency for n = 300 is around n = 304 suqgests that, if
one uses the "literal” formulation and classical theory, at Teast all
powers of the eccentricity up to the fourth should be included when the
degree is close to 300. On the other hand, for low degrees (n < 20), the

first power might be sufficient.

(l)Or equation (31) in C.A. Wagner's later paper in J.G.R. (Red),
December 1983, Vol. 88, No. B12, pp. 10309-10321.
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cycles per jn, x bnmj n, gnmJ
revolution (j) « 107" x 1075
20 -.377 .125
21 -.838 .208
22 -.302 .592 x 107!
23 -.765 .749 x 107!
24 -.314 .940 x 1072
25 -.704 -.278 x 107}
26 -.290 -.294 x 107!
27 -.652 -.107
28 -.269 -.601 x 107"
29 -.607 -.172
30 -.251 -.850 x 107!

Table (4.1): Fourier coefficients of the time derivatives of the
radial and along track variations created by the 299th zonal
(periodical part only). Here 5299 0= 107°.

4.4 Numerical results of the accuracy tests.

When comparing the lumped coefficients of the simulated signal to those
calculated according to the model, one must keep in mind that the former
are affected by numerical integrator errors and by nonlinear effects
caused by the separation between the nominal and the "true" orbits. This
separation comes close to 200 meters in radial distance at the end of
the first quarter of the orbit period, and to nearly 600 meters at the
end of the third, and consists of large, increasing once-per-revolution
oscillations due to zonal resonance. The separation of the reference
orbit from the nominal orbit follows the same pattern, but it is much
smaller (10 m and 30 m, respectively). Therefore, the "true" orbits
depart by more than half a kilometer from the one along which the problem
is linearized, giving a reasonable test for the applicability of this
linearization to a real situation, where the satellites are likely to
move away hundreds of meters from their "reference positions". Because
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of the numerical errors of the integrator, the discrepancies between
theory and "reality" are 1ikely to appear worse than they really are,
so the results listed in the tables at the end of this section are pro-
bably on the conservative side. As pointed out in paragraph (4.1(b)),
the use of "larger than Tife" zonal coefficients to compensate for the
lTimited number of significant figures in the number system of the com-
puter led to these very exagerated oscillations which, in a real situ-
ation, are Tikely to grow much more gradually, over many revolutions,
until eventually a correcting manoeuvre to return the spacecraft to the
neighbourhood of the reference orbit becomes necessary. The need for
such manoeuvres could be reduced by including many more zonals in the
field of the reference orbit than the first nine used here. These zonals
could be obtained from existing information on the field, and/or from a
preliminary solution up to a Tower degree than 300, say n = 180, that
could be done after only one month of the satellites being in orbit.
Such a preliminary solution would be also useful for predicting the
future trajectories of the spacecraft in order to correct them more
precisely when they stray too far from their desired course.

As shown in the tables, the discrepancies between computed and simulated
lumped coefficients does not exceed 1% at most frequencies in the band
from 4 to 304 cycles per revolution, and in most cases are of a few parts
per thousand or even less, in agreement with the accuracy of the appro-
ximations made when deriving Hill's equations, which were of the order

of the flattening (1/300) and of the orbital eccentricity (the eccentri-
city of the reference orbit is close to 1.5 x 10'3). As already explained
in paragraph (4.3) in the special case considered here, the arc para-
meters are supposed to eliminate all discrepancy between "true" and theo-
retical coefficients up to 3 cycles per revolution, so only the "uncor-
rected" and the "analytical" coefficients are listed for those frequencies,
but not the percentage errors, which would be all zero after correction
(for noisless data). The main discrepancies occur in the attenuation bands
that appear when the separation is 300 km (for 100 km, the first band is
well above the highest significant frequency in the spectrum). Inside

the bands, the error can be seen to grow gradually until it exceeds 1%.

In fact, Tooking at the detailed table for 300 km, to be found in Appen-
dix IV, one can see that the error approaches 100% at two points, but
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this happens only where the signal is extremely weak, and the effect on
the overal rms error is quite insignificant. Probably, a considerable
part of this larger discrepancies may be caused by the integration
errors and limited arithmetic of the computer, as suggested by the fact
that, reducing the size of the last two zonals (n = 299 and n = 300)
makes this errors much larger in percentage, compared to the simulated
values. As the theory should work better for smaller perturbations, and
not worse (it is a first order theory) this contradictory behaviour can
be explained, at least partially, by numerical errors and not by deffi-
ciencies in the theory itself.

Tables (4.2) to (4.6) are reproductions of part of the computer printout
of the program described in (AIII.4). They show, first, the zonal field
and the orbits (maximum degree of the "true" and the "nominal" fields,
here called reference, a misnomer), height, separation, reference orbital
period, number of integration steps in one period, the common displace-
ment of the orbits from the common reference (listed as "DZCE"), and the
errors in the initial states of the nominal orbits: DX11, DX12 for the
across-track displacements of the first and second satellite, DR1 and

DR2 for the radial errors, and DUP1 and DUP2 for the along-track velocity
errors. This information is followed by the listing of the lumped coeffi-
cients from 0 to 3 cycles per revolution. Under the heading "corrected
(cos /sin)" appear the coefficients of the simulated data after correcting
them for the integrator error in the cosine terms, and for the secularly
increasing oscillations. The discrepancies with the "analytical" coeffi-
cients in the column on the right, for 2 and 3 cycles per revolution,

are due primarily to the modulation of the once-per-revolution term in
the free response, and would be cancelled out by the corresponding arc
parameters. Once the free oscillations are known from the Fourier analysis
of the simulated data, it is possible to use the theory to estimate how
much of them is "spilling over" the neighbouring frequencies through
modulation. This gives estimates of the discrepancies that are in rough
agreement. That, in the case of Table (4.6), this agreement was way

off, suggests a relatively strong influence of the across-track orbit
errors, which are here the only differences among the two nominal and

the two "true" orbits (the radial and along-track errors and DZCE are
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all 0). As the first order theory of section 1 excludes the possibility
of such an influence by perturbations normal to the orbital plane, these
must be due to second and higher order effects. In any event, they are
confined to the lowest frequencies, and the arc parameters for those
frequencies should absorbe them. The rms of the simulated signal, both
in their uncorrected and corrected forms, the "analytical” value of the
latter, according to the theory, and the overall percentage errors are
listed next, totalized over bands five cycles per revolution wide, up

to the 304th harmonic. Finally, the total rms of the error from 4 to

304 cycles is compared to (a) the total rms of the signal (resonant
oscillations and all), and (b) the rms of the corrected, periodical

part of the signal. The results show clearly the presence of attenua-
tion bands, with 300 km separation, where the signal is overpowered by
integrator errors and nonlinear effects. The total errors (from 4 cycles
to 304) are always below 1%. A1l computations were carried out with the
AMDAHL 470 V7B of the Technical University of Delft.
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Summary.

The polar orbits were integrated in a purely zonal reference field and over
one revolution only, to stay within the available computing resources. The
"true" field extended to degree 300, and the field of the nominal orbits to
degree 30, while the periodic reference orbit corresponded to the first nine
zonals, taken from GEM 9 (together with GM and the mean Earth radius). The
height was about 160 km, and two separations were considered, 100 km and

300 km. Because of the Timited number of significant figures (14) in the
arithmetic of the computer, zonal coefficients much Targer than those in

the terrestrial field were chosen above degree 9. The numerical integrator
behaved reasonably well, but a better one is needed for more realistic
simulations, or for a real application. Computers that can work with 20 sig-
nificant figures in double precision already are widely available, and their
use might eliminate all the problems associated with arithmetic rounding
errors. The "estimation errors" in the nominal orbits were about 10 m, with
along-track velocity errors cancelling out the drift respect to the "true"
orbits. The periodical reference orbit was computed following the "closing
and circularizing" procedures described in paragraph (2.1). The result had

a misclosure, after one revolution, of about 10 microns and 1 micron

per second. The mean height was only meters off the desired 160 km, and the
swing above and below this height was of some +10 km. The reference orbital
period could be determined with sufficient accuracy to rid the results of
numerical artifacts due to imperfect knowledge of the fundamental frequency
of the signal. Simulated and analytical lumped Fourier coefficients show

an agreement better than 1% at most frequencies up to 304 cycles per revo-
lution, where most of the signal power is confined.
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CONCLUSIONS.

It may be possible to process all the data collected by a satellite pair to
obtain a very high resolution map of the global gravity field with the method
described in this report if:

(a) The satellites are kept in a tight formation near their common reference
orbit by controlling them with their drag-compensating rockets;

(b) the common orbit virtually closes upon itself at the end of a period of
time long enough to resolve all the spherical harmonic potential coeffi-
cients associated with detectable perturbations;

(c) the stream of data during that period is virtually uninterrupted.

If the last condition cannot be fulfilled, but there is enough data coverage,
a global solution may be attempted by the procedure sketched in paragraph
(3.11), treating the periodical part of the signal as a function of position,
and reducing the aperiodical part by estimating the nominal orbits as accu-
rately as possible, at least regarding the relative motion of the satellites.
This may be helped by the great deal of information on the gravity field
already available, after the satellite altimeter experiments of the Seventies,
by the use of the relative line-of-sight velocity data in the adjust-

ment of the orbit, and by iteration of the whole procedure. If thereare not
enough data even for this, then a patchwork of local solutions may be the
only way that is left. Even if a global solution is possible, local mapping
remains an important complementary tool for resolving the finest detail in
some of the most anomalous (and scientifically interesting) areas.

The results of the tests described in section 4 support the assumption that
the model for the observation equations of the adjustment developed here
represents the signal to better than 1% at most frequencies with significant
spectral lines. Further tests, involving sectorial and tesseral harmonics,
should be carried out to confirm this.

The choice of common orbit with rotational symmetry, and the introduction of
arc parameters to take care of the aperiodical perturbations, produce a very
sparse normal matrix (be it of ordinary adjustment, of least squares collo-
cation, or of any such method where conditioning affects only the diagonal
elements). With a suitable arrangement of the unknowns, it is possible to
obtain an arrow pattern that makes feasible finding a solution complete to
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degree and order 300 with most "main-frame" computers now available, because
of the reasonable demands for storage, computing time, and numerical accuracy.
This means that the choice of a "super computer"”, with parallel processing,
huge central memory and the latest type of hardware, is optional, though
probably advantageous. Regarding numerical accuracy, most operations, with
the exception of the integration of the nominal orbits, can be done with

64 bits (8 bytes) floating point arithmetic.

The sparseness of the normal equations does not depend on the actual Tinea-
rized model, because this property can be obtained with very different models,
as previous work has shown. There is the question of whether it is necessary
to try and improve the description of the signal any further. My own opinion
is that a model good to one percent is good enough for any 1ikely application.
Whatever the final choice, the main thing is to make sure that it is truly
that good, and this may require more realistic (and ingenuous) probing that
what has been done so far.

The approach to the numerical calculation of the Fourier coefficients of the
analytical perturbations, avoiding getting entangled in Tong "literal" formulas,
may be of some general interest in satellite geodesy and celestial mechanics.
The analytical theory for near-polar, near-circular orbits based on Hill's
equations may be useful in studying the orbits of satellites whose purpose

is to survey the world as completely as possible, so they are given high
inclinations.

Although there are many questions of detail still to be studied, I think, on
ending this research, that the data analysis is no longer a major problem.
The main obstacles that might be found on the way towards getting accurate
and detailed maps of gravity from space are likely to be technological, eco-
nomical and motivational. Of the three, the third may prove the most impor-
tant, because, regardless of the comings and goings of governments and their
policies, if it is recognized by the scientific community that enough

of its members want to have such maps for sufficiently good reasons, this
recognition will keep the subject firmly on the agenda.
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APPENDIX I.

Solving the variationals.

The variational equations obtained in section 1 were

Dp a + 3n§sk - ZnO{(k (1.3.8)

;
k™ 7py

;k Dp a, + 2n0ék (1.3.9)

k

This two equations are linear and time-invariant (constant coefficients)

so they can be solved by the method of the Laplace Transform (LT).

This method converts the problem of solving differential equations into

that of solving algebraic equations, which is usually much easier. Before

explaining how this is done with (1.3.8-9), some basic points about this

method that are needed here shall be mentioned.

The LT of a function of time f(t) defined in the interval 0 <t < » is
F(s) = J e™Ste(t)dt (AL.1)

0
or, symbolically,

F(s) = L{f(t)}

where s is an independent complex variable. F(s) is the LT of f(t), and
f(t) is the inverse LT of F(s); f(t) and F(s) constitute a transform pair.
Here is a Tist of transform pairs that are necessary to understand the
main reasoning in this Appendix (a and aj are constants):

f(t) F(s)
1 : (AI.2a)
t L (AI.2b)
s2
af(t) aF(s) (Al.2¢)
§ ajfj(t) D aij(s) (Al.2d)
J
k..
9;{%21 s”F(s)-s”'lf(O)-kEZs"‘k S;Eiif(O) (AI.2e)
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f(t) F(s)

sin wt = 5 (AL.2f)
S tw

cos ot 25 > (AI.2q)
S +w

et - (AI.2h)

t

J g(t)dt L{gét ) (A1.21)

0

If N(s) and D(s) are two polynomials in s of degrees n and d, respectively,
and n < d, and if D(s) has both multiple and simple roots, so it can be
written, in general, as

D(s) = a(s-sl)nl(s-sz)nz...(s-si)ni...(s-sj)...(52+zk)... (AL.3)

(where the integer n; > 1 indicates the degree of multiplicity of the ith
root, while S stands for alsing1e root, and z, (real) for a pair of complex
conjugate roots izi and —1z§ (i = [—1]5)); then the rational function
N(s)/D(s) can be written as a sum of partial fractions as follows:
7oA nyml A LERET |

2 .
Ms)_ ;T e,y i
S/ p=o NP g0 n2-q u=o ny=u
(s-s1) (s-s2) (s-s5)

A, A A
J k k
R + o0t + (AL.4)
(s=s) (s-(iz}))  (s-(-iz}))

where Ak is the conjugate of Ak.
Moreover, in the case of simple roots such as sj, izi and -izi, (regardless
of whether they are conjugate of not)

L Nsy) N(iz}) )
.= . A = , etc. .5
s (s;) <9 (izg)

After these preliminaries one can proceed to solve the variationals. The
first step is to take the LTs of the right and left hand sides of each
equation using the table of transforms .given above. Once this is done, the
result is a pair of linear algebraic equations where the LTs of By and "
are the unknowns. The starting time from which the equations are integrated
is t,, so in order to be able to work in the interval from O to = one must
make the change in variable



- 178 -

t' = t-tg (AI.6)

This change in variable does not modify the shape of the differential equations.
Calling

B (s) =L{p(t')}

Gk(s) = L{Yk(t' )}

h)
~
=
—
n
N
n

L{Dpkar(t')}

au(tl )} ’

>
c
=~
—
n
N
I

L{D

{ Py
the algebraic transforms of the equations, with Bk(s) and Gk(s) as unknowns,
are

5”By ()-8, (0)-B, (0) = A, (5)+3ngB, (5)-2no(sGy (s)-v, (0)) (AL.7)
576, (5)-5v,(0)-7, (0) = Ay (s)+2n0(sBy ()-8, (0)) (A1.8)

where use has been made of (AI.2c-e), and Bk(O), Yk(O), ék(O), Qk(O) are the

initial conditions for t' =0 (or t = to)'

Their solution is

s(Ark(s)+sBk(O)+ék(0)+2n0yk(O))—2n0(Auk(s)+sYk(0)+§k(0)-2n05k(O))
By (s)= 77
s(s +n,)

(A1.9)
(sz-sng)(Auk(s)+sYk(0)+;k(0)-2nosk(0))+2nos(Ark(s)+ssk(0)+ék(0)+2nosk(0))

Gk(s) =

s2(s2+n§)
(AI.10)

Two cases must be considered:

(a) Py 18 a component of the initial state of the orbit. As explained in

paragraph 2.4, in this case the forcing terms Dp a., Dp a, are both identi-

k k
cally O for all t, so their transforms Ark(s)’ Auk(s) are zero as well,
according to the definition (Al.1l). The initial conditions Bk(O), ék(O),

yk(O), ;k(O) are all zero, except for the one related to the component of
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the initial state Py Clearly Bk(s) and Gk(s) have the form N(s)/D(s) with
the degree of the denominator higher than that of the numerator. The roots
in the numerator of Bk(s) are: s; =0, s, = §3 = in,, where the overbar
denotes the conjugate of a complex number. The roots of the denominator of
Gk(s) are the same as for Bk(s), except that the 0 root s, is now a double
one. Expanding these functions in partial fractions according to (Al.4):

By B, B,
B(s) = 5+ 1=y * Tsving) (AL.11)
Gor  Gn G, G, A
) = 5 ey T (e (AL.12)

where the By, By, Gpy, etc., are constants that depend on g, (0), ék(O),

yk(O), %k(O) and t,. Taking the inverse LTs of both members with the help of
(AI.2a-2d) and (AI.2h):

ingt' _  ~ingt'
= Bl + B2e + Bze (AI.13)

w0
=
—
~+
~—
I

1n0t' - -inot'
= Gg t' + Gy + Goe + Ge (AI.14)

<
=

—

(o d

~—
|

Making use of the basic relationships

inot'
e = cos ngt' + i sin ngt! (AI.15)

—1n0t'
e = cos ngt' - i sin ngt’ (AL.16)

after some manipulations and a change in variable from t' back to t = t'+tg:

w
=
—
+
~—
|

= BOk + B1k cos not + sz sin n,t (AI.17)

<
~
—
o
—
n

Gok + le cos n t + sz sin nt + Gakt (AI.18)
where the new coefficients Bok’ etc. are functions of those in (Al.13-14),
Given that Bk(t) and yk(t) are both real functions, all the coefficients
Bok’ Gok’ etc. must be real too. Now, after the change in variable from

t' back to t, they become not only functions of the initial conditions,
but of the starting time t, as well. As the forcing terms are both 0 in
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this case, expressions (AI.17-18) give also the general form of the homogeneous
response of the system (1.3.8-9),

(b) Pk 18 a potential coefficient Ezm' In this case, as shown in paragraph 2.4,
all the initial conditions are zero, and the forcing terms are given by

nma(s) and Arnmu(s)’
(t) and Dz a,., Dzq a, (following
Cnm r Cnm u

expressions (2.3.48-49). Therefore, using Bnma(s)’ G
Aunma(s) to denote the LTS of Bnma(t)’ Y
the notation of paragraph (2.4)):

nme

SArnma(S) - ZnOAunma(S)

B (s) = (A1.19)
Nflo s(sz+n%)
2 5.2
) (s —3no)Aunma(s) + ZnOSArnma(s)
6mg (S) = IR (AI.20)
s {s +ng)

according to (AI.9-10). Changing, for the same reason as before, from t to
t' = t-ty, expressions (2.3.48-49) become:

n+3N
Dge a.(t) = = an : cos{w; t' + ¢ ) (A1.21)
Com T j=-(n+3N) "3 jm jme
n+3N . .
Dpa a,(t) = = L sin(uspt' + o) (A1.22)
nm j=-(n+3N) UM
where
Wjm = JNo + MmO’ (AI.23)
ime = “jmto * g (A1.24)

and $ma is defined in paragraph 2.2, expression (2.2.50).
Taking the LTs of the forcing terms with the help of (Al.2d) and (Al.2f-g),
since cos(wjmt +¢jma) = C0S ¢jmacos w.mt'—sin ¢jma sin wjmt‘ and

J
s1n(wjmt +¢jma) = CO0S ¢jmas1n wjmt +s1in ¢jma cos wjmt » then
+3N S co .= i .

A (s) - nZ . (s cos ¢gm “sm sin ¢Jma)
rm j=-(n+ay) M (s +w2 )
jm

A (s) = n;3N . (s sin ¢jm +wjm cos ¢jma)
unma j=-(n+3N) UM (52+m§m)
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Replacing these last two expressions in (AI.19-20)

[a. .s(s cos ¢jma'w‘ sin ¢

rnmj Jm Jma)

) n+3N - ZnOaunmj(s sin ¥ima’ “jm COS ¢jma)]
Bima(S) = I 7 (A1.25)
Jj==(n+3N) s(s +ny)(s +wjm)
2_ o2
[aunmj(s -3ng) (s sin $35mo®3m €05 ¢jma)+
) n+3N + 2nosarnmj(s cos ¢jma'wjm sin ¢jma)]
Gma(S) = . 2 2,7 2., 7 2 (AI.26)
j=-(n+3N) s (s"+ny)(s +wjm)

Once more Bnma(s) and Gnma(s) are ratios of polynomials with the denominators
of greater degree than the numerators. In the case of Bnma(s) the roots of
D(s) are

s, =0, s, =5, =1ng,, sjm1 = Sjmz = oy
where -(n+3N) < j < nt3N and m is fixed.
The denominator of Gk(s) has the same roots, except that the zero s, is double

instead of simple. Expanding in partia1 fractions

B B, B n+3N B" g"
Brma(S) = 7; N CEIN (s+$n‘) Ts- igﬁ ) + <S+$$“ y (AL.27)
0 0 J=-(n+3N) 3m
7 n =N
6 (s - Gy, , Gy, . G, G, n+3N 6 . &l (AL.26)
nMa $2 s (s—inof (s+1n57 (n+3N) (s- 1me) (s+iwjm) )

where B,, B,, B, and G;,, G, G,, G, represent contributions from all the
terms of the summations in (AI.25-26).
According to (AI.5) the coefficients of the fractions corresponding to the
complex pairs of roots are

2

N 'arnmjwjm(cos s +1 sin ¢Jma) 2n0aunmjwjm(cos ¢jma+1 sin ¢jma) (AL.29)
2 , 2 :
Zw (Jmn)
. 2
o —2n0arnmJ Jm(cos $imt1 sin ¢jma) unmJ(me+3n Jw jm(cos i +1 sin ¢Jma)
e 3 2
ijm( jm " o)1

(AI.30)
and their complex conjugates.
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The inverse LT of (AI,27-28) is

ingt'  -ingt'  n+3N n 1mjmt' _ —1mjmt' .)
B (t') = B,+B_e +B e + I BY e Y 4B. e (Al.3la
nma 1772 2 j=-(n+3N) Jmo jm
ingt' _ -ingt'  me3N et o i
1 - s \]m JITI
Yoma(t') = Goit+Gy +Goe +G e +j=-%n+3N)Gjma e 6ye (AI.31b)
But
ig.
s _ JMmo
cos ¢, + 1 sin ¢jma = e
-id.
_ s . - JMo
cos ¢jma i sin ¢jma e
and making use of (AI.29-30)
. -i(w: t'+¢.
ingt' _ -ingt'  ne3N o0t *ogme) e Hognt " gm)
B, (t')=B.+ Be +B e + oz b .{ )
nMmo 1 2 2 j=-(n+3N) nmj 2
(A1.32a)
int' _ -ingt’
ynma(t')= G,,t'+G, ,+G e +G,e +
N3N 1(mjmt +¢jma) —1(wjmt'+¢jma)
e -e
+ z g m.( 3 ) (AI.32b)
j==(n+3N) "™
where
_ (mjmarnmj+2"0aunmj) AL33
bong = - — (AI.33)
u’\]'m(‘”jm'no)
2,2
) (ijmnoarnmj+(3”o+“jm)aunmj) AL 3
gnmj -7 2 ( 2 _ 2) (AL.34)
(L)jm (Djm nO
Moreover
Hugnt *ogne) =1 (ugpt o5 )
cos g t' 5 ) = £ 2+e (AI.35)
and
i(mjmt'+¢jma) -1(mjmt'+¢jma)
: ' e -e ‘
S'In(u)jmt +mjma) = 57 (AI.36)
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The summations in (AI.31-32) are the particular integral part of the solution.
Using the notation of paragraph (2.4) and (AI.35-36) above:

n+3N
v -
B (t) = z b . cos(uw, (t'+ty)+d. ) (AI.37)
nma == (n+3N) nmj im .
" n+3N b ) A )
v (t) = z g, . sin(w; (t'+ty)+d 1.38
nmo, j=-(n+3N) nmj Jjm Mo
because ¢jma = “jmto + bt Changing back from t' to t = t' + t, after replacing

(AI.37-38) in (AI.31-32) and of several manipulations of the homogeneous part:

B (t) =B

+
M B cos not an

+
Onma 1nma
n+3N

i t +
me S1N N,

+ b

'=-?n+3N) amg cos(mjmt+$ma) (AI.39)

YHMa(t) = Gonma + Glnma cos n0t + Gznma sin n0t + Ganmat +
n+3N .

+ . si . t+ Al.40
ey O S (g (AI.40)

This is the complete solution of the variationals for Py = C* . The coeffi-

nm
cients BOnma’ etc., and Gonma’ etc. are all real, because Bnma(t) and Ynma(t)
are both real. All these coefficients, with the exception of bnmj and gnmj

(as shown in expressions (Al.33-34) are functions of the starting time t,
in order that the initial conditions may be fulfilled. This highlights the
independence of gnma and tnma from t,, which is essential to the adjustment
of the potential coefficients in the manner discussed in section 3. Expres-
sions (AI.17-18), (AI.37-38), and (AI.39-40) correspond to (2.4.la-h) and
(2.4.6-11) in paragraph (2.4).

To verify the correctness of (AI.33-34) and (AI.37-38) as expressions of the
particular integral terms and their coefficients, the reader can put these

terms and their derivatives, together with Dz, a,. and Dzq a, according to
nma nMa
(2.3.48-49) in the variational equations and see that these are actually

fulfilled (though the initial conditions are not met; that is the function
of the homogeneous terms).
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The forcing functions include terms of frequencies 0 and n, for which the

analysis just completed breaks down, as the amplitudes b and g become

indefinite. This is known as resonance and it appears, agggg othe?mieasons,
because the equations of motion from which the variationals have been
derived correspond to a drag-free satellite and contain no dissipative
terms. Even in the presence of drag the solutions can have very large

terms near or at the two critical fequencies. The fact that the general
expressions previously obtained become indefinite merely indicates that

the terms at 0 and n, require a separate treatment. In the case of a
perfectly circular orbit, paragraph (2.5) shows that the only frequencies
present are of the form (n-2p)n0 + me', with 0 s p s n, so only even zonals
can produce zero frequency terms, and only odd zonals can originate terms of
frequency n,. As the orbit is not circular, even and odd zonals will contri-
bute to both frequencies.

(A) Zero frequency term:

Each zonal contributes a constant forcing term % 1n00C0S 0t = a (there is no

n rnoo

24noo rnoo 1S constant, the choice
of t, does not affect the conclusions, so t; = 0 can be adopted for conve-

sin Ot term, sin Ot = 0 for all t). Since a

nience. Then expressions (Al.19-20) become

. a a
= rnoo 2, 2yy~1 rnoo
Bgog(s) = s(—5—)(s(s™ny)) = ——— (A1.41)
s(s+ng)
and
: 2n a
=0 0“rnoo
ﬂoo T 32,22 (AL.42)
3%(s%+ny)

where the superscript j = 0 indicates that these relationships correspond to
the zero frequency parts of Bnoo(s) and Gnoo(s) only.

Expanding in partial fractions and reasoning as before leads to expressions
of the form

B%;g = A+Bcosnt (A1.43)
and
Yg;o = C+ Dt + E sinngt (AI.44)

If t, # 0, t can be replaced with t - t, directly.
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(B) Zonals, frequency ng:

To begin with, the following additional formulas are necessary:

sinn.,t - n,t cos n.t
R o9 0 (A1.45)
> 3
(s"+ny) U
t sinn_.t
- 2 =L{ 7n 0} (AI.46)
(s™+ny) 0
2 sinn,t + n.t cos n_t
( x - L{ R -} (A1.47)
s°+n 0
0
3
( 25 2)2 = L{cos not - gnot sin not} (AI.48)
$°+n
0
t » 0
ny [ {51t de = mgt{7608 Mot} f5Tm moty {0} (A1.49)
0 cos sin not C0S not 1

Replacing LT with n  in (AI.25-26):

Bj=1(s) i s arnoo(s cos n t -n, sin noto)—ZnOaunoo(s sin not +n, cos noto)
noo s(sz+n§)2
(AI.50)

2 .2 . .
j=1(s) i aunoo(s —3n0)(s sin n t +n, cos nyty)+2n s arnOO(S cos not -n, sin nt )
noo Sz(sz+n§)2

(AI.51)
j= j=1 .
so Bﬂoé(s) and Ggoo(s) {j=1 means the effect of the fundamental) are of the form
Bj=l(s) - as®+bs+c - as + b + C
neo s(s?n3)?  (s%n%)?  (s%n3)?  s(s%n3)?
and
Jj=1 _ d53+esz+fs+g _ ds e f qg
Gnoo(s) ST 2, 2.2 T 2202172 2t 2
~ s%(s%+n?) (s®+n2)?  (s%+n?) s(s?+n2)?  s%(s*+n3)?

From the last two expressions, and (Al.45-49) follows that the inverse Laplace
transforms B%z; and y%zé are functions of t' = t - 7, (where 7, is the instant

when the satellite first reaches perigee, i.e. F' = 0) of the general form
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J=l,4y 2 ; . '

Bnoo(t) = A+ B sinn t+ Bt'sinnt (AI.52)
and

j=1 - Y

Ynoo(t) = F + Gt'+ H cos n t'+ It cos n;t (AI.53)

(for the last result, (AI.2i) has been used together with (AI.49) twice).

A good reference for the theory and the use of Laplace transforms is the
book by Spiegel (1965).
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APPENDIX IT.

Complementary Orbit Theory.

This Appendix completes the treatment of the analytical, first order pertur-
bation theory for near-circular, near-polar orbits introduced in sections

1 and 2. The first part of the Appendix deals with perturbations normal to
the plane of the reference orbit, and the second part considers the extension
of the theory to include non-periodical reference orbits.

(I) Perturbations normal to the reference orbital plane.

The perturbations perpendicular to the orbital plane are governed by the
variational equation (1.3.7):

s - _q2
% 7 Pp %2 7Mo%

where

a, = DZV; @ = Dpkz
and the parameter py can be either a component of the initial conditions
z(t,) or i(to); or it can be a potential coefficient Cﬁm‘ In the first case,
the forcing term is zero, and aps &k describe the free response of a harmo-
nic oscillator of natural frequency n,. In the second case, the forcing term
can be developed in a Fourier series, as were those of the in-plane pertur-
bations discussed in section 2.

AII.1 Fourier development of the forcing terms.

To obtain the Fourier representation of DC“ a,as a function of time,
nm

consider first the spherical harmonic expansion of the potential

V(r,p,A) = I sz Xnma(r,m,x)
Mo

where, according to (1.2.3-4)

v _GM ,a\n 5 . o
Xnmu(r,m,x == CF) an(s1n ) cos{mxr wE) (AII1.1.1)
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Changing from spherical coordinates to orbital variables (see Fig. (2.2.1)
in paragraph (2.2))

v _ n_~(n+l) n .yJcos|n-m even _
X 0 - GMar z anp(z){ } ((n 2p)F+mL+¢a)

nm p=0 sin’n-m odd
(AII.1.2)
which follows from (2.2.3) and the similarity between this and (2.2.8). Here,
once more,
0 ifa=0
o = {
@ LI fa=1
Now
Dra @, = Dxa DV =Dza D, C* X =DX
Cnm z Cnm z Cnm Z “nm “nmo zZ ' nma
and
dz = r sin F d¢
so
Dra @, = ——a2 D, X
Cnm z TrsinF 7 "nma
M a"r(p)-(n+2) 1 .\ (€OS
= \ T D.F__ (Z) ((n-2p)F+mL+¢ )
sin F p=0 < nmp {sin} a

(AII.1.3)

where r is a function of F alone, because the orbit is periodical. The forcing
term is continuous everywhere and, therefore, square integrable in the inter-
val 0 < F ¢ 2n, For this reason, it can be expanded in a convergent Fourier

series. This is also true of D.X___, but the factor
2" nmp

_ 6 a"r(r)~(n+2)
fa(F) = sin F

is singular at F = kg, where k = 0, 1, 2, ..., soO fn(F) has no trigonometric
expansion. The product offn(F) and Dixnma is not singular there, because

Danma + 0 as F - k¢ in such way that the 1limit of the product is finite.
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The singularities infn(F) present a difficulty if one tries to follow an
approach similar to that of paragraph (2.2). To overcome it, consider the
"notch function"

{1 if |F-knr| > ¢ (k=0,1, 2, ...)

N(F) = (AI1.1.4)

0 otherwise
(it resembles a horizontal bar with vertical slits or notches cut across
at regular intervals). The product

£1(F) = N(F)f, (F) (AIL.1.5)

is everywhere bounded and square integrable, if Lim N(F)fn(F)is taken as the
Fokm
value offa(kn). Therefore, fﬁ can be expanded in Fourier series. Moreover,

it is an even function of F' = F-in, and it contains only odd frequency
components because it has the property of half-wave antisymmetry:

£L(F') = ~F) (F*4m)

Consequently

f!(F'y= £ f' cos qF'
n q(odd) nq

This expansion can be truncated at a sufficiently high value K of q, so
K
fI(FI) ~ f;(F') = I fr; cos qF' (AII.1.6)
g=1 (odd) M
(which closely resembles (2.2.16a). Introduce the square integrable function

n
Dga a3 = 1(F') £ 0;F (60 O ((n-2)F mbe(n-2p)7 + o)
m p=0 sin (AII.1.7)

which can also be expanded in Fourier series for any ¢ > 0 and all K.
From the definition of N(F) it is clear that

Dzq a_ = Lim Dzre a"
o2 Kow Cnm z
for |F-ks| > e, so Lim Lim Dga @, = Dga a, for all F (and all F').
g0 Kseo  “nm nm
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As both Dca a; and Déa a, are square integrable, both the Fourier expansion
nm nm

of Dza a! and its individual Fourier coefficients become those of Dzo a
Cnm z cnm

in the Timit. So, to find the Fourier expansion of DC“ a, it is sufficient

nm
to find that of Dca a; and then to take limits. Repeating the reasoning of
nm
paragraph (2.2) that lead from (2.2.12) and (2.2.16) to (2.2.40), starting

from (AII.1.6) and (AII.1.7) one arrives to

z

n+K+2N
Dza al = by at . cos((in,+me "' )t+¢ ) (A11.1.8)
Com 2 j=-(n+kr2N) MM 0 Mot

where t = 0 when first F' = 0. If H is a sufficiently high positive integer,
so the series for Dta a, can be truncated at n+H Jjust as (2.2.48) was at
nm

n+3N, and if a___ . = Lim &" ., then
znmj "o znmj
n+H R
Dza a_ = b a s €os((Jjn +mo')t+e ) (AI11.1.9)
nm 2 j=-(n+H) Znmj 0 Mo,

where, for general time and longitude origins 7, and L, $ma is as defined
by (2.3.50). The summation Timit, and therefore H, will depend on the degree
n and on the eccentricity of the orbit, increasing with both, just as in the
case of Dézm a, and Dcam a,. In fact, H.= 3N is probably more than enough

for the applications that are 1likely to occur. The values of the coefficients
can be obtained in the same way that was shown in paragraph (2.3} for

of the in-plane forcing terms. First, Déa a, can be
nm
computed at equal time intervals along the numerically integrated reference

orbit with the formula

4znmj

the a and a

rnmj unmj

1 . -1
Dza a_(r,@,r) = =[Dza D V sin p=-Dza D,V cos ¢ = cos u] (AII.1.10)
cnm z r cnm @ Cnm A

where u is the angle between the along-track unit vector gg'and the Tocal

north-pointing unit vector 58, given by (2.3.6). Finally, the Ca— can be

calculated by analyzing the sequence of values of Déa a, with a Fast

Fourier Transform procedure. nm
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AIl.2 The analytical solution.

There are two cases: when the parameter to be estimated, p,, is a component
of the initial state, and when it is a coefficient sz'

(1) Pk is a component of the imitial state.

Reasoning as in paragraph (2.4), and using a similar notation, calling
- - [, :

az(to) = Dz(to)z(t)’ ai(to) _Di(to)z(t)’ and t' = t-t , where t s the

beginning of the orbital arc in question,
“z(to) = cos ngt' (AIl.2.1a)

-1 . .
ai(to) n, sin n,t (AI1.2.1b)

Combining the perturbations caused by Az(to) and Ai(to):

-1

Az(t) = Az(t,)cos n t'+az(t )n,

sin nyt! (A11.2.2a)

=1

b2(t) = no’(-az(t )

O)s1'n not'+Az(t0)n cos nOt') (AIl.2.2b)
(2) Pk 18 a potential coefficient.

The particular integral for a forcing term of the form h(t) = A cos(uwt+¢)

is o = A(nﬁ-wz)-lcos(wt+¢), as it can be verified by replacing o with &, and

DCG a, with h(t) in the variational equation. So, when the forcing function
nm

is the Fourier series in the right side of (AII.1.9), the complete solution
is

e (E) = Ay €OS Not+A, b osin ngt +
n+H ' )
+ E;L%n+H) Ay Cos((dng*me’)t+e, ) (A11.2.3)
where
aznmj
(nﬁ‘(jn0+me')2)

anmj

(AII.2.4)
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According to this result, resonance occurs when (jn +mé') = n,, the natural
frequency of the harmonic oscillator. For a planet Tike the Earth, spinning
too fast for 6' to be zero, and where mé' is not a multiple of n, (at least
for n and m not larger than Nmax ,the highest degree considered) the only
possibility is when j = 1 and m = 0. Therefore, resonance is, once more,
a purely zonal effect. Taking the Laplace transforms of both sides of the

variational (1.3.7) for « = 0, m =0 and j = 1, keeping in mind that

always anoo(to) = anoo(to) =0,
2p371, ¢y 2 2 opd=l
$*Ahoo(s) = Lla,, o) cos nyt}=nghAl o(s) (AI1.2.5)
here AJ=L(s) = £tad  (t)), o37) s th t of f in
where AS0(s) = Lioy (t)}, @ - is the component of frequency ny in o o

and t = t-ro, T, being the time of the first passage through perigee (F' = 0).
Since L{cos noi} = s(sz+n§)'1,it follows that

j=1 -
AT(s) = a4y, s(sP+n2) 72 (AI1.2.6)

Applying the inverse Laplace transform to both sides
j=1 _%zno1 ; 5
anoo(t) = —p— tsinngt (Al11.2.7)

This expression is always zero at perigee and apogee, where F' = nof = ku,
k=0,1, 2, ..., and greatest at the nodes, where not =k v, k=1, 3, 5, ...
This produces a secular increase of the distance of the nodes of the true
orbit from those of the reference orbit, and since the inclination of themajor
axis of the mean ellipse does not change, this is equivalent to a rotation

of the orbital plane about the Earth's main axis of inertia (which in this
work is regarded as identical to the spins axis, and is called merely

"the Earth's axis"). For a polar orbit, < = *}w, so the Dianp(i) in

(A11.1.3) become all zero, and so does DC“ a,, its Fourier coefficients,

nm
including azn01* and the precession rate azn01/2"0' This agrees with the

absence of forces excerted by the zonals perpendicular toameridian plane,
so such a plane does not precess. At any other inclination, this precession
is influenced mostly by the even zonals, particularly in near-circular
orbits. The reason for this is that for a circular orbit F' = n,t at all
time, assuming T = 0 for convenience, Replacing F', together with

f"(t) according to (AII.1.6) in (AII.1.7) results in the expression,
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for m = 0 (after taking limits, etc.),

n+H

Dcﬁm az(t) = cos jnot (AII.2.8)

X a .
j=-(n+H) ZM0J

where j = (n-2pxq), 0 <p<nandq=1, 3, 5, 7, ... Here even zonals produce
odd harmonics of n,, and odd harmonics even ones. The resonant frequency n,

is an odd harmonic, so only even zonals can cause resonance, and precession.
For non-circular orbits this is no longer quite true, but the effect of the
even zonals prevails as long as the orbits are not too eccentric.

(I1) Non-periodical reference orbit.

In the orbital theory developed so far, a constant assumption has been that
the reference orbit is closed and periodical in its own plane. This property
is essential to the efficient estimation of the potential coefficients, as
explained in section 3, because of the symmetries that then appear in the
formulation of the satellite-to-satellite tracking problem. But a perio-
dical orbit was not needed to derive the variationals in paragraph (1.3),

so these can be the basis for a theory that can deal with more general
problems, as Tong as the orbits are near-circular and have high inclina-
tions, as both properties are required for the validity of Hill's equations.

AlI.3 Generalization of the theory.

If the true orbit cannot be fitted by a periodical reference orbit closely
enough to use linear perturbation theory, a non-periodical reference must
be employed. Such a reference cannot, in general, be obtained by numerical
integration because this would have to be done over long periods of time,
which creates a number of practical problems, and also because its shape
could be too complicated for satisfactory mathematical treatment. So,
instead of an integrated orbit, one may use a line in space that follows
the true orbit close enough for long enough, but need not be an orbit

at all. A possibility ready at hand is the use of the secularly precessing
Keplerian ellipse, corresponding to the combined effects of the central
force term and the secular perturbations caused by the powerful second
zonal, that is employed in classical treatments such as the "variation of
constants" approach. This choice permits a relatively simple mathematical
development of the forcing terms of the variationals at the price of some
loss in accuracy. The ellipse in question has fixed eccentricity e and
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semimajor axis @, and lies in a plane of constant inclination 7, precessing
at a constant rate according to expression (1.3.10). The "unperturbed
position" of the satellite along this "orbit" passes through its perigee

at equal intervals, and F' (the angle between that position and the semi-
major axis measured from perigee), or "true anomaly", varies periodically
with a fundamental angular frequency n, = 2 Tal, where the orbital period
T0 is the interval between two consecutive crossings of the perigee. The
major axis, for its part, turns slowly in the plane of the ellipse about

a focus fixed at the geocenter, so its angular distance to the ascending
node, or argument of perigee w, varies at a steady rate and, above the
"critical inclination", in the same direction as the motion of the satellite.

If dw = w - %, and L is the longitude of the node,

Ao = u'o(t-'ro) (AIl.3.1a)
L = 6'(t-r0) (AII1.3.1b)
F' = n0t+(periodic terms) (AIL.3.1c)

where T, is the time when perigee is first reached, and the constant angular

rates n, and w are (a is the Earth's equatorial radius, n, is usually known
as M)
Co)/45 a?
GM, 3 20 »
= (=)°[1 - ——— 57357 (3 cos” £-1)]1 - (AIl.3.2a)
o 1102752 ¢ )
=0 2
. C.\/45 a
o = (B3 20 (1-5 cos® 1) (AI1.3.2b)

o 4(1-2%)24°
(see, for example, Kaula, expressions (3.74)). Moreover, because of the

symmetry of the ellipse about its semimajor axis, and the antisymmetry of
the reference velocity of the satellite respect to the same axis,

N

-(n+2) _ hnq cos gF' (AI1.3.3)

r
and

fs sin 1n0£ (AI1.3.4)
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(where t = t-t_and h , = o~ (n+2)

for small e) which Took the same as
(2.2.16a) and (2.2.32), with N being in this case a convenient upper limit
for truncation, increasing as n and the eccentricity do. The precessing
ellipse can be used to derive Hill's variationals in much the same way as
this was done in section 1, provided, once more, that the orbit is near-
circular (small e) and near-polar (7 close to +iw). The rotating frame
(z,r,u) must turn at the constant rate Nys and the ¥, U axes must remain
in the plane of the ellipse, so they precess along with it, as before.
The solution of the variationals for perturbations of the initial state
are exactly as before, because Hill's equations do not depend, according
to their approximate derivation, on the exact shape of the near-circular
orbit. To find the analytical solutions corresponding to the potential
coefficients Ezm, it is necessary to start by developing the forcing

terms D=y a_, Drg @
“m 2 Cnm
be done, consider Dpa a. Expression (2.2.12), from which the corres-
nm

P DC“ a, in Fourier series. To show how this can
nm

sponding derivation for the periodical orbit started, is quite general
and can be used here as well. If w # v (equality is allowed only in the
periodical case) then aw # 0, and F = F'+Am+%. Replacing this in (2.2.12),

Da. a' = po(M¥2) o o {cos}n-m OVEN | (_2p) (F bt 3)4mL+s )
Com T p "™Plsin)n-m odd z ¢
(AII.3.5)
0 if a=0
where 9, ={_ TOif o= 1 The actual values of the arnmp are, of course,
2

different because the reference is no longer the same, but the form of
the expression remains. Reasoning as in paragraph (2.2), from (AII.3.3)
and (AII.3.5) follows, just as (2.2.27) from (2.2.12) and (2.2.16a)

n+N n

Dz, a, =

ta 2 cos(kF'+(n-2p)Am+mL+¢ma) (AII1.3.6)

ke-(n#N) peo TP
where ¢, = -a % -(1-(-1)™ L), as before, and the summation with respect to
p has been retained to take care of the extra term in the arguments,
corresponding to Aw. Changing from F', L, and aw to their time-dependent
forms according to (AII.2.la-c), repeating the steps leading from

(2.2.27) to (2.2.48-50), and carrying out the additional derivation for
the out-of plane perturbations along the lines of paragraph (AII.1l), one
arrives at
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n+K n .np
Dag a.(t) = = I oa. . cos((jn +(n-2p)w+me’ Yt+s )
Com 7 j=-(n+K) p=0 T"MMIP 0 Mo
(AI1.3.7)
Dga a,(t) = £ a0 sin((jn0+(n-2p)d)+me')t+$:15) (AI1.3.8)
nm jp
_ ; _ y ' ~np
Dsz az(t) = ;; aZnmip COS((Jn0+(n 2p)w+me )t+¢ma) (AIL.3.9)
n+k n
where K increases with e and with n, & oz I , and
jp  J==(n+k) p=0
np _ Y oA
e = Pmo (jn,+(n-2p)uwtme )T, (AI1.3.10)

The coefficients Denmip® %unmip and aznmjp are independent of o', w and Tys and
LO, so they can be calculated as explained in paragraph (2.3). Using these
expansions of the forcing terms, the corresponding analytical solutions of
the variationals have the same form as before (expressions (2.4.6-9) and
(AII1.2.3-4)), the only differences being the need for an extra summation
with respect to p in each formula, the replacement of the frequencies
(jn0+me') by (jn0+(n—2p)é+me'), and the extra phase-shifts (n—2p)éro.
Because of the new terms (n-2p)w, which can be zero, regardless of @, only
if p = in, even zonals can still produce resonant effects at the 0 and Ny
angular frequencies, but not the odd zonals. For the near-polar orbits to
which this theory applies, however, w is always quite small, so the odd
zonals can still cause strong near-resonances.

The coefficients Tenmip® “unmip® “znmjp’ when derived in the way outlined
here, appear as related to the inclination functions anp(i),_?g+;§s
derivatives, and to the Fourier coefficients hn and fi’ of r and
F'(t), respectively. Another "literal" formulation could be obtained,

using the classical analytical perturbations of keplerian elements, in
terms of inclination functions, eccentricity functions anq(e) (see Kaula),
and their derivatives. Putting those perturbations together to describe
the variations in (z, r, u) Tleads, eventually, to the same type(l) of

(I)The "classical" method is based on a first order approximation to the
nonlinear perturbation equations 0f Lagrange; the one introduced here
is built around Hill's approximation to the linearized equations of
motion. Both are different ways of linearizing the problem which should
give, with the same elliptical primary, or "reference line", expressions
of the same form for o, 8 and y, but slightly different numerical
results (as long as the eccentricity is small and the inclination high).
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formulas as the present theory, but with the Fourier coefficients given as
explicit functions of the eccentricity, while in the present one they are
not. The use of any "literal" approach is that, though not as suitable

for numerical computations as a method like the one proposed in paragraph
(2.3), it does allow further insight into what happens when the orbit para-
meters are modified.
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APPENDIX III.

Description and listing of computer programs.

This Appendix explains and lists the main programs used for obtaining the
numerical results given in section 4 and in appendix IV. Because of lack
of time, the programs were commented very suscintly or not at all, so the
following paragraphs, each dedicated to an individual program, contain a
brief "running comment" on the function of the various segments of the code,
mostly in the actual order in which they appear in the listing. The line
numbers referred to are those in the column to the right of the FORTRAN
statements. The actual listing appears at the end of each paragraph.
Broadly, the programs (and asscciated subroutines) fall in two classes:
those used to compute the closed reference orbit by the method described

in paragraph (2.1), and those used to first simulate and then analyze the
line-of-sight velocity between two satellites and to compare the resuits

of the numerical simulation (in the form of "lumped coefficients") with
those of the analytical theory of sections 2 and 3 and appendices I and II.

AIII.1 Program for closing the reference orbit.

This program implements the procedure described in paragraph (2.1), equa-
tions (2.1.8-12). It begins by using the values of the first 9 zonals, of
GM, and of the mean Earth's radius "AE" to find the initial conditions
{or state) for a satellite whose mean height is "HS". This 1is done by
equating the jnitial (osculating) Keplerian elements to the mean elements
of a "frozen" orbit using Cook's theory {equations (2.1.3-4)) and then
changing them into Cartesian, equatorial, inertial coordinates, resulting
in simpler equations of motion that are also easier to integrate numeri-
cally. The values of the zonals are defined in the DATA statement, Tlines
15 and 16 in the listing.

The chosen integration step, in seconds, is "H", and "EPS", "TELEM", and
"INIT" are variables used by the orbit integration subroutines and have
to be initialized before these are called. These subroutines are des-
cribed in paragraph (AIII.5). The same applies to "IR" and "DSR2I".
"NMAX" is the highest degree of the spherical harmonic expansion of the
field considered, in this case NMAX = 9, "DTOUT" is the interval, in
seconds, between two consecutive states of the satellite listed in the



- 199 -

printout. "A" is the mean geocentric distance of the spacecraft, and "DINCL"
its initial argument of perigees in degrees, here chosen as 90° to meet the
condition for a "frozen" orbit. Statements 45 through 47 initialize certain
arrays used by the subroutine "LEGEND", which computes the normalized
Legendre polynomials needed to calculate the force when integrating the
orbit. Statements 51 to 68 compute the initial conditions, first as Kep-
lerian elements (according to Cook's theory) and then convert these to
Cartesian form.

The procedure for closing the orbit is iterative, but, because of insuffi-
cient time to develop it properly, this program can only carry out one full
iteration every two runs, and, the changes in initial conditions obtained
from one run must be entered "by hand” in the following one, which is done
here in statements 70-72. In the first run, both 70 and 71 are "commented"
(adding a "C" in column 1) to render them unoperative, while "DRO" (the
correction to the radius) is set to 0. In the next run, DRO is set to 1 km,
and the difference AFO between the values of the radial velocity at the
point where F' = }r, obtained from each run, is used to evaluate

dr'ﬂ’ AY‘_" AY‘_" . . . .

ay; = Z}; = ZFEE; » which then is used according to (2.1.10b) to find the

"actual” correction DYDO to the velocity, and the corresponding correction
DRO to the initial radial distance (equation (2.1.10a)).

The value of the angular frequency n
GM
3

o of the orbit (or "W0") is initially

set to the approximate value n, =

» and Tater changed by the program
to an updated value corresponding tg the estimated half-period of the
actual orbit obtained in Tine 140. At the start of a new iteration, in
lines 70 and 71 the values of geocentric distance and initial velocity
are set equal to those obtained from the previous iteration, DRO is set
once more to 0, and the whole pracedure is then repeated. This awkward
method could be avoided by adding a few additional lines of coding in
order to "close the loop" and let the whole iterative procedure repeat
itself automatically until it meets the convergence criterion. I would
have done this if I had had a few extra weeks to polish the software

(written somewhat in haste to meet a deadline) but this was not the case.
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Statements 79 to 92 initialize the orbit computation loop that follows,
adding the latest corrections to the initial position and velocity and
estimating the orbital period "TORB" according to the approximate angular
frequency WO. The half period "TT" and the three-guarter period "TIT" are
obtained from this, and also the radial distance and velocity at the
starting time are computed and then printed out, together with the Car-
tesian initial conditions. The main loop, where the orbit is calculated
and the middle point and the final point estimated, to determine the
value of fﬁ,TO/Z and also the final misclosure (to see if the procedure
has converged to a virtually closed orbit) starts at line 93 'and runs
right to the end, in Tine 180. The integration over a time increment H

is done by subroutine "COWELL". The updated state appears in arrays "X"
and "XP" (for Cartesian components of position and of velocity, respec-
tively); X(1), X(2), X(3) correspond to "x", "y", "z",and similarly for
XP. Radial distance and total velocity are computed (1ines 86-87) to be
printed out, together with the full state and time, at points along the
orbit "DTOUT" seconds apart (see lines 38-39). Setting INIT = 1 causes
the integrator to skip the self-starting procedure after the orbit compu-
tation has got under way. Lines 103 to 105 test whether the orbit has
reached either the critical neighbourhood of the mid-point, or it is getting
close to the end. The flag "MIAU" is set to 0 at the beginning, so the
procedure concentrates on finding the mid-point. Once this is done,

MIAU = 1 causes the program to search for the end-point, and to estimate
the misclosure by comparing it to the starting point. Regardless of
whether the search is for the mid- or for the end-point, the method is
the same: sense the first time when the satellite has gone beyond the
point in question, reverse its motion by changing the sign of the inte-
gration step, and divide this step by 10; then proceed to integrate in
reverse until the point has been just crossed once more, and repeat the
procedure going to and fro with finer and finer sampling in time, until
the estimated crossing time changes by less than the desired accuracy
from one turn to the next. The actual criterion for deciding on which
side of the critical point the satellite happens to be, a geometrical
reasoning that is valid for high values of the inclination, is

explained in the comments of Tines 115-124.
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The results, printed according to lines 151-152 and 178-179, consist of
"RDOTM", or ﬁﬂ, "TM", or the time T /2 where F' = %, "RO", "VO", "RF", "VF",
or the initial ("0") and final ("F") values of the geocentric distance
and the total velocity; "VZF" is z, which should be 0 for an ideally
closed, symmetrical orbit. Therefore, a comparison of the initial geo-
centric distance, velocity, and z with their final values measures the
misclosure. "RMX", "RMN", "RAV', “DIFF" are the maximum, minimum and
average radial distance (obtained on the first half of the orbit, on the
assumption that it is always nearly symmetrical), and the difference
between the greatest and the smallest height, or vertical "swing” of the
trajectory. These last values indicate the departure of the orbit from
circularity, as well as from the desired mean height. The intermediate
values of TM, the half-period, and of Aﬁﬂ, needed to see how much they
change with every integration reversal, are printed according to lines
143-144. In the Tisting given here, only two reversals per critical
point are allowed (lines 160 and 164). Array “"R" serves to store conse-
cutive values of the geocentric distance during the first half of the
orbit, to obtain RMX, RMN, etc. "CC" stores the given values of the
zonals, later to be transferred (via a copy to array "CN" in COMMON
"COEFFS") to the integrating subroutines. Arrays "RLEGO", "RLEG1", "RLNN"
(1ine 14) are required by subroutine LEGEND (lines 46-47). Statement 74
ensures that the mean value of the orbital radius does not change from
iteration to iteration.

The program calls subroutines LEGEND and COWELL (see their description
in paragraph AIII.5).
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//GDFGOSCA JOB  (3114,81) ,0SCAR,TIME=(0,10)
/%JOBPARM LINES=2, INFORM,Q=F

//

EXEC FTIG1CG

//FORT.SYSIN DD *

C
[of
C

[z KeXeXe]

nnn

PROGRAM FOR CLOSING ORBIT

IMPLICIT REAL28 (A-H,0-2)

DIMENSION X (27,9) ,XP(27,9) ,CC(310)

COMMON /GEOCON/GM , RE

COMMON/INTEG/H,EPS

COMMON/I0/101,IN1,IN2,IN3,INU,INS,ING,INT

COMMON /COEFFS/ CN (310) ,DSR21,IFR,NMAX

DIMENSION RLEGO (35) ,RLEG1(35) ,RLNN (35) ,R(1000)

DATA CC/1.D0,0.D0O,-484.166D-6,.958475D-6,.541539D-6, .0684389D~6,
$-.1512070-6,.0933127D-6,.0509491D-6,.027331D-6,300%0.D0/

KIM = 1 WHEN CLOSING THE ORBIT (MID-POINT CHECK) ;
KIM = 0 WHEN CHECKING CLOSURE (END-POINT CHECK) .
101 = 6
NCOUNT = o0
PI = 4.DO*DATAN (1.D0)
DO 1 N = 1,310

1 CN(N) = CC(N)

H = 12.5D0
EPS = 1.D-12
TELEM = 0.DO

INIT = 0

GM = .398600u47D1S
AE = 6378139.D0
HS = 160016.D0

T = TELEM

KIM = 1

IR = 0

NMAX = 9

DSR2I = 1.D0/DSCRT (2.D0)

DTOUT = 1000.D0

INT = DTOUT/H+1.D-5

A = AEsHS

DINCL = 90.D0O

DINC = DINCL*P1/180.D0

DCI = DCOS (DINC)

DSI = DSIN(DINC)

M =1

CALL LEGEND(M,DCI,DSI,RLEG1,NMAX,IR,RLKN)
CALL LEGEND (M,0.D0,1.D0,RLEGO,NMAX ,IR,RLNN)

CHOOSE INITIAL CONDITIONS FOR “FROZEN ORBITY.

WO = DSQRT (GM/R%%3)
DK = 3.DO*DSQRT (5.D0) 2WO0*CK (3)* (RE/R) **2% (1.D0-5.D0/4.D0*DSI**2)
DC = 0.DO

DO 5 N = 3,NMAX,2

N1 = N+1

DC = DC#4CN(N1)®% (RE/AR) #%N% (N~1) /DSQRT (2.D0&N+1,D0) $RLEGO (N +1)

# *RLEG1(N+1)
S CONTINUE
DC = DC%0.5D0=*W0
E = DC/DK
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RP = A%(1.DO-E)
X(1,5) = DSQRT(RP#%*2- (RP*DSI)**2)

X(2.5) = 0.DO

X(3,5) = RP%DSI

XP(1,5) = 0.DO

XP (2,5) = -DSQRT (GM/A% (1.DO+E)/ (1.DO-E))
XP (3,5) = 0.T0

CHOOSE PERTUREATIONS TC IMITIAL CONDITIONS.

X(3,5) = 6526460.3518460D0
XP(2,5) = -7812.9679321953D0
DYDO = -0,0152575834D0

DRO = DYDO/WO

amas AAAAAA AR R AA A G A AN R A SRR AR A AR L AR AR
GESERELILELER IHT g =% %

11
1000

12

20

Ee2e23

DZ = 0.1DO0*A
ORBIT COMPUTATION

X(1,5) = X(1,5) +DRODCI

X(3,5) = X(3,5) +DRO*DSI

XP (2,5) = XP(2,5) +DYDO

DISCOL = 0.DO

MIAU = ©

TORB = 2.DO$PI/WO

RO = DSQRT(X (1,5) #42+X (2,5) 324X (3,5) 222)

VO = DSQRT (XP(1,5) $22XP (2,5) 22+XP(3,5) %2)

TT = 0.25%TORB

TIT = 3.DOXTT

WRITE(I01,11) (X(1,5),I=1,3),(XP(1,S),I=1,3),R0,V0
FORMAT (//* INITIAL CONDITIONS'//, (1X,3G20.14))
NINT = (TORB+S00.D0)/H¢1.D-5

DO 100 NI = 1,MINT

CALL COMELL (X,XP,TELEM,T,NCR,INIT)

INIT = 1

IP = T/H+1.D-S

RO = DSQRT (X (1,5) £22+X (2,5) 224X (3,5) 222)

V = DSQRT (XP (1,5) #22XP (2,5) 22+XP (3,5) 92)

IF (NCOUNT .EQ.0) R (NI) = RO

IF ((1P/INT) *INT.EQ.IP) WRITE(I101,12) (X(I,S),I=1,3), (XP(I,5)
1 ,1=1,3),RO,V,T

FORMAT (// (1X,3G20.1u))

IF (T.GT.TT.AND.DAES (A) -DABS (X (3,5)) .LT.DZ) GO TO 20
GO TO 100

IF (T.LT.TIT.AND.MIRU.EQ.1) GO TO 100

FIND THE F* = PI AND F* = 2%PI CROSSINGS.

PNI1 = 1.DO

€1 = -X(1,5)

€2 = -XP(1,5)

DETE = (X (2,5)%XP(3,5)-X (3,5) *XP(2,5))

PNI2 = (C1%XP(3,5)-X(3,5)%C2)/DETE

DISC = (-X(1,5)*PNI2+X (2,5)#PKI1)/DSQRT (PNI2352¢PNI12%2)

THE MERIDIAN PERPENDICULAR TO THE ORBITAL PLANE
MUST CONTAIN THE NORMAL TO THE LATTER. THE
PROJECTION OF THIS NORMAL ON THE (X,Y) PLANE
IS THE TKRACE OF THAT MERIDPIAN ON (X,Y). FOR
LARGE INCLINATIONS, THE SINE OF F*-PI 1S
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PROPORTIONAL TO THE PRCJECTION OF THE POSITION
VECTOR OF THE SATELLITE ONTO THE NORMAL TO THE
TRACE OF THE MERIDIAN ON (X,Y),(-PNI2,PNI1) .

INTERPOLATE RADIAL VELOCITY RDCT, R, V .

RDOT = (X (1,5)2XP(1,5)+X(2,5)2XP(2,5)+X(3,5)%XP(3,5))/R0O
IF (DISCSDISCOL.LT.0.D0) GO TO 30

DISCOL = DISC

RDOL = RDOT

ROL = RO

VoL = V

VZOL = XP(3,5)

GO TO 100

DTI = H#DISCOL/ (DISCOL-DISC)
RDOTF = RDOL+ (RDOT-RDOL) /H#DTI
IF (MIAU.EQ.1) GO TO 50

IF (KIM.EQ.0) MIAU = 1

T™ = T-H+DTI

W0 = PI/TM

RDOTM = RDOTF

WRITE(I01,222) RDOTHM,TM

FORMAT (//* RDCTM,TM =*,2G20.14)
IF (KIMJ.EQ.1) GO TO 110

GO TO 60

RF =ROL+ (RO-ROL) /H2DTI

VF = VOL+ (V-VOL) /H#DTI

VZF = VZOLe (XP(3,5)-VZOL)/HtDTI
TF = T-HeDTI

WRITE (101,51) RDOTM,TM,RO,VO0,TF,RF,VF,VZF

FORMAT (//* RDOTM = ¢,G20.14//' TM,RO0,V0,TF,RF,VF,VZF = */,

1 (1X,8G20.18))
GO TO 110

RDOL = RDOT
ROL = RO

VoL = V
DISCOL = DISC

CONTINUE

IF (NCOUNT.GT.2) STOP

H = -H/10.DO

INIT = 0

NCOUNT = NCOUNT+1

RDOL =RDOT

ROL = RO

VoL = V

DISCOL = DISC

IF (NCOUNT.GT.1) GO TO 1000
NK = T/(H$10.D0)+1.D-5

RMX = -1.DO

RMN = 1.Du0

DO 120 N = 1,NK

IF (R (N) .GT.RMX) RMX
IF (R (N) .LT.RMN) RMN
RAV = RAV*R (N)

RAV = RAV/NK

DIFF = RMX-RMN
WRITE(I01,115) RMX,RMN,RAV,DIFF

FORMAT (//* RMX,RMN,RAV,DIFF =4/,1%X,4620.14)
GO TO 1000

END

R (N)
R (N)
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AIII.2 Program for "circularizing" the reference orbit.

This program takes the initial conditions of the closed orbit, obtained
with the routine described in the previous paragraph, to begin a search
for another orbit which is still closed but somewhat more circular than
the initial one, and has also the prescribed mean height, a condition the
original closed orbit generally does not fulfill. To this effect it uses
the same orbit integration subroutines and the same field of 9 zonals as
the previous program. The successive values of the geocentric distance
along the first half of the orbit, computed every H seconds, is stored

in the array "RS". The corrections to the initial state A&O and Ar are
calied DYDO and DRO, respectively, and are computed in the rotating frame
of coordinates that turns with the satellite, instead of in the quasi-
inertial frame to which equations (2.1.11-14) correspond. This is done

to simplify the numerical integration of the orbit, which is carried

out in the loop formed by statements 73 to 83. Here also the state (posi-
tion and velocity) is printed out every 50 integration steps (see state-
ments 46-47 and 79-82). The initial conditions are printed just before
the Toop starts (lines 71-72). Statements 84 to 98 form a loop where

(a) the normal equations for the adjustment of s &0 to minimize the
quadratic functional ¢, which is the measure of the overall departure
from circularity, are formed; (b) the maximum and the minimum geocentric
distances along the orbit are found. The adjustment proper takes place

in statements 99-102. Then the maximum and minimum geocentric distances,
the corrections to the initial radius and velocity, the maximum swing in
height, the height bias, and the rms of the departure from circularity
along the orbit are printed out before going back to start a new itera-
tion. Altogether three iterations are allowed in the program as coded
(statements 19, 103 and 110). Statements 22-24 in the initial segment

define the values of Dy Fﬂ, Dr Fﬂ and of their ratio, which is needed
0 0

to ensure that the "closedness" constraint (2.1.12) is satisfied. This
program invokes subroutine "COWELL" and its associates to perform the
numerical integration.

As the "closedness" constraint is only a linear approximation to a non-
linear condition, the resulting "circularized" orbit may have a larger
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misclosure than the original one, so the “"closing" procedure may have to be
applied once more, the output of this program becoming the input to the one
in the previous paragraph.

//GDFGOSCA JOB  (3114,81) ,0SCAR, TIME= (0,10) 00000010
/%JOBPARM LINES=2,INFORM,Q=F 00000020
1/ EXEC FTG1CG 00000030
//FORT.SYSIN DD = 00000040
c 00000050
c PROGRA¥ FOR CIRCULARIZING THE REF. ORBIT 00000060
c 00000070
IMPLICIT REAL%B (A-H,0-Z) 00000080
DIMENSION X (27,9) ,RS(1000) ,XP(27,9),CC(310) 00000090
COMMON /GEOCON/GM , AE 00000100
COMMON/INTEG/H,EPS 00000110
COMMON/10/701,IN1,IN2,IN3,ING,INS,ING,INT? 000001 20
COMMON /COEFFS/ CN {310) ,DSR21,IR,NMAX 00000130

DATA CC/1.D0,0.D0,-484.166D-6,.95847SL~6,.541539D-6,.0684389D-6, 00000140
$-.151207D-6, .0933127D-6,.0509491D-6, .027331D-6,300%0 .DO/ 00000150

101 = 6 00000160

Do 1 N = 1,310 00000170

1 CN(N) = CC(N) 0000018C
NCOUNT = 0 00000190

DYDO = 0.D0 00000200

DRO = 0.DO 00000210

DYORM = 0.5152D-3/0.1062D0 00000220

DRORM = -0.2912eD-S 00000230

DKIN = -DYORM/DRORM 00000240

PI = 8.DOSDATAM (1.D0) 00000250

TM = 2638.7404786D0 00000260

W0 = PI/TM 00000270

DK = -DKIN/ (1.DO+WOSDKIN) 00000280

DINCL = 90.D0 00000290

DINC = DINCL*PI/180.DO 00000300

DCI = DCOS (DINC) 00000310

DSI = DSIN(DINC) 00000320

NT = 200.D0 00000330

H = 2.DOSTM/NT 00000340

EPS = 1.D-12 00000350

NPO = 0 00000360

TELEM = 0.DO 00000370

INIT = © 00000380

GM = .39860047D1S 00000390

AE = 6378139.D0 00000400

HS = 160016.C0 000004210

T = TELEM 000004 20

IR = 0 00000430

NMAX = 9 00000440

DSR2I = 1.D0/DSCRT (2.DO0) 00000450

DTOUT = HsS0 00000460

INT = DTOUT/H+1.D-5 00000470
X(1,5) = (AE+HS)=DCI 00000480
X(2,5) = 0.DO 00000690
X(3,5) = (RE+HS)=DSI 00000500
XP(1,5) = 0.DO 00000510
XP(2,5) = -7805.9927335843D0 00000520
XP(3,5) = 0.D0O 00000530

X10 = X(1,5) 00000540

X20 = X(2,5) 00000550

X30 = X(3,5) 00000560

XP10 = XP(1,5) 00000570

XP20 = XP(2.5) 00000580

XP30 = XP(3,5) 000€0590

2000 X10 = X10+DRO*DCI 00000600
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X30 = X30+DRO=*DSI

XP20 = XP20-DYDO-WODRO

X(1,5) = X10
X(2,5) = X20
X(3,5) = X30

XP (1,5) = XP10
XP(2,5) = XP20
XP(3,5) = XP30
RAV = BAE+HS

RO = DSQRT (X (1,5) #%2+X (2,5) ¥%24X (3,5) #*2)
WRITE(IO1,40) (X(I1,5),I=1,3),(XP(1,5),I=1,3)
FORMAT (//* INITIAL CONLCITIONS'//,(1X,3(G20.14,2X)))

DO 1000 NI = 1,NT
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CALL COMELL (X,XP,TELENM,T,HNCA,INIT)

INIT = 1
NPO = NPO+1

RS (NPO) = DSQRT (X (1,5)%%24X (2,5) #%2+X (3,5) $82)

™ = T/60.D0
Ip = T/H+1.D-5

IF ((IP/INT) *INT.E(.IP) WRITE(IO1,50) TM, (X(I1,5),I=1,3),

$ (XP(I,S5).,I=1,3)

S0 FORMAT (///1%,G12.5/,3 (1X,620.14))

1000

1500

1510

CONTINUE
NPO = 0O
T=0
INIT =
SQ = 0.
RMX =R
RMN = R
CDR1 =
AVDR =
DO 1500 NI = 1,NT

0
Do
0
0
0.
0.

DO
DO

CDR1 = (RS (NI)-RAV)=DCCS (WO=NI%H) +CDR1

AVDR = (RS (NI)-RAV)+AVDR

SQ = SQ+ (RS (NI) -RAV) %82

IF (RS (NI) .GT .RMX) RMX
IF (RS (NI) +LT.RMK) RMN
CONTINUE

CC1 = 2.D0/H0+3.D0O3DX
CC2 = 2.D0/W0+4.DODK

DYDO = -1.DO0/ (NT% (0.5D0%CC1%%2+4CC2%%2)) * (-CC1*CDR1+CC2*AVYDR)

DRO = DK#*DYDO
NCOUNT = NCOUNT+1
RDIFF = RMX-RMN
AVRD =AVDR/NT

RMS = DSQRT (SC/NT)

WRITE(I01,1510) RMX,RMN,DEO,DYDO,
FORMAT (//* RMX,RMN,DEO,DYDO,HLIFF,AVRD,RMS"/, (1X,8G20.10))

RS (NI)
RS (NI)

IF (NCOUNT.LT.2) GO TO 2000

STOP
END

//GO.SYSIN DD =

//

RDIFF ,AVRD,RMS
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AIII.3 Program to simulate the line of sight velocity residuals with respect

to "computed" or "nominal" values.

This program computes first, and then stores on disk for further analysis

by the procedure described in paragraph AIIIl.4, the difference between "true"
and "nominal" Tine of sight values. The "true" values correspond to two
satellite orbits integrated numerically from initial states that, in general,
do not 1ie exactly on the common closed reference orbit, but are each near

to a "reference" point on it, both "reference" points being symmetrical with
respect to the perigee (F' = 0). The relative velocities are found by dif-
ferencing the projections of the velocities of the two satellites along the
common line-of-sight direction, calculation that is carried out by sub-
routine SIGNAL. The "nominal" values correspond to a pair of "nominal"

orbits starting from the same initial states as the "true" ones, plus some
small perturbations or "initial state estimation errors" chosen to make

the relative drift along-track between "true" and "nominal" orbits zero

(as it happens, approximately, when real orbit estimates are used to cal-
culate residuals). The "nominal" along-track velocities are computed also

by subroutine SIGNAL.

The integration step is H seconds long, and is chosen so that its ratio to
the period of the reference orbit "TORB" (obtained as part of the determi-
nation of this orbit by the program of paragraph AIIl.l) is a power of 2.
This choice is dictated by the need to analyze the residuals by means of

a Fast Fourier Transform algorithm during the execution of the program of
paragraph AIII.4. The maximum degree in the expansion of the "true" field
is "NMAXIM", while that for the field of the "nominal" orbit is "NREF".

As before, the field for the reference orbit has a maximum degree of 9,
and all three fields consist exclusively of zonals (although this is not

a limitation imposed by the present program, but by the subroutines that
compute the gravitatjonal acceleration during the integration of the
orbits). The desired mean height of the satellites is "HSS", the number

of integration steps for the whole orbit js "NINT" (in the runs which
produced the numerical results of section 4 and appendix IV, NMAXIM = 300
and NINT = 2048, so "H" was less than 3 seconds). "DZCE" is a common shift
in the initial state of the satellites, parallel to the z or Xq
their position on the reference orbit. "DX11" and "DX12" represent dis-

axis, from
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placements in the x {or across-track) direction for each satellite indepen-
dently (a "1" at the end of a variable's name usually indicate the Teading
satellite, and a "2" the trailing one). The reference orbit is supposed to
be a polar one. "DR1" and "DR2" designate differences in position in the
radial direction between the "true" and the "nominal" orbits at their
starting points. "SEP" is the approximate initial distance between the
satellites, in meters. "W0" is the mean angular velocity N, (2n/orbit
period) of the reference orbit. The two "reference" satellites pass the
same point on this orbit TSEP seconds apart, which is the time uniformly
rotating satellite with angular velocity WO would take to describe an arc
of circle of length "SEP". Initialization ends at line 51, where subrou-
tine PCOEFF is called to compute the values of the zonal coefficients up
to degree "NMAXIM" (that of the "true" field). The first 9 zonals are left
identical to those for the reference orbit; the zonals of the “nominal”
field are identical to the corresponding ones in the true field (no "com-
mission errors"). "DUP1" and "DUP2" are changes in along-track velocity
that cancel the drift due to the dispiacements "DR1" and "DR2), and are
given in the uniformly rotating system of coordinates associated with each
satellite. They are transformédfto inertial along-track velocities first
("DUPL1I" and DUP2I") and then, ﬁn combination with DR1 and DRZ, to Carte-
sian, inertial coordinates (lines 62-73). The parameter "DTOUT" in line

49 has been chosen to be a number much larger than the duration of one
revolution in seconds, to eliminate the printing of orbit positions and
velocities by the integrating subroutines, except for the initial and
final conditions.

Lines 74 to 83 arrange the 1isting of the main parameters that characte-
rize the run (maximum degree of "true" and "nominal" fields, number of
integration steps, mean separation between satellites, perturbations in
initial conditions, etc.). The reference orbit is initialized according
to the starting values obtained with the program of paragraph AIII.1,

and then it is integrated by calling subroutine ORBIT which, in turn,
invokes a whole package of subroutines described in paragraph AIII.5.

The x, y, z coordinates of the orbit are stored in arrays "X1", “Y", "Z",
(the orbit being polar and in a zonal field, "Z1" contains only zeroes,
and is used only because ORBIT requires it). Then (1ine 92) the integra-
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tion step-size is changed temporarily to one quarter of "TSEP", and in two
steps from the pekigee a point on the reference orbit is found corresponding
to a time TSEP/2. [ts symmetrical is obtained in lines 107-108, after having
shifted the z coordinate by an amount DZCE (1ine 101). The nominal orbits
of both satellites are computed from these initial states (1ines 105 and
108) by ORBIT and its associated subroutines. The nominal line-of-sight
relative velocity is then computed by SIGNAL, which takes the velocities
and positions of both satellites along the orbit (stored by ORBIT in

arrays X1, x2, Y1, Y2, Z1, 72, XD1 XD2, YD1, YD2, ZD1 and ZD2) and puts

the result in array "SST" (at regular intervals; "H" has been returned to
its original value of TORB/NINT in line 97). In line 109 the maximum degree
in the field is made equal to NMAXIM, in preparation for the computation of
the "true" orbits.

In Tine 112 "DTOUT" is changed to 500, thus allowing the integrating sub-
routines to print out the values of the "true" orbit states every as

many seconds, to give a general idea of the shape of each "true" orbit.
Next, the initial conditions are changed from "nominal" to "true" in
accordance with the specified "orbit estimation errors", and the "true"
orbits are integrated with ORBIT (1ines 112 to 125). In 1ine 126 SIGNAL

is called once more, to obtain the values of the "true" line-of-sight
velocity, and substract them from the "nominal" ones, the differences

or "residuals" being returned in "SST". From line 127 to 146 the Carte-
sian components of the gravitational acceleration along the reference

orbit are computed by subroutine SECON; these components (FY and FZ,

the other one is always zero in a zonal field) are used then to obtain

the along-track and radial accelerations AU and AR, and their sum AT,

which will be needed later to obtain the analytical Tumped coefficients

of the line-of-sight relative velocity according to the theory of sec-
tions 1, 2 and 3. Before computing the accelerations, the coefficients
common to the "nominal" and the "true" fields are set to zero, as the
Tumped coefficients are supposed to correspond to their differences

(see paragraph 4.2) and they are all equal up to degree NREF. Finally,

all the information created by the program that will be needed for the
subsequent comparison between true and theoretical Tumped coefficients

is stored on disk in unit 10 (lines 147-150).
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Subroutine PCOEFF.
This subroutine creates normalized and dimensionless zonal potential coeffi-

cients so that the power spectrum of the corresponding field agrees with
that defined by expression (4.1.1) in paragraph (4.1). To prevent the for-
mation of a tremendous spike on the north pole, the signs of the zonal
coefficients are made to alternate, two consecutive zonals having the same
sign and the two that follow the opposite. This results in a much more
uniform appearence of the "gravity disturbance" AR along the orbit than

it is the case when all signs are the same. Zonals with 100 < n g 218 are
set to 0, and those for n = 299 and n = 230, to 107°.

Subroutine SIGNAL.
This subroutine inputs the coordinates and velocities of both satellites

in Cartesian coordinates, stored in arrays "X1", "Y1", etc., and the number
of points computed along the orbit, "NINT". The output is the succession of
values of the relative line-of-sight velocity, at the times when the orbit

points were computed, so they are also "NINT" in number. They are returned

to the calling program in array "SST".

Within the main loop (DO 100 ..."), a vector "E" aligned with the line-of-
sight, and its modulus "EMI" are computed. Then, the velocity vectors are
projected on that 1ine, the difference "S" of their projections is found,
and the corresponding component of "SST" is substracted from it. As the
initial values of all components of "SST" are 0, a first call in the main
program results in the relative "nominal" velocity, while the second call,
whose input are the positions and velocities of the "true" orbits, yields
the residual relative line-of-sight velocities that constitute the simu-
lated signal produced and stored on disk by the calling main program.
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GOSCA JOB  (3114,81) ,0SCAR, TIME=(0,20),REGION=800K
PARM LINES=2, INFORM,Q=F,

EXEC FORTXCG,PAEM.FORT='CPT=2,*
T.SYSIN DD #

PROGRAM THAT SIMULATES THE LINE OF SIGHT VELOCITY
RESIDUALS WITH RESPECT TC A FIELD OF DEGREE %NREF™.
THE *TRUE™ FIELD HAS DEGREE ®NMAXIM™.RESULTS ARE
SAVED ON DISK IN UNIT 10 .

IMPLICIT REAL%B (A-H,0-2)
DIMENSION X1 (2060),5SST(2060) ,AT (2060),

» Y1(2060),21 (2060),XD1 (2060) ,YD1 (2060) ,2D1 (2060) , X2 (2060) ,
§ Y2(2060) ,22(2060) ,XD2(2060) ,YD2(2060) ,2D2 (2060} ,CC (310)
+,X0S (3) , XDOS (3) ,Z (260) ,Y (206C) , X (3,9) LXP (3, 9L,DFLS(3 9)
COMMON /GEOCON/GH , AE

COMMON /INTEG/H,EPS

COMMON /POURCO/F PER (3,9) ,JJ,KPC, IECC, ITERR, ITX, TJA
COMMON/10/101,IN1,IN2, IN3,IN4,INS, IN6, IN?

COMMON /COEFFS/ CN (310) ,DSR21,1IR,NMAX,TELEM,DTOUT
DATA CC/1.D0,0.D0,-484.166D-6,.958475D-6,.541539D-6,.06843890-6,
$-.151207D-6,.0933127D-£,.0509491D-6, .027331D-6,300%0 .DO/

101 = 6

PI = 4.DOSDATAN (1.D0)

DO 1 N = 1,316
CN(N) = CC(N)

X30 = 6526447.5757058D0

XP20 = -7812.9831897787D0

GM = .39860047D15

AE = 6378139.D0

e R e e
NMAXIM = 60
NREF = 30
TELEM = 0.D0
TORE = 5263.369068427600

HSS = 160016.D0

NINT = 256

TECON = 1

ARCL = TORE

DZCE = 0.D0

DX11 = 0.DO

DX12 = 0.DO

DR1 = 0.00

DR2 = 0.D0

SEP = 300000.D0

v .

"N nn

} woanw

C ta%

FILEITHSLH TSRS LRLTLERSCRRSL I LIS R AL
NMAX =9

IECO = 0

DTOUT = 10000.D0O

NREFP = NREF+1

CALL PCOEFF

W0 = 2.DO*PI/TORB
NINTP = NINT+1

TSEP = SEP/ (WO% (AE+HS))
INTS2P = 3

ARCLL = TSEP/2.DO

PSI2 = WO%ARCLL

CPSI2 = DCOS (PSI2)
SPSI2 = DSIN(PSI2)

AQ2 = 2.DO*A(
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CPS122 = 2.DO%CPSI2

DUP1 = 2.D0%WO%DR1

DUP2 = 2.DO%WOZDR2

DUP1I = DUP1-HOZDR1

DUP2I = DUP2-WO=DR2

DX21 =-DR1%SPSI2

DXP21 = DUP1I%CPSI2

DX22 = DR23SPSI2

DXP22 = DUP2I<CPSI2

DX31 = DR1%=CPSI2

DXP31 = DUP1I%SPSI2

DX32 = DR22CPSI2

DXP32 =-DUP2I$SPSI2

WRITE (I01,3) NMAXIM,NREF,HSS,TORB,SEP,NINT,D2CE,D¥11,DX12,DR1,
$DUP1,DR2,DUP2 ¢

FORMAT (*1°', *MAXIMUM DEGREE IN ZOMAL FIELD = *,I5," MAX. DEG*
#,'. IN REFERENCE FIELD = *,IS,° SATELLITE HEIGHT = *,Gl4.8/,
#' ORBITAL PERIOD = ®,G20.10,°* MEAN SEPARATION = °*,G14.8,

$°* NO. INTEGR. STEPS =',1I6,

$/° INITIAL CONDITION ERRORS : D2CE = °*,Cl4,.8,° DX11 = °*,Cl2,6€,
§° DX12 = *,G12.6,* DR1 = *,G12.6,* DUP1 = *,G12.6/' DR2 = *
4,612.6,* DUP2 = *,G12.6/' UNIIS ARE °
4 ,*METERS , SECONDS AND MLCTERS PER SECOND.'/)

DO 315 I = 1,NINTP

SST(I} = 0.DO
X0S(1) = 0.DO
X05(2) = 0.Do
X05(3) = X30
XDOS (1) = 0.DC
XD0S(2) = XP20
XD0S(3) = 0.DO

H = TORB/NINT
CALL ORBIT (X0S,XD0S,X1,Y,Z,XD1,YD1,2D1,ARCL)

H = TSEP/4.DO

CALL ORBIT (X0S,XD0S,X1,Y1,Z1,XD1,YD1,201,ARCLL)
NMAX = NREF

IECO = IECON

H = TORB/NINT

X0S(1) = X1 (INTS2P)

X05(2) = Y1 (INTS2F)

X0S(3) = Z1 (INTS2F)+DZCE

XDOS (1) =XD1 (INTS2P)

XD0S (2) = YD1 (INTS2P)

XDOS (3) = ZD1 (INTS2P)

CALL ORBIT (X0S,XDOS,X1,Y1,Z1,XD1,Yr1,2D1,ARCL)
X0S(2) = -X0S{2)

XDOS (3) = -XDOS (3)

CALL ORBIT (X0S,XDOS,X2,¥2,22,%D2,YD2,2D2,ARCL)

CALL SIGNAL (X1,Y1,21,XD1,YD1,7D1,X2,Y2,22,XD2,YD2,2D2,NINTP,SST)

NMAX = NMAXIM
DTOUT = 500.D0

X0S(1) = XOS (1) +DX11

X05(2) = -X0S5(2)+DX21

X0S(3) = XO0S5(3) +DX31

XDOS (1) = XDOS (1) +DXP11

XDOS (2) = XDOS(2) +DXP21

XDOS {3) = -XDOS (3) *D¥P31

CALL ORBIT(X0S,XDOS,X1,Y1,Z1,%XD1,YD1,2D1,ARCL)
X0S(1) = XO0S(1) +DX12-DX11

X0S(2) = -XO0S(2)+DX22+DX21
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X0S(3) = X0S (3) +DX32-DX31
XDOS (1) = XDOS (1) +DXP12-DXP11

XDOS (2) = XDOS (2) +DXP22-DXpP21

XDOS (3) = -XDOS (3) +DXP32+DXP31

CALL ORBIT(X0S,XDOS,¥2,Y2,22,¥D2,YD2,2D2,ARCL)

CALL SIGNAL (X1,Y1,21,XD1,¥YD1,ZD1,X2,Y2,22,%D2,¥YD2,2D2,NINTP,SST)

NMAXP9 = NMAX+8

DO 100 N = 1,NREFP
CN(N) = 0.DO

IECO = 0

T = 0.DO

DO 120 I = 1,NINT

JJ =5
X(2,5)
X(3.,5) Z(I)

X(1,5) c.DO

CALL SECON (X ,XxP,T,DELS)
FY DELS (2,5)

F2 DELS (3,5)

2N DCOS (WO0=T)

YN =-DSIN (WO=T)

AR FYSYN+FZ%ZN

AU FY&ZN-F Z3YN

AT (I) = AR¢AU

T = T+H

CONTINUE

IV = 10

Y (I)

LU I TR T ||

WRITE (IU) NMAXIM,NMAXP9 ,NINT,DZCE,DX11,DX12,DR1,DUP1,DR2,DUP2,W0,

$SEP,SST,AT
4 ,HSS ,NREF ,TORB
STOP

END

SUBROUTINE PCOEFF

THIS SUBROUTINE GENERATES NORMALIZED ZCONAL POTENTIAL COEFICIEMNTS
EACH EQUAL TO THE SQUARE ROOT OF THE CORRESPONDING DEGRFE
VARIANCE. THE SIGN CF THE FIRST PRIR (J10, J11) IS NEGATIVE,
THAT OF THE FOLLOWING PAIR IS FOSITIVE, AND SO ON.

IMPLICIT REAL%8 (h-H,0-2)
COMMON /COEFFS/ CN (310) ,DS,IR,NM,T,DT
COMMON/I0/ 101,105 (7)

COMMON /GEOCON/ GM,A

GM = .39860047D15

B = 1.D0
Cc = 2.D0

A1 = 3.805D0

A2 = 140.03D0

S1 = .998006D0

$2 = .914232D0

MM = 1

AGM = A%&l4/GM$%2231.D-10
PS1 = S1%&2(9+2)

PS2 = S2%2(9+2)
DO 10 N1 = 11,310
PS1 = PS1%S1

PS2 = PS2%S2

N = N1-1

CN(N1) = (RGM/(N-2.D0))% ((R1%DS1)/ (N+B)+ (R22PS2)
4 /7 ((N-2.D0) = (NC)))
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CN(N1) = DSQRT(CN (N1))
IF (N1.GT.101) CN(N1)} = 0.DO
IF ((N172) #2.EQ.N1) MM = -MM
CN(N1) = MM#CN(N1)

CN(300) = 1.D-S

CN(301) = 1.D-5

RETURN

END

SUBROUTINE SIGNAL (X1,Y1,21,xD1,YD1,2D1,%2,Y2,22,XD2,YD2,
4 ZD2,NINTP,SST)

THIS SUEROUTINE COMPUTES THE RESIDURL LINE-OF -SIGHT
RELATIVE VELOCITY BETWLN TWC SATELLITES (“1% AND w2w),

IMPLICIT REAL®8 (A-H,0-2)
DIMENSION X1 (1),Y11(1),21(1),XP1 (1),¥YD1(1),2ZD1{1),%2(1).
# Y2(1) ,22(1) ,XD2(1),¥D2(1) ,2ZD2(1) ,SS7T (1) LE (3)

T = 0.00

DO 100 NI = 1, NINTP

E(1) = X1(NI)-X2 (K]}

E(2) = Y1(NI)-Y2(ND)

E(3) = 21(NI)-Z2(NI)

EM = DSQRT(E (1) $92¢E (2) $32+F (3] 8%2)

EMI = 1.DO/EM

Do 1 I=1,3

E(I) = E(I)%EM]

S = (XD1(NI) -XD2(NI))=E (1) + (YD1 (NI) -YD2 (NI}) *E (2)
§ +(2D1 (NI) -ZD2(RT))2E (3)

SST(NI) = S-SST (NI)

CONTINUE

RETURN

END
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AIII.4 Program for computing the "lumped coefficients" of the signal, both

according to the theory and to the Fourier analysis of simulated data, and

for comparing them to test the accuracy of the mathematical model.

To explain this program it is necessary to amplify first the formulation of
the "lumped coefficients" of the signal given in paragraph (4.2). To obtain
these coefficients according to the analytical perturbation theory of sec-
tion 2 and to the signal equation of section 3, one needs first to know the
Fourjer coefficients of the forcing terms of the variational equations,

DC“ a_ and DC“ a , in addition to the d1fferences AC between the "true"

potent1a1 coeff1c1ents and those used to compute the "nominal" orbits.
Assuming that all "nominal" coefficients are correct, then Aﬁzm = 0 for

n < Nref’ where Nref is the highest degree in the "nominal" field. The per~
turbations in the radial and along-track accelerations caused by all the
Aﬁﬁm of the same order m should be, according to (2.2.45-46) if t0 = 0,

1 Nax o
carm(t) = E nEm AC m C“ a (t)
e=o = (AIII1.4.1)
Nmax+3N
= z z AT 4 cos{(jn_+me')t+e )
. nm~ramj 0 Mot
J== (N3 t3N) an
~and, similarly,
_ =0 . . '
éaum(t) = jin Acnm unmj s1n((Jn0+me )t+¢ma) (AI11.4.2)
Calling
sAp(t) = sa (t) + sa . (t) (AI11.4.3)

then, for m = 0 (the theory is tested with this program for zonals only)

Nmax+3N
GAO(t) = jio Arj cos jn,t + Auj sin jn,t (AII1.4.4)
where
_ =0
Arj = ;; Acmo(arnoj+arn0(-j)) (A.I11.4.5a)
- ¢o -
Auj =z ACn (aunoj auno(-j)) (A.I11.4.5b)

an
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As explained in section 3, the residual signal &s consists (in theory) of
a periodical part and a non-periodical part. The first, according to

expression (3.4.10) is

o Nmax 1 Nmax n+3N o ) )
§S = & I £ b) AC” s . sin((jn +mo')t+e .,
m=o a=0 n=m j=(n+3N) " M 0 JMa
(AIIl.4.6)
where
wamj[s1n nyC bnmj COS w5€-C0S NoC g0 sin w C]
+b, [“’m(j—l)bnm(j-l)Sin wm(j-l)_wm(j+1)bnm(j+1)
Somj = sin cl i 3] < n+3n
m(Jj+1) -
0 otherwise. (AII1.4.7)
-
(wmj = jn,+me'). »
So the contribution of all Acnm of the same order m to &s is
. Nmax+3N ) . ' |
ss,(t) = z z Sim sin{(Jjn, +me )t+¢jma) (AII1.4.8)

3= (Npay*3) @

where gjm’ the "lumped coefficient", is
max _
§. = =% C._ s

i an Snmj (AI11.4.9)

For the zonals (m = 0, o« = 0), taking as time-origin the moment when the mid-
point between the two satellites is at the "perigee" (i.e., F' = 0), the
expression for the "lumped coefficient" becomes (as Aﬁgo =0 for n ¢ Nref)

Nmax+3N .
§. = I AC (S, .+s . ) (AII11.4.10)
jo _ no*’noj “no(-j)
N=Npoftl
while the periodical part of the signal takes the form
N Nmax+3N ) .
6s,(t) = by 850 coS nyt (AIII.4.11)

j=0
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The aperiodic part is due to secular and very long period effects on the
shape of the orbit, mostly caused by the zonals. It has the form

dé(t) = At sin n,t+Bt cos n,t. Over one period of the reference orbit
(i.e., in the interval 0 < t < T ) this signal, being continuous and

bound, can be represented by a Fourier series as follows:

he(—=)cos gt + h (—r—)sin jnyt (AI11.4.12)

s4(t) =
j=0 ji-1 i-1

J

™8

where hC and hS depend on A, B and To' So, for 0 < t ¢ To’ the total resi-
dual signal for m = 0 should satisfy the relationship (neglecting terms in

5§ above j=N ax+3N, as the spectrum decays quickly):

m

5s,(t) = 68,(t) + 6§(t)

Nmax+3N ; .

= by h (——)cos n,t + (8§, +h_(——))sin jn,t
j=0 c jz-l 0 J S j2-1 0
(AI11.4.13)
or

Nmax+3N . o

8s,(t) = jio Py COS jngt + A5, Sin jngt (AII1.4.14)

where P3o and 930 are the Fourijer coefficients of the signal over one revo-
Tution. Consequently, the "lumped coefficients" corresponding to the fre-
quency jn0 are

g, (AI11.4.15a)

jo

i

L
<o
<
(7]
N

]
—
~—

while

J ) (AI11.4.15b)

"
=
—

pjo c'.

(because of the choice of time-origin, the zonal perturbation in the signal
is an odd function of t, so pj0 = 0 unless there is a perturbation in the
initial state as well).

Also according to the analytical theory developed in this work, the "lumped
coefficients" for the instantaneous residual velocity must be, for m = O,
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N

max
. o . =0 _ . _
sj0 = 23n0[51n n,c i L Acno(bnoj nno(_j))cos jn,c
n=N___+1
ref
Nmax 0
cos n.¢ z AC. (g, .+g .y )sin jn ¢l +
0 no*>noj “no{-j) 0
n'Nref+1
Nmax 0 o
bl[(J-l)n0 . by o ACnO(bno(j_l)-bno(j+1))s1n(3+1)n0c -
ref
_ Nmax 0
(J+1)n0 . Acno(bno(j+1)'bno(—j-l)ST"(J+1)noC]
"‘Nref+1 p

i . jin ¢ - G. in jn ¢ +
sin n.c BJO cos jn ¢ - cos noc 50 sin jn,

bl[B(j-l)O s1n(3-1)n0c - B(j+1)0 s1n(J+1)n0c] (AIII
where
nax c? b AIII
.= C j .- .
Bjo n=NZ +1 8o 3Nyl noj bno(-J)) (
ref
Nax 0
G, = by AC-_ Jn (g, .+g .y ) (AIII
Jo _ no * 0\ noj Zno(-j)
n'Nref+1 |
According to the definition of bnmj and gnmj (expressions (2.4.8-9)),
(jn.A_. + 2n,A .)
(J no - no)
(23n2A . + (j%+3)n%A )
6y = = —— Cuj’ (AIII

s s2 2 2
n, (3 -n7)

where the Arj and Auj are as in (AIII.4,5a-b).

.4.16)

.4.173)

.4.17b)

.4.18a)

.4.18b)

In order to test the agreement between theory and simulation, one needs to
know SA(t), the sum of 6ar(t) and 5au(t), at regular intervals along the
reference orbit, do a numerical Fourier analysis of these values to get the

A . and Auj’ and then obtain with these the Bj

rj and Gjo’ according to

0

(AIII1.4.18a-b), to calculate, finally, the lumped coefficients §j0 using
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expression (AIII.4.16). Once the theoretical values of the "lumped coeffi-
cients" are known, and the residual relative Tine-of-sight velocity, aso(t),
computed at regular intervals over one period T , has been analyzed to get
the total "true" Fourier coefficients of the signal, pJ.0 and 95, (expression
(AII1.4.14)), one should be able to determine the constants hc and hS
corresponding to the non-periodical part (assuming the theory is correct)

by solving for these constants as unknowns in equations (AIII.4.15a-b).
Because of possible numerical errors acting as "noise" in the computed
results, it is best to calculate hc and hS a few times, for different

values of j, and then to average the results. Once hC and hS are known,

one can use them to "correct" the Fourier coefficients of the simulated

signal so as to obtain the "Tumped coefficients" sJ.0 of the periodical part:

according to expressions (AIII.4.15). Because of their origin, these values
of the "lumped coefficients" may be called "empirical", while those obtained
from expression {AIII.4.16) as explained before, would be "theoretical". The
differences between them would be due to: (a) errors in the simulation of
the data (mostly caused by the numerical integrator) and in the subsequent
Fourier analysis of the "sampled" signal; (b) errors in the theory. Assuming
that the sampling interval, which is also the integration step for the
"true" and "nominal" orbits,is small enough to neglect aliasing in the
Fourier analysis, and that the integrator is well-chosen, then the differ-
ences between empirical and theoretical "lumped coefficients" must be due,
mostly, to errors in the theory. As explained in section 4, the short-
comings of the numerical integrator (due mainly to the number of signi-
ficant figures that the computer can handle) were circumvented mostly by
choosing the values of the Aﬁzo large enough so that their effect will
overcome, at most frequencies, the "numerical noise". In addition, it was
obvious that the "sine" part of the empirical coefficients, the pjo’
contained a small constant term unexplained by the theory, but most likely
due to the way in which the first point of the orbit is calculated, which

is different from that for all the others. This may result in a "spike" at
the origin of the data stream, which would have a small, constant effect
across the spectrum. This effect was estimated from the value of pjo at a
frequency too high for the signal to have a significant component there,
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and was substracted from all pjo’ previous to any use of these numberé, to
get "corrected" empirical coefficients. It was against these that the theo-
retical coefficients were tested.

Note: In the development of the theory, the mean value E?TTTG;} was replaced
by sin n,c as an approximation (expression (3.4.5a)), but this substitution
had no material effect on the actual derivation that followed (other than

to make the resulting equations "look" simpler), so the more accurate value
sin n,, (obtained from a separate analysis of the reference orbit) has been
used here, by way of the variable "AQ" initialized in line 53.

In this program, the results of the simulation carried out using the routine
described in paragraph AIII.3, including the parameters of the problem
(satellite separation, integration step, etc.), are read from disk (1ine 39)
and some of them are printed-out to give a description of the case being
studied (1ines 42-51). Other parameters defining the gravitation field, etc.,
are initialized in Tines 25-38. The simulated relative line-of-sight resi-
duals are placed in array "SST", and the values of SA(t) = sar(t) + Gau(t)
along the reference orbit, in array "AT". They are analyzed by means of

the Fast Fourier Transform method in subroutine "FOURIE" (1ines 69 and 75)

to produce the "empirical" coefficients pjo’ qj0 and Arj’ AUj which are
stored in arrays "PC", "PS", and "ARJ", "AUJ", respectively. A small con-
stant bias is eliminated from the pjo’ for reasons given earlier in this
paragraph, in lines 70-72. ATl Atgo with n < Nref (here called "NREF") are
set to 0 (Tines 73-74). The intermediate values Bjo and Gjo (expressions
AI11.4.18) are found and stored in arrays "BJ" and "GJ" (lines 76-84), up

to a frequency somewhat higher than Nmaxno' The "theoretical" values of

the "sine" coefficients are determined next, according to equation (AIIl.4.16)
and stored in array "SSTF" (the "cosine" coefficients are all theoretically
0). Lines 96-98 refer to the printing of the heading for the results to be
listed afterwards. These are the "simulated" coefficients pjo’ qjo’ the
"empirical" lumped coefficients (obtain by correcting the pjo’ qJ.0 so0 as to
eliminate the effect of the aperiodic part, and, thus, called here
"corrected"), the "theoretical" coefficients in "SSTF" ("sine"-type only,
under the heading "analytical"), and the percentage error ("empirical"-
"analytical")/"empirical" x 100. The constants hC and hs (with a change in
sign) needed to obtain the non-periodical part and substract it from the

are found in lines 99-114. The conversion of the P5q0 @ into

Pjor 950 Jjo
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"empirical Tumped-coefficients" takes place between lines 115 and 129. The
percentage "error" is calculated in line 130, and the results for the
frequency in question (jn,; n, here is "W0") are printed out according to
Tines 131-132. Frequencies below 4n, are treated differently from the rest,
because they are fully absorbed in an adjustment 1ike the one described in
section 3 by the "arc parameters", so the accuracy of the theory regarding
these particular frequencies is irrelevant. As explained in section 4,
paragraph (4.2), this accuracy is worse than for the rest, because of the
effect of the "once-per-revolution" component that is very large and
"spreads" over its neighbours after being modulated by the slight changes
in geometry along the reference orbit. For this reason, the results up to
three cycles per revolution are printed separately, after all the others
(Tines 143-159). First, the "empirical" coefficients up to j = 2 are
given, and for j = 3, also the "analytical" one (lines 151~159). From

line 160 to the end, the rms value of the total (i.e. "uncorrected" for
non-periodical terms), part of the signal, together with the rms of the
periodical (or "corrected") part and the corresponding value, according

to the theory (or "analytical") are Tisted, as well as the percentage
error. These values correspond to the added power of all the frequency
components within bands of five cycles per revolution, thus producing a
short listing summarizing a whole run, 1ike those shown in paragraph (4.4).

Subroutine FOURIE.

This subroutine calls the Fast Fourier subroutine "FFTSC" from the IMSL
library, which finds the Fourier coefficients of the time-series stored

in "P" and returns them in arrays "PS" (for "sine"-type) and "PC" (for
"cosine"-type), multiplied by (1 + 5j0)/2 x Number of samples. "FOURIE"
corrects this factor, and returns the coefficients to the calling program.
"IWK", "WK", and "CWK" are working arrays required by "FFTSC" (see IMSL
Handbook) .
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//GDFGOSCA JOB  (3114,€1) ,0SCAR,TIVE=(0,08) ,REGION=T00K
/*JOBPARM LINES=2,INFORM,Q=F,COPIES=5 ,FORMS=6L20

/

/

EXEC FORTXCG,PARM.FORT=*0OPT=2"

//FORT.SYSIN DD *

[

naonoonnNnonNnonn

224

L 2-2-2

3

1234

PROGRAM TO COMPUTE THE FOURIER COEFFICIENTS OF THE
SIMULATED LINE OF SIGHT VELOCITY AND TO COMPARE THEM
TO VALUES CALCULATED USING THE ANARLYTICAL

EXPRESIONS FOR THE PERTUREATIONS AMND THE FIRST ORDFR
MODEL FOR THE RESIDUALS.

e e b L e e e L e
PROGRAMMER : OSCAR L. COLOMBO, T.H. DELFT, SEP. 1983.

Fo3.5. 2. .32 2 1o - 3 202 o2 2k 2ot R 2ot o1 2 o33 2 o3 2 1 SR R R 3 1 B 22 ]
IMPLICIT REAL%8 (A-H,0-Z)
COMPLEX CMK
DIMENSION PC (1030),PS(1030) ,IvK (11),UK (1) ,CHK (2060),

# SST(2060) ,SSTF (2060) ,SNC (311) ,CNC (310) ,

#GJ (310) ,BJ (310) ,AUJ (1030) ,ARJ (1030} ,AT (2060)

3,CC(310) ,PSC (1030) ,PCC (1030) ,PCU (1030)

COMMON /GEOCON/GM, AE

COMMON /COEFFS/ CN(310) ,DSR2I,IR,NMAX,TELEM,DTOUT

DATAR CC/1.D0,0.D0,-484.166D-6,.958475D~6,.541539D-6,.0684389T-6,
2-.151207D-6,.0933127D-6,.0509491D-6, .027331D-6,30020 .DO/

101 = 6

PI = 4.DO=DATAN (1.D0)

DO 1 N = 1,310

CN(N) = CC(N)

X30 = 6526447.5757058D0

XP20 = -7812.9831897787D0

GM = .39860047D15S
ARE = 6378139.D0

AQ = .229u4022357D-1
BQ =-.1538200005D-2
CQ = .641643392D-3

IU

#,SST.AT
4 ,HSS ,NREF ,TORB

00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
00000090
00000100
00000110
00000120
00000130
00000140
00000150
00000160
00000170
00000180
00000190
00000200
00000210
00000220
00000230
00000240
00000250
00000260
00000270
00000280
00000290
00000300
00000310
00000320
00000330
00000340
00000350
00000360
00000370
00000380

10
READ (IU) NMAXINM,NMAXP9 ,NINT,DZCE,DX11,DX12,DR1,DUP]1,DR2,DUP2,40,SEPO000039C

00000400
00000410

WRITE(T01,3) NMAXIM,NREF,HSS,TORE,SEP,NINT,D2CE,DX11,DX12,DR1,DUP1000004 20

#,DR2,DUP2

FORMAT (*1°*, "MAXIMUM DEGREE IN ZONAL FIELD = *,I5,° MAX. DEG'
3,'. IN REFERENCE FIELD = *,I5,' SATELLITE HEIGHT = °*,Gl4.8/,
#' ORBITAL PERIOD = *,G20.10,"' MEAN SEPARATION = ',Gl4.8B,
4° NO. OF INTEGR. INTERVALS =°,I9,

3/' INITIAL CCNDITICN ERRORS : DZCE = *,Glu.8,*' DX11 = *,G12.6,
#* DX12 = *,G12.6,' DR1 = *,G12.6,' DUP1 = ',G12.6,/* DR2 = °*,
4G12.6, *DUP2 = *,G12.6/" UNITS ARE '
4,'METERS , SECONDS AND METERS PER SECOND.'/)

IF (SEP.EQ.300000.D0) GO TO 1234

AQ = .76473374944391D-2

BQ =-.15389199119431D-2

CQ = .642153955D-3

NMAX = NMAXIM

NREFP = NREF+1

NINTP = NINT+1

TSEP = SEP/ (WO% (AE+HS))

INTS2P = 3

000004 30
00000440
00000450
00000460
00000470
00o00uB0
00000490
00000500
00000510
00000520
00000530
00000540
00000550
00000560
00000570
00000580
00000590
00000600



90

100

150

155

200

205 FORMAT (//,°® CYCLES PER REV.',5X,*SIMULATED®, 27X, *CORRECTFD*, 20X

206
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ARCLL = TSEP/2.DO

CPSI2 = DCOS (WO*ARCLL)

RQ2 = 2.DO%AQ

CPSI22 = 2.DO*CPSI2

DO 4 N = 1,310

SSTF(N) = 0.DO

SNC(311) = 0.DO

SNC(1) = 0.DO

CALL FOURIE (SST,NINT,PS,PC,IWK,VUK,CUK)
PCORR = PC (NMAX+50)

DO 90 J1 = 3,NMAXP9

PC (J1) = PC (J1) -PCORR

DO 100 N = 1,NREFP

CN(N) = 0.DO

CALL FOURIE (AT,NINT,AUJ,ARJ,IWK,NWK,CHK)
DO 150 J1 = 3,NMAXPY

J = Jd11

DI = (JeW0) £23-J2W0823

DII = DILJSHO

BJ (J1) =- (JEUOTARJ (J1) +2.DOXWOLAUI (J1)) /DI

GJ(J) =-(2.D02J%W0%522ARJI (J1) +( (JEWO0) ££2+3.D02H0%=2) 2AUJ (J1)) /D11

BJ (J1) =-BJ(J1)*W0=J

GJ(J) = GJI(J)=U0J

CONTINUE

DO 155 N = 1,NMAXP9

Nl = N*1

SNC (N1) = DSIN(N%&WOSARCLL)
CNC(N) = DCOS (N*WOSAFCLL)

DO 200 J = 2,NMAXPY

Jl1 = Jd+

SSTF (J) = CPSI22%GJ(J) #SNC(J1)

CKK = BQ# (BJ (J1-1) #SNC (J1-1) ~EJ (J1+1) FSNC (J1+1))

SSTF (J) = SSTF (J) +CKK +AQ2#CNC (J) 2BJ (J1)
CONTINUE :
WRITE (101,205)

00000610
00000620
000006 30
000006u0
00000650
00000660
00000670
00000680
00000690
00000700
00000710
00000720
00000730
00000740
00000750
00000760
00000770
00000780
00000790
00000800
00000810
00000820
00000830
00000840
00000850
00000860
00000870
00000880
00000890
00000900
00000910
00000920
00000930
00000940
00000950
00000960

#,°ANALYTICAL*,SX,*% (SIN) ERROR®/,22X,* (COS/SIN)*',27X,*(COS/SIN)*,00000970

$22X,*(SIN) ' //)
HC = 0.D0O

HS = 0.DO

K1 = 0

K2 = 0

NQ = 26

IF (NMAXIM.LT.26) NG = NMAXIM-10
DO 206 I = 6,NQ

K1 = K141

IF(I.LT.9) K2 = K2e1

DF = (1%22-1.D0)/1

HS = HS#(S5STF (1)-PS(I+1))%DF

IF (I.LT.9) HC = HC-PC (1+1)%DF=T

CONTINUE

HS = HS/K1

HC = Hc/K2

PC(3) = PC(3)+HC/3.DO
PC(4) = PC(U)+HC/8.DO
PS(3) = PS(3)+HS%2.D0/3.D0
PS(4) = PS(4)+HS5%3.D0/8.DO
pcc(3) = PC(3)

PCC(4) = PC (4)

PSC(3) = PS(3)

00000980
00000990
00001000
00001010
00001020
00001030
00001040
00001050
00001060
00001070
00001080
00001090
00001100
00001110
00001120
00001130
00001140
00001150
00001160
00001170
00001180
00001190
00001200
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PSC(4) = PS(4) 00001210
NMAXIU = NMAXIM-4 00001220
MAXX = (NMAXIG/10)%10e1u 00001230

DO 220 J1 = 5,NMAXP9 00001240
J=J111 00001250

DJK = 1.D0/ (J$£2-1.D0) 00001260

IF (J1.LT.5) GO TO 111 00001270
PCC(J1) = PC (J1) +HCHDJIK 00001280
PSC(J1) = PS (J1) +HS2DIK2J 00001290

111 PERRJ = (PSC (J1) -SSTF (J) ) /PSC (J1) 2100 .DO 00001300
WRITE(I01,210) J,FC(J1),PS(J1) ,PCC(J1),PSC (J1) ,SSTF (J) ,PERRYI 00001310

210 FORMAT (3X,16,3X,6 (G12.6,6X)) 00001320
1F ((J/50) #50 .NE.J) GO TO 220 00001330
WRITE(101,222) 00001340

222 FORMAT (*1°*) 00001350
WRITE(I01,205) 00001360

220 CONTINUE 00001370
TRMS = 0.D0 00001380
TERMS = 0.D0 00001390
TPOWER = 0.D0 00001400
WRITE (I01,3) NMAXIM,NREF ,HSS,TORB,SEP,NINT,D2CE,DX11,0%12,DR1,DUP100001410
1.,DR2,DUP2 00001420
WRITE (101,230) 00001430

230 FORMAT (* FROM 0 CY/RFV. TO 3 CY/REV : CY/REV  CORRECTED 00001640
11 (COS"* 00001450
8,*, SIN) ANALYTICAL. *//) 00001460

1Y = 0 00001470

IYY = 1 00001480
WRITE(101,232) IY,PC(1),IYY,PS(2),PC(2) 00001490

232 FORMAT (30X,16,2X,612.6/,30%X,16,2%,2(G12.6,2X)) 00001500
DO 240 11 = 3,4 00001510
I=11-1 00001520

IF (1.LT.4) GO TO 231 00001530
TPOWER = TPOWER+ (PC(I1)%%2+PS (I11)%32) 00001540
TRMS = TRMSs (PCC (I1) #22+PSC (I1) £52) 00001550
TERMS = TERMS+ (PCC (I1) %32+ (PSC (T1) -SSTF (1)) %22) 00001560

231 WRITE(IO1,235) I,PCC(I1),PSC(I1),SSTF(I) 00001570
235 FORMAT (30X,16,2X,3(C12.6,2X)) 00001580
240 CONTINUE 00001590
WRITE (I01,245) MAXX 00001600

245 FORMAT (//°* SIGNAL STRENGTH OVER BANDS 10 CYCLES/SEC. WIDE, FROM', 00001610
9* 4 TO *,I4,°' CY/REV.',//SX, 'BAND’,SX,'RMS UNCORRECTED',3X,*RMS CC000C1€20

#RRECTED®,5X, *RMS ANALYTICAL®', 000016 30
24X,*% (SIN+COS) ERROR'/) 00001680
DG 300 J1 = 6,NMAXIM,10 00001650
J1P9 = J1+9 00001660
UNRMS = 0.DO 00001670
CRES = 0.D0 00001680
ARMS = 0.DO 00001690
ERRMS = 0.D0 00001700
JK = J1 00001710
IF (J1.EQ.6) JK = 5 00001720
J = JK-1 00001730
DO 250 11 = JK,J1P9 00001740
1=11-1 00001750
UNRMS = UNRMS+ (PC (T1) $22+PS (11) $22) 00001760
CRMS = CRMS+ (PCC (11) ##2+PSC (11) #%2) 00001770
ARMS = ARMS+SSTF (1)3%2 00001780
250 ERRMS = ERRMS¢ (PCC (I1) #32+ (PSC (11) -SSTF (1)) #%2) 00001790

TRMS = TRMS+CRMS 00001800
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TERMS = TERMS+ERRHMS
TPOWER = TPOWER+UNRMS

UNRMS = DSQRT (UNRMS)

CRMS = DSQRT (CRMS)

ARMS = DSQRT (ARMS)

PERRC = DSQRT (ERRMS) /CRMS%100.D0

. WRITE(I01,260) J,1,UNRMS,CRMS,ARMS,PERRC
260

FORMAT (2X,I13,* - *,13,2X,4(G12.6,6X))
300 CONTINUE
TRMS = DSGRT (TRMS)

TERMS = DSQRT (TERMS)

TPOWER = DSQRT (TPOWER)

PEREUN = TERMS/TPOWER#*100.D0

PERECO = TERMS/TRMS100.D0O

WRITE (I101,310) MAXX, PEREUN, PERECO

310 FORMAT (//°® TOTAL PERCENTAGE ERROR RESPECT TO:
#,°* UNCORRECTED SIGMAL;
4* (BAND FROM 4 CY/REV TO °*,I4," CY/REV)*/,*
¥ *,G20.10)
STOP
END
SUBROUTINE FOURIE (P,NINT,PS,PC,IVK,WK,CWK)

(R)

INTEGER.
PS THE SINE ONES.

islsNeNesNeNe]

IMPLICIT REAL®S (A-H,0-2)

COMPLEX CuK :

DIMENSION P (1),PS(1),PC(1),IWK (1),CWK (1) WK (1)

COMMON/COEFFS/ CN(310) ,DX,IR,NMAX

NINT2 = NINT/2

NMAXPS = NMAX+9

101 = 6

CALL FFTSC(P,NINT,PS,PC,IVK,WK,CHK)

DINT = 1.DO/NINT

DO 10 I = 1,NINT2

PC(1) = PC(I)*DINT

PS(I) = PS(I)*DINT

PC(1) = PC(1)%0.5D0

c WRITE (101,20)

20 FORMAT (//* FOURIER COMP. NO., COS COEFF.

DO 30 1 = 1,NINT2
IM = 1-1

10

(A) TOTAL'®
(E) TOTAL CCRRECTED SIGHNAL."',

*,G20.10,10X,* (R)

THIS SUBROUTINE CARRIES OUT THE FOURIER ANARLYSIS
OF THE REAL VECTOR "P™. NINT IS A POSITIVE, EVEN
PS CONTAINS THE COSINE COEFFICIENTS, AND

SINE COEFF.*'//)

c IF (IM.LE.NMAXP9 .OR. (IM/10)*10.EQ.IM) WRITE (101,25) IM,PC(1)},PS(I)

25
30

FORMAT (1X,15,2(2X,G20.14))
CONT INUE

RETURN

END

//G0.SYSLIB DD

DD
DD DEN=SYS2.IMSLLIBD,DISP=SHR
DD DSN=SYS2.IMSLLIBS,DISP=SHR

//G0.FT10F001 DD UNIT=DISK,DISP=(SHR) ,VOL=SER=TSVOLS,
// DSN=GDFGCOL .RUNS

//GO.SYSIN DD *

//

00001810
00001820
00001630
00001840
00001850
00001860
00001870
00001880
00001890
00001900
00001910
00001920
00001930
00001940
00001950
00001960
00001970
00001960

00001990
00002000
00002010
00002020
00002030
00002040
00002050
00002060
00002070
00002080
00002090
00002100
00002110
00002120
000021 30
00002140
00002150
00002160
00002170
00002180
00002190
0000220¢C
00002210
00002220
00002230
00002240
00002250
00002260
00002270
000022¢€0
00002290
00002300
00002310
00002320
00002330
00002340
00002350
00002360
00002370
00002360
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ATII.5 Numerical orbit integrator and associated subroutines.

Subroutine ORBIT is called by the program where an orbit integration is
required. The arguments, that are defined in that program, are: the

initial conditions (in arrays "X0S" and "XDOS" for Xy
tively), and the length of the integration interval "ARCL". The coordi-
nates of the satellite along the orbit and their derivatives are returned
in arrays "XX", "y", "z, "Xbp", "YD", "ZD". Although the orbits are
essentially polar, the existence of across-track perturbations in the

and X, respec-

initial state in some cases makes it necessary to have an array to store
the "x" component and its derivative. The integration step "H" and the
integration accuracy "EPS" (in significant places) are brought in through
the COMMON "INTEG", the remaining parameters that control the integrator
are defined through the other common statements, and passed on to the
subroutine. The various arguments and parameters are explained in the
comments at the beginning of the Tisting. After initializing the proce-
dure, the orbit is computed over a total of "NINT" steps in the "DO Toop"
at the end of the program. ORBIT prints out headings, the initial condi-
tions, and values of the coordinates and velocities at regular intervals
of "DTOUT" seconds (COMMON "COEFFS"). This subroutine calls the numeri-
cal integrator subroutine COWELL.

Subroutine COWELL implements the numerical integrator algorithm, which
is a variant of the Cowell predictor-corrector developed by Kulikov (see

references in paragraph (4.1))}. The order of this particular integrator
is 8, and it is self-starting. The starter, which obtains the first point
after the initial conditions and opens the way to the ordinary predictor-
corrector calculation of all those that follow it, works in the usual
"bootstrap" fashion, and is written in the segment of code titled
"INITIALISATION". The following points are computed by repeated use of
the last segment, called "ROUTINE". If the starting procedure requires
more than 50 "bootstrapping” iterations to satisfy the accuracy crite-
rion, the assumption is that it is unable to converge, and the orbit is
not integrated. Instead, a warning message is printed and the subroutine
reaches a "STOP" statement, so the whole run ends. This subroutine calls
SECON.
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Subroutine SECON inputs the position and velocity vector at a given time

"S", and returns the gravitational accelerations in cartesian coordinates
in "DELS". This array contains the accelerations at nine points along the
orbit. The particular set computed is determined by the parameter "JJ" in
COMMON "PQURCO". The purpose of this subroutine is to organize the way in
which the subroutine FORCES, which actually calculates the accelerations,
does work. If the "economizing" feature is "on" (IECO = 1), the accelera-
tions are computed with a very Tow degree field at the "corrector" stage,
as most of the change in their values for small corrections to the coor-
dinates is dominated by the first few zonals. The operation is also
different in the start-up, and when the predictor-corrector is iterated
(ITERA = 1) at every point to improve accuracy (a feature that turned out
to be of Tittle help and was not used, because it doubled the computer
time needed). As already mentioned, this subroutine calls FORCES.

Subroutine FORCES calculates the gravitational accelerations in a Tocal
geocentric frame. As all the fields considered in this study were zonal,

only the radial and North-South components are found ("FR" and "FLAT",
respectively) and, converted to quasi-inertial equatorial Cartesian coor-
dinates, they are stored in array "DELS" and returned to SECON and COWELL
This subroutine uses the Legendre functions obtained through calls to
LEGEND, implementing equations related to (2.3.4-8) to find the
accelerations. Because of the zonal field, earth rotation was ignored;
drag and radiation pressure are not considered, as the satellites are
"drag-free".

Subroutine LEGEND computes all the fully normalized Legendre functions of

a given order "M" using the recursive formulas (1.2.6-8). Input arguments
and returned values are described in the comments following the "SUBROU-
TINE" statement.
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SUBROUTINE ORBIT ()0S,XxD0S,XX,Y,Z,XD,¥YD,2ZD,ARCL)

THIS SUBROUTINE CCMPUTES AN OREBIT STARTING
FRO¥ THE INITIAL CONDITIONS *X0S, XDOS*(BOTH
VECTORS OF DIMENSION 3), WHERE X05(1) = XO,
X0S(2) = YO0, X0S5(3) = 20, XDOS(1) = x(DOT)O,
XDO0S (2) = Y(DOT)O0, AND XDOS(3) = Z(DOT)O.

SARCL® 1S THE ARC LENGTH IN SECONDS;

®H* 1S THE INTEGRATION STEP;

*XX,Y,Z2,XD,YD,2ZD" ARE ALL VECTCRS OF DIMENSIORN

® NINTP* , WHERE NINTP = ARCL/H+1 . THESE VECTORS
CONTAIN THE COORDINATES AND VELOCITY COMPONENTS
(D" FOR *LOT*) OF THE SUCCESSIVE OFBIT POINTS

IN AN INERTIAL, EQUATCRIAL, RIGHT-HANDED SYSTEM.
XX (1) ,Y(1),2(1) ,XP(1) ,YD(1) , ARD 2D (1) ARE SET
EQUAL TO THE INITIAL CONCITIONS BY THIS SUBROUTINE.

ARRAY ®CN® AND VARIABLES “TELEM®™ AND *DIOUT*™ IN

COMMON /COEFFS/ ARE: (AR) AN ARRAY OF ZONAL NORMALYZED

COEFFICIENTS, WHERL CN (1) CCRRESPCNDS TO THE ZEFRO

HARMONIC; (B) THE STARTING TIME (USUALLY ZERO SECCNDS);
{(C) THE 1NTFRVAL AT WHICH ORBIT CCORDINATES ARE PFINTED

00001890
000C1900
00001910
00001920
00001930
00001940
00001950
00001960
00001970
00001980
00001990
00002000
00002010
00002020
00002030
00002040
00002050
00002060
00002070
00002080
00002090
00002100
00002110

OUT. IF DTCUT 1S5 LARGER THAN ARCL, ONLY INITIAL AND FINARL00002120

STATES ARE PRINTED.

IF IECO = 1 THLC ACCELERATIONS ARE UPDATED DURING THE
*CORRECTOR® PHASE (IN “COWELL*) WITH A SMALL DEGRFE FIELD,
TO ECONOMIZE COMPUTING. IECO MUST BE DEFINED IN MARIN FROG.

THIS SUBROUTINE CALLS SUBROUTINES *COWELL®, *SECON®,
“FORCES®, AND “LEGEND®. ’

IMPLICIT REALSE (A-H,0-2)
COMMON/INTEG/ H,EPS

COMMON/IO/ 101,10S (7)

COMMON /COEFFS/ CN (310) ,DSR21,IR,NMAX,TELEM,DTOUT
COMMON/POURCO/ FPER(3,9),JX,KPX,TECO,ITERA,ITX,111
DIMENSION XO0S (1) ,XDOS (1) ,XX (1),Y(1),Z(1),XD(1),YD(1) ,ZD(1),
§ X(3.9),XP(3,9)

T = TELEM

IR =0

EPS = 1.D-16

INIT = 0

DSR2I = 1.DO0/DSGRT (2.D0)

NINT = ARCL/H+1.D-$§

XX (1) = X0S (1)

Y(1) = X0S(2)

2(1) = X05(3)

%D (1) = XDOS (1)

YD (1) = XDOS (2)

2D (1) = XDOS (3)

00002130
00002140
00002150
00002160
00002170
00002180
00002190
00002200
00002210
00002220
00002230
00002240
00002250
00002260
00002270
00002280
00002290
00002300
00002310
00002320
00002330
00002340
00002350
00002360
00002370
00002380
00002390
00002400
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X(1,5) = XX (1)
X(2,5) = Y(1)
X(3,5) = 2(1)
XP(1,5) = XD(1)

XP (2.5) = YD(1)

XP(3,5) = 2D (1)

INT = DTDUT/H+1.D-S

WRITE(101,11) (X(I,S),I=1,3), (XP(I,5),I=1,3)

FORMAT (//* ®»%¢ ORFIT : X, Y, Z, XD, YD, 2D,°*,
*R,V, T = *,//" INITIAL CONDITIONS : *//3(2X,G20.14))

IF (IECO.EQ.1) WRITE(J01,666)

FORMAT (/' 8488 ECONOMIZING IS ON §888°%/)

DO 100 NI = 1,NINT

NIP = NI+l

CALL COVMELL (X,XP,TELEM,T,NCA,INIT)

INIT = 1

XX (NIP) = X(1,5)

Y(NIP) = X(2,5)

Z(NIP) = X(3,5)

XD (NIP) = XP(1,.5)

YD (NIP) = XP(2,5)

2D (NIP) = XP(3,5)

IF ((NI/INT) ©INT .NENI.AND.NI.KE.NIKT) GO TO 100

R = DSQRT (X (1,5)#$24X (2,5) $$2+X (3, 5) $22)

V = DSQRT (XP (1,5) $224XP (2,5) <32+4XP (3,5) 2=2)

WRITE (101,12) (x(I,5).I=1,3),(XP(I,S).I1=1,3),R,V,T

FORMAT (//3 (2X,520.14))

CONTINUE

RETURN

END

SUBROUTINE SECON (X,XP,S,DELS)

THIS SUBROUTINE CALLS SUB. "FORCES® WITH A FULL
OR A PARTIAL FIELD, AS AN OPTION TO SAVE COMPUTING.

IMPLICIT REAL#*8 (A-H,0-2)

00002410
00002820
00002430
000C2440
00002450
00002460
00002470
00002480
00002490
00002500
00002510
00002520
00002530
00002540
00002550
00002560
00002570
00002580
00002590
00002600
00002610
00002620
000026 30
00002640
00002650
00002660
00002670
00002680
0000269¢C
00002700

00002950
00002960
00002970
00002980
00002990
00003000
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DIMENSION X (3,9),XP(3,9),DELS (3,9) ,XOLC(3,9) ,XPOLD(3,9),
4DELSN(3,9) ,DELSO(3,9)

COMMON /POURCO/ FPER(3,9),JJ,KFC,IECO,ITERA,ITX,TJA
IF (IEC0.EQ.1) GO IC S

IJA =1

CALL FORCES (X,XP,S,DELS)

RETURN

CONTINUE

IF (KPC.NE.10) GO TO 20

IJA = 1

CALL FORCES (X,XP,S,DELS)

IJA = 0

CALL FORCES (X,XP,S,DELSO)

IF (JJ.NE.B) GO T0 15

DO 10 N =1,3
DO 10 I1=1,8
XOLD(N,I) = X(N,I)

XPOLD(N,I) = XP(N,I)
IF (JJ.NE.9) RETURN
DO 18 N=1,3
XOLD(N,9) = X(N,9)
XPOLD(N,9) = XP(N,9)

CONTINUE

RETURN

IJR = 0

CALL FORCES (X,XP,S,DELSN)

Do 30 I=1,3

DELS (I,3J) =.DELS (I,JJ)+ (DELSK(I,JJ) -DELSO (I,JJ))

IF (JJ.NE.9) GO TO S0
IF (ITERR.EQ.1.AND.ITX.LT.1) GC TO 60

DO 40 N=1,3

DO u0 1=1,8
DELSO(N,I) = DELSN(N,I+1)
XOLD(N,I) = X(N,I+1)
XPOLD(N,I) = XP(N,T+1)
RETURN

DO 55 N=1,3

DO 55 I1=1,8

DELSO(N,I) = DELSN(N,I)
XOLD(N,I) = X(N,I)

XPOLD(N,I) = XP(N,I)

RETURN

END

SUBROUTINE FCRCES (X,XP,T,DELS)

COMPUTES ACCELERATIONS IN INERTIAL SPACE
FOR A ZONAL FIELD.

IMPLICIT REAL%8 (A-H,0-7)
DIMENSION X (3,9),%P(3,9) ,DELS (3,9)

COMMON /POURCO/ FPER(3,9) ,JJ,KFC,IECO, ITERA,ITX,IJA
COMMON /GEOCON/ GM,AE

COMMON/COEFFS/ CN (310) ,DSR21,1R,RMIX

COMMON/LEG/ DRTS (700)

DIMENSION RN (310) ,PNM (310) ,KLNN (310) ,PNMP (310)
NMEX = NMIX

NMEX = 10

A A S A S LS S AL AL SS UL RS SA IR AL ISR S

IF (NMAX.GT.NMEX .AND.IJAR.EQ.0) NMAX = NPMEX
R = DSQRT (X (1,JJ) *22+X (2,JJ) #%24X(3,JJ) 2%2)

00003010
00003020
00003030
00003040
00003050
00003060
00003070
00003080
00003090
00003100
00003110
00003120
00003130
00003140
00003150
00003160
00003170
00003160
00003190
00003200
00003210
00003220
00003230
00003240
00003250
00003260
00003270
000032860
00003290
00003300
00003310
00003320
00003330
00003340
00003350
00003360
00003370
00003360
00003390
00003400
00003410
00003420
00003430
00003440
00003450
00003460
00003470
00003480
00003490
00003500
00003510
00003520
000€3530
00003540
00003550
00003560
00003570
00003580
00003590
00003600
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RI = 1.DO/R

PRO = DSQRT (X (1,JJ)%%24X (2, JJ) #22)
CPH = PROZRI

SPH = X(3,JJ)*RI

IF (DABS (PRO) .LT.1.D-6) GO TO 5
PROI = 1.D0/PRO

CL = X(1,JJ) *PPOI

SL = X (2,JJ) #PROL

GO TO 7
CL = 0.00
SL = 1.D0

NMAXP = NMAX+1
NMAXPP = NMAX+2

AOR = AESRI

GMA2 = GM/RE%%2

RN (1) = AOR%=

RN (2) = AOR%23

CTH = SPH

STH = CPH

DO 10 N1 = 3,NMAXP
RN (N1) = ROR=RN (N1-1)
CALL LEGEND (0,CTH,STH,PNMP ,NMAXPP, IR, RLNN)
DO 15 N1 = 1,NMAXP

PNMP (N1) = PNMP (N1)2RN (N1)

PNM(N1) = PNMP(N1)

CALL LEGEND (1,CTH,STH,PNMP ,NMAXPP, IR, RLNN)
FR = 0.DO

FLAT = 0.DO

DO 30 N1 = 1,NMAXP

N = N1-1

PNMP (N1) = PNMP (N1)2RN (N1)

PNN = PNM (N1)3N1

IF (N1.EQ.1) GO TO 35

FLAT1 = PNMP (N1) #DRTS (N1) $DRTS (M) DSR21

GO TO 36

FLAT1 = 0.DO

FLA = FLAT1

FLAT = FLAT+FLA=CH (N1)

FR = FR+PNN%CN (N1)

CONTINUE

FR = -GMA22FR

FLAT = GMA2%FLAT

FH = FR&CPH-FLAT=SPH

DELS (1,JJ) = FH=2CL

DELS (2,JJ) = FH3SL
DELS(3,JJ) = FR2*SPH+FLAT=CPH

AARAAAA LA D AR
IRV IV LRINITINTEN

o0

SELPSSETTNLF
RETURN

END
SUBROUTINE COWELL (X,XP,TELEM,T,NCA,INIT)

ADAMS-COWVELL PREDICTOR/CORRECTCR ALCORITHM

MUCGIN/COWELL C .RIZOS* VERSION OF FEB. B2
MODIFIED BY O.L.COLOMBO ON SEF. 83 TO INCLUDE THE OPTION
OF ITERATING THE PREDICTOR-CORRECTOE (“RCUTINE*) STEP

BY SETTING
ITERA =1

ALAAAAR AR A AR AL AR AN AL A A p A A B AR
SLERFIIEATLILETLTPLLLLTLT S HSEX

00003610
00003620
00003630
00003640
00003650
00003660
00003670
00003680
00003690
00003700
00003710
00003720
00003730
00003740
00003750
00003760
00003770
00003780
00003790
00003800
00003810
00003820
00003€ 30
00003840
00003850
00003860
00003870
00003880
00003890
00003900
00003910
00003920
00003930
00003940
00003950
00003960
00003970
00003980
00003990
00004000
00004010
00004020
00004030
000040UO
00008050
00004060
00004070
00004080
00004090
00004100
00004110
00004120
00004130
0000u1u40
00004150
00004160
00004170
00004180
00004190
00004200
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IMPLICIT REAL=6 (A-H,0-2)

DIMENSION X (3,9),%P(3,9),DEL(3,9) ,DELP(3,9),DELS (3,9)

DIMENSION XPP (27) ,XPMAX (27)

COMMON/INTEG/H,EPS

DIMENSION IALPHA (8,7),IEETA(8,7)
COMMON/10/101,IN1,IN2,IN3,ING,INS,ING,IN7

COMMON /POURCO/F PEF (3,9) , 3J,KPC, IECO, ITERR, ITX,1JA

DATA D/3628600.00/,0P/120960.D0/,
?IALPHA/237671,-96829,1571,-289,-289,1571,-9829,237671,
$204614 ,306474,-20826,3594,1734,-11266,70374,-1673526,
$-401475,38205,339465,-26895,-2475,34725,-217695,5061465,
1378740,-57460,-16780,3u9580,-16780,-57460,378740,-8536180,
1-217695,34725,-2475,-26895,339465,368205,-401475,8697225,
$70374,-11266,1734 ,3594 ,-20826,306474 ,244618,-5392566,
1-9829,1571,-289,-289,1571,-9829,237671,1908311/,
#IBETA/84161,1375,-351,191,-191,351,-1375,36799,
$-55688,74536,3832,-1686,1528,-26U8,9976,-258968,
166109,-26813,67165,7043,-5699 ,8699,-31523,782755,
1-57024,17984,-14528,60080,108528,-17984,57024,-1319488,
$31523,-8899,5699,-7843,53795,26813,-66109,1344989,
1-9976,2648,-1528,1688,~3832,46421,55688,-838888,
11375,-351,191,-191,351,-1375,36799,313261/

IF (INIT) 1001,1001,1003
CONTINUE

IPRINT = ©

HH = H/86u400

NPR 4

NCA 3

JMAX = S5+NPR

ITERAR = 0
TCOW=TELEM+T/86400.0
INIT=1

IBOUCL =0

IND=0

--=-- INITIALISATION ---- FIRST RUN IN EACH ITERATION...

KPC=10
JJ=5

ACCELER AT OREIT TIME *TCOW®* & PARRTIAL VARTATIONS
CALL SECON (X,XP,TCOW,DELS)
DO 4 N=1,NCA
D0 5 I=1,8
DELS (N,I) =DELS(N,5)
XP (N,8)=0.D0
XPMAX (N) =DABS (XP (N,5))
DO 11 N=1,NCh
2P=0.D0
Z =0.D00
DO 12 1=1,7
2pP=2P+ IBETA (4,I)=CELS(N,I+1)
Z =2 +IALPHA (4,T)=DELS (R,1+1)
DELP (N ,5) =XP (N,5)/ H -2pP/DP
DEL (N,S)=X (N,5)/ (H*H)-2Z /D
Do 13 I=1,3
IM=5-1
IP=5+]
DELP (N ,IM) =DELP (N ,IM+1) -DELS ( N,IM)

00004210
00004220
00004230
0000u240
00004250
00004260
00004270
00004 2€0
00004290
00004300
00004310
00004320
00004330
0000u 340
00004350
00004360
00004370
0000u3¢e0
00004390
00004400
0000u410
00004420
00004430
00004440
0000u450
0000u460
00004470
00004480
00004490
00004500
00004510
00004520
00004S30
0000usSuo0
00004550
00004560
00004570
00004580
00004590
0000u€ 00
ooo0ou610
00004620
00004630
00004640
00004650
00004660
00004670
00004680
00004690
00004700
00004710
0000u720
00004730
0000u7T40
00004750
00004760
00004770
00004780
0000479¢C
00004800
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DEL (N,IM)=DEL (N,IM+1)-DELP (N,IM+1)
DELP (N,IP) =DELP {N,IP-1) +DELS (N, IP-1)
DEL (N,IP)=DEL (N,IP-1)+DELP (N,IP)
CONTINUE

XPP (N) =XP (N, 8)
DO 14 J=2,8

1F (J-5) 9,14,9

20=0.D0

Z =0.D0

DO 15 I=1,7

ZP=ZP+ IBETA (J-1,I)*DELS (N,I+1)
2 =27 +IALPHA (J-1,T)*DELS (N,1+1)
XP (N,J}= H= (DELP (N, J) +ZP/DP)

X (N,J) =H2H% (DEL (N,J)+Z /D )
CONTINUE
CONTINUE

DO 16 J=2,8
S=TCOM +HH% (J~5)
IF (J-5) 17,16,17
CONTINUE

33=3

ACCELERS AT OTHER TIMES FOR STARTUP (3 BEFORE, 3 AFTER)
CALL SECON (X ,XP,S5,DELS)
CONTINUE

DO 18 N=1,NCA

XPMAX (N) =DMA X1 (XPMAX (M) ,DABS (XP (N, 8)) )

IF (DABS (XP (N,B8) ~XPP(N)) .CT.XPMAX (N)*EPS) GO TO 19
CONTINUE

IF (IPRINT.GE.3) WRITE (101,2000) IROUCL

FORMAT (/,* NO. OF ITERATIONS FOR START UP *,I13,/)
GO TO 1003

1BOUCL=IBOUCL+1

IF (IBOUCL-S0) 1002,1002,1000

WRITE (I01,3663)

FORMAT (//* +++ STCF|| MORE TEAN 55 ITERATIONS FOR STARTUP®)

STOP
---- ROUTINE ----

ITX = 0

IND=1

DO 61 N=1,NCA

2P=0.D0

2 =0.D0

DO 62 1=1,7

ZP=7P+ IBETA (4,I)*DELS (N,I+1)

2 =2 +IALPHA (4,1)#DELS (N,T+1)

DELP (N,5) =XP (N,5)/ H  -ZF/DP

DEL (N,5) =X (N,S5)/ (H*H)-Z /D

DO 63 I=1,4

IP=5+1

DELP (N,IP) =DELF (l,IP-1) +DELS (¥, IP-1)
DEL (N,IP)=DEL (N,IP-1)+DELP {N,IP)
ZP=0.D0

7 =0.D0

DO 55 1=1,7

00004810
00004820
0000ug 30
0000ug8u0
0000uB50
0000u860
ooooue70
00004880
0000u890
00004900
00004910
00004920
060004930
000043 u0
00004950
000043960
00004970
00004980
00004990
00005000
00005010
00005020
00005030
00005040
00005050
00005060
00005070
00005080
00005090
00005100
00005110
00005120
000051 30
00005140
00005150
00005160
00005170
00005180
00005190
00005200
00005210
00005220
00005230
00005240
00005250
00005260
00005270
00005280
00005290
00005300
00005310
00005320
00005330
00005340
00005350
00005360
00005370
00005380
00005390
00005400
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ZP=ZP+ IBETA (B,1)%DELS (N,I+1)
Z =2 +IALPHA (8,1)=DELS (N,I+1)
XP(N,9)= H% (DELP (N,9) ¢ZP/DP)
X (N,9)=HSH% (DEL (N,9)+Z /D )
CONTINUE

S=TCOW ¢+HH=4 .DO
KPC=10
JJ=9

00005410
00005420
00005830
00005440
00005450
00005460
00005470
00005480
00005490
00005500

ACCELER ONE PI. BEYOND RANGE (7 PTIS, 3 BEFORE, 3 AFTER & ORBIT) 00005510

CALL SECON (X,XP,S,DELS)
DO Su N=1,NCA

DO 68 J=6,JMAX

ZP=0.D0

Z =0.D0

DO 65 1=1,7

ZP=ZP+ IBETA (J-2,I)%DELS (N,I+2)
Z =Z +IALPHA (J-2,I)SDELS (N,I+2)
YP(N,J)= H=% (DELP (N,J)+ZP/DP)

X (N,J)=H3H% (DEL (N,J)+Z /D )
CONTINUE

DO 51 J=6,JMAX
S=TCOW +HH% (J-5)
KPC=J
JJ=J

EVALUATION (PARTIIAL AS AN OPTION) OF ACCELS. AT UPDATED
4 °*FORWARD® ELEMENTS.

CALL SECON(X,XP,S,DELS)

CONTINUE

ITX = ITX+1

IF (ITERA.EQ.1.AND.ITX.LT.2) GO TO 1004

SHUFFLE ALL ELEMENTS TO NEXT TIME PT.
T=T+H

DO 200 N=1,NCA

DO 201 I=1,8

XP(N,I)=XP(N,I+1)

X (N,I)=X (N,I+1)

FPER (N,1) =FPER (N, I+1)

DELS (N,I) =DELS (N, 1+1)

CONTINUE

RETURN

END

SUBROUTINE LEGEMND (M,COTHET, SITHET, RLEG,NMX.IR,RLNN)

00005520
00005530
00005540
00005550
00005560
00005570
00005580
00005590
00005600
00005610
00005620
000056 30
00005640
00005650
00005660
00005670
00005680
00005690
00005700
00005710
00005720
00005730
00005740
00005750
00005760
00005770
00005780
00005790
00005800
00005810
00005820
00005830
00005840
00005850
00005860
00005870
00005880

THIS SUBROUTINE CCMPUTES ALL NORMALIZED LEGENDRE FUNCTIONS00005890

IN *RLEG* . ORDER IS ALWAYS

00005900

M , AND COLATITUDE IS ALWAYS THETA (RADIANS) . MAYIMUM DEGR00005910

IS NMX . 00005920

IR MUST BE SET TO ZERO BFEFORE THE FIRST CALL TO THIS SUB. 00005930

THE DIMENSIONS OF ARRAYS RLEG, AND RLNN MUST BE 000C59u0

AT LEAST EQUAL TO HNMX+1 . 00005950
00005960

00005970

PROGRAMMER : CSCAR L. COLOMBO, DEPT. OF GEODETIC SCIENCE, 00005980

THE OHIO STATE UNIVERSITY, AUGUST 1980 . $33%333$4343¥

FERLHETESEE00005990
00006000
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IMPLICIT REAL%8 (A-H,0-2) 00006010
DIMENSION RLEG(1) ,RLNN (1) 00006020

2, DIRT (700) 000060 30
COMMON/LEG/DRTS (700) 00006040

NMX1 = NMX+1 00006050

NMX2P = 2%NMX+1 00006060

DO 123 N =1,35 00006070

RLEG (N) = 0.D0 00006080

123 RLNN(N) = 0.DO 00006090
M1 = Mel 00006100

M2 = M+2 00006110

M3 = M43 000061 20

IF (IR.EQ.1) GO TO 10 00006130

IR = 1 00006140

DO S N = 1,NMX2P 00006150

DRTS (N) = DSQRT (N#1.D0) 00006160

s DIRT(N) = 1.DO/DRTS(N) 00006170

10 CONTINUE 00006180

c 00006190
c COMPUTE THE LEGENDRE FUNCTIONS . 00006200
c 00006210
RLNN (1) = 1.T0 00006220

RLNN (2) = SITHET=DRTS (3) 00006230

DO 15 N1 = 3,M1 00006240

N = N1-1 00006250

N2 = NeN 00006260

15 RLNN (N1) = DRTS (N2+1)*DIRT (N2)*SITHET*RLNN (N1-1) 00006270

IF (M.GT.1) GO TC 20 00006280

IF (M.EQ.0) GO TO 16 00006290

RLEG (2) = RLNN(2) 00006300
RLEG(3) = DRTS (5) *COTHETZRLEG (2) 00006310

GO TO 20 05006320

16 RLEG(1) = 1.DO 00006330
RLEG (2) = COTHET2DRTS (3) 00006340

20 CONTINUE 00006350
RLEG (M1) = RLNN (M1) 00006360

RLEG (M2) = DRTS (M1%2+1)*COTHET#RLEG (M1) 00006370

DO 30 N1 = M3,NMX1 00006380

N = N1-1 00006390

1F (M.EQ.0.AND.N.LT.2.0R.M.EG.1.AND.N.LT.3) GO TO 30 00006400

N2 = NeN 00006410

RLEG (N1) = DRTS (N2+1)2DIRT (N+F) DIRT (N-M)< (DRTS (N2-1)$COTHET= 000064 20

2 RLEG(N1-1) -DRTS (N+M-1) #DRTS (N-M-1) 3DIRT (N2-3) #RLEG (N1-2) ) 000064 30

GO TO 30 00006440

30 CONTINUE 00006450
RETURN 00006460

END 00006470
//GO.FT10F001 DD UNIT=DISK,DISP=(NEK,CATLG) ,VOL=SER=DISK10, 000064 80
//  DCB=(RECFM=VBS,LRECL=16500,BLXSIZE=16504), 00006490
// SPACE= (TRK, (1,1)) ,DSN=GDFGCOL.SSTRYS 00006500
//GO.SYSIN DD % 00006510

174 00006520
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APPENDIX IV,

Detailed Tistings.

In this Appendix, Table AIV-1 contains the detailed 1isting of the percentage
errors of the lumped coefficients of the model, compared to those obtained

by simulation and correction for nonperiodic effects, for the case where the
separation between satellites is 100 km with no errors in the initial states
of the nominal orbits. Table AIV-2 shows simiiar results for 300 km separa-
tion, also without initial state errors. The absorbtion bands, where inte-
grator errors and nonlinear effects dominate the very small first order
perturbations, can be seen quite clearly.
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